xref: /linux/fs/jbd2/transaction.c (revision b43ab901d671e3e3cad425ea5e9a3c74e266dcdd)
1 /*
2  * linux/fs/jbd2/transaction.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem transaction handling code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages transactions (compound commits managed by the
16  * journaling code) and handles (individual atomic operations by the
17  * filesystem).
18  */
19 
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd2.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/hrtimer.h>
29 #include <linux/backing-dev.h>
30 #include <linux/bug.h>
31 #include <linux/module.h>
32 
33 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
34 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
35 
36 /*
37  * jbd2_get_transaction: obtain a new transaction_t object.
38  *
39  * Simply allocate and initialise a new transaction.  Create it in
40  * RUNNING state and add it to the current journal (which should not
41  * have an existing running transaction: we only make a new transaction
42  * once we have started to commit the old one).
43  *
44  * Preconditions:
45  *	The journal MUST be locked.  We don't perform atomic mallocs on the
46  *	new transaction	and we can't block without protecting against other
47  *	processes trying to touch the journal while it is in transition.
48  *
49  */
50 
51 static transaction_t *
52 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
53 {
54 	transaction->t_journal = journal;
55 	transaction->t_state = T_RUNNING;
56 	transaction->t_start_time = ktime_get();
57 	transaction->t_tid = journal->j_transaction_sequence++;
58 	transaction->t_expires = jiffies + journal->j_commit_interval;
59 	spin_lock_init(&transaction->t_handle_lock);
60 	atomic_set(&transaction->t_updates, 0);
61 	atomic_set(&transaction->t_outstanding_credits, 0);
62 	atomic_set(&transaction->t_handle_count, 0);
63 	INIT_LIST_HEAD(&transaction->t_inode_list);
64 	INIT_LIST_HEAD(&transaction->t_private_list);
65 
66 	/* Set up the commit timer for the new transaction. */
67 	journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
68 	add_timer(&journal->j_commit_timer);
69 
70 	J_ASSERT(journal->j_running_transaction == NULL);
71 	journal->j_running_transaction = transaction;
72 	transaction->t_max_wait = 0;
73 	transaction->t_start = jiffies;
74 
75 	return transaction;
76 }
77 
78 /*
79  * Handle management.
80  *
81  * A handle_t is an object which represents a single atomic update to a
82  * filesystem, and which tracks all of the modifications which form part
83  * of that one update.
84  */
85 
86 /*
87  * Update transaction's maximum wait time, if debugging is enabled.
88  *
89  * In order for t_max_wait to be reliable, it must be protected by a
90  * lock.  But doing so will mean that start_this_handle() can not be
91  * run in parallel on SMP systems, which limits our scalability.  So
92  * unless debugging is enabled, we no longer update t_max_wait, which
93  * means that maximum wait time reported by the jbd2_run_stats
94  * tracepoint will always be zero.
95  */
96 static inline void update_t_max_wait(transaction_t *transaction,
97 				     unsigned long ts)
98 {
99 #ifdef CONFIG_JBD2_DEBUG
100 	if (jbd2_journal_enable_debug &&
101 	    time_after(transaction->t_start, ts)) {
102 		ts = jbd2_time_diff(ts, transaction->t_start);
103 		spin_lock(&transaction->t_handle_lock);
104 		if (ts > transaction->t_max_wait)
105 			transaction->t_max_wait = ts;
106 		spin_unlock(&transaction->t_handle_lock);
107 	}
108 #endif
109 }
110 
111 /*
112  * start_this_handle: Given a handle, deal with any locking or stalling
113  * needed to make sure that there is enough journal space for the handle
114  * to begin.  Attach the handle to a transaction and set up the
115  * transaction's buffer credits.
116  */
117 
118 static int start_this_handle(journal_t *journal, handle_t *handle,
119 			     gfp_t gfp_mask)
120 {
121 	transaction_t	*transaction, *new_transaction = NULL;
122 	tid_t		tid;
123 	int		needed, need_to_start;
124 	int		nblocks = handle->h_buffer_credits;
125 	unsigned long ts = jiffies;
126 
127 	if (nblocks > journal->j_max_transaction_buffers) {
128 		printk(KERN_ERR "JBD2: %s wants too many credits (%d > %d)\n",
129 		       current->comm, nblocks,
130 		       journal->j_max_transaction_buffers);
131 		return -ENOSPC;
132 	}
133 
134 alloc_transaction:
135 	if (!journal->j_running_transaction) {
136 		new_transaction = kzalloc(sizeof(*new_transaction), gfp_mask);
137 		if (!new_transaction) {
138 			/*
139 			 * If __GFP_FS is not present, then we may be
140 			 * being called from inside the fs writeback
141 			 * layer, so we MUST NOT fail.  Since
142 			 * __GFP_NOFAIL is going away, we will arrange
143 			 * to retry the allocation ourselves.
144 			 */
145 			if ((gfp_mask & __GFP_FS) == 0) {
146 				congestion_wait(BLK_RW_ASYNC, HZ/50);
147 				goto alloc_transaction;
148 			}
149 			return -ENOMEM;
150 		}
151 	}
152 
153 	jbd_debug(3, "New handle %p going live.\n", handle);
154 
155 	/*
156 	 * We need to hold j_state_lock until t_updates has been incremented,
157 	 * for proper journal barrier handling
158 	 */
159 repeat:
160 	read_lock(&journal->j_state_lock);
161 	BUG_ON(journal->j_flags & JBD2_UNMOUNT);
162 	if (is_journal_aborted(journal) ||
163 	    (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
164 		read_unlock(&journal->j_state_lock);
165 		kfree(new_transaction);
166 		return -EROFS;
167 	}
168 
169 	/* Wait on the journal's transaction barrier if necessary */
170 	if (journal->j_barrier_count) {
171 		read_unlock(&journal->j_state_lock);
172 		wait_event(journal->j_wait_transaction_locked,
173 				journal->j_barrier_count == 0);
174 		goto repeat;
175 	}
176 
177 	if (!journal->j_running_transaction) {
178 		read_unlock(&journal->j_state_lock);
179 		if (!new_transaction)
180 			goto alloc_transaction;
181 		write_lock(&journal->j_state_lock);
182 		if (!journal->j_running_transaction) {
183 			jbd2_get_transaction(journal, new_transaction);
184 			new_transaction = NULL;
185 		}
186 		write_unlock(&journal->j_state_lock);
187 		goto repeat;
188 	}
189 
190 	transaction = journal->j_running_transaction;
191 
192 	/*
193 	 * If the current transaction is locked down for commit, wait for the
194 	 * lock to be released.
195 	 */
196 	if (transaction->t_state == T_LOCKED) {
197 		DEFINE_WAIT(wait);
198 
199 		prepare_to_wait(&journal->j_wait_transaction_locked,
200 					&wait, TASK_UNINTERRUPTIBLE);
201 		read_unlock(&journal->j_state_lock);
202 		schedule();
203 		finish_wait(&journal->j_wait_transaction_locked, &wait);
204 		goto repeat;
205 	}
206 
207 	/*
208 	 * If there is not enough space left in the log to write all potential
209 	 * buffers requested by this operation, we need to stall pending a log
210 	 * checkpoint to free some more log space.
211 	 */
212 	needed = atomic_add_return(nblocks,
213 				   &transaction->t_outstanding_credits);
214 
215 	if (needed > journal->j_max_transaction_buffers) {
216 		/*
217 		 * If the current transaction is already too large, then start
218 		 * to commit it: we can then go back and attach this handle to
219 		 * a new transaction.
220 		 */
221 		DEFINE_WAIT(wait);
222 
223 		jbd_debug(2, "Handle %p starting new commit...\n", handle);
224 		atomic_sub(nblocks, &transaction->t_outstanding_credits);
225 		prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
226 				TASK_UNINTERRUPTIBLE);
227 		tid = transaction->t_tid;
228 		need_to_start = !tid_geq(journal->j_commit_request, tid);
229 		read_unlock(&journal->j_state_lock);
230 		if (need_to_start)
231 			jbd2_log_start_commit(journal, tid);
232 		schedule();
233 		finish_wait(&journal->j_wait_transaction_locked, &wait);
234 		goto repeat;
235 	}
236 
237 	/*
238 	 * The commit code assumes that it can get enough log space
239 	 * without forcing a checkpoint.  This is *critical* for
240 	 * correctness: a checkpoint of a buffer which is also
241 	 * associated with a committing transaction creates a deadlock,
242 	 * so commit simply cannot force through checkpoints.
243 	 *
244 	 * We must therefore ensure the necessary space in the journal
245 	 * *before* starting to dirty potentially checkpointed buffers
246 	 * in the new transaction.
247 	 *
248 	 * The worst part is, any transaction currently committing can
249 	 * reduce the free space arbitrarily.  Be careful to account for
250 	 * those buffers when checkpointing.
251 	 */
252 
253 	/*
254 	 * @@@ AKPM: This seems rather over-defensive.  We're giving commit
255 	 * a _lot_ of headroom: 1/4 of the journal plus the size of
256 	 * the committing transaction.  Really, we only need to give it
257 	 * committing_transaction->t_outstanding_credits plus "enough" for
258 	 * the log control blocks.
259 	 * Also, this test is inconsistent with the matching one in
260 	 * jbd2_journal_extend().
261 	 */
262 	if (__jbd2_log_space_left(journal) < jbd_space_needed(journal)) {
263 		jbd_debug(2, "Handle %p waiting for checkpoint...\n", handle);
264 		atomic_sub(nblocks, &transaction->t_outstanding_credits);
265 		read_unlock(&journal->j_state_lock);
266 		write_lock(&journal->j_state_lock);
267 		if (__jbd2_log_space_left(journal) < jbd_space_needed(journal))
268 			__jbd2_log_wait_for_space(journal);
269 		write_unlock(&journal->j_state_lock);
270 		goto repeat;
271 	}
272 
273 	/* OK, account for the buffers that this operation expects to
274 	 * use and add the handle to the running transaction.
275 	 */
276 	update_t_max_wait(transaction, ts);
277 	handle->h_transaction = transaction;
278 	atomic_inc(&transaction->t_updates);
279 	atomic_inc(&transaction->t_handle_count);
280 	jbd_debug(4, "Handle %p given %d credits (total %d, free %d)\n",
281 		  handle, nblocks,
282 		  atomic_read(&transaction->t_outstanding_credits),
283 		  __jbd2_log_space_left(journal));
284 	read_unlock(&journal->j_state_lock);
285 
286 	lock_map_acquire(&handle->h_lockdep_map);
287 	kfree(new_transaction);
288 	return 0;
289 }
290 
291 static struct lock_class_key jbd2_handle_key;
292 
293 /* Allocate a new handle.  This should probably be in a slab... */
294 static handle_t *new_handle(int nblocks)
295 {
296 	handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
297 	if (!handle)
298 		return NULL;
299 	memset(handle, 0, sizeof(*handle));
300 	handle->h_buffer_credits = nblocks;
301 	handle->h_ref = 1;
302 
303 	lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle",
304 						&jbd2_handle_key, 0);
305 
306 	return handle;
307 }
308 
309 /**
310  * handle_t *jbd2_journal_start() - Obtain a new handle.
311  * @journal: Journal to start transaction on.
312  * @nblocks: number of block buffer we might modify
313  *
314  * We make sure that the transaction can guarantee at least nblocks of
315  * modified buffers in the log.  We block until the log can guarantee
316  * that much space.
317  *
318  * This function is visible to journal users (like ext3fs), so is not
319  * called with the journal already locked.
320  *
321  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
322  * on failure.
323  */
324 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, gfp_t gfp_mask)
325 {
326 	handle_t *handle = journal_current_handle();
327 	int err;
328 
329 	if (!journal)
330 		return ERR_PTR(-EROFS);
331 
332 	if (handle) {
333 		J_ASSERT(handle->h_transaction->t_journal == journal);
334 		handle->h_ref++;
335 		return handle;
336 	}
337 
338 	handle = new_handle(nblocks);
339 	if (!handle)
340 		return ERR_PTR(-ENOMEM);
341 
342 	current->journal_info = handle;
343 
344 	err = start_this_handle(journal, handle, gfp_mask);
345 	if (err < 0) {
346 		jbd2_free_handle(handle);
347 		current->journal_info = NULL;
348 		handle = ERR_PTR(err);
349 	}
350 	return handle;
351 }
352 EXPORT_SYMBOL(jbd2__journal_start);
353 
354 
355 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
356 {
357 	return jbd2__journal_start(journal, nblocks, GFP_NOFS);
358 }
359 EXPORT_SYMBOL(jbd2_journal_start);
360 
361 
362 /**
363  * int jbd2_journal_extend() - extend buffer credits.
364  * @handle:  handle to 'extend'
365  * @nblocks: nr blocks to try to extend by.
366  *
367  * Some transactions, such as large extends and truncates, can be done
368  * atomically all at once or in several stages.  The operation requests
369  * a credit for a number of buffer modications in advance, but can
370  * extend its credit if it needs more.
371  *
372  * jbd2_journal_extend tries to give the running handle more buffer credits.
373  * It does not guarantee that allocation - this is a best-effort only.
374  * The calling process MUST be able to deal cleanly with a failure to
375  * extend here.
376  *
377  * Return 0 on success, non-zero on failure.
378  *
379  * return code < 0 implies an error
380  * return code > 0 implies normal transaction-full status.
381  */
382 int jbd2_journal_extend(handle_t *handle, int nblocks)
383 {
384 	transaction_t *transaction = handle->h_transaction;
385 	journal_t *journal = transaction->t_journal;
386 	int result;
387 	int wanted;
388 
389 	result = -EIO;
390 	if (is_handle_aborted(handle))
391 		goto out;
392 
393 	result = 1;
394 
395 	read_lock(&journal->j_state_lock);
396 
397 	/* Don't extend a locked-down transaction! */
398 	if (handle->h_transaction->t_state != T_RUNNING) {
399 		jbd_debug(3, "denied handle %p %d blocks: "
400 			  "transaction not running\n", handle, nblocks);
401 		goto error_out;
402 	}
403 
404 	spin_lock(&transaction->t_handle_lock);
405 	wanted = atomic_read(&transaction->t_outstanding_credits) + nblocks;
406 
407 	if (wanted > journal->j_max_transaction_buffers) {
408 		jbd_debug(3, "denied handle %p %d blocks: "
409 			  "transaction too large\n", handle, nblocks);
410 		goto unlock;
411 	}
412 
413 	if (wanted > __jbd2_log_space_left(journal)) {
414 		jbd_debug(3, "denied handle %p %d blocks: "
415 			  "insufficient log space\n", handle, nblocks);
416 		goto unlock;
417 	}
418 
419 	handle->h_buffer_credits += nblocks;
420 	atomic_add(nblocks, &transaction->t_outstanding_credits);
421 	result = 0;
422 
423 	jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
424 unlock:
425 	spin_unlock(&transaction->t_handle_lock);
426 error_out:
427 	read_unlock(&journal->j_state_lock);
428 out:
429 	return result;
430 }
431 
432 
433 /**
434  * int jbd2_journal_restart() - restart a handle .
435  * @handle:  handle to restart
436  * @nblocks: nr credits requested
437  *
438  * Restart a handle for a multi-transaction filesystem
439  * operation.
440  *
441  * If the jbd2_journal_extend() call above fails to grant new buffer credits
442  * to a running handle, a call to jbd2_journal_restart will commit the
443  * handle's transaction so far and reattach the handle to a new
444  * transaction capabable of guaranteeing the requested number of
445  * credits.
446  */
447 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
448 {
449 	transaction_t *transaction = handle->h_transaction;
450 	journal_t *journal = transaction->t_journal;
451 	tid_t		tid;
452 	int		need_to_start, ret;
453 
454 	/* If we've had an abort of any type, don't even think about
455 	 * actually doing the restart! */
456 	if (is_handle_aborted(handle))
457 		return 0;
458 
459 	/*
460 	 * First unlink the handle from its current transaction, and start the
461 	 * commit on that.
462 	 */
463 	J_ASSERT(atomic_read(&transaction->t_updates) > 0);
464 	J_ASSERT(journal_current_handle() == handle);
465 
466 	read_lock(&journal->j_state_lock);
467 	spin_lock(&transaction->t_handle_lock);
468 	atomic_sub(handle->h_buffer_credits,
469 		   &transaction->t_outstanding_credits);
470 	if (atomic_dec_and_test(&transaction->t_updates))
471 		wake_up(&journal->j_wait_updates);
472 	spin_unlock(&transaction->t_handle_lock);
473 
474 	jbd_debug(2, "restarting handle %p\n", handle);
475 	tid = transaction->t_tid;
476 	need_to_start = !tid_geq(journal->j_commit_request, tid);
477 	read_unlock(&journal->j_state_lock);
478 	if (need_to_start)
479 		jbd2_log_start_commit(journal, tid);
480 
481 	lock_map_release(&handle->h_lockdep_map);
482 	handle->h_buffer_credits = nblocks;
483 	ret = start_this_handle(journal, handle, gfp_mask);
484 	return ret;
485 }
486 EXPORT_SYMBOL(jbd2__journal_restart);
487 
488 
489 int jbd2_journal_restart(handle_t *handle, int nblocks)
490 {
491 	return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
492 }
493 EXPORT_SYMBOL(jbd2_journal_restart);
494 
495 /**
496  * void jbd2_journal_lock_updates () - establish a transaction barrier.
497  * @journal:  Journal to establish a barrier on.
498  *
499  * This locks out any further updates from being started, and blocks
500  * until all existing updates have completed, returning only once the
501  * journal is in a quiescent state with no updates running.
502  *
503  * The journal lock should not be held on entry.
504  */
505 void jbd2_journal_lock_updates(journal_t *journal)
506 {
507 	DEFINE_WAIT(wait);
508 
509 	write_lock(&journal->j_state_lock);
510 	++journal->j_barrier_count;
511 
512 	/* Wait until there are no running updates */
513 	while (1) {
514 		transaction_t *transaction = journal->j_running_transaction;
515 
516 		if (!transaction)
517 			break;
518 
519 		spin_lock(&transaction->t_handle_lock);
520 		prepare_to_wait(&journal->j_wait_updates, &wait,
521 				TASK_UNINTERRUPTIBLE);
522 		if (!atomic_read(&transaction->t_updates)) {
523 			spin_unlock(&transaction->t_handle_lock);
524 			finish_wait(&journal->j_wait_updates, &wait);
525 			break;
526 		}
527 		spin_unlock(&transaction->t_handle_lock);
528 		write_unlock(&journal->j_state_lock);
529 		schedule();
530 		finish_wait(&journal->j_wait_updates, &wait);
531 		write_lock(&journal->j_state_lock);
532 	}
533 	write_unlock(&journal->j_state_lock);
534 
535 	/*
536 	 * We have now established a barrier against other normal updates, but
537 	 * we also need to barrier against other jbd2_journal_lock_updates() calls
538 	 * to make sure that we serialise special journal-locked operations
539 	 * too.
540 	 */
541 	mutex_lock(&journal->j_barrier);
542 }
543 
544 /**
545  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
546  * @journal:  Journal to release the barrier on.
547  *
548  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
549  *
550  * Should be called without the journal lock held.
551  */
552 void jbd2_journal_unlock_updates (journal_t *journal)
553 {
554 	J_ASSERT(journal->j_barrier_count != 0);
555 
556 	mutex_unlock(&journal->j_barrier);
557 	write_lock(&journal->j_state_lock);
558 	--journal->j_barrier_count;
559 	write_unlock(&journal->j_state_lock);
560 	wake_up(&journal->j_wait_transaction_locked);
561 }
562 
563 static void warn_dirty_buffer(struct buffer_head *bh)
564 {
565 	char b[BDEVNAME_SIZE];
566 
567 	printk(KERN_WARNING
568 	       "JBD2: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). "
569 	       "There's a risk of filesystem corruption in case of system "
570 	       "crash.\n",
571 	       bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr);
572 }
573 
574 /*
575  * If the buffer is already part of the current transaction, then there
576  * is nothing we need to do.  If it is already part of a prior
577  * transaction which we are still committing to disk, then we need to
578  * make sure that we do not overwrite the old copy: we do copy-out to
579  * preserve the copy going to disk.  We also account the buffer against
580  * the handle's metadata buffer credits (unless the buffer is already
581  * part of the transaction, that is).
582  *
583  */
584 static int
585 do_get_write_access(handle_t *handle, struct journal_head *jh,
586 			int force_copy)
587 {
588 	struct buffer_head *bh;
589 	transaction_t *transaction;
590 	journal_t *journal;
591 	int error;
592 	char *frozen_buffer = NULL;
593 	int need_copy = 0;
594 
595 	if (is_handle_aborted(handle))
596 		return -EROFS;
597 
598 	transaction = handle->h_transaction;
599 	journal = transaction->t_journal;
600 
601 	jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
602 
603 	JBUFFER_TRACE(jh, "entry");
604 repeat:
605 	bh = jh2bh(jh);
606 
607 	/* @@@ Need to check for errors here at some point. */
608 
609 	lock_buffer(bh);
610 	jbd_lock_bh_state(bh);
611 
612 	/* We now hold the buffer lock so it is safe to query the buffer
613 	 * state.  Is the buffer dirty?
614 	 *
615 	 * If so, there are two possibilities.  The buffer may be
616 	 * non-journaled, and undergoing a quite legitimate writeback.
617 	 * Otherwise, it is journaled, and we don't expect dirty buffers
618 	 * in that state (the buffers should be marked JBD_Dirty
619 	 * instead.)  So either the IO is being done under our own
620 	 * control and this is a bug, or it's a third party IO such as
621 	 * dump(8) (which may leave the buffer scheduled for read ---
622 	 * ie. locked but not dirty) or tune2fs (which may actually have
623 	 * the buffer dirtied, ugh.)  */
624 
625 	if (buffer_dirty(bh)) {
626 		/*
627 		 * First question: is this buffer already part of the current
628 		 * transaction or the existing committing transaction?
629 		 */
630 		if (jh->b_transaction) {
631 			J_ASSERT_JH(jh,
632 				jh->b_transaction == transaction ||
633 				jh->b_transaction ==
634 					journal->j_committing_transaction);
635 			if (jh->b_next_transaction)
636 				J_ASSERT_JH(jh, jh->b_next_transaction ==
637 							transaction);
638 			warn_dirty_buffer(bh);
639 		}
640 		/*
641 		 * In any case we need to clean the dirty flag and we must
642 		 * do it under the buffer lock to be sure we don't race
643 		 * with running write-out.
644 		 */
645 		JBUFFER_TRACE(jh, "Journalling dirty buffer");
646 		clear_buffer_dirty(bh);
647 		set_buffer_jbddirty(bh);
648 	}
649 
650 	unlock_buffer(bh);
651 
652 	error = -EROFS;
653 	if (is_handle_aborted(handle)) {
654 		jbd_unlock_bh_state(bh);
655 		goto out;
656 	}
657 	error = 0;
658 
659 	/*
660 	 * The buffer is already part of this transaction if b_transaction or
661 	 * b_next_transaction points to it
662 	 */
663 	if (jh->b_transaction == transaction ||
664 	    jh->b_next_transaction == transaction)
665 		goto done;
666 
667 	/*
668 	 * this is the first time this transaction is touching this buffer,
669 	 * reset the modified flag
670 	 */
671        jh->b_modified = 0;
672 
673 	/*
674 	 * If there is already a copy-out version of this buffer, then we don't
675 	 * need to make another one
676 	 */
677 	if (jh->b_frozen_data) {
678 		JBUFFER_TRACE(jh, "has frozen data");
679 		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
680 		jh->b_next_transaction = transaction;
681 		goto done;
682 	}
683 
684 	/* Is there data here we need to preserve? */
685 
686 	if (jh->b_transaction && jh->b_transaction != transaction) {
687 		JBUFFER_TRACE(jh, "owned by older transaction");
688 		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
689 		J_ASSERT_JH(jh, jh->b_transaction ==
690 					journal->j_committing_transaction);
691 
692 		/* There is one case we have to be very careful about.
693 		 * If the committing transaction is currently writing
694 		 * this buffer out to disk and has NOT made a copy-out,
695 		 * then we cannot modify the buffer contents at all
696 		 * right now.  The essence of copy-out is that it is the
697 		 * extra copy, not the primary copy, which gets
698 		 * journaled.  If the primary copy is already going to
699 		 * disk then we cannot do copy-out here. */
700 
701 		if (jh->b_jlist == BJ_Shadow) {
702 			DEFINE_WAIT_BIT(wait, &bh->b_state, BH_Unshadow);
703 			wait_queue_head_t *wqh;
704 
705 			wqh = bit_waitqueue(&bh->b_state, BH_Unshadow);
706 
707 			JBUFFER_TRACE(jh, "on shadow: sleep");
708 			jbd_unlock_bh_state(bh);
709 			/* commit wakes up all shadow buffers after IO */
710 			for ( ; ; ) {
711 				prepare_to_wait(wqh, &wait.wait,
712 						TASK_UNINTERRUPTIBLE);
713 				if (jh->b_jlist != BJ_Shadow)
714 					break;
715 				schedule();
716 			}
717 			finish_wait(wqh, &wait.wait);
718 			goto repeat;
719 		}
720 
721 		/* Only do the copy if the currently-owning transaction
722 		 * still needs it.  If it is on the Forget list, the
723 		 * committing transaction is past that stage.  The
724 		 * buffer had better remain locked during the kmalloc,
725 		 * but that should be true --- we hold the journal lock
726 		 * still and the buffer is already on the BUF_JOURNAL
727 		 * list so won't be flushed.
728 		 *
729 		 * Subtle point, though: if this is a get_undo_access,
730 		 * then we will be relying on the frozen_data to contain
731 		 * the new value of the committed_data record after the
732 		 * transaction, so we HAVE to force the frozen_data copy
733 		 * in that case. */
734 
735 		if (jh->b_jlist != BJ_Forget || force_copy) {
736 			JBUFFER_TRACE(jh, "generate frozen data");
737 			if (!frozen_buffer) {
738 				JBUFFER_TRACE(jh, "allocate memory for buffer");
739 				jbd_unlock_bh_state(bh);
740 				frozen_buffer =
741 					jbd2_alloc(jh2bh(jh)->b_size,
742 							 GFP_NOFS);
743 				if (!frozen_buffer) {
744 					printk(KERN_EMERG
745 					       "%s: OOM for frozen_buffer\n",
746 					       __func__);
747 					JBUFFER_TRACE(jh, "oom!");
748 					error = -ENOMEM;
749 					jbd_lock_bh_state(bh);
750 					goto done;
751 				}
752 				goto repeat;
753 			}
754 			jh->b_frozen_data = frozen_buffer;
755 			frozen_buffer = NULL;
756 			need_copy = 1;
757 		}
758 		jh->b_next_transaction = transaction;
759 	}
760 
761 
762 	/*
763 	 * Finally, if the buffer is not journaled right now, we need to make
764 	 * sure it doesn't get written to disk before the caller actually
765 	 * commits the new data
766 	 */
767 	if (!jh->b_transaction) {
768 		JBUFFER_TRACE(jh, "no transaction");
769 		J_ASSERT_JH(jh, !jh->b_next_transaction);
770 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
771 		spin_lock(&journal->j_list_lock);
772 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
773 		spin_unlock(&journal->j_list_lock);
774 	}
775 
776 done:
777 	if (need_copy) {
778 		struct page *page;
779 		int offset;
780 		char *source;
781 
782 		J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)),
783 			    "Possible IO failure.\n");
784 		page = jh2bh(jh)->b_page;
785 		offset = offset_in_page(jh2bh(jh)->b_data);
786 		source = kmap_atomic(page, KM_USER0);
787 		/* Fire data frozen trigger just before we copy the data */
788 		jbd2_buffer_frozen_trigger(jh, source + offset,
789 					   jh->b_triggers);
790 		memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size);
791 		kunmap_atomic(source, KM_USER0);
792 
793 		/*
794 		 * Now that the frozen data is saved off, we need to store
795 		 * any matching triggers.
796 		 */
797 		jh->b_frozen_triggers = jh->b_triggers;
798 	}
799 	jbd_unlock_bh_state(bh);
800 
801 	/*
802 	 * If we are about to journal a buffer, then any revoke pending on it is
803 	 * no longer valid
804 	 */
805 	jbd2_journal_cancel_revoke(handle, jh);
806 
807 out:
808 	if (unlikely(frozen_buffer))	/* It's usually NULL */
809 		jbd2_free(frozen_buffer, bh->b_size);
810 
811 	JBUFFER_TRACE(jh, "exit");
812 	return error;
813 }
814 
815 /**
816  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
817  * @handle: transaction to add buffer modifications to
818  * @bh:     bh to be used for metadata writes
819  *
820  * Returns an error code or 0 on success.
821  *
822  * In full data journalling mode the buffer may be of type BJ_AsyncData,
823  * because we're write()ing a buffer which is also part of a shared mapping.
824  */
825 
826 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
827 {
828 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
829 	int rc;
830 
831 	/* We do not want to get caught playing with fields which the
832 	 * log thread also manipulates.  Make sure that the buffer
833 	 * completes any outstanding IO before proceeding. */
834 	rc = do_get_write_access(handle, jh, 0);
835 	jbd2_journal_put_journal_head(jh);
836 	return rc;
837 }
838 
839 
840 /*
841  * When the user wants to journal a newly created buffer_head
842  * (ie. getblk() returned a new buffer and we are going to populate it
843  * manually rather than reading off disk), then we need to keep the
844  * buffer_head locked until it has been completely filled with new
845  * data.  In this case, we should be able to make the assertion that
846  * the bh is not already part of an existing transaction.
847  *
848  * The buffer should already be locked by the caller by this point.
849  * There is no lock ranking violation: it was a newly created,
850  * unlocked buffer beforehand. */
851 
852 /**
853  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
854  * @handle: transaction to new buffer to
855  * @bh: new buffer.
856  *
857  * Call this if you create a new bh.
858  */
859 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
860 {
861 	transaction_t *transaction = handle->h_transaction;
862 	journal_t *journal = transaction->t_journal;
863 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
864 	int err;
865 
866 	jbd_debug(5, "journal_head %p\n", jh);
867 	err = -EROFS;
868 	if (is_handle_aborted(handle))
869 		goto out;
870 	err = 0;
871 
872 	JBUFFER_TRACE(jh, "entry");
873 	/*
874 	 * The buffer may already belong to this transaction due to pre-zeroing
875 	 * in the filesystem's new_block code.  It may also be on the previous,
876 	 * committing transaction's lists, but it HAS to be in Forget state in
877 	 * that case: the transaction must have deleted the buffer for it to be
878 	 * reused here.
879 	 */
880 	jbd_lock_bh_state(bh);
881 	spin_lock(&journal->j_list_lock);
882 	J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
883 		jh->b_transaction == NULL ||
884 		(jh->b_transaction == journal->j_committing_transaction &&
885 			  jh->b_jlist == BJ_Forget)));
886 
887 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
888 	J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
889 
890 	if (jh->b_transaction == NULL) {
891 		/*
892 		 * Previous jbd2_journal_forget() could have left the buffer
893 		 * with jbddirty bit set because it was being committed. When
894 		 * the commit finished, we've filed the buffer for
895 		 * checkpointing and marked it dirty. Now we are reallocating
896 		 * the buffer so the transaction freeing it must have
897 		 * committed and so it's safe to clear the dirty bit.
898 		 */
899 		clear_buffer_dirty(jh2bh(jh));
900 		/* first access by this transaction */
901 		jh->b_modified = 0;
902 
903 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
904 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
905 	} else if (jh->b_transaction == journal->j_committing_transaction) {
906 		/* first access by this transaction */
907 		jh->b_modified = 0;
908 
909 		JBUFFER_TRACE(jh, "set next transaction");
910 		jh->b_next_transaction = transaction;
911 	}
912 	spin_unlock(&journal->j_list_lock);
913 	jbd_unlock_bh_state(bh);
914 
915 	/*
916 	 * akpm: I added this.  ext3_alloc_branch can pick up new indirect
917 	 * blocks which contain freed but then revoked metadata.  We need
918 	 * to cancel the revoke in case we end up freeing it yet again
919 	 * and the reallocating as data - this would cause a second revoke,
920 	 * which hits an assertion error.
921 	 */
922 	JBUFFER_TRACE(jh, "cancelling revoke");
923 	jbd2_journal_cancel_revoke(handle, jh);
924 out:
925 	jbd2_journal_put_journal_head(jh);
926 	return err;
927 }
928 
929 /**
930  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
931  *     non-rewindable consequences
932  * @handle: transaction
933  * @bh: buffer to undo
934  *
935  * Sometimes there is a need to distinguish between metadata which has
936  * been committed to disk and that which has not.  The ext3fs code uses
937  * this for freeing and allocating space, we have to make sure that we
938  * do not reuse freed space until the deallocation has been committed,
939  * since if we overwrote that space we would make the delete
940  * un-rewindable in case of a crash.
941  *
942  * To deal with that, jbd2_journal_get_undo_access requests write access to a
943  * buffer for parts of non-rewindable operations such as delete
944  * operations on the bitmaps.  The journaling code must keep a copy of
945  * the buffer's contents prior to the undo_access call until such time
946  * as we know that the buffer has definitely been committed to disk.
947  *
948  * We never need to know which transaction the committed data is part
949  * of, buffers touched here are guaranteed to be dirtied later and so
950  * will be committed to a new transaction in due course, at which point
951  * we can discard the old committed data pointer.
952  *
953  * Returns error number or 0 on success.
954  */
955 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
956 {
957 	int err;
958 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
959 	char *committed_data = NULL;
960 
961 	JBUFFER_TRACE(jh, "entry");
962 
963 	/*
964 	 * Do this first --- it can drop the journal lock, so we want to
965 	 * make sure that obtaining the committed_data is done
966 	 * atomically wrt. completion of any outstanding commits.
967 	 */
968 	err = do_get_write_access(handle, jh, 1);
969 	if (err)
970 		goto out;
971 
972 repeat:
973 	if (!jh->b_committed_data) {
974 		committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS);
975 		if (!committed_data) {
976 			printk(KERN_EMERG "%s: No memory for committed data\n",
977 				__func__);
978 			err = -ENOMEM;
979 			goto out;
980 		}
981 	}
982 
983 	jbd_lock_bh_state(bh);
984 	if (!jh->b_committed_data) {
985 		/* Copy out the current buffer contents into the
986 		 * preserved, committed copy. */
987 		JBUFFER_TRACE(jh, "generate b_committed data");
988 		if (!committed_data) {
989 			jbd_unlock_bh_state(bh);
990 			goto repeat;
991 		}
992 
993 		jh->b_committed_data = committed_data;
994 		committed_data = NULL;
995 		memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
996 	}
997 	jbd_unlock_bh_state(bh);
998 out:
999 	jbd2_journal_put_journal_head(jh);
1000 	if (unlikely(committed_data))
1001 		jbd2_free(committed_data, bh->b_size);
1002 	return err;
1003 }
1004 
1005 /**
1006  * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1007  * @bh: buffer to trigger on
1008  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1009  *
1010  * Set any triggers on this journal_head.  This is always safe, because
1011  * triggers for a committing buffer will be saved off, and triggers for
1012  * a running transaction will match the buffer in that transaction.
1013  *
1014  * Call with NULL to clear the triggers.
1015  */
1016 void jbd2_journal_set_triggers(struct buffer_head *bh,
1017 			       struct jbd2_buffer_trigger_type *type)
1018 {
1019 	struct journal_head *jh = bh2jh(bh);
1020 
1021 	jh->b_triggers = type;
1022 }
1023 
1024 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1025 				struct jbd2_buffer_trigger_type *triggers)
1026 {
1027 	struct buffer_head *bh = jh2bh(jh);
1028 
1029 	if (!triggers || !triggers->t_frozen)
1030 		return;
1031 
1032 	triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1033 }
1034 
1035 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1036 			       struct jbd2_buffer_trigger_type *triggers)
1037 {
1038 	if (!triggers || !triggers->t_abort)
1039 		return;
1040 
1041 	triggers->t_abort(triggers, jh2bh(jh));
1042 }
1043 
1044 
1045 
1046 /**
1047  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1048  * @handle: transaction to add buffer to.
1049  * @bh: buffer to mark
1050  *
1051  * mark dirty metadata which needs to be journaled as part of the current
1052  * transaction.
1053  *
1054  * The buffer must have previously had jbd2_journal_get_write_access()
1055  * called so that it has a valid journal_head attached to the buffer
1056  * head.
1057  *
1058  * The buffer is placed on the transaction's metadata list and is marked
1059  * as belonging to the transaction.
1060  *
1061  * Returns error number or 0 on success.
1062  *
1063  * Special care needs to be taken if the buffer already belongs to the
1064  * current committing transaction (in which case we should have frozen
1065  * data present for that commit).  In that case, we don't relink the
1066  * buffer: that only gets done when the old transaction finally
1067  * completes its commit.
1068  */
1069 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1070 {
1071 	transaction_t *transaction = handle->h_transaction;
1072 	journal_t *journal = transaction->t_journal;
1073 	struct journal_head *jh = bh2jh(bh);
1074 	int ret = 0;
1075 
1076 	jbd_debug(5, "journal_head %p\n", jh);
1077 	JBUFFER_TRACE(jh, "entry");
1078 	if (is_handle_aborted(handle))
1079 		goto out;
1080 	if (!buffer_jbd(bh)) {
1081 		ret = -EUCLEAN;
1082 		goto out;
1083 	}
1084 
1085 	jbd_lock_bh_state(bh);
1086 
1087 	if (jh->b_modified == 0) {
1088 		/*
1089 		 * This buffer's got modified and becoming part
1090 		 * of the transaction. This needs to be done
1091 		 * once a transaction -bzzz
1092 		 */
1093 		jh->b_modified = 1;
1094 		J_ASSERT_JH(jh, handle->h_buffer_credits > 0);
1095 		handle->h_buffer_credits--;
1096 	}
1097 
1098 	/*
1099 	 * fastpath, to avoid expensive locking.  If this buffer is already
1100 	 * on the running transaction's metadata list there is nothing to do.
1101 	 * Nobody can take it off again because there is a handle open.
1102 	 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1103 	 * result in this test being false, so we go in and take the locks.
1104 	 */
1105 	if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1106 		JBUFFER_TRACE(jh, "fastpath");
1107 		if (unlikely(jh->b_transaction !=
1108 			     journal->j_running_transaction)) {
1109 			printk(KERN_EMERG "JBD: %s: "
1110 			       "jh->b_transaction (%llu, %p, %u) != "
1111 			       "journal->j_running_transaction (%p, %u)",
1112 			       journal->j_devname,
1113 			       (unsigned long long) bh->b_blocknr,
1114 			       jh->b_transaction,
1115 			       jh->b_transaction ? jh->b_transaction->t_tid : 0,
1116 			       journal->j_running_transaction,
1117 			       journal->j_running_transaction ?
1118 			       journal->j_running_transaction->t_tid : 0);
1119 			ret = -EINVAL;
1120 		}
1121 		goto out_unlock_bh;
1122 	}
1123 
1124 	set_buffer_jbddirty(bh);
1125 
1126 	/*
1127 	 * Metadata already on the current transaction list doesn't
1128 	 * need to be filed.  Metadata on another transaction's list must
1129 	 * be committing, and will be refiled once the commit completes:
1130 	 * leave it alone for now.
1131 	 */
1132 	if (jh->b_transaction != transaction) {
1133 		JBUFFER_TRACE(jh, "already on other transaction");
1134 		if (unlikely(jh->b_transaction !=
1135 			     journal->j_committing_transaction)) {
1136 			printk(KERN_EMERG "JBD: %s: "
1137 			       "jh->b_transaction (%llu, %p, %u) != "
1138 			       "journal->j_committing_transaction (%p, %u)",
1139 			       journal->j_devname,
1140 			       (unsigned long long) bh->b_blocknr,
1141 			       jh->b_transaction,
1142 			       jh->b_transaction ? jh->b_transaction->t_tid : 0,
1143 			       journal->j_committing_transaction,
1144 			       journal->j_committing_transaction ?
1145 			       journal->j_committing_transaction->t_tid : 0);
1146 			ret = -EINVAL;
1147 		}
1148 		if (unlikely(jh->b_next_transaction != transaction)) {
1149 			printk(KERN_EMERG "JBD: %s: "
1150 			       "jh->b_next_transaction (%llu, %p, %u) != "
1151 			       "transaction (%p, %u)",
1152 			       journal->j_devname,
1153 			       (unsigned long long) bh->b_blocknr,
1154 			       jh->b_next_transaction,
1155 			       jh->b_next_transaction ?
1156 			       jh->b_next_transaction->t_tid : 0,
1157 			       transaction, transaction->t_tid);
1158 			ret = -EINVAL;
1159 		}
1160 		/* And this case is illegal: we can't reuse another
1161 		 * transaction's data buffer, ever. */
1162 		goto out_unlock_bh;
1163 	}
1164 
1165 	/* That test should have eliminated the following case: */
1166 	J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1167 
1168 	JBUFFER_TRACE(jh, "file as BJ_Metadata");
1169 	spin_lock(&journal->j_list_lock);
1170 	__jbd2_journal_file_buffer(jh, handle->h_transaction, BJ_Metadata);
1171 	spin_unlock(&journal->j_list_lock);
1172 out_unlock_bh:
1173 	jbd_unlock_bh_state(bh);
1174 out:
1175 	JBUFFER_TRACE(jh, "exit");
1176 	WARN_ON(ret);	/* All errors are bugs, so dump the stack */
1177 	return ret;
1178 }
1179 
1180 /*
1181  * jbd2_journal_release_buffer: undo a get_write_access without any buffer
1182  * updates, if the update decided in the end that it didn't need access.
1183  *
1184  */
1185 void
1186 jbd2_journal_release_buffer(handle_t *handle, struct buffer_head *bh)
1187 {
1188 	BUFFER_TRACE(bh, "entry");
1189 }
1190 
1191 /**
1192  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1193  * @handle: transaction handle
1194  * @bh:     bh to 'forget'
1195  *
1196  * We can only do the bforget if there are no commits pending against the
1197  * buffer.  If the buffer is dirty in the current running transaction we
1198  * can safely unlink it.
1199  *
1200  * bh may not be a journalled buffer at all - it may be a non-JBD
1201  * buffer which came off the hashtable.  Check for this.
1202  *
1203  * Decrements bh->b_count by one.
1204  *
1205  * Allow this call even if the handle has aborted --- it may be part of
1206  * the caller's cleanup after an abort.
1207  */
1208 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1209 {
1210 	transaction_t *transaction = handle->h_transaction;
1211 	journal_t *journal = transaction->t_journal;
1212 	struct journal_head *jh;
1213 	int drop_reserve = 0;
1214 	int err = 0;
1215 	int was_modified = 0;
1216 
1217 	BUFFER_TRACE(bh, "entry");
1218 
1219 	jbd_lock_bh_state(bh);
1220 	spin_lock(&journal->j_list_lock);
1221 
1222 	if (!buffer_jbd(bh))
1223 		goto not_jbd;
1224 	jh = bh2jh(bh);
1225 
1226 	/* Critical error: attempting to delete a bitmap buffer, maybe?
1227 	 * Don't do any jbd operations, and return an error. */
1228 	if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1229 			 "inconsistent data on disk")) {
1230 		err = -EIO;
1231 		goto not_jbd;
1232 	}
1233 
1234 	/* keep track of wether or not this transaction modified us */
1235 	was_modified = jh->b_modified;
1236 
1237 	/*
1238 	 * The buffer's going from the transaction, we must drop
1239 	 * all references -bzzz
1240 	 */
1241 	jh->b_modified = 0;
1242 
1243 	if (jh->b_transaction == handle->h_transaction) {
1244 		J_ASSERT_JH(jh, !jh->b_frozen_data);
1245 
1246 		/* If we are forgetting a buffer which is already part
1247 		 * of this transaction, then we can just drop it from
1248 		 * the transaction immediately. */
1249 		clear_buffer_dirty(bh);
1250 		clear_buffer_jbddirty(bh);
1251 
1252 		JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1253 
1254 		/*
1255 		 * we only want to drop a reference if this transaction
1256 		 * modified the buffer
1257 		 */
1258 		if (was_modified)
1259 			drop_reserve = 1;
1260 
1261 		/*
1262 		 * We are no longer going to journal this buffer.
1263 		 * However, the commit of this transaction is still
1264 		 * important to the buffer: the delete that we are now
1265 		 * processing might obsolete an old log entry, so by
1266 		 * committing, we can satisfy the buffer's checkpoint.
1267 		 *
1268 		 * So, if we have a checkpoint on the buffer, we should
1269 		 * now refile the buffer on our BJ_Forget list so that
1270 		 * we know to remove the checkpoint after we commit.
1271 		 */
1272 
1273 		if (jh->b_cp_transaction) {
1274 			__jbd2_journal_temp_unlink_buffer(jh);
1275 			__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1276 		} else {
1277 			__jbd2_journal_unfile_buffer(jh);
1278 			if (!buffer_jbd(bh)) {
1279 				spin_unlock(&journal->j_list_lock);
1280 				jbd_unlock_bh_state(bh);
1281 				__bforget(bh);
1282 				goto drop;
1283 			}
1284 		}
1285 	} else if (jh->b_transaction) {
1286 		J_ASSERT_JH(jh, (jh->b_transaction ==
1287 				 journal->j_committing_transaction));
1288 		/* However, if the buffer is still owned by a prior
1289 		 * (committing) transaction, we can't drop it yet... */
1290 		JBUFFER_TRACE(jh, "belongs to older transaction");
1291 		/* ... but we CAN drop it from the new transaction if we
1292 		 * have also modified it since the original commit. */
1293 
1294 		if (jh->b_next_transaction) {
1295 			J_ASSERT(jh->b_next_transaction == transaction);
1296 			jh->b_next_transaction = NULL;
1297 
1298 			/*
1299 			 * only drop a reference if this transaction modified
1300 			 * the buffer
1301 			 */
1302 			if (was_modified)
1303 				drop_reserve = 1;
1304 		}
1305 	}
1306 
1307 not_jbd:
1308 	spin_unlock(&journal->j_list_lock);
1309 	jbd_unlock_bh_state(bh);
1310 	__brelse(bh);
1311 drop:
1312 	if (drop_reserve) {
1313 		/* no need to reserve log space for this block -bzzz */
1314 		handle->h_buffer_credits++;
1315 	}
1316 	return err;
1317 }
1318 
1319 /**
1320  * int jbd2_journal_stop() - complete a transaction
1321  * @handle: tranaction to complete.
1322  *
1323  * All done for a particular handle.
1324  *
1325  * There is not much action needed here.  We just return any remaining
1326  * buffer credits to the transaction and remove the handle.  The only
1327  * complication is that we need to start a commit operation if the
1328  * filesystem is marked for synchronous update.
1329  *
1330  * jbd2_journal_stop itself will not usually return an error, but it may
1331  * do so in unusual circumstances.  In particular, expect it to
1332  * return -EIO if a jbd2_journal_abort has been executed since the
1333  * transaction began.
1334  */
1335 int jbd2_journal_stop(handle_t *handle)
1336 {
1337 	transaction_t *transaction = handle->h_transaction;
1338 	journal_t *journal = transaction->t_journal;
1339 	int err, wait_for_commit = 0;
1340 	tid_t tid;
1341 	pid_t pid;
1342 
1343 	J_ASSERT(journal_current_handle() == handle);
1344 
1345 	if (is_handle_aborted(handle))
1346 		err = -EIO;
1347 	else {
1348 		J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1349 		err = 0;
1350 	}
1351 
1352 	if (--handle->h_ref > 0) {
1353 		jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1354 			  handle->h_ref);
1355 		return err;
1356 	}
1357 
1358 	jbd_debug(4, "Handle %p going down\n", handle);
1359 
1360 	/*
1361 	 * Implement synchronous transaction batching.  If the handle
1362 	 * was synchronous, don't force a commit immediately.  Let's
1363 	 * yield and let another thread piggyback onto this
1364 	 * transaction.  Keep doing that while new threads continue to
1365 	 * arrive.  It doesn't cost much - we're about to run a commit
1366 	 * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1367 	 * operations by 30x or more...
1368 	 *
1369 	 * We try and optimize the sleep time against what the
1370 	 * underlying disk can do, instead of having a static sleep
1371 	 * time.  This is useful for the case where our storage is so
1372 	 * fast that it is more optimal to go ahead and force a flush
1373 	 * and wait for the transaction to be committed than it is to
1374 	 * wait for an arbitrary amount of time for new writers to
1375 	 * join the transaction.  We achieve this by measuring how
1376 	 * long it takes to commit a transaction, and compare it with
1377 	 * how long this transaction has been running, and if run time
1378 	 * < commit time then we sleep for the delta and commit.  This
1379 	 * greatly helps super fast disks that would see slowdowns as
1380 	 * more threads started doing fsyncs.
1381 	 *
1382 	 * But don't do this if this process was the most recent one
1383 	 * to perform a synchronous write.  We do this to detect the
1384 	 * case where a single process is doing a stream of sync
1385 	 * writes.  No point in waiting for joiners in that case.
1386 	 */
1387 	pid = current->pid;
1388 	if (handle->h_sync && journal->j_last_sync_writer != pid) {
1389 		u64 commit_time, trans_time;
1390 
1391 		journal->j_last_sync_writer = pid;
1392 
1393 		read_lock(&journal->j_state_lock);
1394 		commit_time = journal->j_average_commit_time;
1395 		read_unlock(&journal->j_state_lock);
1396 
1397 		trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1398 						   transaction->t_start_time));
1399 
1400 		commit_time = max_t(u64, commit_time,
1401 				    1000*journal->j_min_batch_time);
1402 		commit_time = min_t(u64, commit_time,
1403 				    1000*journal->j_max_batch_time);
1404 
1405 		if (trans_time < commit_time) {
1406 			ktime_t expires = ktime_add_ns(ktime_get(),
1407 						       commit_time);
1408 			set_current_state(TASK_UNINTERRUPTIBLE);
1409 			schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1410 		}
1411 	}
1412 
1413 	if (handle->h_sync)
1414 		transaction->t_synchronous_commit = 1;
1415 	current->journal_info = NULL;
1416 	atomic_sub(handle->h_buffer_credits,
1417 		   &transaction->t_outstanding_credits);
1418 
1419 	/*
1420 	 * If the handle is marked SYNC, we need to set another commit
1421 	 * going!  We also want to force a commit if the current
1422 	 * transaction is occupying too much of the log, or if the
1423 	 * transaction is too old now.
1424 	 */
1425 	if (handle->h_sync ||
1426 	    (atomic_read(&transaction->t_outstanding_credits) >
1427 	     journal->j_max_transaction_buffers) ||
1428 	    time_after_eq(jiffies, transaction->t_expires)) {
1429 		/* Do this even for aborted journals: an abort still
1430 		 * completes the commit thread, it just doesn't write
1431 		 * anything to disk. */
1432 
1433 		jbd_debug(2, "transaction too old, requesting commit for "
1434 					"handle %p\n", handle);
1435 		/* This is non-blocking */
1436 		jbd2_log_start_commit(journal, transaction->t_tid);
1437 
1438 		/*
1439 		 * Special case: JBD2_SYNC synchronous updates require us
1440 		 * to wait for the commit to complete.
1441 		 */
1442 		if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1443 			wait_for_commit = 1;
1444 	}
1445 
1446 	/*
1447 	 * Once we drop t_updates, if it goes to zero the transaction
1448 	 * could start committing on us and eventually disappear.  So
1449 	 * once we do this, we must not dereference transaction
1450 	 * pointer again.
1451 	 */
1452 	tid = transaction->t_tid;
1453 	if (atomic_dec_and_test(&transaction->t_updates)) {
1454 		wake_up(&journal->j_wait_updates);
1455 		if (journal->j_barrier_count)
1456 			wake_up(&journal->j_wait_transaction_locked);
1457 	}
1458 
1459 	if (wait_for_commit)
1460 		err = jbd2_log_wait_commit(journal, tid);
1461 
1462 	lock_map_release(&handle->h_lockdep_map);
1463 
1464 	jbd2_free_handle(handle);
1465 	return err;
1466 }
1467 
1468 /**
1469  * int jbd2_journal_force_commit() - force any uncommitted transactions
1470  * @journal: journal to force
1471  *
1472  * For synchronous operations: force any uncommitted transactions
1473  * to disk.  May seem kludgy, but it reuses all the handle batching
1474  * code in a very simple manner.
1475  */
1476 int jbd2_journal_force_commit(journal_t *journal)
1477 {
1478 	handle_t *handle;
1479 	int ret;
1480 
1481 	handle = jbd2_journal_start(journal, 1);
1482 	if (IS_ERR(handle)) {
1483 		ret = PTR_ERR(handle);
1484 	} else {
1485 		handle->h_sync = 1;
1486 		ret = jbd2_journal_stop(handle);
1487 	}
1488 	return ret;
1489 }
1490 
1491 /*
1492  *
1493  * List management code snippets: various functions for manipulating the
1494  * transaction buffer lists.
1495  *
1496  */
1497 
1498 /*
1499  * Append a buffer to a transaction list, given the transaction's list head
1500  * pointer.
1501  *
1502  * j_list_lock is held.
1503  *
1504  * jbd_lock_bh_state(jh2bh(jh)) is held.
1505  */
1506 
1507 static inline void
1508 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1509 {
1510 	if (!*list) {
1511 		jh->b_tnext = jh->b_tprev = jh;
1512 		*list = jh;
1513 	} else {
1514 		/* Insert at the tail of the list to preserve order */
1515 		struct journal_head *first = *list, *last = first->b_tprev;
1516 		jh->b_tprev = last;
1517 		jh->b_tnext = first;
1518 		last->b_tnext = first->b_tprev = jh;
1519 	}
1520 }
1521 
1522 /*
1523  * Remove a buffer from a transaction list, given the transaction's list
1524  * head pointer.
1525  *
1526  * Called with j_list_lock held, and the journal may not be locked.
1527  *
1528  * jbd_lock_bh_state(jh2bh(jh)) is held.
1529  */
1530 
1531 static inline void
1532 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1533 {
1534 	if (*list == jh) {
1535 		*list = jh->b_tnext;
1536 		if (*list == jh)
1537 			*list = NULL;
1538 	}
1539 	jh->b_tprev->b_tnext = jh->b_tnext;
1540 	jh->b_tnext->b_tprev = jh->b_tprev;
1541 }
1542 
1543 /*
1544  * Remove a buffer from the appropriate transaction list.
1545  *
1546  * Note that this function can *change* the value of
1547  * bh->b_transaction->t_buffers, t_forget, t_iobuf_list, t_shadow_list,
1548  * t_log_list or t_reserved_list.  If the caller is holding onto a copy of one
1549  * of these pointers, it could go bad.  Generally the caller needs to re-read
1550  * the pointer from the transaction_t.
1551  *
1552  * Called under j_list_lock.  The journal may not be locked.
1553  */
1554 void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1555 {
1556 	struct journal_head **list = NULL;
1557 	transaction_t *transaction;
1558 	struct buffer_head *bh = jh2bh(jh);
1559 
1560 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1561 	transaction = jh->b_transaction;
1562 	if (transaction)
1563 		assert_spin_locked(&transaction->t_journal->j_list_lock);
1564 
1565 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1566 	if (jh->b_jlist != BJ_None)
1567 		J_ASSERT_JH(jh, transaction != NULL);
1568 
1569 	switch (jh->b_jlist) {
1570 	case BJ_None:
1571 		return;
1572 	case BJ_Metadata:
1573 		transaction->t_nr_buffers--;
1574 		J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1575 		list = &transaction->t_buffers;
1576 		break;
1577 	case BJ_Forget:
1578 		list = &transaction->t_forget;
1579 		break;
1580 	case BJ_IO:
1581 		list = &transaction->t_iobuf_list;
1582 		break;
1583 	case BJ_Shadow:
1584 		list = &transaction->t_shadow_list;
1585 		break;
1586 	case BJ_LogCtl:
1587 		list = &transaction->t_log_list;
1588 		break;
1589 	case BJ_Reserved:
1590 		list = &transaction->t_reserved_list;
1591 		break;
1592 	}
1593 
1594 	__blist_del_buffer(list, jh);
1595 	jh->b_jlist = BJ_None;
1596 	if (test_clear_buffer_jbddirty(bh))
1597 		mark_buffer_dirty(bh);	/* Expose it to the VM */
1598 }
1599 
1600 /*
1601  * Remove buffer from all transactions.
1602  *
1603  * Called with bh_state lock and j_list_lock
1604  *
1605  * jh and bh may be already freed when this function returns.
1606  */
1607 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1608 {
1609 	__jbd2_journal_temp_unlink_buffer(jh);
1610 	jh->b_transaction = NULL;
1611 	jbd2_journal_put_journal_head(jh);
1612 }
1613 
1614 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1615 {
1616 	struct buffer_head *bh = jh2bh(jh);
1617 
1618 	/* Get reference so that buffer cannot be freed before we unlock it */
1619 	get_bh(bh);
1620 	jbd_lock_bh_state(bh);
1621 	spin_lock(&journal->j_list_lock);
1622 	__jbd2_journal_unfile_buffer(jh);
1623 	spin_unlock(&journal->j_list_lock);
1624 	jbd_unlock_bh_state(bh);
1625 	__brelse(bh);
1626 }
1627 
1628 /*
1629  * Called from jbd2_journal_try_to_free_buffers().
1630  *
1631  * Called under jbd_lock_bh_state(bh)
1632  */
1633 static void
1634 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1635 {
1636 	struct journal_head *jh;
1637 
1638 	jh = bh2jh(bh);
1639 
1640 	if (buffer_locked(bh) || buffer_dirty(bh))
1641 		goto out;
1642 
1643 	if (jh->b_next_transaction != NULL)
1644 		goto out;
1645 
1646 	spin_lock(&journal->j_list_lock);
1647 	if (jh->b_cp_transaction != NULL && jh->b_transaction == NULL) {
1648 		/* written-back checkpointed metadata buffer */
1649 		if (jh->b_jlist == BJ_None) {
1650 			JBUFFER_TRACE(jh, "remove from checkpoint list");
1651 			__jbd2_journal_remove_checkpoint(jh);
1652 		}
1653 	}
1654 	spin_unlock(&journal->j_list_lock);
1655 out:
1656 	return;
1657 }
1658 
1659 /**
1660  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1661  * @journal: journal for operation
1662  * @page: to try and free
1663  * @gfp_mask: we use the mask to detect how hard should we try to release
1664  * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to
1665  * release the buffers.
1666  *
1667  *
1668  * For all the buffers on this page,
1669  * if they are fully written out ordered data, move them onto BUF_CLEAN
1670  * so try_to_free_buffers() can reap them.
1671  *
1672  * This function returns non-zero if we wish try_to_free_buffers()
1673  * to be called. We do this if the page is releasable by try_to_free_buffers().
1674  * We also do it if the page has locked or dirty buffers and the caller wants
1675  * us to perform sync or async writeout.
1676  *
1677  * This complicates JBD locking somewhat.  We aren't protected by the
1678  * BKL here.  We wish to remove the buffer from its committing or
1679  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1680  *
1681  * This may *change* the value of transaction_t->t_datalist, so anyone
1682  * who looks at t_datalist needs to lock against this function.
1683  *
1684  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1685  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
1686  * will come out of the lock with the buffer dirty, which makes it
1687  * ineligible for release here.
1688  *
1689  * Who else is affected by this?  hmm...  Really the only contender
1690  * is do_get_write_access() - it could be looking at the buffer while
1691  * journal_try_to_free_buffer() is changing its state.  But that
1692  * cannot happen because we never reallocate freed data as metadata
1693  * while the data is part of a transaction.  Yes?
1694  *
1695  * Return 0 on failure, 1 on success
1696  */
1697 int jbd2_journal_try_to_free_buffers(journal_t *journal,
1698 				struct page *page, gfp_t gfp_mask)
1699 {
1700 	struct buffer_head *head;
1701 	struct buffer_head *bh;
1702 	int ret = 0;
1703 
1704 	J_ASSERT(PageLocked(page));
1705 
1706 	head = page_buffers(page);
1707 	bh = head;
1708 	do {
1709 		struct journal_head *jh;
1710 
1711 		/*
1712 		 * We take our own ref against the journal_head here to avoid
1713 		 * having to add tons of locking around each instance of
1714 		 * jbd2_journal_put_journal_head().
1715 		 */
1716 		jh = jbd2_journal_grab_journal_head(bh);
1717 		if (!jh)
1718 			continue;
1719 
1720 		jbd_lock_bh_state(bh);
1721 		__journal_try_to_free_buffer(journal, bh);
1722 		jbd2_journal_put_journal_head(jh);
1723 		jbd_unlock_bh_state(bh);
1724 		if (buffer_jbd(bh))
1725 			goto busy;
1726 	} while ((bh = bh->b_this_page) != head);
1727 
1728 	ret = try_to_free_buffers(page);
1729 
1730 busy:
1731 	return ret;
1732 }
1733 
1734 /*
1735  * This buffer is no longer needed.  If it is on an older transaction's
1736  * checkpoint list we need to record it on this transaction's forget list
1737  * to pin this buffer (and hence its checkpointing transaction) down until
1738  * this transaction commits.  If the buffer isn't on a checkpoint list, we
1739  * release it.
1740  * Returns non-zero if JBD no longer has an interest in the buffer.
1741  *
1742  * Called under j_list_lock.
1743  *
1744  * Called under jbd_lock_bh_state(bh).
1745  */
1746 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
1747 {
1748 	int may_free = 1;
1749 	struct buffer_head *bh = jh2bh(jh);
1750 
1751 	if (jh->b_cp_transaction) {
1752 		JBUFFER_TRACE(jh, "on running+cp transaction");
1753 		__jbd2_journal_temp_unlink_buffer(jh);
1754 		/*
1755 		 * We don't want to write the buffer anymore, clear the
1756 		 * bit so that we don't confuse checks in
1757 		 * __journal_file_buffer
1758 		 */
1759 		clear_buffer_dirty(bh);
1760 		__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1761 		may_free = 0;
1762 	} else {
1763 		JBUFFER_TRACE(jh, "on running transaction");
1764 		__jbd2_journal_unfile_buffer(jh);
1765 	}
1766 	return may_free;
1767 }
1768 
1769 /*
1770  * jbd2_journal_invalidatepage
1771  *
1772  * This code is tricky.  It has a number of cases to deal with.
1773  *
1774  * There are two invariants which this code relies on:
1775  *
1776  * i_size must be updated on disk before we start calling invalidatepage on the
1777  * data.
1778  *
1779  *  This is done in ext3 by defining an ext3_setattr method which
1780  *  updates i_size before truncate gets going.  By maintaining this
1781  *  invariant, we can be sure that it is safe to throw away any buffers
1782  *  attached to the current transaction: once the transaction commits,
1783  *  we know that the data will not be needed.
1784  *
1785  *  Note however that we can *not* throw away data belonging to the
1786  *  previous, committing transaction!
1787  *
1788  * Any disk blocks which *are* part of the previous, committing
1789  * transaction (and which therefore cannot be discarded immediately) are
1790  * not going to be reused in the new running transaction
1791  *
1792  *  The bitmap committed_data images guarantee this: any block which is
1793  *  allocated in one transaction and removed in the next will be marked
1794  *  as in-use in the committed_data bitmap, so cannot be reused until
1795  *  the next transaction to delete the block commits.  This means that
1796  *  leaving committing buffers dirty is quite safe: the disk blocks
1797  *  cannot be reallocated to a different file and so buffer aliasing is
1798  *  not possible.
1799  *
1800  *
1801  * The above applies mainly to ordered data mode.  In writeback mode we
1802  * don't make guarantees about the order in which data hits disk --- in
1803  * particular we don't guarantee that new dirty data is flushed before
1804  * transaction commit --- so it is always safe just to discard data
1805  * immediately in that mode.  --sct
1806  */
1807 
1808 /*
1809  * The journal_unmap_buffer helper function returns zero if the buffer
1810  * concerned remains pinned as an anonymous buffer belonging to an older
1811  * transaction.
1812  *
1813  * We're outside-transaction here.  Either or both of j_running_transaction
1814  * and j_committing_transaction may be NULL.
1815  */
1816 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh)
1817 {
1818 	transaction_t *transaction;
1819 	struct journal_head *jh;
1820 	int may_free = 1;
1821 	int ret;
1822 
1823 	BUFFER_TRACE(bh, "entry");
1824 
1825 	/*
1826 	 * It is safe to proceed here without the j_list_lock because the
1827 	 * buffers cannot be stolen by try_to_free_buffers as long as we are
1828 	 * holding the page lock. --sct
1829 	 */
1830 
1831 	if (!buffer_jbd(bh))
1832 		goto zap_buffer_unlocked;
1833 
1834 	/* OK, we have data buffer in journaled mode */
1835 	write_lock(&journal->j_state_lock);
1836 	jbd_lock_bh_state(bh);
1837 	spin_lock(&journal->j_list_lock);
1838 
1839 	jh = jbd2_journal_grab_journal_head(bh);
1840 	if (!jh)
1841 		goto zap_buffer_no_jh;
1842 
1843 	/*
1844 	 * We cannot remove the buffer from checkpoint lists until the
1845 	 * transaction adding inode to orphan list (let's call it T)
1846 	 * is committed.  Otherwise if the transaction changing the
1847 	 * buffer would be cleaned from the journal before T is
1848 	 * committed, a crash will cause that the correct contents of
1849 	 * the buffer will be lost.  On the other hand we have to
1850 	 * clear the buffer dirty bit at latest at the moment when the
1851 	 * transaction marking the buffer as freed in the filesystem
1852 	 * structures is committed because from that moment on the
1853 	 * buffer can be reallocated and used by a different page.
1854 	 * Since the block hasn't been freed yet but the inode has
1855 	 * already been added to orphan list, it is safe for us to add
1856 	 * the buffer to BJ_Forget list of the newest transaction.
1857 	 */
1858 	transaction = jh->b_transaction;
1859 	if (transaction == NULL) {
1860 		/* First case: not on any transaction.  If it
1861 		 * has no checkpoint link, then we can zap it:
1862 		 * it's a writeback-mode buffer so we don't care
1863 		 * if it hits disk safely. */
1864 		if (!jh->b_cp_transaction) {
1865 			JBUFFER_TRACE(jh, "not on any transaction: zap");
1866 			goto zap_buffer;
1867 		}
1868 
1869 		if (!buffer_dirty(bh)) {
1870 			/* bdflush has written it.  We can drop it now */
1871 			goto zap_buffer;
1872 		}
1873 
1874 		/* OK, it must be in the journal but still not
1875 		 * written fully to disk: it's metadata or
1876 		 * journaled data... */
1877 
1878 		if (journal->j_running_transaction) {
1879 			/* ... and once the current transaction has
1880 			 * committed, the buffer won't be needed any
1881 			 * longer. */
1882 			JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
1883 			ret = __dispose_buffer(jh,
1884 					journal->j_running_transaction);
1885 			jbd2_journal_put_journal_head(jh);
1886 			spin_unlock(&journal->j_list_lock);
1887 			jbd_unlock_bh_state(bh);
1888 			write_unlock(&journal->j_state_lock);
1889 			return ret;
1890 		} else {
1891 			/* There is no currently-running transaction. So the
1892 			 * orphan record which we wrote for this file must have
1893 			 * passed into commit.  We must attach this buffer to
1894 			 * the committing transaction, if it exists. */
1895 			if (journal->j_committing_transaction) {
1896 				JBUFFER_TRACE(jh, "give to committing trans");
1897 				ret = __dispose_buffer(jh,
1898 					journal->j_committing_transaction);
1899 				jbd2_journal_put_journal_head(jh);
1900 				spin_unlock(&journal->j_list_lock);
1901 				jbd_unlock_bh_state(bh);
1902 				write_unlock(&journal->j_state_lock);
1903 				return ret;
1904 			} else {
1905 				/* The orphan record's transaction has
1906 				 * committed.  We can cleanse this buffer */
1907 				clear_buffer_jbddirty(bh);
1908 				goto zap_buffer;
1909 			}
1910 		}
1911 	} else if (transaction == journal->j_committing_transaction) {
1912 		JBUFFER_TRACE(jh, "on committing transaction");
1913 		/*
1914 		 * The buffer is committing, we simply cannot touch
1915 		 * it. So we just set j_next_transaction to the
1916 		 * running transaction (if there is one) and mark
1917 		 * buffer as freed so that commit code knows it should
1918 		 * clear dirty bits when it is done with the buffer.
1919 		 */
1920 		set_buffer_freed(bh);
1921 		if (journal->j_running_transaction && buffer_jbddirty(bh))
1922 			jh->b_next_transaction = journal->j_running_transaction;
1923 		jbd2_journal_put_journal_head(jh);
1924 		spin_unlock(&journal->j_list_lock);
1925 		jbd_unlock_bh_state(bh);
1926 		write_unlock(&journal->j_state_lock);
1927 		return 0;
1928 	} else {
1929 		/* Good, the buffer belongs to the running transaction.
1930 		 * We are writing our own transaction's data, not any
1931 		 * previous one's, so it is safe to throw it away
1932 		 * (remember that we expect the filesystem to have set
1933 		 * i_size already for this truncate so recovery will not
1934 		 * expose the disk blocks we are discarding here.) */
1935 		J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
1936 		JBUFFER_TRACE(jh, "on running transaction");
1937 		may_free = __dispose_buffer(jh, transaction);
1938 	}
1939 
1940 zap_buffer:
1941 	jbd2_journal_put_journal_head(jh);
1942 zap_buffer_no_jh:
1943 	spin_unlock(&journal->j_list_lock);
1944 	jbd_unlock_bh_state(bh);
1945 	write_unlock(&journal->j_state_lock);
1946 zap_buffer_unlocked:
1947 	clear_buffer_dirty(bh);
1948 	J_ASSERT_BH(bh, !buffer_jbddirty(bh));
1949 	clear_buffer_mapped(bh);
1950 	clear_buffer_req(bh);
1951 	clear_buffer_new(bh);
1952 	bh->b_bdev = NULL;
1953 	return may_free;
1954 }
1955 
1956 /**
1957  * void jbd2_journal_invalidatepage()
1958  * @journal: journal to use for flush...
1959  * @page:    page to flush
1960  * @offset:  length of page to invalidate.
1961  *
1962  * Reap page buffers containing data after offset in page.
1963  *
1964  */
1965 void jbd2_journal_invalidatepage(journal_t *journal,
1966 		      struct page *page,
1967 		      unsigned long offset)
1968 {
1969 	struct buffer_head *head, *bh, *next;
1970 	unsigned int curr_off = 0;
1971 	int may_free = 1;
1972 
1973 	if (!PageLocked(page))
1974 		BUG();
1975 	if (!page_has_buffers(page))
1976 		return;
1977 
1978 	/* We will potentially be playing with lists other than just the
1979 	 * data lists (especially for journaled data mode), so be
1980 	 * cautious in our locking. */
1981 
1982 	head = bh = page_buffers(page);
1983 	do {
1984 		unsigned int next_off = curr_off + bh->b_size;
1985 		next = bh->b_this_page;
1986 
1987 		if (offset <= curr_off) {
1988 			/* This block is wholly outside the truncation point */
1989 			lock_buffer(bh);
1990 			may_free &= journal_unmap_buffer(journal, bh);
1991 			unlock_buffer(bh);
1992 		}
1993 		curr_off = next_off;
1994 		bh = next;
1995 
1996 	} while (bh != head);
1997 
1998 	if (!offset) {
1999 		if (may_free && try_to_free_buffers(page))
2000 			J_ASSERT(!page_has_buffers(page));
2001 	}
2002 }
2003 
2004 /*
2005  * File a buffer on the given transaction list.
2006  */
2007 void __jbd2_journal_file_buffer(struct journal_head *jh,
2008 			transaction_t *transaction, int jlist)
2009 {
2010 	struct journal_head **list = NULL;
2011 	int was_dirty = 0;
2012 	struct buffer_head *bh = jh2bh(jh);
2013 
2014 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2015 	assert_spin_locked(&transaction->t_journal->j_list_lock);
2016 
2017 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2018 	J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2019 				jh->b_transaction == NULL);
2020 
2021 	if (jh->b_transaction && jh->b_jlist == jlist)
2022 		return;
2023 
2024 	if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2025 	    jlist == BJ_Shadow || jlist == BJ_Forget) {
2026 		/*
2027 		 * For metadata buffers, we track dirty bit in buffer_jbddirty
2028 		 * instead of buffer_dirty. We should not see a dirty bit set
2029 		 * here because we clear it in do_get_write_access but e.g.
2030 		 * tune2fs can modify the sb and set the dirty bit at any time
2031 		 * so we try to gracefully handle that.
2032 		 */
2033 		if (buffer_dirty(bh))
2034 			warn_dirty_buffer(bh);
2035 		if (test_clear_buffer_dirty(bh) ||
2036 		    test_clear_buffer_jbddirty(bh))
2037 			was_dirty = 1;
2038 	}
2039 
2040 	if (jh->b_transaction)
2041 		__jbd2_journal_temp_unlink_buffer(jh);
2042 	else
2043 		jbd2_journal_grab_journal_head(bh);
2044 	jh->b_transaction = transaction;
2045 
2046 	switch (jlist) {
2047 	case BJ_None:
2048 		J_ASSERT_JH(jh, !jh->b_committed_data);
2049 		J_ASSERT_JH(jh, !jh->b_frozen_data);
2050 		return;
2051 	case BJ_Metadata:
2052 		transaction->t_nr_buffers++;
2053 		list = &transaction->t_buffers;
2054 		break;
2055 	case BJ_Forget:
2056 		list = &transaction->t_forget;
2057 		break;
2058 	case BJ_IO:
2059 		list = &transaction->t_iobuf_list;
2060 		break;
2061 	case BJ_Shadow:
2062 		list = &transaction->t_shadow_list;
2063 		break;
2064 	case BJ_LogCtl:
2065 		list = &transaction->t_log_list;
2066 		break;
2067 	case BJ_Reserved:
2068 		list = &transaction->t_reserved_list;
2069 		break;
2070 	}
2071 
2072 	__blist_add_buffer(list, jh);
2073 	jh->b_jlist = jlist;
2074 
2075 	if (was_dirty)
2076 		set_buffer_jbddirty(bh);
2077 }
2078 
2079 void jbd2_journal_file_buffer(struct journal_head *jh,
2080 				transaction_t *transaction, int jlist)
2081 {
2082 	jbd_lock_bh_state(jh2bh(jh));
2083 	spin_lock(&transaction->t_journal->j_list_lock);
2084 	__jbd2_journal_file_buffer(jh, transaction, jlist);
2085 	spin_unlock(&transaction->t_journal->j_list_lock);
2086 	jbd_unlock_bh_state(jh2bh(jh));
2087 }
2088 
2089 /*
2090  * Remove a buffer from its current buffer list in preparation for
2091  * dropping it from its current transaction entirely.  If the buffer has
2092  * already started to be used by a subsequent transaction, refile the
2093  * buffer on that transaction's metadata list.
2094  *
2095  * Called under j_list_lock
2096  * Called under jbd_lock_bh_state(jh2bh(jh))
2097  *
2098  * jh and bh may be already free when this function returns
2099  */
2100 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2101 {
2102 	int was_dirty, jlist;
2103 	struct buffer_head *bh = jh2bh(jh);
2104 
2105 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2106 	if (jh->b_transaction)
2107 		assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2108 
2109 	/* If the buffer is now unused, just drop it. */
2110 	if (jh->b_next_transaction == NULL) {
2111 		__jbd2_journal_unfile_buffer(jh);
2112 		return;
2113 	}
2114 
2115 	/*
2116 	 * It has been modified by a later transaction: add it to the new
2117 	 * transaction's metadata list.
2118 	 */
2119 
2120 	was_dirty = test_clear_buffer_jbddirty(bh);
2121 	__jbd2_journal_temp_unlink_buffer(jh);
2122 	/*
2123 	 * We set b_transaction here because b_next_transaction will inherit
2124 	 * our jh reference and thus __jbd2_journal_file_buffer() must not
2125 	 * take a new one.
2126 	 */
2127 	jh->b_transaction = jh->b_next_transaction;
2128 	jh->b_next_transaction = NULL;
2129 	if (buffer_freed(bh))
2130 		jlist = BJ_Forget;
2131 	else if (jh->b_modified)
2132 		jlist = BJ_Metadata;
2133 	else
2134 		jlist = BJ_Reserved;
2135 	__jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2136 	J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2137 
2138 	if (was_dirty)
2139 		set_buffer_jbddirty(bh);
2140 }
2141 
2142 /*
2143  * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2144  * bh reference so that we can safely unlock bh.
2145  *
2146  * The jh and bh may be freed by this call.
2147  */
2148 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2149 {
2150 	struct buffer_head *bh = jh2bh(jh);
2151 
2152 	/* Get reference so that buffer cannot be freed before we unlock it */
2153 	get_bh(bh);
2154 	jbd_lock_bh_state(bh);
2155 	spin_lock(&journal->j_list_lock);
2156 	__jbd2_journal_refile_buffer(jh);
2157 	jbd_unlock_bh_state(bh);
2158 	spin_unlock(&journal->j_list_lock);
2159 	__brelse(bh);
2160 }
2161 
2162 /*
2163  * File inode in the inode list of the handle's transaction
2164  */
2165 int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode)
2166 {
2167 	transaction_t *transaction = handle->h_transaction;
2168 	journal_t *journal = transaction->t_journal;
2169 
2170 	if (is_handle_aborted(handle))
2171 		return -EIO;
2172 
2173 	jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2174 			transaction->t_tid);
2175 
2176 	/*
2177 	 * First check whether inode isn't already on the transaction's
2178 	 * lists without taking the lock. Note that this check is safe
2179 	 * without the lock as we cannot race with somebody removing inode
2180 	 * from the transaction. The reason is that we remove inode from the
2181 	 * transaction only in journal_release_jbd_inode() and when we commit
2182 	 * the transaction. We are guarded from the first case by holding
2183 	 * a reference to the inode. We are safe against the second case
2184 	 * because if jinode->i_transaction == transaction, commit code
2185 	 * cannot touch the transaction because we hold reference to it,
2186 	 * and if jinode->i_next_transaction == transaction, commit code
2187 	 * will only file the inode where we want it.
2188 	 */
2189 	if (jinode->i_transaction == transaction ||
2190 	    jinode->i_next_transaction == transaction)
2191 		return 0;
2192 
2193 	spin_lock(&journal->j_list_lock);
2194 
2195 	if (jinode->i_transaction == transaction ||
2196 	    jinode->i_next_transaction == transaction)
2197 		goto done;
2198 
2199 	/*
2200 	 * We only ever set this variable to 1 so the test is safe. Since
2201 	 * t_need_data_flush is likely to be set, we do the test to save some
2202 	 * cacheline bouncing
2203 	 */
2204 	if (!transaction->t_need_data_flush)
2205 		transaction->t_need_data_flush = 1;
2206 	/* On some different transaction's list - should be
2207 	 * the committing one */
2208 	if (jinode->i_transaction) {
2209 		J_ASSERT(jinode->i_next_transaction == NULL);
2210 		J_ASSERT(jinode->i_transaction ==
2211 					journal->j_committing_transaction);
2212 		jinode->i_next_transaction = transaction;
2213 		goto done;
2214 	}
2215 	/* Not on any transaction list... */
2216 	J_ASSERT(!jinode->i_next_transaction);
2217 	jinode->i_transaction = transaction;
2218 	list_add(&jinode->i_list, &transaction->t_inode_list);
2219 done:
2220 	spin_unlock(&journal->j_list_lock);
2221 
2222 	return 0;
2223 }
2224 
2225 /*
2226  * File truncate and transaction commit interact with each other in a
2227  * non-trivial way.  If a transaction writing data block A is
2228  * committing, we cannot discard the data by truncate until we have
2229  * written them.  Otherwise if we crashed after the transaction with
2230  * write has committed but before the transaction with truncate has
2231  * committed, we could see stale data in block A.  This function is a
2232  * helper to solve this problem.  It starts writeout of the truncated
2233  * part in case it is in the committing transaction.
2234  *
2235  * Filesystem code must call this function when inode is journaled in
2236  * ordered mode before truncation happens and after the inode has been
2237  * placed on orphan list with the new inode size. The second condition
2238  * avoids the race that someone writes new data and we start
2239  * committing the transaction after this function has been called but
2240  * before a transaction for truncate is started (and furthermore it
2241  * allows us to optimize the case where the addition to orphan list
2242  * happens in the same transaction as write --- we don't have to write
2243  * any data in such case).
2244  */
2245 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2246 					struct jbd2_inode *jinode,
2247 					loff_t new_size)
2248 {
2249 	transaction_t *inode_trans, *commit_trans;
2250 	int ret = 0;
2251 
2252 	/* This is a quick check to avoid locking if not necessary */
2253 	if (!jinode->i_transaction)
2254 		goto out;
2255 	/* Locks are here just to force reading of recent values, it is
2256 	 * enough that the transaction was not committing before we started
2257 	 * a transaction adding the inode to orphan list */
2258 	read_lock(&journal->j_state_lock);
2259 	commit_trans = journal->j_committing_transaction;
2260 	read_unlock(&journal->j_state_lock);
2261 	spin_lock(&journal->j_list_lock);
2262 	inode_trans = jinode->i_transaction;
2263 	spin_unlock(&journal->j_list_lock);
2264 	if (inode_trans == commit_trans) {
2265 		ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2266 			new_size, LLONG_MAX);
2267 		if (ret)
2268 			jbd2_journal_abort(journal, ret);
2269 	}
2270 out:
2271 	return ret;
2272 }
2273