xref: /linux/fs/jbd2/transaction.c (revision 98366c20a275e957416e9516db5dcb7195b4e101)
1 /*
2  * linux/fs/jbd2/transaction.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem transaction handling code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages transactions (compound commits managed by the
16  * journaling code) and handles (individual atomic operations by the
17  * filesystem).
18  */
19 
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd2.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 
29 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
30 
31 /*
32  * jbd2_get_transaction: obtain a new transaction_t object.
33  *
34  * Simply allocate and initialise a new transaction.  Create it in
35  * RUNNING state and add it to the current journal (which should not
36  * have an existing running transaction: we only make a new transaction
37  * once we have started to commit the old one).
38  *
39  * Preconditions:
40  *	The journal MUST be locked.  We don't perform atomic mallocs on the
41  *	new transaction	and we can't block without protecting against other
42  *	processes trying to touch the journal while it is in transition.
43  *
44  * Called under j_state_lock
45  */
46 
47 static transaction_t *
48 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
49 {
50 	transaction->t_journal = journal;
51 	transaction->t_state = T_RUNNING;
52 	transaction->t_tid = journal->j_transaction_sequence++;
53 	transaction->t_expires = jiffies + journal->j_commit_interval;
54 	spin_lock_init(&transaction->t_handle_lock);
55 
56 	/* Set up the commit timer for the new transaction. */
57 	journal->j_commit_timer.expires = transaction->t_expires;
58 	add_timer(&journal->j_commit_timer);
59 
60 	J_ASSERT(journal->j_running_transaction == NULL);
61 	journal->j_running_transaction = transaction;
62 
63 	return transaction;
64 }
65 
66 /*
67  * Handle management.
68  *
69  * A handle_t is an object which represents a single atomic update to a
70  * filesystem, and which tracks all of the modifications which form part
71  * of that one update.
72  */
73 
74 /*
75  * start_this_handle: Given a handle, deal with any locking or stalling
76  * needed to make sure that there is enough journal space for the handle
77  * to begin.  Attach the handle to a transaction and set up the
78  * transaction's buffer credits.
79  */
80 
81 static int start_this_handle(journal_t *journal, handle_t *handle)
82 {
83 	transaction_t *transaction;
84 	int needed;
85 	int nblocks = handle->h_buffer_credits;
86 	transaction_t *new_transaction = NULL;
87 	int ret = 0;
88 
89 	if (nblocks > journal->j_max_transaction_buffers) {
90 		printk(KERN_ERR "JBD: %s wants too many credits (%d > %d)\n",
91 		       current->comm, nblocks,
92 		       journal->j_max_transaction_buffers);
93 		ret = -ENOSPC;
94 		goto out;
95 	}
96 
97 alloc_transaction:
98 	if (!journal->j_running_transaction) {
99 		new_transaction = kzalloc(sizeof(*new_transaction),
100 						GFP_NOFS|__GFP_NOFAIL);
101 		if (!new_transaction) {
102 			ret = -ENOMEM;
103 			goto out;
104 		}
105 	}
106 
107 	jbd_debug(3, "New handle %p going live.\n", handle);
108 
109 repeat:
110 
111 	/*
112 	 * We need to hold j_state_lock until t_updates has been incremented,
113 	 * for proper journal barrier handling
114 	 */
115 	spin_lock(&journal->j_state_lock);
116 repeat_locked:
117 	if (is_journal_aborted(journal) ||
118 	    (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
119 		spin_unlock(&journal->j_state_lock);
120 		ret = -EROFS;
121 		goto out;
122 	}
123 
124 	/* Wait on the journal's transaction barrier if necessary */
125 	if (journal->j_barrier_count) {
126 		spin_unlock(&journal->j_state_lock);
127 		wait_event(journal->j_wait_transaction_locked,
128 				journal->j_barrier_count == 0);
129 		goto repeat;
130 	}
131 
132 	if (!journal->j_running_transaction) {
133 		if (!new_transaction) {
134 			spin_unlock(&journal->j_state_lock);
135 			goto alloc_transaction;
136 		}
137 		jbd2_get_transaction(journal, new_transaction);
138 		new_transaction = NULL;
139 	}
140 
141 	transaction = journal->j_running_transaction;
142 
143 	/*
144 	 * If the current transaction is locked down for commit, wait for the
145 	 * lock to be released.
146 	 */
147 	if (transaction->t_state == T_LOCKED) {
148 		DEFINE_WAIT(wait);
149 
150 		prepare_to_wait(&journal->j_wait_transaction_locked,
151 					&wait, TASK_UNINTERRUPTIBLE);
152 		spin_unlock(&journal->j_state_lock);
153 		schedule();
154 		finish_wait(&journal->j_wait_transaction_locked, &wait);
155 		goto repeat;
156 	}
157 
158 	/*
159 	 * If there is not enough space left in the log to write all potential
160 	 * buffers requested by this operation, we need to stall pending a log
161 	 * checkpoint to free some more log space.
162 	 */
163 	spin_lock(&transaction->t_handle_lock);
164 	needed = transaction->t_outstanding_credits + nblocks;
165 
166 	if (needed > journal->j_max_transaction_buffers) {
167 		/*
168 		 * If the current transaction is already too large, then start
169 		 * to commit it: we can then go back and attach this handle to
170 		 * a new transaction.
171 		 */
172 		DEFINE_WAIT(wait);
173 
174 		jbd_debug(2, "Handle %p starting new commit...\n", handle);
175 		spin_unlock(&transaction->t_handle_lock);
176 		prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
177 				TASK_UNINTERRUPTIBLE);
178 		__jbd2_log_start_commit(journal, transaction->t_tid);
179 		spin_unlock(&journal->j_state_lock);
180 		schedule();
181 		finish_wait(&journal->j_wait_transaction_locked, &wait);
182 		goto repeat;
183 	}
184 
185 	/*
186 	 * The commit code assumes that it can get enough log space
187 	 * without forcing a checkpoint.  This is *critical* for
188 	 * correctness: a checkpoint of a buffer which is also
189 	 * associated with a committing transaction creates a deadlock,
190 	 * so commit simply cannot force through checkpoints.
191 	 *
192 	 * We must therefore ensure the necessary space in the journal
193 	 * *before* starting to dirty potentially checkpointed buffers
194 	 * in the new transaction.
195 	 *
196 	 * The worst part is, any transaction currently committing can
197 	 * reduce the free space arbitrarily.  Be careful to account for
198 	 * those buffers when checkpointing.
199 	 */
200 
201 	/*
202 	 * @@@ AKPM: This seems rather over-defensive.  We're giving commit
203 	 * a _lot_ of headroom: 1/4 of the journal plus the size of
204 	 * the committing transaction.  Really, we only need to give it
205 	 * committing_transaction->t_outstanding_credits plus "enough" for
206 	 * the log control blocks.
207 	 * Also, this test is inconsitent with the matching one in
208 	 * jbd2_journal_extend().
209 	 */
210 	if (__jbd2_log_space_left(journal) < jbd_space_needed(journal)) {
211 		jbd_debug(2, "Handle %p waiting for checkpoint...\n", handle);
212 		spin_unlock(&transaction->t_handle_lock);
213 		__jbd2_log_wait_for_space(journal);
214 		goto repeat_locked;
215 	}
216 
217 	/* OK, account for the buffers that this operation expects to
218 	 * use and add the handle to the running transaction. */
219 
220 	handle->h_transaction = transaction;
221 	transaction->t_outstanding_credits += nblocks;
222 	transaction->t_updates++;
223 	transaction->t_handle_count++;
224 	jbd_debug(4, "Handle %p given %d credits (total %d, free %d)\n",
225 		  handle, nblocks, transaction->t_outstanding_credits,
226 		  __jbd2_log_space_left(journal));
227 	spin_unlock(&transaction->t_handle_lock);
228 	spin_unlock(&journal->j_state_lock);
229 out:
230 	if (unlikely(new_transaction))		/* It's usually NULL */
231 		kfree(new_transaction);
232 	return ret;
233 }
234 
235 /* Allocate a new handle.  This should probably be in a slab... */
236 static handle_t *new_handle(int nblocks)
237 {
238 	handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
239 	if (!handle)
240 		return NULL;
241 	memset(handle, 0, sizeof(*handle));
242 	handle->h_buffer_credits = nblocks;
243 	handle->h_ref = 1;
244 
245 	return handle;
246 }
247 
248 /**
249  * handle_t *jbd2_journal_start() - Obtain a new handle.
250  * @journal: Journal to start transaction on.
251  * @nblocks: number of block buffer we might modify
252  *
253  * We make sure that the transaction can guarantee at least nblocks of
254  * modified buffers in the log.  We block until the log can guarantee
255  * that much space.
256  *
257  * This function is visible to journal users (like ext3fs), so is not
258  * called with the journal already locked.
259  *
260  * Return a pointer to a newly allocated handle, or NULL on failure
261  */
262 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
263 {
264 	handle_t *handle = journal_current_handle();
265 	int err;
266 
267 	if (!journal)
268 		return ERR_PTR(-EROFS);
269 
270 	if (handle) {
271 		J_ASSERT(handle->h_transaction->t_journal == journal);
272 		handle->h_ref++;
273 		return handle;
274 	}
275 
276 	handle = new_handle(nblocks);
277 	if (!handle)
278 		return ERR_PTR(-ENOMEM);
279 
280 	current->journal_info = handle;
281 
282 	err = start_this_handle(journal, handle);
283 	if (err < 0) {
284 		jbd2_free_handle(handle);
285 		current->journal_info = NULL;
286 		handle = ERR_PTR(err);
287 	}
288 	return handle;
289 }
290 
291 /**
292  * int jbd2_journal_extend() - extend buffer credits.
293  * @handle:  handle to 'extend'
294  * @nblocks: nr blocks to try to extend by.
295  *
296  * Some transactions, such as large extends and truncates, can be done
297  * atomically all at once or in several stages.  The operation requests
298  * a credit for a number of buffer modications in advance, but can
299  * extend its credit if it needs more.
300  *
301  * jbd2_journal_extend tries to give the running handle more buffer credits.
302  * It does not guarantee that allocation - this is a best-effort only.
303  * The calling process MUST be able to deal cleanly with a failure to
304  * extend here.
305  *
306  * Return 0 on success, non-zero on failure.
307  *
308  * return code < 0 implies an error
309  * return code > 0 implies normal transaction-full status.
310  */
311 int jbd2_journal_extend(handle_t *handle, int nblocks)
312 {
313 	transaction_t *transaction = handle->h_transaction;
314 	journal_t *journal = transaction->t_journal;
315 	int result;
316 	int wanted;
317 
318 	result = -EIO;
319 	if (is_handle_aborted(handle))
320 		goto out;
321 
322 	result = 1;
323 
324 	spin_lock(&journal->j_state_lock);
325 
326 	/* Don't extend a locked-down transaction! */
327 	if (handle->h_transaction->t_state != T_RUNNING) {
328 		jbd_debug(3, "denied handle %p %d blocks: "
329 			  "transaction not running\n", handle, nblocks);
330 		goto error_out;
331 	}
332 
333 	spin_lock(&transaction->t_handle_lock);
334 	wanted = transaction->t_outstanding_credits + nblocks;
335 
336 	if (wanted > journal->j_max_transaction_buffers) {
337 		jbd_debug(3, "denied handle %p %d blocks: "
338 			  "transaction too large\n", handle, nblocks);
339 		goto unlock;
340 	}
341 
342 	if (wanted > __jbd2_log_space_left(journal)) {
343 		jbd_debug(3, "denied handle %p %d blocks: "
344 			  "insufficient log space\n", handle, nblocks);
345 		goto unlock;
346 	}
347 
348 	handle->h_buffer_credits += nblocks;
349 	transaction->t_outstanding_credits += nblocks;
350 	result = 0;
351 
352 	jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
353 unlock:
354 	spin_unlock(&transaction->t_handle_lock);
355 error_out:
356 	spin_unlock(&journal->j_state_lock);
357 out:
358 	return result;
359 }
360 
361 
362 /**
363  * int jbd2_journal_restart() - restart a handle .
364  * @handle:  handle to restart
365  * @nblocks: nr credits requested
366  *
367  * Restart a handle for a multi-transaction filesystem
368  * operation.
369  *
370  * If the jbd2_journal_extend() call above fails to grant new buffer credits
371  * to a running handle, a call to jbd2_journal_restart will commit the
372  * handle's transaction so far and reattach the handle to a new
373  * transaction capabable of guaranteeing the requested number of
374  * credits.
375  */
376 
377 int jbd2_journal_restart(handle_t *handle, int nblocks)
378 {
379 	transaction_t *transaction = handle->h_transaction;
380 	journal_t *journal = transaction->t_journal;
381 	int ret;
382 
383 	/* If we've had an abort of any type, don't even think about
384 	 * actually doing the restart! */
385 	if (is_handle_aborted(handle))
386 		return 0;
387 
388 	/*
389 	 * First unlink the handle from its current transaction, and start the
390 	 * commit on that.
391 	 */
392 	J_ASSERT(transaction->t_updates > 0);
393 	J_ASSERT(journal_current_handle() == handle);
394 
395 	spin_lock(&journal->j_state_lock);
396 	spin_lock(&transaction->t_handle_lock);
397 	transaction->t_outstanding_credits -= handle->h_buffer_credits;
398 	transaction->t_updates--;
399 
400 	if (!transaction->t_updates)
401 		wake_up(&journal->j_wait_updates);
402 	spin_unlock(&transaction->t_handle_lock);
403 
404 	jbd_debug(2, "restarting handle %p\n", handle);
405 	__jbd2_log_start_commit(journal, transaction->t_tid);
406 	spin_unlock(&journal->j_state_lock);
407 
408 	handle->h_buffer_credits = nblocks;
409 	ret = start_this_handle(journal, handle);
410 	return ret;
411 }
412 
413 
414 /**
415  * void jbd2_journal_lock_updates () - establish a transaction barrier.
416  * @journal:  Journal to establish a barrier on.
417  *
418  * This locks out any further updates from being started, and blocks
419  * until all existing updates have completed, returning only once the
420  * journal is in a quiescent state with no updates running.
421  *
422  * The journal lock should not be held on entry.
423  */
424 void jbd2_journal_lock_updates(journal_t *journal)
425 {
426 	DEFINE_WAIT(wait);
427 
428 	spin_lock(&journal->j_state_lock);
429 	++journal->j_barrier_count;
430 
431 	/* Wait until there are no running updates */
432 	while (1) {
433 		transaction_t *transaction = journal->j_running_transaction;
434 
435 		if (!transaction)
436 			break;
437 
438 		spin_lock(&transaction->t_handle_lock);
439 		if (!transaction->t_updates) {
440 			spin_unlock(&transaction->t_handle_lock);
441 			break;
442 		}
443 		prepare_to_wait(&journal->j_wait_updates, &wait,
444 				TASK_UNINTERRUPTIBLE);
445 		spin_unlock(&transaction->t_handle_lock);
446 		spin_unlock(&journal->j_state_lock);
447 		schedule();
448 		finish_wait(&journal->j_wait_updates, &wait);
449 		spin_lock(&journal->j_state_lock);
450 	}
451 	spin_unlock(&journal->j_state_lock);
452 
453 	/*
454 	 * We have now established a barrier against other normal updates, but
455 	 * we also need to barrier against other jbd2_journal_lock_updates() calls
456 	 * to make sure that we serialise special journal-locked operations
457 	 * too.
458 	 */
459 	mutex_lock(&journal->j_barrier);
460 }
461 
462 /**
463  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
464  * @journal:  Journal to release the barrier on.
465  *
466  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
467  *
468  * Should be called without the journal lock held.
469  */
470 void jbd2_journal_unlock_updates (journal_t *journal)
471 {
472 	J_ASSERT(journal->j_barrier_count != 0);
473 
474 	mutex_unlock(&journal->j_barrier);
475 	spin_lock(&journal->j_state_lock);
476 	--journal->j_barrier_count;
477 	spin_unlock(&journal->j_state_lock);
478 	wake_up(&journal->j_wait_transaction_locked);
479 }
480 
481 /*
482  * Report any unexpected dirty buffers which turn up.  Normally those
483  * indicate an error, but they can occur if the user is running (say)
484  * tune2fs to modify the live filesystem, so we need the option of
485  * continuing as gracefully as possible.  #
486  *
487  * The caller should already hold the journal lock and
488  * j_list_lock spinlock: most callers will need those anyway
489  * in order to probe the buffer's journaling state safely.
490  */
491 static void jbd_unexpected_dirty_buffer(struct journal_head *jh)
492 {
493 	int jlist;
494 
495 	/* If this buffer is one which might reasonably be dirty
496 	 * --- ie. data, or not part of this journal --- then
497 	 * we're OK to leave it alone, but otherwise we need to
498 	 * move the dirty bit to the journal's own internal
499 	 * JBDDirty bit. */
500 	jlist = jh->b_jlist;
501 
502 	if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
503 	    jlist == BJ_Shadow || jlist == BJ_Forget) {
504 		struct buffer_head *bh = jh2bh(jh);
505 
506 		if (test_clear_buffer_dirty(bh))
507 			set_buffer_jbddirty(bh);
508 	}
509 }
510 
511 /*
512  * If the buffer is already part of the current transaction, then there
513  * is nothing we need to do.  If it is already part of a prior
514  * transaction which we are still committing to disk, then we need to
515  * make sure that we do not overwrite the old copy: we do copy-out to
516  * preserve the copy going to disk.  We also account the buffer against
517  * the handle's metadata buffer credits (unless the buffer is already
518  * part of the transaction, that is).
519  *
520  */
521 static int
522 do_get_write_access(handle_t *handle, struct journal_head *jh,
523 			int force_copy)
524 {
525 	struct buffer_head *bh;
526 	transaction_t *transaction;
527 	journal_t *journal;
528 	int error;
529 	char *frozen_buffer = NULL;
530 	int need_copy = 0;
531 
532 	if (is_handle_aborted(handle))
533 		return -EROFS;
534 
535 	transaction = handle->h_transaction;
536 	journal = transaction->t_journal;
537 
538 	jbd_debug(5, "buffer_head %p, force_copy %d\n", jh, force_copy);
539 
540 	JBUFFER_TRACE(jh, "entry");
541 repeat:
542 	bh = jh2bh(jh);
543 
544 	/* @@@ Need to check for errors here at some point. */
545 
546 	lock_buffer(bh);
547 	jbd_lock_bh_state(bh);
548 
549 	/* We now hold the buffer lock so it is safe to query the buffer
550 	 * state.  Is the buffer dirty?
551 	 *
552 	 * If so, there are two possibilities.  The buffer may be
553 	 * non-journaled, and undergoing a quite legitimate writeback.
554 	 * Otherwise, it is journaled, and we don't expect dirty buffers
555 	 * in that state (the buffers should be marked JBD_Dirty
556 	 * instead.)  So either the IO is being done under our own
557 	 * control and this is a bug, or it's a third party IO such as
558 	 * dump(8) (which may leave the buffer scheduled for read ---
559 	 * ie. locked but not dirty) or tune2fs (which may actually have
560 	 * the buffer dirtied, ugh.)  */
561 
562 	if (buffer_dirty(bh)) {
563 		/*
564 		 * First question: is this buffer already part of the current
565 		 * transaction or the existing committing transaction?
566 		 */
567 		if (jh->b_transaction) {
568 			J_ASSERT_JH(jh,
569 				jh->b_transaction == transaction ||
570 				jh->b_transaction ==
571 					journal->j_committing_transaction);
572 			if (jh->b_next_transaction)
573 				J_ASSERT_JH(jh, jh->b_next_transaction ==
574 							transaction);
575 		}
576 		/*
577 		 * In any case we need to clean the dirty flag and we must
578 		 * do it under the buffer lock to be sure we don't race
579 		 * with running write-out.
580 		 */
581 		JBUFFER_TRACE(jh, "Unexpected dirty buffer");
582 		jbd_unexpected_dirty_buffer(jh);
583 	}
584 
585 	unlock_buffer(bh);
586 
587 	error = -EROFS;
588 	if (is_handle_aborted(handle)) {
589 		jbd_unlock_bh_state(bh);
590 		goto out;
591 	}
592 	error = 0;
593 
594 	/*
595 	 * The buffer is already part of this transaction if b_transaction or
596 	 * b_next_transaction points to it
597 	 */
598 	if (jh->b_transaction == transaction ||
599 	    jh->b_next_transaction == transaction)
600 		goto done;
601 
602 	/*
603 	 * If there is already a copy-out version of this buffer, then we don't
604 	 * need to make another one
605 	 */
606 	if (jh->b_frozen_data) {
607 		JBUFFER_TRACE(jh, "has frozen data");
608 		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
609 		jh->b_next_transaction = transaction;
610 		goto done;
611 	}
612 
613 	/* Is there data here we need to preserve? */
614 
615 	if (jh->b_transaction && jh->b_transaction != transaction) {
616 		JBUFFER_TRACE(jh, "owned by older transaction");
617 		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
618 		J_ASSERT_JH(jh, jh->b_transaction ==
619 					journal->j_committing_transaction);
620 
621 		/* There is one case we have to be very careful about.
622 		 * If the committing transaction is currently writing
623 		 * this buffer out to disk and has NOT made a copy-out,
624 		 * then we cannot modify the buffer contents at all
625 		 * right now.  The essence of copy-out is that it is the
626 		 * extra copy, not the primary copy, which gets
627 		 * journaled.  If the primary copy is already going to
628 		 * disk then we cannot do copy-out here. */
629 
630 		if (jh->b_jlist == BJ_Shadow) {
631 			DEFINE_WAIT_BIT(wait, &bh->b_state, BH_Unshadow);
632 			wait_queue_head_t *wqh;
633 
634 			wqh = bit_waitqueue(&bh->b_state, BH_Unshadow);
635 
636 			JBUFFER_TRACE(jh, "on shadow: sleep");
637 			jbd_unlock_bh_state(bh);
638 			/* commit wakes up all shadow buffers after IO */
639 			for ( ; ; ) {
640 				prepare_to_wait(wqh, &wait.wait,
641 						TASK_UNINTERRUPTIBLE);
642 				if (jh->b_jlist != BJ_Shadow)
643 					break;
644 				schedule();
645 			}
646 			finish_wait(wqh, &wait.wait);
647 			goto repeat;
648 		}
649 
650 		/* Only do the copy if the currently-owning transaction
651 		 * still needs it.  If it is on the Forget list, the
652 		 * committing transaction is past that stage.  The
653 		 * buffer had better remain locked during the kmalloc,
654 		 * but that should be true --- we hold the journal lock
655 		 * still and the buffer is already on the BUF_JOURNAL
656 		 * list so won't be flushed.
657 		 *
658 		 * Subtle point, though: if this is a get_undo_access,
659 		 * then we will be relying on the frozen_data to contain
660 		 * the new value of the committed_data record after the
661 		 * transaction, so we HAVE to force the frozen_data copy
662 		 * in that case. */
663 
664 		if (jh->b_jlist != BJ_Forget || force_copy) {
665 			JBUFFER_TRACE(jh, "generate frozen data");
666 			if (!frozen_buffer) {
667 				JBUFFER_TRACE(jh, "allocate memory for buffer");
668 				jbd_unlock_bh_state(bh);
669 				frozen_buffer =
670 					jbd2_alloc(jh2bh(jh)->b_size,
671 							 GFP_NOFS);
672 				if (!frozen_buffer) {
673 					printk(KERN_EMERG
674 					       "%s: OOM for frozen_buffer\n",
675 					       __FUNCTION__);
676 					JBUFFER_TRACE(jh, "oom!");
677 					error = -ENOMEM;
678 					jbd_lock_bh_state(bh);
679 					goto done;
680 				}
681 				goto repeat;
682 			}
683 			jh->b_frozen_data = frozen_buffer;
684 			frozen_buffer = NULL;
685 			need_copy = 1;
686 		}
687 		jh->b_next_transaction = transaction;
688 	}
689 
690 
691 	/*
692 	 * Finally, if the buffer is not journaled right now, we need to make
693 	 * sure it doesn't get written to disk before the caller actually
694 	 * commits the new data
695 	 */
696 	if (!jh->b_transaction) {
697 		JBUFFER_TRACE(jh, "no transaction");
698 		J_ASSERT_JH(jh, !jh->b_next_transaction);
699 		jh->b_transaction = transaction;
700 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
701 		spin_lock(&journal->j_list_lock);
702 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
703 		spin_unlock(&journal->j_list_lock);
704 	}
705 
706 done:
707 	if (need_copy) {
708 		struct page *page;
709 		int offset;
710 		char *source;
711 
712 		J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)),
713 			    "Possible IO failure.\n");
714 		page = jh2bh(jh)->b_page;
715 		offset = ((unsigned long) jh2bh(jh)->b_data) & ~PAGE_MASK;
716 		source = kmap_atomic(page, KM_USER0);
717 		memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size);
718 		kunmap_atomic(source, KM_USER0);
719 	}
720 	jbd_unlock_bh_state(bh);
721 
722 	/*
723 	 * If we are about to journal a buffer, then any revoke pending on it is
724 	 * no longer valid
725 	 */
726 	jbd2_journal_cancel_revoke(handle, jh);
727 
728 out:
729 	if (unlikely(frozen_buffer))	/* It's usually NULL */
730 		jbd2_free(frozen_buffer, bh->b_size);
731 
732 	JBUFFER_TRACE(jh, "exit");
733 	return error;
734 }
735 
736 /**
737  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
738  * @handle: transaction to add buffer modifications to
739  * @bh:     bh to be used for metadata writes
740  * @credits: variable that will receive credits for the buffer
741  *
742  * Returns an error code or 0 on success.
743  *
744  * In full data journalling mode the buffer may be of type BJ_AsyncData,
745  * because we're write()ing a buffer which is also part of a shared mapping.
746  */
747 
748 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
749 {
750 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
751 	int rc;
752 
753 	/* We do not want to get caught playing with fields which the
754 	 * log thread also manipulates.  Make sure that the buffer
755 	 * completes any outstanding IO before proceeding. */
756 	rc = do_get_write_access(handle, jh, 0);
757 	jbd2_journal_put_journal_head(jh);
758 	return rc;
759 }
760 
761 
762 /*
763  * When the user wants to journal a newly created buffer_head
764  * (ie. getblk() returned a new buffer and we are going to populate it
765  * manually rather than reading off disk), then we need to keep the
766  * buffer_head locked until it has been completely filled with new
767  * data.  In this case, we should be able to make the assertion that
768  * the bh is not already part of an existing transaction.
769  *
770  * The buffer should already be locked by the caller by this point.
771  * There is no lock ranking violation: it was a newly created,
772  * unlocked buffer beforehand. */
773 
774 /**
775  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
776  * @handle: transaction to new buffer to
777  * @bh: new buffer.
778  *
779  * Call this if you create a new bh.
780  */
781 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
782 {
783 	transaction_t *transaction = handle->h_transaction;
784 	journal_t *journal = transaction->t_journal;
785 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
786 	int err;
787 
788 	jbd_debug(5, "journal_head %p\n", jh);
789 	err = -EROFS;
790 	if (is_handle_aborted(handle))
791 		goto out;
792 	err = 0;
793 
794 	JBUFFER_TRACE(jh, "entry");
795 	/*
796 	 * The buffer may already belong to this transaction due to pre-zeroing
797 	 * in the filesystem's new_block code.  It may also be on the previous,
798 	 * committing transaction's lists, but it HAS to be in Forget state in
799 	 * that case: the transaction must have deleted the buffer for it to be
800 	 * reused here.
801 	 */
802 	jbd_lock_bh_state(bh);
803 	spin_lock(&journal->j_list_lock);
804 	J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
805 		jh->b_transaction == NULL ||
806 		(jh->b_transaction == journal->j_committing_transaction &&
807 			  jh->b_jlist == BJ_Forget)));
808 
809 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
810 	J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
811 
812 	if (jh->b_transaction == NULL) {
813 		jh->b_transaction = transaction;
814 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
815 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
816 	} else if (jh->b_transaction == journal->j_committing_transaction) {
817 		JBUFFER_TRACE(jh, "set next transaction");
818 		jh->b_next_transaction = transaction;
819 	}
820 	spin_unlock(&journal->j_list_lock);
821 	jbd_unlock_bh_state(bh);
822 
823 	/*
824 	 * akpm: I added this.  ext3_alloc_branch can pick up new indirect
825 	 * blocks which contain freed but then revoked metadata.  We need
826 	 * to cancel the revoke in case we end up freeing it yet again
827 	 * and the reallocating as data - this would cause a second revoke,
828 	 * which hits an assertion error.
829 	 */
830 	JBUFFER_TRACE(jh, "cancelling revoke");
831 	jbd2_journal_cancel_revoke(handle, jh);
832 	jbd2_journal_put_journal_head(jh);
833 out:
834 	return err;
835 }
836 
837 /**
838  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
839  *     non-rewindable consequences
840  * @handle: transaction
841  * @bh: buffer to undo
842  * @credits: store the number of taken credits here (if not NULL)
843  *
844  * Sometimes there is a need to distinguish between metadata which has
845  * been committed to disk and that which has not.  The ext3fs code uses
846  * this for freeing and allocating space, we have to make sure that we
847  * do not reuse freed space until the deallocation has been committed,
848  * since if we overwrote that space we would make the delete
849  * un-rewindable in case of a crash.
850  *
851  * To deal with that, jbd2_journal_get_undo_access requests write access to a
852  * buffer for parts of non-rewindable operations such as delete
853  * operations on the bitmaps.  The journaling code must keep a copy of
854  * the buffer's contents prior to the undo_access call until such time
855  * as we know that the buffer has definitely been committed to disk.
856  *
857  * We never need to know which transaction the committed data is part
858  * of, buffers touched here are guaranteed to be dirtied later and so
859  * will be committed to a new transaction in due course, at which point
860  * we can discard the old committed data pointer.
861  *
862  * Returns error number or 0 on success.
863  */
864 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
865 {
866 	int err;
867 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
868 	char *committed_data = NULL;
869 
870 	JBUFFER_TRACE(jh, "entry");
871 
872 	/*
873 	 * Do this first --- it can drop the journal lock, so we want to
874 	 * make sure that obtaining the committed_data is done
875 	 * atomically wrt. completion of any outstanding commits.
876 	 */
877 	err = do_get_write_access(handle, jh, 1);
878 	if (err)
879 		goto out;
880 
881 repeat:
882 	if (!jh->b_committed_data) {
883 		committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS);
884 		if (!committed_data) {
885 			printk(KERN_EMERG "%s: No memory for committed data\n",
886 				__FUNCTION__);
887 			err = -ENOMEM;
888 			goto out;
889 		}
890 	}
891 
892 	jbd_lock_bh_state(bh);
893 	if (!jh->b_committed_data) {
894 		/* Copy out the current buffer contents into the
895 		 * preserved, committed copy. */
896 		JBUFFER_TRACE(jh, "generate b_committed data");
897 		if (!committed_data) {
898 			jbd_unlock_bh_state(bh);
899 			goto repeat;
900 		}
901 
902 		jh->b_committed_data = committed_data;
903 		committed_data = NULL;
904 		memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
905 	}
906 	jbd_unlock_bh_state(bh);
907 out:
908 	jbd2_journal_put_journal_head(jh);
909 	if (unlikely(committed_data))
910 		jbd2_free(committed_data, bh->b_size);
911 	return err;
912 }
913 
914 /**
915  * int jbd2_journal_dirty_data() -  mark a buffer as containing dirty data which
916  *                             needs to be flushed before we can commit the
917  *                             current transaction.
918  * @handle: transaction
919  * @bh: bufferhead to mark
920  *
921  * The buffer is placed on the transaction's data list and is marked as
922  * belonging to the transaction.
923  *
924  * Returns error number or 0 on success.
925  *
926  * jbd2_journal_dirty_data() can be called via page_launder->ext3_writepage
927  * by kswapd.
928  */
929 int jbd2_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
930 {
931 	journal_t *journal = handle->h_transaction->t_journal;
932 	int need_brelse = 0;
933 	struct journal_head *jh;
934 
935 	if (is_handle_aborted(handle))
936 		return 0;
937 
938 	jh = jbd2_journal_add_journal_head(bh);
939 	JBUFFER_TRACE(jh, "entry");
940 
941 	/*
942 	 * The buffer could *already* be dirty.  Writeout can start
943 	 * at any time.
944 	 */
945 	jbd_debug(4, "jh: %p, tid:%d\n", jh, handle->h_transaction->t_tid);
946 
947 	/*
948 	 * What if the buffer is already part of a running transaction?
949 	 *
950 	 * There are two cases:
951 	 * 1) It is part of the current running transaction.  Refile it,
952 	 *    just in case we have allocated it as metadata, deallocated
953 	 *    it, then reallocated it as data.
954 	 * 2) It is part of the previous, still-committing transaction.
955 	 *    If all we want to do is to guarantee that the buffer will be
956 	 *    written to disk before this new transaction commits, then
957 	 *    being sure that the *previous* transaction has this same
958 	 *    property is sufficient for us!  Just leave it on its old
959 	 *    transaction.
960 	 *
961 	 * In case (2), the buffer must not already exist as metadata
962 	 * --- that would violate write ordering (a transaction is free
963 	 * to write its data at any point, even before the previous
964 	 * committing transaction has committed).  The caller must
965 	 * never, ever allow this to happen: there's nothing we can do
966 	 * about it in this layer.
967 	 */
968 	jbd_lock_bh_state(bh);
969 	spin_lock(&journal->j_list_lock);
970 
971 	/* Now that we have bh_state locked, are we really still mapped? */
972 	if (!buffer_mapped(bh)) {
973 		JBUFFER_TRACE(jh, "unmapped buffer, bailing out");
974 		goto no_journal;
975 	}
976 
977 	if (jh->b_transaction) {
978 		JBUFFER_TRACE(jh, "has transaction");
979 		if (jh->b_transaction != handle->h_transaction) {
980 			JBUFFER_TRACE(jh, "belongs to older transaction");
981 			J_ASSERT_JH(jh, jh->b_transaction ==
982 					journal->j_committing_transaction);
983 
984 			/* @@@ IS THIS TRUE  ? */
985 			/*
986 			 * Not any more.  Scenario: someone does a write()
987 			 * in data=journal mode.  The buffer's transaction has
988 			 * moved into commit.  Then someone does another
989 			 * write() to the file.  We do the frozen data copyout
990 			 * and set b_next_transaction to point to j_running_t.
991 			 * And while we're in that state, someone does a
992 			 * writepage() in an attempt to pageout the same area
993 			 * of the file via a shared mapping.  At present that
994 			 * calls jbd2_journal_dirty_data(), and we get right here.
995 			 * It may be too late to journal the data.  Simply
996 			 * falling through to the next test will suffice: the
997 			 * data will be dirty and wil be checkpointed.  The
998 			 * ordering comments in the next comment block still
999 			 * apply.
1000 			 */
1001 			//J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1002 
1003 			/*
1004 			 * If we're journalling data, and this buffer was
1005 			 * subject to a write(), it could be metadata, forget
1006 			 * or shadow against the committing transaction.  Now,
1007 			 * someone has dirtied the same darn page via a mapping
1008 			 * and it is being writepage()'d.
1009 			 * We *could* just steal the page from commit, with some
1010 			 * fancy locking there.  Instead, we just skip it -
1011 			 * don't tie the page's buffers to the new transaction
1012 			 * at all.
1013 			 * Implication: if we crash before the writepage() data
1014 			 * is written into the filesystem, recovery will replay
1015 			 * the write() data.
1016 			 */
1017 			if (jh->b_jlist != BJ_None &&
1018 					jh->b_jlist != BJ_SyncData &&
1019 					jh->b_jlist != BJ_Locked) {
1020 				JBUFFER_TRACE(jh, "Not stealing");
1021 				goto no_journal;
1022 			}
1023 
1024 			/*
1025 			 * This buffer may be undergoing writeout in commit.  We
1026 			 * can't return from here and let the caller dirty it
1027 			 * again because that can cause the write-out loop in
1028 			 * commit to never terminate.
1029 			 */
1030 			if (buffer_dirty(bh)) {
1031 				get_bh(bh);
1032 				spin_unlock(&journal->j_list_lock);
1033 				jbd_unlock_bh_state(bh);
1034 				need_brelse = 1;
1035 				sync_dirty_buffer(bh);
1036 				jbd_lock_bh_state(bh);
1037 				spin_lock(&journal->j_list_lock);
1038 				/* Since we dropped the lock... */
1039 				if (!buffer_mapped(bh)) {
1040 					JBUFFER_TRACE(jh, "buffer got unmapped");
1041 					goto no_journal;
1042 				}
1043 				/* The buffer may become locked again at any
1044 				   time if it is redirtied */
1045 			}
1046 
1047 			/* journal_clean_data_list() may have got there first */
1048 			if (jh->b_transaction != NULL) {
1049 				JBUFFER_TRACE(jh, "unfile from commit");
1050 				__jbd2_journal_temp_unlink_buffer(jh);
1051 				/* It still points to the committing
1052 				 * transaction; move it to this one so
1053 				 * that the refile assert checks are
1054 				 * happy. */
1055 				jh->b_transaction = handle->h_transaction;
1056 			}
1057 			/* The buffer will be refiled below */
1058 
1059 		}
1060 		/*
1061 		 * Special case --- the buffer might actually have been
1062 		 * allocated and then immediately deallocated in the previous,
1063 		 * committing transaction, so might still be left on that
1064 		 * transaction's metadata lists.
1065 		 */
1066 		if (jh->b_jlist != BJ_SyncData && jh->b_jlist != BJ_Locked) {
1067 			JBUFFER_TRACE(jh, "not on correct data list: unfile");
1068 			J_ASSERT_JH(jh, jh->b_jlist != BJ_Shadow);
1069 			__jbd2_journal_temp_unlink_buffer(jh);
1070 			jh->b_transaction = handle->h_transaction;
1071 			JBUFFER_TRACE(jh, "file as data");
1072 			__jbd2_journal_file_buffer(jh, handle->h_transaction,
1073 						BJ_SyncData);
1074 		}
1075 	} else {
1076 		JBUFFER_TRACE(jh, "not on a transaction");
1077 		__jbd2_journal_file_buffer(jh, handle->h_transaction, BJ_SyncData);
1078 	}
1079 no_journal:
1080 	spin_unlock(&journal->j_list_lock);
1081 	jbd_unlock_bh_state(bh);
1082 	if (need_brelse) {
1083 		BUFFER_TRACE(bh, "brelse");
1084 		__brelse(bh);
1085 	}
1086 	JBUFFER_TRACE(jh, "exit");
1087 	jbd2_journal_put_journal_head(jh);
1088 	return 0;
1089 }
1090 
1091 /**
1092  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1093  * @handle: transaction to add buffer to.
1094  * @bh: buffer to mark
1095  *
1096  * mark dirty metadata which needs to be journaled as part of the current
1097  * transaction.
1098  *
1099  * The buffer is placed on the transaction's metadata list and is marked
1100  * as belonging to the transaction.
1101  *
1102  * Returns error number or 0 on success.
1103  *
1104  * Special care needs to be taken if the buffer already belongs to the
1105  * current committing transaction (in which case we should have frozen
1106  * data present for that commit).  In that case, we don't relink the
1107  * buffer: that only gets done when the old transaction finally
1108  * completes its commit.
1109  */
1110 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1111 {
1112 	transaction_t *transaction = handle->h_transaction;
1113 	journal_t *journal = transaction->t_journal;
1114 	struct journal_head *jh = bh2jh(bh);
1115 
1116 	jbd_debug(5, "journal_head %p\n", jh);
1117 	JBUFFER_TRACE(jh, "entry");
1118 	if (is_handle_aborted(handle))
1119 		goto out;
1120 
1121 	jbd_lock_bh_state(bh);
1122 
1123 	if (jh->b_modified == 0) {
1124 		/*
1125 		 * This buffer's got modified and becoming part
1126 		 * of the transaction. This needs to be done
1127 		 * once a transaction -bzzz
1128 		 */
1129 		jh->b_modified = 1;
1130 		J_ASSERT_JH(jh, handle->h_buffer_credits > 0);
1131 		handle->h_buffer_credits--;
1132 	}
1133 
1134 	/*
1135 	 * fastpath, to avoid expensive locking.  If this buffer is already
1136 	 * on the running transaction's metadata list there is nothing to do.
1137 	 * Nobody can take it off again because there is a handle open.
1138 	 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1139 	 * result in this test being false, so we go in and take the locks.
1140 	 */
1141 	if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1142 		JBUFFER_TRACE(jh, "fastpath");
1143 		J_ASSERT_JH(jh, jh->b_transaction ==
1144 					journal->j_running_transaction);
1145 		goto out_unlock_bh;
1146 	}
1147 
1148 	set_buffer_jbddirty(bh);
1149 
1150 	/*
1151 	 * Metadata already on the current transaction list doesn't
1152 	 * need to be filed.  Metadata on another transaction's list must
1153 	 * be committing, and will be refiled once the commit completes:
1154 	 * leave it alone for now.
1155 	 */
1156 	if (jh->b_transaction != transaction) {
1157 		JBUFFER_TRACE(jh, "already on other transaction");
1158 		J_ASSERT_JH(jh, jh->b_transaction ==
1159 					journal->j_committing_transaction);
1160 		J_ASSERT_JH(jh, jh->b_next_transaction == transaction);
1161 		/* And this case is illegal: we can't reuse another
1162 		 * transaction's data buffer, ever. */
1163 		goto out_unlock_bh;
1164 	}
1165 
1166 	/* That test should have eliminated the following case: */
1167 	J_ASSERT_JH(jh, jh->b_frozen_data == 0);
1168 
1169 	JBUFFER_TRACE(jh, "file as BJ_Metadata");
1170 	spin_lock(&journal->j_list_lock);
1171 	__jbd2_journal_file_buffer(jh, handle->h_transaction, BJ_Metadata);
1172 	spin_unlock(&journal->j_list_lock);
1173 out_unlock_bh:
1174 	jbd_unlock_bh_state(bh);
1175 out:
1176 	JBUFFER_TRACE(jh, "exit");
1177 	return 0;
1178 }
1179 
1180 /*
1181  * jbd2_journal_release_buffer: undo a get_write_access without any buffer
1182  * updates, if the update decided in the end that it didn't need access.
1183  *
1184  */
1185 void
1186 jbd2_journal_release_buffer(handle_t *handle, struct buffer_head *bh)
1187 {
1188 	BUFFER_TRACE(bh, "entry");
1189 }
1190 
1191 /**
1192  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1193  * @handle: transaction handle
1194  * @bh:     bh to 'forget'
1195  *
1196  * We can only do the bforget if there are no commits pending against the
1197  * buffer.  If the buffer is dirty in the current running transaction we
1198  * can safely unlink it.
1199  *
1200  * bh may not be a journalled buffer at all - it may be a non-JBD
1201  * buffer which came off the hashtable.  Check for this.
1202  *
1203  * Decrements bh->b_count by one.
1204  *
1205  * Allow this call even if the handle has aborted --- it may be part of
1206  * the caller's cleanup after an abort.
1207  */
1208 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1209 {
1210 	transaction_t *transaction = handle->h_transaction;
1211 	journal_t *journal = transaction->t_journal;
1212 	struct journal_head *jh;
1213 	int drop_reserve = 0;
1214 	int err = 0;
1215 
1216 	BUFFER_TRACE(bh, "entry");
1217 
1218 	jbd_lock_bh_state(bh);
1219 	spin_lock(&journal->j_list_lock);
1220 
1221 	if (!buffer_jbd(bh))
1222 		goto not_jbd;
1223 	jh = bh2jh(bh);
1224 
1225 	/* Critical error: attempting to delete a bitmap buffer, maybe?
1226 	 * Don't do any jbd operations, and return an error. */
1227 	if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1228 			 "inconsistent data on disk")) {
1229 		err = -EIO;
1230 		goto not_jbd;
1231 	}
1232 
1233 	/*
1234 	 * The buffer's going from the transaction, we must drop
1235 	 * all references -bzzz
1236 	 */
1237 	jh->b_modified = 0;
1238 
1239 	if (jh->b_transaction == handle->h_transaction) {
1240 		J_ASSERT_JH(jh, !jh->b_frozen_data);
1241 
1242 		/* If we are forgetting a buffer which is already part
1243 		 * of this transaction, then we can just drop it from
1244 		 * the transaction immediately. */
1245 		clear_buffer_dirty(bh);
1246 		clear_buffer_jbddirty(bh);
1247 
1248 		JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1249 
1250 		drop_reserve = 1;
1251 
1252 		/*
1253 		 * We are no longer going to journal this buffer.
1254 		 * However, the commit of this transaction is still
1255 		 * important to the buffer: the delete that we are now
1256 		 * processing might obsolete an old log entry, so by
1257 		 * committing, we can satisfy the buffer's checkpoint.
1258 		 *
1259 		 * So, if we have a checkpoint on the buffer, we should
1260 		 * now refile the buffer on our BJ_Forget list so that
1261 		 * we know to remove the checkpoint after we commit.
1262 		 */
1263 
1264 		if (jh->b_cp_transaction) {
1265 			__jbd2_journal_temp_unlink_buffer(jh);
1266 			__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1267 		} else {
1268 			__jbd2_journal_unfile_buffer(jh);
1269 			jbd2_journal_remove_journal_head(bh);
1270 			__brelse(bh);
1271 			if (!buffer_jbd(bh)) {
1272 				spin_unlock(&journal->j_list_lock);
1273 				jbd_unlock_bh_state(bh);
1274 				__bforget(bh);
1275 				goto drop;
1276 			}
1277 		}
1278 	} else if (jh->b_transaction) {
1279 		J_ASSERT_JH(jh, (jh->b_transaction ==
1280 				 journal->j_committing_transaction));
1281 		/* However, if the buffer is still owned by a prior
1282 		 * (committing) transaction, we can't drop it yet... */
1283 		JBUFFER_TRACE(jh, "belongs to older transaction");
1284 		/* ... but we CAN drop it from the new transaction if we
1285 		 * have also modified it since the original commit. */
1286 
1287 		if (jh->b_next_transaction) {
1288 			J_ASSERT(jh->b_next_transaction == transaction);
1289 			jh->b_next_transaction = NULL;
1290 			drop_reserve = 1;
1291 		}
1292 	}
1293 
1294 not_jbd:
1295 	spin_unlock(&journal->j_list_lock);
1296 	jbd_unlock_bh_state(bh);
1297 	__brelse(bh);
1298 drop:
1299 	if (drop_reserve) {
1300 		/* no need to reserve log space for this block -bzzz */
1301 		handle->h_buffer_credits++;
1302 	}
1303 	return err;
1304 }
1305 
1306 /**
1307  * int jbd2_journal_stop() - complete a transaction
1308  * @handle: tranaction to complete.
1309  *
1310  * All done for a particular handle.
1311  *
1312  * There is not much action needed here.  We just return any remaining
1313  * buffer credits to the transaction and remove the handle.  The only
1314  * complication is that we need to start a commit operation if the
1315  * filesystem is marked for synchronous update.
1316  *
1317  * jbd2_journal_stop itself will not usually return an error, but it may
1318  * do so in unusual circumstances.  In particular, expect it to
1319  * return -EIO if a jbd2_journal_abort has been executed since the
1320  * transaction began.
1321  */
1322 int jbd2_journal_stop(handle_t *handle)
1323 {
1324 	transaction_t *transaction = handle->h_transaction;
1325 	journal_t *journal = transaction->t_journal;
1326 	int old_handle_count, err;
1327 	pid_t pid;
1328 
1329 	J_ASSERT(journal_current_handle() == handle);
1330 
1331 	if (is_handle_aborted(handle))
1332 		err = -EIO;
1333 	else {
1334 		J_ASSERT(transaction->t_updates > 0);
1335 		err = 0;
1336 	}
1337 
1338 	if (--handle->h_ref > 0) {
1339 		jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1340 			  handle->h_ref);
1341 		return err;
1342 	}
1343 
1344 	jbd_debug(4, "Handle %p going down\n", handle);
1345 
1346 	/*
1347 	 * Implement synchronous transaction batching.  If the handle
1348 	 * was synchronous, don't force a commit immediately.  Let's
1349 	 * yield and let another thread piggyback onto this transaction.
1350 	 * Keep doing that while new threads continue to arrive.
1351 	 * It doesn't cost much - we're about to run a commit and sleep
1352 	 * on IO anyway.  Speeds up many-threaded, many-dir operations
1353 	 * by 30x or more...
1354 	 *
1355 	 * But don't do this if this process was the most recent one to
1356 	 * perform a synchronous write.  We do this to detect the case where a
1357 	 * single process is doing a stream of sync writes.  No point in waiting
1358 	 * for joiners in that case.
1359 	 */
1360 	pid = current->pid;
1361 	if (handle->h_sync && journal->j_last_sync_writer != pid) {
1362 		journal->j_last_sync_writer = pid;
1363 		do {
1364 			old_handle_count = transaction->t_handle_count;
1365 			schedule_timeout_uninterruptible(1);
1366 		} while (old_handle_count != transaction->t_handle_count);
1367 	}
1368 
1369 	current->journal_info = NULL;
1370 	spin_lock(&journal->j_state_lock);
1371 	spin_lock(&transaction->t_handle_lock);
1372 	transaction->t_outstanding_credits -= handle->h_buffer_credits;
1373 	transaction->t_updates--;
1374 	if (!transaction->t_updates) {
1375 		wake_up(&journal->j_wait_updates);
1376 		if (journal->j_barrier_count)
1377 			wake_up(&journal->j_wait_transaction_locked);
1378 	}
1379 
1380 	/*
1381 	 * If the handle is marked SYNC, we need to set another commit
1382 	 * going!  We also want to force a commit if the current
1383 	 * transaction is occupying too much of the log, or if the
1384 	 * transaction is too old now.
1385 	 */
1386 	if (handle->h_sync ||
1387 			transaction->t_outstanding_credits >
1388 				journal->j_max_transaction_buffers ||
1389 			time_after_eq(jiffies, transaction->t_expires)) {
1390 		/* Do this even for aborted journals: an abort still
1391 		 * completes the commit thread, it just doesn't write
1392 		 * anything to disk. */
1393 		tid_t tid = transaction->t_tid;
1394 
1395 		spin_unlock(&transaction->t_handle_lock);
1396 		jbd_debug(2, "transaction too old, requesting commit for "
1397 					"handle %p\n", handle);
1398 		/* This is non-blocking */
1399 		__jbd2_log_start_commit(journal, transaction->t_tid);
1400 		spin_unlock(&journal->j_state_lock);
1401 
1402 		/*
1403 		 * Special case: JBD2_SYNC synchronous updates require us
1404 		 * to wait for the commit to complete.
1405 		 */
1406 		if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1407 			err = jbd2_log_wait_commit(journal, tid);
1408 	} else {
1409 		spin_unlock(&transaction->t_handle_lock);
1410 		spin_unlock(&journal->j_state_lock);
1411 	}
1412 
1413 	jbd2_free_handle(handle);
1414 	return err;
1415 }
1416 
1417 /**int jbd2_journal_force_commit() - force any uncommitted transactions
1418  * @journal: journal to force
1419  *
1420  * For synchronous operations: force any uncommitted transactions
1421  * to disk.  May seem kludgy, but it reuses all the handle batching
1422  * code in a very simple manner.
1423  */
1424 int jbd2_journal_force_commit(journal_t *journal)
1425 {
1426 	handle_t *handle;
1427 	int ret;
1428 
1429 	handle = jbd2_journal_start(journal, 1);
1430 	if (IS_ERR(handle)) {
1431 		ret = PTR_ERR(handle);
1432 	} else {
1433 		handle->h_sync = 1;
1434 		ret = jbd2_journal_stop(handle);
1435 	}
1436 	return ret;
1437 }
1438 
1439 /*
1440  *
1441  * List management code snippets: various functions for manipulating the
1442  * transaction buffer lists.
1443  *
1444  */
1445 
1446 /*
1447  * Append a buffer to a transaction list, given the transaction's list head
1448  * pointer.
1449  *
1450  * j_list_lock is held.
1451  *
1452  * jbd_lock_bh_state(jh2bh(jh)) is held.
1453  */
1454 
1455 static inline void
1456 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1457 {
1458 	if (!*list) {
1459 		jh->b_tnext = jh->b_tprev = jh;
1460 		*list = jh;
1461 	} else {
1462 		/* Insert at the tail of the list to preserve order */
1463 		struct journal_head *first = *list, *last = first->b_tprev;
1464 		jh->b_tprev = last;
1465 		jh->b_tnext = first;
1466 		last->b_tnext = first->b_tprev = jh;
1467 	}
1468 }
1469 
1470 /*
1471  * Remove a buffer from a transaction list, given the transaction's list
1472  * head pointer.
1473  *
1474  * Called with j_list_lock held, and the journal may not be locked.
1475  *
1476  * jbd_lock_bh_state(jh2bh(jh)) is held.
1477  */
1478 
1479 static inline void
1480 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1481 {
1482 	if (*list == jh) {
1483 		*list = jh->b_tnext;
1484 		if (*list == jh)
1485 			*list = NULL;
1486 	}
1487 	jh->b_tprev->b_tnext = jh->b_tnext;
1488 	jh->b_tnext->b_tprev = jh->b_tprev;
1489 }
1490 
1491 /*
1492  * Remove a buffer from the appropriate transaction list.
1493  *
1494  * Note that this function can *change* the value of
1495  * bh->b_transaction->t_sync_datalist, t_buffers, t_forget,
1496  * t_iobuf_list, t_shadow_list, t_log_list or t_reserved_list.  If the caller
1497  * is holding onto a copy of one of thee pointers, it could go bad.
1498  * Generally the caller needs to re-read the pointer from the transaction_t.
1499  *
1500  * Called under j_list_lock.  The journal may not be locked.
1501  */
1502 void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1503 {
1504 	struct journal_head **list = NULL;
1505 	transaction_t *transaction;
1506 	struct buffer_head *bh = jh2bh(jh);
1507 
1508 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1509 	transaction = jh->b_transaction;
1510 	if (transaction)
1511 		assert_spin_locked(&transaction->t_journal->j_list_lock);
1512 
1513 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1514 	if (jh->b_jlist != BJ_None)
1515 		J_ASSERT_JH(jh, transaction != 0);
1516 
1517 	switch (jh->b_jlist) {
1518 	case BJ_None:
1519 		return;
1520 	case BJ_SyncData:
1521 		list = &transaction->t_sync_datalist;
1522 		break;
1523 	case BJ_Metadata:
1524 		transaction->t_nr_buffers--;
1525 		J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1526 		list = &transaction->t_buffers;
1527 		break;
1528 	case BJ_Forget:
1529 		list = &transaction->t_forget;
1530 		break;
1531 	case BJ_IO:
1532 		list = &transaction->t_iobuf_list;
1533 		break;
1534 	case BJ_Shadow:
1535 		list = &transaction->t_shadow_list;
1536 		break;
1537 	case BJ_LogCtl:
1538 		list = &transaction->t_log_list;
1539 		break;
1540 	case BJ_Reserved:
1541 		list = &transaction->t_reserved_list;
1542 		break;
1543 	case BJ_Locked:
1544 		list = &transaction->t_locked_list;
1545 		break;
1546 	}
1547 
1548 	__blist_del_buffer(list, jh);
1549 	jh->b_jlist = BJ_None;
1550 	if (test_clear_buffer_jbddirty(bh))
1551 		mark_buffer_dirty(bh);	/* Expose it to the VM */
1552 }
1553 
1554 void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1555 {
1556 	__jbd2_journal_temp_unlink_buffer(jh);
1557 	jh->b_transaction = NULL;
1558 }
1559 
1560 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1561 {
1562 	jbd_lock_bh_state(jh2bh(jh));
1563 	spin_lock(&journal->j_list_lock);
1564 	__jbd2_journal_unfile_buffer(jh);
1565 	spin_unlock(&journal->j_list_lock);
1566 	jbd_unlock_bh_state(jh2bh(jh));
1567 }
1568 
1569 /*
1570  * Called from jbd2_journal_try_to_free_buffers().
1571  *
1572  * Called under jbd_lock_bh_state(bh)
1573  */
1574 static void
1575 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1576 {
1577 	struct journal_head *jh;
1578 
1579 	jh = bh2jh(bh);
1580 
1581 	if (buffer_locked(bh) || buffer_dirty(bh))
1582 		goto out;
1583 
1584 	if (jh->b_next_transaction != 0)
1585 		goto out;
1586 
1587 	spin_lock(&journal->j_list_lock);
1588 	if (jh->b_transaction != 0 && jh->b_cp_transaction == 0) {
1589 		if (jh->b_jlist == BJ_SyncData || jh->b_jlist == BJ_Locked) {
1590 			/* A written-back ordered data buffer */
1591 			JBUFFER_TRACE(jh, "release data");
1592 			__jbd2_journal_unfile_buffer(jh);
1593 			jbd2_journal_remove_journal_head(bh);
1594 			__brelse(bh);
1595 		}
1596 	} else if (jh->b_cp_transaction != 0 && jh->b_transaction == 0) {
1597 		/* written-back checkpointed metadata buffer */
1598 		if (jh->b_jlist == BJ_None) {
1599 			JBUFFER_TRACE(jh, "remove from checkpoint list");
1600 			__jbd2_journal_remove_checkpoint(jh);
1601 			jbd2_journal_remove_journal_head(bh);
1602 			__brelse(bh);
1603 		}
1604 	}
1605 	spin_unlock(&journal->j_list_lock);
1606 out:
1607 	return;
1608 }
1609 
1610 
1611 /**
1612  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1613  * @journal: journal for operation
1614  * @page: to try and free
1615  * @unused_gfp_mask: unused
1616  *
1617  *
1618  * For all the buffers on this page,
1619  * if they are fully written out ordered data, move them onto BUF_CLEAN
1620  * so try_to_free_buffers() can reap them.
1621  *
1622  * This function returns non-zero if we wish try_to_free_buffers()
1623  * to be called. We do this if the page is releasable by try_to_free_buffers().
1624  * We also do it if the page has locked or dirty buffers and the caller wants
1625  * us to perform sync or async writeout.
1626  *
1627  * This complicates JBD locking somewhat.  We aren't protected by the
1628  * BKL here.  We wish to remove the buffer from its committing or
1629  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1630  *
1631  * This may *change* the value of transaction_t->t_datalist, so anyone
1632  * who looks at t_datalist needs to lock against this function.
1633  *
1634  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1635  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
1636  * will come out of the lock with the buffer dirty, which makes it
1637  * ineligible for release here.
1638  *
1639  * Who else is affected by this?  hmm...  Really the only contender
1640  * is do_get_write_access() - it could be looking at the buffer while
1641  * journal_try_to_free_buffer() is changing its state.  But that
1642  * cannot happen because we never reallocate freed data as metadata
1643  * while the data is part of a transaction.  Yes?
1644  */
1645 int jbd2_journal_try_to_free_buffers(journal_t *journal,
1646 				struct page *page, gfp_t unused_gfp_mask)
1647 {
1648 	struct buffer_head *head;
1649 	struct buffer_head *bh;
1650 	int ret = 0;
1651 
1652 	J_ASSERT(PageLocked(page));
1653 
1654 	head = page_buffers(page);
1655 	bh = head;
1656 	do {
1657 		struct journal_head *jh;
1658 
1659 		/*
1660 		 * We take our own ref against the journal_head here to avoid
1661 		 * having to add tons of locking around each instance of
1662 		 * jbd2_journal_remove_journal_head() and jbd2_journal_put_journal_head().
1663 		 */
1664 		jh = jbd2_journal_grab_journal_head(bh);
1665 		if (!jh)
1666 			continue;
1667 
1668 		jbd_lock_bh_state(bh);
1669 		__journal_try_to_free_buffer(journal, bh);
1670 		jbd2_journal_put_journal_head(jh);
1671 		jbd_unlock_bh_state(bh);
1672 		if (buffer_jbd(bh))
1673 			goto busy;
1674 	} while ((bh = bh->b_this_page) != head);
1675 	ret = try_to_free_buffers(page);
1676 busy:
1677 	return ret;
1678 }
1679 
1680 /*
1681  * This buffer is no longer needed.  If it is on an older transaction's
1682  * checkpoint list we need to record it on this transaction's forget list
1683  * to pin this buffer (and hence its checkpointing transaction) down until
1684  * this transaction commits.  If the buffer isn't on a checkpoint list, we
1685  * release it.
1686  * Returns non-zero if JBD no longer has an interest in the buffer.
1687  *
1688  * Called under j_list_lock.
1689  *
1690  * Called under jbd_lock_bh_state(bh).
1691  */
1692 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
1693 {
1694 	int may_free = 1;
1695 	struct buffer_head *bh = jh2bh(jh);
1696 
1697 	__jbd2_journal_unfile_buffer(jh);
1698 
1699 	if (jh->b_cp_transaction) {
1700 		JBUFFER_TRACE(jh, "on running+cp transaction");
1701 		__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1702 		clear_buffer_jbddirty(bh);
1703 		may_free = 0;
1704 	} else {
1705 		JBUFFER_TRACE(jh, "on running transaction");
1706 		jbd2_journal_remove_journal_head(bh);
1707 		__brelse(bh);
1708 	}
1709 	return may_free;
1710 }
1711 
1712 /*
1713  * jbd2_journal_invalidatepage
1714  *
1715  * This code is tricky.  It has a number of cases to deal with.
1716  *
1717  * There are two invariants which this code relies on:
1718  *
1719  * i_size must be updated on disk before we start calling invalidatepage on the
1720  * data.
1721  *
1722  *  This is done in ext3 by defining an ext3_setattr method which
1723  *  updates i_size before truncate gets going.  By maintaining this
1724  *  invariant, we can be sure that it is safe to throw away any buffers
1725  *  attached to the current transaction: once the transaction commits,
1726  *  we know that the data will not be needed.
1727  *
1728  *  Note however that we can *not* throw away data belonging to the
1729  *  previous, committing transaction!
1730  *
1731  * Any disk blocks which *are* part of the previous, committing
1732  * transaction (and which therefore cannot be discarded immediately) are
1733  * not going to be reused in the new running transaction
1734  *
1735  *  The bitmap committed_data images guarantee this: any block which is
1736  *  allocated in one transaction and removed in the next will be marked
1737  *  as in-use in the committed_data bitmap, so cannot be reused until
1738  *  the next transaction to delete the block commits.  This means that
1739  *  leaving committing buffers dirty is quite safe: the disk blocks
1740  *  cannot be reallocated to a different file and so buffer aliasing is
1741  *  not possible.
1742  *
1743  *
1744  * The above applies mainly to ordered data mode.  In writeback mode we
1745  * don't make guarantees about the order in which data hits disk --- in
1746  * particular we don't guarantee that new dirty data is flushed before
1747  * transaction commit --- so it is always safe just to discard data
1748  * immediately in that mode.  --sct
1749  */
1750 
1751 /*
1752  * The journal_unmap_buffer helper function returns zero if the buffer
1753  * concerned remains pinned as an anonymous buffer belonging to an older
1754  * transaction.
1755  *
1756  * We're outside-transaction here.  Either or both of j_running_transaction
1757  * and j_committing_transaction may be NULL.
1758  */
1759 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh)
1760 {
1761 	transaction_t *transaction;
1762 	struct journal_head *jh;
1763 	int may_free = 1;
1764 	int ret;
1765 
1766 	BUFFER_TRACE(bh, "entry");
1767 
1768 	/*
1769 	 * It is safe to proceed here without the j_list_lock because the
1770 	 * buffers cannot be stolen by try_to_free_buffers as long as we are
1771 	 * holding the page lock. --sct
1772 	 */
1773 
1774 	if (!buffer_jbd(bh))
1775 		goto zap_buffer_unlocked;
1776 
1777 	spin_lock(&journal->j_state_lock);
1778 	jbd_lock_bh_state(bh);
1779 	spin_lock(&journal->j_list_lock);
1780 
1781 	jh = jbd2_journal_grab_journal_head(bh);
1782 	if (!jh)
1783 		goto zap_buffer_no_jh;
1784 
1785 	transaction = jh->b_transaction;
1786 	if (transaction == NULL) {
1787 		/* First case: not on any transaction.  If it
1788 		 * has no checkpoint link, then we can zap it:
1789 		 * it's a writeback-mode buffer so we don't care
1790 		 * if it hits disk safely. */
1791 		if (!jh->b_cp_transaction) {
1792 			JBUFFER_TRACE(jh, "not on any transaction: zap");
1793 			goto zap_buffer;
1794 		}
1795 
1796 		if (!buffer_dirty(bh)) {
1797 			/* bdflush has written it.  We can drop it now */
1798 			goto zap_buffer;
1799 		}
1800 
1801 		/* OK, it must be in the journal but still not
1802 		 * written fully to disk: it's metadata or
1803 		 * journaled data... */
1804 
1805 		if (journal->j_running_transaction) {
1806 			/* ... and once the current transaction has
1807 			 * committed, the buffer won't be needed any
1808 			 * longer. */
1809 			JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
1810 			ret = __dispose_buffer(jh,
1811 					journal->j_running_transaction);
1812 			jbd2_journal_put_journal_head(jh);
1813 			spin_unlock(&journal->j_list_lock);
1814 			jbd_unlock_bh_state(bh);
1815 			spin_unlock(&journal->j_state_lock);
1816 			return ret;
1817 		} else {
1818 			/* There is no currently-running transaction. So the
1819 			 * orphan record which we wrote for this file must have
1820 			 * passed into commit.  We must attach this buffer to
1821 			 * the committing transaction, if it exists. */
1822 			if (journal->j_committing_transaction) {
1823 				JBUFFER_TRACE(jh, "give to committing trans");
1824 				ret = __dispose_buffer(jh,
1825 					journal->j_committing_transaction);
1826 				jbd2_journal_put_journal_head(jh);
1827 				spin_unlock(&journal->j_list_lock);
1828 				jbd_unlock_bh_state(bh);
1829 				spin_unlock(&journal->j_state_lock);
1830 				return ret;
1831 			} else {
1832 				/* The orphan record's transaction has
1833 				 * committed.  We can cleanse this buffer */
1834 				clear_buffer_jbddirty(bh);
1835 				goto zap_buffer;
1836 			}
1837 		}
1838 	} else if (transaction == journal->j_committing_transaction) {
1839 		JBUFFER_TRACE(jh, "on committing transaction");
1840 		if (jh->b_jlist == BJ_Locked) {
1841 			/*
1842 			 * The buffer is on the committing transaction's locked
1843 			 * list.  We have the buffer locked, so I/O has
1844 			 * completed.  So we can nail the buffer now.
1845 			 */
1846 			may_free = __dispose_buffer(jh, transaction);
1847 			goto zap_buffer;
1848 		}
1849 		/*
1850 		 * If it is committing, we simply cannot touch it.  We
1851 		 * can remove it's next_transaction pointer from the
1852 		 * running transaction if that is set, but nothing
1853 		 * else. */
1854 		set_buffer_freed(bh);
1855 		if (jh->b_next_transaction) {
1856 			J_ASSERT(jh->b_next_transaction ==
1857 					journal->j_running_transaction);
1858 			jh->b_next_transaction = NULL;
1859 		}
1860 		jbd2_journal_put_journal_head(jh);
1861 		spin_unlock(&journal->j_list_lock);
1862 		jbd_unlock_bh_state(bh);
1863 		spin_unlock(&journal->j_state_lock);
1864 		return 0;
1865 	} else {
1866 		/* Good, the buffer belongs to the running transaction.
1867 		 * We are writing our own transaction's data, not any
1868 		 * previous one's, so it is safe to throw it away
1869 		 * (remember that we expect the filesystem to have set
1870 		 * i_size already for this truncate so recovery will not
1871 		 * expose the disk blocks we are discarding here.) */
1872 		J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
1873 		JBUFFER_TRACE(jh, "on running transaction");
1874 		may_free = __dispose_buffer(jh, transaction);
1875 	}
1876 
1877 zap_buffer:
1878 	jbd2_journal_put_journal_head(jh);
1879 zap_buffer_no_jh:
1880 	spin_unlock(&journal->j_list_lock);
1881 	jbd_unlock_bh_state(bh);
1882 	spin_unlock(&journal->j_state_lock);
1883 zap_buffer_unlocked:
1884 	clear_buffer_dirty(bh);
1885 	J_ASSERT_BH(bh, !buffer_jbddirty(bh));
1886 	clear_buffer_mapped(bh);
1887 	clear_buffer_req(bh);
1888 	clear_buffer_new(bh);
1889 	bh->b_bdev = NULL;
1890 	return may_free;
1891 }
1892 
1893 /**
1894  * void jbd2_journal_invalidatepage()
1895  * @journal: journal to use for flush...
1896  * @page:    page to flush
1897  * @offset:  length of page to invalidate.
1898  *
1899  * Reap page buffers containing data after offset in page.
1900  *
1901  */
1902 void jbd2_journal_invalidatepage(journal_t *journal,
1903 		      struct page *page,
1904 		      unsigned long offset)
1905 {
1906 	struct buffer_head *head, *bh, *next;
1907 	unsigned int curr_off = 0;
1908 	int may_free = 1;
1909 
1910 	if (!PageLocked(page))
1911 		BUG();
1912 	if (!page_has_buffers(page))
1913 		return;
1914 
1915 	/* We will potentially be playing with lists other than just the
1916 	 * data lists (especially for journaled data mode), so be
1917 	 * cautious in our locking. */
1918 
1919 	head = bh = page_buffers(page);
1920 	do {
1921 		unsigned int next_off = curr_off + bh->b_size;
1922 		next = bh->b_this_page;
1923 
1924 		if (offset <= curr_off) {
1925 			/* This block is wholly outside the truncation point */
1926 			lock_buffer(bh);
1927 			may_free &= journal_unmap_buffer(journal, bh);
1928 			unlock_buffer(bh);
1929 		}
1930 		curr_off = next_off;
1931 		bh = next;
1932 
1933 	} while (bh != head);
1934 
1935 	if (!offset) {
1936 		if (may_free && try_to_free_buffers(page))
1937 			J_ASSERT(!page_has_buffers(page));
1938 	}
1939 }
1940 
1941 /*
1942  * File a buffer on the given transaction list.
1943  */
1944 void __jbd2_journal_file_buffer(struct journal_head *jh,
1945 			transaction_t *transaction, int jlist)
1946 {
1947 	struct journal_head **list = NULL;
1948 	int was_dirty = 0;
1949 	struct buffer_head *bh = jh2bh(jh);
1950 
1951 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1952 	assert_spin_locked(&transaction->t_journal->j_list_lock);
1953 
1954 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1955 	J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1956 				jh->b_transaction == 0);
1957 
1958 	if (jh->b_transaction && jh->b_jlist == jlist)
1959 		return;
1960 
1961 	/* The following list of buffer states needs to be consistent
1962 	 * with __jbd_unexpected_dirty_buffer()'s handling of dirty
1963 	 * state. */
1964 
1965 	if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
1966 	    jlist == BJ_Shadow || jlist == BJ_Forget) {
1967 		if (test_clear_buffer_dirty(bh) ||
1968 		    test_clear_buffer_jbddirty(bh))
1969 			was_dirty = 1;
1970 	}
1971 
1972 	if (jh->b_transaction)
1973 		__jbd2_journal_temp_unlink_buffer(jh);
1974 	jh->b_transaction = transaction;
1975 
1976 	switch (jlist) {
1977 	case BJ_None:
1978 		J_ASSERT_JH(jh, !jh->b_committed_data);
1979 		J_ASSERT_JH(jh, !jh->b_frozen_data);
1980 		return;
1981 	case BJ_SyncData:
1982 		list = &transaction->t_sync_datalist;
1983 		break;
1984 	case BJ_Metadata:
1985 		transaction->t_nr_buffers++;
1986 		list = &transaction->t_buffers;
1987 		break;
1988 	case BJ_Forget:
1989 		list = &transaction->t_forget;
1990 		break;
1991 	case BJ_IO:
1992 		list = &transaction->t_iobuf_list;
1993 		break;
1994 	case BJ_Shadow:
1995 		list = &transaction->t_shadow_list;
1996 		break;
1997 	case BJ_LogCtl:
1998 		list = &transaction->t_log_list;
1999 		break;
2000 	case BJ_Reserved:
2001 		list = &transaction->t_reserved_list;
2002 		break;
2003 	case BJ_Locked:
2004 		list =  &transaction->t_locked_list;
2005 		break;
2006 	}
2007 
2008 	__blist_add_buffer(list, jh);
2009 	jh->b_jlist = jlist;
2010 
2011 	if (was_dirty)
2012 		set_buffer_jbddirty(bh);
2013 }
2014 
2015 void jbd2_journal_file_buffer(struct journal_head *jh,
2016 				transaction_t *transaction, int jlist)
2017 {
2018 	jbd_lock_bh_state(jh2bh(jh));
2019 	spin_lock(&transaction->t_journal->j_list_lock);
2020 	__jbd2_journal_file_buffer(jh, transaction, jlist);
2021 	spin_unlock(&transaction->t_journal->j_list_lock);
2022 	jbd_unlock_bh_state(jh2bh(jh));
2023 }
2024 
2025 /*
2026  * Remove a buffer from its current buffer list in preparation for
2027  * dropping it from its current transaction entirely.  If the buffer has
2028  * already started to be used by a subsequent transaction, refile the
2029  * buffer on that transaction's metadata list.
2030  *
2031  * Called under journal->j_list_lock
2032  *
2033  * Called under jbd_lock_bh_state(jh2bh(jh))
2034  */
2035 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2036 {
2037 	int was_dirty;
2038 	struct buffer_head *bh = jh2bh(jh);
2039 
2040 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2041 	if (jh->b_transaction)
2042 		assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2043 
2044 	/* If the buffer is now unused, just drop it. */
2045 	if (jh->b_next_transaction == NULL) {
2046 		__jbd2_journal_unfile_buffer(jh);
2047 		return;
2048 	}
2049 
2050 	/*
2051 	 * It has been modified by a later transaction: add it to the new
2052 	 * transaction's metadata list.
2053 	 */
2054 
2055 	was_dirty = test_clear_buffer_jbddirty(bh);
2056 	__jbd2_journal_temp_unlink_buffer(jh);
2057 	jh->b_transaction = jh->b_next_transaction;
2058 	jh->b_next_transaction = NULL;
2059 	__jbd2_journal_file_buffer(jh, jh->b_transaction,
2060 				was_dirty ? BJ_Metadata : BJ_Reserved);
2061 	J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2062 
2063 	if (was_dirty)
2064 		set_buffer_jbddirty(bh);
2065 }
2066 
2067 /*
2068  * For the unlocked version of this call, also make sure that any
2069  * hanging journal_head is cleaned up if necessary.
2070  *
2071  * __jbd2_journal_refile_buffer is usually called as part of a single locked
2072  * operation on a buffer_head, in which the caller is probably going to
2073  * be hooking the journal_head onto other lists.  In that case it is up
2074  * to the caller to remove the journal_head if necessary.  For the
2075  * unlocked jbd2_journal_refile_buffer call, the caller isn't going to be
2076  * doing anything else to the buffer so we need to do the cleanup
2077  * ourselves to avoid a jh leak.
2078  *
2079  * *** The journal_head may be freed by this call! ***
2080  */
2081 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2082 {
2083 	struct buffer_head *bh = jh2bh(jh);
2084 
2085 	jbd_lock_bh_state(bh);
2086 	spin_lock(&journal->j_list_lock);
2087 
2088 	__jbd2_journal_refile_buffer(jh);
2089 	jbd_unlock_bh_state(bh);
2090 	jbd2_journal_remove_journal_head(bh);
2091 
2092 	spin_unlock(&journal->j_list_lock);
2093 	__brelse(bh);
2094 }
2095