1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * linux/fs/jbd2/transaction.c 4 * 5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 6 * 7 * Copyright 1998 Red Hat corp --- All Rights Reserved 8 * 9 * Generic filesystem transaction handling code; part of the ext2fs 10 * journaling system. 11 * 12 * This file manages transactions (compound commits managed by the 13 * journaling code) and handles (individual atomic operations by the 14 * filesystem). 15 */ 16 17 #include <linux/time.h> 18 #include <linux/fs.h> 19 #include <linux/jbd2.h> 20 #include <linux/errno.h> 21 #include <linux/slab.h> 22 #include <linux/timer.h> 23 #include <linux/mm.h> 24 #include <linux/highmem.h> 25 #include <linux/hrtimer.h> 26 #include <linux/backing-dev.h> 27 #include <linux/bug.h> 28 #include <linux/module.h> 29 #include <linux/sched/mm.h> 30 31 #include <trace/events/jbd2.h> 32 33 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh); 34 static void __jbd2_journal_unfile_buffer(struct journal_head *jh); 35 36 static struct kmem_cache *transaction_cache; 37 int __init jbd2_journal_init_transaction_cache(void) 38 { 39 J_ASSERT(!transaction_cache); 40 transaction_cache = kmem_cache_create("jbd2_transaction_s", 41 sizeof(transaction_t), 42 0, 43 SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY, 44 NULL); 45 if (!transaction_cache) { 46 pr_emerg("JBD2: failed to create transaction cache\n"); 47 return -ENOMEM; 48 } 49 return 0; 50 } 51 52 void jbd2_journal_destroy_transaction_cache(void) 53 { 54 kmem_cache_destroy(transaction_cache); 55 transaction_cache = NULL; 56 } 57 58 void jbd2_journal_free_transaction(transaction_t *transaction) 59 { 60 if (unlikely(ZERO_OR_NULL_PTR(transaction))) 61 return; 62 kmem_cache_free(transaction_cache, transaction); 63 } 64 65 /* 66 * jbd2_get_transaction: obtain a new transaction_t object. 67 * 68 * Simply initialise a new transaction. Initialize it in 69 * RUNNING state and add it to the current journal (which should not 70 * have an existing running transaction: we only make a new transaction 71 * once we have started to commit the old one). 72 * 73 * Preconditions: 74 * The journal MUST be locked. We don't perform atomic mallocs on the 75 * new transaction and we can't block without protecting against other 76 * processes trying to touch the journal while it is in transition. 77 * 78 */ 79 80 static void jbd2_get_transaction(journal_t *journal, 81 transaction_t *transaction) 82 { 83 transaction->t_journal = journal; 84 transaction->t_state = T_RUNNING; 85 transaction->t_start_time = ktime_get(); 86 transaction->t_tid = journal->j_transaction_sequence++; 87 transaction->t_expires = jiffies + journal->j_commit_interval; 88 atomic_set(&transaction->t_updates, 0); 89 atomic_set(&transaction->t_outstanding_credits, 90 journal->j_transaction_overhead_buffers + 91 atomic_read(&journal->j_reserved_credits)); 92 atomic_set(&transaction->t_outstanding_revokes, 0); 93 atomic_set(&transaction->t_handle_count, 0); 94 INIT_LIST_HEAD(&transaction->t_inode_list); 95 96 /* Set up the commit timer for the new transaction. */ 97 journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires); 98 add_timer(&journal->j_commit_timer); 99 100 J_ASSERT(journal->j_running_transaction == NULL); 101 journal->j_running_transaction = transaction; 102 transaction->t_max_wait = 0; 103 transaction->t_start = jiffies; 104 transaction->t_requested = 0; 105 } 106 107 /* 108 * Handle management. 109 * 110 * A handle_t is an object which represents a single atomic update to a 111 * filesystem, and which tracks all of the modifications which form part 112 * of that one update. 113 */ 114 115 /* 116 * t_max_wait is carefully updated here with use of atomic compare exchange. 117 * Note that there could be multiplre threads trying to do this simultaneously 118 * hence using cmpxchg to avoid any use of locks in this case. 119 */ 120 static inline void update_t_max_wait(transaction_t *transaction, 121 unsigned long ts) 122 { 123 unsigned long oldts, newts; 124 125 if (time_after(transaction->t_start, ts)) { 126 newts = jbd2_time_diff(ts, transaction->t_start); 127 oldts = READ_ONCE(transaction->t_max_wait); 128 while (oldts < newts) 129 oldts = cmpxchg(&transaction->t_max_wait, oldts, newts); 130 } 131 } 132 133 /* 134 * Wait until running transaction passes to T_FLUSH state and new transaction 135 * can thus be started. Also starts the commit if needed. The function expects 136 * running transaction to exist and releases j_state_lock. 137 */ 138 static void wait_transaction_locked(journal_t *journal) 139 __releases(journal->j_state_lock) 140 { 141 DEFINE_WAIT(wait); 142 int need_to_start; 143 tid_t tid = journal->j_running_transaction->t_tid; 144 145 prepare_to_wait_exclusive(&journal->j_wait_transaction_locked, &wait, 146 TASK_UNINTERRUPTIBLE); 147 need_to_start = !tid_geq(journal->j_commit_request, tid); 148 read_unlock(&journal->j_state_lock); 149 if (need_to_start) 150 jbd2_log_start_commit(journal, tid); 151 jbd2_might_wait_for_commit(journal); 152 schedule(); 153 finish_wait(&journal->j_wait_transaction_locked, &wait); 154 } 155 156 /* 157 * Wait until running transaction transitions from T_SWITCH to T_FLUSH 158 * state and new transaction can thus be started. The function releases 159 * j_state_lock. 160 */ 161 static void wait_transaction_switching(journal_t *journal) 162 __releases(journal->j_state_lock) 163 { 164 DEFINE_WAIT(wait); 165 166 if (WARN_ON(!journal->j_running_transaction || 167 journal->j_running_transaction->t_state != T_SWITCH)) { 168 read_unlock(&journal->j_state_lock); 169 return; 170 } 171 prepare_to_wait_exclusive(&journal->j_wait_transaction_locked, &wait, 172 TASK_UNINTERRUPTIBLE); 173 read_unlock(&journal->j_state_lock); 174 /* 175 * We don't call jbd2_might_wait_for_commit() here as there's no 176 * waiting for outstanding handles happening anymore in T_SWITCH state 177 * and handling of reserved handles actually relies on that for 178 * correctness. 179 */ 180 schedule(); 181 finish_wait(&journal->j_wait_transaction_locked, &wait); 182 } 183 184 static void sub_reserved_credits(journal_t *journal, int blocks) 185 { 186 atomic_sub(blocks, &journal->j_reserved_credits); 187 wake_up(&journal->j_wait_reserved); 188 } 189 190 /* Maximum number of blocks for user transaction payload */ 191 static int jbd2_max_user_trans_buffers(journal_t *journal) 192 { 193 return journal->j_max_transaction_buffers - 194 journal->j_transaction_overhead_buffers; 195 } 196 197 /* 198 * Wait until we can add credits for handle to the running transaction. Called 199 * with j_state_lock held for reading. Returns 0 if handle joined the running 200 * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and 201 * caller must retry. 202 * 203 * Note: because j_state_lock may be dropped depending on the return 204 * value, we need to fake out sparse so ti doesn't complain about a 205 * locking imbalance. Callers of add_transaction_credits will need to 206 * make a similar accomodation. 207 */ 208 static int add_transaction_credits(journal_t *journal, int blocks, 209 int rsv_blocks) 210 __must_hold(&journal->j_state_lock) 211 { 212 transaction_t *t = journal->j_running_transaction; 213 int needed; 214 int total = blocks + rsv_blocks; 215 216 /* 217 * If the current transaction is locked down for commit, wait 218 * for the lock to be released. 219 */ 220 if (t->t_state != T_RUNNING) { 221 WARN_ON_ONCE(t->t_state >= T_FLUSH); 222 wait_transaction_locked(journal); 223 __acquire(&journal->j_state_lock); /* fake out sparse */ 224 return 1; 225 } 226 227 /* 228 * If there is not enough space left in the log to write all 229 * potential buffers requested by this operation, we need to 230 * stall pending a log checkpoint to free some more log space. 231 */ 232 needed = atomic_add_return(total, &t->t_outstanding_credits); 233 if (needed > journal->j_max_transaction_buffers) { 234 /* 235 * If the current transaction is already too large, 236 * then start to commit it: we can then go back and 237 * attach this handle to a new transaction. 238 */ 239 atomic_sub(total, &t->t_outstanding_credits); 240 241 /* 242 * Is the number of reserved credits in the current transaction too 243 * big to fit this handle? Wait until reserved credits are freed. 244 */ 245 if (atomic_read(&journal->j_reserved_credits) + total > 246 jbd2_max_user_trans_buffers(journal)) { 247 read_unlock(&journal->j_state_lock); 248 jbd2_might_wait_for_commit(journal); 249 wait_event(journal->j_wait_reserved, 250 atomic_read(&journal->j_reserved_credits) + total <= 251 jbd2_max_user_trans_buffers(journal)); 252 __acquire(&journal->j_state_lock); /* fake out sparse */ 253 return 1; 254 } 255 256 wait_transaction_locked(journal); 257 __acquire(&journal->j_state_lock); /* fake out sparse */ 258 return 1; 259 } 260 261 /* 262 * The commit code assumes that it can get enough log space 263 * without forcing a checkpoint. This is *critical* for 264 * correctness: a checkpoint of a buffer which is also 265 * associated with a committing transaction creates a deadlock, 266 * so commit simply cannot force through checkpoints. 267 * 268 * We must therefore ensure the necessary space in the journal 269 * *before* starting to dirty potentially checkpointed buffers 270 * in the new transaction. 271 */ 272 if (jbd2_log_space_left(journal) < journal->j_max_transaction_buffers) { 273 atomic_sub(total, &t->t_outstanding_credits); 274 read_unlock(&journal->j_state_lock); 275 jbd2_might_wait_for_commit(journal); 276 write_lock(&journal->j_state_lock); 277 if (jbd2_log_space_left(journal) < 278 journal->j_max_transaction_buffers) 279 __jbd2_log_wait_for_space(journal); 280 write_unlock(&journal->j_state_lock); 281 __acquire(&journal->j_state_lock); /* fake out sparse */ 282 return 1; 283 } 284 285 /* No reservation? We are done... */ 286 if (!rsv_blocks) 287 return 0; 288 289 needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits); 290 /* We allow at most half of a transaction to be reserved */ 291 if (needed > jbd2_max_user_trans_buffers(journal) / 2) { 292 sub_reserved_credits(journal, rsv_blocks); 293 atomic_sub(total, &t->t_outstanding_credits); 294 read_unlock(&journal->j_state_lock); 295 jbd2_might_wait_for_commit(journal); 296 wait_event(journal->j_wait_reserved, 297 atomic_read(&journal->j_reserved_credits) + rsv_blocks 298 <= jbd2_max_user_trans_buffers(journal) / 2); 299 __acquire(&journal->j_state_lock); /* fake out sparse */ 300 return 1; 301 } 302 return 0; 303 } 304 305 /* 306 * start_this_handle: Given a handle, deal with any locking or stalling 307 * needed to make sure that there is enough journal space for the handle 308 * to begin. Attach the handle to a transaction and set up the 309 * transaction's buffer credits. 310 */ 311 312 static int start_this_handle(journal_t *journal, handle_t *handle, 313 gfp_t gfp_mask) 314 { 315 transaction_t *transaction, *new_transaction = NULL; 316 int blocks = handle->h_total_credits; 317 int rsv_blocks = 0; 318 unsigned long ts = jiffies; 319 320 if (handle->h_rsv_handle) 321 rsv_blocks = handle->h_rsv_handle->h_total_credits; 322 323 /* 324 * Limit the number of reserved credits to 1/2 of maximum transaction 325 * size and limit the number of total credits to not exceed maximum 326 * transaction size per operation. 327 */ 328 if (rsv_blocks > jbd2_max_user_trans_buffers(journal) / 2 || 329 rsv_blocks + blocks > jbd2_max_user_trans_buffers(journal)) { 330 printk(KERN_ERR "JBD2: %s wants too many credits " 331 "credits:%d rsv_credits:%d max:%d\n", 332 current->comm, blocks, rsv_blocks, 333 jbd2_max_user_trans_buffers(journal)); 334 WARN_ON(1); 335 return -ENOSPC; 336 } 337 338 alloc_transaction: 339 /* 340 * This check is racy but it is just an optimization of allocating new 341 * transaction early if there are high chances we'll need it. If we 342 * guess wrong, we'll retry or free unused transaction. 343 */ 344 if (!data_race(journal->j_running_transaction)) { 345 /* 346 * If __GFP_FS is not present, then we may be being called from 347 * inside the fs writeback layer, so we MUST NOT fail. 348 */ 349 if ((gfp_mask & __GFP_FS) == 0) 350 gfp_mask |= __GFP_NOFAIL; 351 new_transaction = kmem_cache_zalloc(transaction_cache, 352 gfp_mask); 353 if (!new_transaction) 354 return -ENOMEM; 355 } 356 357 jbd2_debug(3, "New handle %p going live.\n", handle); 358 359 /* 360 * We need to hold j_state_lock until t_updates has been incremented, 361 * for proper journal barrier handling 362 */ 363 repeat: 364 read_lock(&journal->j_state_lock); 365 BUG_ON(journal->j_flags & JBD2_UNMOUNT); 366 if (is_journal_aborted(journal) || 367 (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) { 368 read_unlock(&journal->j_state_lock); 369 jbd2_journal_free_transaction(new_transaction); 370 return -EROFS; 371 } 372 373 /* 374 * Wait on the journal's transaction barrier if necessary. Specifically 375 * we allow reserved handles to proceed because otherwise commit could 376 * deadlock on page writeback not being able to complete. 377 */ 378 if (!handle->h_reserved && journal->j_barrier_count) { 379 read_unlock(&journal->j_state_lock); 380 wait_event(journal->j_wait_transaction_locked, 381 journal->j_barrier_count == 0); 382 goto repeat; 383 } 384 385 if (!journal->j_running_transaction) { 386 read_unlock(&journal->j_state_lock); 387 if (!new_transaction) 388 goto alloc_transaction; 389 write_lock(&journal->j_state_lock); 390 if (!journal->j_running_transaction && 391 (handle->h_reserved || !journal->j_barrier_count)) { 392 jbd2_get_transaction(journal, new_transaction); 393 new_transaction = NULL; 394 } 395 write_unlock(&journal->j_state_lock); 396 goto repeat; 397 } 398 399 transaction = journal->j_running_transaction; 400 401 if (!handle->h_reserved) { 402 /* We may have dropped j_state_lock - restart in that case */ 403 if (add_transaction_credits(journal, blocks, rsv_blocks)) { 404 /* 405 * add_transaction_credits releases 406 * j_state_lock on a non-zero return 407 */ 408 __release(&journal->j_state_lock); 409 goto repeat; 410 } 411 } else { 412 /* 413 * We have handle reserved so we are allowed to join T_LOCKED 414 * transaction and we don't have to check for transaction size 415 * and journal space. But we still have to wait while running 416 * transaction is being switched to a committing one as it 417 * won't wait for any handles anymore. 418 */ 419 if (transaction->t_state == T_SWITCH) { 420 wait_transaction_switching(journal); 421 goto repeat; 422 } 423 sub_reserved_credits(journal, blocks); 424 handle->h_reserved = 0; 425 } 426 427 /* OK, account for the buffers that this operation expects to 428 * use and add the handle to the running transaction. 429 */ 430 update_t_max_wait(transaction, ts); 431 handle->h_transaction = transaction; 432 handle->h_requested_credits = blocks; 433 handle->h_revoke_credits_requested = handle->h_revoke_credits; 434 handle->h_start_jiffies = jiffies; 435 atomic_inc(&transaction->t_updates); 436 atomic_inc(&transaction->t_handle_count); 437 jbd2_debug(4, "Handle %p given %d credits (total %d, free %lu)\n", 438 handle, blocks, 439 atomic_read(&transaction->t_outstanding_credits), 440 jbd2_log_space_left(journal)); 441 read_unlock(&journal->j_state_lock); 442 current->journal_info = handle; 443 444 rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_); 445 jbd2_journal_free_transaction(new_transaction); 446 /* 447 * Ensure that no allocations done while the transaction is open are 448 * going to recurse back to the fs layer. 449 */ 450 handle->saved_alloc_context = memalloc_nofs_save(); 451 return 0; 452 } 453 454 /* Allocate a new handle. This should probably be in a slab... */ 455 static handle_t *new_handle(int nblocks) 456 { 457 handle_t *handle = jbd2_alloc_handle(GFP_NOFS); 458 if (!handle) 459 return NULL; 460 handle->h_total_credits = nblocks; 461 handle->h_ref = 1; 462 463 return handle; 464 } 465 466 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks, 467 int revoke_records, gfp_t gfp_mask, 468 unsigned int type, unsigned int line_no) 469 { 470 handle_t *handle = journal_current_handle(); 471 int err; 472 473 if (!journal) 474 return ERR_PTR(-EROFS); 475 476 if (handle) { 477 J_ASSERT(handle->h_transaction->t_journal == journal); 478 handle->h_ref++; 479 return handle; 480 } 481 482 nblocks += DIV_ROUND_UP(revoke_records, 483 journal->j_revoke_records_per_block); 484 handle = new_handle(nblocks); 485 if (!handle) 486 return ERR_PTR(-ENOMEM); 487 if (rsv_blocks) { 488 handle_t *rsv_handle; 489 490 rsv_handle = new_handle(rsv_blocks); 491 if (!rsv_handle) { 492 jbd2_free_handle(handle); 493 return ERR_PTR(-ENOMEM); 494 } 495 rsv_handle->h_reserved = 1; 496 rsv_handle->h_journal = journal; 497 handle->h_rsv_handle = rsv_handle; 498 } 499 handle->h_revoke_credits = revoke_records; 500 501 err = start_this_handle(journal, handle, gfp_mask); 502 if (err < 0) { 503 if (handle->h_rsv_handle) 504 jbd2_free_handle(handle->h_rsv_handle); 505 jbd2_free_handle(handle); 506 return ERR_PTR(err); 507 } 508 handle->h_type = type; 509 handle->h_line_no = line_no; 510 trace_jbd2_handle_start(journal->j_fs_dev->bd_dev, 511 handle->h_transaction->t_tid, type, 512 line_no, nblocks); 513 514 return handle; 515 } 516 EXPORT_SYMBOL(jbd2__journal_start); 517 518 519 /** 520 * jbd2_journal_start() - Obtain a new handle. 521 * @journal: Journal to start transaction on. 522 * @nblocks: number of block buffer we might modify 523 * 524 * We make sure that the transaction can guarantee at least nblocks of 525 * modified buffers in the log. We block until the log can guarantee 526 * that much space. Additionally, if rsv_blocks > 0, we also create another 527 * handle with rsv_blocks reserved blocks in the journal. This handle is 528 * stored in h_rsv_handle. It is not attached to any particular transaction 529 * and thus doesn't block transaction commit. If the caller uses this reserved 530 * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop() 531 * on the parent handle will dispose the reserved one. Reserved handle has to 532 * be converted to a normal handle using jbd2_journal_start_reserved() before 533 * it can be used. 534 * 535 * Return a pointer to a newly allocated handle, or an ERR_PTR() value 536 * on failure. 537 */ 538 handle_t *jbd2_journal_start(journal_t *journal, int nblocks) 539 { 540 return jbd2__journal_start(journal, nblocks, 0, 0, GFP_NOFS, 0, 0); 541 } 542 EXPORT_SYMBOL(jbd2_journal_start); 543 544 static void __jbd2_journal_unreserve_handle(handle_t *handle, transaction_t *t) 545 { 546 journal_t *journal = handle->h_journal; 547 548 WARN_ON(!handle->h_reserved); 549 sub_reserved_credits(journal, handle->h_total_credits); 550 if (t) 551 atomic_sub(handle->h_total_credits, &t->t_outstanding_credits); 552 } 553 554 void jbd2_journal_free_reserved(handle_t *handle) 555 { 556 journal_t *journal = handle->h_journal; 557 558 /* Get j_state_lock to pin running transaction if it exists */ 559 read_lock(&journal->j_state_lock); 560 __jbd2_journal_unreserve_handle(handle, journal->j_running_transaction); 561 read_unlock(&journal->j_state_lock); 562 jbd2_free_handle(handle); 563 } 564 EXPORT_SYMBOL(jbd2_journal_free_reserved); 565 566 /** 567 * jbd2_journal_start_reserved() - start reserved handle 568 * @handle: handle to start 569 * @type: for handle statistics 570 * @line_no: for handle statistics 571 * 572 * Start handle that has been previously reserved with jbd2_journal_reserve(). 573 * This attaches @handle to the running transaction (or creates one if there's 574 * not transaction running). Unlike jbd2_journal_start() this function cannot 575 * block on journal commit, checkpointing, or similar stuff. It can block on 576 * memory allocation or frozen journal though. 577 * 578 * Return 0 on success, non-zero on error - handle is freed in that case. 579 */ 580 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type, 581 unsigned int line_no) 582 { 583 journal_t *journal = handle->h_journal; 584 int ret = -EIO; 585 586 if (WARN_ON(!handle->h_reserved)) { 587 /* Someone passed in normal handle? Just stop it. */ 588 jbd2_journal_stop(handle); 589 return ret; 590 } 591 /* 592 * Usefulness of mixing of reserved and unreserved handles is 593 * questionable. So far nobody seems to need it so just error out. 594 */ 595 if (WARN_ON(current->journal_info)) { 596 jbd2_journal_free_reserved(handle); 597 return ret; 598 } 599 600 handle->h_journal = NULL; 601 /* 602 * GFP_NOFS is here because callers are likely from writeback or 603 * similarly constrained call sites 604 */ 605 ret = start_this_handle(journal, handle, GFP_NOFS); 606 if (ret < 0) { 607 handle->h_journal = journal; 608 jbd2_journal_free_reserved(handle); 609 return ret; 610 } 611 handle->h_type = type; 612 handle->h_line_no = line_no; 613 trace_jbd2_handle_start(journal->j_fs_dev->bd_dev, 614 handle->h_transaction->t_tid, type, 615 line_no, handle->h_total_credits); 616 return 0; 617 } 618 EXPORT_SYMBOL(jbd2_journal_start_reserved); 619 620 /** 621 * jbd2_journal_extend() - extend buffer credits. 622 * @handle: handle to 'extend' 623 * @nblocks: nr blocks to try to extend by. 624 * @revoke_records: number of revoke records to try to extend by. 625 * 626 * Some transactions, such as large extends and truncates, can be done 627 * atomically all at once or in several stages. The operation requests 628 * a credit for a number of buffer modifications in advance, but can 629 * extend its credit if it needs more. 630 * 631 * jbd2_journal_extend tries to give the running handle more buffer credits. 632 * It does not guarantee that allocation - this is a best-effort only. 633 * The calling process MUST be able to deal cleanly with a failure to 634 * extend here. 635 * 636 * Return 0 on success, non-zero on failure. 637 * 638 * return code < 0 implies an error 639 * return code > 0 implies normal transaction-full status. 640 */ 641 int jbd2_journal_extend(handle_t *handle, int nblocks, int revoke_records) 642 { 643 transaction_t *transaction = handle->h_transaction; 644 journal_t *journal; 645 int result; 646 int wanted; 647 648 if (is_handle_aborted(handle)) 649 return -EROFS; 650 journal = transaction->t_journal; 651 652 result = 1; 653 654 read_lock(&journal->j_state_lock); 655 656 /* Don't extend a locked-down transaction! */ 657 if (transaction->t_state != T_RUNNING) { 658 jbd2_debug(3, "denied handle %p %d blocks: " 659 "transaction not running\n", handle, nblocks); 660 goto error_out; 661 } 662 663 nblocks += DIV_ROUND_UP( 664 handle->h_revoke_credits_requested + revoke_records, 665 journal->j_revoke_records_per_block) - 666 DIV_ROUND_UP( 667 handle->h_revoke_credits_requested, 668 journal->j_revoke_records_per_block); 669 wanted = atomic_add_return(nblocks, 670 &transaction->t_outstanding_credits); 671 672 if (wanted > journal->j_max_transaction_buffers) { 673 jbd2_debug(3, "denied handle %p %d blocks: " 674 "transaction too large\n", handle, nblocks); 675 atomic_sub(nblocks, &transaction->t_outstanding_credits); 676 goto error_out; 677 } 678 679 trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev, 680 transaction->t_tid, 681 handle->h_type, handle->h_line_no, 682 handle->h_total_credits, 683 nblocks); 684 685 handle->h_total_credits += nblocks; 686 handle->h_requested_credits += nblocks; 687 handle->h_revoke_credits += revoke_records; 688 handle->h_revoke_credits_requested += revoke_records; 689 result = 0; 690 691 jbd2_debug(3, "extended handle %p by %d\n", handle, nblocks); 692 error_out: 693 read_unlock(&journal->j_state_lock); 694 return result; 695 } 696 697 static void stop_this_handle(handle_t *handle) 698 { 699 transaction_t *transaction = handle->h_transaction; 700 journal_t *journal = transaction->t_journal; 701 int revokes; 702 703 J_ASSERT(journal_current_handle() == handle); 704 J_ASSERT(atomic_read(&transaction->t_updates) > 0); 705 current->journal_info = NULL; 706 /* 707 * Subtract necessary revoke descriptor blocks from handle credits. We 708 * take care to account only for revoke descriptor blocks the 709 * transaction will really need as large sequences of transactions with 710 * small numbers of revokes are relatively common. 711 */ 712 revokes = handle->h_revoke_credits_requested - handle->h_revoke_credits; 713 if (revokes) { 714 int t_revokes, revoke_descriptors; 715 int rr_per_blk = journal->j_revoke_records_per_block; 716 717 WARN_ON_ONCE(DIV_ROUND_UP(revokes, rr_per_blk) 718 > handle->h_total_credits); 719 t_revokes = atomic_add_return(revokes, 720 &transaction->t_outstanding_revokes); 721 revoke_descriptors = 722 DIV_ROUND_UP(t_revokes, rr_per_blk) - 723 DIV_ROUND_UP(t_revokes - revokes, rr_per_blk); 724 handle->h_total_credits -= revoke_descriptors; 725 } 726 atomic_sub(handle->h_total_credits, 727 &transaction->t_outstanding_credits); 728 if (handle->h_rsv_handle) 729 __jbd2_journal_unreserve_handle(handle->h_rsv_handle, 730 transaction); 731 if (atomic_dec_and_test(&transaction->t_updates)) 732 wake_up(&journal->j_wait_updates); 733 734 rwsem_release(&journal->j_trans_commit_map, _THIS_IP_); 735 /* 736 * Scope of the GFP_NOFS context is over here and so we can restore the 737 * original alloc context. 738 */ 739 memalloc_nofs_restore(handle->saved_alloc_context); 740 } 741 742 /** 743 * jbd2__journal_restart() - restart a handle . 744 * @handle: handle to restart 745 * @nblocks: nr credits requested 746 * @revoke_records: number of revoke record credits requested 747 * @gfp_mask: memory allocation flags (for start_this_handle) 748 * 749 * Restart a handle for a multi-transaction filesystem 750 * operation. 751 * 752 * If the jbd2_journal_extend() call above fails to grant new buffer credits 753 * to a running handle, a call to jbd2_journal_restart will commit the 754 * handle's transaction so far and reattach the handle to a new 755 * transaction capable of guaranteeing the requested number of 756 * credits. We preserve reserved handle if there's any attached to the 757 * passed in handle. 758 */ 759 int jbd2__journal_restart(handle_t *handle, int nblocks, int revoke_records, 760 gfp_t gfp_mask) 761 { 762 transaction_t *transaction = handle->h_transaction; 763 journal_t *journal; 764 tid_t tid; 765 int need_to_start; 766 int ret; 767 768 /* If we've had an abort of any type, don't even think about 769 * actually doing the restart! */ 770 if (is_handle_aborted(handle)) 771 return 0; 772 journal = transaction->t_journal; 773 tid = transaction->t_tid; 774 775 /* 776 * First unlink the handle from its current transaction, and start the 777 * commit on that. 778 */ 779 jbd2_debug(2, "restarting handle %p\n", handle); 780 stop_this_handle(handle); 781 handle->h_transaction = NULL; 782 783 /* 784 * TODO: If we use READ_ONCE / WRITE_ONCE for j_commit_request we can 785 * get rid of pointless j_state_lock traffic like this. 786 */ 787 read_lock(&journal->j_state_lock); 788 need_to_start = !tid_geq(journal->j_commit_request, tid); 789 read_unlock(&journal->j_state_lock); 790 if (need_to_start) 791 jbd2_log_start_commit(journal, tid); 792 handle->h_total_credits = nblocks + 793 DIV_ROUND_UP(revoke_records, 794 journal->j_revoke_records_per_block); 795 handle->h_revoke_credits = revoke_records; 796 ret = start_this_handle(journal, handle, gfp_mask); 797 trace_jbd2_handle_restart(journal->j_fs_dev->bd_dev, 798 ret ? 0 : handle->h_transaction->t_tid, 799 handle->h_type, handle->h_line_no, 800 handle->h_total_credits); 801 return ret; 802 } 803 EXPORT_SYMBOL(jbd2__journal_restart); 804 805 806 int jbd2_journal_restart(handle_t *handle, int nblocks) 807 { 808 return jbd2__journal_restart(handle, nblocks, 0, GFP_NOFS); 809 } 810 EXPORT_SYMBOL(jbd2_journal_restart); 811 812 /* 813 * Waits for any outstanding t_updates to finish. 814 * This is called with write j_state_lock held. 815 */ 816 void jbd2_journal_wait_updates(journal_t *journal) 817 { 818 DEFINE_WAIT(wait); 819 820 while (1) { 821 /* 822 * Note that the running transaction can get freed under us if 823 * this transaction is getting committed in 824 * jbd2_journal_commit_transaction() -> 825 * jbd2_journal_free_transaction(). This can only happen when we 826 * release j_state_lock -> schedule() -> acquire j_state_lock. 827 * Hence we should everytime retrieve new j_running_transaction 828 * value (after j_state_lock release acquire cycle), else it may 829 * lead to use-after-free of old freed transaction. 830 */ 831 transaction_t *transaction = journal->j_running_transaction; 832 833 if (!transaction) 834 break; 835 836 prepare_to_wait(&journal->j_wait_updates, &wait, 837 TASK_UNINTERRUPTIBLE); 838 if (!atomic_read(&transaction->t_updates)) { 839 finish_wait(&journal->j_wait_updates, &wait); 840 break; 841 } 842 write_unlock(&journal->j_state_lock); 843 schedule(); 844 finish_wait(&journal->j_wait_updates, &wait); 845 write_lock(&journal->j_state_lock); 846 } 847 } 848 849 /** 850 * jbd2_journal_lock_updates () - establish a transaction barrier. 851 * @journal: Journal to establish a barrier on. 852 * 853 * This locks out any further updates from being started, and blocks 854 * until all existing updates have completed, returning only once the 855 * journal is in a quiescent state with no updates running. 856 * 857 * The journal lock should not be held on entry. 858 */ 859 void jbd2_journal_lock_updates(journal_t *journal) 860 { 861 jbd2_might_wait_for_commit(journal); 862 863 write_lock(&journal->j_state_lock); 864 ++journal->j_barrier_count; 865 866 /* Wait until there are no reserved handles */ 867 if (atomic_read(&journal->j_reserved_credits)) { 868 write_unlock(&journal->j_state_lock); 869 wait_event(journal->j_wait_reserved, 870 atomic_read(&journal->j_reserved_credits) == 0); 871 write_lock(&journal->j_state_lock); 872 } 873 874 /* Wait until there are no running t_updates */ 875 jbd2_journal_wait_updates(journal); 876 877 write_unlock(&journal->j_state_lock); 878 879 /* 880 * We have now established a barrier against other normal updates, but 881 * we also need to barrier against other jbd2_journal_lock_updates() calls 882 * to make sure that we serialise special journal-locked operations 883 * too. 884 */ 885 mutex_lock(&journal->j_barrier); 886 } 887 888 /** 889 * jbd2_journal_unlock_updates () - release barrier 890 * @journal: Journal to release the barrier on. 891 * 892 * Release a transaction barrier obtained with jbd2_journal_lock_updates(). 893 * 894 * Should be called without the journal lock held. 895 */ 896 void jbd2_journal_unlock_updates (journal_t *journal) 897 { 898 J_ASSERT(journal->j_barrier_count != 0); 899 900 mutex_unlock(&journal->j_barrier); 901 write_lock(&journal->j_state_lock); 902 --journal->j_barrier_count; 903 write_unlock(&journal->j_state_lock); 904 wake_up_all(&journal->j_wait_transaction_locked); 905 } 906 907 static void warn_dirty_buffer(struct buffer_head *bh) 908 { 909 printk(KERN_WARNING 910 "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). " 911 "There's a risk of filesystem corruption in case of system " 912 "crash.\n", 913 bh->b_bdev, (unsigned long long)bh->b_blocknr); 914 } 915 916 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */ 917 static void jbd2_freeze_jh_data(struct journal_head *jh) 918 { 919 char *source; 920 struct buffer_head *bh = jh2bh(jh); 921 922 J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n"); 923 source = kmap_local_folio(bh->b_folio, bh_offset(bh)); 924 /* Fire data frozen trigger just before we copy the data */ 925 jbd2_buffer_frozen_trigger(jh, source, jh->b_triggers); 926 memcpy(jh->b_frozen_data, source, bh->b_size); 927 kunmap_local(source); 928 929 /* 930 * Now that the frozen data is saved off, we need to store any matching 931 * triggers. 932 */ 933 jh->b_frozen_triggers = jh->b_triggers; 934 } 935 936 /* 937 * If the buffer is already part of the current transaction, then there 938 * is nothing we need to do. If it is already part of a prior 939 * transaction which we are still committing to disk, then we need to 940 * make sure that we do not overwrite the old copy: we do copy-out to 941 * preserve the copy going to disk. We also account the buffer against 942 * the handle's metadata buffer credits (unless the buffer is already 943 * part of the transaction, that is). 944 * 945 */ 946 static int 947 do_get_write_access(handle_t *handle, struct journal_head *jh, 948 int force_copy) 949 { 950 struct buffer_head *bh; 951 transaction_t *transaction = handle->h_transaction; 952 journal_t *journal; 953 int error; 954 char *frozen_buffer = NULL; 955 unsigned long start_lock, time_lock; 956 957 journal = transaction->t_journal; 958 959 jbd2_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy); 960 961 JBUFFER_TRACE(jh, "entry"); 962 repeat: 963 bh = jh2bh(jh); 964 965 /* @@@ Need to check for errors here at some point. */ 966 967 start_lock = jiffies; 968 lock_buffer(bh); 969 spin_lock(&jh->b_state_lock); 970 971 /* If it takes too long to lock the buffer, trace it */ 972 time_lock = jbd2_time_diff(start_lock, jiffies); 973 if (time_lock > HZ/10) 974 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev, 975 jiffies_to_msecs(time_lock)); 976 977 /* We now hold the buffer lock so it is safe to query the buffer 978 * state. Is the buffer dirty? 979 * 980 * If so, there are two possibilities. The buffer may be 981 * non-journaled, and undergoing a quite legitimate writeback. 982 * Otherwise, it is journaled, and we don't expect dirty buffers 983 * in that state (the buffers should be marked JBD_Dirty 984 * instead.) So either the IO is being done under our own 985 * control and this is a bug, or it's a third party IO such as 986 * dump(8) (which may leave the buffer scheduled for read --- 987 * ie. locked but not dirty) or tune2fs (which may actually have 988 * the buffer dirtied, ugh.) */ 989 990 if (buffer_dirty(bh) && jh->b_transaction) { 991 warn_dirty_buffer(bh); 992 /* 993 * We need to clean the dirty flag and we must do it under the 994 * buffer lock to be sure we don't race with running write-out. 995 */ 996 JBUFFER_TRACE(jh, "Journalling dirty buffer"); 997 clear_buffer_dirty(bh); 998 /* 999 * The buffer is going to be added to BJ_Reserved list now and 1000 * nothing guarantees jbd2_journal_dirty_metadata() will be 1001 * ever called for it. So we need to set jbddirty bit here to 1002 * make sure the buffer is dirtied and written out when the 1003 * journaling machinery is done with it. 1004 */ 1005 set_buffer_jbddirty(bh); 1006 } 1007 1008 error = -EROFS; 1009 if (is_handle_aborted(handle)) { 1010 spin_unlock(&jh->b_state_lock); 1011 unlock_buffer(bh); 1012 goto out; 1013 } 1014 error = 0; 1015 1016 /* 1017 * The buffer is already part of this transaction if b_transaction or 1018 * b_next_transaction points to it 1019 */ 1020 if (jh->b_transaction == transaction || 1021 jh->b_next_transaction == transaction) { 1022 unlock_buffer(bh); 1023 goto done; 1024 } 1025 1026 /* 1027 * this is the first time this transaction is touching this buffer, 1028 * reset the modified flag 1029 */ 1030 jh->b_modified = 0; 1031 1032 /* 1033 * If the buffer is not journaled right now, we need to make sure it 1034 * doesn't get written to disk before the caller actually commits the 1035 * new data 1036 */ 1037 if (!jh->b_transaction) { 1038 JBUFFER_TRACE(jh, "no transaction"); 1039 J_ASSERT_JH(jh, !jh->b_next_transaction); 1040 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 1041 /* 1042 * Make sure all stores to jh (b_modified, b_frozen_data) are 1043 * visible before attaching it to the running transaction. 1044 * Paired with barrier in jbd2_write_access_granted() 1045 */ 1046 smp_wmb(); 1047 spin_lock(&journal->j_list_lock); 1048 if (test_clear_buffer_dirty(bh)) { 1049 /* 1050 * Execute buffer dirty clearing and jh->b_transaction 1051 * assignment under journal->j_list_lock locked to 1052 * prevent bh being removed from checkpoint list if 1053 * the buffer is in an intermediate state (not dirty 1054 * and jh->b_transaction is NULL). 1055 */ 1056 JBUFFER_TRACE(jh, "Journalling dirty buffer"); 1057 set_buffer_jbddirty(bh); 1058 } 1059 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 1060 spin_unlock(&journal->j_list_lock); 1061 unlock_buffer(bh); 1062 goto done; 1063 } 1064 unlock_buffer(bh); 1065 1066 /* 1067 * If there is already a copy-out version of this buffer, then we don't 1068 * need to make another one 1069 */ 1070 if (jh->b_frozen_data) { 1071 JBUFFER_TRACE(jh, "has frozen data"); 1072 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 1073 goto attach_next; 1074 } 1075 1076 JBUFFER_TRACE(jh, "owned by older transaction"); 1077 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 1078 J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction); 1079 1080 /* 1081 * There is one case we have to be very careful about. If the 1082 * committing transaction is currently writing this buffer out to disk 1083 * and has NOT made a copy-out, then we cannot modify the buffer 1084 * contents at all right now. The essence of copy-out is that it is 1085 * the extra copy, not the primary copy, which gets journaled. If the 1086 * primary copy is already going to disk then we cannot do copy-out 1087 * here. 1088 */ 1089 if (buffer_shadow(bh)) { 1090 JBUFFER_TRACE(jh, "on shadow: sleep"); 1091 spin_unlock(&jh->b_state_lock); 1092 wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE); 1093 goto repeat; 1094 } 1095 1096 /* 1097 * Only do the copy if the currently-owning transaction still needs it. 1098 * If buffer isn't on BJ_Metadata list, the committing transaction is 1099 * past that stage (here we use the fact that BH_Shadow is set under 1100 * bh_state lock together with refiling to BJ_Shadow list and at this 1101 * point we know the buffer doesn't have BH_Shadow set). 1102 * 1103 * Subtle point, though: if this is a get_undo_access, then we will be 1104 * relying on the frozen_data to contain the new value of the 1105 * committed_data record after the transaction, so we HAVE to force the 1106 * frozen_data copy in that case. 1107 */ 1108 if (jh->b_jlist == BJ_Metadata || force_copy) { 1109 JBUFFER_TRACE(jh, "generate frozen data"); 1110 if (!frozen_buffer) { 1111 JBUFFER_TRACE(jh, "allocate memory for buffer"); 1112 spin_unlock(&jh->b_state_lock); 1113 frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size, 1114 GFP_NOFS | __GFP_NOFAIL); 1115 goto repeat; 1116 } 1117 jh->b_frozen_data = frozen_buffer; 1118 frozen_buffer = NULL; 1119 jbd2_freeze_jh_data(jh); 1120 } 1121 attach_next: 1122 /* 1123 * Make sure all stores to jh (b_modified, b_frozen_data) are visible 1124 * before attaching it to the running transaction. Paired with barrier 1125 * in jbd2_write_access_granted() 1126 */ 1127 smp_wmb(); 1128 jh->b_next_transaction = transaction; 1129 1130 done: 1131 spin_unlock(&jh->b_state_lock); 1132 1133 /* 1134 * If we are about to journal a buffer, then any revoke pending on it is 1135 * no longer valid 1136 */ 1137 jbd2_journal_cancel_revoke(handle, jh); 1138 1139 out: 1140 if (unlikely(frozen_buffer)) /* It's usually NULL */ 1141 jbd2_free(frozen_buffer, bh->b_size); 1142 1143 JBUFFER_TRACE(jh, "exit"); 1144 return error; 1145 } 1146 1147 /* Fast check whether buffer is already attached to the required transaction */ 1148 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh, 1149 bool undo) 1150 { 1151 struct journal_head *jh; 1152 bool ret = false; 1153 1154 /* Dirty buffers require special handling... */ 1155 if (buffer_dirty(bh)) 1156 return false; 1157 1158 /* 1159 * RCU protects us from dereferencing freed pages. So the checks we do 1160 * are guaranteed not to oops. However the jh slab object can get freed 1161 * & reallocated while we work with it. So we have to be careful. When 1162 * we see jh attached to the running transaction, we know it must stay 1163 * so until the transaction is committed. Thus jh won't be freed and 1164 * will be attached to the same bh while we run. However it can 1165 * happen jh gets freed, reallocated, and attached to the transaction 1166 * just after we get pointer to it from bh. So we have to be careful 1167 * and recheck jh still belongs to our bh before we return success. 1168 */ 1169 rcu_read_lock(); 1170 if (!buffer_jbd(bh)) 1171 goto out; 1172 /* This should be bh2jh() but that doesn't work with inline functions */ 1173 jh = READ_ONCE(bh->b_private); 1174 if (!jh) 1175 goto out; 1176 /* For undo access buffer must have data copied */ 1177 if (undo && !jh->b_committed_data) 1178 goto out; 1179 if (READ_ONCE(jh->b_transaction) != handle->h_transaction && 1180 READ_ONCE(jh->b_next_transaction) != handle->h_transaction) 1181 goto out; 1182 /* 1183 * There are two reasons for the barrier here: 1184 * 1) Make sure to fetch b_bh after we did previous checks so that we 1185 * detect when jh went through free, realloc, attach to transaction 1186 * while we were checking. Paired with implicit barrier in that path. 1187 * 2) So that access to bh done after jbd2_write_access_granted() 1188 * doesn't get reordered and see inconsistent state of concurrent 1189 * do_get_write_access(). 1190 */ 1191 smp_mb(); 1192 if (unlikely(jh->b_bh != bh)) 1193 goto out; 1194 ret = true; 1195 out: 1196 rcu_read_unlock(); 1197 return ret; 1198 } 1199 1200 /** 1201 * jbd2_journal_get_write_access() - notify intent to modify a buffer 1202 * for metadata (not data) update. 1203 * @handle: transaction to add buffer modifications to 1204 * @bh: bh to be used for metadata writes 1205 * 1206 * Returns: error code or 0 on success. 1207 * 1208 * In full data journalling mode the buffer may be of type BJ_AsyncData, 1209 * because we're ``write()ing`` a buffer which is also part of a shared mapping. 1210 */ 1211 1212 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh) 1213 { 1214 struct journal_head *jh; 1215 journal_t *journal; 1216 int rc; 1217 1218 if (is_handle_aborted(handle)) 1219 return -EROFS; 1220 1221 journal = handle->h_transaction->t_journal; 1222 if (jbd2_check_fs_dev_write_error(journal)) { 1223 /* 1224 * If the fs dev has writeback errors, it may have failed 1225 * to async write out metadata buffers in the background. 1226 * In this case, we could read old data from disk and write 1227 * it out again, which may lead to on-disk filesystem 1228 * inconsistency. Aborting journal can avoid it happen. 1229 */ 1230 jbd2_journal_abort(journal, -EIO); 1231 return -EIO; 1232 } 1233 1234 if (jbd2_write_access_granted(handle, bh, false)) 1235 return 0; 1236 1237 jh = jbd2_journal_add_journal_head(bh); 1238 /* We do not want to get caught playing with fields which the 1239 * log thread also manipulates. Make sure that the buffer 1240 * completes any outstanding IO before proceeding. */ 1241 rc = do_get_write_access(handle, jh, 0); 1242 jbd2_journal_put_journal_head(jh); 1243 return rc; 1244 } 1245 1246 1247 /* 1248 * When the user wants to journal a newly created buffer_head 1249 * (ie. getblk() returned a new buffer and we are going to populate it 1250 * manually rather than reading off disk), then we need to keep the 1251 * buffer_head locked until it has been completely filled with new 1252 * data. In this case, we should be able to make the assertion that 1253 * the bh is not already part of an existing transaction. 1254 * 1255 * The buffer should already be locked by the caller by this point. 1256 * There is no lock ranking violation: it was a newly created, 1257 * unlocked buffer beforehand. */ 1258 1259 /** 1260 * jbd2_journal_get_create_access () - notify intent to use newly created bh 1261 * @handle: transaction to new buffer to 1262 * @bh: new buffer. 1263 * 1264 * Call this if you create a new bh. 1265 */ 1266 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh) 1267 { 1268 transaction_t *transaction = handle->h_transaction; 1269 journal_t *journal; 1270 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 1271 int err; 1272 1273 jbd2_debug(5, "journal_head %p\n", jh); 1274 err = -EROFS; 1275 if (is_handle_aborted(handle)) 1276 goto out; 1277 journal = transaction->t_journal; 1278 err = 0; 1279 1280 JBUFFER_TRACE(jh, "entry"); 1281 /* 1282 * The buffer may already belong to this transaction due to pre-zeroing 1283 * in the filesystem's new_block code. It may also be on the previous, 1284 * committing transaction's lists, but it HAS to be in Forget state in 1285 * that case: the transaction must have deleted the buffer for it to be 1286 * reused here. 1287 */ 1288 spin_lock(&jh->b_state_lock); 1289 J_ASSERT_JH(jh, (jh->b_transaction == transaction || 1290 jh->b_transaction == NULL || 1291 (jh->b_transaction == journal->j_committing_transaction && 1292 jh->b_jlist == BJ_Forget))); 1293 1294 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 1295 J_ASSERT_JH(jh, buffer_locked(jh2bh(jh))); 1296 1297 if (jh->b_transaction == NULL) { 1298 /* 1299 * Previous jbd2_journal_forget() could have left the buffer 1300 * with jbddirty bit set because it was being committed. When 1301 * the commit finished, we've filed the buffer for 1302 * checkpointing and marked it dirty. Now we are reallocating 1303 * the buffer so the transaction freeing it must have 1304 * committed and so it's safe to clear the dirty bit. 1305 */ 1306 clear_buffer_dirty(jh2bh(jh)); 1307 /* first access by this transaction */ 1308 jh->b_modified = 0; 1309 1310 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 1311 spin_lock(&journal->j_list_lock); 1312 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 1313 spin_unlock(&journal->j_list_lock); 1314 } else if (jh->b_transaction == journal->j_committing_transaction) { 1315 /* first access by this transaction */ 1316 jh->b_modified = 0; 1317 1318 JBUFFER_TRACE(jh, "set next transaction"); 1319 spin_lock(&journal->j_list_lock); 1320 jh->b_next_transaction = transaction; 1321 spin_unlock(&journal->j_list_lock); 1322 } 1323 spin_unlock(&jh->b_state_lock); 1324 1325 /* 1326 * akpm: I added this. ext3_alloc_branch can pick up new indirect 1327 * blocks which contain freed but then revoked metadata. We need 1328 * to cancel the revoke in case we end up freeing it yet again 1329 * and the reallocating as data - this would cause a second revoke, 1330 * which hits an assertion error. 1331 */ 1332 JBUFFER_TRACE(jh, "cancelling revoke"); 1333 jbd2_journal_cancel_revoke(handle, jh); 1334 out: 1335 jbd2_journal_put_journal_head(jh); 1336 return err; 1337 } 1338 1339 /** 1340 * jbd2_journal_get_undo_access() - Notify intent to modify metadata with 1341 * non-rewindable consequences 1342 * @handle: transaction 1343 * @bh: buffer to undo 1344 * 1345 * Sometimes there is a need to distinguish between metadata which has 1346 * been committed to disk and that which has not. The ext3fs code uses 1347 * this for freeing and allocating space, we have to make sure that we 1348 * do not reuse freed space until the deallocation has been committed, 1349 * since if we overwrote that space we would make the delete 1350 * un-rewindable in case of a crash. 1351 * 1352 * To deal with that, jbd2_journal_get_undo_access requests write access to a 1353 * buffer for parts of non-rewindable operations such as delete 1354 * operations on the bitmaps. The journaling code must keep a copy of 1355 * the buffer's contents prior to the undo_access call until such time 1356 * as we know that the buffer has definitely been committed to disk. 1357 * 1358 * We never need to know which transaction the committed data is part 1359 * of, buffers touched here are guaranteed to be dirtied later and so 1360 * will be committed to a new transaction in due course, at which point 1361 * we can discard the old committed data pointer. 1362 * 1363 * Returns error number or 0 on success. 1364 */ 1365 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh) 1366 { 1367 int err; 1368 struct journal_head *jh; 1369 char *committed_data = NULL; 1370 1371 if (is_handle_aborted(handle)) 1372 return -EROFS; 1373 1374 if (jbd2_write_access_granted(handle, bh, true)) 1375 return 0; 1376 1377 jh = jbd2_journal_add_journal_head(bh); 1378 JBUFFER_TRACE(jh, "entry"); 1379 1380 /* 1381 * Do this first --- it can drop the journal lock, so we want to 1382 * make sure that obtaining the committed_data is done 1383 * atomically wrt. completion of any outstanding commits. 1384 */ 1385 err = do_get_write_access(handle, jh, 1); 1386 if (err) 1387 goto out; 1388 1389 repeat: 1390 if (!jh->b_committed_data) 1391 committed_data = jbd2_alloc(jh2bh(jh)->b_size, 1392 GFP_NOFS|__GFP_NOFAIL); 1393 1394 spin_lock(&jh->b_state_lock); 1395 if (!jh->b_committed_data) { 1396 /* Copy out the current buffer contents into the 1397 * preserved, committed copy. */ 1398 JBUFFER_TRACE(jh, "generate b_committed data"); 1399 if (!committed_data) { 1400 spin_unlock(&jh->b_state_lock); 1401 goto repeat; 1402 } 1403 1404 jh->b_committed_data = committed_data; 1405 committed_data = NULL; 1406 memcpy(jh->b_committed_data, bh->b_data, bh->b_size); 1407 } 1408 spin_unlock(&jh->b_state_lock); 1409 out: 1410 jbd2_journal_put_journal_head(jh); 1411 if (unlikely(committed_data)) 1412 jbd2_free(committed_data, bh->b_size); 1413 return err; 1414 } 1415 1416 /** 1417 * jbd2_journal_set_triggers() - Add triggers for commit writeout 1418 * @bh: buffer to trigger on 1419 * @type: struct jbd2_buffer_trigger_type containing the trigger(s). 1420 * 1421 * Set any triggers on this journal_head. This is always safe, because 1422 * triggers for a committing buffer will be saved off, and triggers for 1423 * a running transaction will match the buffer in that transaction. 1424 * 1425 * Call with NULL to clear the triggers. 1426 */ 1427 void jbd2_journal_set_triggers(struct buffer_head *bh, 1428 struct jbd2_buffer_trigger_type *type) 1429 { 1430 struct journal_head *jh = jbd2_journal_grab_journal_head(bh); 1431 1432 if (WARN_ON_ONCE(!jh)) 1433 return; 1434 jh->b_triggers = type; 1435 jbd2_journal_put_journal_head(jh); 1436 } 1437 1438 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data, 1439 struct jbd2_buffer_trigger_type *triggers) 1440 { 1441 struct buffer_head *bh = jh2bh(jh); 1442 1443 if (!triggers || !triggers->t_frozen) 1444 return; 1445 1446 triggers->t_frozen(triggers, bh, mapped_data, bh->b_size); 1447 } 1448 1449 void jbd2_buffer_abort_trigger(struct journal_head *jh, 1450 struct jbd2_buffer_trigger_type *triggers) 1451 { 1452 if (!triggers || !triggers->t_abort) 1453 return; 1454 1455 triggers->t_abort(triggers, jh2bh(jh)); 1456 } 1457 1458 /** 1459 * jbd2_journal_dirty_metadata() - mark a buffer as containing dirty metadata 1460 * @handle: transaction to add buffer to. 1461 * @bh: buffer to mark 1462 * 1463 * mark dirty metadata which needs to be journaled as part of the current 1464 * transaction. 1465 * 1466 * The buffer must have previously had jbd2_journal_get_write_access() 1467 * called so that it has a valid journal_head attached to the buffer 1468 * head. 1469 * 1470 * The buffer is placed on the transaction's metadata list and is marked 1471 * as belonging to the transaction. 1472 * 1473 * Returns error number or 0 on success. 1474 * 1475 * Special care needs to be taken if the buffer already belongs to the 1476 * current committing transaction (in which case we should have frozen 1477 * data present for that commit). In that case, we don't relink the 1478 * buffer: that only gets done when the old transaction finally 1479 * completes its commit. 1480 */ 1481 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh) 1482 { 1483 transaction_t *transaction = handle->h_transaction; 1484 journal_t *journal; 1485 struct journal_head *jh; 1486 int ret = 0; 1487 1488 if (!buffer_jbd(bh)) 1489 return -EUCLEAN; 1490 1491 /* 1492 * We don't grab jh reference here since the buffer must be part 1493 * of the running transaction. 1494 */ 1495 jh = bh2jh(bh); 1496 jbd2_debug(5, "journal_head %p\n", jh); 1497 JBUFFER_TRACE(jh, "entry"); 1498 1499 /* 1500 * This and the following assertions are unreliable since we may see jh 1501 * in inconsistent state unless we grab bh_state lock. But this is 1502 * crucial to catch bugs so let's do a reliable check until the 1503 * lockless handling is fully proven. 1504 */ 1505 if (data_race(jh->b_transaction != transaction && 1506 jh->b_next_transaction != transaction)) { 1507 spin_lock(&jh->b_state_lock); 1508 J_ASSERT_JH(jh, jh->b_transaction == transaction || 1509 jh->b_next_transaction == transaction); 1510 spin_unlock(&jh->b_state_lock); 1511 } 1512 if (jh->b_modified == 1) { 1513 /* If it's in our transaction it must be in BJ_Metadata list. */ 1514 if (data_race(jh->b_transaction == transaction && 1515 jh->b_jlist != BJ_Metadata)) { 1516 spin_lock(&jh->b_state_lock); 1517 if (jh->b_transaction == transaction && 1518 jh->b_jlist != BJ_Metadata) 1519 pr_err("JBD2: assertion failure: h_type=%u " 1520 "h_line_no=%u block_no=%llu jlist=%u\n", 1521 handle->h_type, handle->h_line_no, 1522 (unsigned long long) bh->b_blocknr, 1523 jh->b_jlist); 1524 J_ASSERT_JH(jh, jh->b_transaction != transaction || 1525 jh->b_jlist == BJ_Metadata); 1526 spin_unlock(&jh->b_state_lock); 1527 } 1528 goto out; 1529 } 1530 1531 journal = transaction->t_journal; 1532 spin_lock(&jh->b_state_lock); 1533 1534 if (is_handle_aborted(handle)) { 1535 /* 1536 * Check journal aborting with @jh->b_state_lock locked, 1537 * since 'jh->b_transaction' could be replaced with 1538 * 'jh->b_next_transaction' during old transaction 1539 * committing if journal aborted, which may fail 1540 * assertion on 'jh->b_frozen_data == NULL'. 1541 */ 1542 ret = -EROFS; 1543 goto out_unlock_bh; 1544 } 1545 1546 if (jh->b_modified == 0) { 1547 /* 1548 * This buffer's got modified and becoming part 1549 * of the transaction. This needs to be done 1550 * once a transaction -bzzz 1551 */ 1552 if (WARN_ON_ONCE(jbd2_handle_buffer_credits(handle) <= 0)) { 1553 ret = -ENOSPC; 1554 goto out_unlock_bh; 1555 } 1556 jh->b_modified = 1; 1557 handle->h_total_credits--; 1558 } 1559 1560 /* 1561 * fastpath, to avoid expensive locking. If this buffer is already 1562 * on the running transaction's metadata list there is nothing to do. 1563 * Nobody can take it off again because there is a handle open. 1564 * I _think_ we're OK here with SMP barriers - a mistaken decision will 1565 * result in this test being false, so we go in and take the locks. 1566 */ 1567 if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) { 1568 JBUFFER_TRACE(jh, "fastpath"); 1569 if (unlikely(jh->b_transaction != 1570 journal->j_running_transaction)) { 1571 printk(KERN_ERR "JBD2: %s: " 1572 "jh->b_transaction (%llu, %p, %u) != " 1573 "journal->j_running_transaction (%p, %u)\n", 1574 journal->j_devname, 1575 (unsigned long long) bh->b_blocknr, 1576 jh->b_transaction, 1577 jh->b_transaction ? jh->b_transaction->t_tid : 0, 1578 journal->j_running_transaction, 1579 journal->j_running_transaction ? 1580 journal->j_running_transaction->t_tid : 0); 1581 ret = -EINVAL; 1582 } 1583 goto out_unlock_bh; 1584 } 1585 1586 set_buffer_jbddirty(bh); 1587 1588 /* 1589 * Metadata already on the current transaction list doesn't 1590 * need to be filed. Metadata on another transaction's list must 1591 * be committing, and will be refiled once the commit completes: 1592 * leave it alone for now. 1593 */ 1594 if (jh->b_transaction != transaction) { 1595 JBUFFER_TRACE(jh, "already on other transaction"); 1596 if (unlikely(((jh->b_transaction != 1597 journal->j_committing_transaction)) || 1598 (jh->b_next_transaction != transaction))) { 1599 printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: " 1600 "bad jh for block %llu: " 1601 "transaction (%p, %u), " 1602 "jh->b_transaction (%p, %u), " 1603 "jh->b_next_transaction (%p, %u), jlist %u\n", 1604 journal->j_devname, 1605 (unsigned long long) bh->b_blocknr, 1606 transaction, transaction->t_tid, 1607 jh->b_transaction, 1608 jh->b_transaction ? 1609 jh->b_transaction->t_tid : 0, 1610 jh->b_next_transaction, 1611 jh->b_next_transaction ? 1612 jh->b_next_transaction->t_tid : 0, 1613 jh->b_jlist); 1614 WARN_ON(1); 1615 ret = -EINVAL; 1616 } 1617 /* And this case is illegal: we can't reuse another 1618 * transaction's data buffer, ever. */ 1619 goto out_unlock_bh; 1620 } 1621 1622 /* That test should have eliminated the following case: */ 1623 J_ASSERT_JH(jh, jh->b_frozen_data == NULL); 1624 1625 JBUFFER_TRACE(jh, "file as BJ_Metadata"); 1626 spin_lock(&journal->j_list_lock); 1627 __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata); 1628 spin_unlock(&journal->j_list_lock); 1629 out_unlock_bh: 1630 spin_unlock(&jh->b_state_lock); 1631 out: 1632 JBUFFER_TRACE(jh, "exit"); 1633 return ret; 1634 } 1635 1636 /** 1637 * jbd2_journal_forget() - bforget() for potentially-journaled buffers. 1638 * @handle: transaction handle 1639 * @bh: bh to 'forget' 1640 * 1641 * We can only do the bforget if there are no commits pending against the 1642 * buffer. If the buffer is dirty in the current running transaction we 1643 * can safely unlink it. 1644 * 1645 * bh may not be a journalled buffer at all - it may be a non-JBD 1646 * buffer which came off the hashtable. Check for this. 1647 * 1648 * Decrements bh->b_count by one. 1649 * 1650 * Allow this call even if the handle has aborted --- it may be part of 1651 * the caller's cleanup after an abort. 1652 */ 1653 int jbd2_journal_forget(handle_t *handle, struct buffer_head *bh) 1654 { 1655 transaction_t *transaction = handle->h_transaction; 1656 journal_t *journal; 1657 struct journal_head *jh; 1658 int drop_reserve = 0; 1659 int err = 0; 1660 int was_modified = 0; 1661 1662 if (is_handle_aborted(handle)) 1663 return -EROFS; 1664 journal = transaction->t_journal; 1665 1666 BUFFER_TRACE(bh, "entry"); 1667 1668 jh = jbd2_journal_grab_journal_head(bh); 1669 if (!jh) { 1670 __bforget(bh); 1671 return 0; 1672 } 1673 1674 spin_lock(&jh->b_state_lock); 1675 1676 /* Critical error: attempting to delete a bitmap buffer, maybe? 1677 * Don't do any jbd operations, and return an error. */ 1678 if (!J_EXPECT_JH(jh, !jh->b_committed_data, 1679 "inconsistent data on disk")) { 1680 err = -EIO; 1681 goto drop; 1682 } 1683 1684 /* keep track of whether or not this transaction modified us */ 1685 was_modified = jh->b_modified; 1686 1687 /* 1688 * The buffer's going from the transaction, we must drop 1689 * all references -bzzz 1690 */ 1691 jh->b_modified = 0; 1692 1693 if (jh->b_transaction == transaction) { 1694 J_ASSERT_JH(jh, !jh->b_frozen_data); 1695 1696 /* If we are forgetting a buffer which is already part 1697 * of this transaction, then we can just drop it from 1698 * the transaction immediately. */ 1699 clear_buffer_dirty(bh); 1700 clear_buffer_jbddirty(bh); 1701 1702 JBUFFER_TRACE(jh, "belongs to current transaction: unfile"); 1703 1704 /* 1705 * we only want to drop a reference if this transaction 1706 * modified the buffer 1707 */ 1708 if (was_modified) 1709 drop_reserve = 1; 1710 1711 /* 1712 * We are no longer going to journal this buffer. 1713 * However, the commit of this transaction is still 1714 * important to the buffer: the delete that we are now 1715 * processing might obsolete an old log entry, so by 1716 * committing, we can satisfy the buffer's checkpoint. 1717 * 1718 * So, if we have a checkpoint on the buffer, we should 1719 * now refile the buffer on our BJ_Forget list so that 1720 * we know to remove the checkpoint after we commit. 1721 */ 1722 1723 spin_lock(&journal->j_list_lock); 1724 if (jh->b_cp_transaction) { 1725 __jbd2_journal_temp_unlink_buffer(jh); 1726 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1727 } else { 1728 __jbd2_journal_unfile_buffer(jh); 1729 jbd2_journal_put_journal_head(jh); 1730 } 1731 spin_unlock(&journal->j_list_lock); 1732 } else if (jh->b_transaction) { 1733 J_ASSERT_JH(jh, (jh->b_transaction == 1734 journal->j_committing_transaction)); 1735 /* However, if the buffer is still owned by a prior 1736 * (committing) transaction, we can't drop it yet... */ 1737 JBUFFER_TRACE(jh, "belongs to older transaction"); 1738 /* ... but we CAN drop it from the new transaction through 1739 * marking the buffer as freed and set j_next_transaction to 1740 * the new transaction, so that not only the commit code 1741 * knows it should clear dirty bits when it is done with the 1742 * buffer, but also the buffer can be checkpointed only 1743 * after the new transaction commits. */ 1744 1745 set_buffer_freed(bh); 1746 1747 if (!jh->b_next_transaction) { 1748 spin_lock(&journal->j_list_lock); 1749 jh->b_next_transaction = transaction; 1750 spin_unlock(&journal->j_list_lock); 1751 } else { 1752 J_ASSERT(jh->b_next_transaction == transaction); 1753 1754 /* 1755 * only drop a reference if this transaction modified 1756 * the buffer 1757 */ 1758 if (was_modified) 1759 drop_reserve = 1; 1760 } 1761 } else { 1762 /* 1763 * Finally, if the buffer is not belongs to any 1764 * transaction, we can just drop it now if it has no 1765 * checkpoint. 1766 */ 1767 spin_lock(&journal->j_list_lock); 1768 if (!jh->b_cp_transaction) { 1769 JBUFFER_TRACE(jh, "belongs to none transaction"); 1770 spin_unlock(&journal->j_list_lock); 1771 goto drop; 1772 } 1773 1774 /* 1775 * Otherwise, if the buffer has been written to disk, 1776 * it is safe to remove the checkpoint and drop it. 1777 */ 1778 if (jbd2_journal_try_remove_checkpoint(jh) >= 0) { 1779 spin_unlock(&journal->j_list_lock); 1780 goto drop; 1781 } 1782 1783 /* 1784 * The buffer is still not written to disk, we should 1785 * attach this buffer to current transaction so that the 1786 * buffer can be checkpointed only after the current 1787 * transaction commits. 1788 */ 1789 clear_buffer_dirty(bh); 1790 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1791 spin_unlock(&journal->j_list_lock); 1792 } 1793 drop: 1794 __brelse(bh); 1795 spin_unlock(&jh->b_state_lock); 1796 jbd2_journal_put_journal_head(jh); 1797 if (drop_reserve) { 1798 /* no need to reserve log space for this block -bzzz */ 1799 handle->h_total_credits++; 1800 } 1801 return err; 1802 } 1803 1804 /** 1805 * jbd2_journal_stop() - complete a transaction 1806 * @handle: transaction to complete. 1807 * 1808 * All done for a particular handle. 1809 * 1810 * There is not much action needed here. We just return any remaining 1811 * buffer credits to the transaction and remove the handle. The only 1812 * complication is that we need to start a commit operation if the 1813 * filesystem is marked for synchronous update. 1814 * 1815 * jbd2_journal_stop itself will not usually return an error, but it may 1816 * do so in unusual circumstances. In particular, expect it to 1817 * return -EIO if a jbd2_journal_abort has been executed since the 1818 * transaction began. 1819 */ 1820 int jbd2_journal_stop(handle_t *handle) 1821 { 1822 transaction_t *transaction = handle->h_transaction; 1823 journal_t *journal; 1824 int err = 0, wait_for_commit = 0; 1825 tid_t tid; 1826 pid_t pid; 1827 1828 if (--handle->h_ref > 0) { 1829 jbd2_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1, 1830 handle->h_ref); 1831 if (is_handle_aborted(handle)) 1832 return -EIO; 1833 return 0; 1834 } 1835 if (!transaction) { 1836 /* 1837 * Handle is already detached from the transaction so there is 1838 * nothing to do other than free the handle. 1839 */ 1840 memalloc_nofs_restore(handle->saved_alloc_context); 1841 goto free_and_exit; 1842 } 1843 journal = transaction->t_journal; 1844 tid = transaction->t_tid; 1845 1846 if (is_handle_aborted(handle)) 1847 err = -EIO; 1848 1849 jbd2_debug(4, "Handle %p going down\n", handle); 1850 trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev, 1851 tid, handle->h_type, handle->h_line_no, 1852 jiffies - handle->h_start_jiffies, 1853 handle->h_sync, handle->h_requested_credits, 1854 (handle->h_requested_credits - 1855 handle->h_total_credits)); 1856 1857 /* 1858 * Implement synchronous transaction batching. If the handle 1859 * was synchronous, don't force a commit immediately. Let's 1860 * yield and let another thread piggyback onto this 1861 * transaction. Keep doing that while new threads continue to 1862 * arrive. It doesn't cost much - we're about to run a commit 1863 * and sleep on IO anyway. Speeds up many-threaded, many-dir 1864 * operations by 30x or more... 1865 * 1866 * We try and optimize the sleep time against what the 1867 * underlying disk can do, instead of having a static sleep 1868 * time. This is useful for the case where our storage is so 1869 * fast that it is more optimal to go ahead and force a flush 1870 * and wait for the transaction to be committed than it is to 1871 * wait for an arbitrary amount of time for new writers to 1872 * join the transaction. We achieve this by measuring how 1873 * long it takes to commit a transaction, and compare it with 1874 * how long this transaction has been running, and if run time 1875 * < commit time then we sleep for the delta and commit. This 1876 * greatly helps super fast disks that would see slowdowns as 1877 * more threads started doing fsyncs. 1878 * 1879 * But don't do this if this process was the most recent one 1880 * to perform a synchronous write. We do this to detect the 1881 * case where a single process is doing a stream of sync 1882 * writes. No point in waiting for joiners in that case. 1883 * 1884 * Setting max_batch_time to 0 disables this completely. 1885 */ 1886 pid = current->pid; 1887 if (handle->h_sync && journal->j_last_sync_writer != pid && 1888 journal->j_max_batch_time) { 1889 u64 commit_time, trans_time; 1890 1891 journal->j_last_sync_writer = pid; 1892 1893 read_lock(&journal->j_state_lock); 1894 commit_time = journal->j_average_commit_time; 1895 read_unlock(&journal->j_state_lock); 1896 1897 trans_time = ktime_to_ns(ktime_sub(ktime_get(), 1898 transaction->t_start_time)); 1899 1900 commit_time = max_t(u64, commit_time, 1901 1000*journal->j_min_batch_time); 1902 commit_time = min_t(u64, commit_time, 1903 1000*journal->j_max_batch_time); 1904 1905 if (trans_time < commit_time) { 1906 ktime_t expires = ktime_add_ns(ktime_get(), 1907 commit_time); 1908 set_current_state(TASK_UNINTERRUPTIBLE); 1909 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS); 1910 } 1911 } 1912 1913 if (handle->h_sync) 1914 transaction->t_synchronous_commit = 1; 1915 1916 /* 1917 * If the handle is marked SYNC, we need to set another commit 1918 * going! We also want to force a commit if the transaction is too 1919 * old now. 1920 */ 1921 if (handle->h_sync || 1922 time_after_eq(jiffies, transaction->t_expires)) { 1923 /* Do this even for aborted journals: an abort still 1924 * completes the commit thread, it just doesn't write 1925 * anything to disk. */ 1926 1927 jbd2_debug(2, "transaction too old, requesting commit for " 1928 "handle %p\n", handle); 1929 /* This is non-blocking */ 1930 jbd2_log_start_commit(journal, tid); 1931 1932 /* 1933 * Special case: JBD2_SYNC synchronous updates require us 1934 * to wait for the commit to complete. 1935 */ 1936 if (handle->h_sync && !(current->flags & PF_MEMALLOC)) 1937 wait_for_commit = 1; 1938 } 1939 1940 /* 1941 * Once stop_this_handle() drops t_updates, the transaction could start 1942 * committing on us and eventually disappear. So we must not 1943 * dereference transaction pointer again after calling 1944 * stop_this_handle(). 1945 */ 1946 stop_this_handle(handle); 1947 1948 if (wait_for_commit) 1949 err = jbd2_log_wait_commit(journal, tid); 1950 1951 free_and_exit: 1952 if (handle->h_rsv_handle) 1953 jbd2_free_handle(handle->h_rsv_handle); 1954 jbd2_free_handle(handle); 1955 return err; 1956 } 1957 1958 /* 1959 * 1960 * List management code snippets: various functions for manipulating the 1961 * transaction buffer lists. 1962 * 1963 */ 1964 1965 /* 1966 * Append a buffer to a transaction list, given the transaction's list head 1967 * pointer. 1968 * 1969 * j_list_lock is held. 1970 * 1971 * jh->b_state_lock is held. 1972 */ 1973 1974 static inline void 1975 __blist_add_buffer(struct journal_head **list, struct journal_head *jh) 1976 { 1977 if (!*list) { 1978 jh->b_tnext = jh->b_tprev = jh; 1979 *list = jh; 1980 } else { 1981 /* Insert at the tail of the list to preserve order */ 1982 struct journal_head *first = *list, *last = first->b_tprev; 1983 jh->b_tprev = last; 1984 jh->b_tnext = first; 1985 last->b_tnext = first->b_tprev = jh; 1986 } 1987 } 1988 1989 /* 1990 * Remove a buffer from a transaction list, given the transaction's list 1991 * head pointer. 1992 * 1993 * Called with j_list_lock held, and the journal may not be locked. 1994 * 1995 * jh->b_state_lock is held. 1996 */ 1997 1998 static inline void 1999 __blist_del_buffer(struct journal_head **list, struct journal_head *jh) 2000 { 2001 if (*list == jh) { 2002 *list = jh->b_tnext; 2003 if (*list == jh) 2004 *list = NULL; 2005 } 2006 jh->b_tprev->b_tnext = jh->b_tnext; 2007 jh->b_tnext->b_tprev = jh->b_tprev; 2008 } 2009 2010 /* 2011 * Remove a buffer from the appropriate transaction list. 2012 * 2013 * Note that this function can *change* the value of 2014 * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or 2015 * t_reserved_list. If the caller is holding onto a copy of one of these 2016 * pointers, it could go bad. Generally the caller needs to re-read the 2017 * pointer from the transaction_t. 2018 * 2019 * Called under j_list_lock. 2020 */ 2021 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh) 2022 { 2023 struct journal_head **list = NULL; 2024 transaction_t *transaction; 2025 struct buffer_head *bh = jh2bh(jh); 2026 2027 lockdep_assert_held(&jh->b_state_lock); 2028 transaction = jh->b_transaction; 2029 if (transaction) 2030 assert_spin_locked(&transaction->t_journal->j_list_lock); 2031 2032 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 2033 if (jh->b_jlist != BJ_None) 2034 J_ASSERT_JH(jh, transaction != NULL); 2035 2036 switch (jh->b_jlist) { 2037 case BJ_None: 2038 return; 2039 case BJ_Metadata: 2040 transaction->t_nr_buffers--; 2041 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0); 2042 list = &transaction->t_buffers; 2043 break; 2044 case BJ_Forget: 2045 list = &transaction->t_forget; 2046 break; 2047 case BJ_Shadow: 2048 list = &transaction->t_shadow_list; 2049 break; 2050 case BJ_Reserved: 2051 list = &transaction->t_reserved_list; 2052 break; 2053 } 2054 2055 __blist_del_buffer(list, jh); 2056 jh->b_jlist = BJ_None; 2057 if (transaction && is_journal_aborted(transaction->t_journal)) 2058 clear_buffer_jbddirty(bh); 2059 else if (test_clear_buffer_jbddirty(bh)) 2060 mark_buffer_dirty(bh); /* Expose it to the VM */ 2061 } 2062 2063 /* 2064 * Remove buffer from all transactions. The caller is responsible for dropping 2065 * the jh reference that belonged to the transaction. 2066 * 2067 * Called with bh_state lock and j_list_lock 2068 */ 2069 static void __jbd2_journal_unfile_buffer(struct journal_head *jh) 2070 { 2071 J_ASSERT_JH(jh, jh->b_transaction != NULL); 2072 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 2073 2074 __jbd2_journal_temp_unlink_buffer(jh); 2075 jh->b_transaction = NULL; 2076 } 2077 2078 /** 2079 * jbd2_journal_try_to_free_buffers() - try to free page buffers. 2080 * @journal: journal for operation 2081 * @folio: Folio to detach data from. 2082 * 2083 * For all the buffers on this page, 2084 * if they are fully written out ordered data, move them onto BUF_CLEAN 2085 * so try_to_free_buffers() can reap them. 2086 * 2087 * This function returns non-zero if we wish try_to_free_buffers() 2088 * to be called. We do this if the page is releasable by try_to_free_buffers(). 2089 * We also do it if the page has locked or dirty buffers and the caller wants 2090 * us to perform sync or async writeout. 2091 * 2092 * This complicates JBD locking somewhat. We aren't protected by the 2093 * BKL here. We wish to remove the buffer from its committing or 2094 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer. 2095 * 2096 * This may *change* the value of transaction_t->t_datalist, so anyone 2097 * who looks at t_datalist needs to lock against this function. 2098 * 2099 * Even worse, someone may be doing a jbd2_journal_dirty_data on this 2100 * buffer. So we need to lock against that. jbd2_journal_dirty_data() 2101 * will come out of the lock with the buffer dirty, which makes it 2102 * ineligible for release here. 2103 * 2104 * Who else is affected by this? hmm... Really the only contender 2105 * is do_get_write_access() - it could be looking at the buffer while 2106 * journal_try_to_free_buffer() is changing its state. But that 2107 * cannot happen because we never reallocate freed data as metadata 2108 * while the data is part of a transaction. Yes? 2109 * 2110 * Return false on failure, true on success 2111 */ 2112 bool jbd2_journal_try_to_free_buffers(journal_t *journal, struct folio *folio) 2113 { 2114 struct buffer_head *head; 2115 struct buffer_head *bh; 2116 bool ret = false; 2117 2118 J_ASSERT(folio_test_locked(folio)); 2119 2120 head = folio_buffers(folio); 2121 bh = head; 2122 do { 2123 struct journal_head *jh; 2124 2125 /* 2126 * We take our own ref against the journal_head here to avoid 2127 * having to add tons of locking around each instance of 2128 * jbd2_journal_put_journal_head(). 2129 */ 2130 jh = jbd2_journal_grab_journal_head(bh); 2131 if (!jh) 2132 continue; 2133 2134 spin_lock(&jh->b_state_lock); 2135 if (!jh->b_transaction && !jh->b_next_transaction) { 2136 spin_lock(&journal->j_list_lock); 2137 /* Remove written-back checkpointed metadata buffer */ 2138 if (jh->b_cp_transaction != NULL) 2139 jbd2_journal_try_remove_checkpoint(jh); 2140 spin_unlock(&journal->j_list_lock); 2141 } 2142 spin_unlock(&jh->b_state_lock); 2143 jbd2_journal_put_journal_head(jh); 2144 if (buffer_jbd(bh)) 2145 goto busy; 2146 } while ((bh = bh->b_this_page) != head); 2147 2148 ret = try_to_free_buffers(folio); 2149 busy: 2150 return ret; 2151 } 2152 2153 /* 2154 * This buffer is no longer needed. If it is on an older transaction's 2155 * checkpoint list we need to record it on this transaction's forget list 2156 * to pin this buffer (and hence its checkpointing transaction) down until 2157 * this transaction commits. If the buffer isn't on a checkpoint list, we 2158 * release it. 2159 * Returns non-zero if JBD no longer has an interest in the buffer. 2160 * 2161 * Called under j_list_lock. 2162 * 2163 * Called under jh->b_state_lock. 2164 */ 2165 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction) 2166 { 2167 int may_free = 1; 2168 struct buffer_head *bh = jh2bh(jh); 2169 2170 if (jh->b_cp_transaction) { 2171 JBUFFER_TRACE(jh, "on running+cp transaction"); 2172 __jbd2_journal_temp_unlink_buffer(jh); 2173 /* 2174 * We don't want to write the buffer anymore, clear the 2175 * bit so that we don't confuse checks in 2176 * __jbd2_journal_file_buffer 2177 */ 2178 clear_buffer_dirty(bh); 2179 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 2180 may_free = 0; 2181 } else { 2182 JBUFFER_TRACE(jh, "on running transaction"); 2183 __jbd2_journal_unfile_buffer(jh); 2184 jbd2_journal_put_journal_head(jh); 2185 } 2186 return may_free; 2187 } 2188 2189 /* 2190 * jbd2_journal_invalidate_folio 2191 * 2192 * This code is tricky. It has a number of cases to deal with. 2193 * 2194 * There are two invariants which this code relies on: 2195 * 2196 * i_size must be updated on disk before we start calling invalidate_folio 2197 * on the data. 2198 * 2199 * This is done in ext3 by defining an ext3_setattr method which 2200 * updates i_size before truncate gets going. By maintaining this 2201 * invariant, we can be sure that it is safe to throw away any buffers 2202 * attached to the current transaction: once the transaction commits, 2203 * we know that the data will not be needed. 2204 * 2205 * Note however that we can *not* throw away data belonging to the 2206 * previous, committing transaction! 2207 * 2208 * Any disk blocks which *are* part of the previous, committing 2209 * transaction (and which therefore cannot be discarded immediately) are 2210 * not going to be reused in the new running transaction 2211 * 2212 * The bitmap committed_data images guarantee this: any block which is 2213 * allocated in one transaction and removed in the next will be marked 2214 * as in-use in the committed_data bitmap, so cannot be reused until 2215 * the next transaction to delete the block commits. This means that 2216 * leaving committing buffers dirty is quite safe: the disk blocks 2217 * cannot be reallocated to a different file and so buffer aliasing is 2218 * not possible. 2219 * 2220 * 2221 * The above applies mainly to ordered data mode. In writeback mode we 2222 * don't make guarantees about the order in which data hits disk --- in 2223 * particular we don't guarantee that new dirty data is flushed before 2224 * transaction commit --- so it is always safe just to discard data 2225 * immediately in that mode. --sct 2226 */ 2227 2228 /* 2229 * The journal_unmap_buffer helper function returns zero if the buffer 2230 * concerned remains pinned as an anonymous buffer belonging to an older 2231 * transaction. 2232 * 2233 * We're outside-transaction here. Either or both of j_running_transaction 2234 * and j_committing_transaction may be NULL. 2235 */ 2236 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh, 2237 int partial_page) 2238 { 2239 transaction_t *transaction; 2240 struct journal_head *jh; 2241 int may_free = 1; 2242 2243 BUFFER_TRACE(bh, "entry"); 2244 2245 /* 2246 * It is safe to proceed here without the j_list_lock because the 2247 * buffers cannot be stolen by try_to_free_buffers as long as we are 2248 * holding the page lock. --sct 2249 */ 2250 2251 jh = jbd2_journal_grab_journal_head(bh); 2252 if (!jh) 2253 goto zap_buffer_unlocked; 2254 2255 /* OK, we have data buffer in journaled mode */ 2256 write_lock(&journal->j_state_lock); 2257 spin_lock(&jh->b_state_lock); 2258 spin_lock(&journal->j_list_lock); 2259 2260 /* 2261 * We cannot remove the buffer from checkpoint lists until the 2262 * transaction adding inode to orphan list (let's call it T) 2263 * is committed. Otherwise if the transaction changing the 2264 * buffer would be cleaned from the journal before T is 2265 * committed, a crash will cause that the correct contents of 2266 * the buffer will be lost. On the other hand we have to 2267 * clear the buffer dirty bit at latest at the moment when the 2268 * transaction marking the buffer as freed in the filesystem 2269 * structures is committed because from that moment on the 2270 * block can be reallocated and used by a different page. 2271 * Since the block hasn't been freed yet but the inode has 2272 * already been added to orphan list, it is safe for us to add 2273 * the buffer to BJ_Forget list of the newest transaction. 2274 * 2275 * Also we have to clear buffer_mapped flag of a truncated buffer 2276 * because the buffer_head may be attached to the page straddling 2277 * i_size (can happen only when blocksize < pagesize) and thus the 2278 * buffer_head can be reused when the file is extended again. So we end 2279 * up keeping around invalidated buffers attached to transactions' 2280 * BJ_Forget list just to stop checkpointing code from cleaning up 2281 * the transaction this buffer was modified in. 2282 */ 2283 transaction = jh->b_transaction; 2284 if (transaction == NULL) { 2285 /* First case: not on any transaction. If it 2286 * has no checkpoint link, then we can zap it: 2287 * it's a writeback-mode buffer so we don't care 2288 * if it hits disk safely. */ 2289 if (!jh->b_cp_transaction) { 2290 JBUFFER_TRACE(jh, "not on any transaction: zap"); 2291 goto zap_buffer; 2292 } 2293 2294 if (!buffer_dirty(bh)) { 2295 /* bdflush has written it. We can drop it now */ 2296 __jbd2_journal_remove_checkpoint(jh); 2297 goto zap_buffer; 2298 } 2299 2300 /* OK, it must be in the journal but still not 2301 * written fully to disk: it's metadata or 2302 * journaled data... */ 2303 2304 if (journal->j_running_transaction) { 2305 /* ... and once the current transaction has 2306 * committed, the buffer won't be needed any 2307 * longer. */ 2308 JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget"); 2309 may_free = __dispose_buffer(jh, 2310 journal->j_running_transaction); 2311 goto zap_buffer; 2312 } else { 2313 /* There is no currently-running transaction. So the 2314 * orphan record which we wrote for this file must have 2315 * passed into commit. We must attach this buffer to 2316 * the committing transaction, if it exists. */ 2317 if (journal->j_committing_transaction) { 2318 JBUFFER_TRACE(jh, "give to committing trans"); 2319 may_free = __dispose_buffer(jh, 2320 journal->j_committing_transaction); 2321 goto zap_buffer; 2322 } else { 2323 /* The orphan record's transaction has 2324 * committed. We can cleanse this buffer */ 2325 clear_buffer_jbddirty(bh); 2326 __jbd2_journal_remove_checkpoint(jh); 2327 goto zap_buffer; 2328 } 2329 } 2330 } else if (transaction == journal->j_committing_transaction) { 2331 JBUFFER_TRACE(jh, "on committing transaction"); 2332 /* 2333 * The buffer is committing, we simply cannot touch 2334 * it. If the page is straddling i_size we have to wait 2335 * for commit and try again. 2336 */ 2337 if (partial_page) { 2338 spin_unlock(&journal->j_list_lock); 2339 spin_unlock(&jh->b_state_lock); 2340 write_unlock(&journal->j_state_lock); 2341 jbd2_journal_put_journal_head(jh); 2342 /* Already zapped buffer? Nothing to do... */ 2343 if (!bh->b_bdev) 2344 return 0; 2345 return -EBUSY; 2346 } 2347 /* 2348 * OK, buffer won't be reachable after truncate. We just clear 2349 * b_modified to not confuse transaction credit accounting, and 2350 * set j_next_transaction to the running transaction (if there 2351 * is one) and mark buffer as freed so that commit code knows 2352 * it should clear dirty bits when it is done with the buffer. 2353 */ 2354 set_buffer_freed(bh); 2355 if (journal->j_running_transaction && buffer_jbddirty(bh)) 2356 jh->b_next_transaction = journal->j_running_transaction; 2357 jh->b_modified = 0; 2358 spin_unlock(&journal->j_list_lock); 2359 spin_unlock(&jh->b_state_lock); 2360 write_unlock(&journal->j_state_lock); 2361 jbd2_journal_put_journal_head(jh); 2362 return 0; 2363 } else { 2364 /* Good, the buffer belongs to the running transaction. 2365 * We are writing our own transaction's data, not any 2366 * previous one's, so it is safe to throw it away 2367 * (remember that we expect the filesystem to have set 2368 * i_size already for this truncate so recovery will not 2369 * expose the disk blocks we are discarding here.) */ 2370 J_ASSERT_JH(jh, transaction == journal->j_running_transaction); 2371 JBUFFER_TRACE(jh, "on running transaction"); 2372 may_free = __dispose_buffer(jh, transaction); 2373 } 2374 2375 zap_buffer: 2376 /* 2377 * This is tricky. Although the buffer is truncated, it may be reused 2378 * if blocksize < pagesize and it is attached to the page straddling 2379 * EOF. Since the buffer might have been added to BJ_Forget list of the 2380 * running transaction, journal_get_write_access() won't clear 2381 * b_modified and credit accounting gets confused. So clear b_modified 2382 * here. 2383 */ 2384 jh->b_modified = 0; 2385 spin_unlock(&journal->j_list_lock); 2386 spin_unlock(&jh->b_state_lock); 2387 write_unlock(&journal->j_state_lock); 2388 jbd2_journal_put_journal_head(jh); 2389 zap_buffer_unlocked: 2390 clear_buffer_dirty(bh); 2391 J_ASSERT_BH(bh, !buffer_jbddirty(bh)); 2392 clear_buffer_mapped(bh); 2393 clear_buffer_req(bh); 2394 clear_buffer_new(bh); 2395 clear_buffer_delay(bh); 2396 clear_buffer_unwritten(bh); 2397 bh->b_bdev = NULL; 2398 return may_free; 2399 } 2400 2401 /** 2402 * jbd2_journal_invalidate_folio() 2403 * @journal: journal to use for flush... 2404 * @folio: folio to flush 2405 * @offset: start of the range to invalidate 2406 * @length: length of the range to invalidate 2407 * 2408 * Reap page buffers containing data after in the specified range in page. 2409 * Can return -EBUSY if buffers are part of the committing transaction and 2410 * the page is straddling i_size. Caller then has to wait for current commit 2411 * and try again. 2412 */ 2413 int jbd2_journal_invalidate_folio(journal_t *journal, struct folio *folio, 2414 size_t offset, size_t length) 2415 { 2416 struct buffer_head *head, *bh, *next; 2417 unsigned int stop = offset + length; 2418 unsigned int curr_off = 0; 2419 int partial_page = (offset || length < folio_size(folio)); 2420 int may_free = 1; 2421 int ret = 0; 2422 2423 if (!folio_test_locked(folio)) 2424 BUG(); 2425 head = folio_buffers(folio); 2426 if (!head) 2427 return 0; 2428 2429 BUG_ON(stop > folio_size(folio) || stop < length); 2430 2431 /* We will potentially be playing with lists other than just the 2432 * data lists (especially for journaled data mode), so be 2433 * cautious in our locking. */ 2434 2435 bh = head; 2436 do { 2437 unsigned int next_off = curr_off + bh->b_size; 2438 next = bh->b_this_page; 2439 2440 if (next_off > stop) 2441 return 0; 2442 2443 if (offset <= curr_off) { 2444 /* This block is wholly outside the truncation point */ 2445 lock_buffer(bh); 2446 ret = journal_unmap_buffer(journal, bh, partial_page); 2447 unlock_buffer(bh); 2448 if (ret < 0) 2449 return ret; 2450 may_free &= ret; 2451 } 2452 curr_off = next_off; 2453 bh = next; 2454 2455 } while (bh != head); 2456 2457 if (!partial_page) { 2458 if (may_free && try_to_free_buffers(folio)) 2459 J_ASSERT(!folio_buffers(folio)); 2460 } 2461 return 0; 2462 } 2463 2464 /* 2465 * File a buffer on the given transaction list. 2466 */ 2467 void __jbd2_journal_file_buffer(struct journal_head *jh, 2468 transaction_t *transaction, int jlist) 2469 { 2470 struct journal_head **list = NULL; 2471 int was_dirty = 0; 2472 struct buffer_head *bh = jh2bh(jh); 2473 2474 lockdep_assert_held(&jh->b_state_lock); 2475 assert_spin_locked(&transaction->t_journal->j_list_lock); 2476 2477 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 2478 J_ASSERT_JH(jh, jh->b_transaction == transaction || 2479 jh->b_transaction == NULL); 2480 2481 if (jh->b_transaction && jh->b_jlist == jlist) 2482 return; 2483 2484 if (jlist == BJ_Metadata || jlist == BJ_Reserved || 2485 jlist == BJ_Shadow || jlist == BJ_Forget) { 2486 /* 2487 * For metadata buffers, we track dirty bit in buffer_jbddirty 2488 * instead of buffer_dirty. We should not see a dirty bit set 2489 * here because we clear it in do_get_write_access but e.g. 2490 * tune2fs can modify the sb and set the dirty bit at any time 2491 * so we try to gracefully handle that. 2492 */ 2493 if (buffer_dirty(bh)) 2494 warn_dirty_buffer(bh); 2495 if (test_clear_buffer_dirty(bh) || 2496 test_clear_buffer_jbddirty(bh)) 2497 was_dirty = 1; 2498 } 2499 2500 if (jh->b_transaction) 2501 __jbd2_journal_temp_unlink_buffer(jh); 2502 else 2503 jbd2_journal_grab_journal_head(bh); 2504 jh->b_transaction = transaction; 2505 2506 switch (jlist) { 2507 case BJ_None: 2508 J_ASSERT_JH(jh, !jh->b_committed_data); 2509 J_ASSERT_JH(jh, !jh->b_frozen_data); 2510 return; 2511 case BJ_Metadata: 2512 transaction->t_nr_buffers++; 2513 list = &transaction->t_buffers; 2514 break; 2515 case BJ_Forget: 2516 list = &transaction->t_forget; 2517 break; 2518 case BJ_Shadow: 2519 list = &transaction->t_shadow_list; 2520 break; 2521 case BJ_Reserved: 2522 list = &transaction->t_reserved_list; 2523 break; 2524 } 2525 2526 __blist_add_buffer(list, jh); 2527 jh->b_jlist = jlist; 2528 2529 if (was_dirty) 2530 set_buffer_jbddirty(bh); 2531 } 2532 2533 void jbd2_journal_file_buffer(struct journal_head *jh, 2534 transaction_t *transaction, int jlist) 2535 { 2536 spin_lock(&jh->b_state_lock); 2537 spin_lock(&transaction->t_journal->j_list_lock); 2538 __jbd2_journal_file_buffer(jh, transaction, jlist); 2539 spin_unlock(&transaction->t_journal->j_list_lock); 2540 spin_unlock(&jh->b_state_lock); 2541 } 2542 2543 /* 2544 * Remove a buffer from its current buffer list in preparation for 2545 * dropping it from its current transaction entirely. If the buffer has 2546 * already started to be used by a subsequent transaction, refile the 2547 * buffer on that transaction's metadata list. 2548 * 2549 * Called under j_list_lock 2550 * Called under jh->b_state_lock 2551 * 2552 * When this function returns true, there's no next transaction to refile to 2553 * and the caller has to drop jh reference through 2554 * jbd2_journal_put_journal_head(). 2555 */ 2556 bool __jbd2_journal_refile_buffer(struct journal_head *jh) 2557 { 2558 int was_dirty, jlist; 2559 struct buffer_head *bh = jh2bh(jh); 2560 2561 lockdep_assert_held(&jh->b_state_lock); 2562 if (jh->b_transaction) 2563 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock); 2564 2565 /* If the buffer is now unused, just drop it. */ 2566 if (jh->b_next_transaction == NULL) { 2567 __jbd2_journal_unfile_buffer(jh); 2568 return true; 2569 } 2570 2571 /* 2572 * It has been modified by a later transaction: add it to the new 2573 * transaction's metadata list. 2574 */ 2575 2576 was_dirty = test_clear_buffer_jbddirty(bh); 2577 __jbd2_journal_temp_unlink_buffer(jh); 2578 2579 /* 2580 * b_transaction must be set, otherwise the new b_transaction won't 2581 * be holding jh reference 2582 */ 2583 J_ASSERT_JH(jh, jh->b_transaction != NULL); 2584 2585 /* 2586 * We set b_transaction here because b_next_transaction will inherit 2587 * our jh reference and thus __jbd2_journal_file_buffer() must not 2588 * take a new one. 2589 */ 2590 WRITE_ONCE(jh->b_transaction, jh->b_next_transaction); 2591 WRITE_ONCE(jh->b_next_transaction, NULL); 2592 if (buffer_freed(bh)) 2593 jlist = BJ_Forget; 2594 else if (jh->b_modified) 2595 jlist = BJ_Metadata; 2596 else 2597 jlist = BJ_Reserved; 2598 __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist); 2599 J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING); 2600 2601 if (was_dirty) 2602 set_buffer_jbddirty(bh); 2603 return false; 2604 } 2605 2606 /* 2607 * __jbd2_journal_refile_buffer() with necessary locking added. We take our 2608 * bh reference so that we can safely unlock bh. 2609 * 2610 * The jh and bh may be freed by this call. 2611 */ 2612 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh) 2613 { 2614 bool drop; 2615 2616 spin_lock(&jh->b_state_lock); 2617 spin_lock(&journal->j_list_lock); 2618 drop = __jbd2_journal_refile_buffer(jh); 2619 spin_unlock(&jh->b_state_lock); 2620 spin_unlock(&journal->j_list_lock); 2621 if (drop) 2622 jbd2_journal_put_journal_head(jh); 2623 } 2624 2625 /* 2626 * File inode in the inode list of the handle's transaction 2627 */ 2628 static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode, 2629 unsigned long flags, loff_t start_byte, loff_t end_byte) 2630 { 2631 transaction_t *transaction = handle->h_transaction; 2632 journal_t *journal; 2633 2634 if (is_handle_aborted(handle)) 2635 return -EROFS; 2636 journal = transaction->t_journal; 2637 2638 jbd2_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino, 2639 transaction->t_tid); 2640 2641 spin_lock(&journal->j_list_lock); 2642 jinode->i_flags |= flags; 2643 2644 if (jinode->i_dirty_end) { 2645 jinode->i_dirty_start = min(jinode->i_dirty_start, start_byte); 2646 jinode->i_dirty_end = max(jinode->i_dirty_end, end_byte); 2647 } else { 2648 jinode->i_dirty_start = start_byte; 2649 jinode->i_dirty_end = end_byte; 2650 } 2651 2652 /* Is inode already attached where we need it? */ 2653 if (jinode->i_transaction == transaction || 2654 jinode->i_next_transaction == transaction) 2655 goto done; 2656 2657 /* 2658 * We only ever set this variable to 1 so the test is safe. Since 2659 * t_need_data_flush is likely to be set, we do the test to save some 2660 * cacheline bouncing 2661 */ 2662 if (!transaction->t_need_data_flush) 2663 transaction->t_need_data_flush = 1; 2664 /* On some different transaction's list - should be 2665 * the committing one */ 2666 if (jinode->i_transaction) { 2667 J_ASSERT(jinode->i_next_transaction == NULL); 2668 J_ASSERT(jinode->i_transaction == 2669 journal->j_committing_transaction); 2670 jinode->i_next_transaction = transaction; 2671 goto done; 2672 } 2673 /* Not on any transaction list... */ 2674 J_ASSERT(!jinode->i_next_transaction); 2675 jinode->i_transaction = transaction; 2676 list_add(&jinode->i_list, &transaction->t_inode_list); 2677 done: 2678 spin_unlock(&journal->j_list_lock); 2679 2680 return 0; 2681 } 2682 2683 int jbd2_journal_inode_ranged_write(handle_t *handle, 2684 struct jbd2_inode *jinode, loff_t start_byte, loff_t length) 2685 { 2686 return jbd2_journal_file_inode(handle, jinode, 2687 JI_WRITE_DATA | JI_WAIT_DATA, start_byte, 2688 start_byte + length - 1); 2689 } 2690 2691 int jbd2_journal_inode_ranged_wait(handle_t *handle, struct jbd2_inode *jinode, 2692 loff_t start_byte, loff_t length) 2693 { 2694 return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA, 2695 start_byte, start_byte + length - 1); 2696 } 2697 2698 /* 2699 * File truncate and transaction commit interact with each other in a 2700 * non-trivial way. If a transaction writing data block A is 2701 * committing, we cannot discard the data by truncate until we have 2702 * written them. Otherwise if we crashed after the transaction with 2703 * write has committed but before the transaction with truncate has 2704 * committed, we could see stale data in block A. This function is a 2705 * helper to solve this problem. It starts writeout of the truncated 2706 * part in case it is in the committing transaction. 2707 * 2708 * Filesystem code must call this function when inode is journaled in 2709 * ordered mode before truncation happens and after the inode has been 2710 * placed on orphan list with the new inode size. The second condition 2711 * avoids the race that someone writes new data and we start 2712 * committing the transaction after this function has been called but 2713 * before a transaction for truncate is started (and furthermore it 2714 * allows us to optimize the case where the addition to orphan list 2715 * happens in the same transaction as write --- we don't have to write 2716 * any data in such case). 2717 */ 2718 int jbd2_journal_begin_ordered_truncate(journal_t *journal, 2719 struct jbd2_inode *jinode, 2720 loff_t new_size) 2721 { 2722 transaction_t *inode_trans, *commit_trans; 2723 int ret = 0; 2724 2725 /* This is a quick check to avoid locking if not necessary */ 2726 if (!jinode->i_transaction) 2727 goto out; 2728 /* Locks are here just to force reading of recent values, it is 2729 * enough that the transaction was not committing before we started 2730 * a transaction adding the inode to orphan list */ 2731 read_lock(&journal->j_state_lock); 2732 commit_trans = journal->j_committing_transaction; 2733 read_unlock(&journal->j_state_lock); 2734 spin_lock(&journal->j_list_lock); 2735 inode_trans = jinode->i_transaction; 2736 spin_unlock(&journal->j_list_lock); 2737 if (inode_trans == commit_trans) { 2738 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping, 2739 new_size, LLONG_MAX); 2740 if (ret) 2741 jbd2_journal_abort(journal, ret); 2742 } 2743 out: 2744 return ret; 2745 } 2746