1 /* 2 * linux/fs/jbd2/transaction.c 3 * 4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 5 * 6 * Copyright 1998 Red Hat corp --- All Rights Reserved 7 * 8 * This file is part of the Linux kernel and is made available under 9 * the terms of the GNU General Public License, version 2, or at your 10 * option, any later version, incorporated herein by reference. 11 * 12 * Generic filesystem transaction handling code; part of the ext2fs 13 * journaling system. 14 * 15 * This file manages transactions (compound commits managed by the 16 * journaling code) and handles (individual atomic operations by the 17 * filesystem). 18 */ 19 20 #include <linux/time.h> 21 #include <linux/fs.h> 22 #include <linux/jbd2.h> 23 #include <linux/errno.h> 24 #include <linux/slab.h> 25 #include <linux/timer.h> 26 #include <linux/mm.h> 27 #include <linux/highmem.h> 28 #include <linux/hrtimer.h> 29 30 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh); 31 32 /* 33 * jbd2_get_transaction: obtain a new transaction_t object. 34 * 35 * Simply allocate and initialise a new transaction. Create it in 36 * RUNNING state and add it to the current journal (which should not 37 * have an existing running transaction: we only make a new transaction 38 * once we have started to commit the old one). 39 * 40 * Preconditions: 41 * The journal MUST be locked. We don't perform atomic mallocs on the 42 * new transaction and we can't block without protecting against other 43 * processes trying to touch the journal while it is in transition. 44 * 45 */ 46 47 static transaction_t * 48 jbd2_get_transaction(journal_t *journal, transaction_t *transaction) 49 { 50 transaction->t_journal = journal; 51 transaction->t_state = T_RUNNING; 52 transaction->t_start_time = ktime_get(); 53 transaction->t_tid = journal->j_transaction_sequence++; 54 transaction->t_expires = jiffies + journal->j_commit_interval; 55 spin_lock_init(&transaction->t_handle_lock); 56 INIT_LIST_HEAD(&transaction->t_inode_list); 57 INIT_LIST_HEAD(&transaction->t_private_list); 58 59 /* Set up the commit timer for the new transaction. */ 60 journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires); 61 add_timer(&journal->j_commit_timer); 62 63 J_ASSERT(journal->j_running_transaction == NULL); 64 journal->j_running_transaction = transaction; 65 transaction->t_max_wait = 0; 66 transaction->t_start = jiffies; 67 68 return transaction; 69 } 70 71 /* 72 * Handle management. 73 * 74 * A handle_t is an object which represents a single atomic update to a 75 * filesystem, and which tracks all of the modifications which form part 76 * of that one update. 77 */ 78 79 /* 80 * start_this_handle: Given a handle, deal with any locking or stalling 81 * needed to make sure that there is enough journal space for the handle 82 * to begin. Attach the handle to a transaction and set up the 83 * transaction's buffer credits. 84 */ 85 86 static int start_this_handle(journal_t *journal, handle_t *handle) 87 { 88 transaction_t *transaction; 89 int needed; 90 int nblocks = handle->h_buffer_credits; 91 transaction_t *new_transaction = NULL; 92 int ret = 0; 93 unsigned long ts = jiffies; 94 95 if (nblocks > journal->j_max_transaction_buffers) { 96 printk(KERN_ERR "JBD: %s wants too many credits (%d > %d)\n", 97 current->comm, nblocks, 98 journal->j_max_transaction_buffers); 99 ret = -ENOSPC; 100 goto out; 101 } 102 103 alloc_transaction: 104 if (!journal->j_running_transaction) { 105 new_transaction = kzalloc(sizeof(*new_transaction), 106 GFP_NOFS|__GFP_NOFAIL); 107 if (!new_transaction) { 108 ret = -ENOMEM; 109 goto out; 110 } 111 } 112 113 jbd_debug(3, "New handle %p going live.\n", handle); 114 115 repeat: 116 117 /* 118 * We need to hold j_state_lock until t_updates has been incremented, 119 * for proper journal barrier handling 120 */ 121 spin_lock(&journal->j_state_lock); 122 repeat_locked: 123 if (is_journal_aborted(journal) || 124 (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) { 125 spin_unlock(&journal->j_state_lock); 126 ret = -EROFS; 127 goto out; 128 } 129 130 /* Wait on the journal's transaction barrier if necessary */ 131 if (journal->j_barrier_count) { 132 spin_unlock(&journal->j_state_lock); 133 wait_event(journal->j_wait_transaction_locked, 134 journal->j_barrier_count == 0); 135 goto repeat; 136 } 137 138 if (!journal->j_running_transaction) { 139 if (!new_transaction) { 140 spin_unlock(&journal->j_state_lock); 141 goto alloc_transaction; 142 } 143 jbd2_get_transaction(journal, new_transaction); 144 new_transaction = NULL; 145 } 146 147 transaction = journal->j_running_transaction; 148 149 /* 150 * If the current transaction is locked down for commit, wait for the 151 * lock to be released. 152 */ 153 if (transaction->t_state == T_LOCKED) { 154 DEFINE_WAIT(wait); 155 156 prepare_to_wait(&journal->j_wait_transaction_locked, 157 &wait, TASK_UNINTERRUPTIBLE); 158 spin_unlock(&journal->j_state_lock); 159 schedule(); 160 finish_wait(&journal->j_wait_transaction_locked, &wait); 161 goto repeat; 162 } 163 164 /* 165 * If there is not enough space left in the log to write all potential 166 * buffers requested by this operation, we need to stall pending a log 167 * checkpoint to free some more log space. 168 */ 169 spin_lock(&transaction->t_handle_lock); 170 needed = transaction->t_outstanding_credits + nblocks; 171 172 if (needed > journal->j_max_transaction_buffers) { 173 /* 174 * If the current transaction is already too large, then start 175 * to commit it: we can then go back and attach this handle to 176 * a new transaction. 177 */ 178 DEFINE_WAIT(wait); 179 180 jbd_debug(2, "Handle %p starting new commit...\n", handle); 181 spin_unlock(&transaction->t_handle_lock); 182 prepare_to_wait(&journal->j_wait_transaction_locked, &wait, 183 TASK_UNINTERRUPTIBLE); 184 __jbd2_log_start_commit(journal, transaction->t_tid); 185 spin_unlock(&journal->j_state_lock); 186 schedule(); 187 finish_wait(&journal->j_wait_transaction_locked, &wait); 188 goto repeat; 189 } 190 191 /* 192 * The commit code assumes that it can get enough log space 193 * without forcing a checkpoint. This is *critical* for 194 * correctness: a checkpoint of a buffer which is also 195 * associated with a committing transaction creates a deadlock, 196 * so commit simply cannot force through checkpoints. 197 * 198 * We must therefore ensure the necessary space in the journal 199 * *before* starting to dirty potentially checkpointed buffers 200 * in the new transaction. 201 * 202 * The worst part is, any transaction currently committing can 203 * reduce the free space arbitrarily. Be careful to account for 204 * those buffers when checkpointing. 205 */ 206 207 /* 208 * @@@ AKPM: This seems rather over-defensive. We're giving commit 209 * a _lot_ of headroom: 1/4 of the journal plus the size of 210 * the committing transaction. Really, we only need to give it 211 * committing_transaction->t_outstanding_credits plus "enough" for 212 * the log control blocks. 213 * Also, this test is inconsitent with the matching one in 214 * jbd2_journal_extend(). 215 */ 216 if (__jbd2_log_space_left(journal) < jbd_space_needed(journal)) { 217 jbd_debug(2, "Handle %p waiting for checkpoint...\n", handle); 218 spin_unlock(&transaction->t_handle_lock); 219 __jbd2_log_wait_for_space(journal); 220 goto repeat_locked; 221 } 222 223 /* OK, account for the buffers that this operation expects to 224 * use and add the handle to the running transaction. */ 225 226 if (time_after(transaction->t_start, ts)) { 227 ts = jbd2_time_diff(ts, transaction->t_start); 228 if (ts > transaction->t_max_wait) 229 transaction->t_max_wait = ts; 230 } 231 232 handle->h_transaction = transaction; 233 transaction->t_outstanding_credits += nblocks; 234 transaction->t_updates++; 235 transaction->t_handle_count++; 236 jbd_debug(4, "Handle %p given %d credits (total %d, free %d)\n", 237 handle, nblocks, transaction->t_outstanding_credits, 238 __jbd2_log_space_left(journal)); 239 spin_unlock(&transaction->t_handle_lock); 240 spin_unlock(&journal->j_state_lock); 241 242 lock_map_acquire(&handle->h_lockdep_map); 243 out: 244 if (unlikely(new_transaction)) /* It's usually NULL */ 245 kfree(new_transaction); 246 return ret; 247 } 248 249 static struct lock_class_key jbd2_handle_key; 250 251 /* Allocate a new handle. This should probably be in a slab... */ 252 static handle_t *new_handle(int nblocks) 253 { 254 handle_t *handle = jbd2_alloc_handle(GFP_NOFS); 255 if (!handle) 256 return NULL; 257 memset(handle, 0, sizeof(*handle)); 258 handle->h_buffer_credits = nblocks; 259 handle->h_ref = 1; 260 261 lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle", 262 &jbd2_handle_key, 0); 263 264 return handle; 265 } 266 267 /** 268 * handle_t *jbd2_journal_start() - Obtain a new handle. 269 * @journal: Journal to start transaction on. 270 * @nblocks: number of block buffer we might modify 271 * 272 * We make sure that the transaction can guarantee at least nblocks of 273 * modified buffers in the log. We block until the log can guarantee 274 * that much space. 275 * 276 * This function is visible to journal users (like ext3fs), so is not 277 * called with the journal already locked. 278 * 279 * Return a pointer to a newly allocated handle, or NULL on failure 280 */ 281 handle_t *jbd2_journal_start(journal_t *journal, int nblocks) 282 { 283 handle_t *handle = journal_current_handle(); 284 int err; 285 286 if (!journal) 287 return ERR_PTR(-EROFS); 288 289 if (handle) { 290 J_ASSERT(handle->h_transaction->t_journal == journal); 291 handle->h_ref++; 292 return handle; 293 } 294 295 handle = new_handle(nblocks); 296 if (!handle) 297 return ERR_PTR(-ENOMEM); 298 299 current->journal_info = handle; 300 301 err = start_this_handle(journal, handle); 302 if (err < 0) { 303 jbd2_free_handle(handle); 304 current->journal_info = NULL; 305 handle = ERR_PTR(err); 306 goto out; 307 } 308 out: 309 return handle; 310 } 311 312 /** 313 * int jbd2_journal_extend() - extend buffer credits. 314 * @handle: handle to 'extend' 315 * @nblocks: nr blocks to try to extend by. 316 * 317 * Some transactions, such as large extends and truncates, can be done 318 * atomically all at once or in several stages. The operation requests 319 * a credit for a number of buffer modications in advance, but can 320 * extend its credit if it needs more. 321 * 322 * jbd2_journal_extend tries to give the running handle more buffer credits. 323 * It does not guarantee that allocation - this is a best-effort only. 324 * The calling process MUST be able to deal cleanly with a failure to 325 * extend here. 326 * 327 * Return 0 on success, non-zero on failure. 328 * 329 * return code < 0 implies an error 330 * return code > 0 implies normal transaction-full status. 331 */ 332 int jbd2_journal_extend(handle_t *handle, int nblocks) 333 { 334 transaction_t *transaction = handle->h_transaction; 335 journal_t *journal = transaction->t_journal; 336 int result; 337 int wanted; 338 339 result = -EIO; 340 if (is_handle_aborted(handle)) 341 goto out; 342 343 result = 1; 344 345 spin_lock(&journal->j_state_lock); 346 347 /* Don't extend a locked-down transaction! */ 348 if (handle->h_transaction->t_state != T_RUNNING) { 349 jbd_debug(3, "denied handle %p %d blocks: " 350 "transaction not running\n", handle, nblocks); 351 goto error_out; 352 } 353 354 spin_lock(&transaction->t_handle_lock); 355 wanted = transaction->t_outstanding_credits + nblocks; 356 357 if (wanted > journal->j_max_transaction_buffers) { 358 jbd_debug(3, "denied handle %p %d blocks: " 359 "transaction too large\n", handle, nblocks); 360 goto unlock; 361 } 362 363 if (wanted > __jbd2_log_space_left(journal)) { 364 jbd_debug(3, "denied handle %p %d blocks: " 365 "insufficient log space\n", handle, nblocks); 366 goto unlock; 367 } 368 369 handle->h_buffer_credits += nblocks; 370 transaction->t_outstanding_credits += nblocks; 371 result = 0; 372 373 jbd_debug(3, "extended handle %p by %d\n", handle, nblocks); 374 unlock: 375 spin_unlock(&transaction->t_handle_lock); 376 error_out: 377 spin_unlock(&journal->j_state_lock); 378 out: 379 return result; 380 } 381 382 383 /** 384 * int jbd2_journal_restart() - restart a handle . 385 * @handle: handle to restart 386 * @nblocks: nr credits requested 387 * 388 * Restart a handle for a multi-transaction filesystem 389 * operation. 390 * 391 * If the jbd2_journal_extend() call above fails to grant new buffer credits 392 * to a running handle, a call to jbd2_journal_restart will commit the 393 * handle's transaction so far and reattach the handle to a new 394 * transaction capabable of guaranteeing the requested number of 395 * credits. 396 */ 397 398 int jbd2_journal_restart(handle_t *handle, int nblocks) 399 { 400 transaction_t *transaction = handle->h_transaction; 401 journal_t *journal = transaction->t_journal; 402 int ret; 403 404 /* If we've had an abort of any type, don't even think about 405 * actually doing the restart! */ 406 if (is_handle_aborted(handle)) 407 return 0; 408 409 /* 410 * First unlink the handle from its current transaction, and start the 411 * commit on that. 412 */ 413 J_ASSERT(transaction->t_updates > 0); 414 J_ASSERT(journal_current_handle() == handle); 415 416 spin_lock(&journal->j_state_lock); 417 spin_lock(&transaction->t_handle_lock); 418 transaction->t_outstanding_credits -= handle->h_buffer_credits; 419 transaction->t_updates--; 420 421 if (!transaction->t_updates) 422 wake_up(&journal->j_wait_updates); 423 spin_unlock(&transaction->t_handle_lock); 424 425 jbd_debug(2, "restarting handle %p\n", handle); 426 __jbd2_log_start_commit(journal, transaction->t_tid); 427 spin_unlock(&journal->j_state_lock); 428 429 lock_map_release(&handle->h_lockdep_map); 430 handle->h_buffer_credits = nblocks; 431 ret = start_this_handle(journal, handle); 432 return ret; 433 } 434 435 436 /** 437 * void jbd2_journal_lock_updates () - establish a transaction barrier. 438 * @journal: Journal to establish a barrier on. 439 * 440 * This locks out any further updates from being started, and blocks 441 * until all existing updates have completed, returning only once the 442 * journal is in a quiescent state with no updates running. 443 * 444 * The journal lock should not be held on entry. 445 */ 446 void jbd2_journal_lock_updates(journal_t *journal) 447 { 448 DEFINE_WAIT(wait); 449 450 spin_lock(&journal->j_state_lock); 451 ++journal->j_barrier_count; 452 453 /* Wait until there are no running updates */ 454 while (1) { 455 transaction_t *transaction = journal->j_running_transaction; 456 457 if (!transaction) 458 break; 459 460 spin_lock(&transaction->t_handle_lock); 461 if (!transaction->t_updates) { 462 spin_unlock(&transaction->t_handle_lock); 463 break; 464 } 465 prepare_to_wait(&journal->j_wait_updates, &wait, 466 TASK_UNINTERRUPTIBLE); 467 spin_unlock(&transaction->t_handle_lock); 468 spin_unlock(&journal->j_state_lock); 469 schedule(); 470 finish_wait(&journal->j_wait_updates, &wait); 471 spin_lock(&journal->j_state_lock); 472 } 473 spin_unlock(&journal->j_state_lock); 474 475 /* 476 * We have now established a barrier against other normal updates, but 477 * we also need to barrier against other jbd2_journal_lock_updates() calls 478 * to make sure that we serialise special journal-locked operations 479 * too. 480 */ 481 mutex_lock(&journal->j_barrier); 482 } 483 484 /** 485 * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier 486 * @journal: Journal to release the barrier on. 487 * 488 * Release a transaction barrier obtained with jbd2_journal_lock_updates(). 489 * 490 * Should be called without the journal lock held. 491 */ 492 void jbd2_journal_unlock_updates (journal_t *journal) 493 { 494 J_ASSERT(journal->j_barrier_count != 0); 495 496 mutex_unlock(&journal->j_barrier); 497 spin_lock(&journal->j_state_lock); 498 --journal->j_barrier_count; 499 spin_unlock(&journal->j_state_lock); 500 wake_up(&journal->j_wait_transaction_locked); 501 } 502 503 static void warn_dirty_buffer(struct buffer_head *bh) 504 { 505 char b[BDEVNAME_SIZE]; 506 507 printk(KERN_WARNING 508 "JBD: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). " 509 "There's a risk of filesystem corruption in case of system " 510 "crash.\n", 511 bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr); 512 } 513 514 /* 515 * If the buffer is already part of the current transaction, then there 516 * is nothing we need to do. If it is already part of a prior 517 * transaction which we are still committing to disk, then we need to 518 * make sure that we do not overwrite the old copy: we do copy-out to 519 * preserve the copy going to disk. We also account the buffer against 520 * the handle's metadata buffer credits (unless the buffer is already 521 * part of the transaction, that is). 522 * 523 */ 524 static int 525 do_get_write_access(handle_t *handle, struct journal_head *jh, 526 int force_copy) 527 { 528 struct buffer_head *bh; 529 transaction_t *transaction; 530 journal_t *journal; 531 int error; 532 char *frozen_buffer = NULL; 533 int need_copy = 0; 534 535 if (is_handle_aborted(handle)) 536 return -EROFS; 537 538 transaction = handle->h_transaction; 539 journal = transaction->t_journal; 540 541 jbd_debug(5, "buffer_head %p, force_copy %d\n", jh, force_copy); 542 543 JBUFFER_TRACE(jh, "entry"); 544 repeat: 545 bh = jh2bh(jh); 546 547 /* @@@ Need to check for errors here at some point. */ 548 549 lock_buffer(bh); 550 jbd_lock_bh_state(bh); 551 552 /* We now hold the buffer lock so it is safe to query the buffer 553 * state. Is the buffer dirty? 554 * 555 * If so, there are two possibilities. The buffer may be 556 * non-journaled, and undergoing a quite legitimate writeback. 557 * Otherwise, it is journaled, and we don't expect dirty buffers 558 * in that state (the buffers should be marked JBD_Dirty 559 * instead.) So either the IO is being done under our own 560 * control and this is a bug, or it's a third party IO such as 561 * dump(8) (which may leave the buffer scheduled for read --- 562 * ie. locked but not dirty) or tune2fs (which may actually have 563 * the buffer dirtied, ugh.) */ 564 565 if (buffer_dirty(bh)) { 566 /* 567 * First question: is this buffer already part of the current 568 * transaction or the existing committing transaction? 569 */ 570 if (jh->b_transaction) { 571 J_ASSERT_JH(jh, 572 jh->b_transaction == transaction || 573 jh->b_transaction == 574 journal->j_committing_transaction); 575 if (jh->b_next_transaction) 576 J_ASSERT_JH(jh, jh->b_next_transaction == 577 transaction); 578 warn_dirty_buffer(bh); 579 } 580 /* 581 * In any case we need to clean the dirty flag and we must 582 * do it under the buffer lock to be sure we don't race 583 * with running write-out. 584 */ 585 JBUFFER_TRACE(jh, "Journalling dirty buffer"); 586 clear_buffer_dirty(bh); 587 set_buffer_jbddirty(bh); 588 } 589 590 unlock_buffer(bh); 591 592 error = -EROFS; 593 if (is_handle_aborted(handle)) { 594 jbd_unlock_bh_state(bh); 595 goto out; 596 } 597 error = 0; 598 599 /* 600 * The buffer is already part of this transaction if b_transaction or 601 * b_next_transaction points to it 602 */ 603 if (jh->b_transaction == transaction || 604 jh->b_next_transaction == transaction) 605 goto done; 606 607 /* 608 * this is the first time this transaction is touching this buffer, 609 * reset the modified flag 610 */ 611 jh->b_modified = 0; 612 613 /* 614 * If there is already a copy-out version of this buffer, then we don't 615 * need to make another one 616 */ 617 if (jh->b_frozen_data) { 618 JBUFFER_TRACE(jh, "has frozen data"); 619 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 620 jh->b_next_transaction = transaction; 621 goto done; 622 } 623 624 /* Is there data here we need to preserve? */ 625 626 if (jh->b_transaction && jh->b_transaction != transaction) { 627 JBUFFER_TRACE(jh, "owned by older transaction"); 628 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 629 J_ASSERT_JH(jh, jh->b_transaction == 630 journal->j_committing_transaction); 631 632 /* There is one case we have to be very careful about. 633 * If the committing transaction is currently writing 634 * this buffer out to disk and has NOT made a copy-out, 635 * then we cannot modify the buffer contents at all 636 * right now. The essence of copy-out is that it is the 637 * extra copy, not the primary copy, which gets 638 * journaled. If the primary copy is already going to 639 * disk then we cannot do copy-out here. */ 640 641 if (jh->b_jlist == BJ_Shadow) { 642 DEFINE_WAIT_BIT(wait, &bh->b_state, BH_Unshadow); 643 wait_queue_head_t *wqh; 644 645 wqh = bit_waitqueue(&bh->b_state, BH_Unshadow); 646 647 JBUFFER_TRACE(jh, "on shadow: sleep"); 648 jbd_unlock_bh_state(bh); 649 /* commit wakes up all shadow buffers after IO */ 650 for ( ; ; ) { 651 prepare_to_wait(wqh, &wait.wait, 652 TASK_UNINTERRUPTIBLE); 653 if (jh->b_jlist != BJ_Shadow) 654 break; 655 schedule(); 656 } 657 finish_wait(wqh, &wait.wait); 658 goto repeat; 659 } 660 661 /* Only do the copy if the currently-owning transaction 662 * still needs it. If it is on the Forget list, the 663 * committing transaction is past that stage. The 664 * buffer had better remain locked during the kmalloc, 665 * but that should be true --- we hold the journal lock 666 * still and the buffer is already on the BUF_JOURNAL 667 * list so won't be flushed. 668 * 669 * Subtle point, though: if this is a get_undo_access, 670 * then we will be relying on the frozen_data to contain 671 * the new value of the committed_data record after the 672 * transaction, so we HAVE to force the frozen_data copy 673 * in that case. */ 674 675 if (jh->b_jlist != BJ_Forget || force_copy) { 676 JBUFFER_TRACE(jh, "generate frozen data"); 677 if (!frozen_buffer) { 678 JBUFFER_TRACE(jh, "allocate memory for buffer"); 679 jbd_unlock_bh_state(bh); 680 frozen_buffer = 681 jbd2_alloc(jh2bh(jh)->b_size, 682 GFP_NOFS); 683 if (!frozen_buffer) { 684 printk(KERN_EMERG 685 "%s: OOM for frozen_buffer\n", 686 __func__); 687 JBUFFER_TRACE(jh, "oom!"); 688 error = -ENOMEM; 689 jbd_lock_bh_state(bh); 690 goto done; 691 } 692 goto repeat; 693 } 694 jh->b_frozen_data = frozen_buffer; 695 frozen_buffer = NULL; 696 need_copy = 1; 697 } 698 jh->b_next_transaction = transaction; 699 } 700 701 702 /* 703 * Finally, if the buffer is not journaled right now, we need to make 704 * sure it doesn't get written to disk before the caller actually 705 * commits the new data 706 */ 707 if (!jh->b_transaction) { 708 JBUFFER_TRACE(jh, "no transaction"); 709 J_ASSERT_JH(jh, !jh->b_next_transaction); 710 jh->b_transaction = transaction; 711 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 712 spin_lock(&journal->j_list_lock); 713 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 714 spin_unlock(&journal->j_list_lock); 715 } 716 717 done: 718 if (need_copy) { 719 struct page *page; 720 int offset; 721 char *source; 722 723 J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)), 724 "Possible IO failure.\n"); 725 page = jh2bh(jh)->b_page; 726 offset = ((unsigned long) jh2bh(jh)->b_data) & ~PAGE_MASK; 727 source = kmap_atomic(page, KM_USER0); 728 memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size); 729 kunmap_atomic(source, KM_USER0); 730 731 /* 732 * Now that the frozen data is saved off, we need to store 733 * any matching triggers. 734 */ 735 jh->b_frozen_triggers = jh->b_triggers; 736 } 737 jbd_unlock_bh_state(bh); 738 739 /* 740 * If we are about to journal a buffer, then any revoke pending on it is 741 * no longer valid 742 */ 743 jbd2_journal_cancel_revoke(handle, jh); 744 745 out: 746 if (unlikely(frozen_buffer)) /* It's usually NULL */ 747 jbd2_free(frozen_buffer, bh->b_size); 748 749 JBUFFER_TRACE(jh, "exit"); 750 return error; 751 } 752 753 /** 754 * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update. 755 * @handle: transaction to add buffer modifications to 756 * @bh: bh to be used for metadata writes 757 * @credits: variable that will receive credits for the buffer 758 * 759 * Returns an error code or 0 on success. 760 * 761 * In full data journalling mode the buffer may be of type BJ_AsyncData, 762 * because we're write()ing a buffer which is also part of a shared mapping. 763 */ 764 765 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh) 766 { 767 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 768 int rc; 769 770 /* We do not want to get caught playing with fields which the 771 * log thread also manipulates. Make sure that the buffer 772 * completes any outstanding IO before proceeding. */ 773 rc = do_get_write_access(handle, jh, 0); 774 jbd2_journal_put_journal_head(jh); 775 return rc; 776 } 777 778 779 /* 780 * When the user wants to journal a newly created buffer_head 781 * (ie. getblk() returned a new buffer and we are going to populate it 782 * manually rather than reading off disk), then we need to keep the 783 * buffer_head locked until it has been completely filled with new 784 * data. In this case, we should be able to make the assertion that 785 * the bh is not already part of an existing transaction. 786 * 787 * The buffer should already be locked by the caller by this point. 788 * There is no lock ranking violation: it was a newly created, 789 * unlocked buffer beforehand. */ 790 791 /** 792 * int jbd2_journal_get_create_access () - notify intent to use newly created bh 793 * @handle: transaction to new buffer to 794 * @bh: new buffer. 795 * 796 * Call this if you create a new bh. 797 */ 798 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh) 799 { 800 transaction_t *transaction = handle->h_transaction; 801 journal_t *journal = transaction->t_journal; 802 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 803 int err; 804 805 jbd_debug(5, "journal_head %p\n", jh); 806 err = -EROFS; 807 if (is_handle_aborted(handle)) 808 goto out; 809 err = 0; 810 811 JBUFFER_TRACE(jh, "entry"); 812 /* 813 * The buffer may already belong to this transaction due to pre-zeroing 814 * in the filesystem's new_block code. It may also be on the previous, 815 * committing transaction's lists, but it HAS to be in Forget state in 816 * that case: the transaction must have deleted the buffer for it to be 817 * reused here. 818 */ 819 jbd_lock_bh_state(bh); 820 spin_lock(&journal->j_list_lock); 821 J_ASSERT_JH(jh, (jh->b_transaction == transaction || 822 jh->b_transaction == NULL || 823 (jh->b_transaction == journal->j_committing_transaction && 824 jh->b_jlist == BJ_Forget))); 825 826 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 827 J_ASSERT_JH(jh, buffer_locked(jh2bh(jh))); 828 829 if (jh->b_transaction == NULL) { 830 /* 831 * Previous jbd2_journal_forget() could have left the buffer 832 * with jbddirty bit set because it was being committed. When 833 * the commit finished, we've filed the buffer for 834 * checkpointing and marked it dirty. Now we are reallocating 835 * the buffer so the transaction freeing it must have 836 * committed and so it's safe to clear the dirty bit. 837 */ 838 clear_buffer_dirty(jh2bh(jh)); 839 jh->b_transaction = transaction; 840 841 /* first access by this transaction */ 842 jh->b_modified = 0; 843 844 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 845 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 846 } else if (jh->b_transaction == journal->j_committing_transaction) { 847 /* first access by this transaction */ 848 jh->b_modified = 0; 849 850 JBUFFER_TRACE(jh, "set next transaction"); 851 jh->b_next_transaction = transaction; 852 } 853 spin_unlock(&journal->j_list_lock); 854 jbd_unlock_bh_state(bh); 855 856 /* 857 * akpm: I added this. ext3_alloc_branch can pick up new indirect 858 * blocks which contain freed but then revoked metadata. We need 859 * to cancel the revoke in case we end up freeing it yet again 860 * and the reallocating as data - this would cause a second revoke, 861 * which hits an assertion error. 862 */ 863 JBUFFER_TRACE(jh, "cancelling revoke"); 864 jbd2_journal_cancel_revoke(handle, jh); 865 jbd2_journal_put_journal_head(jh); 866 out: 867 return err; 868 } 869 870 /** 871 * int jbd2_journal_get_undo_access() - Notify intent to modify metadata with 872 * non-rewindable consequences 873 * @handle: transaction 874 * @bh: buffer to undo 875 * @credits: store the number of taken credits here (if not NULL) 876 * 877 * Sometimes there is a need to distinguish between metadata which has 878 * been committed to disk and that which has not. The ext3fs code uses 879 * this for freeing and allocating space, we have to make sure that we 880 * do not reuse freed space until the deallocation has been committed, 881 * since if we overwrote that space we would make the delete 882 * un-rewindable in case of a crash. 883 * 884 * To deal with that, jbd2_journal_get_undo_access requests write access to a 885 * buffer for parts of non-rewindable operations such as delete 886 * operations on the bitmaps. The journaling code must keep a copy of 887 * the buffer's contents prior to the undo_access call until such time 888 * as we know that the buffer has definitely been committed to disk. 889 * 890 * We never need to know which transaction the committed data is part 891 * of, buffers touched here are guaranteed to be dirtied later and so 892 * will be committed to a new transaction in due course, at which point 893 * we can discard the old committed data pointer. 894 * 895 * Returns error number or 0 on success. 896 */ 897 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh) 898 { 899 int err; 900 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 901 char *committed_data = NULL; 902 903 JBUFFER_TRACE(jh, "entry"); 904 905 /* 906 * Do this first --- it can drop the journal lock, so we want to 907 * make sure that obtaining the committed_data is done 908 * atomically wrt. completion of any outstanding commits. 909 */ 910 err = do_get_write_access(handle, jh, 1); 911 if (err) 912 goto out; 913 914 repeat: 915 if (!jh->b_committed_data) { 916 committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS); 917 if (!committed_data) { 918 printk(KERN_EMERG "%s: No memory for committed data\n", 919 __func__); 920 err = -ENOMEM; 921 goto out; 922 } 923 } 924 925 jbd_lock_bh_state(bh); 926 if (!jh->b_committed_data) { 927 /* Copy out the current buffer contents into the 928 * preserved, committed copy. */ 929 JBUFFER_TRACE(jh, "generate b_committed data"); 930 if (!committed_data) { 931 jbd_unlock_bh_state(bh); 932 goto repeat; 933 } 934 935 jh->b_committed_data = committed_data; 936 committed_data = NULL; 937 memcpy(jh->b_committed_data, bh->b_data, bh->b_size); 938 } 939 jbd_unlock_bh_state(bh); 940 out: 941 jbd2_journal_put_journal_head(jh); 942 if (unlikely(committed_data)) 943 jbd2_free(committed_data, bh->b_size); 944 return err; 945 } 946 947 /** 948 * void jbd2_journal_set_triggers() - Add triggers for commit writeout 949 * @bh: buffer to trigger on 950 * @type: struct jbd2_buffer_trigger_type containing the trigger(s). 951 * 952 * Set any triggers on this journal_head. This is always safe, because 953 * triggers for a committing buffer will be saved off, and triggers for 954 * a running transaction will match the buffer in that transaction. 955 * 956 * Call with NULL to clear the triggers. 957 */ 958 void jbd2_journal_set_triggers(struct buffer_head *bh, 959 struct jbd2_buffer_trigger_type *type) 960 { 961 struct journal_head *jh = bh2jh(bh); 962 963 jh->b_triggers = type; 964 } 965 966 void jbd2_buffer_commit_trigger(struct journal_head *jh, void *mapped_data, 967 struct jbd2_buffer_trigger_type *triggers) 968 { 969 struct buffer_head *bh = jh2bh(jh); 970 971 if (!triggers || !triggers->t_commit) 972 return; 973 974 triggers->t_commit(triggers, bh, mapped_data, bh->b_size); 975 } 976 977 void jbd2_buffer_abort_trigger(struct journal_head *jh, 978 struct jbd2_buffer_trigger_type *triggers) 979 { 980 if (!triggers || !triggers->t_abort) 981 return; 982 983 triggers->t_abort(triggers, jh2bh(jh)); 984 } 985 986 987 988 /** 989 * int jbd2_journal_dirty_metadata() - mark a buffer as containing dirty metadata 990 * @handle: transaction to add buffer to. 991 * @bh: buffer to mark 992 * 993 * mark dirty metadata which needs to be journaled as part of the current 994 * transaction. 995 * 996 * The buffer is placed on the transaction's metadata list and is marked 997 * as belonging to the transaction. 998 * 999 * Returns error number or 0 on success. 1000 * 1001 * Special care needs to be taken if the buffer already belongs to the 1002 * current committing transaction (in which case we should have frozen 1003 * data present for that commit). In that case, we don't relink the 1004 * buffer: that only gets done when the old transaction finally 1005 * completes its commit. 1006 */ 1007 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh) 1008 { 1009 transaction_t *transaction = handle->h_transaction; 1010 journal_t *journal = transaction->t_journal; 1011 struct journal_head *jh = bh2jh(bh); 1012 1013 jbd_debug(5, "journal_head %p\n", jh); 1014 JBUFFER_TRACE(jh, "entry"); 1015 if (is_handle_aborted(handle)) 1016 goto out; 1017 1018 jbd_lock_bh_state(bh); 1019 1020 if (jh->b_modified == 0) { 1021 /* 1022 * This buffer's got modified and becoming part 1023 * of the transaction. This needs to be done 1024 * once a transaction -bzzz 1025 */ 1026 jh->b_modified = 1; 1027 J_ASSERT_JH(jh, handle->h_buffer_credits > 0); 1028 handle->h_buffer_credits--; 1029 } 1030 1031 /* 1032 * fastpath, to avoid expensive locking. If this buffer is already 1033 * on the running transaction's metadata list there is nothing to do. 1034 * Nobody can take it off again because there is a handle open. 1035 * I _think_ we're OK here with SMP barriers - a mistaken decision will 1036 * result in this test being false, so we go in and take the locks. 1037 */ 1038 if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) { 1039 JBUFFER_TRACE(jh, "fastpath"); 1040 J_ASSERT_JH(jh, jh->b_transaction == 1041 journal->j_running_transaction); 1042 goto out_unlock_bh; 1043 } 1044 1045 set_buffer_jbddirty(bh); 1046 1047 /* 1048 * Metadata already on the current transaction list doesn't 1049 * need to be filed. Metadata on another transaction's list must 1050 * be committing, and will be refiled once the commit completes: 1051 * leave it alone for now. 1052 */ 1053 if (jh->b_transaction != transaction) { 1054 JBUFFER_TRACE(jh, "already on other transaction"); 1055 J_ASSERT_JH(jh, jh->b_transaction == 1056 journal->j_committing_transaction); 1057 J_ASSERT_JH(jh, jh->b_next_transaction == transaction); 1058 /* And this case is illegal: we can't reuse another 1059 * transaction's data buffer, ever. */ 1060 goto out_unlock_bh; 1061 } 1062 1063 /* That test should have eliminated the following case: */ 1064 J_ASSERT_JH(jh, jh->b_frozen_data == NULL); 1065 1066 JBUFFER_TRACE(jh, "file as BJ_Metadata"); 1067 spin_lock(&journal->j_list_lock); 1068 __jbd2_journal_file_buffer(jh, handle->h_transaction, BJ_Metadata); 1069 spin_unlock(&journal->j_list_lock); 1070 out_unlock_bh: 1071 jbd_unlock_bh_state(bh); 1072 out: 1073 JBUFFER_TRACE(jh, "exit"); 1074 return 0; 1075 } 1076 1077 /* 1078 * jbd2_journal_release_buffer: undo a get_write_access without any buffer 1079 * updates, if the update decided in the end that it didn't need access. 1080 * 1081 */ 1082 void 1083 jbd2_journal_release_buffer(handle_t *handle, struct buffer_head *bh) 1084 { 1085 BUFFER_TRACE(bh, "entry"); 1086 } 1087 1088 /** 1089 * void jbd2_journal_forget() - bforget() for potentially-journaled buffers. 1090 * @handle: transaction handle 1091 * @bh: bh to 'forget' 1092 * 1093 * We can only do the bforget if there are no commits pending against the 1094 * buffer. If the buffer is dirty in the current running transaction we 1095 * can safely unlink it. 1096 * 1097 * bh may not be a journalled buffer at all - it may be a non-JBD 1098 * buffer which came off the hashtable. Check for this. 1099 * 1100 * Decrements bh->b_count by one. 1101 * 1102 * Allow this call even if the handle has aborted --- it may be part of 1103 * the caller's cleanup after an abort. 1104 */ 1105 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh) 1106 { 1107 transaction_t *transaction = handle->h_transaction; 1108 journal_t *journal = transaction->t_journal; 1109 struct journal_head *jh; 1110 int drop_reserve = 0; 1111 int err = 0; 1112 int was_modified = 0; 1113 1114 BUFFER_TRACE(bh, "entry"); 1115 1116 jbd_lock_bh_state(bh); 1117 spin_lock(&journal->j_list_lock); 1118 1119 if (!buffer_jbd(bh)) 1120 goto not_jbd; 1121 jh = bh2jh(bh); 1122 1123 /* Critical error: attempting to delete a bitmap buffer, maybe? 1124 * Don't do any jbd operations, and return an error. */ 1125 if (!J_EXPECT_JH(jh, !jh->b_committed_data, 1126 "inconsistent data on disk")) { 1127 err = -EIO; 1128 goto not_jbd; 1129 } 1130 1131 /* keep track of wether or not this transaction modified us */ 1132 was_modified = jh->b_modified; 1133 1134 /* 1135 * The buffer's going from the transaction, we must drop 1136 * all references -bzzz 1137 */ 1138 jh->b_modified = 0; 1139 1140 if (jh->b_transaction == handle->h_transaction) { 1141 J_ASSERT_JH(jh, !jh->b_frozen_data); 1142 1143 /* If we are forgetting a buffer which is already part 1144 * of this transaction, then we can just drop it from 1145 * the transaction immediately. */ 1146 clear_buffer_dirty(bh); 1147 clear_buffer_jbddirty(bh); 1148 1149 JBUFFER_TRACE(jh, "belongs to current transaction: unfile"); 1150 1151 /* 1152 * we only want to drop a reference if this transaction 1153 * modified the buffer 1154 */ 1155 if (was_modified) 1156 drop_reserve = 1; 1157 1158 /* 1159 * We are no longer going to journal this buffer. 1160 * However, the commit of this transaction is still 1161 * important to the buffer: the delete that we are now 1162 * processing might obsolete an old log entry, so by 1163 * committing, we can satisfy the buffer's checkpoint. 1164 * 1165 * So, if we have a checkpoint on the buffer, we should 1166 * now refile the buffer on our BJ_Forget list so that 1167 * we know to remove the checkpoint after we commit. 1168 */ 1169 1170 if (jh->b_cp_transaction) { 1171 __jbd2_journal_temp_unlink_buffer(jh); 1172 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1173 } else { 1174 __jbd2_journal_unfile_buffer(jh); 1175 jbd2_journal_remove_journal_head(bh); 1176 __brelse(bh); 1177 if (!buffer_jbd(bh)) { 1178 spin_unlock(&journal->j_list_lock); 1179 jbd_unlock_bh_state(bh); 1180 __bforget(bh); 1181 goto drop; 1182 } 1183 } 1184 } else if (jh->b_transaction) { 1185 J_ASSERT_JH(jh, (jh->b_transaction == 1186 journal->j_committing_transaction)); 1187 /* However, if the buffer is still owned by a prior 1188 * (committing) transaction, we can't drop it yet... */ 1189 JBUFFER_TRACE(jh, "belongs to older transaction"); 1190 /* ... but we CAN drop it from the new transaction if we 1191 * have also modified it since the original commit. */ 1192 1193 if (jh->b_next_transaction) { 1194 J_ASSERT(jh->b_next_transaction == transaction); 1195 jh->b_next_transaction = NULL; 1196 1197 /* 1198 * only drop a reference if this transaction modified 1199 * the buffer 1200 */ 1201 if (was_modified) 1202 drop_reserve = 1; 1203 } 1204 } 1205 1206 not_jbd: 1207 spin_unlock(&journal->j_list_lock); 1208 jbd_unlock_bh_state(bh); 1209 __brelse(bh); 1210 drop: 1211 if (drop_reserve) { 1212 /* no need to reserve log space for this block -bzzz */ 1213 handle->h_buffer_credits++; 1214 } 1215 return err; 1216 } 1217 1218 /** 1219 * int jbd2_journal_stop() - complete a transaction 1220 * @handle: tranaction to complete. 1221 * 1222 * All done for a particular handle. 1223 * 1224 * There is not much action needed here. We just return any remaining 1225 * buffer credits to the transaction and remove the handle. The only 1226 * complication is that we need to start a commit operation if the 1227 * filesystem is marked for synchronous update. 1228 * 1229 * jbd2_journal_stop itself will not usually return an error, but it may 1230 * do so in unusual circumstances. In particular, expect it to 1231 * return -EIO if a jbd2_journal_abort has been executed since the 1232 * transaction began. 1233 */ 1234 int jbd2_journal_stop(handle_t *handle) 1235 { 1236 transaction_t *transaction = handle->h_transaction; 1237 journal_t *journal = transaction->t_journal; 1238 int err; 1239 pid_t pid; 1240 1241 J_ASSERT(journal_current_handle() == handle); 1242 1243 if (is_handle_aborted(handle)) 1244 err = -EIO; 1245 else { 1246 J_ASSERT(transaction->t_updates > 0); 1247 err = 0; 1248 } 1249 1250 if (--handle->h_ref > 0) { 1251 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1, 1252 handle->h_ref); 1253 return err; 1254 } 1255 1256 jbd_debug(4, "Handle %p going down\n", handle); 1257 1258 /* 1259 * Implement synchronous transaction batching. If the handle 1260 * was synchronous, don't force a commit immediately. Let's 1261 * yield and let another thread piggyback onto this 1262 * transaction. Keep doing that while new threads continue to 1263 * arrive. It doesn't cost much - we're about to run a commit 1264 * and sleep on IO anyway. Speeds up many-threaded, many-dir 1265 * operations by 30x or more... 1266 * 1267 * We try and optimize the sleep time against what the 1268 * underlying disk can do, instead of having a static sleep 1269 * time. This is useful for the case where our storage is so 1270 * fast that it is more optimal to go ahead and force a flush 1271 * and wait for the transaction to be committed than it is to 1272 * wait for an arbitrary amount of time for new writers to 1273 * join the transaction. We achieve this by measuring how 1274 * long it takes to commit a transaction, and compare it with 1275 * how long this transaction has been running, and if run time 1276 * < commit time then we sleep for the delta and commit. This 1277 * greatly helps super fast disks that would see slowdowns as 1278 * more threads started doing fsyncs. 1279 * 1280 * But don't do this if this process was the most recent one 1281 * to perform a synchronous write. We do this to detect the 1282 * case where a single process is doing a stream of sync 1283 * writes. No point in waiting for joiners in that case. 1284 */ 1285 pid = current->pid; 1286 if (handle->h_sync && journal->j_last_sync_writer != pid) { 1287 u64 commit_time, trans_time; 1288 1289 journal->j_last_sync_writer = pid; 1290 1291 spin_lock(&journal->j_state_lock); 1292 commit_time = journal->j_average_commit_time; 1293 spin_unlock(&journal->j_state_lock); 1294 1295 trans_time = ktime_to_ns(ktime_sub(ktime_get(), 1296 transaction->t_start_time)); 1297 1298 commit_time = max_t(u64, commit_time, 1299 1000*journal->j_min_batch_time); 1300 commit_time = min_t(u64, commit_time, 1301 1000*journal->j_max_batch_time); 1302 1303 if (trans_time < commit_time) { 1304 ktime_t expires = ktime_add_ns(ktime_get(), 1305 commit_time); 1306 set_current_state(TASK_UNINTERRUPTIBLE); 1307 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS); 1308 } 1309 } 1310 1311 if (handle->h_sync) 1312 transaction->t_synchronous_commit = 1; 1313 current->journal_info = NULL; 1314 spin_lock(&transaction->t_handle_lock); 1315 transaction->t_outstanding_credits -= handle->h_buffer_credits; 1316 transaction->t_updates--; 1317 if (!transaction->t_updates) { 1318 wake_up(&journal->j_wait_updates); 1319 if (journal->j_barrier_count) 1320 wake_up(&journal->j_wait_transaction_locked); 1321 } 1322 1323 /* 1324 * If the handle is marked SYNC, we need to set another commit 1325 * going! We also want to force a commit if the current 1326 * transaction is occupying too much of the log, or if the 1327 * transaction is too old now. 1328 */ 1329 if (handle->h_sync || 1330 transaction->t_outstanding_credits > 1331 journal->j_max_transaction_buffers || 1332 time_after_eq(jiffies, transaction->t_expires)) { 1333 /* Do this even for aborted journals: an abort still 1334 * completes the commit thread, it just doesn't write 1335 * anything to disk. */ 1336 tid_t tid = transaction->t_tid; 1337 1338 spin_unlock(&transaction->t_handle_lock); 1339 jbd_debug(2, "transaction too old, requesting commit for " 1340 "handle %p\n", handle); 1341 /* This is non-blocking */ 1342 jbd2_log_start_commit(journal, transaction->t_tid); 1343 1344 /* 1345 * Special case: JBD2_SYNC synchronous updates require us 1346 * to wait for the commit to complete. 1347 */ 1348 if (handle->h_sync && !(current->flags & PF_MEMALLOC)) 1349 err = jbd2_log_wait_commit(journal, tid); 1350 } else { 1351 spin_unlock(&transaction->t_handle_lock); 1352 } 1353 1354 lock_map_release(&handle->h_lockdep_map); 1355 1356 jbd2_free_handle(handle); 1357 return err; 1358 } 1359 1360 /** 1361 * int jbd2_journal_force_commit() - force any uncommitted transactions 1362 * @journal: journal to force 1363 * 1364 * For synchronous operations: force any uncommitted transactions 1365 * to disk. May seem kludgy, but it reuses all the handle batching 1366 * code in a very simple manner. 1367 */ 1368 int jbd2_journal_force_commit(journal_t *journal) 1369 { 1370 handle_t *handle; 1371 int ret; 1372 1373 handle = jbd2_journal_start(journal, 1); 1374 if (IS_ERR(handle)) { 1375 ret = PTR_ERR(handle); 1376 } else { 1377 handle->h_sync = 1; 1378 ret = jbd2_journal_stop(handle); 1379 } 1380 return ret; 1381 } 1382 1383 /* 1384 * 1385 * List management code snippets: various functions for manipulating the 1386 * transaction buffer lists. 1387 * 1388 */ 1389 1390 /* 1391 * Append a buffer to a transaction list, given the transaction's list head 1392 * pointer. 1393 * 1394 * j_list_lock is held. 1395 * 1396 * jbd_lock_bh_state(jh2bh(jh)) is held. 1397 */ 1398 1399 static inline void 1400 __blist_add_buffer(struct journal_head **list, struct journal_head *jh) 1401 { 1402 if (!*list) { 1403 jh->b_tnext = jh->b_tprev = jh; 1404 *list = jh; 1405 } else { 1406 /* Insert at the tail of the list to preserve order */ 1407 struct journal_head *first = *list, *last = first->b_tprev; 1408 jh->b_tprev = last; 1409 jh->b_tnext = first; 1410 last->b_tnext = first->b_tprev = jh; 1411 } 1412 } 1413 1414 /* 1415 * Remove a buffer from a transaction list, given the transaction's list 1416 * head pointer. 1417 * 1418 * Called with j_list_lock held, and the journal may not be locked. 1419 * 1420 * jbd_lock_bh_state(jh2bh(jh)) is held. 1421 */ 1422 1423 static inline void 1424 __blist_del_buffer(struct journal_head **list, struct journal_head *jh) 1425 { 1426 if (*list == jh) { 1427 *list = jh->b_tnext; 1428 if (*list == jh) 1429 *list = NULL; 1430 } 1431 jh->b_tprev->b_tnext = jh->b_tnext; 1432 jh->b_tnext->b_tprev = jh->b_tprev; 1433 } 1434 1435 /* 1436 * Remove a buffer from the appropriate transaction list. 1437 * 1438 * Note that this function can *change* the value of 1439 * bh->b_transaction->t_buffers, t_forget, t_iobuf_list, t_shadow_list, 1440 * t_log_list or t_reserved_list. If the caller is holding onto a copy of one 1441 * of these pointers, it could go bad. Generally the caller needs to re-read 1442 * the pointer from the transaction_t. 1443 * 1444 * Called under j_list_lock. The journal may not be locked. 1445 */ 1446 void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh) 1447 { 1448 struct journal_head **list = NULL; 1449 transaction_t *transaction; 1450 struct buffer_head *bh = jh2bh(jh); 1451 1452 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 1453 transaction = jh->b_transaction; 1454 if (transaction) 1455 assert_spin_locked(&transaction->t_journal->j_list_lock); 1456 1457 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 1458 if (jh->b_jlist != BJ_None) 1459 J_ASSERT_JH(jh, transaction != NULL); 1460 1461 switch (jh->b_jlist) { 1462 case BJ_None: 1463 return; 1464 case BJ_Metadata: 1465 transaction->t_nr_buffers--; 1466 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0); 1467 list = &transaction->t_buffers; 1468 break; 1469 case BJ_Forget: 1470 list = &transaction->t_forget; 1471 break; 1472 case BJ_IO: 1473 list = &transaction->t_iobuf_list; 1474 break; 1475 case BJ_Shadow: 1476 list = &transaction->t_shadow_list; 1477 break; 1478 case BJ_LogCtl: 1479 list = &transaction->t_log_list; 1480 break; 1481 case BJ_Reserved: 1482 list = &transaction->t_reserved_list; 1483 break; 1484 } 1485 1486 __blist_del_buffer(list, jh); 1487 jh->b_jlist = BJ_None; 1488 if (test_clear_buffer_jbddirty(bh)) 1489 mark_buffer_dirty(bh); /* Expose it to the VM */ 1490 } 1491 1492 void __jbd2_journal_unfile_buffer(struct journal_head *jh) 1493 { 1494 __jbd2_journal_temp_unlink_buffer(jh); 1495 jh->b_transaction = NULL; 1496 } 1497 1498 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh) 1499 { 1500 jbd_lock_bh_state(jh2bh(jh)); 1501 spin_lock(&journal->j_list_lock); 1502 __jbd2_journal_unfile_buffer(jh); 1503 spin_unlock(&journal->j_list_lock); 1504 jbd_unlock_bh_state(jh2bh(jh)); 1505 } 1506 1507 /* 1508 * Called from jbd2_journal_try_to_free_buffers(). 1509 * 1510 * Called under jbd_lock_bh_state(bh) 1511 */ 1512 static void 1513 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh) 1514 { 1515 struct journal_head *jh; 1516 1517 jh = bh2jh(bh); 1518 1519 if (buffer_locked(bh) || buffer_dirty(bh)) 1520 goto out; 1521 1522 if (jh->b_next_transaction != NULL) 1523 goto out; 1524 1525 spin_lock(&journal->j_list_lock); 1526 if (jh->b_cp_transaction != NULL && jh->b_transaction == NULL) { 1527 /* written-back checkpointed metadata buffer */ 1528 if (jh->b_jlist == BJ_None) { 1529 JBUFFER_TRACE(jh, "remove from checkpoint list"); 1530 __jbd2_journal_remove_checkpoint(jh); 1531 jbd2_journal_remove_journal_head(bh); 1532 __brelse(bh); 1533 } 1534 } 1535 spin_unlock(&journal->j_list_lock); 1536 out: 1537 return; 1538 } 1539 1540 /** 1541 * int jbd2_journal_try_to_free_buffers() - try to free page buffers. 1542 * @journal: journal for operation 1543 * @page: to try and free 1544 * @gfp_mask: we use the mask to detect how hard should we try to release 1545 * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to 1546 * release the buffers. 1547 * 1548 * 1549 * For all the buffers on this page, 1550 * if they are fully written out ordered data, move them onto BUF_CLEAN 1551 * so try_to_free_buffers() can reap them. 1552 * 1553 * This function returns non-zero if we wish try_to_free_buffers() 1554 * to be called. We do this if the page is releasable by try_to_free_buffers(). 1555 * We also do it if the page has locked or dirty buffers and the caller wants 1556 * us to perform sync or async writeout. 1557 * 1558 * This complicates JBD locking somewhat. We aren't protected by the 1559 * BKL here. We wish to remove the buffer from its committing or 1560 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer. 1561 * 1562 * This may *change* the value of transaction_t->t_datalist, so anyone 1563 * who looks at t_datalist needs to lock against this function. 1564 * 1565 * Even worse, someone may be doing a jbd2_journal_dirty_data on this 1566 * buffer. So we need to lock against that. jbd2_journal_dirty_data() 1567 * will come out of the lock with the buffer dirty, which makes it 1568 * ineligible for release here. 1569 * 1570 * Who else is affected by this? hmm... Really the only contender 1571 * is do_get_write_access() - it could be looking at the buffer while 1572 * journal_try_to_free_buffer() is changing its state. But that 1573 * cannot happen because we never reallocate freed data as metadata 1574 * while the data is part of a transaction. Yes? 1575 * 1576 * Return 0 on failure, 1 on success 1577 */ 1578 int jbd2_journal_try_to_free_buffers(journal_t *journal, 1579 struct page *page, gfp_t gfp_mask) 1580 { 1581 struct buffer_head *head; 1582 struct buffer_head *bh; 1583 int ret = 0; 1584 1585 J_ASSERT(PageLocked(page)); 1586 1587 head = page_buffers(page); 1588 bh = head; 1589 do { 1590 struct journal_head *jh; 1591 1592 /* 1593 * We take our own ref against the journal_head here to avoid 1594 * having to add tons of locking around each instance of 1595 * jbd2_journal_remove_journal_head() and 1596 * jbd2_journal_put_journal_head(). 1597 */ 1598 jh = jbd2_journal_grab_journal_head(bh); 1599 if (!jh) 1600 continue; 1601 1602 jbd_lock_bh_state(bh); 1603 __journal_try_to_free_buffer(journal, bh); 1604 jbd2_journal_put_journal_head(jh); 1605 jbd_unlock_bh_state(bh); 1606 if (buffer_jbd(bh)) 1607 goto busy; 1608 } while ((bh = bh->b_this_page) != head); 1609 1610 ret = try_to_free_buffers(page); 1611 1612 busy: 1613 return ret; 1614 } 1615 1616 /* 1617 * This buffer is no longer needed. If it is on an older transaction's 1618 * checkpoint list we need to record it on this transaction's forget list 1619 * to pin this buffer (and hence its checkpointing transaction) down until 1620 * this transaction commits. If the buffer isn't on a checkpoint list, we 1621 * release it. 1622 * Returns non-zero if JBD no longer has an interest in the buffer. 1623 * 1624 * Called under j_list_lock. 1625 * 1626 * Called under jbd_lock_bh_state(bh). 1627 */ 1628 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction) 1629 { 1630 int may_free = 1; 1631 struct buffer_head *bh = jh2bh(jh); 1632 1633 __jbd2_journal_unfile_buffer(jh); 1634 1635 if (jh->b_cp_transaction) { 1636 JBUFFER_TRACE(jh, "on running+cp transaction"); 1637 /* 1638 * We don't want to write the buffer anymore, clear the 1639 * bit so that we don't confuse checks in 1640 * __journal_file_buffer 1641 */ 1642 clear_buffer_dirty(bh); 1643 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1644 may_free = 0; 1645 } else { 1646 JBUFFER_TRACE(jh, "on running transaction"); 1647 jbd2_journal_remove_journal_head(bh); 1648 __brelse(bh); 1649 } 1650 return may_free; 1651 } 1652 1653 /* 1654 * jbd2_journal_invalidatepage 1655 * 1656 * This code is tricky. It has a number of cases to deal with. 1657 * 1658 * There are two invariants which this code relies on: 1659 * 1660 * i_size must be updated on disk before we start calling invalidatepage on the 1661 * data. 1662 * 1663 * This is done in ext3 by defining an ext3_setattr method which 1664 * updates i_size before truncate gets going. By maintaining this 1665 * invariant, we can be sure that it is safe to throw away any buffers 1666 * attached to the current transaction: once the transaction commits, 1667 * we know that the data will not be needed. 1668 * 1669 * Note however that we can *not* throw away data belonging to the 1670 * previous, committing transaction! 1671 * 1672 * Any disk blocks which *are* part of the previous, committing 1673 * transaction (and which therefore cannot be discarded immediately) are 1674 * not going to be reused in the new running transaction 1675 * 1676 * The bitmap committed_data images guarantee this: any block which is 1677 * allocated in one transaction and removed in the next will be marked 1678 * as in-use in the committed_data bitmap, so cannot be reused until 1679 * the next transaction to delete the block commits. This means that 1680 * leaving committing buffers dirty is quite safe: the disk blocks 1681 * cannot be reallocated to a different file and so buffer aliasing is 1682 * not possible. 1683 * 1684 * 1685 * The above applies mainly to ordered data mode. In writeback mode we 1686 * don't make guarantees about the order in which data hits disk --- in 1687 * particular we don't guarantee that new dirty data is flushed before 1688 * transaction commit --- so it is always safe just to discard data 1689 * immediately in that mode. --sct 1690 */ 1691 1692 /* 1693 * The journal_unmap_buffer helper function returns zero if the buffer 1694 * concerned remains pinned as an anonymous buffer belonging to an older 1695 * transaction. 1696 * 1697 * We're outside-transaction here. Either or both of j_running_transaction 1698 * and j_committing_transaction may be NULL. 1699 */ 1700 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh) 1701 { 1702 transaction_t *transaction; 1703 struct journal_head *jh; 1704 int may_free = 1; 1705 int ret; 1706 1707 BUFFER_TRACE(bh, "entry"); 1708 1709 /* 1710 * It is safe to proceed here without the j_list_lock because the 1711 * buffers cannot be stolen by try_to_free_buffers as long as we are 1712 * holding the page lock. --sct 1713 */ 1714 1715 if (!buffer_jbd(bh)) 1716 goto zap_buffer_unlocked; 1717 1718 /* OK, we have data buffer in journaled mode */ 1719 spin_lock(&journal->j_state_lock); 1720 jbd_lock_bh_state(bh); 1721 spin_lock(&journal->j_list_lock); 1722 1723 jh = jbd2_journal_grab_journal_head(bh); 1724 if (!jh) 1725 goto zap_buffer_no_jh; 1726 1727 /* 1728 * We cannot remove the buffer from checkpoint lists until the 1729 * transaction adding inode to orphan list (let's call it T) 1730 * is committed. Otherwise if the transaction changing the 1731 * buffer would be cleaned from the journal before T is 1732 * committed, a crash will cause that the correct contents of 1733 * the buffer will be lost. On the other hand we have to 1734 * clear the buffer dirty bit at latest at the moment when the 1735 * transaction marking the buffer as freed in the filesystem 1736 * structures is committed because from that moment on the 1737 * buffer can be reallocated and used by a different page. 1738 * Since the block hasn't been freed yet but the inode has 1739 * already been added to orphan list, it is safe for us to add 1740 * the buffer to BJ_Forget list of the newest transaction. 1741 */ 1742 transaction = jh->b_transaction; 1743 if (transaction == NULL) { 1744 /* First case: not on any transaction. If it 1745 * has no checkpoint link, then we can zap it: 1746 * it's a writeback-mode buffer so we don't care 1747 * if it hits disk safely. */ 1748 if (!jh->b_cp_transaction) { 1749 JBUFFER_TRACE(jh, "not on any transaction: zap"); 1750 goto zap_buffer; 1751 } 1752 1753 if (!buffer_dirty(bh)) { 1754 /* bdflush has written it. We can drop it now */ 1755 goto zap_buffer; 1756 } 1757 1758 /* OK, it must be in the journal but still not 1759 * written fully to disk: it's metadata or 1760 * journaled data... */ 1761 1762 if (journal->j_running_transaction) { 1763 /* ... and once the current transaction has 1764 * committed, the buffer won't be needed any 1765 * longer. */ 1766 JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget"); 1767 ret = __dispose_buffer(jh, 1768 journal->j_running_transaction); 1769 jbd2_journal_put_journal_head(jh); 1770 spin_unlock(&journal->j_list_lock); 1771 jbd_unlock_bh_state(bh); 1772 spin_unlock(&journal->j_state_lock); 1773 return ret; 1774 } else { 1775 /* There is no currently-running transaction. So the 1776 * orphan record which we wrote for this file must have 1777 * passed into commit. We must attach this buffer to 1778 * the committing transaction, if it exists. */ 1779 if (journal->j_committing_transaction) { 1780 JBUFFER_TRACE(jh, "give to committing trans"); 1781 ret = __dispose_buffer(jh, 1782 journal->j_committing_transaction); 1783 jbd2_journal_put_journal_head(jh); 1784 spin_unlock(&journal->j_list_lock); 1785 jbd_unlock_bh_state(bh); 1786 spin_unlock(&journal->j_state_lock); 1787 return ret; 1788 } else { 1789 /* The orphan record's transaction has 1790 * committed. We can cleanse this buffer */ 1791 clear_buffer_jbddirty(bh); 1792 goto zap_buffer; 1793 } 1794 } 1795 } else if (transaction == journal->j_committing_transaction) { 1796 JBUFFER_TRACE(jh, "on committing transaction"); 1797 /* 1798 * The buffer is committing, we simply cannot touch 1799 * it. So we just set j_next_transaction to the 1800 * running transaction (if there is one) and mark 1801 * buffer as freed so that commit code knows it should 1802 * clear dirty bits when it is done with the buffer. 1803 */ 1804 set_buffer_freed(bh); 1805 if (journal->j_running_transaction && buffer_jbddirty(bh)) 1806 jh->b_next_transaction = journal->j_running_transaction; 1807 jbd2_journal_put_journal_head(jh); 1808 spin_unlock(&journal->j_list_lock); 1809 jbd_unlock_bh_state(bh); 1810 spin_unlock(&journal->j_state_lock); 1811 return 0; 1812 } else { 1813 /* Good, the buffer belongs to the running transaction. 1814 * We are writing our own transaction's data, not any 1815 * previous one's, so it is safe to throw it away 1816 * (remember that we expect the filesystem to have set 1817 * i_size already for this truncate so recovery will not 1818 * expose the disk blocks we are discarding here.) */ 1819 J_ASSERT_JH(jh, transaction == journal->j_running_transaction); 1820 JBUFFER_TRACE(jh, "on running transaction"); 1821 may_free = __dispose_buffer(jh, transaction); 1822 } 1823 1824 zap_buffer: 1825 jbd2_journal_put_journal_head(jh); 1826 zap_buffer_no_jh: 1827 spin_unlock(&journal->j_list_lock); 1828 jbd_unlock_bh_state(bh); 1829 spin_unlock(&journal->j_state_lock); 1830 zap_buffer_unlocked: 1831 clear_buffer_dirty(bh); 1832 J_ASSERT_BH(bh, !buffer_jbddirty(bh)); 1833 clear_buffer_mapped(bh); 1834 clear_buffer_req(bh); 1835 clear_buffer_new(bh); 1836 bh->b_bdev = NULL; 1837 return may_free; 1838 } 1839 1840 /** 1841 * void jbd2_journal_invalidatepage() 1842 * @journal: journal to use for flush... 1843 * @page: page to flush 1844 * @offset: length of page to invalidate. 1845 * 1846 * Reap page buffers containing data after offset in page. 1847 * 1848 */ 1849 void jbd2_journal_invalidatepage(journal_t *journal, 1850 struct page *page, 1851 unsigned long offset) 1852 { 1853 struct buffer_head *head, *bh, *next; 1854 unsigned int curr_off = 0; 1855 int may_free = 1; 1856 1857 if (!PageLocked(page)) 1858 BUG(); 1859 if (!page_has_buffers(page)) 1860 return; 1861 1862 /* We will potentially be playing with lists other than just the 1863 * data lists (especially for journaled data mode), so be 1864 * cautious in our locking. */ 1865 1866 head = bh = page_buffers(page); 1867 do { 1868 unsigned int next_off = curr_off + bh->b_size; 1869 next = bh->b_this_page; 1870 1871 if (offset <= curr_off) { 1872 /* This block is wholly outside the truncation point */ 1873 lock_buffer(bh); 1874 may_free &= journal_unmap_buffer(journal, bh); 1875 unlock_buffer(bh); 1876 } 1877 curr_off = next_off; 1878 bh = next; 1879 1880 } while (bh != head); 1881 1882 if (!offset) { 1883 if (may_free && try_to_free_buffers(page)) 1884 J_ASSERT(!page_has_buffers(page)); 1885 } 1886 } 1887 1888 /* 1889 * File a buffer on the given transaction list. 1890 */ 1891 void __jbd2_journal_file_buffer(struct journal_head *jh, 1892 transaction_t *transaction, int jlist) 1893 { 1894 struct journal_head **list = NULL; 1895 int was_dirty = 0; 1896 struct buffer_head *bh = jh2bh(jh); 1897 1898 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 1899 assert_spin_locked(&transaction->t_journal->j_list_lock); 1900 1901 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 1902 J_ASSERT_JH(jh, jh->b_transaction == transaction || 1903 jh->b_transaction == NULL); 1904 1905 if (jh->b_transaction && jh->b_jlist == jlist) 1906 return; 1907 1908 if (jlist == BJ_Metadata || jlist == BJ_Reserved || 1909 jlist == BJ_Shadow || jlist == BJ_Forget) { 1910 /* 1911 * For metadata buffers, we track dirty bit in buffer_jbddirty 1912 * instead of buffer_dirty. We should not see a dirty bit set 1913 * here because we clear it in do_get_write_access but e.g. 1914 * tune2fs can modify the sb and set the dirty bit at any time 1915 * so we try to gracefully handle that. 1916 */ 1917 if (buffer_dirty(bh)) 1918 warn_dirty_buffer(bh); 1919 if (test_clear_buffer_dirty(bh) || 1920 test_clear_buffer_jbddirty(bh)) 1921 was_dirty = 1; 1922 } 1923 1924 if (jh->b_transaction) 1925 __jbd2_journal_temp_unlink_buffer(jh); 1926 jh->b_transaction = transaction; 1927 1928 switch (jlist) { 1929 case BJ_None: 1930 J_ASSERT_JH(jh, !jh->b_committed_data); 1931 J_ASSERT_JH(jh, !jh->b_frozen_data); 1932 return; 1933 case BJ_Metadata: 1934 transaction->t_nr_buffers++; 1935 list = &transaction->t_buffers; 1936 break; 1937 case BJ_Forget: 1938 list = &transaction->t_forget; 1939 break; 1940 case BJ_IO: 1941 list = &transaction->t_iobuf_list; 1942 break; 1943 case BJ_Shadow: 1944 list = &transaction->t_shadow_list; 1945 break; 1946 case BJ_LogCtl: 1947 list = &transaction->t_log_list; 1948 break; 1949 case BJ_Reserved: 1950 list = &transaction->t_reserved_list; 1951 break; 1952 } 1953 1954 __blist_add_buffer(list, jh); 1955 jh->b_jlist = jlist; 1956 1957 if (was_dirty) 1958 set_buffer_jbddirty(bh); 1959 } 1960 1961 void jbd2_journal_file_buffer(struct journal_head *jh, 1962 transaction_t *transaction, int jlist) 1963 { 1964 jbd_lock_bh_state(jh2bh(jh)); 1965 spin_lock(&transaction->t_journal->j_list_lock); 1966 __jbd2_journal_file_buffer(jh, transaction, jlist); 1967 spin_unlock(&transaction->t_journal->j_list_lock); 1968 jbd_unlock_bh_state(jh2bh(jh)); 1969 } 1970 1971 /* 1972 * Remove a buffer from its current buffer list in preparation for 1973 * dropping it from its current transaction entirely. If the buffer has 1974 * already started to be used by a subsequent transaction, refile the 1975 * buffer on that transaction's metadata list. 1976 * 1977 * Called under journal->j_list_lock 1978 * 1979 * Called under jbd_lock_bh_state(jh2bh(jh)) 1980 */ 1981 void __jbd2_journal_refile_buffer(struct journal_head *jh) 1982 { 1983 int was_dirty, jlist; 1984 struct buffer_head *bh = jh2bh(jh); 1985 1986 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 1987 if (jh->b_transaction) 1988 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock); 1989 1990 /* If the buffer is now unused, just drop it. */ 1991 if (jh->b_next_transaction == NULL) { 1992 __jbd2_journal_unfile_buffer(jh); 1993 return; 1994 } 1995 1996 /* 1997 * It has been modified by a later transaction: add it to the new 1998 * transaction's metadata list. 1999 */ 2000 2001 was_dirty = test_clear_buffer_jbddirty(bh); 2002 __jbd2_journal_temp_unlink_buffer(jh); 2003 jh->b_transaction = jh->b_next_transaction; 2004 jh->b_next_transaction = NULL; 2005 if (buffer_freed(bh)) 2006 jlist = BJ_Forget; 2007 else if (jh->b_modified) 2008 jlist = BJ_Metadata; 2009 else 2010 jlist = BJ_Reserved; 2011 __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist); 2012 J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING); 2013 2014 if (was_dirty) 2015 set_buffer_jbddirty(bh); 2016 } 2017 2018 /* 2019 * For the unlocked version of this call, also make sure that any 2020 * hanging journal_head is cleaned up if necessary. 2021 * 2022 * __jbd2_journal_refile_buffer is usually called as part of a single locked 2023 * operation on a buffer_head, in which the caller is probably going to 2024 * be hooking the journal_head onto other lists. In that case it is up 2025 * to the caller to remove the journal_head if necessary. For the 2026 * unlocked jbd2_journal_refile_buffer call, the caller isn't going to be 2027 * doing anything else to the buffer so we need to do the cleanup 2028 * ourselves to avoid a jh leak. 2029 * 2030 * *** The journal_head may be freed by this call! *** 2031 */ 2032 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh) 2033 { 2034 struct buffer_head *bh = jh2bh(jh); 2035 2036 jbd_lock_bh_state(bh); 2037 spin_lock(&journal->j_list_lock); 2038 2039 __jbd2_journal_refile_buffer(jh); 2040 jbd_unlock_bh_state(bh); 2041 jbd2_journal_remove_journal_head(bh); 2042 2043 spin_unlock(&journal->j_list_lock); 2044 __brelse(bh); 2045 } 2046 2047 /* 2048 * File inode in the inode list of the handle's transaction 2049 */ 2050 int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode) 2051 { 2052 transaction_t *transaction = handle->h_transaction; 2053 journal_t *journal = transaction->t_journal; 2054 2055 if (is_handle_aborted(handle)) 2056 return -EIO; 2057 2058 jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino, 2059 transaction->t_tid); 2060 2061 /* 2062 * First check whether inode isn't already on the transaction's 2063 * lists without taking the lock. Note that this check is safe 2064 * without the lock as we cannot race with somebody removing inode 2065 * from the transaction. The reason is that we remove inode from the 2066 * transaction only in journal_release_jbd_inode() and when we commit 2067 * the transaction. We are guarded from the first case by holding 2068 * a reference to the inode. We are safe against the second case 2069 * because if jinode->i_transaction == transaction, commit code 2070 * cannot touch the transaction because we hold reference to it, 2071 * and if jinode->i_next_transaction == transaction, commit code 2072 * will only file the inode where we want it. 2073 */ 2074 if (jinode->i_transaction == transaction || 2075 jinode->i_next_transaction == transaction) 2076 return 0; 2077 2078 spin_lock(&journal->j_list_lock); 2079 2080 if (jinode->i_transaction == transaction || 2081 jinode->i_next_transaction == transaction) 2082 goto done; 2083 2084 /* On some different transaction's list - should be 2085 * the committing one */ 2086 if (jinode->i_transaction) { 2087 J_ASSERT(jinode->i_next_transaction == NULL); 2088 J_ASSERT(jinode->i_transaction == 2089 journal->j_committing_transaction); 2090 jinode->i_next_transaction = transaction; 2091 goto done; 2092 } 2093 /* Not on any transaction list... */ 2094 J_ASSERT(!jinode->i_next_transaction); 2095 jinode->i_transaction = transaction; 2096 list_add(&jinode->i_list, &transaction->t_inode_list); 2097 done: 2098 spin_unlock(&journal->j_list_lock); 2099 2100 return 0; 2101 } 2102 2103 /* 2104 * File truncate and transaction commit interact with each other in a 2105 * non-trivial way. If a transaction writing data block A is 2106 * committing, we cannot discard the data by truncate until we have 2107 * written them. Otherwise if we crashed after the transaction with 2108 * write has committed but before the transaction with truncate has 2109 * committed, we could see stale data in block A. This function is a 2110 * helper to solve this problem. It starts writeout of the truncated 2111 * part in case it is in the committing transaction. 2112 * 2113 * Filesystem code must call this function when inode is journaled in 2114 * ordered mode before truncation happens and after the inode has been 2115 * placed on orphan list with the new inode size. The second condition 2116 * avoids the race that someone writes new data and we start 2117 * committing the transaction after this function has been called but 2118 * before a transaction for truncate is started (and furthermore it 2119 * allows us to optimize the case where the addition to orphan list 2120 * happens in the same transaction as write --- we don't have to write 2121 * any data in such case). 2122 */ 2123 int jbd2_journal_begin_ordered_truncate(journal_t *journal, 2124 struct jbd2_inode *jinode, 2125 loff_t new_size) 2126 { 2127 transaction_t *inode_trans, *commit_trans; 2128 int ret = 0; 2129 2130 /* This is a quick check to avoid locking if not necessary */ 2131 if (!jinode->i_transaction) 2132 goto out; 2133 /* Locks are here just to force reading of recent values, it is 2134 * enough that the transaction was not committing before we started 2135 * a transaction adding the inode to orphan list */ 2136 spin_lock(&journal->j_state_lock); 2137 commit_trans = journal->j_committing_transaction; 2138 spin_unlock(&journal->j_state_lock); 2139 spin_lock(&journal->j_list_lock); 2140 inode_trans = jinode->i_transaction; 2141 spin_unlock(&journal->j_list_lock); 2142 if (inode_trans == commit_trans) { 2143 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping, 2144 new_size, LLONG_MAX); 2145 if (ret) 2146 jbd2_journal_abort(journal, ret); 2147 } 2148 out: 2149 return ret; 2150 } 2151