1 /* 2 * linux/fs/jbd2/transaction.c 3 * 4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 5 * 6 * Copyright 1998 Red Hat corp --- All Rights Reserved 7 * 8 * This file is part of the Linux kernel and is made available under 9 * the terms of the GNU General Public License, version 2, or at your 10 * option, any later version, incorporated herein by reference. 11 * 12 * Generic filesystem transaction handling code; part of the ext2fs 13 * journaling system. 14 * 15 * This file manages transactions (compound commits managed by the 16 * journaling code) and handles (individual atomic operations by the 17 * filesystem). 18 */ 19 20 #include <linux/time.h> 21 #include <linux/fs.h> 22 #include <linux/jbd2.h> 23 #include <linux/errno.h> 24 #include <linux/slab.h> 25 #include <linux/timer.h> 26 #include <linux/mm.h> 27 #include <linux/highmem.h> 28 #include <linux/hrtimer.h> 29 #include <linux/backing-dev.h> 30 #include <linux/bug.h> 31 #include <linux/module.h> 32 33 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh); 34 static void __jbd2_journal_unfile_buffer(struct journal_head *jh); 35 36 /* 37 * jbd2_get_transaction: obtain a new transaction_t object. 38 * 39 * Simply allocate and initialise a new transaction. Create it in 40 * RUNNING state and add it to the current journal (which should not 41 * have an existing running transaction: we only make a new transaction 42 * once we have started to commit the old one). 43 * 44 * Preconditions: 45 * The journal MUST be locked. We don't perform atomic mallocs on the 46 * new transaction and we can't block without protecting against other 47 * processes trying to touch the journal while it is in transition. 48 * 49 */ 50 51 static transaction_t * 52 jbd2_get_transaction(journal_t *journal, transaction_t *transaction) 53 { 54 transaction->t_journal = journal; 55 transaction->t_state = T_RUNNING; 56 transaction->t_start_time = ktime_get(); 57 transaction->t_tid = journal->j_transaction_sequence++; 58 transaction->t_expires = jiffies + journal->j_commit_interval; 59 spin_lock_init(&transaction->t_handle_lock); 60 atomic_set(&transaction->t_updates, 0); 61 atomic_set(&transaction->t_outstanding_credits, 0); 62 atomic_set(&transaction->t_handle_count, 0); 63 INIT_LIST_HEAD(&transaction->t_inode_list); 64 INIT_LIST_HEAD(&transaction->t_private_list); 65 66 /* Set up the commit timer for the new transaction. */ 67 journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires); 68 add_timer(&journal->j_commit_timer); 69 70 J_ASSERT(journal->j_running_transaction == NULL); 71 journal->j_running_transaction = transaction; 72 transaction->t_max_wait = 0; 73 transaction->t_start = jiffies; 74 75 return transaction; 76 } 77 78 /* 79 * Handle management. 80 * 81 * A handle_t is an object which represents a single atomic update to a 82 * filesystem, and which tracks all of the modifications which form part 83 * of that one update. 84 */ 85 86 /* 87 * Update transaction's maximum wait time, if debugging is enabled. 88 * 89 * In order for t_max_wait to be reliable, it must be protected by a 90 * lock. But doing so will mean that start_this_handle() can not be 91 * run in parallel on SMP systems, which limits our scalability. So 92 * unless debugging is enabled, we no longer update t_max_wait, which 93 * means that maximum wait time reported by the jbd2_run_stats 94 * tracepoint will always be zero. 95 */ 96 static inline void update_t_max_wait(transaction_t *transaction, 97 unsigned long ts) 98 { 99 #ifdef CONFIG_JBD2_DEBUG 100 if (jbd2_journal_enable_debug && 101 time_after(transaction->t_start, ts)) { 102 ts = jbd2_time_diff(ts, transaction->t_start); 103 spin_lock(&transaction->t_handle_lock); 104 if (ts > transaction->t_max_wait) 105 transaction->t_max_wait = ts; 106 spin_unlock(&transaction->t_handle_lock); 107 } 108 #endif 109 } 110 111 /* 112 * start_this_handle: Given a handle, deal with any locking or stalling 113 * needed to make sure that there is enough journal space for the handle 114 * to begin. Attach the handle to a transaction and set up the 115 * transaction's buffer credits. 116 */ 117 118 static int start_this_handle(journal_t *journal, handle_t *handle, 119 gfp_t gfp_mask) 120 { 121 transaction_t *transaction, *new_transaction = NULL; 122 tid_t tid; 123 int needed, need_to_start; 124 int nblocks = handle->h_buffer_credits; 125 unsigned long ts = jiffies; 126 127 if (nblocks > journal->j_max_transaction_buffers) { 128 printk(KERN_ERR "JBD2: %s wants too many credits (%d > %d)\n", 129 current->comm, nblocks, 130 journal->j_max_transaction_buffers); 131 return -ENOSPC; 132 } 133 134 alloc_transaction: 135 if (!journal->j_running_transaction) { 136 new_transaction = kzalloc(sizeof(*new_transaction), gfp_mask); 137 if (!new_transaction) { 138 /* 139 * If __GFP_FS is not present, then we may be 140 * being called from inside the fs writeback 141 * layer, so we MUST NOT fail. Since 142 * __GFP_NOFAIL is going away, we will arrange 143 * to retry the allocation ourselves. 144 */ 145 if ((gfp_mask & __GFP_FS) == 0) { 146 congestion_wait(BLK_RW_ASYNC, HZ/50); 147 goto alloc_transaction; 148 } 149 return -ENOMEM; 150 } 151 } 152 153 jbd_debug(3, "New handle %p going live.\n", handle); 154 155 /* 156 * We need to hold j_state_lock until t_updates has been incremented, 157 * for proper journal barrier handling 158 */ 159 repeat: 160 read_lock(&journal->j_state_lock); 161 BUG_ON(journal->j_flags & JBD2_UNMOUNT); 162 if (is_journal_aborted(journal) || 163 (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) { 164 read_unlock(&journal->j_state_lock); 165 kfree(new_transaction); 166 return -EROFS; 167 } 168 169 /* Wait on the journal's transaction barrier if necessary */ 170 if (journal->j_barrier_count) { 171 read_unlock(&journal->j_state_lock); 172 wait_event(journal->j_wait_transaction_locked, 173 journal->j_barrier_count == 0); 174 goto repeat; 175 } 176 177 if (!journal->j_running_transaction) { 178 read_unlock(&journal->j_state_lock); 179 if (!new_transaction) 180 goto alloc_transaction; 181 write_lock(&journal->j_state_lock); 182 if (!journal->j_running_transaction) { 183 jbd2_get_transaction(journal, new_transaction); 184 new_transaction = NULL; 185 } 186 write_unlock(&journal->j_state_lock); 187 goto repeat; 188 } 189 190 transaction = journal->j_running_transaction; 191 192 /* 193 * If the current transaction is locked down for commit, wait for the 194 * lock to be released. 195 */ 196 if (transaction->t_state == T_LOCKED) { 197 DEFINE_WAIT(wait); 198 199 prepare_to_wait(&journal->j_wait_transaction_locked, 200 &wait, TASK_UNINTERRUPTIBLE); 201 read_unlock(&journal->j_state_lock); 202 schedule(); 203 finish_wait(&journal->j_wait_transaction_locked, &wait); 204 goto repeat; 205 } 206 207 /* 208 * If there is not enough space left in the log to write all potential 209 * buffers requested by this operation, we need to stall pending a log 210 * checkpoint to free some more log space. 211 */ 212 needed = atomic_add_return(nblocks, 213 &transaction->t_outstanding_credits); 214 215 if (needed > journal->j_max_transaction_buffers) { 216 /* 217 * If the current transaction is already too large, then start 218 * to commit it: we can then go back and attach this handle to 219 * a new transaction. 220 */ 221 DEFINE_WAIT(wait); 222 223 jbd_debug(2, "Handle %p starting new commit...\n", handle); 224 atomic_sub(nblocks, &transaction->t_outstanding_credits); 225 prepare_to_wait(&journal->j_wait_transaction_locked, &wait, 226 TASK_UNINTERRUPTIBLE); 227 tid = transaction->t_tid; 228 need_to_start = !tid_geq(journal->j_commit_request, tid); 229 read_unlock(&journal->j_state_lock); 230 if (need_to_start) 231 jbd2_log_start_commit(journal, tid); 232 schedule(); 233 finish_wait(&journal->j_wait_transaction_locked, &wait); 234 goto repeat; 235 } 236 237 /* 238 * The commit code assumes that it can get enough log space 239 * without forcing a checkpoint. This is *critical* for 240 * correctness: a checkpoint of a buffer which is also 241 * associated with a committing transaction creates a deadlock, 242 * so commit simply cannot force through checkpoints. 243 * 244 * We must therefore ensure the necessary space in the journal 245 * *before* starting to dirty potentially checkpointed buffers 246 * in the new transaction. 247 * 248 * The worst part is, any transaction currently committing can 249 * reduce the free space arbitrarily. Be careful to account for 250 * those buffers when checkpointing. 251 */ 252 253 /* 254 * @@@ AKPM: This seems rather over-defensive. We're giving commit 255 * a _lot_ of headroom: 1/4 of the journal plus the size of 256 * the committing transaction. Really, we only need to give it 257 * committing_transaction->t_outstanding_credits plus "enough" for 258 * the log control blocks. 259 * Also, this test is inconsistent with the matching one in 260 * jbd2_journal_extend(). 261 */ 262 if (__jbd2_log_space_left(journal) < jbd_space_needed(journal)) { 263 jbd_debug(2, "Handle %p waiting for checkpoint...\n", handle); 264 atomic_sub(nblocks, &transaction->t_outstanding_credits); 265 read_unlock(&journal->j_state_lock); 266 write_lock(&journal->j_state_lock); 267 if (__jbd2_log_space_left(journal) < jbd_space_needed(journal)) 268 __jbd2_log_wait_for_space(journal); 269 write_unlock(&journal->j_state_lock); 270 goto repeat; 271 } 272 273 /* OK, account for the buffers that this operation expects to 274 * use and add the handle to the running transaction. 275 */ 276 update_t_max_wait(transaction, ts); 277 handle->h_transaction = transaction; 278 atomic_inc(&transaction->t_updates); 279 atomic_inc(&transaction->t_handle_count); 280 jbd_debug(4, "Handle %p given %d credits (total %d, free %d)\n", 281 handle, nblocks, 282 atomic_read(&transaction->t_outstanding_credits), 283 __jbd2_log_space_left(journal)); 284 read_unlock(&journal->j_state_lock); 285 286 lock_map_acquire(&handle->h_lockdep_map); 287 kfree(new_transaction); 288 return 0; 289 } 290 291 static struct lock_class_key jbd2_handle_key; 292 293 /* Allocate a new handle. This should probably be in a slab... */ 294 static handle_t *new_handle(int nblocks) 295 { 296 handle_t *handle = jbd2_alloc_handle(GFP_NOFS); 297 if (!handle) 298 return NULL; 299 memset(handle, 0, sizeof(*handle)); 300 handle->h_buffer_credits = nblocks; 301 handle->h_ref = 1; 302 303 lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle", 304 &jbd2_handle_key, 0); 305 306 return handle; 307 } 308 309 /** 310 * handle_t *jbd2_journal_start() - Obtain a new handle. 311 * @journal: Journal to start transaction on. 312 * @nblocks: number of block buffer we might modify 313 * 314 * We make sure that the transaction can guarantee at least nblocks of 315 * modified buffers in the log. We block until the log can guarantee 316 * that much space. 317 * 318 * This function is visible to journal users (like ext3fs), so is not 319 * called with the journal already locked. 320 * 321 * Return a pointer to a newly allocated handle, or an ERR_PTR() value 322 * on failure. 323 */ 324 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, gfp_t gfp_mask) 325 { 326 handle_t *handle = journal_current_handle(); 327 int err; 328 329 if (!journal) 330 return ERR_PTR(-EROFS); 331 332 if (handle) { 333 J_ASSERT(handle->h_transaction->t_journal == journal); 334 handle->h_ref++; 335 return handle; 336 } 337 338 handle = new_handle(nblocks); 339 if (!handle) 340 return ERR_PTR(-ENOMEM); 341 342 current->journal_info = handle; 343 344 err = start_this_handle(journal, handle, gfp_mask); 345 if (err < 0) { 346 jbd2_free_handle(handle); 347 current->journal_info = NULL; 348 handle = ERR_PTR(err); 349 } 350 return handle; 351 } 352 EXPORT_SYMBOL(jbd2__journal_start); 353 354 355 handle_t *jbd2_journal_start(journal_t *journal, int nblocks) 356 { 357 return jbd2__journal_start(journal, nblocks, GFP_NOFS); 358 } 359 EXPORT_SYMBOL(jbd2_journal_start); 360 361 362 /** 363 * int jbd2_journal_extend() - extend buffer credits. 364 * @handle: handle to 'extend' 365 * @nblocks: nr blocks to try to extend by. 366 * 367 * Some transactions, such as large extends and truncates, can be done 368 * atomically all at once or in several stages. The operation requests 369 * a credit for a number of buffer modications in advance, but can 370 * extend its credit if it needs more. 371 * 372 * jbd2_journal_extend tries to give the running handle more buffer credits. 373 * It does not guarantee that allocation - this is a best-effort only. 374 * The calling process MUST be able to deal cleanly with a failure to 375 * extend here. 376 * 377 * Return 0 on success, non-zero on failure. 378 * 379 * return code < 0 implies an error 380 * return code > 0 implies normal transaction-full status. 381 */ 382 int jbd2_journal_extend(handle_t *handle, int nblocks) 383 { 384 transaction_t *transaction = handle->h_transaction; 385 journal_t *journal = transaction->t_journal; 386 int result; 387 int wanted; 388 389 result = -EIO; 390 if (is_handle_aborted(handle)) 391 goto out; 392 393 result = 1; 394 395 read_lock(&journal->j_state_lock); 396 397 /* Don't extend a locked-down transaction! */ 398 if (handle->h_transaction->t_state != T_RUNNING) { 399 jbd_debug(3, "denied handle %p %d blocks: " 400 "transaction not running\n", handle, nblocks); 401 goto error_out; 402 } 403 404 spin_lock(&transaction->t_handle_lock); 405 wanted = atomic_read(&transaction->t_outstanding_credits) + nblocks; 406 407 if (wanted > journal->j_max_transaction_buffers) { 408 jbd_debug(3, "denied handle %p %d blocks: " 409 "transaction too large\n", handle, nblocks); 410 goto unlock; 411 } 412 413 if (wanted > __jbd2_log_space_left(journal)) { 414 jbd_debug(3, "denied handle %p %d blocks: " 415 "insufficient log space\n", handle, nblocks); 416 goto unlock; 417 } 418 419 handle->h_buffer_credits += nblocks; 420 atomic_add(nblocks, &transaction->t_outstanding_credits); 421 result = 0; 422 423 jbd_debug(3, "extended handle %p by %d\n", handle, nblocks); 424 unlock: 425 spin_unlock(&transaction->t_handle_lock); 426 error_out: 427 read_unlock(&journal->j_state_lock); 428 out: 429 return result; 430 } 431 432 433 /** 434 * int jbd2_journal_restart() - restart a handle . 435 * @handle: handle to restart 436 * @nblocks: nr credits requested 437 * 438 * Restart a handle for a multi-transaction filesystem 439 * operation. 440 * 441 * If the jbd2_journal_extend() call above fails to grant new buffer credits 442 * to a running handle, a call to jbd2_journal_restart will commit the 443 * handle's transaction so far and reattach the handle to a new 444 * transaction capabable of guaranteeing the requested number of 445 * credits. 446 */ 447 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask) 448 { 449 transaction_t *transaction = handle->h_transaction; 450 journal_t *journal = transaction->t_journal; 451 tid_t tid; 452 int need_to_start, ret; 453 454 /* If we've had an abort of any type, don't even think about 455 * actually doing the restart! */ 456 if (is_handle_aborted(handle)) 457 return 0; 458 459 /* 460 * First unlink the handle from its current transaction, and start the 461 * commit on that. 462 */ 463 J_ASSERT(atomic_read(&transaction->t_updates) > 0); 464 J_ASSERT(journal_current_handle() == handle); 465 466 read_lock(&journal->j_state_lock); 467 spin_lock(&transaction->t_handle_lock); 468 atomic_sub(handle->h_buffer_credits, 469 &transaction->t_outstanding_credits); 470 if (atomic_dec_and_test(&transaction->t_updates)) 471 wake_up(&journal->j_wait_updates); 472 spin_unlock(&transaction->t_handle_lock); 473 474 jbd_debug(2, "restarting handle %p\n", handle); 475 tid = transaction->t_tid; 476 need_to_start = !tid_geq(journal->j_commit_request, tid); 477 read_unlock(&journal->j_state_lock); 478 if (need_to_start) 479 jbd2_log_start_commit(journal, tid); 480 481 lock_map_release(&handle->h_lockdep_map); 482 handle->h_buffer_credits = nblocks; 483 ret = start_this_handle(journal, handle, gfp_mask); 484 return ret; 485 } 486 EXPORT_SYMBOL(jbd2__journal_restart); 487 488 489 int jbd2_journal_restart(handle_t *handle, int nblocks) 490 { 491 return jbd2__journal_restart(handle, nblocks, GFP_NOFS); 492 } 493 EXPORT_SYMBOL(jbd2_journal_restart); 494 495 /** 496 * void jbd2_journal_lock_updates () - establish a transaction barrier. 497 * @journal: Journal to establish a barrier on. 498 * 499 * This locks out any further updates from being started, and blocks 500 * until all existing updates have completed, returning only once the 501 * journal is in a quiescent state with no updates running. 502 * 503 * The journal lock should not be held on entry. 504 */ 505 void jbd2_journal_lock_updates(journal_t *journal) 506 { 507 DEFINE_WAIT(wait); 508 509 write_lock(&journal->j_state_lock); 510 ++journal->j_barrier_count; 511 512 /* Wait until there are no running updates */ 513 while (1) { 514 transaction_t *transaction = journal->j_running_transaction; 515 516 if (!transaction) 517 break; 518 519 spin_lock(&transaction->t_handle_lock); 520 prepare_to_wait(&journal->j_wait_updates, &wait, 521 TASK_UNINTERRUPTIBLE); 522 if (!atomic_read(&transaction->t_updates)) { 523 spin_unlock(&transaction->t_handle_lock); 524 finish_wait(&journal->j_wait_updates, &wait); 525 break; 526 } 527 spin_unlock(&transaction->t_handle_lock); 528 write_unlock(&journal->j_state_lock); 529 schedule(); 530 finish_wait(&journal->j_wait_updates, &wait); 531 write_lock(&journal->j_state_lock); 532 } 533 write_unlock(&journal->j_state_lock); 534 535 /* 536 * We have now established a barrier against other normal updates, but 537 * we also need to barrier against other jbd2_journal_lock_updates() calls 538 * to make sure that we serialise special journal-locked operations 539 * too. 540 */ 541 mutex_lock(&journal->j_barrier); 542 } 543 544 /** 545 * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier 546 * @journal: Journal to release the barrier on. 547 * 548 * Release a transaction barrier obtained with jbd2_journal_lock_updates(). 549 * 550 * Should be called without the journal lock held. 551 */ 552 void jbd2_journal_unlock_updates (journal_t *journal) 553 { 554 J_ASSERT(journal->j_barrier_count != 0); 555 556 mutex_unlock(&journal->j_barrier); 557 write_lock(&journal->j_state_lock); 558 --journal->j_barrier_count; 559 write_unlock(&journal->j_state_lock); 560 wake_up(&journal->j_wait_transaction_locked); 561 } 562 563 static void warn_dirty_buffer(struct buffer_head *bh) 564 { 565 char b[BDEVNAME_SIZE]; 566 567 printk(KERN_WARNING 568 "JBD2: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). " 569 "There's a risk of filesystem corruption in case of system " 570 "crash.\n", 571 bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr); 572 } 573 574 /* 575 * If the buffer is already part of the current transaction, then there 576 * is nothing we need to do. If it is already part of a prior 577 * transaction which we are still committing to disk, then we need to 578 * make sure that we do not overwrite the old copy: we do copy-out to 579 * preserve the copy going to disk. We also account the buffer against 580 * the handle's metadata buffer credits (unless the buffer is already 581 * part of the transaction, that is). 582 * 583 */ 584 static int 585 do_get_write_access(handle_t *handle, struct journal_head *jh, 586 int force_copy) 587 { 588 struct buffer_head *bh; 589 transaction_t *transaction; 590 journal_t *journal; 591 int error; 592 char *frozen_buffer = NULL; 593 int need_copy = 0; 594 595 if (is_handle_aborted(handle)) 596 return -EROFS; 597 598 transaction = handle->h_transaction; 599 journal = transaction->t_journal; 600 601 jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy); 602 603 JBUFFER_TRACE(jh, "entry"); 604 repeat: 605 bh = jh2bh(jh); 606 607 /* @@@ Need to check for errors here at some point. */ 608 609 lock_buffer(bh); 610 jbd_lock_bh_state(bh); 611 612 /* We now hold the buffer lock so it is safe to query the buffer 613 * state. Is the buffer dirty? 614 * 615 * If so, there are two possibilities. The buffer may be 616 * non-journaled, and undergoing a quite legitimate writeback. 617 * Otherwise, it is journaled, and we don't expect dirty buffers 618 * in that state (the buffers should be marked JBD_Dirty 619 * instead.) So either the IO is being done under our own 620 * control and this is a bug, or it's a third party IO such as 621 * dump(8) (which may leave the buffer scheduled for read --- 622 * ie. locked but not dirty) or tune2fs (which may actually have 623 * the buffer dirtied, ugh.) */ 624 625 if (buffer_dirty(bh)) { 626 /* 627 * First question: is this buffer already part of the current 628 * transaction or the existing committing transaction? 629 */ 630 if (jh->b_transaction) { 631 J_ASSERT_JH(jh, 632 jh->b_transaction == transaction || 633 jh->b_transaction == 634 journal->j_committing_transaction); 635 if (jh->b_next_transaction) 636 J_ASSERT_JH(jh, jh->b_next_transaction == 637 transaction); 638 warn_dirty_buffer(bh); 639 } 640 /* 641 * In any case we need to clean the dirty flag and we must 642 * do it under the buffer lock to be sure we don't race 643 * with running write-out. 644 */ 645 JBUFFER_TRACE(jh, "Journalling dirty buffer"); 646 clear_buffer_dirty(bh); 647 set_buffer_jbddirty(bh); 648 } 649 650 unlock_buffer(bh); 651 652 error = -EROFS; 653 if (is_handle_aborted(handle)) { 654 jbd_unlock_bh_state(bh); 655 goto out; 656 } 657 error = 0; 658 659 /* 660 * The buffer is already part of this transaction if b_transaction or 661 * b_next_transaction points to it 662 */ 663 if (jh->b_transaction == transaction || 664 jh->b_next_transaction == transaction) 665 goto done; 666 667 /* 668 * this is the first time this transaction is touching this buffer, 669 * reset the modified flag 670 */ 671 jh->b_modified = 0; 672 673 /* 674 * If there is already a copy-out version of this buffer, then we don't 675 * need to make another one 676 */ 677 if (jh->b_frozen_data) { 678 JBUFFER_TRACE(jh, "has frozen data"); 679 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 680 jh->b_next_transaction = transaction; 681 goto done; 682 } 683 684 /* Is there data here we need to preserve? */ 685 686 if (jh->b_transaction && jh->b_transaction != transaction) { 687 JBUFFER_TRACE(jh, "owned by older transaction"); 688 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 689 J_ASSERT_JH(jh, jh->b_transaction == 690 journal->j_committing_transaction); 691 692 /* There is one case we have to be very careful about. 693 * If the committing transaction is currently writing 694 * this buffer out to disk and has NOT made a copy-out, 695 * then we cannot modify the buffer contents at all 696 * right now. The essence of copy-out is that it is the 697 * extra copy, not the primary copy, which gets 698 * journaled. If the primary copy is already going to 699 * disk then we cannot do copy-out here. */ 700 701 if (jh->b_jlist == BJ_Shadow) { 702 DEFINE_WAIT_BIT(wait, &bh->b_state, BH_Unshadow); 703 wait_queue_head_t *wqh; 704 705 wqh = bit_waitqueue(&bh->b_state, BH_Unshadow); 706 707 JBUFFER_TRACE(jh, "on shadow: sleep"); 708 jbd_unlock_bh_state(bh); 709 /* commit wakes up all shadow buffers after IO */ 710 for ( ; ; ) { 711 prepare_to_wait(wqh, &wait.wait, 712 TASK_UNINTERRUPTIBLE); 713 if (jh->b_jlist != BJ_Shadow) 714 break; 715 schedule(); 716 } 717 finish_wait(wqh, &wait.wait); 718 goto repeat; 719 } 720 721 /* Only do the copy if the currently-owning transaction 722 * still needs it. If it is on the Forget list, the 723 * committing transaction is past that stage. The 724 * buffer had better remain locked during the kmalloc, 725 * but that should be true --- we hold the journal lock 726 * still and the buffer is already on the BUF_JOURNAL 727 * list so won't be flushed. 728 * 729 * Subtle point, though: if this is a get_undo_access, 730 * then we will be relying on the frozen_data to contain 731 * the new value of the committed_data record after the 732 * transaction, so we HAVE to force the frozen_data copy 733 * in that case. */ 734 735 if (jh->b_jlist != BJ_Forget || force_copy) { 736 JBUFFER_TRACE(jh, "generate frozen data"); 737 if (!frozen_buffer) { 738 JBUFFER_TRACE(jh, "allocate memory for buffer"); 739 jbd_unlock_bh_state(bh); 740 frozen_buffer = 741 jbd2_alloc(jh2bh(jh)->b_size, 742 GFP_NOFS); 743 if (!frozen_buffer) { 744 printk(KERN_EMERG 745 "%s: OOM for frozen_buffer\n", 746 __func__); 747 JBUFFER_TRACE(jh, "oom!"); 748 error = -ENOMEM; 749 jbd_lock_bh_state(bh); 750 goto done; 751 } 752 goto repeat; 753 } 754 jh->b_frozen_data = frozen_buffer; 755 frozen_buffer = NULL; 756 need_copy = 1; 757 } 758 jh->b_next_transaction = transaction; 759 } 760 761 762 /* 763 * Finally, if the buffer is not journaled right now, we need to make 764 * sure it doesn't get written to disk before the caller actually 765 * commits the new data 766 */ 767 if (!jh->b_transaction) { 768 JBUFFER_TRACE(jh, "no transaction"); 769 J_ASSERT_JH(jh, !jh->b_next_transaction); 770 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 771 spin_lock(&journal->j_list_lock); 772 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 773 spin_unlock(&journal->j_list_lock); 774 } 775 776 done: 777 if (need_copy) { 778 struct page *page; 779 int offset; 780 char *source; 781 782 J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)), 783 "Possible IO failure.\n"); 784 page = jh2bh(jh)->b_page; 785 offset = offset_in_page(jh2bh(jh)->b_data); 786 source = kmap_atomic(page, KM_USER0); 787 /* Fire data frozen trigger just before we copy the data */ 788 jbd2_buffer_frozen_trigger(jh, source + offset, 789 jh->b_triggers); 790 memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size); 791 kunmap_atomic(source, KM_USER0); 792 793 /* 794 * Now that the frozen data is saved off, we need to store 795 * any matching triggers. 796 */ 797 jh->b_frozen_triggers = jh->b_triggers; 798 } 799 jbd_unlock_bh_state(bh); 800 801 /* 802 * If we are about to journal a buffer, then any revoke pending on it is 803 * no longer valid 804 */ 805 jbd2_journal_cancel_revoke(handle, jh); 806 807 out: 808 if (unlikely(frozen_buffer)) /* It's usually NULL */ 809 jbd2_free(frozen_buffer, bh->b_size); 810 811 JBUFFER_TRACE(jh, "exit"); 812 return error; 813 } 814 815 /** 816 * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update. 817 * @handle: transaction to add buffer modifications to 818 * @bh: bh to be used for metadata writes 819 * 820 * Returns an error code or 0 on success. 821 * 822 * In full data journalling mode the buffer may be of type BJ_AsyncData, 823 * because we're write()ing a buffer which is also part of a shared mapping. 824 */ 825 826 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh) 827 { 828 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 829 int rc; 830 831 /* We do not want to get caught playing with fields which the 832 * log thread also manipulates. Make sure that the buffer 833 * completes any outstanding IO before proceeding. */ 834 rc = do_get_write_access(handle, jh, 0); 835 jbd2_journal_put_journal_head(jh); 836 return rc; 837 } 838 839 840 /* 841 * When the user wants to journal a newly created buffer_head 842 * (ie. getblk() returned a new buffer and we are going to populate it 843 * manually rather than reading off disk), then we need to keep the 844 * buffer_head locked until it has been completely filled with new 845 * data. In this case, we should be able to make the assertion that 846 * the bh is not already part of an existing transaction. 847 * 848 * The buffer should already be locked by the caller by this point. 849 * There is no lock ranking violation: it was a newly created, 850 * unlocked buffer beforehand. */ 851 852 /** 853 * int jbd2_journal_get_create_access () - notify intent to use newly created bh 854 * @handle: transaction to new buffer to 855 * @bh: new buffer. 856 * 857 * Call this if you create a new bh. 858 */ 859 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh) 860 { 861 transaction_t *transaction = handle->h_transaction; 862 journal_t *journal = transaction->t_journal; 863 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 864 int err; 865 866 jbd_debug(5, "journal_head %p\n", jh); 867 err = -EROFS; 868 if (is_handle_aborted(handle)) 869 goto out; 870 err = 0; 871 872 JBUFFER_TRACE(jh, "entry"); 873 /* 874 * The buffer may already belong to this transaction due to pre-zeroing 875 * in the filesystem's new_block code. It may also be on the previous, 876 * committing transaction's lists, but it HAS to be in Forget state in 877 * that case: the transaction must have deleted the buffer for it to be 878 * reused here. 879 */ 880 jbd_lock_bh_state(bh); 881 spin_lock(&journal->j_list_lock); 882 J_ASSERT_JH(jh, (jh->b_transaction == transaction || 883 jh->b_transaction == NULL || 884 (jh->b_transaction == journal->j_committing_transaction && 885 jh->b_jlist == BJ_Forget))); 886 887 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 888 J_ASSERT_JH(jh, buffer_locked(jh2bh(jh))); 889 890 if (jh->b_transaction == NULL) { 891 /* 892 * Previous jbd2_journal_forget() could have left the buffer 893 * with jbddirty bit set because it was being committed. When 894 * the commit finished, we've filed the buffer for 895 * checkpointing and marked it dirty. Now we are reallocating 896 * the buffer so the transaction freeing it must have 897 * committed and so it's safe to clear the dirty bit. 898 */ 899 clear_buffer_dirty(jh2bh(jh)); 900 /* first access by this transaction */ 901 jh->b_modified = 0; 902 903 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 904 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 905 } else if (jh->b_transaction == journal->j_committing_transaction) { 906 /* first access by this transaction */ 907 jh->b_modified = 0; 908 909 JBUFFER_TRACE(jh, "set next transaction"); 910 jh->b_next_transaction = transaction; 911 } 912 spin_unlock(&journal->j_list_lock); 913 jbd_unlock_bh_state(bh); 914 915 /* 916 * akpm: I added this. ext3_alloc_branch can pick up new indirect 917 * blocks which contain freed but then revoked metadata. We need 918 * to cancel the revoke in case we end up freeing it yet again 919 * and the reallocating as data - this would cause a second revoke, 920 * which hits an assertion error. 921 */ 922 JBUFFER_TRACE(jh, "cancelling revoke"); 923 jbd2_journal_cancel_revoke(handle, jh); 924 out: 925 jbd2_journal_put_journal_head(jh); 926 return err; 927 } 928 929 /** 930 * int jbd2_journal_get_undo_access() - Notify intent to modify metadata with 931 * non-rewindable consequences 932 * @handle: transaction 933 * @bh: buffer to undo 934 * 935 * Sometimes there is a need to distinguish between metadata which has 936 * been committed to disk and that which has not. The ext3fs code uses 937 * this for freeing and allocating space, we have to make sure that we 938 * do not reuse freed space until the deallocation has been committed, 939 * since if we overwrote that space we would make the delete 940 * un-rewindable in case of a crash. 941 * 942 * To deal with that, jbd2_journal_get_undo_access requests write access to a 943 * buffer for parts of non-rewindable operations such as delete 944 * operations on the bitmaps. The journaling code must keep a copy of 945 * the buffer's contents prior to the undo_access call until such time 946 * as we know that the buffer has definitely been committed to disk. 947 * 948 * We never need to know which transaction the committed data is part 949 * of, buffers touched here are guaranteed to be dirtied later and so 950 * will be committed to a new transaction in due course, at which point 951 * we can discard the old committed data pointer. 952 * 953 * Returns error number or 0 on success. 954 */ 955 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh) 956 { 957 int err; 958 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 959 char *committed_data = NULL; 960 961 JBUFFER_TRACE(jh, "entry"); 962 963 /* 964 * Do this first --- it can drop the journal lock, so we want to 965 * make sure that obtaining the committed_data is done 966 * atomically wrt. completion of any outstanding commits. 967 */ 968 err = do_get_write_access(handle, jh, 1); 969 if (err) 970 goto out; 971 972 repeat: 973 if (!jh->b_committed_data) { 974 committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS); 975 if (!committed_data) { 976 printk(KERN_EMERG "%s: No memory for committed data\n", 977 __func__); 978 err = -ENOMEM; 979 goto out; 980 } 981 } 982 983 jbd_lock_bh_state(bh); 984 if (!jh->b_committed_data) { 985 /* Copy out the current buffer contents into the 986 * preserved, committed copy. */ 987 JBUFFER_TRACE(jh, "generate b_committed data"); 988 if (!committed_data) { 989 jbd_unlock_bh_state(bh); 990 goto repeat; 991 } 992 993 jh->b_committed_data = committed_data; 994 committed_data = NULL; 995 memcpy(jh->b_committed_data, bh->b_data, bh->b_size); 996 } 997 jbd_unlock_bh_state(bh); 998 out: 999 jbd2_journal_put_journal_head(jh); 1000 if (unlikely(committed_data)) 1001 jbd2_free(committed_data, bh->b_size); 1002 return err; 1003 } 1004 1005 /** 1006 * void jbd2_journal_set_triggers() - Add triggers for commit writeout 1007 * @bh: buffer to trigger on 1008 * @type: struct jbd2_buffer_trigger_type containing the trigger(s). 1009 * 1010 * Set any triggers on this journal_head. This is always safe, because 1011 * triggers for a committing buffer will be saved off, and triggers for 1012 * a running transaction will match the buffer in that transaction. 1013 * 1014 * Call with NULL to clear the triggers. 1015 */ 1016 void jbd2_journal_set_triggers(struct buffer_head *bh, 1017 struct jbd2_buffer_trigger_type *type) 1018 { 1019 struct journal_head *jh = bh2jh(bh); 1020 1021 jh->b_triggers = type; 1022 } 1023 1024 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data, 1025 struct jbd2_buffer_trigger_type *triggers) 1026 { 1027 struct buffer_head *bh = jh2bh(jh); 1028 1029 if (!triggers || !triggers->t_frozen) 1030 return; 1031 1032 triggers->t_frozen(triggers, bh, mapped_data, bh->b_size); 1033 } 1034 1035 void jbd2_buffer_abort_trigger(struct journal_head *jh, 1036 struct jbd2_buffer_trigger_type *triggers) 1037 { 1038 if (!triggers || !triggers->t_abort) 1039 return; 1040 1041 triggers->t_abort(triggers, jh2bh(jh)); 1042 } 1043 1044 1045 1046 /** 1047 * int jbd2_journal_dirty_metadata() - mark a buffer as containing dirty metadata 1048 * @handle: transaction to add buffer to. 1049 * @bh: buffer to mark 1050 * 1051 * mark dirty metadata which needs to be journaled as part of the current 1052 * transaction. 1053 * 1054 * The buffer must have previously had jbd2_journal_get_write_access() 1055 * called so that it has a valid journal_head attached to the buffer 1056 * head. 1057 * 1058 * The buffer is placed on the transaction's metadata list and is marked 1059 * as belonging to the transaction. 1060 * 1061 * Returns error number or 0 on success. 1062 * 1063 * Special care needs to be taken if the buffer already belongs to the 1064 * current committing transaction (in which case we should have frozen 1065 * data present for that commit). In that case, we don't relink the 1066 * buffer: that only gets done when the old transaction finally 1067 * completes its commit. 1068 */ 1069 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh) 1070 { 1071 transaction_t *transaction = handle->h_transaction; 1072 journal_t *journal = transaction->t_journal; 1073 struct journal_head *jh = bh2jh(bh); 1074 int ret = 0; 1075 1076 jbd_debug(5, "journal_head %p\n", jh); 1077 JBUFFER_TRACE(jh, "entry"); 1078 if (is_handle_aborted(handle)) 1079 goto out; 1080 if (!buffer_jbd(bh)) { 1081 ret = -EUCLEAN; 1082 goto out; 1083 } 1084 1085 jbd_lock_bh_state(bh); 1086 1087 if (jh->b_modified == 0) { 1088 /* 1089 * This buffer's got modified and becoming part 1090 * of the transaction. This needs to be done 1091 * once a transaction -bzzz 1092 */ 1093 jh->b_modified = 1; 1094 J_ASSERT_JH(jh, handle->h_buffer_credits > 0); 1095 handle->h_buffer_credits--; 1096 } 1097 1098 /* 1099 * fastpath, to avoid expensive locking. If this buffer is already 1100 * on the running transaction's metadata list there is nothing to do. 1101 * Nobody can take it off again because there is a handle open. 1102 * I _think_ we're OK here with SMP barriers - a mistaken decision will 1103 * result in this test being false, so we go in and take the locks. 1104 */ 1105 if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) { 1106 JBUFFER_TRACE(jh, "fastpath"); 1107 if (unlikely(jh->b_transaction != 1108 journal->j_running_transaction)) { 1109 printk(KERN_EMERG "JBD: %s: " 1110 "jh->b_transaction (%llu, %p, %u) != " 1111 "journal->j_running_transaction (%p, %u)", 1112 journal->j_devname, 1113 (unsigned long long) bh->b_blocknr, 1114 jh->b_transaction, 1115 jh->b_transaction ? jh->b_transaction->t_tid : 0, 1116 journal->j_running_transaction, 1117 journal->j_running_transaction ? 1118 journal->j_running_transaction->t_tid : 0); 1119 ret = -EINVAL; 1120 } 1121 goto out_unlock_bh; 1122 } 1123 1124 set_buffer_jbddirty(bh); 1125 1126 /* 1127 * Metadata already on the current transaction list doesn't 1128 * need to be filed. Metadata on another transaction's list must 1129 * be committing, and will be refiled once the commit completes: 1130 * leave it alone for now. 1131 */ 1132 if (jh->b_transaction != transaction) { 1133 JBUFFER_TRACE(jh, "already on other transaction"); 1134 if (unlikely(jh->b_transaction != 1135 journal->j_committing_transaction)) { 1136 printk(KERN_EMERG "JBD: %s: " 1137 "jh->b_transaction (%llu, %p, %u) != " 1138 "journal->j_committing_transaction (%p, %u)", 1139 journal->j_devname, 1140 (unsigned long long) bh->b_blocknr, 1141 jh->b_transaction, 1142 jh->b_transaction ? jh->b_transaction->t_tid : 0, 1143 journal->j_committing_transaction, 1144 journal->j_committing_transaction ? 1145 journal->j_committing_transaction->t_tid : 0); 1146 ret = -EINVAL; 1147 } 1148 if (unlikely(jh->b_next_transaction != transaction)) { 1149 printk(KERN_EMERG "JBD: %s: " 1150 "jh->b_next_transaction (%llu, %p, %u) != " 1151 "transaction (%p, %u)", 1152 journal->j_devname, 1153 (unsigned long long) bh->b_blocknr, 1154 jh->b_next_transaction, 1155 jh->b_next_transaction ? 1156 jh->b_next_transaction->t_tid : 0, 1157 transaction, transaction->t_tid); 1158 ret = -EINVAL; 1159 } 1160 /* And this case is illegal: we can't reuse another 1161 * transaction's data buffer, ever. */ 1162 goto out_unlock_bh; 1163 } 1164 1165 /* That test should have eliminated the following case: */ 1166 J_ASSERT_JH(jh, jh->b_frozen_data == NULL); 1167 1168 JBUFFER_TRACE(jh, "file as BJ_Metadata"); 1169 spin_lock(&journal->j_list_lock); 1170 __jbd2_journal_file_buffer(jh, handle->h_transaction, BJ_Metadata); 1171 spin_unlock(&journal->j_list_lock); 1172 out_unlock_bh: 1173 jbd_unlock_bh_state(bh); 1174 out: 1175 JBUFFER_TRACE(jh, "exit"); 1176 WARN_ON(ret); /* All errors are bugs, so dump the stack */ 1177 return ret; 1178 } 1179 1180 /* 1181 * jbd2_journal_release_buffer: undo a get_write_access without any buffer 1182 * updates, if the update decided in the end that it didn't need access. 1183 * 1184 */ 1185 void 1186 jbd2_journal_release_buffer(handle_t *handle, struct buffer_head *bh) 1187 { 1188 BUFFER_TRACE(bh, "entry"); 1189 } 1190 1191 /** 1192 * void jbd2_journal_forget() - bforget() for potentially-journaled buffers. 1193 * @handle: transaction handle 1194 * @bh: bh to 'forget' 1195 * 1196 * We can only do the bforget if there are no commits pending against the 1197 * buffer. If the buffer is dirty in the current running transaction we 1198 * can safely unlink it. 1199 * 1200 * bh may not be a journalled buffer at all - it may be a non-JBD 1201 * buffer which came off the hashtable. Check for this. 1202 * 1203 * Decrements bh->b_count by one. 1204 * 1205 * Allow this call even if the handle has aborted --- it may be part of 1206 * the caller's cleanup after an abort. 1207 */ 1208 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh) 1209 { 1210 transaction_t *transaction = handle->h_transaction; 1211 journal_t *journal = transaction->t_journal; 1212 struct journal_head *jh; 1213 int drop_reserve = 0; 1214 int err = 0; 1215 int was_modified = 0; 1216 1217 BUFFER_TRACE(bh, "entry"); 1218 1219 jbd_lock_bh_state(bh); 1220 spin_lock(&journal->j_list_lock); 1221 1222 if (!buffer_jbd(bh)) 1223 goto not_jbd; 1224 jh = bh2jh(bh); 1225 1226 /* Critical error: attempting to delete a bitmap buffer, maybe? 1227 * Don't do any jbd operations, and return an error. */ 1228 if (!J_EXPECT_JH(jh, !jh->b_committed_data, 1229 "inconsistent data on disk")) { 1230 err = -EIO; 1231 goto not_jbd; 1232 } 1233 1234 /* keep track of wether or not this transaction modified us */ 1235 was_modified = jh->b_modified; 1236 1237 /* 1238 * The buffer's going from the transaction, we must drop 1239 * all references -bzzz 1240 */ 1241 jh->b_modified = 0; 1242 1243 if (jh->b_transaction == handle->h_transaction) { 1244 J_ASSERT_JH(jh, !jh->b_frozen_data); 1245 1246 /* If we are forgetting a buffer which is already part 1247 * of this transaction, then we can just drop it from 1248 * the transaction immediately. */ 1249 clear_buffer_dirty(bh); 1250 clear_buffer_jbddirty(bh); 1251 1252 JBUFFER_TRACE(jh, "belongs to current transaction: unfile"); 1253 1254 /* 1255 * we only want to drop a reference if this transaction 1256 * modified the buffer 1257 */ 1258 if (was_modified) 1259 drop_reserve = 1; 1260 1261 /* 1262 * We are no longer going to journal this buffer. 1263 * However, the commit of this transaction is still 1264 * important to the buffer: the delete that we are now 1265 * processing might obsolete an old log entry, so by 1266 * committing, we can satisfy the buffer's checkpoint. 1267 * 1268 * So, if we have a checkpoint on the buffer, we should 1269 * now refile the buffer on our BJ_Forget list so that 1270 * we know to remove the checkpoint after we commit. 1271 */ 1272 1273 if (jh->b_cp_transaction) { 1274 __jbd2_journal_temp_unlink_buffer(jh); 1275 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1276 } else { 1277 __jbd2_journal_unfile_buffer(jh); 1278 if (!buffer_jbd(bh)) { 1279 spin_unlock(&journal->j_list_lock); 1280 jbd_unlock_bh_state(bh); 1281 __bforget(bh); 1282 goto drop; 1283 } 1284 } 1285 } else if (jh->b_transaction) { 1286 J_ASSERT_JH(jh, (jh->b_transaction == 1287 journal->j_committing_transaction)); 1288 /* However, if the buffer is still owned by a prior 1289 * (committing) transaction, we can't drop it yet... */ 1290 JBUFFER_TRACE(jh, "belongs to older transaction"); 1291 /* ... but we CAN drop it from the new transaction if we 1292 * have also modified it since the original commit. */ 1293 1294 if (jh->b_next_transaction) { 1295 J_ASSERT(jh->b_next_transaction == transaction); 1296 jh->b_next_transaction = NULL; 1297 1298 /* 1299 * only drop a reference if this transaction modified 1300 * the buffer 1301 */ 1302 if (was_modified) 1303 drop_reserve = 1; 1304 } 1305 } 1306 1307 not_jbd: 1308 spin_unlock(&journal->j_list_lock); 1309 jbd_unlock_bh_state(bh); 1310 __brelse(bh); 1311 drop: 1312 if (drop_reserve) { 1313 /* no need to reserve log space for this block -bzzz */ 1314 handle->h_buffer_credits++; 1315 } 1316 return err; 1317 } 1318 1319 /** 1320 * int jbd2_journal_stop() - complete a transaction 1321 * @handle: tranaction to complete. 1322 * 1323 * All done for a particular handle. 1324 * 1325 * There is not much action needed here. We just return any remaining 1326 * buffer credits to the transaction and remove the handle. The only 1327 * complication is that we need to start a commit operation if the 1328 * filesystem is marked for synchronous update. 1329 * 1330 * jbd2_journal_stop itself will not usually return an error, but it may 1331 * do so in unusual circumstances. In particular, expect it to 1332 * return -EIO if a jbd2_journal_abort has been executed since the 1333 * transaction began. 1334 */ 1335 int jbd2_journal_stop(handle_t *handle) 1336 { 1337 transaction_t *transaction = handle->h_transaction; 1338 journal_t *journal = transaction->t_journal; 1339 int err, wait_for_commit = 0; 1340 tid_t tid; 1341 pid_t pid; 1342 1343 J_ASSERT(journal_current_handle() == handle); 1344 1345 if (is_handle_aborted(handle)) 1346 err = -EIO; 1347 else { 1348 J_ASSERT(atomic_read(&transaction->t_updates) > 0); 1349 err = 0; 1350 } 1351 1352 if (--handle->h_ref > 0) { 1353 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1, 1354 handle->h_ref); 1355 return err; 1356 } 1357 1358 jbd_debug(4, "Handle %p going down\n", handle); 1359 1360 /* 1361 * Implement synchronous transaction batching. If the handle 1362 * was synchronous, don't force a commit immediately. Let's 1363 * yield and let another thread piggyback onto this 1364 * transaction. Keep doing that while new threads continue to 1365 * arrive. It doesn't cost much - we're about to run a commit 1366 * and sleep on IO anyway. Speeds up many-threaded, many-dir 1367 * operations by 30x or more... 1368 * 1369 * We try and optimize the sleep time against what the 1370 * underlying disk can do, instead of having a static sleep 1371 * time. This is useful for the case where our storage is so 1372 * fast that it is more optimal to go ahead and force a flush 1373 * and wait for the transaction to be committed than it is to 1374 * wait for an arbitrary amount of time for new writers to 1375 * join the transaction. We achieve this by measuring how 1376 * long it takes to commit a transaction, and compare it with 1377 * how long this transaction has been running, and if run time 1378 * < commit time then we sleep for the delta and commit. This 1379 * greatly helps super fast disks that would see slowdowns as 1380 * more threads started doing fsyncs. 1381 * 1382 * But don't do this if this process was the most recent one 1383 * to perform a synchronous write. We do this to detect the 1384 * case where a single process is doing a stream of sync 1385 * writes. No point in waiting for joiners in that case. 1386 */ 1387 pid = current->pid; 1388 if (handle->h_sync && journal->j_last_sync_writer != pid) { 1389 u64 commit_time, trans_time; 1390 1391 journal->j_last_sync_writer = pid; 1392 1393 read_lock(&journal->j_state_lock); 1394 commit_time = journal->j_average_commit_time; 1395 read_unlock(&journal->j_state_lock); 1396 1397 trans_time = ktime_to_ns(ktime_sub(ktime_get(), 1398 transaction->t_start_time)); 1399 1400 commit_time = max_t(u64, commit_time, 1401 1000*journal->j_min_batch_time); 1402 commit_time = min_t(u64, commit_time, 1403 1000*journal->j_max_batch_time); 1404 1405 if (trans_time < commit_time) { 1406 ktime_t expires = ktime_add_ns(ktime_get(), 1407 commit_time); 1408 set_current_state(TASK_UNINTERRUPTIBLE); 1409 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS); 1410 } 1411 } 1412 1413 if (handle->h_sync) 1414 transaction->t_synchronous_commit = 1; 1415 current->journal_info = NULL; 1416 atomic_sub(handle->h_buffer_credits, 1417 &transaction->t_outstanding_credits); 1418 1419 /* 1420 * If the handle is marked SYNC, we need to set another commit 1421 * going! We also want to force a commit if the current 1422 * transaction is occupying too much of the log, or if the 1423 * transaction is too old now. 1424 */ 1425 if (handle->h_sync || 1426 (atomic_read(&transaction->t_outstanding_credits) > 1427 journal->j_max_transaction_buffers) || 1428 time_after_eq(jiffies, transaction->t_expires)) { 1429 /* Do this even for aborted journals: an abort still 1430 * completes the commit thread, it just doesn't write 1431 * anything to disk. */ 1432 1433 jbd_debug(2, "transaction too old, requesting commit for " 1434 "handle %p\n", handle); 1435 /* This is non-blocking */ 1436 jbd2_log_start_commit(journal, transaction->t_tid); 1437 1438 /* 1439 * Special case: JBD2_SYNC synchronous updates require us 1440 * to wait for the commit to complete. 1441 */ 1442 if (handle->h_sync && !(current->flags & PF_MEMALLOC)) 1443 wait_for_commit = 1; 1444 } 1445 1446 /* 1447 * Once we drop t_updates, if it goes to zero the transaction 1448 * could start committing on us and eventually disappear. So 1449 * once we do this, we must not dereference transaction 1450 * pointer again. 1451 */ 1452 tid = transaction->t_tid; 1453 if (atomic_dec_and_test(&transaction->t_updates)) { 1454 wake_up(&journal->j_wait_updates); 1455 if (journal->j_barrier_count) 1456 wake_up(&journal->j_wait_transaction_locked); 1457 } 1458 1459 if (wait_for_commit) 1460 err = jbd2_log_wait_commit(journal, tid); 1461 1462 lock_map_release(&handle->h_lockdep_map); 1463 1464 jbd2_free_handle(handle); 1465 return err; 1466 } 1467 1468 /** 1469 * int jbd2_journal_force_commit() - force any uncommitted transactions 1470 * @journal: journal to force 1471 * 1472 * For synchronous operations: force any uncommitted transactions 1473 * to disk. May seem kludgy, but it reuses all the handle batching 1474 * code in a very simple manner. 1475 */ 1476 int jbd2_journal_force_commit(journal_t *journal) 1477 { 1478 handle_t *handle; 1479 int ret; 1480 1481 handle = jbd2_journal_start(journal, 1); 1482 if (IS_ERR(handle)) { 1483 ret = PTR_ERR(handle); 1484 } else { 1485 handle->h_sync = 1; 1486 ret = jbd2_journal_stop(handle); 1487 } 1488 return ret; 1489 } 1490 1491 /* 1492 * 1493 * List management code snippets: various functions for manipulating the 1494 * transaction buffer lists. 1495 * 1496 */ 1497 1498 /* 1499 * Append a buffer to a transaction list, given the transaction's list head 1500 * pointer. 1501 * 1502 * j_list_lock is held. 1503 * 1504 * jbd_lock_bh_state(jh2bh(jh)) is held. 1505 */ 1506 1507 static inline void 1508 __blist_add_buffer(struct journal_head **list, struct journal_head *jh) 1509 { 1510 if (!*list) { 1511 jh->b_tnext = jh->b_tprev = jh; 1512 *list = jh; 1513 } else { 1514 /* Insert at the tail of the list to preserve order */ 1515 struct journal_head *first = *list, *last = first->b_tprev; 1516 jh->b_tprev = last; 1517 jh->b_tnext = first; 1518 last->b_tnext = first->b_tprev = jh; 1519 } 1520 } 1521 1522 /* 1523 * Remove a buffer from a transaction list, given the transaction's list 1524 * head pointer. 1525 * 1526 * Called with j_list_lock held, and the journal may not be locked. 1527 * 1528 * jbd_lock_bh_state(jh2bh(jh)) is held. 1529 */ 1530 1531 static inline void 1532 __blist_del_buffer(struct journal_head **list, struct journal_head *jh) 1533 { 1534 if (*list == jh) { 1535 *list = jh->b_tnext; 1536 if (*list == jh) 1537 *list = NULL; 1538 } 1539 jh->b_tprev->b_tnext = jh->b_tnext; 1540 jh->b_tnext->b_tprev = jh->b_tprev; 1541 } 1542 1543 /* 1544 * Remove a buffer from the appropriate transaction list. 1545 * 1546 * Note that this function can *change* the value of 1547 * bh->b_transaction->t_buffers, t_forget, t_iobuf_list, t_shadow_list, 1548 * t_log_list or t_reserved_list. If the caller is holding onto a copy of one 1549 * of these pointers, it could go bad. Generally the caller needs to re-read 1550 * the pointer from the transaction_t. 1551 * 1552 * Called under j_list_lock. The journal may not be locked. 1553 */ 1554 void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh) 1555 { 1556 struct journal_head **list = NULL; 1557 transaction_t *transaction; 1558 struct buffer_head *bh = jh2bh(jh); 1559 1560 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 1561 transaction = jh->b_transaction; 1562 if (transaction) 1563 assert_spin_locked(&transaction->t_journal->j_list_lock); 1564 1565 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 1566 if (jh->b_jlist != BJ_None) 1567 J_ASSERT_JH(jh, transaction != NULL); 1568 1569 switch (jh->b_jlist) { 1570 case BJ_None: 1571 return; 1572 case BJ_Metadata: 1573 transaction->t_nr_buffers--; 1574 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0); 1575 list = &transaction->t_buffers; 1576 break; 1577 case BJ_Forget: 1578 list = &transaction->t_forget; 1579 break; 1580 case BJ_IO: 1581 list = &transaction->t_iobuf_list; 1582 break; 1583 case BJ_Shadow: 1584 list = &transaction->t_shadow_list; 1585 break; 1586 case BJ_LogCtl: 1587 list = &transaction->t_log_list; 1588 break; 1589 case BJ_Reserved: 1590 list = &transaction->t_reserved_list; 1591 break; 1592 } 1593 1594 __blist_del_buffer(list, jh); 1595 jh->b_jlist = BJ_None; 1596 if (test_clear_buffer_jbddirty(bh)) 1597 mark_buffer_dirty(bh); /* Expose it to the VM */ 1598 } 1599 1600 /* 1601 * Remove buffer from all transactions. 1602 * 1603 * Called with bh_state lock and j_list_lock 1604 * 1605 * jh and bh may be already freed when this function returns. 1606 */ 1607 static void __jbd2_journal_unfile_buffer(struct journal_head *jh) 1608 { 1609 __jbd2_journal_temp_unlink_buffer(jh); 1610 jh->b_transaction = NULL; 1611 jbd2_journal_put_journal_head(jh); 1612 } 1613 1614 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh) 1615 { 1616 struct buffer_head *bh = jh2bh(jh); 1617 1618 /* Get reference so that buffer cannot be freed before we unlock it */ 1619 get_bh(bh); 1620 jbd_lock_bh_state(bh); 1621 spin_lock(&journal->j_list_lock); 1622 __jbd2_journal_unfile_buffer(jh); 1623 spin_unlock(&journal->j_list_lock); 1624 jbd_unlock_bh_state(bh); 1625 __brelse(bh); 1626 } 1627 1628 /* 1629 * Called from jbd2_journal_try_to_free_buffers(). 1630 * 1631 * Called under jbd_lock_bh_state(bh) 1632 */ 1633 static void 1634 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh) 1635 { 1636 struct journal_head *jh; 1637 1638 jh = bh2jh(bh); 1639 1640 if (buffer_locked(bh) || buffer_dirty(bh)) 1641 goto out; 1642 1643 if (jh->b_next_transaction != NULL) 1644 goto out; 1645 1646 spin_lock(&journal->j_list_lock); 1647 if (jh->b_cp_transaction != NULL && jh->b_transaction == NULL) { 1648 /* written-back checkpointed metadata buffer */ 1649 if (jh->b_jlist == BJ_None) { 1650 JBUFFER_TRACE(jh, "remove from checkpoint list"); 1651 __jbd2_journal_remove_checkpoint(jh); 1652 } 1653 } 1654 spin_unlock(&journal->j_list_lock); 1655 out: 1656 return; 1657 } 1658 1659 /** 1660 * int jbd2_journal_try_to_free_buffers() - try to free page buffers. 1661 * @journal: journal for operation 1662 * @page: to try and free 1663 * @gfp_mask: we use the mask to detect how hard should we try to release 1664 * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to 1665 * release the buffers. 1666 * 1667 * 1668 * For all the buffers on this page, 1669 * if they are fully written out ordered data, move them onto BUF_CLEAN 1670 * so try_to_free_buffers() can reap them. 1671 * 1672 * This function returns non-zero if we wish try_to_free_buffers() 1673 * to be called. We do this if the page is releasable by try_to_free_buffers(). 1674 * We also do it if the page has locked or dirty buffers and the caller wants 1675 * us to perform sync or async writeout. 1676 * 1677 * This complicates JBD locking somewhat. We aren't protected by the 1678 * BKL here. We wish to remove the buffer from its committing or 1679 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer. 1680 * 1681 * This may *change* the value of transaction_t->t_datalist, so anyone 1682 * who looks at t_datalist needs to lock against this function. 1683 * 1684 * Even worse, someone may be doing a jbd2_journal_dirty_data on this 1685 * buffer. So we need to lock against that. jbd2_journal_dirty_data() 1686 * will come out of the lock with the buffer dirty, which makes it 1687 * ineligible for release here. 1688 * 1689 * Who else is affected by this? hmm... Really the only contender 1690 * is do_get_write_access() - it could be looking at the buffer while 1691 * journal_try_to_free_buffer() is changing its state. But that 1692 * cannot happen because we never reallocate freed data as metadata 1693 * while the data is part of a transaction. Yes? 1694 * 1695 * Return 0 on failure, 1 on success 1696 */ 1697 int jbd2_journal_try_to_free_buffers(journal_t *journal, 1698 struct page *page, gfp_t gfp_mask) 1699 { 1700 struct buffer_head *head; 1701 struct buffer_head *bh; 1702 int ret = 0; 1703 1704 J_ASSERT(PageLocked(page)); 1705 1706 head = page_buffers(page); 1707 bh = head; 1708 do { 1709 struct journal_head *jh; 1710 1711 /* 1712 * We take our own ref against the journal_head here to avoid 1713 * having to add tons of locking around each instance of 1714 * jbd2_journal_put_journal_head(). 1715 */ 1716 jh = jbd2_journal_grab_journal_head(bh); 1717 if (!jh) 1718 continue; 1719 1720 jbd_lock_bh_state(bh); 1721 __journal_try_to_free_buffer(journal, bh); 1722 jbd2_journal_put_journal_head(jh); 1723 jbd_unlock_bh_state(bh); 1724 if (buffer_jbd(bh)) 1725 goto busy; 1726 } while ((bh = bh->b_this_page) != head); 1727 1728 ret = try_to_free_buffers(page); 1729 1730 busy: 1731 return ret; 1732 } 1733 1734 /* 1735 * This buffer is no longer needed. If it is on an older transaction's 1736 * checkpoint list we need to record it on this transaction's forget list 1737 * to pin this buffer (and hence its checkpointing transaction) down until 1738 * this transaction commits. If the buffer isn't on a checkpoint list, we 1739 * release it. 1740 * Returns non-zero if JBD no longer has an interest in the buffer. 1741 * 1742 * Called under j_list_lock. 1743 * 1744 * Called under jbd_lock_bh_state(bh). 1745 */ 1746 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction) 1747 { 1748 int may_free = 1; 1749 struct buffer_head *bh = jh2bh(jh); 1750 1751 if (jh->b_cp_transaction) { 1752 JBUFFER_TRACE(jh, "on running+cp transaction"); 1753 __jbd2_journal_temp_unlink_buffer(jh); 1754 /* 1755 * We don't want to write the buffer anymore, clear the 1756 * bit so that we don't confuse checks in 1757 * __journal_file_buffer 1758 */ 1759 clear_buffer_dirty(bh); 1760 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1761 may_free = 0; 1762 } else { 1763 JBUFFER_TRACE(jh, "on running transaction"); 1764 __jbd2_journal_unfile_buffer(jh); 1765 } 1766 return may_free; 1767 } 1768 1769 /* 1770 * jbd2_journal_invalidatepage 1771 * 1772 * This code is tricky. It has a number of cases to deal with. 1773 * 1774 * There are two invariants which this code relies on: 1775 * 1776 * i_size must be updated on disk before we start calling invalidatepage on the 1777 * data. 1778 * 1779 * This is done in ext3 by defining an ext3_setattr method which 1780 * updates i_size before truncate gets going. By maintaining this 1781 * invariant, we can be sure that it is safe to throw away any buffers 1782 * attached to the current transaction: once the transaction commits, 1783 * we know that the data will not be needed. 1784 * 1785 * Note however that we can *not* throw away data belonging to the 1786 * previous, committing transaction! 1787 * 1788 * Any disk blocks which *are* part of the previous, committing 1789 * transaction (and which therefore cannot be discarded immediately) are 1790 * not going to be reused in the new running transaction 1791 * 1792 * The bitmap committed_data images guarantee this: any block which is 1793 * allocated in one transaction and removed in the next will be marked 1794 * as in-use in the committed_data bitmap, so cannot be reused until 1795 * the next transaction to delete the block commits. This means that 1796 * leaving committing buffers dirty is quite safe: the disk blocks 1797 * cannot be reallocated to a different file and so buffer aliasing is 1798 * not possible. 1799 * 1800 * 1801 * The above applies mainly to ordered data mode. In writeback mode we 1802 * don't make guarantees about the order in which data hits disk --- in 1803 * particular we don't guarantee that new dirty data is flushed before 1804 * transaction commit --- so it is always safe just to discard data 1805 * immediately in that mode. --sct 1806 */ 1807 1808 /* 1809 * The journal_unmap_buffer helper function returns zero if the buffer 1810 * concerned remains pinned as an anonymous buffer belonging to an older 1811 * transaction. 1812 * 1813 * We're outside-transaction here. Either or both of j_running_transaction 1814 * and j_committing_transaction may be NULL. 1815 */ 1816 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh) 1817 { 1818 transaction_t *transaction; 1819 struct journal_head *jh; 1820 int may_free = 1; 1821 int ret; 1822 1823 BUFFER_TRACE(bh, "entry"); 1824 1825 /* 1826 * It is safe to proceed here without the j_list_lock because the 1827 * buffers cannot be stolen by try_to_free_buffers as long as we are 1828 * holding the page lock. --sct 1829 */ 1830 1831 if (!buffer_jbd(bh)) 1832 goto zap_buffer_unlocked; 1833 1834 /* OK, we have data buffer in journaled mode */ 1835 write_lock(&journal->j_state_lock); 1836 jbd_lock_bh_state(bh); 1837 spin_lock(&journal->j_list_lock); 1838 1839 jh = jbd2_journal_grab_journal_head(bh); 1840 if (!jh) 1841 goto zap_buffer_no_jh; 1842 1843 /* 1844 * We cannot remove the buffer from checkpoint lists until the 1845 * transaction adding inode to orphan list (let's call it T) 1846 * is committed. Otherwise if the transaction changing the 1847 * buffer would be cleaned from the journal before T is 1848 * committed, a crash will cause that the correct contents of 1849 * the buffer will be lost. On the other hand we have to 1850 * clear the buffer dirty bit at latest at the moment when the 1851 * transaction marking the buffer as freed in the filesystem 1852 * structures is committed because from that moment on the 1853 * buffer can be reallocated and used by a different page. 1854 * Since the block hasn't been freed yet but the inode has 1855 * already been added to orphan list, it is safe for us to add 1856 * the buffer to BJ_Forget list of the newest transaction. 1857 */ 1858 transaction = jh->b_transaction; 1859 if (transaction == NULL) { 1860 /* First case: not on any transaction. If it 1861 * has no checkpoint link, then we can zap it: 1862 * it's a writeback-mode buffer so we don't care 1863 * if it hits disk safely. */ 1864 if (!jh->b_cp_transaction) { 1865 JBUFFER_TRACE(jh, "not on any transaction: zap"); 1866 goto zap_buffer; 1867 } 1868 1869 if (!buffer_dirty(bh)) { 1870 /* bdflush has written it. We can drop it now */ 1871 goto zap_buffer; 1872 } 1873 1874 /* OK, it must be in the journal but still not 1875 * written fully to disk: it's metadata or 1876 * journaled data... */ 1877 1878 if (journal->j_running_transaction) { 1879 /* ... and once the current transaction has 1880 * committed, the buffer won't be needed any 1881 * longer. */ 1882 JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget"); 1883 ret = __dispose_buffer(jh, 1884 journal->j_running_transaction); 1885 jbd2_journal_put_journal_head(jh); 1886 spin_unlock(&journal->j_list_lock); 1887 jbd_unlock_bh_state(bh); 1888 write_unlock(&journal->j_state_lock); 1889 return ret; 1890 } else { 1891 /* There is no currently-running transaction. So the 1892 * orphan record which we wrote for this file must have 1893 * passed into commit. We must attach this buffer to 1894 * the committing transaction, if it exists. */ 1895 if (journal->j_committing_transaction) { 1896 JBUFFER_TRACE(jh, "give to committing trans"); 1897 ret = __dispose_buffer(jh, 1898 journal->j_committing_transaction); 1899 jbd2_journal_put_journal_head(jh); 1900 spin_unlock(&journal->j_list_lock); 1901 jbd_unlock_bh_state(bh); 1902 write_unlock(&journal->j_state_lock); 1903 return ret; 1904 } else { 1905 /* The orphan record's transaction has 1906 * committed. We can cleanse this buffer */ 1907 clear_buffer_jbddirty(bh); 1908 goto zap_buffer; 1909 } 1910 } 1911 } else if (transaction == journal->j_committing_transaction) { 1912 JBUFFER_TRACE(jh, "on committing transaction"); 1913 /* 1914 * The buffer is committing, we simply cannot touch 1915 * it. So we just set j_next_transaction to the 1916 * running transaction (if there is one) and mark 1917 * buffer as freed so that commit code knows it should 1918 * clear dirty bits when it is done with the buffer. 1919 */ 1920 set_buffer_freed(bh); 1921 if (journal->j_running_transaction && buffer_jbddirty(bh)) 1922 jh->b_next_transaction = journal->j_running_transaction; 1923 jbd2_journal_put_journal_head(jh); 1924 spin_unlock(&journal->j_list_lock); 1925 jbd_unlock_bh_state(bh); 1926 write_unlock(&journal->j_state_lock); 1927 return 0; 1928 } else { 1929 /* Good, the buffer belongs to the running transaction. 1930 * We are writing our own transaction's data, not any 1931 * previous one's, so it is safe to throw it away 1932 * (remember that we expect the filesystem to have set 1933 * i_size already for this truncate so recovery will not 1934 * expose the disk blocks we are discarding here.) */ 1935 J_ASSERT_JH(jh, transaction == journal->j_running_transaction); 1936 JBUFFER_TRACE(jh, "on running transaction"); 1937 may_free = __dispose_buffer(jh, transaction); 1938 } 1939 1940 zap_buffer: 1941 jbd2_journal_put_journal_head(jh); 1942 zap_buffer_no_jh: 1943 spin_unlock(&journal->j_list_lock); 1944 jbd_unlock_bh_state(bh); 1945 write_unlock(&journal->j_state_lock); 1946 zap_buffer_unlocked: 1947 clear_buffer_dirty(bh); 1948 J_ASSERT_BH(bh, !buffer_jbddirty(bh)); 1949 clear_buffer_mapped(bh); 1950 clear_buffer_req(bh); 1951 clear_buffer_new(bh); 1952 bh->b_bdev = NULL; 1953 return may_free; 1954 } 1955 1956 /** 1957 * void jbd2_journal_invalidatepage() 1958 * @journal: journal to use for flush... 1959 * @page: page to flush 1960 * @offset: length of page to invalidate. 1961 * 1962 * Reap page buffers containing data after offset in page. 1963 * 1964 */ 1965 void jbd2_journal_invalidatepage(journal_t *journal, 1966 struct page *page, 1967 unsigned long offset) 1968 { 1969 struct buffer_head *head, *bh, *next; 1970 unsigned int curr_off = 0; 1971 int may_free = 1; 1972 1973 if (!PageLocked(page)) 1974 BUG(); 1975 if (!page_has_buffers(page)) 1976 return; 1977 1978 /* We will potentially be playing with lists other than just the 1979 * data lists (especially for journaled data mode), so be 1980 * cautious in our locking. */ 1981 1982 head = bh = page_buffers(page); 1983 do { 1984 unsigned int next_off = curr_off + bh->b_size; 1985 next = bh->b_this_page; 1986 1987 if (offset <= curr_off) { 1988 /* This block is wholly outside the truncation point */ 1989 lock_buffer(bh); 1990 may_free &= journal_unmap_buffer(journal, bh); 1991 unlock_buffer(bh); 1992 } 1993 curr_off = next_off; 1994 bh = next; 1995 1996 } while (bh != head); 1997 1998 if (!offset) { 1999 if (may_free && try_to_free_buffers(page)) 2000 J_ASSERT(!page_has_buffers(page)); 2001 } 2002 } 2003 2004 /* 2005 * File a buffer on the given transaction list. 2006 */ 2007 void __jbd2_journal_file_buffer(struct journal_head *jh, 2008 transaction_t *transaction, int jlist) 2009 { 2010 struct journal_head **list = NULL; 2011 int was_dirty = 0; 2012 struct buffer_head *bh = jh2bh(jh); 2013 2014 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 2015 assert_spin_locked(&transaction->t_journal->j_list_lock); 2016 2017 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 2018 J_ASSERT_JH(jh, jh->b_transaction == transaction || 2019 jh->b_transaction == NULL); 2020 2021 if (jh->b_transaction && jh->b_jlist == jlist) 2022 return; 2023 2024 if (jlist == BJ_Metadata || jlist == BJ_Reserved || 2025 jlist == BJ_Shadow || jlist == BJ_Forget) { 2026 /* 2027 * For metadata buffers, we track dirty bit in buffer_jbddirty 2028 * instead of buffer_dirty. We should not see a dirty bit set 2029 * here because we clear it in do_get_write_access but e.g. 2030 * tune2fs can modify the sb and set the dirty bit at any time 2031 * so we try to gracefully handle that. 2032 */ 2033 if (buffer_dirty(bh)) 2034 warn_dirty_buffer(bh); 2035 if (test_clear_buffer_dirty(bh) || 2036 test_clear_buffer_jbddirty(bh)) 2037 was_dirty = 1; 2038 } 2039 2040 if (jh->b_transaction) 2041 __jbd2_journal_temp_unlink_buffer(jh); 2042 else 2043 jbd2_journal_grab_journal_head(bh); 2044 jh->b_transaction = transaction; 2045 2046 switch (jlist) { 2047 case BJ_None: 2048 J_ASSERT_JH(jh, !jh->b_committed_data); 2049 J_ASSERT_JH(jh, !jh->b_frozen_data); 2050 return; 2051 case BJ_Metadata: 2052 transaction->t_nr_buffers++; 2053 list = &transaction->t_buffers; 2054 break; 2055 case BJ_Forget: 2056 list = &transaction->t_forget; 2057 break; 2058 case BJ_IO: 2059 list = &transaction->t_iobuf_list; 2060 break; 2061 case BJ_Shadow: 2062 list = &transaction->t_shadow_list; 2063 break; 2064 case BJ_LogCtl: 2065 list = &transaction->t_log_list; 2066 break; 2067 case BJ_Reserved: 2068 list = &transaction->t_reserved_list; 2069 break; 2070 } 2071 2072 __blist_add_buffer(list, jh); 2073 jh->b_jlist = jlist; 2074 2075 if (was_dirty) 2076 set_buffer_jbddirty(bh); 2077 } 2078 2079 void jbd2_journal_file_buffer(struct journal_head *jh, 2080 transaction_t *transaction, int jlist) 2081 { 2082 jbd_lock_bh_state(jh2bh(jh)); 2083 spin_lock(&transaction->t_journal->j_list_lock); 2084 __jbd2_journal_file_buffer(jh, transaction, jlist); 2085 spin_unlock(&transaction->t_journal->j_list_lock); 2086 jbd_unlock_bh_state(jh2bh(jh)); 2087 } 2088 2089 /* 2090 * Remove a buffer from its current buffer list in preparation for 2091 * dropping it from its current transaction entirely. If the buffer has 2092 * already started to be used by a subsequent transaction, refile the 2093 * buffer on that transaction's metadata list. 2094 * 2095 * Called under j_list_lock 2096 * Called under jbd_lock_bh_state(jh2bh(jh)) 2097 * 2098 * jh and bh may be already free when this function returns 2099 */ 2100 void __jbd2_journal_refile_buffer(struct journal_head *jh) 2101 { 2102 int was_dirty, jlist; 2103 struct buffer_head *bh = jh2bh(jh); 2104 2105 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 2106 if (jh->b_transaction) 2107 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock); 2108 2109 /* If the buffer is now unused, just drop it. */ 2110 if (jh->b_next_transaction == NULL) { 2111 __jbd2_journal_unfile_buffer(jh); 2112 return; 2113 } 2114 2115 /* 2116 * It has been modified by a later transaction: add it to the new 2117 * transaction's metadata list. 2118 */ 2119 2120 was_dirty = test_clear_buffer_jbddirty(bh); 2121 __jbd2_journal_temp_unlink_buffer(jh); 2122 /* 2123 * We set b_transaction here because b_next_transaction will inherit 2124 * our jh reference and thus __jbd2_journal_file_buffer() must not 2125 * take a new one. 2126 */ 2127 jh->b_transaction = jh->b_next_transaction; 2128 jh->b_next_transaction = NULL; 2129 if (buffer_freed(bh)) 2130 jlist = BJ_Forget; 2131 else if (jh->b_modified) 2132 jlist = BJ_Metadata; 2133 else 2134 jlist = BJ_Reserved; 2135 __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist); 2136 J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING); 2137 2138 if (was_dirty) 2139 set_buffer_jbddirty(bh); 2140 } 2141 2142 /* 2143 * __jbd2_journal_refile_buffer() with necessary locking added. We take our 2144 * bh reference so that we can safely unlock bh. 2145 * 2146 * The jh and bh may be freed by this call. 2147 */ 2148 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh) 2149 { 2150 struct buffer_head *bh = jh2bh(jh); 2151 2152 /* Get reference so that buffer cannot be freed before we unlock it */ 2153 get_bh(bh); 2154 jbd_lock_bh_state(bh); 2155 spin_lock(&journal->j_list_lock); 2156 __jbd2_journal_refile_buffer(jh); 2157 jbd_unlock_bh_state(bh); 2158 spin_unlock(&journal->j_list_lock); 2159 __brelse(bh); 2160 } 2161 2162 /* 2163 * File inode in the inode list of the handle's transaction 2164 */ 2165 int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode) 2166 { 2167 transaction_t *transaction = handle->h_transaction; 2168 journal_t *journal = transaction->t_journal; 2169 2170 if (is_handle_aborted(handle)) 2171 return -EIO; 2172 2173 jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino, 2174 transaction->t_tid); 2175 2176 /* 2177 * First check whether inode isn't already on the transaction's 2178 * lists without taking the lock. Note that this check is safe 2179 * without the lock as we cannot race with somebody removing inode 2180 * from the transaction. The reason is that we remove inode from the 2181 * transaction only in journal_release_jbd_inode() and when we commit 2182 * the transaction. We are guarded from the first case by holding 2183 * a reference to the inode. We are safe against the second case 2184 * because if jinode->i_transaction == transaction, commit code 2185 * cannot touch the transaction because we hold reference to it, 2186 * and if jinode->i_next_transaction == transaction, commit code 2187 * will only file the inode where we want it. 2188 */ 2189 if (jinode->i_transaction == transaction || 2190 jinode->i_next_transaction == transaction) 2191 return 0; 2192 2193 spin_lock(&journal->j_list_lock); 2194 2195 if (jinode->i_transaction == transaction || 2196 jinode->i_next_transaction == transaction) 2197 goto done; 2198 2199 /* 2200 * We only ever set this variable to 1 so the test is safe. Since 2201 * t_need_data_flush is likely to be set, we do the test to save some 2202 * cacheline bouncing 2203 */ 2204 if (!transaction->t_need_data_flush) 2205 transaction->t_need_data_flush = 1; 2206 /* On some different transaction's list - should be 2207 * the committing one */ 2208 if (jinode->i_transaction) { 2209 J_ASSERT(jinode->i_next_transaction == NULL); 2210 J_ASSERT(jinode->i_transaction == 2211 journal->j_committing_transaction); 2212 jinode->i_next_transaction = transaction; 2213 goto done; 2214 } 2215 /* Not on any transaction list... */ 2216 J_ASSERT(!jinode->i_next_transaction); 2217 jinode->i_transaction = transaction; 2218 list_add(&jinode->i_list, &transaction->t_inode_list); 2219 done: 2220 spin_unlock(&journal->j_list_lock); 2221 2222 return 0; 2223 } 2224 2225 /* 2226 * File truncate and transaction commit interact with each other in a 2227 * non-trivial way. If a transaction writing data block A is 2228 * committing, we cannot discard the data by truncate until we have 2229 * written them. Otherwise if we crashed after the transaction with 2230 * write has committed but before the transaction with truncate has 2231 * committed, we could see stale data in block A. This function is a 2232 * helper to solve this problem. It starts writeout of the truncated 2233 * part in case it is in the committing transaction. 2234 * 2235 * Filesystem code must call this function when inode is journaled in 2236 * ordered mode before truncation happens and after the inode has been 2237 * placed on orphan list with the new inode size. The second condition 2238 * avoids the race that someone writes new data and we start 2239 * committing the transaction after this function has been called but 2240 * before a transaction for truncate is started (and furthermore it 2241 * allows us to optimize the case where the addition to orphan list 2242 * happens in the same transaction as write --- we don't have to write 2243 * any data in such case). 2244 */ 2245 int jbd2_journal_begin_ordered_truncate(journal_t *journal, 2246 struct jbd2_inode *jinode, 2247 loff_t new_size) 2248 { 2249 transaction_t *inode_trans, *commit_trans; 2250 int ret = 0; 2251 2252 /* This is a quick check to avoid locking if not necessary */ 2253 if (!jinode->i_transaction) 2254 goto out; 2255 /* Locks are here just to force reading of recent values, it is 2256 * enough that the transaction was not committing before we started 2257 * a transaction adding the inode to orphan list */ 2258 read_lock(&journal->j_state_lock); 2259 commit_trans = journal->j_committing_transaction; 2260 read_unlock(&journal->j_state_lock); 2261 spin_lock(&journal->j_list_lock); 2262 inode_trans = jinode->i_transaction; 2263 spin_unlock(&journal->j_list_lock); 2264 if (inode_trans == commit_trans) { 2265 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping, 2266 new_size, LLONG_MAX); 2267 if (ret) 2268 jbd2_journal_abort(journal, ret); 2269 } 2270 out: 2271 return ret; 2272 } 2273