1 /* 2 * linux/fs/jbd2/transaction.c 3 * 4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 5 * 6 * Copyright 1998 Red Hat corp --- All Rights Reserved 7 * 8 * This file is part of the Linux kernel and is made available under 9 * the terms of the GNU General Public License, version 2, or at your 10 * option, any later version, incorporated herein by reference. 11 * 12 * Generic filesystem transaction handling code; part of the ext2fs 13 * journaling system. 14 * 15 * This file manages transactions (compound commits managed by the 16 * journaling code) and handles (individual atomic operations by the 17 * filesystem). 18 */ 19 20 #include <linux/time.h> 21 #include <linux/fs.h> 22 #include <linux/jbd2.h> 23 #include <linux/errno.h> 24 #include <linux/slab.h> 25 #include <linux/timer.h> 26 #include <linux/mm.h> 27 #include <linux/highmem.h> 28 #include <linux/hrtimer.h> 29 #include <linux/backing-dev.h> 30 #include <linux/bug.h> 31 #include <linux/module.h> 32 33 #include <trace/events/jbd2.h> 34 35 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh); 36 static void __jbd2_journal_unfile_buffer(struct journal_head *jh); 37 38 static struct kmem_cache *transaction_cache; 39 int __init jbd2_journal_init_transaction_cache(void) 40 { 41 J_ASSERT(!transaction_cache); 42 transaction_cache = kmem_cache_create("jbd2_transaction_s", 43 sizeof(transaction_t), 44 0, 45 SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY, 46 NULL); 47 if (transaction_cache) 48 return 0; 49 return -ENOMEM; 50 } 51 52 void jbd2_journal_destroy_transaction_cache(void) 53 { 54 if (transaction_cache) { 55 kmem_cache_destroy(transaction_cache); 56 transaction_cache = NULL; 57 } 58 } 59 60 void jbd2_journal_free_transaction(transaction_t *transaction) 61 { 62 if (unlikely(ZERO_OR_NULL_PTR(transaction))) 63 return; 64 kmem_cache_free(transaction_cache, transaction); 65 } 66 67 /* 68 * jbd2_get_transaction: obtain a new transaction_t object. 69 * 70 * Simply allocate and initialise a new transaction. Create it in 71 * RUNNING state and add it to the current journal (which should not 72 * have an existing running transaction: we only make a new transaction 73 * once we have started to commit the old one). 74 * 75 * Preconditions: 76 * The journal MUST be locked. We don't perform atomic mallocs on the 77 * new transaction and we can't block without protecting against other 78 * processes trying to touch the journal while it is in transition. 79 * 80 */ 81 82 static transaction_t * 83 jbd2_get_transaction(journal_t *journal, transaction_t *transaction) 84 { 85 transaction->t_journal = journal; 86 transaction->t_state = T_RUNNING; 87 transaction->t_start_time = ktime_get(); 88 transaction->t_tid = journal->j_transaction_sequence++; 89 transaction->t_expires = jiffies + journal->j_commit_interval; 90 spin_lock_init(&transaction->t_handle_lock); 91 atomic_set(&transaction->t_updates, 0); 92 atomic_set(&transaction->t_outstanding_credits, 93 atomic_read(&journal->j_reserved_credits)); 94 atomic_set(&transaction->t_handle_count, 0); 95 INIT_LIST_HEAD(&transaction->t_inode_list); 96 INIT_LIST_HEAD(&transaction->t_private_list); 97 98 /* Set up the commit timer for the new transaction. */ 99 journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires); 100 add_timer(&journal->j_commit_timer); 101 102 J_ASSERT(journal->j_running_transaction == NULL); 103 journal->j_running_transaction = transaction; 104 transaction->t_max_wait = 0; 105 transaction->t_start = jiffies; 106 transaction->t_requested = 0; 107 108 return transaction; 109 } 110 111 /* 112 * Handle management. 113 * 114 * A handle_t is an object which represents a single atomic update to a 115 * filesystem, and which tracks all of the modifications which form part 116 * of that one update. 117 */ 118 119 /* 120 * Update transaction's maximum wait time, if debugging is enabled. 121 * 122 * In order for t_max_wait to be reliable, it must be protected by a 123 * lock. But doing so will mean that start_this_handle() can not be 124 * run in parallel on SMP systems, which limits our scalability. So 125 * unless debugging is enabled, we no longer update t_max_wait, which 126 * means that maximum wait time reported by the jbd2_run_stats 127 * tracepoint will always be zero. 128 */ 129 static inline void update_t_max_wait(transaction_t *transaction, 130 unsigned long ts) 131 { 132 #ifdef CONFIG_JBD2_DEBUG 133 if (jbd2_journal_enable_debug && 134 time_after(transaction->t_start, ts)) { 135 ts = jbd2_time_diff(ts, transaction->t_start); 136 spin_lock(&transaction->t_handle_lock); 137 if (ts > transaction->t_max_wait) 138 transaction->t_max_wait = ts; 139 spin_unlock(&transaction->t_handle_lock); 140 } 141 #endif 142 } 143 144 /* 145 * Wait until running transaction passes T_LOCKED state. Also starts the commit 146 * if needed. The function expects running transaction to exist and releases 147 * j_state_lock. 148 */ 149 static void wait_transaction_locked(journal_t *journal) 150 __releases(journal->j_state_lock) 151 { 152 DEFINE_WAIT(wait); 153 int need_to_start; 154 tid_t tid = journal->j_running_transaction->t_tid; 155 156 prepare_to_wait(&journal->j_wait_transaction_locked, &wait, 157 TASK_UNINTERRUPTIBLE); 158 need_to_start = !tid_geq(journal->j_commit_request, tid); 159 read_unlock(&journal->j_state_lock); 160 if (need_to_start) 161 jbd2_log_start_commit(journal, tid); 162 schedule(); 163 finish_wait(&journal->j_wait_transaction_locked, &wait); 164 } 165 166 static void sub_reserved_credits(journal_t *journal, int blocks) 167 { 168 atomic_sub(blocks, &journal->j_reserved_credits); 169 wake_up(&journal->j_wait_reserved); 170 } 171 172 /* 173 * Wait until we can add credits for handle to the running transaction. Called 174 * with j_state_lock held for reading. Returns 0 if handle joined the running 175 * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and 176 * caller must retry. 177 */ 178 static int add_transaction_credits(journal_t *journal, int blocks, 179 int rsv_blocks) 180 { 181 transaction_t *t = journal->j_running_transaction; 182 int needed; 183 int total = blocks + rsv_blocks; 184 185 /* 186 * If the current transaction is locked down for commit, wait 187 * for the lock to be released. 188 */ 189 if (t->t_state == T_LOCKED) { 190 wait_transaction_locked(journal); 191 return 1; 192 } 193 194 /* 195 * If there is not enough space left in the log to write all 196 * potential buffers requested by this operation, we need to 197 * stall pending a log checkpoint to free some more log space. 198 */ 199 needed = atomic_add_return(total, &t->t_outstanding_credits); 200 if (needed > journal->j_max_transaction_buffers) { 201 /* 202 * If the current transaction is already too large, 203 * then start to commit it: we can then go back and 204 * attach this handle to a new transaction. 205 */ 206 atomic_sub(total, &t->t_outstanding_credits); 207 208 /* 209 * Is the number of reserved credits in the current transaction too 210 * big to fit this handle? Wait until reserved credits are freed. 211 */ 212 if (atomic_read(&journal->j_reserved_credits) + total > 213 journal->j_max_transaction_buffers) { 214 read_unlock(&journal->j_state_lock); 215 wait_event(journal->j_wait_reserved, 216 atomic_read(&journal->j_reserved_credits) + total <= 217 journal->j_max_transaction_buffers); 218 return 1; 219 } 220 221 wait_transaction_locked(journal); 222 return 1; 223 } 224 225 /* 226 * The commit code assumes that it can get enough log space 227 * without forcing a checkpoint. This is *critical* for 228 * correctness: a checkpoint of a buffer which is also 229 * associated with a committing transaction creates a deadlock, 230 * so commit simply cannot force through checkpoints. 231 * 232 * We must therefore ensure the necessary space in the journal 233 * *before* starting to dirty potentially checkpointed buffers 234 * in the new transaction. 235 */ 236 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) { 237 atomic_sub(total, &t->t_outstanding_credits); 238 read_unlock(&journal->j_state_lock); 239 write_lock(&journal->j_state_lock); 240 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) 241 __jbd2_log_wait_for_space(journal); 242 write_unlock(&journal->j_state_lock); 243 return 1; 244 } 245 246 /* No reservation? We are done... */ 247 if (!rsv_blocks) 248 return 0; 249 250 needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits); 251 /* We allow at most half of a transaction to be reserved */ 252 if (needed > journal->j_max_transaction_buffers / 2) { 253 sub_reserved_credits(journal, rsv_blocks); 254 atomic_sub(total, &t->t_outstanding_credits); 255 read_unlock(&journal->j_state_lock); 256 wait_event(journal->j_wait_reserved, 257 atomic_read(&journal->j_reserved_credits) + rsv_blocks 258 <= journal->j_max_transaction_buffers / 2); 259 return 1; 260 } 261 return 0; 262 } 263 264 /* 265 * start_this_handle: Given a handle, deal with any locking or stalling 266 * needed to make sure that there is enough journal space for the handle 267 * to begin. Attach the handle to a transaction and set up the 268 * transaction's buffer credits. 269 */ 270 271 static int start_this_handle(journal_t *journal, handle_t *handle, 272 gfp_t gfp_mask) 273 { 274 transaction_t *transaction, *new_transaction = NULL; 275 int blocks = handle->h_buffer_credits; 276 int rsv_blocks = 0; 277 unsigned long ts = jiffies; 278 279 if (handle->h_rsv_handle) 280 rsv_blocks = handle->h_rsv_handle->h_buffer_credits; 281 282 /* 283 * Limit the number of reserved credits to 1/2 of maximum transaction 284 * size and limit the number of total credits to not exceed maximum 285 * transaction size per operation. 286 */ 287 if ((rsv_blocks > journal->j_max_transaction_buffers / 2) || 288 (rsv_blocks + blocks > journal->j_max_transaction_buffers)) { 289 printk(KERN_ERR "JBD2: %s wants too many credits " 290 "credits:%d rsv_credits:%d max:%d\n", 291 current->comm, blocks, rsv_blocks, 292 journal->j_max_transaction_buffers); 293 WARN_ON(1); 294 return -ENOSPC; 295 } 296 297 alloc_transaction: 298 if (!journal->j_running_transaction) { 299 /* 300 * If __GFP_FS is not present, then we may be being called from 301 * inside the fs writeback layer, so we MUST NOT fail. 302 */ 303 if ((gfp_mask & __GFP_FS) == 0) 304 gfp_mask |= __GFP_NOFAIL; 305 new_transaction = kmem_cache_zalloc(transaction_cache, 306 gfp_mask); 307 if (!new_transaction) 308 return -ENOMEM; 309 } 310 311 jbd_debug(3, "New handle %p going live.\n", handle); 312 313 /* 314 * We need to hold j_state_lock until t_updates has been incremented, 315 * for proper journal barrier handling 316 */ 317 repeat: 318 read_lock(&journal->j_state_lock); 319 BUG_ON(journal->j_flags & JBD2_UNMOUNT); 320 if (is_journal_aborted(journal) || 321 (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) { 322 read_unlock(&journal->j_state_lock); 323 jbd2_journal_free_transaction(new_transaction); 324 return -EROFS; 325 } 326 327 /* 328 * Wait on the journal's transaction barrier if necessary. Specifically 329 * we allow reserved handles to proceed because otherwise commit could 330 * deadlock on page writeback not being able to complete. 331 */ 332 if (!handle->h_reserved && journal->j_barrier_count) { 333 read_unlock(&journal->j_state_lock); 334 wait_event(journal->j_wait_transaction_locked, 335 journal->j_barrier_count == 0); 336 goto repeat; 337 } 338 339 if (!journal->j_running_transaction) { 340 read_unlock(&journal->j_state_lock); 341 if (!new_transaction) 342 goto alloc_transaction; 343 write_lock(&journal->j_state_lock); 344 if (!journal->j_running_transaction && 345 (handle->h_reserved || !journal->j_barrier_count)) { 346 jbd2_get_transaction(journal, new_transaction); 347 new_transaction = NULL; 348 } 349 write_unlock(&journal->j_state_lock); 350 goto repeat; 351 } 352 353 transaction = journal->j_running_transaction; 354 355 if (!handle->h_reserved) { 356 /* We may have dropped j_state_lock - restart in that case */ 357 if (add_transaction_credits(journal, blocks, rsv_blocks)) 358 goto repeat; 359 } else { 360 /* 361 * We have handle reserved so we are allowed to join T_LOCKED 362 * transaction and we don't have to check for transaction size 363 * and journal space. 364 */ 365 sub_reserved_credits(journal, blocks); 366 handle->h_reserved = 0; 367 } 368 369 /* OK, account for the buffers that this operation expects to 370 * use and add the handle to the running transaction. 371 */ 372 update_t_max_wait(transaction, ts); 373 handle->h_transaction = transaction; 374 handle->h_requested_credits = blocks; 375 handle->h_start_jiffies = jiffies; 376 atomic_inc(&transaction->t_updates); 377 atomic_inc(&transaction->t_handle_count); 378 jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n", 379 handle, blocks, 380 atomic_read(&transaction->t_outstanding_credits), 381 jbd2_log_space_left(journal)); 382 read_unlock(&journal->j_state_lock); 383 current->journal_info = handle; 384 385 lock_map_acquire(&handle->h_lockdep_map); 386 jbd2_journal_free_transaction(new_transaction); 387 return 0; 388 } 389 390 static struct lock_class_key jbd2_handle_key; 391 392 /* Allocate a new handle. This should probably be in a slab... */ 393 static handle_t *new_handle(int nblocks) 394 { 395 handle_t *handle = jbd2_alloc_handle(GFP_NOFS); 396 if (!handle) 397 return NULL; 398 handle->h_buffer_credits = nblocks; 399 handle->h_ref = 1; 400 401 lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle", 402 &jbd2_handle_key, 0); 403 404 return handle; 405 } 406 407 /** 408 * handle_t *jbd2_journal_start() - Obtain a new handle. 409 * @journal: Journal to start transaction on. 410 * @nblocks: number of block buffer we might modify 411 * 412 * We make sure that the transaction can guarantee at least nblocks of 413 * modified buffers in the log. We block until the log can guarantee 414 * that much space. Additionally, if rsv_blocks > 0, we also create another 415 * handle with rsv_blocks reserved blocks in the journal. This handle is 416 * is stored in h_rsv_handle. It is not attached to any particular transaction 417 * and thus doesn't block transaction commit. If the caller uses this reserved 418 * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop() 419 * on the parent handle will dispose the reserved one. Reserved handle has to 420 * be converted to a normal handle using jbd2_journal_start_reserved() before 421 * it can be used. 422 * 423 * Return a pointer to a newly allocated handle, or an ERR_PTR() value 424 * on failure. 425 */ 426 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks, 427 gfp_t gfp_mask, unsigned int type, 428 unsigned int line_no) 429 { 430 handle_t *handle = journal_current_handle(); 431 int err; 432 433 if (!journal) 434 return ERR_PTR(-EROFS); 435 436 if (handle) { 437 J_ASSERT(handle->h_transaction->t_journal == journal); 438 handle->h_ref++; 439 return handle; 440 } 441 442 handle = new_handle(nblocks); 443 if (!handle) 444 return ERR_PTR(-ENOMEM); 445 if (rsv_blocks) { 446 handle_t *rsv_handle; 447 448 rsv_handle = new_handle(rsv_blocks); 449 if (!rsv_handle) { 450 jbd2_free_handle(handle); 451 return ERR_PTR(-ENOMEM); 452 } 453 rsv_handle->h_reserved = 1; 454 rsv_handle->h_journal = journal; 455 handle->h_rsv_handle = rsv_handle; 456 } 457 458 err = start_this_handle(journal, handle, gfp_mask); 459 if (err < 0) { 460 if (handle->h_rsv_handle) 461 jbd2_free_handle(handle->h_rsv_handle); 462 jbd2_free_handle(handle); 463 return ERR_PTR(err); 464 } 465 handle->h_type = type; 466 handle->h_line_no = line_no; 467 trace_jbd2_handle_start(journal->j_fs_dev->bd_dev, 468 handle->h_transaction->t_tid, type, 469 line_no, nblocks); 470 return handle; 471 } 472 EXPORT_SYMBOL(jbd2__journal_start); 473 474 475 handle_t *jbd2_journal_start(journal_t *journal, int nblocks) 476 { 477 return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0); 478 } 479 EXPORT_SYMBOL(jbd2_journal_start); 480 481 void jbd2_journal_free_reserved(handle_t *handle) 482 { 483 journal_t *journal = handle->h_journal; 484 485 WARN_ON(!handle->h_reserved); 486 sub_reserved_credits(journal, handle->h_buffer_credits); 487 jbd2_free_handle(handle); 488 } 489 EXPORT_SYMBOL(jbd2_journal_free_reserved); 490 491 /** 492 * int jbd2_journal_start_reserved(handle_t *handle) - start reserved handle 493 * @handle: handle to start 494 * 495 * Start handle that has been previously reserved with jbd2_journal_reserve(). 496 * This attaches @handle to the running transaction (or creates one if there's 497 * not transaction running). Unlike jbd2_journal_start() this function cannot 498 * block on journal commit, checkpointing, or similar stuff. It can block on 499 * memory allocation or frozen journal though. 500 * 501 * Return 0 on success, non-zero on error - handle is freed in that case. 502 */ 503 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type, 504 unsigned int line_no) 505 { 506 journal_t *journal = handle->h_journal; 507 int ret = -EIO; 508 509 if (WARN_ON(!handle->h_reserved)) { 510 /* Someone passed in normal handle? Just stop it. */ 511 jbd2_journal_stop(handle); 512 return ret; 513 } 514 /* 515 * Usefulness of mixing of reserved and unreserved handles is 516 * questionable. So far nobody seems to need it so just error out. 517 */ 518 if (WARN_ON(current->journal_info)) { 519 jbd2_journal_free_reserved(handle); 520 return ret; 521 } 522 523 handle->h_journal = NULL; 524 /* 525 * GFP_NOFS is here because callers are likely from writeback or 526 * similarly constrained call sites 527 */ 528 ret = start_this_handle(journal, handle, GFP_NOFS); 529 if (ret < 0) { 530 jbd2_journal_free_reserved(handle); 531 return ret; 532 } 533 handle->h_type = type; 534 handle->h_line_no = line_no; 535 return 0; 536 } 537 EXPORT_SYMBOL(jbd2_journal_start_reserved); 538 539 /** 540 * int jbd2_journal_extend() - extend buffer credits. 541 * @handle: handle to 'extend' 542 * @nblocks: nr blocks to try to extend by. 543 * 544 * Some transactions, such as large extends and truncates, can be done 545 * atomically all at once or in several stages. The operation requests 546 * a credit for a number of buffer modications in advance, but can 547 * extend its credit if it needs more. 548 * 549 * jbd2_journal_extend tries to give the running handle more buffer credits. 550 * It does not guarantee that allocation - this is a best-effort only. 551 * The calling process MUST be able to deal cleanly with a failure to 552 * extend here. 553 * 554 * Return 0 on success, non-zero on failure. 555 * 556 * return code < 0 implies an error 557 * return code > 0 implies normal transaction-full status. 558 */ 559 int jbd2_journal_extend(handle_t *handle, int nblocks) 560 { 561 transaction_t *transaction = handle->h_transaction; 562 journal_t *journal; 563 int result; 564 int wanted; 565 566 if (is_handle_aborted(handle)) 567 return -EROFS; 568 journal = transaction->t_journal; 569 570 result = 1; 571 572 read_lock(&journal->j_state_lock); 573 574 /* Don't extend a locked-down transaction! */ 575 if (transaction->t_state != T_RUNNING) { 576 jbd_debug(3, "denied handle %p %d blocks: " 577 "transaction not running\n", handle, nblocks); 578 goto error_out; 579 } 580 581 spin_lock(&transaction->t_handle_lock); 582 wanted = atomic_add_return(nblocks, 583 &transaction->t_outstanding_credits); 584 585 if (wanted > journal->j_max_transaction_buffers) { 586 jbd_debug(3, "denied handle %p %d blocks: " 587 "transaction too large\n", handle, nblocks); 588 atomic_sub(nblocks, &transaction->t_outstanding_credits); 589 goto unlock; 590 } 591 592 if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) > 593 jbd2_log_space_left(journal)) { 594 jbd_debug(3, "denied handle %p %d blocks: " 595 "insufficient log space\n", handle, nblocks); 596 atomic_sub(nblocks, &transaction->t_outstanding_credits); 597 goto unlock; 598 } 599 600 trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev, 601 transaction->t_tid, 602 handle->h_type, handle->h_line_no, 603 handle->h_buffer_credits, 604 nblocks); 605 606 handle->h_buffer_credits += nblocks; 607 handle->h_requested_credits += nblocks; 608 result = 0; 609 610 jbd_debug(3, "extended handle %p by %d\n", handle, nblocks); 611 unlock: 612 spin_unlock(&transaction->t_handle_lock); 613 error_out: 614 read_unlock(&journal->j_state_lock); 615 return result; 616 } 617 618 619 /** 620 * int jbd2_journal_restart() - restart a handle . 621 * @handle: handle to restart 622 * @nblocks: nr credits requested 623 * 624 * Restart a handle for a multi-transaction filesystem 625 * operation. 626 * 627 * If the jbd2_journal_extend() call above fails to grant new buffer credits 628 * to a running handle, a call to jbd2_journal_restart will commit the 629 * handle's transaction so far and reattach the handle to a new 630 * transaction capabable of guaranteeing the requested number of 631 * credits. We preserve reserved handle if there's any attached to the 632 * passed in handle. 633 */ 634 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask) 635 { 636 transaction_t *transaction = handle->h_transaction; 637 journal_t *journal; 638 tid_t tid; 639 int need_to_start, ret; 640 641 /* If we've had an abort of any type, don't even think about 642 * actually doing the restart! */ 643 if (is_handle_aborted(handle)) 644 return 0; 645 journal = transaction->t_journal; 646 647 /* 648 * First unlink the handle from its current transaction, and start the 649 * commit on that. 650 */ 651 J_ASSERT(atomic_read(&transaction->t_updates) > 0); 652 J_ASSERT(journal_current_handle() == handle); 653 654 read_lock(&journal->j_state_lock); 655 spin_lock(&transaction->t_handle_lock); 656 atomic_sub(handle->h_buffer_credits, 657 &transaction->t_outstanding_credits); 658 if (handle->h_rsv_handle) { 659 sub_reserved_credits(journal, 660 handle->h_rsv_handle->h_buffer_credits); 661 } 662 if (atomic_dec_and_test(&transaction->t_updates)) 663 wake_up(&journal->j_wait_updates); 664 tid = transaction->t_tid; 665 spin_unlock(&transaction->t_handle_lock); 666 handle->h_transaction = NULL; 667 current->journal_info = NULL; 668 669 jbd_debug(2, "restarting handle %p\n", handle); 670 need_to_start = !tid_geq(journal->j_commit_request, tid); 671 read_unlock(&journal->j_state_lock); 672 if (need_to_start) 673 jbd2_log_start_commit(journal, tid); 674 675 lock_map_release(&handle->h_lockdep_map); 676 handle->h_buffer_credits = nblocks; 677 ret = start_this_handle(journal, handle, gfp_mask); 678 return ret; 679 } 680 EXPORT_SYMBOL(jbd2__journal_restart); 681 682 683 int jbd2_journal_restart(handle_t *handle, int nblocks) 684 { 685 return jbd2__journal_restart(handle, nblocks, GFP_NOFS); 686 } 687 EXPORT_SYMBOL(jbd2_journal_restart); 688 689 /** 690 * void jbd2_journal_lock_updates () - establish a transaction barrier. 691 * @journal: Journal to establish a barrier on. 692 * 693 * This locks out any further updates from being started, and blocks 694 * until all existing updates have completed, returning only once the 695 * journal is in a quiescent state with no updates running. 696 * 697 * The journal lock should not be held on entry. 698 */ 699 void jbd2_journal_lock_updates(journal_t *journal) 700 { 701 DEFINE_WAIT(wait); 702 703 write_lock(&journal->j_state_lock); 704 ++journal->j_barrier_count; 705 706 /* Wait until there are no reserved handles */ 707 if (atomic_read(&journal->j_reserved_credits)) { 708 write_unlock(&journal->j_state_lock); 709 wait_event(journal->j_wait_reserved, 710 atomic_read(&journal->j_reserved_credits) == 0); 711 write_lock(&journal->j_state_lock); 712 } 713 714 /* Wait until there are no running updates */ 715 while (1) { 716 transaction_t *transaction = journal->j_running_transaction; 717 718 if (!transaction) 719 break; 720 721 spin_lock(&transaction->t_handle_lock); 722 prepare_to_wait(&journal->j_wait_updates, &wait, 723 TASK_UNINTERRUPTIBLE); 724 if (!atomic_read(&transaction->t_updates)) { 725 spin_unlock(&transaction->t_handle_lock); 726 finish_wait(&journal->j_wait_updates, &wait); 727 break; 728 } 729 spin_unlock(&transaction->t_handle_lock); 730 write_unlock(&journal->j_state_lock); 731 schedule(); 732 finish_wait(&journal->j_wait_updates, &wait); 733 write_lock(&journal->j_state_lock); 734 } 735 write_unlock(&journal->j_state_lock); 736 737 /* 738 * We have now established a barrier against other normal updates, but 739 * we also need to barrier against other jbd2_journal_lock_updates() calls 740 * to make sure that we serialise special journal-locked operations 741 * too. 742 */ 743 mutex_lock(&journal->j_barrier); 744 } 745 746 /** 747 * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier 748 * @journal: Journal to release the barrier on. 749 * 750 * Release a transaction barrier obtained with jbd2_journal_lock_updates(). 751 * 752 * Should be called without the journal lock held. 753 */ 754 void jbd2_journal_unlock_updates (journal_t *journal) 755 { 756 J_ASSERT(journal->j_barrier_count != 0); 757 758 mutex_unlock(&journal->j_barrier); 759 write_lock(&journal->j_state_lock); 760 --journal->j_barrier_count; 761 write_unlock(&journal->j_state_lock); 762 wake_up(&journal->j_wait_transaction_locked); 763 } 764 765 static void warn_dirty_buffer(struct buffer_head *bh) 766 { 767 char b[BDEVNAME_SIZE]; 768 769 printk(KERN_WARNING 770 "JBD2: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). " 771 "There's a risk of filesystem corruption in case of system " 772 "crash.\n", 773 bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr); 774 } 775 776 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */ 777 static void jbd2_freeze_jh_data(struct journal_head *jh) 778 { 779 struct page *page; 780 int offset; 781 char *source; 782 struct buffer_head *bh = jh2bh(jh); 783 784 J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n"); 785 page = bh->b_page; 786 offset = offset_in_page(bh->b_data); 787 source = kmap_atomic(page); 788 /* Fire data frozen trigger just before we copy the data */ 789 jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers); 790 memcpy(jh->b_frozen_data, source + offset, bh->b_size); 791 kunmap_atomic(source); 792 793 /* 794 * Now that the frozen data is saved off, we need to store any matching 795 * triggers. 796 */ 797 jh->b_frozen_triggers = jh->b_triggers; 798 } 799 800 /* 801 * If the buffer is already part of the current transaction, then there 802 * is nothing we need to do. If it is already part of a prior 803 * transaction which we are still committing to disk, then we need to 804 * make sure that we do not overwrite the old copy: we do copy-out to 805 * preserve the copy going to disk. We also account the buffer against 806 * the handle's metadata buffer credits (unless the buffer is already 807 * part of the transaction, that is). 808 * 809 */ 810 static int 811 do_get_write_access(handle_t *handle, struct journal_head *jh, 812 int force_copy) 813 { 814 struct buffer_head *bh; 815 transaction_t *transaction = handle->h_transaction; 816 journal_t *journal; 817 int error; 818 char *frozen_buffer = NULL; 819 unsigned long start_lock, time_lock; 820 821 if (is_handle_aborted(handle)) 822 return -EROFS; 823 journal = transaction->t_journal; 824 825 jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy); 826 827 JBUFFER_TRACE(jh, "entry"); 828 repeat: 829 bh = jh2bh(jh); 830 831 /* @@@ Need to check for errors here at some point. */ 832 833 start_lock = jiffies; 834 lock_buffer(bh); 835 jbd_lock_bh_state(bh); 836 837 /* If it takes too long to lock the buffer, trace it */ 838 time_lock = jbd2_time_diff(start_lock, jiffies); 839 if (time_lock > HZ/10) 840 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev, 841 jiffies_to_msecs(time_lock)); 842 843 /* We now hold the buffer lock so it is safe to query the buffer 844 * state. Is the buffer dirty? 845 * 846 * If so, there are two possibilities. The buffer may be 847 * non-journaled, and undergoing a quite legitimate writeback. 848 * Otherwise, it is journaled, and we don't expect dirty buffers 849 * in that state (the buffers should be marked JBD_Dirty 850 * instead.) So either the IO is being done under our own 851 * control and this is a bug, or it's a third party IO such as 852 * dump(8) (which may leave the buffer scheduled for read --- 853 * ie. locked but not dirty) or tune2fs (which may actually have 854 * the buffer dirtied, ugh.) */ 855 856 if (buffer_dirty(bh)) { 857 /* 858 * First question: is this buffer already part of the current 859 * transaction or the existing committing transaction? 860 */ 861 if (jh->b_transaction) { 862 J_ASSERT_JH(jh, 863 jh->b_transaction == transaction || 864 jh->b_transaction == 865 journal->j_committing_transaction); 866 if (jh->b_next_transaction) 867 J_ASSERT_JH(jh, jh->b_next_transaction == 868 transaction); 869 warn_dirty_buffer(bh); 870 } 871 /* 872 * In any case we need to clean the dirty flag and we must 873 * do it under the buffer lock to be sure we don't race 874 * with running write-out. 875 */ 876 JBUFFER_TRACE(jh, "Journalling dirty buffer"); 877 clear_buffer_dirty(bh); 878 set_buffer_jbddirty(bh); 879 } 880 881 unlock_buffer(bh); 882 883 error = -EROFS; 884 if (is_handle_aborted(handle)) { 885 jbd_unlock_bh_state(bh); 886 goto out; 887 } 888 error = 0; 889 890 /* 891 * The buffer is already part of this transaction if b_transaction or 892 * b_next_transaction points to it 893 */ 894 if (jh->b_transaction == transaction || 895 jh->b_next_transaction == transaction) 896 goto done; 897 898 /* 899 * this is the first time this transaction is touching this buffer, 900 * reset the modified flag 901 */ 902 jh->b_modified = 0; 903 904 /* 905 * If the buffer is not journaled right now, we need to make sure it 906 * doesn't get written to disk before the caller actually commits the 907 * new data 908 */ 909 if (!jh->b_transaction) { 910 JBUFFER_TRACE(jh, "no transaction"); 911 J_ASSERT_JH(jh, !jh->b_next_transaction); 912 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 913 /* 914 * Make sure all stores to jh (b_modified, b_frozen_data) are 915 * visible before attaching it to the running transaction. 916 * Paired with barrier in jbd2_write_access_granted() 917 */ 918 smp_wmb(); 919 spin_lock(&journal->j_list_lock); 920 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 921 spin_unlock(&journal->j_list_lock); 922 goto done; 923 } 924 /* 925 * If there is already a copy-out version of this buffer, then we don't 926 * need to make another one 927 */ 928 if (jh->b_frozen_data) { 929 JBUFFER_TRACE(jh, "has frozen data"); 930 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 931 goto attach_next; 932 } 933 934 JBUFFER_TRACE(jh, "owned by older transaction"); 935 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 936 J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction); 937 938 /* 939 * There is one case we have to be very careful about. If the 940 * committing transaction is currently writing this buffer out to disk 941 * and has NOT made a copy-out, then we cannot modify the buffer 942 * contents at all right now. The essence of copy-out is that it is 943 * the extra copy, not the primary copy, which gets journaled. If the 944 * primary copy is already going to disk then we cannot do copy-out 945 * here. 946 */ 947 if (buffer_shadow(bh)) { 948 JBUFFER_TRACE(jh, "on shadow: sleep"); 949 jbd_unlock_bh_state(bh); 950 wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE); 951 goto repeat; 952 } 953 954 /* 955 * Only do the copy if the currently-owning transaction still needs it. 956 * If buffer isn't on BJ_Metadata list, the committing transaction is 957 * past that stage (here we use the fact that BH_Shadow is set under 958 * bh_state lock together with refiling to BJ_Shadow list and at this 959 * point we know the buffer doesn't have BH_Shadow set). 960 * 961 * Subtle point, though: if this is a get_undo_access, then we will be 962 * relying on the frozen_data to contain the new value of the 963 * committed_data record after the transaction, so we HAVE to force the 964 * frozen_data copy in that case. 965 */ 966 if (jh->b_jlist == BJ_Metadata || force_copy) { 967 JBUFFER_TRACE(jh, "generate frozen data"); 968 if (!frozen_buffer) { 969 JBUFFER_TRACE(jh, "allocate memory for buffer"); 970 jbd_unlock_bh_state(bh); 971 frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS); 972 if (!frozen_buffer) { 973 printk(KERN_ERR "%s: OOM for frozen_buffer\n", 974 __func__); 975 JBUFFER_TRACE(jh, "oom!"); 976 error = -ENOMEM; 977 goto out; 978 } 979 goto repeat; 980 } 981 jh->b_frozen_data = frozen_buffer; 982 frozen_buffer = NULL; 983 jbd2_freeze_jh_data(jh); 984 } 985 attach_next: 986 /* 987 * Make sure all stores to jh (b_modified, b_frozen_data) are visible 988 * before attaching it to the running transaction. Paired with barrier 989 * in jbd2_write_access_granted() 990 */ 991 smp_wmb(); 992 jh->b_next_transaction = transaction; 993 994 done: 995 jbd_unlock_bh_state(bh); 996 997 /* 998 * If we are about to journal a buffer, then any revoke pending on it is 999 * no longer valid 1000 */ 1001 jbd2_journal_cancel_revoke(handle, jh); 1002 1003 out: 1004 if (unlikely(frozen_buffer)) /* It's usually NULL */ 1005 jbd2_free(frozen_buffer, bh->b_size); 1006 1007 JBUFFER_TRACE(jh, "exit"); 1008 return error; 1009 } 1010 1011 /* Fast check whether buffer is already attached to the required transaction */ 1012 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh) 1013 { 1014 struct journal_head *jh; 1015 bool ret = false; 1016 1017 /* Dirty buffers require special handling... */ 1018 if (buffer_dirty(bh)) 1019 return false; 1020 1021 /* 1022 * RCU protects us from dereferencing freed pages. So the checks we do 1023 * are guaranteed not to oops. However the jh slab object can get freed 1024 * & reallocated while we work with it. So we have to be careful. When 1025 * we see jh attached to the running transaction, we know it must stay 1026 * so until the transaction is committed. Thus jh won't be freed and 1027 * will be attached to the same bh while we run. However it can 1028 * happen jh gets freed, reallocated, and attached to the transaction 1029 * just after we get pointer to it from bh. So we have to be careful 1030 * and recheck jh still belongs to our bh before we return success. 1031 */ 1032 rcu_read_lock(); 1033 if (!buffer_jbd(bh)) 1034 goto out; 1035 /* This should be bh2jh() but that doesn't work with inline functions */ 1036 jh = READ_ONCE(bh->b_private); 1037 if (!jh) 1038 goto out; 1039 if (jh->b_transaction != handle->h_transaction && 1040 jh->b_next_transaction != handle->h_transaction) 1041 goto out; 1042 /* 1043 * There are two reasons for the barrier here: 1044 * 1) Make sure to fetch b_bh after we did previous checks so that we 1045 * detect when jh went through free, realloc, attach to transaction 1046 * while we were checking. Paired with implicit barrier in that path. 1047 * 2) So that access to bh done after jbd2_write_access_granted() 1048 * doesn't get reordered and see inconsistent state of concurrent 1049 * do_get_write_access(). 1050 */ 1051 smp_mb(); 1052 if (unlikely(jh->b_bh != bh)) 1053 goto out; 1054 ret = true; 1055 out: 1056 rcu_read_unlock(); 1057 return ret; 1058 } 1059 1060 /** 1061 * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update. 1062 * @handle: transaction to add buffer modifications to 1063 * @bh: bh to be used for metadata writes 1064 * 1065 * Returns an error code or 0 on success. 1066 * 1067 * In full data journalling mode the buffer may be of type BJ_AsyncData, 1068 * because we're write()ing a buffer which is also part of a shared mapping. 1069 */ 1070 1071 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh) 1072 { 1073 struct journal_head *jh; 1074 int rc; 1075 1076 if (jbd2_write_access_granted(handle, bh)) 1077 return 0; 1078 1079 jh = jbd2_journal_add_journal_head(bh); 1080 /* We do not want to get caught playing with fields which the 1081 * log thread also manipulates. Make sure that the buffer 1082 * completes any outstanding IO before proceeding. */ 1083 rc = do_get_write_access(handle, jh, 0); 1084 jbd2_journal_put_journal_head(jh); 1085 return rc; 1086 } 1087 1088 1089 /* 1090 * When the user wants to journal a newly created buffer_head 1091 * (ie. getblk() returned a new buffer and we are going to populate it 1092 * manually rather than reading off disk), then we need to keep the 1093 * buffer_head locked until it has been completely filled with new 1094 * data. In this case, we should be able to make the assertion that 1095 * the bh is not already part of an existing transaction. 1096 * 1097 * The buffer should already be locked by the caller by this point. 1098 * There is no lock ranking violation: it was a newly created, 1099 * unlocked buffer beforehand. */ 1100 1101 /** 1102 * int jbd2_journal_get_create_access () - notify intent to use newly created bh 1103 * @handle: transaction to new buffer to 1104 * @bh: new buffer. 1105 * 1106 * Call this if you create a new bh. 1107 */ 1108 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh) 1109 { 1110 transaction_t *transaction = handle->h_transaction; 1111 journal_t *journal; 1112 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 1113 int err; 1114 1115 jbd_debug(5, "journal_head %p\n", jh); 1116 err = -EROFS; 1117 if (is_handle_aborted(handle)) 1118 goto out; 1119 journal = transaction->t_journal; 1120 err = 0; 1121 1122 JBUFFER_TRACE(jh, "entry"); 1123 /* 1124 * The buffer may already belong to this transaction due to pre-zeroing 1125 * in the filesystem's new_block code. It may also be on the previous, 1126 * committing transaction's lists, but it HAS to be in Forget state in 1127 * that case: the transaction must have deleted the buffer for it to be 1128 * reused here. 1129 */ 1130 jbd_lock_bh_state(bh); 1131 J_ASSERT_JH(jh, (jh->b_transaction == transaction || 1132 jh->b_transaction == NULL || 1133 (jh->b_transaction == journal->j_committing_transaction && 1134 jh->b_jlist == BJ_Forget))); 1135 1136 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 1137 J_ASSERT_JH(jh, buffer_locked(jh2bh(jh))); 1138 1139 if (jh->b_transaction == NULL) { 1140 /* 1141 * Previous jbd2_journal_forget() could have left the buffer 1142 * with jbddirty bit set because it was being committed. When 1143 * the commit finished, we've filed the buffer for 1144 * checkpointing and marked it dirty. Now we are reallocating 1145 * the buffer so the transaction freeing it must have 1146 * committed and so it's safe to clear the dirty bit. 1147 */ 1148 clear_buffer_dirty(jh2bh(jh)); 1149 /* first access by this transaction */ 1150 jh->b_modified = 0; 1151 1152 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 1153 spin_lock(&journal->j_list_lock); 1154 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 1155 } else if (jh->b_transaction == journal->j_committing_transaction) { 1156 /* first access by this transaction */ 1157 jh->b_modified = 0; 1158 1159 JBUFFER_TRACE(jh, "set next transaction"); 1160 spin_lock(&journal->j_list_lock); 1161 jh->b_next_transaction = transaction; 1162 } 1163 spin_unlock(&journal->j_list_lock); 1164 jbd_unlock_bh_state(bh); 1165 1166 /* 1167 * akpm: I added this. ext3_alloc_branch can pick up new indirect 1168 * blocks which contain freed but then revoked metadata. We need 1169 * to cancel the revoke in case we end up freeing it yet again 1170 * and the reallocating as data - this would cause a second revoke, 1171 * which hits an assertion error. 1172 */ 1173 JBUFFER_TRACE(jh, "cancelling revoke"); 1174 jbd2_journal_cancel_revoke(handle, jh); 1175 out: 1176 jbd2_journal_put_journal_head(jh); 1177 return err; 1178 } 1179 1180 /** 1181 * int jbd2_journal_get_undo_access() - Notify intent to modify metadata with 1182 * non-rewindable consequences 1183 * @handle: transaction 1184 * @bh: buffer to undo 1185 * 1186 * Sometimes there is a need to distinguish between metadata which has 1187 * been committed to disk and that which has not. The ext3fs code uses 1188 * this for freeing and allocating space, we have to make sure that we 1189 * do not reuse freed space until the deallocation has been committed, 1190 * since if we overwrote that space we would make the delete 1191 * un-rewindable in case of a crash. 1192 * 1193 * To deal with that, jbd2_journal_get_undo_access requests write access to a 1194 * buffer for parts of non-rewindable operations such as delete 1195 * operations on the bitmaps. The journaling code must keep a copy of 1196 * the buffer's contents prior to the undo_access call until such time 1197 * as we know that the buffer has definitely been committed to disk. 1198 * 1199 * We never need to know which transaction the committed data is part 1200 * of, buffers touched here are guaranteed to be dirtied later and so 1201 * will be committed to a new transaction in due course, at which point 1202 * we can discard the old committed data pointer. 1203 * 1204 * Returns error number or 0 on success. 1205 */ 1206 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh) 1207 { 1208 int err; 1209 struct journal_head *jh; 1210 char *committed_data = NULL; 1211 1212 JBUFFER_TRACE(jh, "entry"); 1213 if (jbd2_write_access_granted(handle, bh)) 1214 return 0; 1215 1216 jh = jbd2_journal_add_journal_head(bh); 1217 /* 1218 * Do this first --- it can drop the journal lock, so we want to 1219 * make sure that obtaining the committed_data is done 1220 * atomically wrt. completion of any outstanding commits. 1221 */ 1222 err = do_get_write_access(handle, jh, 1); 1223 if (err) 1224 goto out; 1225 1226 repeat: 1227 if (!jh->b_committed_data) { 1228 committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS); 1229 if (!committed_data) { 1230 printk(KERN_ERR "%s: No memory for committed data\n", 1231 __func__); 1232 err = -ENOMEM; 1233 goto out; 1234 } 1235 } 1236 1237 jbd_lock_bh_state(bh); 1238 if (!jh->b_committed_data) { 1239 /* Copy out the current buffer contents into the 1240 * preserved, committed copy. */ 1241 JBUFFER_TRACE(jh, "generate b_committed data"); 1242 if (!committed_data) { 1243 jbd_unlock_bh_state(bh); 1244 goto repeat; 1245 } 1246 1247 jh->b_committed_data = committed_data; 1248 committed_data = NULL; 1249 memcpy(jh->b_committed_data, bh->b_data, bh->b_size); 1250 } 1251 jbd_unlock_bh_state(bh); 1252 out: 1253 jbd2_journal_put_journal_head(jh); 1254 if (unlikely(committed_data)) 1255 jbd2_free(committed_data, bh->b_size); 1256 return err; 1257 } 1258 1259 /** 1260 * void jbd2_journal_set_triggers() - Add triggers for commit writeout 1261 * @bh: buffer to trigger on 1262 * @type: struct jbd2_buffer_trigger_type containing the trigger(s). 1263 * 1264 * Set any triggers on this journal_head. This is always safe, because 1265 * triggers for a committing buffer will be saved off, and triggers for 1266 * a running transaction will match the buffer in that transaction. 1267 * 1268 * Call with NULL to clear the triggers. 1269 */ 1270 void jbd2_journal_set_triggers(struct buffer_head *bh, 1271 struct jbd2_buffer_trigger_type *type) 1272 { 1273 struct journal_head *jh = jbd2_journal_grab_journal_head(bh); 1274 1275 if (WARN_ON(!jh)) 1276 return; 1277 jh->b_triggers = type; 1278 jbd2_journal_put_journal_head(jh); 1279 } 1280 1281 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data, 1282 struct jbd2_buffer_trigger_type *triggers) 1283 { 1284 struct buffer_head *bh = jh2bh(jh); 1285 1286 if (!triggers || !triggers->t_frozen) 1287 return; 1288 1289 triggers->t_frozen(triggers, bh, mapped_data, bh->b_size); 1290 } 1291 1292 void jbd2_buffer_abort_trigger(struct journal_head *jh, 1293 struct jbd2_buffer_trigger_type *triggers) 1294 { 1295 if (!triggers || !triggers->t_abort) 1296 return; 1297 1298 triggers->t_abort(triggers, jh2bh(jh)); 1299 } 1300 1301 /** 1302 * int jbd2_journal_dirty_metadata() - mark a buffer as containing dirty metadata 1303 * @handle: transaction to add buffer to. 1304 * @bh: buffer to mark 1305 * 1306 * mark dirty metadata which needs to be journaled as part of the current 1307 * transaction. 1308 * 1309 * The buffer must have previously had jbd2_journal_get_write_access() 1310 * called so that it has a valid journal_head attached to the buffer 1311 * head. 1312 * 1313 * The buffer is placed on the transaction's metadata list and is marked 1314 * as belonging to the transaction. 1315 * 1316 * Returns error number or 0 on success. 1317 * 1318 * Special care needs to be taken if the buffer already belongs to the 1319 * current committing transaction (in which case we should have frozen 1320 * data present for that commit). In that case, we don't relink the 1321 * buffer: that only gets done when the old transaction finally 1322 * completes its commit. 1323 */ 1324 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh) 1325 { 1326 transaction_t *transaction = handle->h_transaction; 1327 journal_t *journal; 1328 struct journal_head *jh; 1329 int ret = 0; 1330 1331 if (is_handle_aborted(handle)) 1332 return -EROFS; 1333 if (!buffer_jbd(bh)) { 1334 ret = -EUCLEAN; 1335 goto out; 1336 } 1337 /* 1338 * We don't grab jh reference here since the buffer must be part 1339 * of the running transaction. 1340 */ 1341 jh = bh2jh(bh); 1342 /* 1343 * This and the following assertions are unreliable since we may see jh 1344 * in inconsistent state unless we grab bh_state lock. But this is 1345 * crucial to catch bugs so let's do a reliable check until the 1346 * lockless handling is fully proven. 1347 */ 1348 if (jh->b_transaction != transaction && 1349 jh->b_next_transaction != transaction) { 1350 jbd_lock_bh_state(bh); 1351 J_ASSERT_JH(jh, jh->b_transaction == transaction || 1352 jh->b_next_transaction == transaction); 1353 jbd_unlock_bh_state(bh); 1354 } 1355 if (jh->b_modified == 1) { 1356 /* If it's in our transaction it must be in BJ_Metadata list. */ 1357 if (jh->b_transaction == transaction && 1358 jh->b_jlist != BJ_Metadata) { 1359 jbd_lock_bh_state(bh); 1360 J_ASSERT_JH(jh, jh->b_transaction != transaction || 1361 jh->b_jlist == BJ_Metadata); 1362 jbd_unlock_bh_state(bh); 1363 } 1364 goto out; 1365 } 1366 1367 journal = transaction->t_journal; 1368 jbd_debug(5, "journal_head %p\n", jh); 1369 JBUFFER_TRACE(jh, "entry"); 1370 1371 jbd_lock_bh_state(bh); 1372 1373 if (jh->b_modified == 0) { 1374 /* 1375 * This buffer's got modified and becoming part 1376 * of the transaction. This needs to be done 1377 * once a transaction -bzzz 1378 */ 1379 jh->b_modified = 1; 1380 if (handle->h_buffer_credits <= 0) { 1381 ret = -ENOSPC; 1382 goto out_unlock_bh; 1383 } 1384 handle->h_buffer_credits--; 1385 } 1386 1387 /* 1388 * fastpath, to avoid expensive locking. If this buffer is already 1389 * on the running transaction's metadata list there is nothing to do. 1390 * Nobody can take it off again because there is a handle open. 1391 * I _think_ we're OK here with SMP barriers - a mistaken decision will 1392 * result in this test being false, so we go in and take the locks. 1393 */ 1394 if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) { 1395 JBUFFER_TRACE(jh, "fastpath"); 1396 if (unlikely(jh->b_transaction != 1397 journal->j_running_transaction)) { 1398 printk(KERN_ERR "JBD2: %s: " 1399 "jh->b_transaction (%llu, %p, %u) != " 1400 "journal->j_running_transaction (%p, %u)\n", 1401 journal->j_devname, 1402 (unsigned long long) bh->b_blocknr, 1403 jh->b_transaction, 1404 jh->b_transaction ? jh->b_transaction->t_tid : 0, 1405 journal->j_running_transaction, 1406 journal->j_running_transaction ? 1407 journal->j_running_transaction->t_tid : 0); 1408 ret = -EINVAL; 1409 } 1410 goto out_unlock_bh; 1411 } 1412 1413 set_buffer_jbddirty(bh); 1414 1415 /* 1416 * Metadata already on the current transaction list doesn't 1417 * need to be filed. Metadata on another transaction's list must 1418 * be committing, and will be refiled once the commit completes: 1419 * leave it alone for now. 1420 */ 1421 if (jh->b_transaction != transaction) { 1422 JBUFFER_TRACE(jh, "already on other transaction"); 1423 if (unlikely(((jh->b_transaction != 1424 journal->j_committing_transaction)) || 1425 (jh->b_next_transaction != transaction))) { 1426 printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: " 1427 "bad jh for block %llu: " 1428 "transaction (%p, %u), " 1429 "jh->b_transaction (%p, %u), " 1430 "jh->b_next_transaction (%p, %u), jlist %u\n", 1431 journal->j_devname, 1432 (unsigned long long) bh->b_blocknr, 1433 transaction, transaction->t_tid, 1434 jh->b_transaction, 1435 jh->b_transaction ? 1436 jh->b_transaction->t_tid : 0, 1437 jh->b_next_transaction, 1438 jh->b_next_transaction ? 1439 jh->b_next_transaction->t_tid : 0, 1440 jh->b_jlist); 1441 WARN_ON(1); 1442 ret = -EINVAL; 1443 } 1444 /* And this case is illegal: we can't reuse another 1445 * transaction's data buffer, ever. */ 1446 goto out_unlock_bh; 1447 } 1448 1449 /* That test should have eliminated the following case: */ 1450 J_ASSERT_JH(jh, jh->b_frozen_data == NULL); 1451 1452 JBUFFER_TRACE(jh, "file as BJ_Metadata"); 1453 spin_lock(&journal->j_list_lock); 1454 __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata); 1455 spin_unlock(&journal->j_list_lock); 1456 out_unlock_bh: 1457 jbd_unlock_bh_state(bh); 1458 out: 1459 JBUFFER_TRACE(jh, "exit"); 1460 return ret; 1461 } 1462 1463 /** 1464 * void jbd2_journal_forget() - bforget() for potentially-journaled buffers. 1465 * @handle: transaction handle 1466 * @bh: bh to 'forget' 1467 * 1468 * We can only do the bforget if there are no commits pending against the 1469 * buffer. If the buffer is dirty in the current running transaction we 1470 * can safely unlink it. 1471 * 1472 * bh may not be a journalled buffer at all - it may be a non-JBD 1473 * buffer which came off the hashtable. Check for this. 1474 * 1475 * Decrements bh->b_count by one. 1476 * 1477 * Allow this call even if the handle has aborted --- it may be part of 1478 * the caller's cleanup after an abort. 1479 */ 1480 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh) 1481 { 1482 transaction_t *transaction = handle->h_transaction; 1483 journal_t *journal; 1484 struct journal_head *jh; 1485 int drop_reserve = 0; 1486 int err = 0; 1487 int was_modified = 0; 1488 1489 if (is_handle_aborted(handle)) 1490 return -EROFS; 1491 journal = transaction->t_journal; 1492 1493 BUFFER_TRACE(bh, "entry"); 1494 1495 jbd_lock_bh_state(bh); 1496 1497 if (!buffer_jbd(bh)) 1498 goto not_jbd; 1499 jh = bh2jh(bh); 1500 1501 /* Critical error: attempting to delete a bitmap buffer, maybe? 1502 * Don't do any jbd operations, and return an error. */ 1503 if (!J_EXPECT_JH(jh, !jh->b_committed_data, 1504 "inconsistent data on disk")) { 1505 err = -EIO; 1506 goto not_jbd; 1507 } 1508 1509 /* keep track of whether or not this transaction modified us */ 1510 was_modified = jh->b_modified; 1511 1512 /* 1513 * The buffer's going from the transaction, we must drop 1514 * all references -bzzz 1515 */ 1516 jh->b_modified = 0; 1517 1518 if (jh->b_transaction == transaction) { 1519 J_ASSERT_JH(jh, !jh->b_frozen_data); 1520 1521 /* If we are forgetting a buffer which is already part 1522 * of this transaction, then we can just drop it from 1523 * the transaction immediately. */ 1524 clear_buffer_dirty(bh); 1525 clear_buffer_jbddirty(bh); 1526 1527 JBUFFER_TRACE(jh, "belongs to current transaction: unfile"); 1528 1529 /* 1530 * we only want to drop a reference if this transaction 1531 * modified the buffer 1532 */ 1533 if (was_modified) 1534 drop_reserve = 1; 1535 1536 /* 1537 * We are no longer going to journal this buffer. 1538 * However, the commit of this transaction is still 1539 * important to the buffer: the delete that we are now 1540 * processing might obsolete an old log entry, so by 1541 * committing, we can satisfy the buffer's checkpoint. 1542 * 1543 * So, if we have a checkpoint on the buffer, we should 1544 * now refile the buffer on our BJ_Forget list so that 1545 * we know to remove the checkpoint after we commit. 1546 */ 1547 1548 spin_lock(&journal->j_list_lock); 1549 if (jh->b_cp_transaction) { 1550 __jbd2_journal_temp_unlink_buffer(jh); 1551 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1552 } else { 1553 __jbd2_journal_unfile_buffer(jh); 1554 if (!buffer_jbd(bh)) { 1555 spin_unlock(&journal->j_list_lock); 1556 jbd_unlock_bh_state(bh); 1557 __bforget(bh); 1558 goto drop; 1559 } 1560 } 1561 spin_unlock(&journal->j_list_lock); 1562 } else if (jh->b_transaction) { 1563 J_ASSERT_JH(jh, (jh->b_transaction == 1564 journal->j_committing_transaction)); 1565 /* However, if the buffer is still owned by a prior 1566 * (committing) transaction, we can't drop it yet... */ 1567 JBUFFER_TRACE(jh, "belongs to older transaction"); 1568 /* ... but we CAN drop it from the new transaction if we 1569 * have also modified it since the original commit. */ 1570 1571 if (jh->b_next_transaction) { 1572 J_ASSERT(jh->b_next_transaction == transaction); 1573 spin_lock(&journal->j_list_lock); 1574 jh->b_next_transaction = NULL; 1575 spin_unlock(&journal->j_list_lock); 1576 1577 /* 1578 * only drop a reference if this transaction modified 1579 * the buffer 1580 */ 1581 if (was_modified) 1582 drop_reserve = 1; 1583 } 1584 } 1585 1586 not_jbd: 1587 jbd_unlock_bh_state(bh); 1588 __brelse(bh); 1589 drop: 1590 if (drop_reserve) { 1591 /* no need to reserve log space for this block -bzzz */ 1592 handle->h_buffer_credits++; 1593 } 1594 return err; 1595 } 1596 1597 /** 1598 * int jbd2_journal_stop() - complete a transaction 1599 * @handle: tranaction to complete. 1600 * 1601 * All done for a particular handle. 1602 * 1603 * There is not much action needed here. We just return any remaining 1604 * buffer credits to the transaction and remove the handle. The only 1605 * complication is that we need to start a commit operation if the 1606 * filesystem is marked for synchronous update. 1607 * 1608 * jbd2_journal_stop itself will not usually return an error, but it may 1609 * do so in unusual circumstances. In particular, expect it to 1610 * return -EIO if a jbd2_journal_abort has been executed since the 1611 * transaction began. 1612 */ 1613 int jbd2_journal_stop(handle_t *handle) 1614 { 1615 transaction_t *transaction = handle->h_transaction; 1616 journal_t *journal; 1617 int err = 0, wait_for_commit = 0; 1618 tid_t tid; 1619 pid_t pid; 1620 1621 if (!transaction) { 1622 /* 1623 * Handle is already detached from the transaction so 1624 * there is nothing to do other than decrease a refcount, 1625 * or free the handle if refcount drops to zero 1626 */ 1627 if (--handle->h_ref > 0) { 1628 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1, 1629 handle->h_ref); 1630 return err; 1631 } else { 1632 if (handle->h_rsv_handle) 1633 jbd2_free_handle(handle->h_rsv_handle); 1634 goto free_and_exit; 1635 } 1636 } 1637 journal = transaction->t_journal; 1638 1639 J_ASSERT(journal_current_handle() == handle); 1640 1641 if (is_handle_aborted(handle)) 1642 err = -EIO; 1643 else 1644 J_ASSERT(atomic_read(&transaction->t_updates) > 0); 1645 1646 if (--handle->h_ref > 0) { 1647 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1, 1648 handle->h_ref); 1649 return err; 1650 } 1651 1652 jbd_debug(4, "Handle %p going down\n", handle); 1653 trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev, 1654 transaction->t_tid, 1655 handle->h_type, handle->h_line_no, 1656 jiffies - handle->h_start_jiffies, 1657 handle->h_sync, handle->h_requested_credits, 1658 (handle->h_requested_credits - 1659 handle->h_buffer_credits)); 1660 1661 /* 1662 * Implement synchronous transaction batching. If the handle 1663 * was synchronous, don't force a commit immediately. Let's 1664 * yield and let another thread piggyback onto this 1665 * transaction. Keep doing that while new threads continue to 1666 * arrive. It doesn't cost much - we're about to run a commit 1667 * and sleep on IO anyway. Speeds up many-threaded, many-dir 1668 * operations by 30x or more... 1669 * 1670 * We try and optimize the sleep time against what the 1671 * underlying disk can do, instead of having a static sleep 1672 * time. This is useful for the case where our storage is so 1673 * fast that it is more optimal to go ahead and force a flush 1674 * and wait for the transaction to be committed than it is to 1675 * wait for an arbitrary amount of time for new writers to 1676 * join the transaction. We achieve this by measuring how 1677 * long it takes to commit a transaction, and compare it with 1678 * how long this transaction has been running, and if run time 1679 * < commit time then we sleep for the delta and commit. This 1680 * greatly helps super fast disks that would see slowdowns as 1681 * more threads started doing fsyncs. 1682 * 1683 * But don't do this if this process was the most recent one 1684 * to perform a synchronous write. We do this to detect the 1685 * case where a single process is doing a stream of sync 1686 * writes. No point in waiting for joiners in that case. 1687 * 1688 * Setting max_batch_time to 0 disables this completely. 1689 */ 1690 pid = current->pid; 1691 if (handle->h_sync && journal->j_last_sync_writer != pid && 1692 journal->j_max_batch_time) { 1693 u64 commit_time, trans_time; 1694 1695 journal->j_last_sync_writer = pid; 1696 1697 read_lock(&journal->j_state_lock); 1698 commit_time = journal->j_average_commit_time; 1699 read_unlock(&journal->j_state_lock); 1700 1701 trans_time = ktime_to_ns(ktime_sub(ktime_get(), 1702 transaction->t_start_time)); 1703 1704 commit_time = max_t(u64, commit_time, 1705 1000*journal->j_min_batch_time); 1706 commit_time = min_t(u64, commit_time, 1707 1000*journal->j_max_batch_time); 1708 1709 if (trans_time < commit_time) { 1710 ktime_t expires = ktime_add_ns(ktime_get(), 1711 commit_time); 1712 set_current_state(TASK_UNINTERRUPTIBLE); 1713 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS); 1714 } 1715 } 1716 1717 if (handle->h_sync) 1718 transaction->t_synchronous_commit = 1; 1719 current->journal_info = NULL; 1720 atomic_sub(handle->h_buffer_credits, 1721 &transaction->t_outstanding_credits); 1722 1723 /* 1724 * If the handle is marked SYNC, we need to set another commit 1725 * going! We also want to force a commit if the current 1726 * transaction is occupying too much of the log, or if the 1727 * transaction is too old now. 1728 */ 1729 if (handle->h_sync || 1730 (atomic_read(&transaction->t_outstanding_credits) > 1731 journal->j_max_transaction_buffers) || 1732 time_after_eq(jiffies, transaction->t_expires)) { 1733 /* Do this even for aborted journals: an abort still 1734 * completes the commit thread, it just doesn't write 1735 * anything to disk. */ 1736 1737 jbd_debug(2, "transaction too old, requesting commit for " 1738 "handle %p\n", handle); 1739 /* This is non-blocking */ 1740 jbd2_log_start_commit(journal, transaction->t_tid); 1741 1742 /* 1743 * Special case: JBD2_SYNC synchronous updates require us 1744 * to wait for the commit to complete. 1745 */ 1746 if (handle->h_sync && !(current->flags & PF_MEMALLOC)) 1747 wait_for_commit = 1; 1748 } 1749 1750 /* 1751 * Once we drop t_updates, if it goes to zero the transaction 1752 * could start committing on us and eventually disappear. So 1753 * once we do this, we must not dereference transaction 1754 * pointer again. 1755 */ 1756 tid = transaction->t_tid; 1757 if (atomic_dec_and_test(&transaction->t_updates)) { 1758 wake_up(&journal->j_wait_updates); 1759 if (journal->j_barrier_count) 1760 wake_up(&journal->j_wait_transaction_locked); 1761 } 1762 1763 if (wait_for_commit) 1764 err = jbd2_log_wait_commit(journal, tid); 1765 1766 lock_map_release(&handle->h_lockdep_map); 1767 1768 if (handle->h_rsv_handle) 1769 jbd2_journal_free_reserved(handle->h_rsv_handle); 1770 free_and_exit: 1771 jbd2_free_handle(handle); 1772 return err; 1773 } 1774 1775 /* 1776 * 1777 * List management code snippets: various functions for manipulating the 1778 * transaction buffer lists. 1779 * 1780 */ 1781 1782 /* 1783 * Append a buffer to a transaction list, given the transaction's list head 1784 * pointer. 1785 * 1786 * j_list_lock is held. 1787 * 1788 * jbd_lock_bh_state(jh2bh(jh)) is held. 1789 */ 1790 1791 static inline void 1792 __blist_add_buffer(struct journal_head **list, struct journal_head *jh) 1793 { 1794 if (!*list) { 1795 jh->b_tnext = jh->b_tprev = jh; 1796 *list = jh; 1797 } else { 1798 /* Insert at the tail of the list to preserve order */ 1799 struct journal_head *first = *list, *last = first->b_tprev; 1800 jh->b_tprev = last; 1801 jh->b_tnext = first; 1802 last->b_tnext = first->b_tprev = jh; 1803 } 1804 } 1805 1806 /* 1807 * Remove a buffer from a transaction list, given the transaction's list 1808 * head pointer. 1809 * 1810 * Called with j_list_lock held, and the journal may not be locked. 1811 * 1812 * jbd_lock_bh_state(jh2bh(jh)) is held. 1813 */ 1814 1815 static inline void 1816 __blist_del_buffer(struct journal_head **list, struct journal_head *jh) 1817 { 1818 if (*list == jh) { 1819 *list = jh->b_tnext; 1820 if (*list == jh) 1821 *list = NULL; 1822 } 1823 jh->b_tprev->b_tnext = jh->b_tnext; 1824 jh->b_tnext->b_tprev = jh->b_tprev; 1825 } 1826 1827 /* 1828 * Remove a buffer from the appropriate transaction list. 1829 * 1830 * Note that this function can *change* the value of 1831 * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or 1832 * t_reserved_list. If the caller is holding onto a copy of one of these 1833 * pointers, it could go bad. Generally the caller needs to re-read the 1834 * pointer from the transaction_t. 1835 * 1836 * Called under j_list_lock. 1837 */ 1838 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh) 1839 { 1840 struct journal_head **list = NULL; 1841 transaction_t *transaction; 1842 struct buffer_head *bh = jh2bh(jh); 1843 1844 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 1845 transaction = jh->b_transaction; 1846 if (transaction) 1847 assert_spin_locked(&transaction->t_journal->j_list_lock); 1848 1849 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 1850 if (jh->b_jlist != BJ_None) 1851 J_ASSERT_JH(jh, transaction != NULL); 1852 1853 switch (jh->b_jlist) { 1854 case BJ_None: 1855 return; 1856 case BJ_Metadata: 1857 transaction->t_nr_buffers--; 1858 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0); 1859 list = &transaction->t_buffers; 1860 break; 1861 case BJ_Forget: 1862 list = &transaction->t_forget; 1863 break; 1864 case BJ_Shadow: 1865 list = &transaction->t_shadow_list; 1866 break; 1867 case BJ_Reserved: 1868 list = &transaction->t_reserved_list; 1869 break; 1870 } 1871 1872 __blist_del_buffer(list, jh); 1873 jh->b_jlist = BJ_None; 1874 if (test_clear_buffer_jbddirty(bh)) 1875 mark_buffer_dirty(bh); /* Expose it to the VM */ 1876 } 1877 1878 /* 1879 * Remove buffer from all transactions. 1880 * 1881 * Called with bh_state lock and j_list_lock 1882 * 1883 * jh and bh may be already freed when this function returns. 1884 */ 1885 static void __jbd2_journal_unfile_buffer(struct journal_head *jh) 1886 { 1887 __jbd2_journal_temp_unlink_buffer(jh); 1888 jh->b_transaction = NULL; 1889 jbd2_journal_put_journal_head(jh); 1890 } 1891 1892 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh) 1893 { 1894 struct buffer_head *bh = jh2bh(jh); 1895 1896 /* Get reference so that buffer cannot be freed before we unlock it */ 1897 get_bh(bh); 1898 jbd_lock_bh_state(bh); 1899 spin_lock(&journal->j_list_lock); 1900 __jbd2_journal_unfile_buffer(jh); 1901 spin_unlock(&journal->j_list_lock); 1902 jbd_unlock_bh_state(bh); 1903 __brelse(bh); 1904 } 1905 1906 /* 1907 * Called from jbd2_journal_try_to_free_buffers(). 1908 * 1909 * Called under jbd_lock_bh_state(bh) 1910 */ 1911 static void 1912 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh) 1913 { 1914 struct journal_head *jh; 1915 1916 jh = bh2jh(bh); 1917 1918 if (buffer_locked(bh) || buffer_dirty(bh)) 1919 goto out; 1920 1921 if (jh->b_next_transaction != NULL || jh->b_transaction != NULL) 1922 goto out; 1923 1924 spin_lock(&journal->j_list_lock); 1925 if (jh->b_cp_transaction != NULL) { 1926 /* written-back checkpointed metadata buffer */ 1927 JBUFFER_TRACE(jh, "remove from checkpoint list"); 1928 __jbd2_journal_remove_checkpoint(jh); 1929 } 1930 spin_unlock(&journal->j_list_lock); 1931 out: 1932 return; 1933 } 1934 1935 /** 1936 * int jbd2_journal_try_to_free_buffers() - try to free page buffers. 1937 * @journal: journal for operation 1938 * @page: to try and free 1939 * @gfp_mask: we use the mask to detect how hard should we try to release 1940 * buffers. If __GFP_DIRECT_RECLAIM and __GFP_FS is set, we wait for commit 1941 * code to release the buffers. 1942 * 1943 * 1944 * For all the buffers on this page, 1945 * if they are fully written out ordered data, move them onto BUF_CLEAN 1946 * so try_to_free_buffers() can reap them. 1947 * 1948 * This function returns non-zero if we wish try_to_free_buffers() 1949 * to be called. We do this if the page is releasable by try_to_free_buffers(). 1950 * We also do it if the page has locked or dirty buffers and the caller wants 1951 * us to perform sync or async writeout. 1952 * 1953 * This complicates JBD locking somewhat. We aren't protected by the 1954 * BKL here. We wish to remove the buffer from its committing or 1955 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer. 1956 * 1957 * This may *change* the value of transaction_t->t_datalist, so anyone 1958 * who looks at t_datalist needs to lock against this function. 1959 * 1960 * Even worse, someone may be doing a jbd2_journal_dirty_data on this 1961 * buffer. So we need to lock against that. jbd2_journal_dirty_data() 1962 * will come out of the lock with the buffer dirty, which makes it 1963 * ineligible for release here. 1964 * 1965 * Who else is affected by this? hmm... Really the only contender 1966 * is do_get_write_access() - it could be looking at the buffer while 1967 * journal_try_to_free_buffer() is changing its state. But that 1968 * cannot happen because we never reallocate freed data as metadata 1969 * while the data is part of a transaction. Yes? 1970 * 1971 * Return 0 on failure, 1 on success 1972 */ 1973 int jbd2_journal_try_to_free_buffers(journal_t *journal, 1974 struct page *page, gfp_t gfp_mask) 1975 { 1976 struct buffer_head *head; 1977 struct buffer_head *bh; 1978 int ret = 0; 1979 1980 J_ASSERT(PageLocked(page)); 1981 1982 head = page_buffers(page); 1983 bh = head; 1984 do { 1985 struct journal_head *jh; 1986 1987 /* 1988 * We take our own ref against the journal_head here to avoid 1989 * having to add tons of locking around each instance of 1990 * jbd2_journal_put_journal_head(). 1991 */ 1992 jh = jbd2_journal_grab_journal_head(bh); 1993 if (!jh) 1994 continue; 1995 1996 jbd_lock_bh_state(bh); 1997 __journal_try_to_free_buffer(journal, bh); 1998 jbd2_journal_put_journal_head(jh); 1999 jbd_unlock_bh_state(bh); 2000 if (buffer_jbd(bh)) 2001 goto busy; 2002 } while ((bh = bh->b_this_page) != head); 2003 2004 ret = try_to_free_buffers(page); 2005 2006 busy: 2007 return ret; 2008 } 2009 2010 /* 2011 * This buffer is no longer needed. If it is on an older transaction's 2012 * checkpoint list we need to record it on this transaction's forget list 2013 * to pin this buffer (and hence its checkpointing transaction) down until 2014 * this transaction commits. If the buffer isn't on a checkpoint list, we 2015 * release it. 2016 * Returns non-zero if JBD no longer has an interest in the buffer. 2017 * 2018 * Called under j_list_lock. 2019 * 2020 * Called under jbd_lock_bh_state(bh). 2021 */ 2022 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction) 2023 { 2024 int may_free = 1; 2025 struct buffer_head *bh = jh2bh(jh); 2026 2027 if (jh->b_cp_transaction) { 2028 JBUFFER_TRACE(jh, "on running+cp transaction"); 2029 __jbd2_journal_temp_unlink_buffer(jh); 2030 /* 2031 * We don't want to write the buffer anymore, clear the 2032 * bit so that we don't confuse checks in 2033 * __journal_file_buffer 2034 */ 2035 clear_buffer_dirty(bh); 2036 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 2037 may_free = 0; 2038 } else { 2039 JBUFFER_TRACE(jh, "on running transaction"); 2040 __jbd2_journal_unfile_buffer(jh); 2041 } 2042 return may_free; 2043 } 2044 2045 /* 2046 * jbd2_journal_invalidatepage 2047 * 2048 * This code is tricky. It has a number of cases to deal with. 2049 * 2050 * There are two invariants which this code relies on: 2051 * 2052 * i_size must be updated on disk before we start calling invalidatepage on the 2053 * data. 2054 * 2055 * This is done in ext3 by defining an ext3_setattr method which 2056 * updates i_size before truncate gets going. By maintaining this 2057 * invariant, we can be sure that it is safe to throw away any buffers 2058 * attached to the current transaction: once the transaction commits, 2059 * we know that the data will not be needed. 2060 * 2061 * Note however that we can *not* throw away data belonging to the 2062 * previous, committing transaction! 2063 * 2064 * Any disk blocks which *are* part of the previous, committing 2065 * transaction (and which therefore cannot be discarded immediately) are 2066 * not going to be reused in the new running transaction 2067 * 2068 * The bitmap committed_data images guarantee this: any block which is 2069 * allocated in one transaction and removed in the next will be marked 2070 * as in-use in the committed_data bitmap, so cannot be reused until 2071 * the next transaction to delete the block commits. This means that 2072 * leaving committing buffers dirty is quite safe: the disk blocks 2073 * cannot be reallocated to a different file and so buffer aliasing is 2074 * not possible. 2075 * 2076 * 2077 * The above applies mainly to ordered data mode. In writeback mode we 2078 * don't make guarantees about the order in which data hits disk --- in 2079 * particular we don't guarantee that new dirty data is flushed before 2080 * transaction commit --- so it is always safe just to discard data 2081 * immediately in that mode. --sct 2082 */ 2083 2084 /* 2085 * The journal_unmap_buffer helper function returns zero if the buffer 2086 * concerned remains pinned as an anonymous buffer belonging to an older 2087 * transaction. 2088 * 2089 * We're outside-transaction here. Either or both of j_running_transaction 2090 * and j_committing_transaction may be NULL. 2091 */ 2092 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh, 2093 int partial_page) 2094 { 2095 transaction_t *transaction; 2096 struct journal_head *jh; 2097 int may_free = 1; 2098 2099 BUFFER_TRACE(bh, "entry"); 2100 2101 /* 2102 * It is safe to proceed here without the j_list_lock because the 2103 * buffers cannot be stolen by try_to_free_buffers as long as we are 2104 * holding the page lock. --sct 2105 */ 2106 2107 if (!buffer_jbd(bh)) 2108 goto zap_buffer_unlocked; 2109 2110 /* OK, we have data buffer in journaled mode */ 2111 write_lock(&journal->j_state_lock); 2112 jbd_lock_bh_state(bh); 2113 spin_lock(&journal->j_list_lock); 2114 2115 jh = jbd2_journal_grab_journal_head(bh); 2116 if (!jh) 2117 goto zap_buffer_no_jh; 2118 2119 /* 2120 * We cannot remove the buffer from checkpoint lists until the 2121 * transaction adding inode to orphan list (let's call it T) 2122 * is committed. Otherwise if the transaction changing the 2123 * buffer would be cleaned from the journal before T is 2124 * committed, a crash will cause that the correct contents of 2125 * the buffer will be lost. On the other hand we have to 2126 * clear the buffer dirty bit at latest at the moment when the 2127 * transaction marking the buffer as freed in the filesystem 2128 * structures is committed because from that moment on the 2129 * block can be reallocated and used by a different page. 2130 * Since the block hasn't been freed yet but the inode has 2131 * already been added to orphan list, it is safe for us to add 2132 * the buffer to BJ_Forget list of the newest transaction. 2133 * 2134 * Also we have to clear buffer_mapped flag of a truncated buffer 2135 * because the buffer_head may be attached to the page straddling 2136 * i_size (can happen only when blocksize < pagesize) and thus the 2137 * buffer_head can be reused when the file is extended again. So we end 2138 * up keeping around invalidated buffers attached to transactions' 2139 * BJ_Forget list just to stop checkpointing code from cleaning up 2140 * the transaction this buffer was modified in. 2141 */ 2142 transaction = jh->b_transaction; 2143 if (transaction == NULL) { 2144 /* First case: not on any transaction. If it 2145 * has no checkpoint link, then we can zap it: 2146 * it's a writeback-mode buffer so we don't care 2147 * if it hits disk safely. */ 2148 if (!jh->b_cp_transaction) { 2149 JBUFFER_TRACE(jh, "not on any transaction: zap"); 2150 goto zap_buffer; 2151 } 2152 2153 if (!buffer_dirty(bh)) { 2154 /* bdflush has written it. We can drop it now */ 2155 goto zap_buffer; 2156 } 2157 2158 /* OK, it must be in the journal but still not 2159 * written fully to disk: it's metadata or 2160 * journaled data... */ 2161 2162 if (journal->j_running_transaction) { 2163 /* ... and once the current transaction has 2164 * committed, the buffer won't be needed any 2165 * longer. */ 2166 JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget"); 2167 may_free = __dispose_buffer(jh, 2168 journal->j_running_transaction); 2169 goto zap_buffer; 2170 } else { 2171 /* There is no currently-running transaction. So the 2172 * orphan record which we wrote for this file must have 2173 * passed into commit. We must attach this buffer to 2174 * the committing transaction, if it exists. */ 2175 if (journal->j_committing_transaction) { 2176 JBUFFER_TRACE(jh, "give to committing trans"); 2177 may_free = __dispose_buffer(jh, 2178 journal->j_committing_transaction); 2179 goto zap_buffer; 2180 } else { 2181 /* The orphan record's transaction has 2182 * committed. We can cleanse this buffer */ 2183 clear_buffer_jbddirty(bh); 2184 goto zap_buffer; 2185 } 2186 } 2187 } else if (transaction == journal->j_committing_transaction) { 2188 JBUFFER_TRACE(jh, "on committing transaction"); 2189 /* 2190 * The buffer is committing, we simply cannot touch 2191 * it. If the page is straddling i_size we have to wait 2192 * for commit and try again. 2193 */ 2194 if (partial_page) { 2195 jbd2_journal_put_journal_head(jh); 2196 spin_unlock(&journal->j_list_lock); 2197 jbd_unlock_bh_state(bh); 2198 write_unlock(&journal->j_state_lock); 2199 return -EBUSY; 2200 } 2201 /* 2202 * OK, buffer won't be reachable after truncate. We just set 2203 * j_next_transaction to the running transaction (if there is 2204 * one) and mark buffer as freed so that commit code knows it 2205 * should clear dirty bits when it is done with the buffer. 2206 */ 2207 set_buffer_freed(bh); 2208 if (journal->j_running_transaction && buffer_jbddirty(bh)) 2209 jh->b_next_transaction = journal->j_running_transaction; 2210 jbd2_journal_put_journal_head(jh); 2211 spin_unlock(&journal->j_list_lock); 2212 jbd_unlock_bh_state(bh); 2213 write_unlock(&journal->j_state_lock); 2214 return 0; 2215 } else { 2216 /* Good, the buffer belongs to the running transaction. 2217 * We are writing our own transaction's data, not any 2218 * previous one's, so it is safe to throw it away 2219 * (remember that we expect the filesystem to have set 2220 * i_size already for this truncate so recovery will not 2221 * expose the disk blocks we are discarding here.) */ 2222 J_ASSERT_JH(jh, transaction == journal->j_running_transaction); 2223 JBUFFER_TRACE(jh, "on running transaction"); 2224 may_free = __dispose_buffer(jh, transaction); 2225 } 2226 2227 zap_buffer: 2228 /* 2229 * This is tricky. Although the buffer is truncated, it may be reused 2230 * if blocksize < pagesize and it is attached to the page straddling 2231 * EOF. Since the buffer might have been added to BJ_Forget list of the 2232 * running transaction, journal_get_write_access() won't clear 2233 * b_modified and credit accounting gets confused. So clear b_modified 2234 * here. 2235 */ 2236 jh->b_modified = 0; 2237 jbd2_journal_put_journal_head(jh); 2238 zap_buffer_no_jh: 2239 spin_unlock(&journal->j_list_lock); 2240 jbd_unlock_bh_state(bh); 2241 write_unlock(&journal->j_state_lock); 2242 zap_buffer_unlocked: 2243 clear_buffer_dirty(bh); 2244 J_ASSERT_BH(bh, !buffer_jbddirty(bh)); 2245 clear_buffer_mapped(bh); 2246 clear_buffer_req(bh); 2247 clear_buffer_new(bh); 2248 clear_buffer_delay(bh); 2249 clear_buffer_unwritten(bh); 2250 bh->b_bdev = NULL; 2251 return may_free; 2252 } 2253 2254 /** 2255 * void jbd2_journal_invalidatepage() 2256 * @journal: journal to use for flush... 2257 * @page: page to flush 2258 * @offset: start of the range to invalidate 2259 * @length: length of the range to invalidate 2260 * 2261 * Reap page buffers containing data after in the specified range in page. 2262 * Can return -EBUSY if buffers are part of the committing transaction and 2263 * the page is straddling i_size. Caller then has to wait for current commit 2264 * and try again. 2265 */ 2266 int jbd2_journal_invalidatepage(journal_t *journal, 2267 struct page *page, 2268 unsigned int offset, 2269 unsigned int length) 2270 { 2271 struct buffer_head *head, *bh, *next; 2272 unsigned int stop = offset + length; 2273 unsigned int curr_off = 0; 2274 int partial_page = (offset || length < PAGE_CACHE_SIZE); 2275 int may_free = 1; 2276 int ret = 0; 2277 2278 if (!PageLocked(page)) 2279 BUG(); 2280 if (!page_has_buffers(page)) 2281 return 0; 2282 2283 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length); 2284 2285 /* We will potentially be playing with lists other than just the 2286 * data lists (especially for journaled data mode), so be 2287 * cautious in our locking. */ 2288 2289 head = bh = page_buffers(page); 2290 do { 2291 unsigned int next_off = curr_off + bh->b_size; 2292 next = bh->b_this_page; 2293 2294 if (next_off > stop) 2295 return 0; 2296 2297 if (offset <= curr_off) { 2298 /* This block is wholly outside the truncation point */ 2299 lock_buffer(bh); 2300 ret = journal_unmap_buffer(journal, bh, partial_page); 2301 unlock_buffer(bh); 2302 if (ret < 0) 2303 return ret; 2304 may_free &= ret; 2305 } 2306 curr_off = next_off; 2307 bh = next; 2308 2309 } while (bh != head); 2310 2311 if (!partial_page) { 2312 if (may_free && try_to_free_buffers(page)) 2313 J_ASSERT(!page_has_buffers(page)); 2314 } 2315 return 0; 2316 } 2317 2318 /* 2319 * File a buffer on the given transaction list. 2320 */ 2321 void __jbd2_journal_file_buffer(struct journal_head *jh, 2322 transaction_t *transaction, int jlist) 2323 { 2324 struct journal_head **list = NULL; 2325 int was_dirty = 0; 2326 struct buffer_head *bh = jh2bh(jh); 2327 2328 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 2329 assert_spin_locked(&transaction->t_journal->j_list_lock); 2330 2331 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 2332 J_ASSERT_JH(jh, jh->b_transaction == transaction || 2333 jh->b_transaction == NULL); 2334 2335 if (jh->b_transaction && jh->b_jlist == jlist) 2336 return; 2337 2338 if (jlist == BJ_Metadata || jlist == BJ_Reserved || 2339 jlist == BJ_Shadow || jlist == BJ_Forget) { 2340 /* 2341 * For metadata buffers, we track dirty bit in buffer_jbddirty 2342 * instead of buffer_dirty. We should not see a dirty bit set 2343 * here because we clear it in do_get_write_access but e.g. 2344 * tune2fs can modify the sb and set the dirty bit at any time 2345 * so we try to gracefully handle that. 2346 */ 2347 if (buffer_dirty(bh)) 2348 warn_dirty_buffer(bh); 2349 if (test_clear_buffer_dirty(bh) || 2350 test_clear_buffer_jbddirty(bh)) 2351 was_dirty = 1; 2352 } 2353 2354 if (jh->b_transaction) 2355 __jbd2_journal_temp_unlink_buffer(jh); 2356 else 2357 jbd2_journal_grab_journal_head(bh); 2358 jh->b_transaction = transaction; 2359 2360 switch (jlist) { 2361 case BJ_None: 2362 J_ASSERT_JH(jh, !jh->b_committed_data); 2363 J_ASSERT_JH(jh, !jh->b_frozen_data); 2364 return; 2365 case BJ_Metadata: 2366 transaction->t_nr_buffers++; 2367 list = &transaction->t_buffers; 2368 break; 2369 case BJ_Forget: 2370 list = &transaction->t_forget; 2371 break; 2372 case BJ_Shadow: 2373 list = &transaction->t_shadow_list; 2374 break; 2375 case BJ_Reserved: 2376 list = &transaction->t_reserved_list; 2377 break; 2378 } 2379 2380 __blist_add_buffer(list, jh); 2381 jh->b_jlist = jlist; 2382 2383 if (was_dirty) 2384 set_buffer_jbddirty(bh); 2385 } 2386 2387 void jbd2_journal_file_buffer(struct journal_head *jh, 2388 transaction_t *transaction, int jlist) 2389 { 2390 jbd_lock_bh_state(jh2bh(jh)); 2391 spin_lock(&transaction->t_journal->j_list_lock); 2392 __jbd2_journal_file_buffer(jh, transaction, jlist); 2393 spin_unlock(&transaction->t_journal->j_list_lock); 2394 jbd_unlock_bh_state(jh2bh(jh)); 2395 } 2396 2397 /* 2398 * Remove a buffer from its current buffer list in preparation for 2399 * dropping it from its current transaction entirely. If the buffer has 2400 * already started to be used by a subsequent transaction, refile the 2401 * buffer on that transaction's metadata list. 2402 * 2403 * Called under j_list_lock 2404 * Called under jbd_lock_bh_state(jh2bh(jh)) 2405 * 2406 * jh and bh may be already free when this function returns 2407 */ 2408 void __jbd2_journal_refile_buffer(struct journal_head *jh) 2409 { 2410 int was_dirty, jlist; 2411 struct buffer_head *bh = jh2bh(jh); 2412 2413 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 2414 if (jh->b_transaction) 2415 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock); 2416 2417 /* If the buffer is now unused, just drop it. */ 2418 if (jh->b_next_transaction == NULL) { 2419 __jbd2_journal_unfile_buffer(jh); 2420 return; 2421 } 2422 2423 /* 2424 * It has been modified by a later transaction: add it to the new 2425 * transaction's metadata list. 2426 */ 2427 2428 was_dirty = test_clear_buffer_jbddirty(bh); 2429 __jbd2_journal_temp_unlink_buffer(jh); 2430 /* 2431 * We set b_transaction here because b_next_transaction will inherit 2432 * our jh reference and thus __jbd2_journal_file_buffer() must not 2433 * take a new one. 2434 */ 2435 jh->b_transaction = jh->b_next_transaction; 2436 jh->b_next_transaction = NULL; 2437 if (buffer_freed(bh)) 2438 jlist = BJ_Forget; 2439 else if (jh->b_modified) 2440 jlist = BJ_Metadata; 2441 else 2442 jlist = BJ_Reserved; 2443 __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist); 2444 J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING); 2445 2446 if (was_dirty) 2447 set_buffer_jbddirty(bh); 2448 } 2449 2450 /* 2451 * __jbd2_journal_refile_buffer() with necessary locking added. We take our 2452 * bh reference so that we can safely unlock bh. 2453 * 2454 * The jh and bh may be freed by this call. 2455 */ 2456 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh) 2457 { 2458 struct buffer_head *bh = jh2bh(jh); 2459 2460 /* Get reference so that buffer cannot be freed before we unlock it */ 2461 get_bh(bh); 2462 jbd_lock_bh_state(bh); 2463 spin_lock(&journal->j_list_lock); 2464 __jbd2_journal_refile_buffer(jh); 2465 jbd_unlock_bh_state(bh); 2466 spin_unlock(&journal->j_list_lock); 2467 __brelse(bh); 2468 } 2469 2470 /* 2471 * File inode in the inode list of the handle's transaction 2472 */ 2473 int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode) 2474 { 2475 transaction_t *transaction = handle->h_transaction; 2476 journal_t *journal; 2477 2478 if (is_handle_aborted(handle)) 2479 return -EROFS; 2480 journal = transaction->t_journal; 2481 2482 jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino, 2483 transaction->t_tid); 2484 2485 /* 2486 * First check whether inode isn't already on the transaction's 2487 * lists without taking the lock. Note that this check is safe 2488 * without the lock as we cannot race with somebody removing inode 2489 * from the transaction. The reason is that we remove inode from the 2490 * transaction only in journal_release_jbd_inode() and when we commit 2491 * the transaction. We are guarded from the first case by holding 2492 * a reference to the inode. We are safe against the second case 2493 * because if jinode->i_transaction == transaction, commit code 2494 * cannot touch the transaction because we hold reference to it, 2495 * and if jinode->i_next_transaction == transaction, commit code 2496 * will only file the inode where we want it. 2497 */ 2498 if (jinode->i_transaction == transaction || 2499 jinode->i_next_transaction == transaction) 2500 return 0; 2501 2502 spin_lock(&journal->j_list_lock); 2503 2504 if (jinode->i_transaction == transaction || 2505 jinode->i_next_transaction == transaction) 2506 goto done; 2507 2508 /* 2509 * We only ever set this variable to 1 so the test is safe. Since 2510 * t_need_data_flush is likely to be set, we do the test to save some 2511 * cacheline bouncing 2512 */ 2513 if (!transaction->t_need_data_flush) 2514 transaction->t_need_data_flush = 1; 2515 /* On some different transaction's list - should be 2516 * the committing one */ 2517 if (jinode->i_transaction) { 2518 J_ASSERT(jinode->i_next_transaction == NULL); 2519 J_ASSERT(jinode->i_transaction == 2520 journal->j_committing_transaction); 2521 jinode->i_next_transaction = transaction; 2522 goto done; 2523 } 2524 /* Not on any transaction list... */ 2525 J_ASSERT(!jinode->i_next_transaction); 2526 jinode->i_transaction = transaction; 2527 list_add(&jinode->i_list, &transaction->t_inode_list); 2528 done: 2529 spin_unlock(&journal->j_list_lock); 2530 2531 return 0; 2532 } 2533 2534 /* 2535 * File truncate and transaction commit interact with each other in a 2536 * non-trivial way. If a transaction writing data block A is 2537 * committing, we cannot discard the data by truncate until we have 2538 * written them. Otherwise if we crashed after the transaction with 2539 * write has committed but before the transaction with truncate has 2540 * committed, we could see stale data in block A. This function is a 2541 * helper to solve this problem. It starts writeout of the truncated 2542 * part in case it is in the committing transaction. 2543 * 2544 * Filesystem code must call this function when inode is journaled in 2545 * ordered mode before truncation happens and after the inode has been 2546 * placed on orphan list with the new inode size. The second condition 2547 * avoids the race that someone writes new data and we start 2548 * committing the transaction after this function has been called but 2549 * before a transaction for truncate is started (and furthermore it 2550 * allows us to optimize the case where the addition to orphan list 2551 * happens in the same transaction as write --- we don't have to write 2552 * any data in such case). 2553 */ 2554 int jbd2_journal_begin_ordered_truncate(journal_t *journal, 2555 struct jbd2_inode *jinode, 2556 loff_t new_size) 2557 { 2558 transaction_t *inode_trans, *commit_trans; 2559 int ret = 0; 2560 2561 /* This is a quick check to avoid locking if not necessary */ 2562 if (!jinode->i_transaction) 2563 goto out; 2564 /* Locks are here just to force reading of recent values, it is 2565 * enough that the transaction was not committing before we started 2566 * a transaction adding the inode to orphan list */ 2567 read_lock(&journal->j_state_lock); 2568 commit_trans = journal->j_committing_transaction; 2569 read_unlock(&journal->j_state_lock); 2570 spin_lock(&journal->j_list_lock); 2571 inode_trans = jinode->i_transaction; 2572 spin_unlock(&journal->j_list_lock); 2573 if (inode_trans == commit_trans) { 2574 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping, 2575 new_size, LLONG_MAX); 2576 if (ret) 2577 jbd2_journal_abort(journal, ret); 2578 } 2579 out: 2580 return ret; 2581 } 2582