1 /* 2 * linux/fs/jbd2/transaction.c 3 * 4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 5 * 6 * Copyright 1998 Red Hat corp --- All Rights Reserved 7 * 8 * This file is part of the Linux kernel and is made available under 9 * the terms of the GNU General Public License, version 2, or at your 10 * option, any later version, incorporated herein by reference. 11 * 12 * Generic filesystem transaction handling code; part of the ext2fs 13 * journaling system. 14 * 15 * This file manages transactions (compound commits managed by the 16 * journaling code) and handles (individual atomic operations by the 17 * filesystem). 18 */ 19 20 #include <linux/time.h> 21 #include <linux/fs.h> 22 #include <linux/jbd2.h> 23 #include <linux/errno.h> 24 #include <linux/slab.h> 25 #include <linux/timer.h> 26 #include <linux/mm.h> 27 #include <linux/highmem.h> 28 #include <linux/hrtimer.h> 29 #include <linux/backing-dev.h> 30 #include <linux/bug.h> 31 #include <linux/module.h> 32 33 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh); 34 static void __jbd2_journal_unfile_buffer(struct journal_head *jh); 35 36 static struct kmem_cache *transaction_cache; 37 int __init jbd2_journal_init_transaction_cache(void) 38 { 39 J_ASSERT(!transaction_cache); 40 transaction_cache = kmem_cache_create("jbd2_transaction_s", 41 sizeof(transaction_t), 42 0, 43 SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY, 44 NULL); 45 if (transaction_cache) 46 return 0; 47 return -ENOMEM; 48 } 49 50 void jbd2_journal_destroy_transaction_cache(void) 51 { 52 if (transaction_cache) { 53 kmem_cache_destroy(transaction_cache); 54 transaction_cache = NULL; 55 } 56 } 57 58 void jbd2_journal_free_transaction(transaction_t *transaction) 59 { 60 if (unlikely(ZERO_OR_NULL_PTR(transaction))) 61 return; 62 kmem_cache_free(transaction_cache, transaction); 63 } 64 65 /* 66 * jbd2_get_transaction: obtain a new transaction_t object. 67 * 68 * Simply allocate and initialise a new transaction. Create it in 69 * RUNNING state and add it to the current journal (which should not 70 * have an existing running transaction: we only make a new transaction 71 * once we have started to commit the old one). 72 * 73 * Preconditions: 74 * The journal MUST be locked. We don't perform atomic mallocs on the 75 * new transaction and we can't block without protecting against other 76 * processes trying to touch the journal while it is in transition. 77 * 78 */ 79 80 static transaction_t * 81 jbd2_get_transaction(journal_t *journal, transaction_t *transaction) 82 { 83 transaction->t_journal = journal; 84 transaction->t_state = T_RUNNING; 85 transaction->t_start_time = ktime_get(); 86 transaction->t_tid = journal->j_transaction_sequence++; 87 transaction->t_expires = jiffies + journal->j_commit_interval; 88 spin_lock_init(&transaction->t_handle_lock); 89 atomic_set(&transaction->t_updates, 0); 90 atomic_set(&transaction->t_outstanding_credits, 0); 91 atomic_set(&transaction->t_handle_count, 0); 92 INIT_LIST_HEAD(&transaction->t_inode_list); 93 INIT_LIST_HEAD(&transaction->t_private_list); 94 95 /* Set up the commit timer for the new transaction. */ 96 journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires); 97 add_timer(&journal->j_commit_timer); 98 99 J_ASSERT(journal->j_running_transaction == NULL); 100 journal->j_running_transaction = transaction; 101 transaction->t_max_wait = 0; 102 transaction->t_start = jiffies; 103 104 return transaction; 105 } 106 107 /* 108 * Handle management. 109 * 110 * A handle_t is an object which represents a single atomic update to a 111 * filesystem, and which tracks all of the modifications which form part 112 * of that one update. 113 */ 114 115 /* 116 * Update transaction's maximum wait time, if debugging is enabled. 117 * 118 * In order for t_max_wait to be reliable, it must be protected by a 119 * lock. But doing so will mean that start_this_handle() can not be 120 * run in parallel on SMP systems, which limits our scalability. So 121 * unless debugging is enabled, we no longer update t_max_wait, which 122 * means that maximum wait time reported by the jbd2_run_stats 123 * tracepoint will always be zero. 124 */ 125 static inline void update_t_max_wait(transaction_t *transaction, 126 unsigned long ts) 127 { 128 #ifdef CONFIG_JBD2_DEBUG 129 if (jbd2_journal_enable_debug && 130 time_after(transaction->t_start, ts)) { 131 ts = jbd2_time_diff(ts, transaction->t_start); 132 spin_lock(&transaction->t_handle_lock); 133 if (ts > transaction->t_max_wait) 134 transaction->t_max_wait = ts; 135 spin_unlock(&transaction->t_handle_lock); 136 } 137 #endif 138 } 139 140 /* 141 * start_this_handle: Given a handle, deal with any locking or stalling 142 * needed to make sure that there is enough journal space for the handle 143 * to begin. Attach the handle to a transaction and set up the 144 * transaction's buffer credits. 145 */ 146 147 static int start_this_handle(journal_t *journal, handle_t *handle, 148 gfp_t gfp_mask) 149 { 150 transaction_t *transaction, *new_transaction = NULL; 151 tid_t tid; 152 int needed, need_to_start; 153 int nblocks = handle->h_buffer_credits; 154 unsigned long ts = jiffies; 155 156 if (nblocks > journal->j_max_transaction_buffers) { 157 printk(KERN_ERR "JBD2: %s wants too many credits (%d > %d)\n", 158 current->comm, nblocks, 159 journal->j_max_transaction_buffers); 160 return -ENOSPC; 161 } 162 163 alloc_transaction: 164 if (!journal->j_running_transaction) { 165 new_transaction = kmem_cache_zalloc(transaction_cache, 166 gfp_mask); 167 if (!new_transaction) { 168 /* 169 * If __GFP_FS is not present, then we may be 170 * being called from inside the fs writeback 171 * layer, so we MUST NOT fail. Since 172 * __GFP_NOFAIL is going away, we will arrange 173 * to retry the allocation ourselves. 174 */ 175 if ((gfp_mask & __GFP_FS) == 0) { 176 congestion_wait(BLK_RW_ASYNC, HZ/50); 177 goto alloc_transaction; 178 } 179 return -ENOMEM; 180 } 181 } 182 183 jbd_debug(3, "New handle %p going live.\n", handle); 184 185 /* 186 * We need to hold j_state_lock until t_updates has been incremented, 187 * for proper journal barrier handling 188 */ 189 repeat: 190 read_lock(&journal->j_state_lock); 191 BUG_ON(journal->j_flags & JBD2_UNMOUNT); 192 if (is_journal_aborted(journal) || 193 (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) { 194 read_unlock(&journal->j_state_lock); 195 jbd2_journal_free_transaction(new_transaction); 196 return -EROFS; 197 } 198 199 /* Wait on the journal's transaction barrier if necessary */ 200 if (journal->j_barrier_count) { 201 read_unlock(&journal->j_state_lock); 202 wait_event(journal->j_wait_transaction_locked, 203 journal->j_barrier_count == 0); 204 goto repeat; 205 } 206 207 if (!journal->j_running_transaction) { 208 read_unlock(&journal->j_state_lock); 209 if (!new_transaction) 210 goto alloc_transaction; 211 write_lock(&journal->j_state_lock); 212 if (!journal->j_running_transaction) { 213 jbd2_get_transaction(journal, new_transaction); 214 new_transaction = NULL; 215 } 216 write_unlock(&journal->j_state_lock); 217 goto repeat; 218 } 219 220 transaction = journal->j_running_transaction; 221 222 /* 223 * If the current transaction is locked down for commit, wait for the 224 * lock to be released. 225 */ 226 if (transaction->t_state == T_LOCKED) { 227 DEFINE_WAIT(wait); 228 229 prepare_to_wait(&journal->j_wait_transaction_locked, 230 &wait, TASK_UNINTERRUPTIBLE); 231 read_unlock(&journal->j_state_lock); 232 schedule(); 233 finish_wait(&journal->j_wait_transaction_locked, &wait); 234 goto repeat; 235 } 236 237 /* 238 * If there is not enough space left in the log to write all potential 239 * buffers requested by this operation, we need to stall pending a log 240 * checkpoint to free some more log space. 241 */ 242 needed = atomic_add_return(nblocks, 243 &transaction->t_outstanding_credits); 244 245 if (needed > journal->j_max_transaction_buffers) { 246 /* 247 * If the current transaction is already too large, then start 248 * to commit it: we can then go back and attach this handle to 249 * a new transaction. 250 */ 251 DEFINE_WAIT(wait); 252 253 jbd_debug(2, "Handle %p starting new commit...\n", handle); 254 atomic_sub(nblocks, &transaction->t_outstanding_credits); 255 prepare_to_wait(&journal->j_wait_transaction_locked, &wait, 256 TASK_UNINTERRUPTIBLE); 257 tid = transaction->t_tid; 258 need_to_start = !tid_geq(journal->j_commit_request, tid); 259 read_unlock(&journal->j_state_lock); 260 if (need_to_start) 261 jbd2_log_start_commit(journal, tid); 262 schedule(); 263 finish_wait(&journal->j_wait_transaction_locked, &wait); 264 goto repeat; 265 } 266 267 /* 268 * The commit code assumes that it can get enough log space 269 * without forcing a checkpoint. This is *critical* for 270 * correctness: a checkpoint of a buffer which is also 271 * associated with a committing transaction creates a deadlock, 272 * so commit simply cannot force through checkpoints. 273 * 274 * We must therefore ensure the necessary space in the journal 275 * *before* starting to dirty potentially checkpointed buffers 276 * in the new transaction. 277 * 278 * The worst part is, any transaction currently committing can 279 * reduce the free space arbitrarily. Be careful to account for 280 * those buffers when checkpointing. 281 */ 282 283 /* 284 * @@@ AKPM: This seems rather over-defensive. We're giving commit 285 * a _lot_ of headroom: 1/4 of the journal plus the size of 286 * the committing transaction. Really, we only need to give it 287 * committing_transaction->t_outstanding_credits plus "enough" for 288 * the log control blocks. 289 * Also, this test is inconsistent with the matching one in 290 * jbd2_journal_extend(). 291 */ 292 if (__jbd2_log_space_left(journal) < jbd_space_needed(journal)) { 293 jbd_debug(2, "Handle %p waiting for checkpoint...\n", handle); 294 atomic_sub(nblocks, &transaction->t_outstanding_credits); 295 read_unlock(&journal->j_state_lock); 296 write_lock(&journal->j_state_lock); 297 if (__jbd2_log_space_left(journal) < jbd_space_needed(journal)) 298 __jbd2_log_wait_for_space(journal); 299 write_unlock(&journal->j_state_lock); 300 goto repeat; 301 } 302 303 /* OK, account for the buffers that this operation expects to 304 * use and add the handle to the running transaction. 305 */ 306 update_t_max_wait(transaction, ts); 307 handle->h_transaction = transaction; 308 atomic_inc(&transaction->t_updates); 309 atomic_inc(&transaction->t_handle_count); 310 jbd_debug(4, "Handle %p given %d credits (total %d, free %d)\n", 311 handle, nblocks, 312 atomic_read(&transaction->t_outstanding_credits), 313 __jbd2_log_space_left(journal)); 314 read_unlock(&journal->j_state_lock); 315 316 lock_map_acquire(&handle->h_lockdep_map); 317 jbd2_journal_free_transaction(new_transaction); 318 return 0; 319 } 320 321 static struct lock_class_key jbd2_handle_key; 322 323 /* Allocate a new handle. This should probably be in a slab... */ 324 static handle_t *new_handle(int nblocks) 325 { 326 handle_t *handle = jbd2_alloc_handle(GFP_NOFS); 327 if (!handle) 328 return NULL; 329 memset(handle, 0, sizeof(*handle)); 330 handle->h_buffer_credits = nblocks; 331 handle->h_ref = 1; 332 333 lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle", 334 &jbd2_handle_key, 0); 335 336 return handle; 337 } 338 339 /** 340 * handle_t *jbd2_journal_start() - Obtain a new handle. 341 * @journal: Journal to start transaction on. 342 * @nblocks: number of block buffer we might modify 343 * 344 * We make sure that the transaction can guarantee at least nblocks of 345 * modified buffers in the log. We block until the log can guarantee 346 * that much space. 347 * 348 * This function is visible to journal users (like ext3fs), so is not 349 * called with the journal already locked. 350 * 351 * Return a pointer to a newly allocated handle, or an ERR_PTR() value 352 * on failure. 353 */ 354 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, gfp_t gfp_mask) 355 { 356 handle_t *handle = journal_current_handle(); 357 int err; 358 359 if (!journal) 360 return ERR_PTR(-EROFS); 361 362 if (handle) { 363 J_ASSERT(handle->h_transaction->t_journal == journal); 364 handle->h_ref++; 365 return handle; 366 } 367 368 handle = new_handle(nblocks); 369 if (!handle) 370 return ERR_PTR(-ENOMEM); 371 372 current->journal_info = handle; 373 374 err = start_this_handle(journal, handle, gfp_mask); 375 if (err < 0) { 376 jbd2_free_handle(handle); 377 current->journal_info = NULL; 378 handle = ERR_PTR(err); 379 } 380 return handle; 381 } 382 EXPORT_SYMBOL(jbd2__journal_start); 383 384 385 handle_t *jbd2_journal_start(journal_t *journal, int nblocks) 386 { 387 return jbd2__journal_start(journal, nblocks, GFP_NOFS); 388 } 389 EXPORT_SYMBOL(jbd2_journal_start); 390 391 392 /** 393 * int jbd2_journal_extend() - extend buffer credits. 394 * @handle: handle to 'extend' 395 * @nblocks: nr blocks to try to extend by. 396 * 397 * Some transactions, such as large extends and truncates, can be done 398 * atomically all at once or in several stages. The operation requests 399 * a credit for a number of buffer modications in advance, but can 400 * extend its credit if it needs more. 401 * 402 * jbd2_journal_extend tries to give the running handle more buffer credits. 403 * It does not guarantee that allocation - this is a best-effort only. 404 * The calling process MUST be able to deal cleanly with a failure to 405 * extend here. 406 * 407 * Return 0 on success, non-zero on failure. 408 * 409 * return code < 0 implies an error 410 * return code > 0 implies normal transaction-full status. 411 */ 412 int jbd2_journal_extend(handle_t *handle, int nblocks) 413 { 414 transaction_t *transaction = handle->h_transaction; 415 journal_t *journal = transaction->t_journal; 416 int result; 417 int wanted; 418 419 result = -EIO; 420 if (is_handle_aborted(handle)) 421 goto out; 422 423 result = 1; 424 425 read_lock(&journal->j_state_lock); 426 427 /* Don't extend a locked-down transaction! */ 428 if (handle->h_transaction->t_state != T_RUNNING) { 429 jbd_debug(3, "denied handle %p %d blocks: " 430 "transaction not running\n", handle, nblocks); 431 goto error_out; 432 } 433 434 spin_lock(&transaction->t_handle_lock); 435 wanted = atomic_read(&transaction->t_outstanding_credits) + nblocks; 436 437 if (wanted > journal->j_max_transaction_buffers) { 438 jbd_debug(3, "denied handle %p %d blocks: " 439 "transaction too large\n", handle, nblocks); 440 goto unlock; 441 } 442 443 if (wanted > __jbd2_log_space_left(journal)) { 444 jbd_debug(3, "denied handle %p %d blocks: " 445 "insufficient log space\n", handle, nblocks); 446 goto unlock; 447 } 448 449 handle->h_buffer_credits += nblocks; 450 atomic_add(nblocks, &transaction->t_outstanding_credits); 451 result = 0; 452 453 jbd_debug(3, "extended handle %p by %d\n", handle, nblocks); 454 unlock: 455 spin_unlock(&transaction->t_handle_lock); 456 error_out: 457 read_unlock(&journal->j_state_lock); 458 out: 459 return result; 460 } 461 462 463 /** 464 * int jbd2_journal_restart() - restart a handle . 465 * @handle: handle to restart 466 * @nblocks: nr credits requested 467 * 468 * Restart a handle for a multi-transaction filesystem 469 * operation. 470 * 471 * If the jbd2_journal_extend() call above fails to grant new buffer credits 472 * to a running handle, a call to jbd2_journal_restart will commit the 473 * handle's transaction so far and reattach the handle to a new 474 * transaction capabable of guaranteeing the requested number of 475 * credits. 476 */ 477 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask) 478 { 479 transaction_t *transaction = handle->h_transaction; 480 journal_t *journal = transaction->t_journal; 481 tid_t tid; 482 int need_to_start, ret; 483 484 /* If we've had an abort of any type, don't even think about 485 * actually doing the restart! */ 486 if (is_handle_aborted(handle)) 487 return 0; 488 489 /* 490 * First unlink the handle from its current transaction, and start the 491 * commit on that. 492 */ 493 J_ASSERT(atomic_read(&transaction->t_updates) > 0); 494 J_ASSERT(journal_current_handle() == handle); 495 496 read_lock(&journal->j_state_lock); 497 spin_lock(&transaction->t_handle_lock); 498 atomic_sub(handle->h_buffer_credits, 499 &transaction->t_outstanding_credits); 500 if (atomic_dec_and_test(&transaction->t_updates)) 501 wake_up(&journal->j_wait_updates); 502 spin_unlock(&transaction->t_handle_lock); 503 504 jbd_debug(2, "restarting handle %p\n", handle); 505 tid = transaction->t_tid; 506 need_to_start = !tid_geq(journal->j_commit_request, tid); 507 read_unlock(&journal->j_state_lock); 508 if (need_to_start) 509 jbd2_log_start_commit(journal, tid); 510 511 lock_map_release(&handle->h_lockdep_map); 512 handle->h_buffer_credits = nblocks; 513 ret = start_this_handle(journal, handle, gfp_mask); 514 return ret; 515 } 516 EXPORT_SYMBOL(jbd2__journal_restart); 517 518 519 int jbd2_journal_restart(handle_t *handle, int nblocks) 520 { 521 return jbd2__journal_restart(handle, nblocks, GFP_NOFS); 522 } 523 EXPORT_SYMBOL(jbd2_journal_restart); 524 525 /** 526 * void jbd2_journal_lock_updates () - establish a transaction barrier. 527 * @journal: Journal to establish a barrier on. 528 * 529 * This locks out any further updates from being started, and blocks 530 * until all existing updates have completed, returning only once the 531 * journal is in a quiescent state with no updates running. 532 * 533 * The journal lock should not be held on entry. 534 */ 535 void jbd2_journal_lock_updates(journal_t *journal) 536 { 537 DEFINE_WAIT(wait); 538 539 write_lock(&journal->j_state_lock); 540 ++journal->j_barrier_count; 541 542 /* Wait until there are no running updates */ 543 while (1) { 544 transaction_t *transaction = journal->j_running_transaction; 545 546 if (!transaction) 547 break; 548 549 spin_lock(&transaction->t_handle_lock); 550 prepare_to_wait(&journal->j_wait_updates, &wait, 551 TASK_UNINTERRUPTIBLE); 552 if (!atomic_read(&transaction->t_updates)) { 553 spin_unlock(&transaction->t_handle_lock); 554 finish_wait(&journal->j_wait_updates, &wait); 555 break; 556 } 557 spin_unlock(&transaction->t_handle_lock); 558 write_unlock(&journal->j_state_lock); 559 schedule(); 560 finish_wait(&journal->j_wait_updates, &wait); 561 write_lock(&journal->j_state_lock); 562 } 563 write_unlock(&journal->j_state_lock); 564 565 /* 566 * We have now established a barrier against other normal updates, but 567 * we also need to barrier against other jbd2_journal_lock_updates() calls 568 * to make sure that we serialise special journal-locked operations 569 * too. 570 */ 571 mutex_lock(&journal->j_barrier); 572 } 573 574 /** 575 * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier 576 * @journal: Journal to release the barrier on. 577 * 578 * Release a transaction barrier obtained with jbd2_journal_lock_updates(). 579 * 580 * Should be called without the journal lock held. 581 */ 582 void jbd2_journal_unlock_updates (journal_t *journal) 583 { 584 J_ASSERT(journal->j_barrier_count != 0); 585 586 mutex_unlock(&journal->j_barrier); 587 write_lock(&journal->j_state_lock); 588 --journal->j_barrier_count; 589 write_unlock(&journal->j_state_lock); 590 wake_up(&journal->j_wait_transaction_locked); 591 } 592 593 static void warn_dirty_buffer(struct buffer_head *bh) 594 { 595 char b[BDEVNAME_SIZE]; 596 597 printk(KERN_WARNING 598 "JBD2: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). " 599 "There's a risk of filesystem corruption in case of system " 600 "crash.\n", 601 bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr); 602 } 603 604 /* 605 * If the buffer is already part of the current transaction, then there 606 * is nothing we need to do. If it is already part of a prior 607 * transaction which we are still committing to disk, then we need to 608 * make sure that we do not overwrite the old copy: we do copy-out to 609 * preserve the copy going to disk. We also account the buffer against 610 * the handle's metadata buffer credits (unless the buffer is already 611 * part of the transaction, that is). 612 * 613 */ 614 static int 615 do_get_write_access(handle_t *handle, struct journal_head *jh, 616 int force_copy) 617 { 618 struct buffer_head *bh; 619 transaction_t *transaction; 620 journal_t *journal; 621 int error; 622 char *frozen_buffer = NULL; 623 int need_copy = 0; 624 625 if (is_handle_aborted(handle)) 626 return -EROFS; 627 628 transaction = handle->h_transaction; 629 journal = transaction->t_journal; 630 631 jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy); 632 633 JBUFFER_TRACE(jh, "entry"); 634 repeat: 635 bh = jh2bh(jh); 636 637 /* @@@ Need to check for errors here at some point. */ 638 639 lock_buffer(bh); 640 jbd_lock_bh_state(bh); 641 642 /* We now hold the buffer lock so it is safe to query the buffer 643 * state. Is the buffer dirty? 644 * 645 * If so, there are two possibilities. The buffer may be 646 * non-journaled, and undergoing a quite legitimate writeback. 647 * Otherwise, it is journaled, and we don't expect dirty buffers 648 * in that state (the buffers should be marked JBD_Dirty 649 * instead.) So either the IO is being done under our own 650 * control and this is a bug, or it's a third party IO such as 651 * dump(8) (which may leave the buffer scheduled for read --- 652 * ie. locked but not dirty) or tune2fs (which may actually have 653 * the buffer dirtied, ugh.) */ 654 655 if (buffer_dirty(bh)) { 656 /* 657 * First question: is this buffer already part of the current 658 * transaction or the existing committing transaction? 659 */ 660 if (jh->b_transaction) { 661 J_ASSERT_JH(jh, 662 jh->b_transaction == transaction || 663 jh->b_transaction == 664 journal->j_committing_transaction); 665 if (jh->b_next_transaction) 666 J_ASSERT_JH(jh, jh->b_next_transaction == 667 transaction); 668 warn_dirty_buffer(bh); 669 } 670 /* 671 * In any case we need to clean the dirty flag and we must 672 * do it under the buffer lock to be sure we don't race 673 * with running write-out. 674 */ 675 JBUFFER_TRACE(jh, "Journalling dirty buffer"); 676 clear_buffer_dirty(bh); 677 set_buffer_jbddirty(bh); 678 } 679 680 unlock_buffer(bh); 681 682 error = -EROFS; 683 if (is_handle_aborted(handle)) { 684 jbd_unlock_bh_state(bh); 685 goto out; 686 } 687 error = 0; 688 689 /* 690 * The buffer is already part of this transaction if b_transaction or 691 * b_next_transaction points to it 692 */ 693 if (jh->b_transaction == transaction || 694 jh->b_next_transaction == transaction) 695 goto done; 696 697 /* 698 * this is the first time this transaction is touching this buffer, 699 * reset the modified flag 700 */ 701 jh->b_modified = 0; 702 703 /* 704 * If there is already a copy-out version of this buffer, then we don't 705 * need to make another one 706 */ 707 if (jh->b_frozen_data) { 708 JBUFFER_TRACE(jh, "has frozen data"); 709 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 710 jh->b_next_transaction = transaction; 711 goto done; 712 } 713 714 /* Is there data here we need to preserve? */ 715 716 if (jh->b_transaction && jh->b_transaction != transaction) { 717 JBUFFER_TRACE(jh, "owned by older transaction"); 718 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 719 J_ASSERT_JH(jh, jh->b_transaction == 720 journal->j_committing_transaction); 721 722 /* There is one case we have to be very careful about. 723 * If the committing transaction is currently writing 724 * this buffer out to disk and has NOT made a copy-out, 725 * then we cannot modify the buffer contents at all 726 * right now. The essence of copy-out is that it is the 727 * extra copy, not the primary copy, which gets 728 * journaled. If the primary copy is already going to 729 * disk then we cannot do copy-out here. */ 730 731 if (jh->b_jlist == BJ_Shadow) { 732 DEFINE_WAIT_BIT(wait, &bh->b_state, BH_Unshadow); 733 wait_queue_head_t *wqh; 734 735 wqh = bit_waitqueue(&bh->b_state, BH_Unshadow); 736 737 JBUFFER_TRACE(jh, "on shadow: sleep"); 738 jbd_unlock_bh_state(bh); 739 /* commit wakes up all shadow buffers after IO */ 740 for ( ; ; ) { 741 prepare_to_wait(wqh, &wait.wait, 742 TASK_UNINTERRUPTIBLE); 743 if (jh->b_jlist != BJ_Shadow) 744 break; 745 schedule(); 746 } 747 finish_wait(wqh, &wait.wait); 748 goto repeat; 749 } 750 751 /* Only do the copy if the currently-owning transaction 752 * still needs it. If it is on the Forget list, the 753 * committing transaction is past that stage. The 754 * buffer had better remain locked during the kmalloc, 755 * but that should be true --- we hold the journal lock 756 * still and the buffer is already on the BUF_JOURNAL 757 * list so won't be flushed. 758 * 759 * Subtle point, though: if this is a get_undo_access, 760 * then we will be relying on the frozen_data to contain 761 * the new value of the committed_data record after the 762 * transaction, so we HAVE to force the frozen_data copy 763 * in that case. */ 764 765 if (jh->b_jlist != BJ_Forget || force_copy) { 766 JBUFFER_TRACE(jh, "generate frozen data"); 767 if (!frozen_buffer) { 768 JBUFFER_TRACE(jh, "allocate memory for buffer"); 769 jbd_unlock_bh_state(bh); 770 frozen_buffer = 771 jbd2_alloc(jh2bh(jh)->b_size, 772 GFP_NOFS); 773 if (!frozen_buffer) { 774 printk(KERN_EMERG 775 "%s: OOM for frozen_buffer\n", 776 __func__); 777 JBUFFER_TRACE(jh, "oom!"); 778 error = -ENOMEM; 779 jbd_lock_bh_state(bh); 780 goto done; 781 } 782 goto repeat; 783 } 784 jh->b_frozen_data = frozen_buffer; 785 frozen_buffer = NULL; 786 need_copy = 1; 787 } 788 jh->b_next_transaction = transaction; 789 } 790 791 792 /* 793 * Finally, if the buffer is not journaled right now, we need to make 794 * sure it doesn't get written to disk before the caller actually 795 * commits the new data 796 */ 797 if (!jh->b_transaction) { 798 JBUFFER_TRACE(jh, "no transaction"); 799 J_ASSERT_JH(jh, !jh->b_next_transaction); 800 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 801 spin_lock(&journal->j_list_lock); 802 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 803 spin_unlock(&journal->j_list_lock); 804 } 805 806 done: 807 if (need_copy) { 808 struct page *page; 809 int offset; 810 char *source; 811 812 J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)), 813 "Possible IO failure.\n"); 814 page = jh2bh(jh)->b_page; 815 offset = offset_in_page(jh2bh(jh)->b_data); 816 source = kmap_atomic(page); 817 /* Fire data frozen trigger just before we copy the data */ 818 jbd2_buffer_frozen_trigger(jh, source + offset, 819 jh->b_triggers); 820 memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size); 821 kunmap_atomic(source); 822 823 /* 824 * Now that the frozen data is saved off, we need to store 825 * any matching triggers. 826 */ 827 jh->b_frozen_triggers = jh->b_triggers; 828 } 829 jbd_unlock_bh_state(bh); 830 831 /* 832 * If we are about to journal a buffer, then any revoke pending on it is 833 * no longer valid 834 */ 835 jbd2_journal_cancel_revoke(handle, jh); 836 837 out: 838 if (unlikely(frozen_buffer)) /* It's usually NULL */ 839 jbd2_free(frozen_buffer, bh->b_size); 840 841 JBUFFER_TRACE(jh, "exit"); 842 return error; 843 } 844 845 /** 846 * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update. 847 * @handle: transaction to add buffer modifications to 848 * @bh: bh to be used for metadata writes 849 * 850 * Returns an error code or 0 on success. 851 * 852 * In full data journalling mode the buffer may be of type BJ_AsyncData, 853 * because we're write()ing a buffer which is also part of a shared mapping. 854 */ 855 856 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh) 857 { 858 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 859 int rc; 860 861 /* We do not want to get caught playing with fields which the 862 * log thread also manipulates. Make sure that the buffer 863 * completes any outstanding IO before proceeding. */ 864 rc = do_get_write_access(handle, jh, 0); 865 jbd2_journal_put_journal_head(jh); 866 return rc; 867 } 868 869 870 /* 871 * When the user wants to journal a newly created buffer_head 872 * (ie. getblk() returned a new buffer and we are going to populate it 873 * manually rather than reading off disk), then we need to keep the 874 * buffer_head locked until it has been completely filled with new 875 * data. In this case, we should be able to make the assertion that 876 * the bh is not already part of an existing transaction. 877 * 878 * The buffer should already be locked by the caller by this point. 879 * There is no lock ranking violation: it was a newly created, 880 * unlocked buffer beforehand. */ 881 882 /** 883 * int jbd2_journal_get_create_access () - notify intent to use newly created bh 884 * @handle: transaction to new buffer to 885 * @bh: new buffer. 886 * 887 * Call this if you create a new bh. 888 */ 889 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh) 890 { 891 transaction_t *transaction = handle->h_transaction; 892 journal_t *journal = transaction->t_journal; 893 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 894 int err; 895 896 jbd_debug(5, "journal_head %p\n", jh); 897 err = -EROFS; 898 if (is_handle_aborted(handle)) 899 goto out; 900 err = 0; 901 902 JBUFFER_TRACE(jh, "entry"); 903 /* 904 * The buffer may already belong to this transaction due to pre-zeroing 905 * in the filesystem's new_block code. It may also be on the previous, 906 * committing transaction's lists, but it HAS to be in Forget state in 907 * that case: the transaction must have deleted the buffer for it to be 908 * reused here. 909 */ 910 jbd_lock_bh_state(bh); 911 spin_lock(&journal->j_list_lock); 912 J_ASSERT_JH(jh, (jh->b_transaction == transaction || 913 jh->b_transaction == NULL || 914 (jh->b_transaction == journal->j_committing_transaction && 915 jh->b_jlist == BJ_Forget))); 916 917 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 918 J_ASSERT_JH(jh, buffer_locked(jh2bh(jh))); 919 920 if (jh->b_transaction == NULL) { 921 /* 922 * Previous jbd2_journal_forget() could have left the buffer 923 * with jbddirty bit set because it was being committed. When 924 * the commit finished, we've filed the buffer for 925 * checkpointing and marked it dirty. Now we are reallocating 926 * the buffer so the transaction freeing it must have 927 * committed and so it's safe to clear the dirty bit. 928 */ 929 clear_buffer_dirty(jh2bh(jh)); 930 /* first access by this transaction */ 931 jh->b_modified = 0; 932 933 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 934 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 935 } else if (jh->b_transaction == journal->j_committing_transaction) { 936 /* first access by this transaction */ 937 jh->b_modified = 0; 938 939 JBUFFER_TRACE(jh, "set next transaction"); 940 jh->b_next_transaction = transaction; 941 } 942 spin_unlock(&journal->j_list_lock); 943 jbd_unlock_bh_state(bh); 944 945 /* 946 * akpm: I added this. ext3_alloc_branch can pick up new indirect 947 * blocks which contain freed but then revoked metadata. We need 948 * to cancel the revoke in case we end up freeing it yet again 949 * and the reallocating as data - this would cause a second revoke, 950 * which hits an assertion error. 951 */ 952 JBUFFER_TRACE(jh, "cancelling revoke"); 953 jbd2_journal_cancel_revoke(handle, jh); 954 out: 955 jbd2_journal_put_journal_head(jh); 956 return err; 957 } 958 959 /** 960 * int jbd2_journal_get_undo_access() - Notify intent to modify metadata with 961 * non-rewindable consequences 962 * @handle: transaction 963 * @bh: buffer to undo 964 * 965 * Sometimes there is a need to distinguish between metadata which has 966 * been committed to disk and that which has not. The ext3fs code uses 967 * this for freeing and allocating space, we have to make sure that we 968 * do not reuse freed space until the deallocation has been committed, 969 * since if we overwrote that space we would make the delete 970 * un-rewindable in case of a crash. 971 * 972 * To deal with that, jbd2_journal_get_undo_access requests write access to a 973 * buffer for parts of non-rewindable operations such as delete 974 * operations on the bitmaps. The journaling code must keep a copy of 975 * the buffer's contents prior to the undo_access call until such time 976 * as we know that the buffer has definitely been committed to disk. 977 * 978 * We never need to know which transaction the committed data is part 979 * of, buffers touched here are guaranteed to be dirtied later and so 980 * will be committed to a new transaction in due course, at which point 981 * we can discard the old committed data pointer. 982 * 983 * Returns error number or 0 on success. 984 */ 985 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh) 986 { 987 int err; 988 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 989 char *committed_data = NULL; 990 991 JBUFFER_TRACE(jh, "entry"); 992 993 /* 994 * Do this first --- it can drop the journal lock, so we want to 995 * make sure that obtaining the committed_data is done 996 * atomically wrt. completion of any outstanding commits. 997 */ 998 err = do_get_write_access(handle, jh, 1); 999 if (err) 1000 goto out; 1001 1002 repeat: 1003 if (!jh->b_committed_data) { 1004 committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS); 1005 if (!committed_data) { 1006 printk(KERN_EMERG "%s: No memory for committed data\n", 1007 __func__); 1008 err = -ENOMEM; 1009 goto out; 1010 } 1011 } 1012 1013 jbd_lock_bh_state(bh); 1014 if (!jh->b_committed_data) { 1015 /* Copy out the current buffer contents into the 1016 * preserved, committed copy. */ 1017 JBUFFER_TRACE(jh, "generate b_committed data"); 1018 if (!committed_data) { 1019 jbd_unlock_bh_state(bh); 1020 goto repeat; 1021 } 1022 1023 jh->b_committed_data = committed_data; 1024 committed_data = NULL; 1025 memcpy(jh->b_committed_data, bh->b_data, bh->b_size); 1026 } 1027 jbd_unlock_bh_state(bh); 1028 out: 1029 jbd2_journal_put_journal_head(jh); 1030 if (unlikely(committed_data)) 1031 jbd2_free(committed_data, bh->b_size); 1032 return err; 1033 } 1034 1035 /** 1036 * void jbd2_journal_set_triggers() - Add triggers for commit writeout 1037 * @bh: buffer to trigger on 1038 * @type: struct jbd2_buffer_trigger_type containing the trigger(s). 1039 * 1040 * Set any triggers on this journal_head. This is always safe, because 1041 * triggers for a committing buffer will be saved off, and triggers for 1042 * a running transaction will match the buffer in that transaction. 1043 * 1044 * Call with NULL to clear the triggers. 1045 */ 1046 void jbd2_journal_set_triggers(struct buffer_head *bh, 1047 struct jbd2_buffer_trigger_type *type) 1048 { 1049 struct journal_head *jh = bh2jh(bh); 1050 1051 jh->b_triggers = type; 1052 } 1053 1054 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data, 1055 struct jbd2_buffer_trigger_type *triggers) 1056 { 1057 struct buffer_head *bh = jh2bh(jh); 1058 1059 if (!triggers || !triggers->t_frozen) 1060 return; 1061 1062 triggers->t_frozen(triggers, bh, mapped_data, bh->b_size); 1063 } 1064 1065 void jbd2_buffer_abort_trigger(struct journal_head *jh, 1066 struct jbd2_buffer_trigger_type *triggers) 1067 { 1068 if (!triggers || !triggers->t_abort) 1069 return; 1070 1071 triggers->t_abort(triggers, jh2bh(jh)); 1072 } 1073 1074 1075 1076 /** 1077 * int jbd2_journal_dirty_metadata() - mark a buffer as containing dirty metadata 1078 * @handle: transaction to add buffer to. 1079 * @bh: buffer to mark 1080 * 1081 * mark dirty metadata which needs to be journaled as part of the current 1082 * transaction. 1083 * 1084 * The buffer must have previously had jbd2_journal_get_write_access() 1085 * called so that it has a valid journal_head attached to the buffer 1086 * head. 1087 * 1088 * The buffer is placed on the transaction's metadata list and is marked 1089 * as belonging to the transaction. 1090 * 1091 * Returns error number or 0 on success. 1092 * 1093 * Special care needs to be taken if the buffer already belongs to the 1094 * current committing transaction (in which case we should have frozen 1095 * data present for that commit). In that case, we don't relink the 1096 * buffer: that only gets done when the old transaction finally 1097 * completes its commit. 1098 */ 1099 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh) 1100 { 1101 transaction_t *transaction = handle->h_transaction; 1102 journal_t *journal = transaction->t_journal; 1103 struct journal_head *jh = bh2jh(bh); 1104 int ret = 0; 1105 1106 jbd_debug(5, "journal_head %p\n", jh); 1107 JBUFFER_TRACE(jh, "entry"); 1108 if (is_handle_aborted(handle)) 1109 goto out; 1110 if (!buffer_jbd(bh)) { 1111 ret = -EUCLEAN; 1112 goto out; 1113 } 1114 1115 jbd_lock_bh_state(bh); 1116 1117 if (jh->b_modified == 0) { 1118 /* 1119 * This buffer's got modified and becoming part 1120 * of the transaction. This needs to be done 1121 * once a transaction -bzzz 1122 */ 1123 jh->b_modified = 1; 1124 J_ASSERT_JH(jh, handle->h_buffer_credits > 0); 1125 handle->h_buffer_credits--; 1126 } 1127 1128 /* 1129 * fastpath, to avoid expensive locking. If this buffer is already 1130 * on the running transaction's metadata list there is nothing to do. 1131 * Nobody can take it off again because there is a handle open. 1132 * I _think_ we're OK here with SMP barriers - a mistaken decision will 1133 * result in this test being false, so we go in and take the locks. 1134 */ 1135 if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) { 1136 JBUFFER_TRACE(jh, "fastpath"); 1137 if (unlikely(jh->b_transaction != 1138 journal->j_running_transaction)) { 1139 printk(KERN_EMERG "JBD: %s: " 1140 "jh->b_transaction (%llu, %p, %u) != " 1141 "journal->j_running_transaction (%p, %u)", 1142 journal->j_devname, 1143 (unsigned long long) bh->b_blocknr, 1144 jh->b_transaction, 1145 jh->b_transaction ? jh->b_transaction->t_tid : 0, 1146 journal->j_running_transaction, 1147 journal->j_running_transaction ? 1148 journal->j_running_transaction->t_tid : 0); 1149 ret = -EINVAL; 1150 } 1151 goto out_unlock_bh; 1152 } 1153 1154 set_buffer_jbddirty(bh); 1155 1156 /* 1157 * Metadata already on the current transaction list doesn't 1158 * need to be filed. Metadata on another transaction's list must 1159 * be committing, and will be refiled once the commit completes: 1160 * leave it alone for now. 1161 */ 1162 if (jh->b_transaction != transaction) { 1163 JBUFFER_TRACE(jh, "already on other transaction"); 1164 if (unlikely(jh->b_transaction != 1165 journal->j_committing_transaction)) { 1166 printk(KERN_EMERG "JBD: %s: " 1167 "jh->b_transaction (%llu, %p, %u) != " 1168 "journal->j_committing_transaction (%p, %u)", 1169 journal->j_devname, 1170 (unsigned long long) bh->b_blocknr, 1171 jh->b_transaction, 1172 jh->b_transaction ? jh->b_transaction->t_tid : 0, 1173 journal->j_committing_transaction, 1174 journal->j_committing_transaction ? 1175 journal->j_committing_transaction->t_tid : 0); 1176 ret = -EINVAL; 1177 } 1178 if (unlikely(jh->b_next_transaction != transaction)) { 1179 printk(KERN_EMERG "JBD: %s: " 1180 "jh->b_next_transaction (%llu, %p, %u) != " 1181 "transaction (%p, %u)", 1182 journal->j_devname, 1183 (unsigned long long) bh->b_blocknr, 1184 jh->b_next_transaction, 1185 jh->b_next_transaction ? 1186 jh->b_next_transaction->t_tid : 0, 1187 transaction, transaction->t_tid); 1188 ret = -EINVAL; 1189 } 1190 /* And this case is illegal: we can't reuse another 1191 * transaction's data buffer, ever. */ 1192 goto out_unlock_bh; 1193 } 1194 1195 /* That test should have eliminated the following case: */ 1196 J_ASSERT_JH(jh, jh->b_frozen_data == NULL); 1197 1198 JBUFFER_TRACE(jh, "file as BJ_Metadata"); 1199 spin_lock(&journal->j_list_lock); 1200 __jbd2_journal_file_buffer(jh, handle->h_transaction, BJ_Metadata); 1201 spin_unlock(&journal->j_list_lock); 1202 out_unlock_bh: 1203 jbd_unlock_bh_state(bh); 1204 out: 1205 JBUFFER_TRACE(jh, "exit"); 1206 WARN_ON(ret); /* All errors are bugs, so dump the stack */ 1207 return ret; 1208 } 1209 1210 /** 1211 * void jbd2_journal_forget() - bforget() for potentially-journaled buffers. 1212 * @handle: transaction handle 1213 * @bh: bh to 'forget' 1214 * 1215 * We can only do the bforget if there are no commits pending against the 1216 * buffer. If the buffer is dirty in the current running transaction we 1217 * can safely unlink it. 1218 * 1219 * bh may not be a journalled buffer at all - it may be a non-JBD 1220 * buffer which came off the hashtable. Check for this. 1221 * 1222 * Decrements bh->b_count by one. 1223 * 1224 * Allow this call even if the handle has aborted --- it may be part of 1225 * the caller's cleanup after an abort. 1226 */ 1227 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh) 1228 { 1229 transaction_t *transaction = handle->h_transaction; 1230 journal_t *journal = transaction->t_journal; 1231 struct journal_head *jh; 1232 int drop_reserve = 0; 1233 int err = 0; 1234 int was_modified = 0; 1235 1236 BUFFER_TRACE(bh, "entry"); 1237 1238 jbd_lock_bh_state(bh); 1239 spin_lock(&journal->j_list_lock); 1240 1241 if (!buffer_jbd(bh)) 1242 goto not_jbd; 1243 jh = bh2jh(bh); 1244 1245 /* Critical error: attempting to delete a bitmap buffer, maybe? 1246 * Don't do any jbd operations, and return an error. */ 1247 if (!J_EXPECT_JH(jh, !jh->b_committed_data, 1248 "inconsistent data on disk")) { 1249 err = -EIO; 1250 goto not_jbd; 1251 } 1252 1253 /* keep track of whether or not this transaction modified us */ 1254 was_modified = jh->b_modified; 1255 1256 /* 1257 * The buffer's going from the transaction, we must drop 1258 * all references -bzzz 1259 */ 1260 jh->b_modified = 0; 1261 1262 if (jh->b_transaction == handle->h_transaction) { 1263 J_ASSERT_JH(jh, !jh->b_frozen_data); 1264 1265 /* If we are forgetting a buffer which is already part 1266 * of this transaction, then we can just drop it from 1267 * the transaction immediately. */ 1268 clear_buffer_dirty(bh); 1269 clear_buffer_jbddirty(bh); 1270 1271 JBUFFER_TRACE(jh, "belongs to current transaction: unfile"); 1272 1273 /* 1274 * we only want to drop a reference if this transaction 1275 * modified the buffer 1276 */ 1277 if (was_modified) 1278 drop_reserve = 1; 1279 1280 /* 1281 * We are no longer going to journal this buffer. 1282 * However, the commit of this transaction is still 1283 * important to the buffer: the delete that we are now 1284 * processing might obsolete an old log entry, so by 1285 * committing, we can satisfy the buffer's checkpoint. 1286 * 1287 * So, if we have a checkpoint on the buffer, we should 1288 * now refile the buffer on our BJ_Forget list so that 1289 * we know to remove the checkpoint after we commit. 1290 */ 1291 1292 if (jh->b_cp_transaction) { 1293 __jbd2_journal_temp_unlink_buffer(jh); 1294 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1295 } else { 1296 __jbd2_journal_unfile_buffer(jh); 1297 if (!buffer_jbd(bh)) { 1298 spin_unlock(&journal->j_list_lock); 1299 jbd_unlock_bh_state(bh); 1300 __bforget(bh); 1301 goto drop; 1302 } 1303 } 1304 } else if (jh->b_transaction) { 1305 J_ASSERT_JH(jh, (jh->b_transaction == 1306 journal->j_committing_transaction)); 1307 /* However, if the buffer is still owned by a prior 1308 * (committing) transaction, we can't drop it yet... */ 1309 JBUFFER_TRACE(jh, "belongs to older transaction"); 1310 /* ... but we CAN drop it from the new transaction if we 1311 * have also modified it since the original commit. */ 1312 1313 if (jh->b_next_transaction) { 1314 J_ASSERT(jh->b_next_transaction == transaction); 1315 jh->b_next_transaction = NULL; 1316 1317 /* 1318 * only drop a reference if this transaction modified 1319 * the buffer 1320 */ 1321 if (was_modified) 1322 drop_reserve = 1; 1323 } 1324 } 1325 1326 not_jbd: 1327 spin_unlock(&journal->j_list_lock); 1328 jbd_unlock_bh_state(bh); 1329 __brelse(bh); 1330 drop: 1331 if (drop_reserve) { 1332 /* no need to reserve log space for this block -bzzz */ 1333 handle->h_buffer_credits++; 1334 } 1335 return err; 1336 } 1337 1338 /** 1339 * int jbd2_journal_stop() - complete a transaction 1340 * @handle: tranaction to complete. 1341 * 1342 * All done for a particular handle. 1343 * 1344 * There is not much action needed here. We just return any remaining 1345 * buffer credits to the transaction and remove the handle. The only 1346 * complication is that we need to start a commit operation if the 1347 * filesystem is marked for synchronous update. 1348 * 1349 * jbd2_journal_stop itself will not usually return an error, but it may 1350 * do so in unusual circumstances. In particular, expect it to 1351 * return -EIO if a jbd2_journal_abort has been executed since the 1352 * transaction began. 1353 */ 1354 int jbd2_journal_stop(handle_t *handle) 1355 { 1356 transaction_t *transaction = handle->h_transaction; 1357 journal_t *journal = transaction->t_journal; 1358 int err, wait_for_commit = 0; 1359 tid_t tid; 1360 pid_t pid; 1361 1362 J_ASSERT(journal_current_handle() == handle); 1363 1364 if (is_handle_aborted(handle)) 1365 err = -EIO; 1366 else { 1367 J_ASSERT(atomic_read(&transaction->t_updates) > 0); 1368 err = 0; 1369 } 1370 1371 if (--handle->h_ref > 0) { 1372 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1, 1373 handle->h_ref); 1374 return err; 1375 } 1376 1377 jbd_debug(4, "Handle %p going down\n", handle); 1378 1379 /* 1380 * Implement synchronous transaction batching. If the handle 1381 * was synchronous, don't force a commit immediately. Let's 1382 * yield and let another thread piggyback onto this 1383 * transaction. Keep doing that while new threads continue to 1384 * arrive. It doesn't cost much - we're about to run a commit 1385 * and sleep on IO anyway. Speeds up many-threaded, many-dir 1386 * operations by 30x or more... 1387 * 1388 * We try and optimize the sleep time against what the 1389 * underlying disk can do, instead of having a static sleep 1390 * time. This is useful for the case where our storage is so 1391 * fast that it is more optimal to go ahead and force a flush 1392 * and wait for the transaction to be committed than it is to 1393 * wait for an arbitrary amount of time for new writers to 1394 * join the transaction. We achieve this by measuring how 1395 * long it takes to commit a transaction, and compare it with 1396 * how long this transaction has been running, and if run time 1397 * < commit time then we sleep for the delta and commit. This 1398 * greatly helps super fast disks that would see slowdowns as 1399 * more threads started doing fsyncs. 1400 * 1401 * But don't do this if this process was the most recent one 1402 * to perform a synchronous write. We do this to detect the 1403 * case where a single process is doing a stream of sync 1404 * writes. No point in waiting for joiners in that case. 1405 */ 1406 pid = current->pid; 1407 if (handle->h_sync && journal->j_last_sync_writer != pid) { 1408 u64 commit_time, trans_time; 1409 1410 journal->j_last_sync_writer = pid; 1411 1412 read_lock(&journal->j_state_lock); 1413 commit_time = journal->j_average_commit_time; 1414 read_unlock(&journal->j_state_lock); 1415 1416 trans_time = ktime_to_ns(ktime_sub(ktime_get(), 1417 transaction->t_start_time)); 1418 1419 commit_time = max_t(u64, commit_time, 1420 1000*journal->j_min_batch_time); 1421 commit_time = min_t(u64, commit_time, 1422 1000*journal->j_max_batch_time); 1423 1424 if (trans_time < commit_time) { 1425 ktime_t expires = ktime_add_ns(ktime_get(), 1426 commit_time); 1427 set_current_state(TASK_UNINTERRUPTIBLE); 1428 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS); 1429 } 1430 } 1431 1432 if (handle->h_sync) 1433 transaction->t_synchronous_commit = 1; 1434 current->journal_info = NULL; 1435 atomic_sub(handle->h_buffer_credits, 1436 &transaction->t_outstanding_credits); 1437 1438 /* 1439 * If the handle is marked SYNC, we need to set another commit 1440 * going! We also want to force a commit if the current 1441 * transaction is occupying too much of the log, or if the 1442 * transaction is too old now. 1443 */ 1444 if (handle->h_sync || 1445 (atomic_read(&transaction->t_outstanding_credits) > 1446 journal->j_max_transaction_buffers) || 1447 time_after_eq(jiffies, transaction->t_expires)) { 1448 /* Do this even for aborted journals: an abort still 1449 * completes the commit thread, it just doesn't write 1450 * anything to disk. */ 1451 1452 jbd_debug(2, "transaction too old, requesting commit for " 1453 "handle %p\n", handle); 1454 /* This is non-blocking */ 1455 jbd2_log_start_commit(journal, transaction->t_tid); 1456 1457 /* 1458 * Special case: JBD2_SYNC synchronous updates require us 1459 * to wait for the commit to complete. 1460 */ 1461 if (handle->h_sync && !(current->flags & PF_MEMALLOC)) 1462 wait_for_commit = 1; 1463 } 1464 1465 /* 1466 * Once we drop t_updates, if it goes to zero the transaction 1467 * could start committing on us and eventually disappear. So 1468 * once we do this, we must not dereference transaction 1469 * pointer again. 1470 */ 1471 tid = transaction->t_tid; 1472 if (atomic_dec_and_test(&transaction->t_updates)) { 1473 wake_up(&journal->j_wait_updates); 1474 if (journal->j_barrier_count) 1475 wake_up(&journal->j_wait_transaction_locked); 1476 } 1477 1478 if (wait_for_commit) 1479 err = jbd2_log_wait_commit(journal, tid); 1480 1481 lock_map_release(&handle->h_lockdep_map); 1482 1483 jbd2_free_handle(handle); 1484 return err; 1485 } 1486 1487 /** 1488 * int jbd2_journal_force_commit() - force any uncommitted transactions 1489 * @journal: journal to force 1490 * 1491 * For synchronous operations: force any uncommitted transactions 1492 * to disk. May seem kludgy, but it reuses all the handle batching 1493 * code in a very simple manner. 1494 */ 1495 int jbd2_journal_force_commit(journal_t *journal) 1496 { 1497 handle_t *handle; 1498 int ret; 1499 1500 handle = jbd2_journal_start(journal, 1); 1501 if (IS_ERR(handle)) { 1502 ret = PTR_ERR(handle); 1503 } else { 1504 handle->h_sync = 1; 1505 ret = jbd2_journal_stop(handle); 1506 } 1507 return ret; 1508 } 1509 1510 /* 1511 * 1512 * List management code snippets: various functions for manipulating the 1513 * transaction buffer lists. 1514 * 1515 */ 1516 1517 /* 1518 * Append a buffer to a transaction list, given the transaction's list head 1519 * pointer. 1520 * 1521 * j_list_lock is held. 1522 * 1523 * jbd_lock_bh_state(jh2bh(jh)) is held. 1524 */ 1525 1526 static inline void 1527 __blist_add_buffer(struct journal_head **list, struct journal_head *jh) 1528 { 1529 if (!*list) { 1530 jh->b_tnext = jh->b_tprev = jh; 1531 *list = jh; 1532 } else { 1533 /* Insert at the tail of the list to preserve order */ 1534 struct journal_head *first = *list, *last = first->b_tprev; 1535 jh->b_tprev = last; 1536 jh->b_tnext = first; 1537 last->b_tnext = first->b_tprev = jh; 1538 } 1539 } 1540 1541 /* 1542 * Remove a buffer from a transaction list, given the transaction's list 1543 * head pointer. 1544 * 1545 * Called with j_list_lock held, and the journal may not be locked. 1546 * 1547 * jbd_lock_bh_state(jh2bh(jh)) is held. 1548 */ 1549 1550 static inline void 1551 __blist_del_buffer(struct journal_head **list, struct journal_head *jh) 1552 { 1553 if (*list == jh) { 1554 *list = jh->b_tnext; 1555 if (*list == jh) 1556 *list = NULL; 1557 } 1558 jh->b_tprev->b_tnext = jh->b_tnext; 1559 jh->b_tnext->b_tprev = jh->b_tprev; 1560 } 1561 1562 /* 1563 * Remove a buffer from the appropriate transaction list. 1564 * 1565 * Note that this function can *change* the value of 1566 * bh->b_transaction->t_buffers, t_forget, t_iobuf_list, t_shadow_list, 1567 * t_log_list or t_reserved_list. If the caller is holding onto a copy of one 1568 * of these pointers, it could go bad. Generally the caller needs to re-read 1569 * the pointer from the transaction_t. 1570 * 1571 * Called under j_list_lock. 1572 */ 1573 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh) 1574 { 1575 struct journal_head **list = NULL; 1576 transaction_t *transaction; 1577 struct buffer_head *bh = jh2bh(jh); 1578 1579 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 1580 transaction = jh->b_transaction; 1581 if (transaction) 1582 assert_spin_locked(&transaction->t_journal->j_list_lock); 1583 1584 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 1585 if (jh->b_jlist != BJ_None) 1586 J_ASSERT_JH(jh, transaction != NULL); 1587 1588 switch (jh->b_jlist) { 1589 case BJ_None: 1590 return; 1591 case BJ_Metadata: 1592 transaction->t_nr_buffers--; 1593 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0); 1594 list = &transaction->t_buffers; 1595 break; 1596 case BJ_Forget: 1597 list = &transaction->t_forget; 1598 break; 1599 case BJ_IO: 1600 list = &transaction->t_iobuf_list; 1601 break; 1602 case BJ_Shadow: 1603 list = &transaction->t_shadow_list; 1604 break; 1605 case BJ_LogCtl: 1606 list = &transaction->t_log_list; 1607 break; 1608 case BJ_Reserved: 1609 list = &transaction->t_reserved_list; 1610 break; 1611 } 1612 1613 __blist_del_buffer(list, jh); 1614 jh->b_jlist = BJ_None; 1615 if (test_clear_buffer_jbddirty(bh)) 1616 mark_buffer_dirty(bh); /* Expose it to the VM */ 1617 } 1618 1619 /* 1620 * Remove buffer from all transactions. 1621 * 1622 * Called with bh_state lock and j_list_lock 1623 * 1624 * jh and bh may be already freed when this function returns. 1625 */ 1626 static void __jbd2_journal_unfile_buffer(struct journal_head *jh) 1627 { 1628 __jbd2_journal_temp_unlink_buffer(jh); 1629 jh->b_transaction = NULL; 1630 jbd2_journal_put_journal_head(jh); 1631 } 1632 1633 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh) 1634 { 1635 struct buffer_head *bh = jh2bh(jh); 1636 1637 /* Get reference so that buffer cannot be freed before we unlock it */ 1638 get_bh(bh); 1639 jbd_lock_bh_state(bh); 1640 spin_lock(&journal->j_list_lock); 1641 __jbd2_journal_unfile_buffer(jh); 1642 spin_unlock(&journal->j_list_lock); 1643 jbd_unlock_bh_state(bh); 1644 __brelse(bh); 1645 } 1646 1647 /* 1648 * Called from jbd2_journal_try_to_free_buffers(). 1649 * 1650 * Called under jbd_lock_bh_state(bh) 1651 */ 1652 static void 1653 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh) 1654 { 1655 struct journal_head *jh; 1656 1657 jh = bh2jh(bh); 1658 1659 if (buffer_locked(bh) || buffer_dirty(bh)) 1660 goto out; 1661 1662 if (jh->b_next_transaction != NULL) 1663 goto out; 1664 1665 spin_lock(&journal->j_list_lock); 1666 if (jh->b_cp_transaction != NULL && jh->b_transaction == NULL) { 1667 /* written-back checkpointed metadata buffer */ 1668 JBUFFER_TRACE(jh, "remove from checkpoint list"); 1669 __jbd2_journal_remove_checkpoint(jh); 1670 } 1671 spin_unlock(&journal->j_list_lock); 1672 out: 1673 return; 1674 } 1675 1676 /** 1677 * int jbd2_journal_try_to_free_buffers() - try to free page buffers. 1678 * @journal: journal for operation 1679 * @page: to try and free 1680 * @gfp_mask: we use the mask to detect how hard should we try to release 1681 * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to 1682 * release the buffers. 1683 * 1684 * 1685 * For all the buffers on this page, 1686 * if they are fully written out ordered data, move them onto BUF_CLEAN 1687 * so try_to_free_buffers() can reap them. 1688 * 1689 * This function returns non-zero if we wish try_to_free_buffers() 1690 * to be called. We do this if the page is releasable by try_to_free_buffers(). 1691 * We also do it if the page has locked or dirty buffers and the caller wants 1692 * us to perform sync or async writeout. 1693 * 1694 * This complicates JBD locking somewhat. We aren't protected by the 1695 * BKL here. We wish to remove the buffer from its committing or 1696 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer. 1697 * 1698 * This may *change* the value of transaction_t->t_datalist, so anyone 1699 * who looks at t_datalist needs to lock against this function. 1700 * 1701 * Even worse, someone may be doing a jbd2_journal_dirty_data on this 1702 * buffer. So we need to lock against that. jbd2_journal_dirty_data() 1703 * will come out of the lock with the buffer dirty, which makes it 1704 * ineligible for release here. 1705 * 1706 * Who else is affected by this? hmm... Really the only contender 1707 * is do_get_write_access() - it could be looking at the buffer while 1708 * journal_try_to_free_buffer() is changing its state. But that 1709 * cannot happen because we never reallocate freed data as metadata 1710 * while the data is part of a transaction. Yes? 1711 * 1712 * Return 0 on failure, 1 on success 1713 */ 1714 int jbd2_journal_try_to_free_buffers(journal_t *journal, 1715 struct page *page, gfp_t gfp_mask) 1716 { 1717 struct buffer_head *head; 1718 struct buffer_head *bh; 1719 int ret = 0; 1720 1721 J_ASSERT(PageLocked(page)); 1722 1723 head = page_buffers(page); 1724 bh = head; 1725 do { 1726 struct journal_head *jh; 1727 1728 /* 1729 * We take our own ref against the journal_head here to avoid 1730 * having to add tons of locking around each instance of 1731 * jbd2_journal_put_journal_head(). 1732 */ 1733 jh = jbd2_journal_grab_journal_head(bh); 1734 if (!jh) 1735 continue; 1736 1737 jbd_lock_bh_state(bh); 1738 __journal_try_to_free_buffer(journal, bh); 1739 jbd2_journal_put_journal_head(jh); 1740 jbd_unlock_bh_state(bh); 1741 if (buffer_jbd(bh)) 1742 goto busy; 1743 } while ((bh = bh->b_this_page) != head); 1744 1745 ret = try_to_free_buffers(page); 1746 1747 busy: 1748 return ret; 1749 } 1750 1751 /* 1752 * This buffer is no longer needed. If it is on an older transaction's 1753 * checkpoint list we need to record it on this transaction's forget list 1754 * to pin this buffer (and hence its checkpointing transaction) down until 1755 * this transaction commits. If the buffer isn't on a checkpoint list, we 1756 * release it. 1757 * Returns non-zero if JBD no longer has an interest in the buffer. 1758 * 1759 * Called under j_list_lock. 1760 * 1761 * Called under jbd_lock_bh_state(bh). 1762 */ 1763 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction) 1764 { 1765 int may_free = 1; 1766 struct buffer_head *bh = jh2bh(jh); 1767 1768 if (jh->b_cp_transaction) { 1769 JBUFFER_TRACE(jh, "on running+cp transaction"); 1770 __jbd2_journal_temp_unlink_buffer(jh); 1771 /* 1772 * We don't want to write the buffer anymore, clear the 1773 * bit so that we don't confuse checks in 1774 * __journal_file_buffer 1775 */ 1776 clear_buffer_dirty(bh); 1777 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1778 may_free = 0; 1779 } else { 1780 JBUFFER_TRACE(jh, "on running transaction"); 1781 __jbd2_journal_unfile_buffer(jh); 1782 } 1783 return may_free; 1784 } 1785 1786 /* 1787 * jbd2_journal_invalidatepage 1788 * 1789 * This code is tricky. It has a number of cases to deal with. 1790 * 1791 * There are two invariants which this code relies on: 1792 * 1793 * i_size must be updated on disk before we start calling invalidatepage on the 1794 * data. 1795 * 1796 * This is done in ext3 by defining an ext3_setattr method which 1797 * updates i_size before truncate gets going. By maintaining this 1798 * invariant, we can be sure that it is safe to throw away any buffers 1799 * attached to the current transaction: once the transaction commits, 1800 * we know that the data will not be needed. 1801 * 1802 * Note however that we can *not* throw away data belonging to the 1803 * previous, committing transaction! 1804 * 1805 * Any disk blocks which *are* part of the previous, committing 1806 * transaction (and which therefore cannot be discarded immediately) are 1807 * not going to be reused in the new running transaction 1808 * 1809 * The bitmap committed_data images guarantee this: any block which is 1810 * allocated in one transaction and removed in the next will be marked 1811 * as in-use in the committed_data bitmap, so cannot be reused until 1812 * the next transaction to delete the block commits. This means that 1813 * leaving committing buffers dirty is quite safe: the disk blocks 1814 * cannot be reallocated to a different file and so buffer aliasing is 1815 * not possible. 1816 * 1817 * 1818 * The above applies mainly to ordered data mode. In writeback mode we 1819 * don't make guarantees about the order in which data hits disk --- in 1820 * particular we don't guarantee that new dirty data is flushed before 1821 * transaction commit --- so it is always safe just to discard data 1822 * immediately in that mode. --sct 1823 */ 1824 1825 /* 1826 * The journal_unmap_buffer helper function returns zero if the buffer 1827 * concerned remains pinned as an anonymous buffer belonging to an older 1828 * transaction. 1829 * 1830 * We're outside-transaction here. Either or both of j_running_transaction 1831 * and j_committing_transaction may be NULL. 1832 */ 1833 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh, 1834 int partial_page) 1835 { 1836 transaction_t *transaction; 1837 struct journal_head *jh; 1838 int may_free = 1; 1839 1840 BUFFER_TRACE(bh, "entry"); 1841 1842 retry: 1843 /* 1844 * It is safe to proceed here without the j_list_lock because the 1845 * buffers cannot be stolen by try_to_free_buffers as long as we are 1846 * holding the page lock. --sct 1847 */ 1848 1849 if (!buffer_jbd(bh)) 1850 goto zap_buffer_unlocked; 1851 1852 /* OK, we have data buffer in journaled mode */ 1853 write_lock(&journal->j_state_lock); 1854 jbd_lock_bh_state(bh); 1855 spin_lock(&journal->j_list_lock); 1856 1857 jh = jbd2_journal_grab_journal_head(bh); 1858 if (!jh) 1859 goto zap_buffer_no_jh; 1860 1861 /* 1862 * We cannot remove the buffer from checkpoint lists until the 1863 * transaction adding inode to orphan list (let's call it T) 1864 * is committed. Otherwise if the transaction changing the 1865 * buffer would be cleaned from the journal before T is 1866 * committed, a crash will cause that the correct contents of 1867 * the buffer will be lost. On the other hand we have to 1868 * clear the buffer dirty bit at latest at the moment when the 1869 * transaction marking the buffer as freed in the filesystem 1870 * structures is committed because from that moment on the 1871 * block can be reallocated and used by a different page. 1872 * Since the block hasn't been freed yet but the inode has 1873 * already been added to orphan list, it is safe for us to add 1874 * the buffer to BJ_Forget list of the newest transaction. 1875 * 1876 * Also we have to clear buffer_mapped flag of a truncated buffer 1877 * because the buffer_head may be attached to the page straddling 1878 * i_size (can happen only when blocksize < pagesize) and thus the 1879 * buffer_head can be reused when the file is extended again. So we end 1880 * up keeping around invalidated buffers attached to transactions' 1881 * BJ_Forget list just to stop checkpointing code from cleaning up 1882 * the transaction this buffer was modified in. 1883 */ 1884 transaction = jh->b_transaction; 1885 if (transaction == NULL) { 1886 /* First case: not on any transaction. If it 1887 * has no checkpoint link, then we can zap it: 1888 * it's a writeback-mode buffer so we don't care 1889 * if it hits disk safely. */ 1890 if (!jh->b_cp_transaction) { 1891 JBUFFER_TRACE(jh, "not on any transaction: zap"); 1892 goto zap_buffer; 1893 } 1894 1895 if (!buffer_dirty(bh)) { 1896 /* bdflush has written it. We can drop it now */ 1897 goto zap_buffer; 1898 } 1899 1900 /* OK, it must be in the journal but still not 1901 * written fully to disk: it's metadata or 1902 * journaled data... */ 1903 1904 if (journal->j_running_transaction) { 1905 /* ... and once the current transaction has 1906 * committed, the buffer won't be needed any 1907 * longer. */ 1908 JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget"); 1909 may_free = __dispose_buffer(jh, 1910 journal->j_running_transaction); 1911 goto zap_buffer; 1912 } else { 1913 /* There is no currently-running transaction. So the 1914 * orphan record which we wrote for this file must have 1915 * passed into commit. We must attach this buffer to 1916 * the committing transaction, if it exists. */ 1917 if (journal->j_committing_transaction) { 1918 JBUFFER_TRACE(jh, "give to committing trans"); 1919 may_free = __dispose_buffer(jh, 1920 journal->j_committing_transaction); 1921 goto zap_buffer; 1922 } else { 1923 /* The orphan record's transaction has 1924 * committed. We can cleanse this buffer */ 1925 clear_buffer_jbddirty(bh); 1926 goto zap_buffer; 1927 } 1928 } 1929 } else if (transaction == journal->j_committing_transaction) { 1930 JBUFFER_TRACE(jh, "on committing transaction"); 1931 /* 1932 * The buffer is committing, we simply cannot touch 1933 * it. If the page is straddling i_size we have to wait 1934 * for commit and try again. 1935 */ 1936 if (partial_page) { 1937 tid_t tid = journal->j_committing_transaction->t_tid; 1938 1939 jbd2_journal_put_journal_head(jh); 1940 spin_unlock(&journal->j_list_lock); 1941 jbd_unlock_bh_state(bh); 1942 write_unlock(&journal->j_state_lock); 1943 jbd2_log_wait_commit(journal, tid); 1944 goto retry; 1945 } 1946 /* 1947 * OK, buffer won't be reachable after truncate. We just set 1948 * j_next_transaction to the running transaction (if there is 1949 * one) and mark buffer as freed so that commit code knows it 1950 * should clear dirty bits when it is done with the buffer. 1951 */ 1952 set_buffer_freed(bh); 1953 if (journal->j_running_transaction && buffer_jbddirty(bh)) 1954 jh->b_next_transaction = journal->j_running_transaction; 1955 jbd2_journal_put_journal_head(jh); 1956 spin_unlock(&journal->j_list_lock); 1957 jbd_unlock_bh_state(bh); 1958 write_unlock(&journal->j_state_lock); 1959 return 0; 1960 } else { 1961 /* Good, the buffer belongs to the running transaction. 1962 * We are writing our own transaction's data, not any 1963 * previous one's, so it is safe to throw it away 1964 * (remember that we expect the filesystem to have set 1965 * i_size already for this truncate so recovery will not 1966 * expose the disk blocks we are discarding here.) */ 1967 J_ASSERT_JH(jh, transaction == journal->j_running_transaction); 1968 JBUFFER_TRACE(jh, "on running transaction"); 1969 may_free = __dispose_buffer(jh, transaction); 1970 } 1971 1972 zap_buffer: 1973 /* 1974 * This is tricky. Although the buffer is truncated, it may be reused 1975 * if blocksize < pagesize and it is attached to the page straddling 1976 * EOF. Since the buffer might have been added to BJ_Forget list of the 1977 * running transaction, journal_get_write_access() won't clear 1978 * b_modified and credit accounting gets confused. So clear b_modified 1979 * here. 1980 */ 1981 jh->b_modified = 0; 1982 jbd2_journal_put_journal_head(jh); 1983 zap_buffer_no_jh: 1984 spin_unlock(&journal->j_list_lock); 1985 jbd_unlock_bh_state(bh); 1986 write_unlock(&journal->j_state_lock); 1987 zap_buffer_unlocked: 1988 clear_buffer_dirty(bh); 1989 J_ASSERT_BH(bh, !buffer_jbddirty(bh)); 1990 clear_buffer_mapped(bh); 1991 clear_buffer_req(bh); 1992 clear_buffer_new(bh); 1993 clear_buffer_delay(bh); 1994 clear_buffer_unwritten(bh); 1995 bh->b_bdev = NULL; 1996 return may_free; 1997 } 1998 1999 /** 2000 * void jbd2_journal_invalidatepage() 2001 * @journal: journal to use for flush... 2002 * @page: page to flush 2003 * @offset: length of page to invalidate. 2004 * 2005 * Reap page buffers containing data after offset in page. 2006 * 2007 */ 2008 void jbd2_journal_invalidatepage(journal_t *journal, 2009 struct page *page, 2010 unsigned long offset) 2011 { 2012 struct buffer_head *head, *bh, *next; 2013 unsigned int curr_off = 0; 2014 int may_free = 1; 2015 2016 if (!PageLocked(page)) 2017 BUG(); 2018 if (!page_has_buffers(page)) 2019 return; 2020 2021 /* We will potentially be playing with lists other than just the 2022 * data lists (especially for journaled data mode), so be 2023 * cautious in our locking. */ 2024 2025 head = bh = page_buffers(page); 2026 do { 2027 unsigned int next_off = curr_off + bh->b_size; 2028 next = bh->b_this_page; 2029 2030 if (offset <= curr_off) { 2031 /* This block is wholly outside the truncation point */ 2032 lock_buffer(bh); 2033 may_free &= journal_unmap_buffer(journal, bh, 2034 offset > 0); 2035 unlock_buffer(bh); 2036 } 2037 curr_off = next_off; 2038 bh = next; 2039 2040 } while (bh != head); 2041 2042 if (!offset) { 2043 if (may_free && try_to_free_buffers(page)) 2044 J_ASSERT(!page_has_buffers(page)); 2045 } 2046 } 2047 2048 /* 2049 * File a buffer on the given transaction list. 2050 */ 2051 void __jbd2_journal_file_buffer(struct journal_head *jh, 2052 transaction_t *transaction, int jlist) 2053 { 2054 struct journal_head **list = NULL; 2055 int was_dirty = 0; 2056 struct buffer_head *bh = jh2bh(jh); 2057 2058 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 2059 assert_spin_locked(&transaction->t_journal->j_list_lock); 2060 2061 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 2062 J_ASSERT_JH(jh, jh->b_transaction == transaction || 2063 jh->b_transaction == NULL); 2064 2065 if (jh->b_transaction && jh->b_jlist == jlist) 2066 return; 2067 2068 if (jlist == BJ_Metadata || jlist == BJ_Reserved || 2069 jlist == BJ_Shadow || jlist == BJ_Forget) { 2070 /* 2071 * For metadata buffers, we track dirty bit in buffer_jbddirty 2072 * instead of buffer_dirty. We should not see a dirty bit set 2073 * here because we clear it in do_get_write_access but e.g. 2074 * tune2fs can modify the sb and set the dirty bit at any time 2075 * so we try to gracefully handle that. 2076 */ 2077 if (buffer_dirty(bh)) 2078 warn_dirty_buffer(bh); 2079 if (test_clear_buffer_dirty(bh) || 2080 test_clear_buffer_jbddirty(bh)) 2081 was_dirty = 1; 2082 } 2083 2084 if (jh->b_transaction) 2085 __jbd2_journal_temp_unlink_buffer(jh); 2086 else 2087 jbd2_journal_grab_journal_head(bh); 2088 jh->b_transaction = transaction; 2089 2090 switch (jlist) { 2091 case BJ_None: 2092 J_ASSERT_JH(jh, !jh->b_committed_data); 2093 J_ASSERT_JH(jh, !jh->b_frozen_data); 2094 return; 2095 case BJ_Metadata: 2096 transaction->t_nr_buffers++; 2097 list = &transaction->t_buffers; 2098 break; 2099 case BJ_Forget: 2100 list = &transaction->t_forget; 2101 break; 2102 case BJ_IO: 2103 list = &transaction->t_iobuf_list; 2104 break; 2105 case BJ_Shadow: 2106 list = &transaction->t_shadow_list; 2107 break; 2108 case BJ_LogCtl: 2109 list = &transaction->t_log_list; 2110 break; 2111 case BJ_Reserved: 2112 list = &transaction->t_reserved_list; 2113 break; 2114 } 2115 2116 __blist_add_buffer(list, jh); 2117 jh->b_jlist = jlist; 2118 2119 if (was_dirty) 2120 set_buffer_jbddirty(bh); 2121 } 2122 2123 void jbd2_journal_file_buffer(struct journal_head *jh, 2124 transaction_t *transaction, int jlist) 2125 { 2126 jbd_lock_bh_state(jh2bh(jh)); 2127 spin_lock(&transaction->t_journal->j_list_lock); 2128 __jbd2_journal_file_buffer(jh, transaction, jlist); 2129 spin_unlock(&transaction->t_journal->j_list_lock); 2130 jbd_unlock_bh_state(jh2bh(jh)); 2131 } 2132 2133 /* 2134 * Remove a buffer from its current buffer list in preparation for 2135 * dropping it from its current transaction entirely. If the buffer has 2136 * already started to be used by a subsequent transaction, refile the 2137 * buffer on that transaction's metadata list. 2138 * 2139 * Called under j_list_lock 2140 * Called under jbd_lock_bh_state(jh2bh(jh)) 2141 * 2142 * jh and bh may be already free when this function returns 2143 */ 2144 void __jbd2_journal_refile_buffer(struct journal_head *jh) 2145 { 2146 int was_dirty, jlist; 2147 struct buffer_head *bh = jh2bh(jh); 2148 2149 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 2150 if (jh->b_transaction) 2151 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock); 2152 2153 /* If the buffer is now unused, just drop it. */ 2154 if (jh->b_next_transaction == NULL) { 2155 __jbd2_journal_unfile_buffer(jh); 2156 return; 2157 } 2158 2159 /* 2160 * It has been modified by a later transaction: add it to the new 2161 * transaction's metadata list. 2162 */ 2163 2164 was_dirty = test_clear_buffer_jbddirty(bh); 2165 __jbd2_journal_temp_unlink_buffer(jh); 2166 /* 2167 * We set b_transaction here because b_next_transaction will inherit 2168 * our jh reference and thus __jbd2_journal_file_buffer() must not 2169 * take a new one. 2170 */ 2171 jh->b_transaction = jh->b_next_transaction; 2172 jh->b_next_transaction = NULL; 2173 if (buffer_freed(bh)) 2174 jlist = BJ_Forget; 2175 else if (jh->b_modified) 2176 jlist = BJ_Metadata; 2177 else 2178 jlist = BJ_Reserved; 2179 __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist); 2180 J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING); 2181 2182 if (was_dirty) 2183 set_buffer_jbddirty(bh); 2184 } 2185 2186 /* 2187 * __jbd2_journal_refile_buffer() with necessary locking added. We take our 2188 * bh reference so that we can safely unlock bh. 2189 * 2190 * The jh and bh may be freed by this call. 2191 */ 2192 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh) 2193 { 2194 struct buffer_head *bh = jh2bh(jh); 2195 2196 /* Get reference so that buffer cannot be freed before we unlock it */ 2197 get_bh(bh); 2198 jbd_lock_bh_state(bh); 2199 spin_lock(&journal->j_list_lock); 2200 __jbd2_journal_refile_buffer(jh); 2201 jbd_unlock_bh_state(bh); 2202 spin_unlock(&journal->j_list_lock); 2203 __brelse(bh); 2204 } 2205 2206 /* 2207 * File inode in the inode list of the handle's transaction 2208 */ 2209 int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode) 2210 { 2211 transaction_t *transaction = handle->h_transaction; 2212 journal_t *journal = transaction->t_journal; 2213 2214 if (is_handle_aborted(handle)) 2215 return -EIO; 2216 2217 jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino, 2218 transaction->t_tid); 2219 2220 /* 2221 * First check whether inode isn't already on the transaction's 2222 * lists without taking the lock. Note that this check is safe 2223 * without the lock as we cannot race with somebody removing inode 2224 * from the transaction. The reason is that we remove inode from the 2225 * transaction only in journal_release_jbd_inode() and when we commit 2226 * the transaction. We are guarded from the first case by holding 2227 * a reference to the inode. We are safe against the second case 2228 * because if jinode->i_transaction == transaction, commit code 2229 * cannot touch the transaction because we hold reference to it, 2230 * and if jinode->i_next_transaction == transaction, commit code 2231 * will only file the inode where we want it. 2232 */ 2233 if (jinode->i_transaction == transaction || 2234 jinode->i_next_transaction == transaction) 2235 return 0; 2236 2237 spin_lock(&journal->j_list_lock); 2238 2239 if (jinode->i_transaction == transaction || 2240 jinode->i_next_transaction == transaction) 2241 goto done; 2242 2243 /* 2244 * We only ever set this variable to 1 so the test is safe. Since 2245 * t_need_data_flush is likely to be set, we do the test to save some 2246 * cacheline bouncing 2247 */ 2248 if (!transaction->t_need_data_flush) 2249 transaction->t_need_data_flush = 1; 2250 /* On some different transaction's list - should be 2251 * the committing one */ 2252 if (jinode->i_transaction) { 2253 J_ASSERT(jinode->i_next_transaction == NULL); 2254 J_ASSERT(jinode->i_transaction == 2255 journal->j_committing_transaction); 2256 jinode->i_next_transaction = transaction; 2257 goto done; 2258 } 2259 /* Not on any transaction list... */ 2260 J_ASSERT(!jinode->i_next_transaction); 2261 jinode->i_transaction = transaction; 2262 list_add(&jinode->i_list, &transaction->t_inode_list); 2263 done: 2264 spin_unlock(&journal->j_list_lock); 2265 2266 return 0; 2267 } 2268 2269 /* 2270 * File truncate and transaction commit interact with each other in a 2271 * non-trivial way. If a transaction writing data block A is 2272 * committing, we cannot discard the data by truncate until we have 2273 * written them. Otherwise if we crashed after the transaction with 2274 * write has committed but before the transaction with truncate has 2275 * committed, we could see stale data in block A. This function is a 2276 * helper to solve this problem. It starts writeout of the truncated 2277 * part in case it is in the committing transaction. 2278 * 2279 * Filesystem code must call this function when inode is journaled in 2280 * ordered mode before truncation happens and after the inode has been 2281 * placed on orphan list with the new inode size. The second condition 2282 * avoids the race that someone writes new data and we start 2283 * committing the transaction after this function has been called but 2284 * before a transaction for truncate is started (and furthermore it 2285 * allows us to optimize the case where the addition to orphan list 2286 * happens in the same transaction as write --- we don't have to write 2287 * any data in such case). 2288 */ 2289 int jbd2_journal_begin_ordered_truncate(journal_t *journal, 2290 struct jbd2_inode *jinode, 2291 loff_t new_size) 2292 { 2293 transaction_t *inode_trans, *commit_trans; 2294 int ret = 0; 2295 2296 /* This is a quick check to avoid locking if not necessary */ 2297 if (!jinode->i_transaction) 2298 goto out; 2299 /* Locks are here just to force reading of recent values, it is 2300 * enough that the transaction was not committing before we started 2301 * a transaction adding the inode to orphan list */ 2302 read_lock(&journal->j_state_lock); 2303 commit_trans = journal->j_committing_transaction; 2304 read_unlock(&journal->j_state_lock); 2305 spin_lock(&journal->j_list_lock); 2306 inode_trans = jinode->i_transaction; 2307 spin_unlock(&journal->j_list_lock); 2308 if (inode_trans == commit_trans) { 2309 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping, 2310 new_size, LLONG_MAX); 2311 if (ret) 2312 jbd2_journal_abort(journal, ret); 2313 } 2314 out: 2315 return ret; 2316 } 2317