xref: /linux/fs/jbd2/transaction.c (revision b889fcf63cb62e7fdb7816565e28f44dbe4a76a5)
1 /*
2  * linux/fs/jbd2/transaction.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem transaction handling code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages transactions (compound commits managed by the
16  * journaling code) and handles (individual atomic operations by the
17  * filesystem).
18  */
19 
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd2.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/hrtimer.h>
29 #include <linux/backing-dev.h>
30 #include <linux/bug.h>
31 #include <linux/module.h>
32 
33 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
34 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
35 
36 static struct kmem_cache *transaction_cache;
37 int __init jbd2_journal_init_transaction_cache(void)
38 {
39 	J_ASSERT(!transaction_cache);
40 	transaction_cache = kmem_cache_create("jbd2_transaction_s",
41 					sizeof(transaction_t),
42 					0,
43 					SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
44 					NULL);
45 	if (transaction_cache)
46 		return 0;
47 	return -ENOMEM;
48 }
49 
50 void jbd2_journal_destroy_transaction_cache(void)
51 {
52 	if (transaction_cache) {
53 		kmem_cache_destroy(transaction_cache);
54 		transaction_cache = NULL;
55 	}
56 }
57 
58 void jbd2_journal_free_transaction(transaction_t *transaction)
59 {
60 	if (unlikely(ZERO_OR_NULL_PTR(transaction)))
61 		return;
62 	kmem_cache_free(transaction_cache, transaction);
63 }
64 
65 /*
66  * jbd2_get_transaction: obtain a new transaction_t object.
67  *
68  * Simply allocate and initialise a new transaction.  Create it in
69  * RUNNING state and add it to the current journal (which should not
70  * have an existing running transaction: we only make a new transaction
71  * once we have started to commit the old one).
72  *
73  * Preconditions:
74  *	The journal MUST be locked.  We don't perform atomic mallocs on the
75  *	new transaction	and we can't block without protecting against other
76  *	processes trying to touch the journal while it is in transition.
77  *
78  */
79 
80 static transaction_t *
81 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
82 {
83 	transaction->t_journal = journal;
84 	transaction->t_state = T_RUNNING;
85 	transaction->t_start_time = ktime_get();
86 	transaction->t_tid = journal->j_transaction_sequence++;
87 	transaction->t_expires = jiffies + journal->j_commit_interval;
88 	spin_lock_init(&transaction->t_handle_lock);
89 	atomic_set(&transaction->t_updates, 0);
90 	atomic_set(&transaction->t_outstanding_credits, 0);
91 	atomic_set(&transaction->t_handle_count, 0);
92 	INIT_LIST_HEAD(&transaction->t_inode_list);
93 	INIT_LIST_HEAD(&transaction->t_private_list);
94 
95 	/* Set up the commit timer for the new transaction. */
96 	journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
97 	add_timer(&journal->j_commit_timer);
98 
99 	J_ASSERT(journal->j_running_transaction == NULL);
100 	journal->j_running_transaction = transaction;
101 	transaction->t_max_wait = 0;
102 	transaction->t_start = jiffies;
103 
104 	return transaction;
105 }
106 
107 /*
108  * Handle management.
109  *
110  * A handle_t is an object which represents a single atomic update to a
111  * filesystem, and which tracks all of the modifications which form part
112  * of that one update.
113  */
114 
115 /*
116  * Update transaction's maximum wait time, if debugging is enabled.
117  *
118  * In order for t_max_wait to be reliable, it must be protected by a
119  * lock.  But doing so will mean that start_this_handle() can not be
120  * run in parallel on SMP systems, which limits our scalability.  So
121  * unless debugging is enabled, we no longer update t_max_wait, which
122  * means that maximum wait time reported by the jbd2_run_stats
123  * tracepoint will always be zero.
124  */
125 static inline void update_t_max_wait(transaction_t *transaction,
126 				     unsigned long ts)
127 {
128 #ifdef CONFIG_JBD2_DEBUG
129 	if (jbd2_journal_enable_debug &&
130 	    time_after(transaction->t_start, ts)) {
131 		ts = jbd2_time_diff(ts, transaction->t_start);
132 		spin_lock(&transaction->t_handle_lock);
133 		if (ts > transaction->t_max_wait)
134 			transaction->t_max_wait = ts;
135 		spin_unlock(&transaction->t_handle_lock);
136 	}
137 #endif
138 }
139 
140 /*
141  * start_this_handle: Given a handle, deal with any locking or stalling
142  * needed to make sure that there is enough journal space for the handle
143  * to begin.  Attach the handle to a transaction and set up the
144  * transaction's buffer credits.
145  */
146 
147 static int start_this_handle(journal_t *journal, handle_t *handle,
148 			     gfp_t gfp_mask)
149 {
150 	transaction_t	*transaction, *new_transaction = NULL;
151 	tid_t		tid;
152 	int		needed, need_to_start;
153 	int		nblocks = handle->h_buffer_credits;
154 	unsigned long ts = jiffies;
155 
156 	if (nblocks > journal->j_max_transaction_buffers) {
157 		printk(KERN_ERR "JBD2: %s wants too many credits (%d > %d)\n",
158 		       current->comm, nblocks,
159 		       journal->j_max_transaction_buffers);
160 		return -ENOSPC;
161 	}
162 
163 alloc_transaction:
164 	if (!journal->j_running_transaction) {
165 		new_transaction = kmem_cache_zalloc(transaction_cache,
166 						    gfp_mask);
167 		if (!new_transaction) {
168 			/*
169 			 * If __GFP_FS is not present, then we may be
170 			 * being called from inside the fs writeback
171 			 * layer, so we MUST NOT fail.  Since
172 			 * __GFP_NOFAIL is going away, we will arrange
173 			 * to retry the allocation ourselves.
174 			 */
175 			if ((gfp_mask & __GFP_FS) == 0) {
176 				congestion_wait(BLK_RW_ASYNC, HZ/50);
177 				goto alloc_transaction;
178 			}
179 			return -ENOMEM;
180 		}
181 	}
182 
183 	jbd_debug(3, "New handle %p going live.\n", handle);
184 
185 	/*
186 	 * We need to hold j_state_lock until t_updates has been incremented,
187 	 * for proper journal barrier handling
188 	 */
189 repeat:
190 	read_lock(&journal->j_state_lock);
191 	BUG_ON(journal->j_flags & JBD2_UNMOUNT);
192 	if (is_journal_aborted(journal) ||
193 	    (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
194 		read_unlock(&journal->j_state_lock);
195 		jbd2_journal_free_transaction(new_transaction);
196 		return -EROFS;
197 	}
198 
199 	/* Wait on the journal's transaction barrier if necessary */
200 	if (journal->j_barrier_count) {
201 		read_unlock(&journal->j_state_lock);
202 		wait_event(journal->j_wait_transaction_locked,
203 				journal->j_barrier_count == 0);
204 		goto repeat;
205 	}
206 
207 	if (!journal->j_running_transaction) {
208 		read_unlock(&journal->j_state_lock);
209 		if (!new_transaction)
210 			goto alloc_transaction;
211 		write_lock(&journal->j_state_lock);
212 		if (!journal->j_running_transaction) {
213 			jbd2_get_transaction(journal, new_transaction);
214 			new_transaction = NULL;
215 		}
216 		write_unlock(&journal->j_state_lock);
217 		goto repeat;
218 	}
219 
220 	transaction = journal->j_running_transaction;
221 
222 	/*
223 	 * If the current transaction is locked down for commit, wait for the
224 	 * lock to be released.
225 	 */
226 	if (transaction->t_state == T_LOCKED) {
227 		DEFINE_WAIT(wait);
228 
229 		prepare_to_wait(&journal->j_wait_transaction_locked,
230 					&wait, TASK_UNINTERRUPTIBLE);
231 		read_unlock(&journal->j_state_lock);
232 		schedule();
233 		finish_wait(&journal->j_wait_transaction_locked, &wait);
234 		goto repeat;
235 	}
236 
237 	/*
238 	 * If there is not enough space left in the log to write all potential
239 	 * buffers requested by this operation, we need to stall pending a log
240 	 * checkpoint to free some more log space.
241 	 */
242 	needed = atomic_add_return(nblocks,
243 				   &transaction->t_outstanding_credits);
244 
245 	if (needed > journal->j_max_transaction_buffers) {
246 		/*
247 		 * If the current transaction is already too large, then start
248 		 * to commit it: we can then go back and attach this handle to
249 		 * a new transaction.
250 		 */
251 		DEFINE_WAIT(wait);
252 
253 		jbd_debug(2, "Handle %p starting new commit...\n", handle);
254 		atomic_sub(nblocks, &transaction->t_outstanding_credits);
255 		prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
256 				TASK_UNINTERRUPTIBLE);
257 		tid = transaction->t_tid;
258 		need_to_start = !tid_geq(journal->j_commit_request, tid);
259 		read_unlock(&journal->j_state_lock);
260 		if (need_to_start)
261 			jbd2_log_start_commit(journal, tid);
262 		schedule();
263 		finish_wait(&journal->j_wait_transaction_locked, &wait);
264 		goto repeat;
265 	}
266 
267 	/*
268 	 * The commit code assumes that it can get enough log space
269 	 * without forcing a checkpoint.  This is *critical* for
270 	 * correctness: a checkpoint of a buffer which is also
271 	 * associated with a committing transaction creates a deadlock,
272 	 * so commit simply cannot force through checkpoints.
273 	 *
274 	 * We must therefore ensure the necessary space in the journal
275 	 * *before* starting to dirty potentially checkpointed buffers
276 	 * in the new transaction.
277 	 *
278 	 * The worst part is, any transaction currently committing can
279 	 * reduce the free space arbitrarily.  Be careful to account for
280 	 * those buffers when checkpointing.
281 	 */
282 
283 	/*
284 	 * @@@ AKPM: This seems rather over-defensive.  We're giving commit
285 	 * a _lot_ of headroom: 1/4 of the journal plus the size of
286 	 * the committing transaction.  Really, we only need to give it
287 	 * committing_transaction->t_outstanding_credits plus "enough" for
288 	 * the log control blocks.
289 	 * Also, this test is inconsistent with the matching one in
290 	 * jbd2_journal_extend().
291 	 */
292 	if (__jbd2_log_space_left(journal) < jbd_space_needed(journal)) {
293 		jbd_debug(2, "Handle %p waiting for checkpoint...\n", handle);
294 		atomic_sub(nblocks, &transaction->t_outstanding_credits);
295 		read_unlock(&journal->j_state_lock);
296 		write_lock(&journal->j_state_lock);
297 		if (__jbd2_log_space_left(journal) < jbd_space_needed(journal))
298 			__jbd2_log_wait_for_space(journal);
299 		write_unlock(&journal->j_state_lock);
300 		goto repeat;
301 	}
302 
303 	/* OK, account for the buffers that this operation expects to
304 	 * use and add the handle to the running transaction.
305 	 */
306 	update_t_max_wait(transaction, ts);
307 	handle->h_transaction = transaction;
308 	atomic_inc(&transaction->t_updates);
309 	atomic_inc(&transaction->t_handle_count);
310 	jbd_debug(4, "Handle %p given %d credits (total %d, free %d)\n",
311 		  handle, nblocks,
312 		  atomic_read(&transaction->t_outstanding_credits),
313 		  __jbd2_log_space_left(journal));
314 	read_unlock(&journal->j_state_lock);
315 
316 	lock_map_acquire(&handle->h_lockdep_map);
317 	jbd2_journal_free_transaction(new_transaction);
318 	return 0;
319 }
320 
321 static struct lock_class_key jbd2_handle_key;
322 
323 /* Allocate a new handle.  This should probably be in a slab... */
324 static handle_t *new_handle(int nblocks)
325 {
326 	handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
327 	if (!handle)
328 		return NULL;
329 	memset(handle, 0, sizeof(*handle));
330 	handle->h_buffer_credits = nblocks;
331 	handle->h_ref = 1;
332 
333 	lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle",
334 						&jbd2_handle_key, 0);
335 
336 	return handle;
337 }
338 
339 /**
340  * handle_t *jbd2_journal_start() - Obtain a new handle.
341  * @journal: Journal to start transaction on.
342  * @nblocks: number of block buffer we might modify
343  *
344  * We make sure that the transaction can guarantee at least nblocks of
345  * modified buffers in the log.  We block until the log can guarantee
346  * that much space.
347  *
348  * This function is visible to journal users (like ext3fs), so is not
349  * called with the journal already locked.
350  *
351  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
352  * on failure.
353  */
354 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, gfp_t gfp_mask)
355 {
356 	handle_t *handle = journal_current_handle();
357 	int err;
358 
359 	if (!journal)
360 		return ERR_PTR(-EROFS);
361 
362 	if (handle) {
363 		J_ASSERT(handle->h_transaction->t_journal == journal);
364 		handle->h_ref++;
365 		return handle;
366 	}
367 
368 	handle = new_handle(nblocks);
369 	if (!handle)
370 		return ERR_PTR(-ENOMEM);
371 
372 	current->journal_info = handle;
373 
374 	err = start_this_handle(journal, handle, gfp_mask);
375 	if (err < 0) {
376 		jbd2_free_handle(handle);
377 		current->journal_info = NULL;
378 		handle = ERR_PTR(err);
379 	}
380 	return handle;
381 }
382 EXPORT_SYMBOL(jbd2__journal_start);
383 
384 
385 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
386 {
387 	return jbd2__journal_start(journal, nblocks, GFP_NOFS);
388 }
389 EXPORT_SYMBOL(jbd2_journal_start);
390 
391 
392 /**
393  * int jbd2_journal_extend() - extend buffer credits.
394  * @handle:  handle to 'extend'
395  * @nblocks: nr blocks to try to extend by.
396  *
397  * Some transactions, such as large extends and truncates, can be done
398  * atomically all at once or in several stages.  The operation requests
399  * a credit for a number of buffer modications in advance, but can
400  * extend its credit if it needs more.
401  *
402  * jbd2_journal_extend tries to give the running handle more buffer credits.
403  * It does not guarantee that allocation - this is a best-effort only.
404  * The calling process MUST be able to deal cleanly with a failure to
405  * extend here.
406  *
407  * Return 0 on success, non-zero on failure.
408  *
409  * return code < 0 implies an error
410  * return code > 0 implies normal transaction-full status.
411  */
412 int jbd2_journal_extend(handle_t *handle, int nblocks)
413 {
414 	transaction_t *transaction = handle->h_transaction;
415 	journal_t *journal = transaction->t_journal;
416 	int result;
417 	int wanted;
418 
419 	result = -EIO;
420 	if (is_handle_aborted(handle))
421 		goto out;
422 
423 	result = 1;
424 
425 	read_lock(&journal->j_state_lock);
426 
427 	/* Don't extend a locked-down transaction! */
428 	if (handle->h_transaction->t_state != T_RUNNING) {
429 		jbd_debug(3, "denied handle %p %d blocks: "
430 			  "transaction not running\n", handle, nblocks);
431 		goto error_out;
432 	}
433 
434 	spin_lock(&transaction->t_handle_lock);
435 	wanted = atomic_read(&transaction->t_outstanding_credits) + nblocks;
436 
437 	if (wanted > journal->j_max_transaction_buffers) {
438 		jbd_debug(3, "denied handle %p %d blocks: "
439 			  "transaction too large\n", handle, nblocks);
440 		goto unlock;
441 	}
442 
443 	if (wanted > __jbd2_log_space_left(journal)) {
444 		jbd_debug(3, "denied handle %p %d blocks: "
445 			  "insufficient log space\n", handle, nblocks);
446 		goto unlock;
447 	}
448 
449 	handle->h_buffer_credits += nblocks;
450 	atomic_add(nblocks, &transaction->t_outstanding_credits);
451 	result = 0;
452 
453 	jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
454 unlock:
455 	spin_unlock(&transaction->t_handle_lock);
456 error_out:
457 	read_unlock(&journal->j_state_lock);
458 out:
459 	return result;
460 }
461 
462 
463 /**
464  * int jbd2_journal_restart() - restart a handle .
465  * @handle:  handle to restart
466  * @nblocks: nr credits requested
467  *
468  * Restart a handle for a multi-transaction filesystem
469  * operation.
470  *
471  * If the jbd2_journal_extend() call above fails to grant new buffer credits
472  * to a running handle, a call to jbd2_journal_restart will commit the
473  * handle's transaction so far and reattach the handle to a new
474  * transaction capabable of guaranteeing the requested number of
475  * credits.
476  */
477 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
478 {
479 	transaction_t *transaction = handle->h_transaction;
480 	journal_t *journal = transaction->t_journal;
481 	tid_t		tid;
482 	int		need_to_start, ret;
483 
484 	/* If we've had an abort of any type, don't even think about
485 	 * actually doing the restart! */
486 	if (is_handle_aborted(handle))
487 		return 0;
488 
489 	/*
490 	 * First unlink the handle from its current transaction, and start the
491 	 * commit on that.
492 	 */
493 	J_ASSERT(atomic_read(&transaction->t_updates) > 0);
494 	J_ASSERT(journal_current_handle() == handle);
495 
496 	read_lock(&journal->j_state_lock);
497 	spin_lock(&transaction->t_handle_lock);
498 	atomic_sub(handle->h_buffer_credits,
499 		   &transaction->t_outstanding_credits);
500 	if (atomic_dec_and_test(&transaction->t_updates))
501 		wake_up(&journal->j_wait_updates);
502 	spin_unlock(&transaction->t_handle_lock);
503 
504 	jbd_debug(2, "restarting handle %p\n", handle);
505 	tid = transaction->t_tid;
506 	need_to_start = !tid_geq(journal->j_commit_request, tid);
507 	read_unlock(&journal->j_state_lock);
508 	if (need_to_start)
509 		jbd2_log_start_commit(journal, tid);
510 
511 	lock_map_release(&handle->h_lockdep_map);
512 	handle->h_buffer_credits = nblocks;
513 	ret = start_this_handle(journal, handle, gfp_mask);
514 	return ret;
515 }
516 EXPORT_SYMBOL(jbd2__journal_restart);
517 
518 
519 int jbd2_journal_restart(handle_t *handle, int nblocks)
520 {
521 	return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
522 }
523 EXPORT_SYMBOL(jbd2_journal_restart);
524 
525 /**
526  * void jbd2_journal_lock_updates () - establish a transaction barrier.
527  * @journal:  Journal to establish a barrier on.
528  *
529  * This locks out any further updates from being started, and blocks
530  * until all existing updates have completed, returning only once the
531  * journal is in a quiescent state with no updates running.
532  *
533  * The journal lock should not be held on entry.
534  */
535 void jbd2_journal_lock_updates(journal_t *journal)
536 {
537 	DEFINE_WAIT(wait);
538 
539 	write_lock(&journal->j_state_lock);
540 	++journal->j_barrier_count;
541 
542 	/* Wait until there are no running updates */
543 	while (1) {
544 		transaction_t *transaction = journal->j_running_transaction;
545 
546 		if (!transaction)
547 			break;
548 
549 		spin_lock(&transaction->t_handle_lock);
550 		prepare_to_wait(&journal->j_wait_updates, &wait,
551 				TASK_UNINTERRUPTIBLE);
552 		if (!atomic_read(&transaction->t_updates)) {
553 			spin_unlock(&transaction->t_handle_lock);
554 			finish_wait(&journal->j_wait_updates, &wait);
555 			break;
556 		}
557 		spin_unlock(&transaction->t_handle_lock);
558 		write_unlock(&journal->j_state_lock);
559 		schedule();
560 		finish_wait(&journal->j_wait_updates, &wait);
561 		write_lock(&journal->j_state_lock);
562 	}
563 	write_unlock(&journal->j_state_lock);
564 
565 	/*
566 	 * We have now established a barrier against other normal updates, but
567 	 * we also need to barrier against other jbd2_journal_lock_updates() calls
568 	 * to make sure that we serialise special journal-locked operations
569 	 * too.
570 	 */
571 	mutex_lock(&journal->j_barrier);
572 }
573 
574 /**
575  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
576  * @journal:  Journal to release the barrier on.
577  *
578  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
579  *
580  * Should be called without the journal lock held.
581  */
582 void jbd2_journal_unlock_updates (journal_t *journal)
583 {
584 	J_ASSERT(journal->j_barrier_count != 0);
585 
586 	mutex_unlock(&journal->j_barrier);
587 	write_lock(&journal->j_state_lock);
588 	--journal->j_barrier_count;
589 	write_unlock(&journal->j_state_lock);
590 	wake_up(&journal->j_wait_transaction_locked);
591 }
592 
593 static void warn_dirty_buffer(struct buffer_head *bh)
594 {
595 	char b[BDEVNAME_SIZE];
596 
597 	printk(KERN_WARNING
598 	       "JBD2: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). "
599 	       "There's a risk of filesystem corruption in case of system "
600 	       "crash.\n",
601 	       bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr);
602 }
603 
604 /*
605  * If the buffer is already part of the current transaction, then there
606  * is nothing we need to do.  If it is already part of a prior
607  * transaction which we are still committing to disk, then we need to
608  * make sure that we do not overwrite the old copy: we do copy-out to
609  * preserve the copy going to disk.  We also account the buffer against
610  * the handle's metadata buffer credits (unless the buffer is already
611  * part of the transaction, that is).
612  *
613  */
614 static int
615 do_get_write_access(handle_t *handle, struct journal_head *jh,
616 			int force_copy)
617 {
618 	struct buffer_head *bh;
619 	transaction_t *transaction;
620 	journal_t *journal;
621 	int error;
622 	char *frozen_buffer = NULL;
623 	int need_copy = 0;
624 
625 	if (is_handle_aborted(handle))
626 		return -EROFS;
627 
628 	transaction = handle->h_transaction;
629 	journal = transaction->t_journal;
630 
631 	jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
632 
633 	JBUFFER_TRACE(jh, "entry");
634 repeat:
635 	bh = jh2bh(jh);
636 
637 	/* @@@ Need to check for errors here at some point. */
638 
639 	lock_buffer(bh);
640 	jbd_lock_bh_state(bh);
641 
642 	/* We now hold the buffer lock so it is safe to query the buffer
643 	 * state.  Is the buffer dirty?
644 	 *
645 	 * If so, there are two possibilities.  The buffer may be
646 	 * non-journaled, and undergoing a quite legitimate writeback.
647 	 * Otherwise, it is journaled, and we don't expect dirty buffers
648 	 * in that state (the buffers should be marked JBD_Dirty
649 	 * instead.)  So either the IO is being done under our own
650 	 * control and this is a bug, or it's a third party IO such as
651 	 * dump(8) (which may leave the buffer scheduled for read ---
652 	 * ie. locked but not dirty) or tune2fs (which may actually have
653 	 * the buffer dirtied, ugh.)  */
654 
655 	if (buffer_dirty(bh)) {
656 		/*
657 		 * First question: is this buffer already part of the current
658 		 * transaction or the existing committing transaction?
659 		 */
660 		if (jh->b_transaction) {
661 			J_ASSERT_JH(jh,
662 				jh->b_transaction == transaction ||
663 				jh->b_transaction ==
664 					journal->j_committing_transaction);
665 			if (jh->b_next_transaction)
666 				J_ASSERT_JH(jh, jh->b_next_transaction ==
667 							transaction);
668 			warn_dirty_buffer(bh);
669 		}
670 		/*
671 		 * In any case we need to clean the dirty flag and we must
672 		 * do it under the buffer lock to be sure we don't race
673 		 * with running write-out.
674 		 */
675 		JBUFFER_TRACE(jh, "Journalling dirty buffer");
676 		clear_buffer_dirty(bh);
677 		set_buffer_jbddirty(bh);
678 	}
679 
680 	unlock_buffer(bh);
681 
682 	error = -EROFS;
683 	if (is_handle_aborted(handle)) {
684 		jbd_unlock_bh_state(bh);
685 		goto out;
686 	}
687 	error = 0;
688 
689 	/*
690 	 * The buffer is already part of this transaction if b_transaction or
691 	 * b_next_transaction points to it
692 	 */
693 	if (jh->b_transaction == transaction ||
694 	    jh->b_next_transaction == transaction)
695 		goto done;
696 
697 	/*
698 	 * this is the first time this transaction is touching this buffer,
699 	 * reset the modified flag
700 	 */
701        jh->b_modified = 0;
702 
703 	/*
704 	 * If there is already a copy-out version of this buffer, then we don't
705 	 * need to make another one
706 	 */
707 	if (jh->b_frozen_data) {
708 		JBUFFER_TRACE(jh, "has frozen data");
709 		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
710 		jh->b_next_transaction = transaction;
711 		goto done;
712 	}
713 
714 	/* Is there data here we need to preserve? */
715 
716 	if (jh->b_transaction && jh->b_transaction != transaction) {
717 		JBUFFER_TRACE(jh, "owned by older transaction");
718 		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
719 		J_ASSERT_JH(jh, jh->b_transaction ==
720 					journal->j_committing_transaction);
721 
722 		/* There is one case we have to be very careful about.
723 		 * If the committing transaction is currently writing
724 		 * this buffer out to disk and has NOT made a copy-out,
725 		 * then we cannot modify the buffer contents at all
726 		 * right now.  The essence of copy-out is that it is the
727 		 * extra copy, not the primary copy, which gets
728 		 * journaled.  If the primary copy is already going to
729 		 * disk then we cannot do copy-out here. */
730 
731 		if (jh->b_jlist == BJ_Shadow) {
732 			DEFINE_WAIT_BIT(wait, &bh->b_state, BH_Unshadow);
733 			wait_queue_head_t *wqh;
734 
735 			wqh = bit_waitqueue(&bh->b_state, BH_Unshadow);
736 
737 			JBUFFER_TRACE(jh, "on shadow: sleep");
738 			jbd_unlock_bh_state(bh);
739 			/* commit wakes up all shadow buffers after IO */
740 			for ( ; ; ) {
741 				prepare_to_wait(wqh, &wait.wait,
742 						TASK_UNINTERRUPTIBLE);
743 				if (jh->b_jlist != BJ_Shadow)
744 					break;
745 				schedule();
746 			}
747 			finish_wait(wqh, &wait.wait);
748 			goto repeat;
749 		}
750 
751 		/* Only do the copy if the currently-owning transaction
752 		 * still needs it.  If it is on the Forget list, the
753 		 * committing transaction is past that stage.  The
754 		 * buffer had better remain locked during the kmalloc,
755 		 * but that should be true --- we hold the journal lock
756 		 * still and the buffer is already on the BUF_JOURNAL
757 		 * list so won't be flushed.
758 		 *
759 		 * Subtle point, though: if this is a get_undo_access,
760 		 * then we will be relying on the frozen_data to contain
761 		 * the new value of the committed_data record after the
762 		 * transaction, so we HAVE to force the frozen_data copy
763 		 * in that case. */
764 
765 		if (jh->b_jlist != BJ_Forget || force_copy) {
766 			JBUFFER_TRACE(jh, "generate frozen data");
767 			if (!frozen_buffer) {
768 				JBUFFER_TRACE(jh, "allocate memory for buffer");
769 				jbd_unlock_bh_state(bh);
770 				frozen_buffer =
771 					jbd2_alloc(jh2bh(jh)->b_size,
772 							 GFP_NOFS);
773 				if (!frozen_buffer) {
774 					printk(KERN_EMERG
775 					       "%s: OOM for frozen_buffer\n",
776 					       __func__);
777 					JBUFFER_TRACE(jh, "oom!");
778 					error = -ENOMEM;
779 					jbd_lock_bh_state(bh);
780 					goto done;
781 				}
782 				goto repeat;
783 			}
784 			jh->b_frozen_data = frozen_buffer;
785 			frozen_buffer = NULL;
786 			need_copy = 1;
787 		}
788 		jh->b_next_transaction = transaction;
789 	}
790 
791 
792 	/*
793 	 * Finally, if the buffer is not journaled right now, we need to make
794 	 * sure it doesn't get written to disk before the caller actually
795 	 * commits the new data
796 	 */
797 	if (!jh->b_transaction) {
798 		JBUFFER_TRACE(jh, "no transaction");
799 		J_ASSERT_JH(jh, !jh->b_next_transaction);
800 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
801 		spin_lock(&journal->j_list_lock);
802 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
803 		spin_unlock(&journal->j_list_lock);
804 	}
805 
806 done:
807 	if (need_copy) {
808 		struct page *page;
809 		int offset;
810 		char *source;
811 
812 		J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)),
813 			    "Possible IO failure.\n");
814 		page = jh2bh(jh)->b_page;
815 		offset = offset_in_page(jh2bh(jh)->b_data);
816 		source = kmap_atomic(page);
817 		/* Fire data frozen trigger just before we copy the data */
818 		jbd2_buffer_frozen_trigger(jh, source + offset,
819 					   jh->b_triggers);
820 		memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size);
821 		kunmap_atomic(source);
822 
823 		/*
824 		 * Now that the frozen data is saved off, we need to store
825 		 * any matching triggers.
826 		 */
827 		jh->b_frozen_triggers = jh->b_triggers;
828 	}
829 	jbd_unlock_bh_state(bh);
830 
831 	/*
832 	 * If we are about to journal a buffer, then any revoke pending on it is
833 	 * no longer valid
834 	 */
835 	jbd2_journal_cancel_revoke(handle, jh);
836 
837 out:
838 	if (unlikely(frozen_buffer))	/* It's usually NULL */
839 		jbd2_free(frozen_buffer, bh->b_size);
840 
841 	JBUFFER_TRACE(jh, "exit");
842 	return error;
843 }
844 
845 /**
846  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
847  * @handle: transaction to add buffer modifications to
848  * @bh:     bh to be used for metadata writes
849  *
850  * Returns an error code or 0 on success.
851  *
852  * In full data journalling mode the buffer may be of type BJ_AsyncData,
853  * because we're write()ing a buffer which is also part of a shared mapping.
854  */
855 
856 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
857 {
858 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
859 	int rc;
860 
861 	/* We do not want to get caught playing with fields which the
862 	 * log thread also manipulates.  Make sure that the buffer
863 	 * completes any outstanding IO before proceeding. */
864 	rc = do_get_write_access(handle, jh, 0);
865 	jbd2_journal_put_journal_head(jh);
866 	return rc;
867 }
868 
869 
870 /*
871  * When the user wants to journal a newly created buffer_head
872  * (ie. getblk() returned a new buffer and we are going to populate it
873  * manually rather than reading off disk), then we need to keep the
874  * buffer_head locked until it has been completely filled with new
875  * data.  In this case, we should be able to make the assertion that
876  * the bh is not already part of an existing transaction.
877  *
878  * The buffer should already be locked by the caller by this point.
879  * There is no lock ranking violation: it was a newly created,
880  * unlocked buffer beforehand. */
881 
882 /**
883  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
884  * @handle: transaction to new buffer to
885  * @bh: new buffer.
886  *
887  * Call this if you create a new bh.
888  */
889 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
890 {
891 	transaction_t *transaction = handle->h_transaction;
892 	journal_t *journal = transaction->t_journal;
893 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
894 	int err;
895 
896 	jbd_debug(5, "journal_head %p\n", jh);
897 	err = -EROFS;
898 	if (is_handle_aborted(handle))
899 		goto out;
900 	err = 0;
901 
902 	JBUFFER_TRACE(jh, "entry");
903 	/*
904 	 * The buffer may already belong to this transaction due to pre-zeroing
905 	 * in the filesystem's new_block code.  It may also be on the previous,
906 	 * committing transaction's lists, but it HAS to be in Forget state in
907 	 * that case: the transaction must have deleted the buffer for it to be
908 	 * reused here.
909 	 */
910 	jbd_lock_bh_state(bh);
911 	spin_lock(&journal->j_list_lock);
912 	J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
913 		jh->b_transaction == NULL ||
914 		(jh->b_transaction == journal->j_committing_transaction &&
915 			  jh->b_jlist == BJ_Forget)));
916 
917 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
918 	J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
919 
920 	if (jh->b_transaction == NULL) {
921 		/*
922 		 * Previous jbd2_journal_forget() could have left the buffer
923 		 * with jbddirty bit set because it was being committed. When
924 		 * the commit finished, we've filed the buffer for
925 		 * checkpointing and marked it dirty. Now we are reallocating
926 		 * the buffer so the transaction freeing it must have
927 		 * committed and so it's safe to clear the dirty bit.
928 		 */
929 		clear_buffer_dirty(jh2bh(jh));
930 		/* first access by this transaction */
931 		jh->b_modified = 0;
932 
933 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
934 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
935 	} else if (jh->b_transaction == journal->j_committing_transaction) {
936 		/* first access by this transaction */
937 		jh->b_modified = 0;
938 
939 		JBUFFER_TRACE(jh, "set next transaction");
940 		jh->b_next_transaction = transaction;
941 	}
942 	spin_unlock(&journal->j_list_lock);
943 	jbd_unlock_bh_state(bh);
944 
945 	/*
946 	 * akpm: I added this.  ext3_alloc_branch can pick up new indirect
947 	 * blocks which contain freed but then revoked metadata.  We need
948 	 * to cancel the revoke in case we end up freeing it yet again
949 	 * and the reallocating as data - this would cause a second revoke,
950 	 * which hits an assertion error.
951 	 */
952 	JBUFFER_TRACE(jh, "cancelling revoke");
953 	jbd2_journal_cancel_revoke(handle, jh);
954 out:
955 	jbd2_journal_put_journal_head(jh);
956 	return err;
957 }
958 
959 /**
960  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
961  *     non-rewindable consequences
962  * @handle: transaction
963  * @bh: buffer to undo
964  *
965  * Sometimes there is a need to distinguish between metadata which has
966  * been committed to disk and that which has not.  The ext3fs code uses
967  * this for freeing and allocating space, we have to make sure that we
968  * do not reuse freed space until the deallocation has been committed,
969  * since if we overwrote that space we would make the delete
970  * un-rewindable in case of a crash.
971  *
972  * To deal with that, jbd2_journal_get_undo_access requests write access to a
973  * buffer for parts of non-rewindable operations such as delete
974  * operations on the bitmaps.  The journaling code must keep a copy of
975  * the buffer's contents prior to the undo_access call until such time
976  * as we know that the buffer has definitely been committed to disk.
977  *
978  * We never need to know which transaction the committed data is part
979  * of, buffers touched here are guaranteed to be dirtied later and so
980  * will be committed to a new transaction in due course, at which point
981  * we can discard the old committed data pointer.
982  *
983  * Returns error number or 0 on success.
984  */
985 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
986 {
987 	int err;
988 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
989 	char *committed_data = NULL;
990 
991 	JBUFFER_TRACE(jh, "entry");
992 
993 	/*
994 	 * Do this first --- it can drop the journal lock, so we want to
995 	 * make sure that obtaining the committed_data is done
996 	 * atomically wrt. completion of any outstanding commits.
997 	 */
998 	err = do_get_write_access(handle, jh, 1);
999 	if (err)
1000 		goto out;
1001 
1002 repeat:
1003 	if (!jh->b_committed_data) {
1004 		committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS);
1005 		if (!committed_data) {
1006 			printk(KERN_EMERG "%s: No memory for committed data\n",
1007 				__func__);
1008 			err = -ENOMEM;
1009 			goto out;
1010 		}
1011 	}
1012 
1013 	jbd_lock_bh_state(bh);
1014 	if (!jh->b_committed_data) {
1015 		/* Copy out the current buffer contents into the
1016 		 * preserved, committed copy. */
1017 		JBUFFER_TRACE(jh, "generate b_committed data");
1018 		if (!committed_data) {
1019 			jbd_unlock_bh_state(bh);
1020 			goto repeat;
1021 		}
1022 
1023 		jh->b_committed_data = committed_data;
1024 		committed_data = NULL;
1025 		memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1026 	}
1027 	jbd_unlock_bh_state(bh);
1028 out:
1029 	jbd2_journal_put_journal_head(jh);
1030 	if (unlikely(committed_data))
1031 		jbd2_free(committed_data, bh->b_size);
1032 	return err;
1033 }
1034 
1035 /**
1036  * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1037  * @bh: buffer to trigger on
1038  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1039  *
1040  * Set any triggers on this journal_head.  This is always safe, because
1041  * triggers for a committing buffer will be saved off, and triggers for
1042  * a running transaction will match the buffer in that transaction.
1043  *
1044  * Call with NULL to clear the triggers.
1045  */
1046 void jbd2_journal_set_triggers(struct buffer_head *bh,
1047 			       struct jbd2_buffer_trigger_type *type)
1048 {
1049 	struct journal_head *jh = bh2jh(bh);
1050 
1051 	jh->b_triggers = type;
1052 }
1053 
1054 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1055 				struct jbd2_buffer_trigger_type *triggers)
1056 {
1057 	struct buffer_head *bh = jh2bh(jh);
1058 
1059 	if (!triggers || !triggers->t_frozen)
1060 		return;
1061 
1062 	triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1063 }
1064 
1065 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1066 			       struct jbd2_buffer_trigger_type *triggers)
1067 {
1068 	if (!triggers || !triggers->t_abort)
1069 		return;
1070 
1071 	triggers->t_abort(triggers, jh2bh(jh));
1072 }
1073 
1074 
1075 
1076 /**
1077  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1078  * @handle: transaction to add buffer to.
1079  * @bh: buffer to mark
1080  *
1081  * mark dirty metadata which needs to be journaled as part of the current
1082  * transaction.
1083  *
1084  * The buffer must have previously had jbd2_journal_get_write_access()
1085  * called so that it has a valid journal_head attached to the buffer
1086  * head.
1087  *
1088  * The buffer is placed on the transaction's metadata list and is marked
1089  * as belonging to the transaction.
1090  *
1091  * Returns error number or 0 on success.
1092  *
1093  * Special care needs to be taken if the buffer already belongs to the
1094  * current committing transaction (in which case we should have frozen
1095  * data present for that commit).  In that case, we don't relink the
1096  * buffer: that only gets done when the old transaction finally
1097  * completes its commit.
1098  */
1099 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1100 {
1101 	transaction_t *transaction = handle->h_transaction;
1102 	journal_t *journal = transaction->t_journal;
1103 	struct journal_head *jh = bh2jh(bh);
1104 	int ret = 0;
1105 
1106 	jbd_debug(5, "journal_head %p\n", jh);
1107 	JBUFFER_TRACE(jh, "entry");
1108 	if (is_handle_aborted(handle))
1109 		goto out;
1110 	if (!buffer_jbd(bh)) {
1111 		ret = -EUCLEAN;
1112 		goto out;
1113 	}
1114 
1115 	jbd_lock_bh_state(bh);
1116 
1117 	if (jh->b_modified == 0) {
1118 		/*
1119 		 * This buffer's got modified and becoming part
1120 		 * of the transaction. This needs to be done
1121 		 * once a transaction -bzzz
1122 		 */
1123 		jh->b_modified = 1;
1124 		J_ASSERT_JH(jh, handle->h_buffer_credits > 0);
1125 		handle->h_buffer_credits--;
1126 	}
1127 
1128 	/*
1129 	 * fastpath, to avoid expensive locking.  If this buffer is already
1130 	 * on the running transaction's metadata list there is nothing to do.
1131 	 * Nobody can take it off again because there is a handle open.
1132 	 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1133 	 * result in this test being false, so we go in and take the locks.
1134 	 */
1135 	if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1136 		JBUFFER_TRACE(jh, "fastpath");
1137 		if (unlikely(jh->b_transaction !=
1138 			     journal->j_running_transaction)) {
1139 			printk(KERN_EMERG "JBD: %s: "
1140 			       "jh->b_transaction (%llu, %p, %u) != "
1141 			       "journal->j_running_transaction (%p, %u)",
1142 			       journal->j_devname,
1143 			       (unsigned long long) bh->b_blocknr,
1144 			       jh->b_transaction,
1145 			       jh->b_transaction ? jh->b_transaction->t_tid : 0,
1146 			       journal->j_running_transaction,
1147 			       journal->j_running_transaction ?
1148 			       journal->j_running_transaction->t_tid : 0);
1149 			ret = -EINVAL;
1150 		}
1151 		goto out_unlock_bh;
1152 	}
1153 
1154 	set_buffer_jbddirty(bh);
1155 
1156 	/*
1157 	 * Metadata already on the current transaction list doesn't
1158 	 * need to be filed.  Metadata on another transaction's list must
1159 	 * be committing, and will be refiled once the commit completes:
1160 	 * leave it alone for now.
1161 	 */
1162 	if (jh->b_transaction != transaction) {
1163 		JBUFFER_TRACE(jh, "already on other transaction");
1164 		if (unlikely(jh->b_transaction !=
1165 			     journal->j_committing_transaction)) {
1166 			printk(KERN_EMERG "JBD: %s: "
1167 			       "jh->b_transaction (%llu, %p, %u) != "
1168 			       "journal->j_committing_transaction (%p, %u)",
1169 			       journal->j_devname,
1170 			       (unsigned long long) bh->b_blocknr,
1171 			       jh->b_transaction,
1172 			       jh->b_transaction ? jh->b_transaction->t_tid : 0,
1173 			       journal->j_committing_transaction,
1174 			       journal->j_committing_transaction ?
1175 			       journal->j_committing_transaction->t_tid : 0);
1176 			ret = -EINVAL;
1177 		}
1178 		if (unlikely(jh->b_next_transaction != transaction)) {
1179 			printk(KERN_EMERG "JBD: %s: "
1180 			       "jh->b_next_transaction (%llu, %p, %u) != "
1181 			       "transaction (%p, %u)",
1182 			       journal->j_devname,
1183 			       (unsigned long long) bh->b_blocknr,
1184 			       jh->b_next_transaction,
1185 			       jh->b_next_transaction ?
1186 			       jh->b_next_transaction->t_tid : 0,
1187 			       transaction, transaction->t_tid);
1188 			ret = -EINVAL;
1189 		}
1190 		/* And this case is illegal: we can't reuse another
1191 		 * transaction's data buffer, ever. */
1192 		goto out_unlock_bh;
1193 	}
1194 
1195 	/* That test should have eliminated the following case: */
1196 	J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1197 
1198 	JBUFFER_TRACE(jh, "file as BJ_Metadata");
1199 	spin_lock(&journal->j_list_lock);
1200 	__jbd2_journal_file_buffer(jh, handle->h_transaction, BJ_Metadata);
1201 	spin_unlock(&journal->j_list_lock);
1202 out_unlock_bh:
1203 	jbd_unlock_bh_state(bh);
1204 out:
1205 	JBUFFER_TRACE(jh, "exit");
1206 	WARN_ON(ret);	/* All errors are bugs, so dump the stack */
1207 	return ret;
1208 }
1209 
1210 /**
1211  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1212  * @handle: transaction handle
1213  * @bh:     bh to 'forget'
1214  *
1215  * We can only do the bforget if there are no commits pending against the
1216  * buffer.  If the buffer is dirty in the current running transaction we
1217  * can safely unlink it.
1218  *
1219  * bh may not be a journalled buffer at all - it may be a non-JBD
1220  * buffer which came off the hashtable.  Check for this.
1221  *
1222  * Decrements bh->b_count by one.
1223  *
1224  * Allow this call even if the handle has aborted --- it may be part of
1225  * the caller's cleanup after an abort.
1226  */
1227 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1228 {
1229 	transaction_t *transaction = handle->h_transaction;
1230 	journal_t *journal = transaction->t_journal;
1231 	struct journal_head *jh;
1232 	int drop_reserve = 0;
1233 	int err = 0;
1234 	int was_modified = 0;
1235 
1236 	BUFFER_TRACE(bh, "entry");
1237 
1238 	jbd_lock_bh_state(bh);
1239 	spin_lock(&journal->j_list_lock);
1240 
1241 	if (!buffer_jbd(bh))
1242 		goto not_jbd;
1243 	jh = bh2jh(bh);
1244 
1245 	/* Critical error: attempting to delete a bitmap buffer, maybe?
1246 	 * Don't do any jbd operations, and return an error. */
1247 	if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1248 			 "inconsistent data on disk")) {
1249 		err = -EIO;
1250 		goto not_jbd;
1251 	}
1252 
1253 	/* keep track of whether or not this transaction modified us */
1254 	was_modified = jh->b_modified;
1255 
1256 	/*
1257 	 * The buffer's going from the transaction, we must drop
1258 	 * all references -bzzz
1259 	 */
1260 	jh->b_modified = 0;
1261 
1262 	if (jh->b_transaction == handle->h_transaction) {
1263 		J_ASSERT_JH(jh, !jh->b_frozen_data);
1264 
1265 		/* If we are forgetting a buffer which is already part
1266 		 * of this transaction, then we can just drop it from
1267 		 * the transaction immediately. */
1268 		clear_buffer_dirty(bh);
1269 		clear_buffer_jbddirty(bh);
1270 
1271 		JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1272 
1273 		/*
1274 		 * we only want to drop a reference if this transaction
1275 		 * modified the buffer
1276 		 */
1277 		if (was_modified)
1278 			drop_reserve = 1;
1279 
1280 		/*
1281 		 * We are no longer going to journal this buffer.
1282 		 * However, the commit of this transaction is still
1283 		 * important to the buffer: the delete that we are now
1284 		 * processing might obsolete an old log entry, so by
1285 		 * committing, we can satisfy the buffer's checkpoint.
1286 		 *
1287 		 * So, if we have a checkpoint on the buffer, we should
1288 		 * now refile the buffer on our BJ_Forget list so that
1289 		 * we know to remove the checkpoint after we commit.
1290 		 */
1291 
1292 		if (jh->b_cp_transaction) {
1293 			__jbd2_journal_temp_unlink_buffer(jh);
1294 			__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1295 		} else {
1296 			__jbd2_journal_unfile_buffer(jh);
1297 			if (!buffer_jbd(bh)) {
1298 				spin_unlock(&journal->j_list_lock);
1299 				jbd_unlock_bh_state(bh);
1300 				__bforget(bh);
1301 				goto drop;
1302 			}
1303 		}
1304 	} else if (jh->b_transaction) {
1305 		J_ASSERT_JH(jh, (jh->b_transaction ==
1306 				 journal->j_committing_transaction));
1307 		/* However, if the buffer is still owned by a prior
1308 		 * (committing) transaction, we can't drop it yet... */
1309 		JBUFFER_TRACE(jh, "belongs to older transaction");
1310 		/* ... but we CAN drop it from the new transaction if we
1311 		 * have also modified it since the original commit. */
1312 
1313 		if (jh->b_next_transaction) {
1314 			J_ASSERT(jh->b_next_transaction == transaction);
1315 			jh->b_next_transaction = NULL;
1316 
1317 			/*
1318 			 * only drop a reference if this transaction modified
1319 			 * the buffer
1320 			 */
1321 			if (was_modified)
1322 				drop_reserve = 1;
1323 		}
1324 	}
1325 
1326 not_jbd:
1327 	spin_unlock(&journal->j_list_lock);
1328 	jbd_unlock_bh_state(bh);
1329 	__brelse(bh);
1330 drop:
1331 	if (drop_reserve) {
1332 		/* no need to reserve log space for this block -bzzz */
1333 		handle->h_buffer_credits++;
1334 	}
1335 	return err;
1336 }
1337 
1338 /**
1339  * int jbd2_journal_stop() - complete a transaction
1340  * @handle: tranaction to complete.
1341  *
1342  * All done for a particular handle.
1343  *
1344  * There is not much action needed here.  We just return any remaining
1345  * buffer credits to the transaction and remove the handle.  The only
1346  * complication is that we need to start a commit operation if the
1347  * filesystem is marked for synchronous update.
1348  *
1349  * jbd2_journal_stop itself will not usually return an error, but it may
1350  * do so in unusual circumstances.  In particular, expect it to
1351  * return -EIO if a jbd2_journal_abort has been executed since the
1352  * transaction began.
1353  */
1354 int jbd2_journal_stop(handle_t *handle)
1355 {
1356 	transaction_t *transaction = handle->h_transaction;
1357 	journal_t *journal = transaction->t_journal;
1358 	int err, wait_for_commit = 0;
1359 	tid_t tid;
1360 	pid_t pid;
1361 
1362 	J_ASSERT(journal_current_handle() == handle);
1363 
1364 	if (is_handle_aborted(handle))
1365 		err = -EIO;
1366 	else {
1367 		J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1368 		err = 0;
1369 	}
1370 
1371 	if (--handle->h_ref > 0) {
1372 		jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1373 			  handle->h_ref);
1374 		return err;
1375 	}
1376 
1377 	jbd_debug(4, "Handle %p going down\n", handle);
1378 
1379 	/*
1380 	 * Implement synchronous transaction batching.  If the handle
1381 	 * was synchronous, don't force a commit immediately.  Let's
1382 	 * yield and let another thread piggyback onto this
1383 	 * transaction.  Keep doing that while new threads continue to
1384 	 * arrive.  It doesn't cost much - we're about to run a commit
1385 	 * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1386 	 * operations by 30x or more...
1387 	 *
1388 	 * We try and optimize the sleep time against what the
1389 	 * underlying disk can do, instead of having a static sleep
1390 	 * time.  This is useful for the case where our storage is so
1391 	 * fast that it is more optimal to go ahead and force a flush
1392 	 * and wait for the transaction to be committed than it is to
1393 	 * wait for an arbitrary amount of time for new writers to
1394 	 * join the transaction.  We achieve this by measuring how
1395 	 * long it takes to commit a transaction, and compare it with
1396 	 * how long this transaction has been running, and if run time
1397 	 * < commit time then we sleep for the delta and commit.  This
1398 	 * greatly helps super fast disks that would see slowdowns as
1399 	 * more threads started doing fsyncs.
1400 	 *
1401 	 * But don't do this if this process was the most recent one
1402 	 * to perform a synchronous write.  We do this to detect the
1403 	 * case where a single process is doing a stream of sync
1404 	 * writes.  No point in waiting for joiners in that case.
1405 	 */
1406 	pid = current->pid;
1407 	if (handle->h_sync && journal->j_last_sync_writer != pid) {
1408 		u64 commit_time, trans_time;
1409 
1410 		journal->j_last_sync_writer = pid;
1411 
1412 		read_lock(&journal->j_state_lock);
1413 		commit_time = journal->j_average_commit_time;
1414 		read_unlock(&journal->j_state_lock);
1415 
1416 		trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1417 						   transaction->t_start_time));
1418 
1419 		commit_time = max_t(u64, commit_time,
1420 				    1000*journal->j_min_batch_time);
1421 		commit_time = min_t(u64, commit_time,
1422 				    1000*journal->j_max_batch_time);
1423 
1424 		if (trans_time < commit_time) {
1425 			ktime_t expires = ktime_add_ns(ktime_get(),
1426 						       commit_time);
1427 			set_current_state(TASK_UNINTERRUPTIBLE);
1428 			schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1429 		}
1430 	}
1431 
1432 	if (handle->h_sync)
1433 		transaction->t_synchronous_commit = 1;
1434 	current->journal_info = NULL;
1435 	atomic_sub(handle->h_buffer_credits,
1436 		   &transaction->t_outstanding_credits);
1437 
1438 	/*
1439 	 * If the handle is marked SYNC, we need to set another commit
1440 	 * going!  We also want to force a commit if the current
1441 	 * transaction is occupying too much of the log, or if the
1442 	 * transaction is too old now.
1443 	 */
1444 	if (handle->h_sync ||
1445 	    (atomic_read(&transaction->t_outstanding_credits) >
1446 	     journal->j_max_transaction_buffers) ||
1447 	    time_after_eq(jiffies, transaction->t_expires)) {
1448 		/* Do this even for aborted journals: an abort still
1449 		 * completes the commit thread, it just doesn't write
1450 		 * anything to disk. */
1451 
1452 		jbd_debug(2, "transaction too old, requesting commit for "
1453 					"handle %p\n", handle);
1454 		/* This is non-blocking */
1455 		jbd2_log_start_commit(journal, transaction->t_tid);
1456 
1457 		/*
1458 		 * Special case: JBD2_SYNC synchronous updates require us
1459 		 * to wait for the commit to complete.
1460 		 */
1461 		if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1462 			wait_for_commit = 1;
1463 	}
1464 
1465 	/*
1466 	 * Once we drop t_updates, if it goes to zero the transaction
1467 	 * could start committing on us and eventually disappear.  So
1468 	 * once we do this, we must not dereference transaction
1469 	 * pointer again.
1470 	 */
1471 	tid = transaction->t_tid;
1472 	if (atomic_dec_and_test(&transaction->t_updates)) {
1473 		wake_up(&journal->j_wait_updates);
1474 		if (journal->j_barrier_count)
1475 			wake_up(&journal->j_wait_transaction_locked);
1476 	}
1477 
1478 	if (wait_for_commit)
1479 		err = jbd2_log_wait_commit(journal, tid);
1480 
1481 	lock_map_release(&handle->h_lockdep_map);
1482 
1483 	jbd2_free_handle(handle);
1484 	return err;
1485 }
1486 
1487 /**
1488  * int jbd2_journal_force_commit() - force any uncommitted transactions
1489  * @journal: journal to force
1490  *
1491  * For synchronous operations: force any uncommitted transactions
1492  * to disk.  May seem kludgy, but it reuses all the handle batching
1493  * code in a very simple manner.
1494  */
1495 int jbd2_journal_force_commit(journal_t *journal)
1496 {
1497 	handle_t *handle;
1498 	int ret;
1499 
1500 	handle = jbd2_journal_start(journal, 1);
1501 	if (IS_ERR(handle)) {
1502 		ret = PTR_ERR(handle);
1503 	} else {
1504 		handle->h_sync = 1;
1505 		ret = jbd2_journal_stop(handle);
1506 	}
1507 	return ret;
1508 }
1509 
1510 /*
1511  *
1512  * List management code snippets: various functions for manipulating the
1513  * transaction buffer lists.
1514  *
1515  */
1516 
1517 /*
1518  * Append a buffer to a transaction list, given the transaction's list head
1519  * pointer.
1520  *
1521  * j_list_lock is held.
1522  *
1523  * jbd_lock_bh_state(jh2bh(jh)) is held.
1524  */
1525 
1526 static inline void
1527 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1528 {
1529 	if (!*list) {
1530 		jh->b_tnext = jh->b_tprev = jh;
1531 		*list = jh;
1532 	} else {
1533 		/* Insert at the tail of the list to preserve order */
1534 		struct journal_head *first = *list, *last = first->b_tprev;
1535 		jh->b_tprev = last;
1536 		jh->b_tnext = first;
1537 		last->b_tnext = first->b_tprev = jh;
1538 	}
1539 }
1540 
1541 /*
1542  * Remove a buffer from a transaction list, given the transaction's list
1543  * head pointer.
1544  *
1545  * Called with j_list_lock held, and the journal may not be locked.
1546  *
1547  * jbd_lock_bh_state(jh2bh(jh)) is held.
1548  */
1549 
1550 static inline void
1551 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1552 {
1553 	if (*list == jh) {
1554 		*list = jh->b_tnext;
1555 		if (*list == jh)
1556 			*list = NULL;
1557 	}
1558 	jh->b_tprev->b_tnext = jh->b_tnext;
1559 	jh->b_tnext->b_tprev = jh->b_tprev;
1560 }
1561 
1562 /*
1563  * Remove a buffer from the appropriate transaction list.
1564  *
1565  * Note that this function can *change* the value of
1566  * bh->b_transaction->t_buffers, t_forget, t_iobuf_list, t_shadow_list,
1567  * t_log_list or t_reserved_list.  If the caller is holding onto a copy of one
1568  * of these pointers, it could go bad.  Generally the caller needs to re-read
1569  * the pointer from the transaction_t.
1570  *
1571  * Called under j_list_lock.
1572  */
1573 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1574 {
1575 	struct journal_head **list = NULL;
1576 	transaction_t *transaction;
1577 	struct buffer_head *bh = jh2bh(jh);
1578 
1579 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1580 	transaction = jh->b_transaction;
1581 	if (transaction)
1582 		assert_spin_locked(&transaction->t_journal->j_list_lock);
1583 
1584 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1585 	if (jh->b_jlist != BJ_None)
1586 		J_ASSERT_JH(jh, transaction != NULL);
1587 
1588 	switch (jh->b_jlist) {
1589 	case BJ_None:
1590 		return;
1591 	case BJ_Metadata:
1592 		transaction->t_nr_buffers--;
1593 		J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1594 		list = &transaction->t_buffers;
1595 		break;
1596 	case BJ_Forget:
1597 		list = &transaction->t_forget;
1598 		break;
1599 	case BJ_IO:
1600 		list = &transaction->t_iobuf_list;
1601 		break;
1602 	case BJ_Shadow:
1603 		list = &transaction->t_shadow_list;
1604 		break;
1605 	case BJ_LogCtl:
1606 		list = &transaction->t_log_list;
1607 		break;
1608 	case BJ_Reserved:
1609 		list = &transaction->t_reserved_list;
1610 		break;
1611 	}
1612 
1613 	__blist_del_buffer(list, jh);
1614 	jh->b_jlist = BJ_None;
1615 	if (test_clear_buffer_jbddirty(bh))
1616 		mark_buffer_dirty(bh);	/* Expose it to the VM */
1617 }
1618 
1619 /*
1620  * Remove buffer from all transactions.
1621  *
1622  * Called with bh_state lock and j_list_lock
1623  *
1624  * jh and bh may be already freed when this function returns.
1625  */
1626 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1627 {
1628 	__jbd2_journal_temp_unlink_buffer(jh);
1629 	jh->b_transaction = NULL;
1630 	jbd2_journal_put_journal_head(jh);
1631 }
1632 
1633 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1634 {
1635 	struct buffer_head *bh = jh2bh(jh);
1636 
1637 	/* Get reference so that buffer cannot be freed before we unlock it */
1638 	get_bh(bh);
1639 	jbd_lock_bh_state(bh);
1640 	spin_lock(&journal->j_list_lock);
1641 	__jbd2_journal_unfile_buffer(jh);
1642 	spin_unlock(&journal->j_list_lock);
1643 	jbd_unlock_bh_state(bh);
1644 	__brelse(bh);
1645 }
1646 
1647 /*
1648  * Called from jbd2_journal_try_to_free_buffers().
1649  *
1650  * Called under jbd_lock_bh_state(bh)
1651  */
1652 static void
1653 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1654 {
1655 	struct journal_head *jh;
1656 
1657 	jh = bh2jh(bh);
1658 
1659 	if (buffer_locked(bh) || buffer_dirty(bh))
1660 		goto out;
1661 
1662 	if (jh->b_next_transaction != NULL)
1663 		goto out;
1664 
1665 	spin_lock(&journal->j_list_lock);
1666 	if (jh->b_cp_transaction != NULL && jh->b_transaction == NULL) {
1667 		/* written-back checkpointed metadata buffer */
1668 		JBUFFER_TRACE(jh, "remove from checkpoint list");
1669 		__jbd2_journal_remove_checkpoint(jh);
1670 	}
1671 	spin_unlock(&journal->j_list_lock);
1672 out:
1673 	return;
1674 }
1675 
1676 /**
1677  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1678  * @journal: journal for operation
1679  * @page: to try and free
1680  * @gfp_mask: we use the mask to detect how hard should we try to release
1681  * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to
1682  * release the buffers.
1683  *
1684  *
1685  * For all the buffers on this page,
1686  * if they are fully written out ordered data, move them onto BUF_CLEAN
1687  * so try_to_free_buffers() can reap them.
1688  *
1689  * This function returns non-zero if we wish try_to_free_buffers()
1690  * to be called. We do this if the page is releasable by try_to_free_buffers().
1691  * We also do it if the page has locked or dirty buffers and the caller wants
1692  * us to perform sync or async writeout.
1693  *
1694  * This complicates JBD locking somewhat.  We aren't protected by the
1695  * BKL here.  We wish to remove the buffer from its committing or
1696  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1697  *
1698  * This may *change* the value of transaction_t->t_datalist, so anyone
1699  * who looks at t_datalist needs to lock against this function.
1700  *
1701  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1702  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
1703  * will come out of the lock with the buffer dirty, which makes it
1704  * ineligible for release here.
1705  *
1706  * Who else is affected by this?  hmm...  Really the only contender
1707  * is do_get_write_access() - it could be looking at the buffer while
1708  * journal_try_to_free_buffer() is changing its state.  But that
1709  * cannot happen because we never reallocate freed data as metadata
1710  * while the data is part of a transaction.  Yes?
1711  *
1712  * Return 0 on failure, 1 on success
1713  */
1714 int jbd2_journal_try_to_free_buffers(journal_t *journal,
1715 				struct page *page, gfp_t gfp_mask)
1716 {
1717 	struct buffer_head *head;
1718 	struct buffer_head *bh;
1719 	int ret = 0;
1720 
1721 	J_ASSERT(PageLocked(page));
1722 
1723 	head = page_buffers(page);
1724 	bh = head;
1725 	do {
1726 		struct journal_head *jh;
1727 
1728 		/*
1729 		 * We take our own ref against the journal_head here to avoid
1730 		 * having to add tons of locking around each instance of
1731 		 * jbd2_journal_put_journal_head().
1732 		 */
1733 		jh = jbd2_journal_grab_journal_head(bh);
1734 		if (!jh)
1735 			continue;
1736 
1737 		jbd_lock_bh_state(bh);
1738 		__journal_try_to_free_buffer(journal, bh);
1739 		jbd2_journal_put_journal_head(jh);
1740 		jbd_unlock_bh_state(bh);
1741 		if (buffer_jbd(bh))
1742 			goto busy;
1743 	} while ((bh = bh->b_this_page) != head);
1744 
1745 	ret = try_to_free_buffers(page);
1746 
1747 busy:
1748 	return ret;
1749 }
1750 
1751 /*
1752  * This buffer is no longer needed.  If it is on an older transaction's
1753  * checkpoint list we need to record it on this transaction's forget list
1754  * to pin this buffer (and hence its checkpointing transaction) down until
1755  * this transaction commits.  If the buffer isn't on a checkpoint list, we
1756  * release it.
1757  * Returns non-zero if JBD no longer has an interest in the buffer.
1758  *
1759  * Called under j_list_lock.
1760  *
1761  * Called under jbd_lock_bh_state(bh).
1762  */
1763 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
1764 {
1765 	int may_free = 1;
1766 	struct buffer_head *bh = jh2bh(jh);
1767 
1768 	if (jh->b_cp_transaction) {
1769 		JBUFFER_TRACE(jh, "on running+cp transaction");
1770 		__jbd2_journal_temp_unlink_buffer(jh);
1771 		/*
1772 		 * We don't want to write the buffer anymore, clear the
1773 		 * bit so that we don't confuse checks in
1774 		 * __journal_file_buffer
1775 		 */
1776 		clear_buffer_dirty(bh);
1777 		__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1778 		may_free = 0;
1779 	} else {
1780 		JBUFFER_TRACE(jh, "on running transaction");
1781 		__jbd2_journal_unfile_buffer(jh);
1782 	}
1783 	return may_free;
1784 }
1785 
1786 /*
1787  * jbd2_journal_invalidatepage
1788  *
1789  * This code is tricky.  It has a number of cases to deal with.
1790  *
1791  * There are two invariants which this code relies on:
1792  *
1793  * i_size must be updated on disk before we start calling invalidatepage on the
1794  * data.
1795  *
1796  *  This is done in ext3 by defining an ext3_setattr method which
1797  *  updates i_size before truncate gets going.  By maintaining this
1798  *  invariant, we can be sure that it is safe to throw away any buffers
1799  *  attached to the current transaction: once the transaction commits,
1800  *  we know that the data will not be needed.
1801  *
1802  *  Note however that we can *not* throw away data belonging to the
1803  *  previous, committing transaction!
1804  *
1805  * Any disk blocks which *are* part of the previous, committing
1806  * transaction (and which therefore cannot be discarded immediately) are
1807  * not going to be reused in the new running transaction
1808  *
1809  *  The bitmap committed_data images guarantee this: any block which is
1810  *  allocated in one transaction and removed in the next will be marked
1811  *  as in-use in the committed_data bitmap, so cannot be reused until
1812  *  the next transaction to delete the block commits.  This means that
1813  *  leaving committing buffers dirty is quite safe: the disk blocks
1814  *  cannot be reallocated to a different file and so buffer aliasing is
1815  *  not possible.
1816  *
1817  *
1818  * The above applies mainly to ordered data mode.  In writeback mode we
1819  * don't make guarantees about the order in which data hits disk --- in
1820  * particular we don't guarantee that new dirty data is flushed before
1821  * transaction commit --- so it is always safe just to discard data
1822  * immediately in that mode.  --sct
1823  */
1824 
1825 /*
1826  * The journal_unmap_buffer helper function returns zero if the buffer
1827  * concerned remains pinned as an anonymous buffer belonging to an older
1828  * transaction.
1829  *
1830  * We're outside-transaction here.  Either or both of j_running_transaction
1831  * and j_committing_transaction may be NULL.
1832  */
1833 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
1834 				int partial_page)
1835 {
1836 	transaction_t *transaction;
1837 	struct journal_head *jh;
1838 	int may_free = 1;
1839 
1840 	BUFFER_TRACE(bh, "entry");
1841 
1842 retry:
1843 	/*
1844 	 * It is safe to proceed here without the j_list_lock because the
1845 	 * buffers cannot be stolen by try_to_free_buffers as long as we are
1846 	 * holding the page lock. --sct
1847 	 */
1848 
1849 	if (!buffer_jbd(bh))
1850 		goto zap_buffer_unlocked;
1851 
1852 	/* OK, we have data buffer in journaled mode */
1853 	write_lock(&journal->j_state_lock);
1854 	jbd_lock_bh_state(bh);
1855 	spin_lock(&journal->j_list_lock);
1856 
1857 	jh = jbd2_journal_grab_journal_head(bh);
1858 	if (!jh)
1859 		goto zap_buffer_no_jh;
1860 
1861 	/*
1862 	 * We cannot remove the buffer from checkpoint lists until the
1863 	 * transaction adding inode to orphan list (let's call it T)
1864 	 * is committed.  Otherwise if the transaction changing the
1865 	 * buffer would be cleaned from the journal before T is
1866 	 * committed, a crash will cause that the correct contents of
1867 	 * the buffer will be lost.  On the other hand we have to
1868 	 * clear the buffer dirty bit at latest at the moment when the
1869 	 * transaction marking the buffer as freed in the filesystem
1870 	 * structures is committed because from that moment on the
1871 	 * block can be reallocated and used by a different page.
1872 	 * Since the block hasn't been freed yet but the inode has
1873 	 * already been added to orphan list, it is safe for us to add
1874 	 * the buffer to BJ_Forget list of the newest transaction.
1875 	 *
1876 	 * Also we have to clear buffer_mapped flag of a truncated buffer
1877 	 * because the buffer_head may be attached to the page straddling
1878 	 * i_size (can happen only when blocksize < pagesize) and thus the
1879 	 * buffer_head can be reused when the file is extended again. So we end
1880 	 * up keeping around invalidated buffers attached to transactions'
1881 	 * BJ_Forget list just to stop checkpointing code from cleaning up
1882 	 * the transaction this buffer was modified in.
1883 	 */
1884 	transaction = jh->b_transaction;
1885 	if (transaction == NULL) {
1886 		/* First case: not on any transaction.  If it
1887 		 * has no checkpoint link, then we can zap it:
1888 		 * it's a writeback-mode buffer so we don't care
1889 		 * if it hits disk safely. */
1890 		if (!jh->b_cp_transaction) {
1891 			JBUFFER_TRACE(jh, "not on any transaction: zap");
1892 			goto zap_buffer;
1893 		}
1894 
1895 		if (!buffer_dirty(bh)) {
1896 			/* bdflush has written it.  We can drop it now */
1897 			goto zap_buffer;
1898 		}
1899 
1900 		/* OK, it must be in the journal but still not
1901 		 * written fully to disk: it's metadata or
1902 		 * journaled data... */
1903 
1904 		if (journal->j_running_transaction) {
1905 			/* ... and once the current transaction has
1906 			 * committed, the buffer won't be needed any
1907 			 * longer. */
1908 			JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
1909 			may_free = __dispose_buffer(jh,
1910 					journal->j_running_transaction);
1911 			goto zap_buffer;
1912 		} else {
1913 			/* There is no currently-running transaction. So the
1914 			 * orphan record which we wrote for this file must have
1915 			 * passed into commit.  We must attach this buffer to
1916 			 * the committing transaction, if it exists. */
1917 			if (journal->j_committing_transaction) {
1918 				JBUFFER_TRACE(jh, "give to committing trans");
1919 				may_free = __dispose_buffer(jh,
1920 					journal->j_committing_transaction);
1921 				goto zap_buffer;
1922 			} else {
1923 				/* The orphan record's transaction has
1924 				 * committed.  We can cleanse this buffer */
1925 				clear_buffer_jbddirty(bh);
1926 				goto zap_buffer;
1927 			}
1928 		}
1929 	} else if (transaction == journal->j_committing_transaction) {
1930 		JBUFFER_TRACE(jh, "on committing transaction");
1931 		/*
1932 		 * The buffer is committing, we simply cannot touch
1933 		 * it. If the page is straddling i_size we have to wait
1934 		 * for commit and try again.
1935 		 */
1936 		if (partial_page) {
1937 			tid_t tid = journal->j_committing_transaction->t_tid;
1938 
1939 			jbd2_journal_put_journal_head(jh);
1940 			spin_unlock(&journal->j_list_lock);
1941 			jbd_unlock_bh_state(bh);
1942 			write_unlock(&journal->j_state_lock);
1943 			jbd2_log_wait_commit(journal, tid);
1944 			goto retry;
1945 		}
1946 		/*
1947 		 * OK, buffer won't be reachable after truncate. We just set
1948 		 * j_next_transaction to the running transaction (if there is
1949 		 * one) and mark buffer as freed so that commit code knows it
1950 		 * should clear dirty bits when it is done with the buffer.
1951 		 */
1952 		set_buffer_freed(bh);
1953 		if (journal->j_running_transaction && buffer_jbddirty(bh))
1954 			jh->b_next_transaction = journal->j_running_transaction;
1955 		jbd2_journal_put_journal_head(jh);
1956 		spin_unlock(&journal->j_list_lock);
1957 		jbd_unlock_bh_state(bh);
1958 		write_unlock(&journal->j_state_lock);
1959 		return 0;
1960 	} else {
1961 		/* Good, the buffer belongs to the running transaction.
1962 		 * We are writing our own transaction's data, not any
1963 		 * previous one's, so it is safe to throw it away
1964 		 * (remember that we expect the filesystem to have set
1965 		 * i_size already for this truncate so recovery will not
1966 		 * expose the disk blocks we are discarding here.) */
1967 		J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
1968 		JBUFFER_TRACE(jh, "on running transaction");
1969 		may_free = __dispose_buffer(jh, transaction);
1970 	}
1971 
1972 zap_buffer:
1973 	/*
1974 	 * This is tricky. Although the buffer is truncated, it may be reused
1975 	 * if blocksize < pagesize and it is attached to the page straddling
1976 	 * EOF. Since the buffer might have been added to BJ_Forget list of the
1977 	 * running transaction, journal_get_write_access() won't clear
1978 	 * b_modified and credit accounting gets confused. So clear b_modified
1979 	 * here.
1980 	 */
1981 	jh->b_modified = 0;
1982 	jbd2_journal_put_journal_head(jh);
1983 zap_buffer_no_jh:
1984 	spin_unlock(&journal->j_list_lock);
1985 	jbd_unlock_bh_state(bh);
1986 	write_unlock(&journal->j_state_lock);
1987 zap_buffer_unlocked:
1988 	clear_buffer_dirty(bh);
1989 	J_ASSERT_BH(bh, !buffer_jbddirty(bh));
1990 	clear_buffer_mapped(bh);
1991 	clear_buffer_req(bh);
1992 	clear_buffer_new(bh);
1993 	clear_buffer_delay(bh);
1994 	clear_buffer_unwritten(bh);
1995 	bh->b_bdev = NULL;
1996 	return may_free;
1997 }
1998 
1999 /**
2000  * void jbd2_journal_invalidatepage()
2001  * @journal: journal to use for flush...
2002  * @page:    page to flush
2003  * @offset:  length of page to invalidate.
2004  *
2005  * Reap page buffers containing data after offset in page.
2006  *
2007  */
2008 void jbd2_journal_invalidatepage(journal_t *journal,
2009 		      struct page *page,
2010 		      unsigned long offset)
2011 {
2012 	struct buffer_head *head, *bh, *next;
2013 	unsigned int curr_off = 0;
2014 	int may_free = 1;
2015 
2016 	if (!PageLocked(page))
2017 		BUG();
2018 	if (!page_has_buffers(page))
2019 		return;
2020 
2021 	/* We will potentially be playing with lists other than just the
2022 	 * data lists (especially for journaled data mode), so be
2023 	 * cautious in our locking. */
2024 
2025 	head = bh = page_buffers(page);
2026 	do {
2027 		unsigned int next_off = curr_off + bh->b_size;
2028 		next = bh->b_this_page;
2029 
2030 		if (offset <= curr_off) {
2031 			/* This block is wholly outside the truncation point */
2032 			lock_buffer(bh);
2033 			may_free &= journal_unmap_buffer(journal, bh,
2034 							 offset > 0);
2035 			unlock_buffer(bh);
2036 		}
2037 		curr_off = next_off;
2038 		bh = next;
2039 
2040 	} while (bh != head);
2041 
2042 	if (!offset) {
2043 		if (may_free && try_to_free_buffers(page))
2044 			J_ASSERT(!page_has_buffers(page));
2045 	}
2046 }
2047 
2048 /*
2049  * File a buffer on the given transaction list.
2050  */
2051 void __jbd2_journal_file_buffer(struct journal_head *jh,
2052 			transaction_t *transaction, int jlist)
2053 {
2054 	struct journal_head **list = NULL;
2055 	int was_dirty = 0;
2056 	struct buffer_head *bh = jh2bh(jh);
2057 
2058 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2059 	assert_spin_locked(&transaction->t_journal->j_list_lock);
2060 
2061 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2062 	J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2063 				jh->b_transaction == NULL);
2064 
2065 	if (jh->b_transaction && jh->b_jlist == jlist)
2066 		return;
2067 
2068 	if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2069 	    jlist == BJ_Shadow || jlist == BJ_Forget) {
2070 		/*
2071 		 * For metadata buffers, we track dirty bit in buffer_jbddirty
2072 		 * instead of buffer_dirty. We should not see a dirty bit set
2073 		 * here because we clear it in do_get_write_access but e.g.
2074 		 * tune2fs can modify the sb and set the dirty bit at any time
2075 		 * so we try to gracefully handle that.
2076 		 */
2077 		if (buffer_dirty(bh))
2078 			warn_dirty_buffer(bh);
2079 		if (test_clear_buffer_dirty(bh) ||
2080 		    test_clear_buffer_jbddirty(bh))
2081 			was_dirty = 1;
2082 	}
2083 
2084 	if (jh->b_transaction)
2085 		__jbd2_journal_temp_unlink_buffer(jh);
2086 	else
2087 		jbd2_journal_grab_journal_head(bh);
2088 	jh->b_transaction = transaction;
2089 
2090 	switch (jlist) {
2091 	case BJ_None:
2092 		J_ASSERT_JH(jh, !jh->b_committed_data);
2093 		J_ASSERT_JH(jh, !jh->b_frozen_data);
2094 		return;
2095 	case BJ_Metadata:
2096 		transaction->t_nr_buffers++;
2097 		list = &transaction->t_buffers;
2098 		break;
2099 	case BJ_Forget:
2100 		list = &transaction->t_forget;
2101 		break;
2102 	case BJ_IO:
2103 		list = &transaction->t_iobuf_list;
2104 		break;
2105 	case BJ_Shadow:
2106 		list = &transaction->t_shadow_list;
2107 		break;
2108 	case BJ_LogCtl:
2109 		list = &transaction->t_log_list;
2110 		break;
2111 	case BJ_Reserved:
2112 		list = &transaction->t_reserved_list;
2113 		break;
2114 	}
2115 
2116 	__blist_add_buffer(list, jh);
2117 	jh->b_jlist = jlist;
2118 
2119 	if (was_dirty)
2120 		set_buffer_jbddirty(bh);
2121 }
2122 
2123 void jbd2_journal_file_buffer(struct journal_head *jh,
2124 				transaction_t *transaction, int jlist)
2125 {
2126 	jbd_lock_bh_state(jh2bh(jh));
2127 	spin_lock(&transaction->t_journal->j_list_lock);
2128 	__jbd2_journal_file_buffer(jh, transaction, jlist);
2129 	spin_unlock(&transaction->t_journal->j_list_lock);
2130 	jbd_unlock_bh_state(jh2bh(jh));
2131 }
2132 
2133 /*
2134  * Remove a buffer from its current buffer list in preparation for
2135  * dropping it from its current transaction entirely.  If the buffer has
2136  * already started to be used by a subsequent transaction, refile the
2137  * buffer on that transaction's metadata list.
2138  *
2139  * Called under j_list_lock
2140  * Called under jbd_lock_bh_state(jh2bh(jh))
2141  *
2142  * jh and bh may be already free when this function returns
2143  */
2144 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2145 {
2146 	int was_dirty, jlist;
2147 	struct buffer_head *bh = jh2bh(jh);
2148 
2149 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2150 	if (jh->b_transaction)
2151 		assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2152 
2153 	/* If the buffer is now unused, just drop it. */
2154 	if (jh->b_next_transaction == NULL) {
2155 		__jbd2_journal_unfile_buffer(jh);
2156 		return;
2157 	}
2158 
2159 	/*
2160 	 * It has been modified by a later transaction: add it to the new
2161 	 * transaction's metadata list.
2162 	 */
2163 
2164 	was_dirty = test_clear_buffer_jbddirty(bh);
2165 	__jbd2_journal_temp_unlink_buffer(jh);
2166 	/*
2167 	 * We set b_transaction here because b_next_transaction will inherit
2168 	 * our jh reference and thus __jbd2_journal_file_buffer() must not
2169 	 * take a new one.
2170 	 */
2171 	jh->b_transaction = jh->b_next_transaction;
2172 	jh->b_next_transaction = NULL;
2173 	if (buffer_freed(bh))
2174 		jlist = BJ_Forget;
2175 	else if (jh->b_modified)
2176 		jlist = BJ_Metadata;
2177 	else
2178 		jlist = BJ_Reserved;
2179 	__jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2180 	J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2181 
2182 	if (was_dirty)
2183 		set_buffer_jbddirty(bh);
2184 }
2185 
2186 /*
2187  * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2188  * bh reference so that we can safely unlock bh.
2189  *
2190  * The jh and bh may be freed by this call.
2191  */
2192 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2193 {
2194 	struct buffer_head *bh = jh2bh(jh);
2195 
2196 	/* Get reference so that buffer cannot be freed before we unlock it */
2197 	get_bh(bh);
2198 	jbd_lock_bh_state(bh);
2199 	spin_lock(&journal->j_list_lock);
2200 	__jbd2_journal_refile_buffer(jh);
2201 	jbd_unlock_bh_state(bh);
2202 	spin_unlock(&journal->j_list_lock);
2203 	__brelse(bh);
2204 }
2205 
2206 /*
2207  * File inode in the inode list of the handle's transaction
2208  */
2209 int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode)
2210 {
2211 	transaction_t *transaction = handle->h_transaction;
2212 	journal_t *journal = transaction->t_journal;
2213 
2214 	if (is_handle_aborted(handle))
2215 		return -EIO;
2216 
2217 	jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2218 			transaction->t_tid);
2219 
2220 	/*
2221 	 * First check whether inode isn't already on the transaction's
2222 	 * lists without taking the lock. Note that this check is safe
2223 	 * without the lock as we cannot race with somebody removing inode
2224 	 * from the transaction. The reason is that we remove inode from the
2225 	 * transaction only in journal_release_jbd_inode() and when we commit
2226 	 * the transaction. We are guarded from the first case by holding
2227 	 * a reference to the inode. We are safe against the second case
2228 	 * because if jinode->i_transaction == transaction, commit code
2229 	 * cannot touch the transaction because we hold reference to it,
2230 	 * and if jinode->i_next_transaction == transaction, commit code
2231 	 * will only file the inode where we want it.
2232 	 */
2233 	if (jinode->i_transaction == transaction ||
2234 	    jinode->i_next_transaction == transaction)
2235 		return 0;
2236 
2237 	spin_lock(&journal->j_list_lock);
2238 
2239 	if (jinode->i_transaction == transaction ||
2240 	    jinode->i_next_transaction == transaction)
2241 		goto done;
2242 
2243 	/*
2244 	 * We only ever set this variable to 1 so the test is safe. Since
2245 	 * t_need_data_flush is likely to be set, we do the test to save some
2246 	 * cacheline bouncing
2247 	 */
2248 	if (!transaction->t_need_data_flush)
2249 		transaction->t_need_data_flush = 1;
2250 	/* On some different transaction's list - should be
2251 	 * the committing one */
2252 	if (jinode->i_transaction) {
2253 		J_ASSERT(jinode->i_next_transaction == NULL);
2254 		J_ASSERT(jinode->i_transaction ==
2255 					journal->j_committing_transaction);
2256 		jinode->i_next_transaction = transaction;
2257 		goto done;
2258 	}
2259 	/* Not on any transaction list... */
2260 	J_ASSERT(!jinode->i_next_transaction);
2261 	jinode->i_transaction = transaction;
2262 	list_add(&jinode->i_list, &transaction->t_inode_list);
2263 done:
2264 	spin_unlock(&journal->j_list_lock);
2265 
2266 	return 0;
2267 }
2268 
2269 /*
2270  * File truncate and transaction commit interact with each other in a
2271  * non-trivial way.  If a transaction writing data block A is
2272  * committing, we cannot discard the data by truncate until we have
2273  * written them.  Otherwise if we crashed after the transaction with
2274  * write has committed but before the transaction with truncate has
2275  * committed, we could see stale data in block A.  This function is a
2276  * helper to solve this problem.  It starts writeout of the truncated
2277  * part in case it is in the committing transaction.
2278  *
2279  * Filesystem code must call this function when inode is journaled in
2280  * ordered mode before truncation happens and after the inode has been
2281  * placed on orphan list with the new inode size. The second condition
2282  * avoids the race that someone writes new data and we start
2283  * committing the transaction after this function has been called but
2284  * before a transaction for truncate is started (and furthermore it
2285  * allows us to optimize the case where the addition to orphan list
2286  * happens in the same transaction as write --- we don't have to write
2287  * any data in such case).
2288  */
2289 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2290 					struct jbd2_inode *jinode,
2291 					loff_t new_size)
2292 {
2293 	transaction_t *inode_trans, *commit_trans;
2294 	int ret = 0;
2295 
2296 	/* This is a quick check to avoid locking if not necessary */
2297 	if (!jinode->i_transaction)
2298 		goto out;
2299 	/* Locks are here just to force reading of recent values, it is
2300 	 * enough that the transaction was not committing before we started
2301 	 * a transaction adding the inode to orphan list */
2302 	read_lock(&journal->j_state_lock);
2303 	commit_trans = journal->j_committing_transaction;
2304 	read_unlock(&journal->j_state_lock);
2305 	spin_lock(&journal->j_list_lock);
2306 	inode_trans = jinode->i_transaction;
2307 	spin_unlock(&journal->j_list_lock);
2308 	if (inode_trans == commit_trans) {
2309 		ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2310 			new_size, LLONG_MAX);
2311 		if (ret)
2312 			jbd2_journal_abort(journal, ret);
2313 	}
2314 out:
2315 	return ret;
2316 }
2317