xref: /linux/fs/jbd2/transaction.c (revision 6fdcba32711044c35c0e1b094cbd8f3f0b4472c9)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * linux/fs/jbd2/transaction.c
4  *
5  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6  *
7  * Copyright 1998 Red Hat corp --- All Rights Reserved
8  *
9  * Generic filesystem transaction handling code; part of the ext2fs
10  * journaling system.
11  *
12  * This file manages transactions (compound commits managed by the
13  * journaling code) and handles (individual atomic operations by the
14  * filesystem).
15  */
16 
17 #include <linux/time.h>
18 #include <linux/fs.h>
19 #include <linux/jbd2.h>
20 #include <linux/errno.h>
21 #include <linux/slab.h>
22 #include <linux/timer.h>
23 #include <linux/mm.h>
24 #include <linux/highmem.h>
25 #include <linux/hrtimer.h>
26 #include <linux/backing-dev.h>
27 #include <linux/bug.h>
28 #include <linux/module.h>
29 #include <linux/sched/mm.h>
30 
31 #include <trace/events/jbd2.h>
32 
33 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
34 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
35 
36 static struct kmem_cache *transaction_cache;
37 int __init jbd2_journal_init_transaction_cache(void)
38 {
39 	J_ASSERT(!transaction_cache);
40 	transaction_cache = kmem_cache_create("jbd2_transaction_s",
41 					sizeof(transaction_t),
42 					0,
43 					SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
44 					NULL);
45 	if (!transaction_cache) {
46 		pr_emerg("JBD2: failed to create transaction cache\n");
47 		return -ENOMEM;
48 	}
49 	return 0;
50 }
51 
52 void jbd2_journal_destroy_transaction_cache(void)
53 {
54 	kmem_cache_destroy(transaction_cache);
55 	transaction_cache = NULL;
56 }
57 
58 void jbd2_journal_free_transaction(transaction_t *transaction)
59 {
60 	if (unlikely(ZERO_OR_NULL_PTR(transaction)))
61 		return;
62 	kmem_cache_free(transaction_cache, transaction);
63 }
64 
65 /*
66  * Base amount of descriptor blocks we reserve for each transaction.
67  */
68 static int jbd2_descriptor_blocks_per_trans(journal_t *journal)
69 {
70 	int tag_space = journal->j_blocksize - sizeof(journal_header_t);
71 	int tags_per_block;
72 
73 	/* Subtract UUID */
74 	tag_space -= 16;
75 	if (jbd2_journal_has_csum_v2or3(journal))
76 		tag_space -= sizeof(struct jbd2_journal_block_tail);
77 	/* Commit code leaves a slack space of 16 bytes at the end of block */
78 	tags_per_block = (tag_space - 16) / journal_tag_bytes(journal);
79 	/*
80 	 * Revoke descriptors are accounted separately so we need to reserve
81 	 * space for commit block and normal transaction descriptor blocks.
82 	 */
83 	return 1 + DIV_ROUND_UP(journal->j_max_transaction_buffers,
84 				tags_per_block);
85 }
86 
87 /*
88  * jbd2_get_transaction: obtain a new transaction_t object.
89  *
90  * Simply initialise a new transaction. Initialize it in
91  * RUNNING state and add it to the current journal (which should not
92  * have an existing running transaction: we only make a new transaction
93  * once we have started to commit the old one).
94  *
95  * Preconditions:
96  *	The journal MUST be locked.  We don't perform atomic mallocs on the
97  *	new transaction	and we can't block without protecting against other
98  *	processes trying to touch the journal while it is in transition.
99  *
100  */
101 
102 static void jbd2_get_transaction(journal_t *journal,
103 				transaction_t *transaction)
104 {
105 	transaction->t_journal = journal;
106 	transaction->t_state = T_RUNNING;
107 	transaction->t_start_time = ktime_get();
108 	transaction->t_tid = journal->j_transaction_sequence++;
109 	transaction->t_expires = jiffies + journal->j_commit_interval;
110 	spin_lock_init(&transaction->t_handle_lock);
111 	atomic_set(&transaction->t_updates, 0);
112 	atomic_set(&transaction->t_outstanding_credits,
113 		   jbd2_descriptor_blocks_per_trans(journal) +
114 		   atomic_read(&journal->j_reserved_credits));
115 	atomic_set(&transaction->t_outstanding_revokes, 0);
116 	atomic_set(&transaction->t_handle_count, 0);
117 	INIT_LIST_HEAD(&transaction->t_inode_list);
118 	INIT_LIST_HEAD(&transaction->t_private_list);
119 
120 	/* Set up the commit timer for the new transaction. */
121 	journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
122 	add_timer(&journal->j_commit_timer);
123 
124 	J_ASSERT(journal->j_running_transaction == NULL);
125 	journal->j_running_transaction = transaction;
126 	transaction->t_max_wait = 0;
127 	transaction->t_start = jiffies;
128 	transaction->t_requested = 0;
129 }
130 
131 /*
132  * Handle management.
133  *
134  * A handle_t is an object which represents a single atomic update to a
135  * filesystem, and which tracks all of the modifications which form part
136  * of that one update.
137  */
138 
139 /*
140  * Update transaction's maximum wait time, if debugging is enabled.
141  *
142  * In order for t_max_wait to be reliable, it must be protected by a
143  * lock.  But doing so will mean that start_this_handle() can not be
144  * run in parallel on SMP systems, which limits our scalability.  So
145  * unless debugging is enabled, we no longer update t_max_wait, which
146  * means that maximum wait time reported by the jbd2_run_stats
147  * tracepoint will always be zero.
148  */
149 static inline void update_t_max_wait(transaction_t *transaction,
150 				     unsigned long ts)
151 {
152 #ifdef CONFIG_JBD2_DEBUG
153 	if (jbd2_journal_enable_debug &&
154 	    time_after(transaction->t_start, ts)) {
155 		ts = jbd2_time_diff(ts, transaction->t_start);
156 		spin_lock(&transaction->t_handle_lock);
157 		if (ts > transaction->t_max_wait)
158 			transaction->t_max_wait = ts;
159 		spin_unlock(&transaction->t_handle_lock);
160 	}
161 #endif
162 }
163 
164 /*
165  * Wait until running transaction passes to T_FLUSH state and new transaction
166  * can thus be started. Also starts the commit if needed. The function expects
167  * running transaction to exist and releases j_state_lock.
168  */
169 static void wait_transaction_locked(journal_t *journal)
170 	__releases(journal->j_state_lock)
171 {
172 	DEFINE_WAIT(wait);
173 	int need_to_start;
174 	tid_t tid = journal->j_running_transaction->t_tid;
175 
176 	prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
177 			TASK_UNINTERRUPTIBLE);
178 	need_to_start = !tid_geq(journal->j_commit_request, tid);
179 	read_unlock(&journal->j_state_lock);
180 	if (need_to_start)
181 		jbd2_log_start_commit(journal, tid);
182 	jbd2_might_wait_for_commit(journal);
183 	schedule();
184 	finish_wait(&journal->j_wait_transaction_locked, &wait);
185 }
186 
187 /*
188  * Wait until running transaction transitions from T_SWITCH to T_FLUSH
189  * state and new transaction can thus be started. The function releases
190  * j_state_lock.
191  */
192 static void wait_transaction_switching(journal_t *journal)
193 	__releases(journal->j_state_lock)
194 {
195 	DEFINE_WAIT(wait);
196 
197 	if (WARN_ON(!journal->j_running_transaction ||
198 		    journal->j_running_transaction->t_state != T_SWITCH))
199 		return;
200 	prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
201 			TASK_UNINTERRUPTIBLE);
202 	read_unlock(&journal->j_state_lock);
203 	/*
204 	 * We don't call jbd2_might_wait_for_commit() here as there's no
205 	 * waiting for outstanding handles happening anymore in T_SWITCH state
206 	 * and handling of reserved handles actually relies on that for
207 	 * correctness.
208 	 */
209 	schedule();
210 	finish_wait(&journal->j_wait_transaction_locked, &wait);
211 }
212 
213 static void sub_reserved_credits(journal_t *journal, int blocks)
214 {
215 	atomic_sub(blocks, &journal->j_reserved_credits);
216 	wake_up(&journal->j_wait_reserved);
217 }
218 
219 /*
220  * Wait until we can add credits for handle to the running transaction.  Called
221  * with j_state_lock held for reading. Returns 0 if handle joined the running
222  * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
223  * caller must retry.
224  */
225 static int add_transaction_credits(journal_t *journal, int blocks,
226 				   int rsv_blocks)
227 {
228 	transaction_t *t = journal->j_running_transaction;
229 	int needed;
230 	int total = blocks + rsv_blocks;
231 
232 	/*
233 	 * If the current transaction is locked down for commit, wait
234 	 * for the lock to be released.
235 	 */
236 	if (t->t_state != T_RUNNING) {
237 		WARN_ON_ONCE(t->t_state >= T_FLUSH);
238 		wait_transaction_locked(journal);
239 		return 1;
240 	}
241 
242 	/*
243 	 * If there is not enough space left in the log to write all
244 	 * potential buffers requested by this operation, we need to
245 	 * stall pending a log checkpoint to free some more log space.
246 	 */
247 	needed = atomic_add_return(total, &t->t_outstanding_credits);
248 	if (needed > journal->j_max_transaction_buffers) {
249 		/*
250 		 * If the current transaction is already too large,
251 		 * then start to commit it: we can then go back and
252 		 * attach this handle to a new transaction.
253 		 */
254 		atomic_sub(total, &t->t_outstanding_credits);
255 
256 		/*
257 		 * Is the number of reserved credits in the current transaction too
258 		 * big to fit this handle? Wait until reserved credits are freed.
259 		 */
260 		if (atomic_read(&journal->j_reserved_credits) + total >
261 		    journal->j_max_transaction_buffers) {
262 			read_unlock(&journal->j_state_lock);
263 			jbd2_might_wait_for_commit(journal);
264 			wait_event(journal->j_wait_reserved,
265 				   atomic_read(&journal->j_reserved_credits) + total <=
266 				   journal->j_max_transaction_buffers);
267 			return 1;
268 		}
269 
270 		wait_transaction_locked(journal);
271 		return 1;
272 	}
273 
274 	/*
275 	 * The commit code assumes that it can get enough log space
276 	 * without forcing a checkpoint.  This is *critical* for
277 	 * correctness: a checkpoint of a buffer which is also
278 	 * associated with a committing transaction creates a deadlock,
279 	 * so commit simply cannot force through checkpoints.
280 	 *
281 	 * We must therefore ensure the necessary space in the journal
282 	 * *before* starting to dirty potentially checkpointed buffers
283 	 * in the new transaction.
284 	 */
285 	if (jbd2_log_space_left(journal) < journal->j_max_transaction_buffers) {
286 		atomic_sub(total, &t->t_outstanding_credits);
287 		read_unlock(&journal->j_state_lock);
288 		jbd2_might_wait_for_commit(journal);
289 		write_lock(&journal->j_state_lock);
290 		if (jbd2_log_space_left(journal) <
291 					journal->j_max_transaction_buffers)
292 			__jbd2_log_wait_for_space(journal);
293 		write_unlock(&journal->j_state_lock);
294 		return 1;
295 	}
296 
297 	/* No reservation? We are done... */
298 	if (!rsv_blocks)
299 		return 0;
300 
301 	needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
302 	/* We allow at most half of a transaction to be reserved */
303 	if (needed > journal->j_max_transaction_buffers / 2) {
304 		sub_reserved_credits(journal, rsv_blocks);
305 		atomic_sub(total, &t->t_outstanding_credits);
306 		read_unlock(&journal->j_state_lock);
307 		jbd2_might_wait_for_commit(journal);
308 		wait_event(journal->j_wait_reserved,
309 			 atomic_read(&journal->j_reserved_credits) + rsv_blocks
310 			 <= journal->j_max_transaction_buffers / 2);
311 		return 1;
312 	}
313 	return 0;
314 }
315 
316 /*
317  * start_this_handle: Given a handle, deal with any locking or stalling
318  * needed to make sure that there is enough journal space for the handle
319  * to begin.  Attach the handle to a transaction and set up the
320  * transaction's buffer credits.
321  */
322 
323 static int start_this_handle(journal_t *journal, handle_t *handle,
324 			     gfp_t gfp_mask)
325 {
326 	transaction_t	*transaction, *new_transaction = NULL;
327 	int		blocks = handle->h_total_credits;
328 	int		rsv_blocks = 0;
329 	unsigned long ts = jiffies;
330 
331 	if (handle->h_rsv_handle)
332 		rsv_blocks = handle->h_rsv_handle->h_total_credits;
333 
334 	/*
335 	 * Limit the number of reserved credits to 1/2 of maximum transaction
336 	 * size and limit the number of total credits to not exceed maximum
337 	 * transaction size per operation.
338 	 */
339 	if ((rsv_blocks > journal->j_max_transaction_buffers / 2) ||
340 	    (rsv_blocks + blocks > journal->j_max_transaction_buffers)) {
341 		printk(KERN_ERR "JBD2: %s wants too many credits "
342 		       "credits:%d rsv_credits:%d max:%d\n",
343 		       current->comm, blocks, rsv_blocks,
344 		       journal->j_max_transaction_buffers);
345 		WARN_ON(1);
346 		return -ENOSPC;
347 	}
348 
349 alloc_transaction:
350 	if (!journal->j_running_transaction) {
351 		/*
352 		 * If __GFP_FS is not present, then we may be being called from
353 		 * inside the fs writeback layer, so we MUST NOT fail.
354 		 */
355 		if ((gfp_mask & __GFP_FS) == 0)
356 			gfp_mask |= __GFP_NOFAIL;
357 		new_transaction = kmem_cache_zalloc(transaction_cache,
358 						    gfp_mask);
359 		if (!new_transaction)
360 			return -ENOMEM;
361 	}
362 
363 	jbd_debug(3, "New handle %p going live.\n", handle);
364 
365 	/*
366 	 * We need to hold j_state_lock until t_updates has been incremented,
367 	 * for proper journal barrier handling
368 	 */
369 repeat:
370 	read_lock(&journal->j_state_lock);
371 	BUG_ON(journal->j_flags & JBD2_UNMOUNT);
372 	if (is_journal_aborted(journal) ||
373 	    (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
374 		read_unlock(&journal->j_state_lock);
375 		jbd2_journal_free_transaction(new_transaction);
376 		return -EROFS;
377 	}
378 
379 	/*
380 	 * Wait on the journal's transaction barrier if necessary. Specifically
381 	 * we allow reserved handles to proceed because otherwise commit could
382 	 * deadlock on page writeback not being able to complete.
383 	 */
384 	if (!handle->h_reserved && journal->j_barrier_count) {
385 		read_unlock(&journal->j_state_lock);
386 		wait_event(journal->j_wait_transaction_locked,
387 				journal->j_barrier_count == 0);
388 		goto repeat;
389 	}
390 
391 	if (!journal->j_running_transaction) {
392 		read_unlock(&journal->j_state_lock);
393 		if (!new_transaction)
394 			goto alloc_transaction;
395 		write_lock(&journal->j_state_lock);
396 		if (!journal->j_running_transaction &&
397 		    (handle->h_reserved || !journal->j_barrier_count)) {
398 			jbd2_get_transaction(journal, new_transaction);
399 			new_transaction = NULL;
400 		}
401 		write_unlock(&journal->j_state_lock);
402 		goto repeat;
403 	}
404 
405 	transaction = journal->j_running_transaction;
406 
407 	if (!handle->h_reserved) {
408 		/* We may have dropped j_state_lock - restart in that case */
409 		if (add_transaction_credits(journal, blocks, rsv_blocks))
410 			goto repeat;
411 	} else {
412 		/*
413 		 * We have handle reserved so we are allowed to join T_LOCKED
414 		 * transaction and we don't have to check for transaction size
415 		 * and journal space. But we still have to wait while running
416 		 * transaction is being switched to a committing one as it
417 		 * won't wait for any handles anymore.
418 		 */
419 		if (transaction->t_state == T_SWITCH) {
420 			wait_transaction_switching(journal);
421 			goto repeat;
422 		}
423 		sub_reserved_credits(journal, blocks);
424 		handle->h_reserved = 0;
425 	}
426 
427 	/* OK, account for the buffers that this operation expects to
428 	 * use and add the handle to the running transaction.
429 	 */
430 	update_t_max_wait(transaction, ts);
431 	handle->h_transaction = transaction;
432 	handle->h_requested_credits = blocks;
433 	handle->h_revoke_credits_requested = handle->h_revoke_credits;
434 	handle->h_start_jiffies = jiffies;
435 	atomic_inc(&transaction->t_updates);
436 	atomic_inc(&transaction->t_handle_count);
437 	jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
438 		  handle, blocks,
439 		  atomic_read(&transaction->t_outstanding_credits),
440 		  jbd2_log_space_left(journal));
441 	read_unlock(&journal->j_state_lock);
442 	current->journal_info = handle;
443 
444 	rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_);
445 	jbd2_journal_free_transaction(new_transaction);
446 	/*
447 	 * Ensure that no allocations done while the transaction is open are
448 	 * going to recurse back to the fs layer.
449 	 */
450 	handle->saved_alloc_context = memalloc_nofs_save();
451 	return 0;
452 }
453 
454 /* Allocate a new handle.  This should probably be in a slab... */
455 static handle_t *new_handle(int nblocks)
456 {
457 	handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
458 	if (!handle)
459 		return NULL;
460 	handle->h_total_credits = nblocks;
461 	handle->h_ref = 1;
462 
463 	return handle;
464 }
465 
466 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
467 			      int revoke_records, gfp_t gfp_mask,
468 			      unsigned int type, unsigned int line_no)
469 {
470 	handle_t *handle = journal_current_handle();
471 	int err;
472 
473 	if (!journal)
474 		return ERR_PTR(-EROFS);
475 
476 	if (handle) {
477 		J_ASSERT(handle->h_transaction->t_journal == journal);
478 		handle->h_ref++;
479 		return handle;
480 	}
481 
482 	nblocks += DIV_ROUND_UP(revoke_records,
483 				journal->j_revoke_records_per_block);
484 	handle = new_handle(nblocks);
485 	if (!handle)
486 		return ERR_PTR(-ENOMEM);
487 	if (rsv_blocks) {
488 		handle_t *rsv_handle;
489 
490 		rsv_handle = new_handle(rsv_blocks);
491 		if (!rsv_handle) {
492 			jbd2_free_handle(handle);
493 			return ERR_PTR(-ENOMEM);
494 		}
495 		rsv_handle->h_reserved = 1;
496 		rsv_handle->h_journal = journal;
497 		handle->h_rsv_handle = rsv_handle;
498 	}
499 	handle->h_revoke_credits = revoke_records;
500 
501 	err = start_this_handle(journal, handle, gfp_mask);
502 	if (err < 0) {
503 		if (handle->h_rsv_handle)
504 			jbd2_free_handle(handle->h_rsv_handle);
505 		jbd2_free_handle(handle);
506 		return ERR_PTR(err);
507 	}
508 	handle->h_type = type;
509 	handle->h_line_no = line_no;
510 	trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
511 				handle->h_transaction->t_tid, type,
512 				line_no, nblocks);
513 
514 	return handle;
515 }
516 EXPORT_SYMBOL(jbd2__journal_start);
517 
518 
519 /**
520  * handle_t *jbd2_journal_start() - Obtain a new handle.
521  * @journal: Journal to start transaction on.
522  * @nblocks: number of block buffer we might modify
523  *
524  * We make sure that the transaction can guarantee at least nblocks of
525  * modified buffers in the log.  We block until the log can guarantee
526  * that much space. Additionally, if rsv_blocks > 0, we also create another
527  * handle with rsv_blocks reserved blocks in the journal. This handle is
528  * is stored in h_rsv_handle. It is not attached to any particular transaction
529  * and thus doesn't block transaction commit. If the caller uses this reserved
530  * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
531  * on the parent handle will dispose the reserved one. Reserved handle has to
532  * be converted to a normal handle using jbd2_journal_start_reserved() before
533  * it can be used.
534  *
535  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
536  * on failure.
537  */
538 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
539 {
540 	return jbd2__journal_start(journal, nblocks, 0, 0, GFP_NOFS, 0, 0);
541 }
542 EXPORT_SYMBOL(jbd2_journal_start);
543 
544 static void __jbd2_journal_unreserve_handle(handle_t *handle)
545 {
546 	journal_t *journal = handle->h_journal;
547 
548 	WARN_ON(!handle->h_reserved);
549 	sub_reserved_credits(journal, handle->h_total_credits);
550 }
551 
552 void jbd2_journal_free_reserved(handle_t *handle)
553 {
554 	__jbd2_journal_unreserve_handle(handle);
555 	jbd2_free_handle(handle);
556 }
557 EXPORT_SYMBOL(jbd2_journal_free_reserved);
558 
559 /**
560  * int jbd2_journal_start_reserved() - start reserved handle
561  * @handle: handle to start
562  * @type: for handle statistics
563  * @line_no: for handle statistics
564  *
565  * Start handle that has been previously reserved with jbd2_journal_reserve().
566  * This attaches @handle to the running transaction (or creates one if there's
567  * not transaction running). Unlike jbd2_journal_start() this function cannot
568  * block on journal commit, checkpointing, or similar stuff. It can block on
569  * memory allocation or frozen journal though.
570  *
571  * Return 0 on success, non-zero on error - handle is freed in that case.
572  */
573 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
574 				unsigned int line_no)
575 {
576 	journal_t *journal = handle->h_journal;
577 	int ret = -EIO;
578 
579 	if (WARN_ON(!handle->h_reserved)) {
580 		/* Someone passed in normal handle? Just stop it. */
581 		jbd2_journal_stop(handle);
582 		return ret;
583 	}
584 	/*
585 	 * Usefulness of mixing of reserved and unreserved handles is
586 	 * questionable. So far nobody seems to need it so just error out.
587 	 */
588 	if (WARN_ON(current->journal_info)) {
589 		jbd2_journal_free_reserved(handle);
590 		return ret;
591 	}
592 
593 	handle->h_journal = NULL;
594 	/*
595 	 * GFP_NOFS is here because callers are likely from writeback or
596 	 * similarly constrained call sites
597 	 */
598 	ret = start_this_handle(journal, handle, GFP_NOFS);
599 	if (ret < 0) {
600 		handle->h_journal = journal;
601 		jbd2_journal_free_reserved(handle);
602 		return ret;
603 	}
604 	handle->h_type = type;
605 	handle->h_line_no = line_no;
606 	trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
607 				handle->h_transaction->t_tid, type,
608 				line_no, handle->h_total_credits);
609 	return 0;
610 }
611 EXPORT_SYMBOL(jbd2_journal_start_reserved);
612 
613 /**
614  * int jbd2_journal_extend() - extend buffer credits.
615  * @handle:  handle to 'extend'
616  * @nblocks: nr blocks to try to extend by.
617  * @revoke_records: number of revoke records to try to extend by.
618  *
619  * Some transactions, such as large extends and truncates, can be done
620  * atomically all at once or in several stages.  The operation requests
621  * a credit for a number of buffer modifications in advance, but can
622  * extend its credit if it needs more.
623  *
624  * jbd2_journal_extend tries to give the running handle more buffer credits.
625  * It does not guarantee that allocation - this is a best-effort only.
626  * The calling process MUST be able to deal cleanly with a failure to
627  * extend here.
628  *
629  * Return 0 on success, non-zero on failure.
630  *
631  * return code < 0 implies an error
632  * return code > 0 implies normal transaction-full status.
633  */
634 int jbd2_journal_extend(handle_t *handle, int nblocks, int revoke_records)
635 {
636 	transaction_t *transaction = handle->h_transaction;
637 	journal_t *journal;
638 	int result;
639 	int wanted;
640 
641 	if (is_handle_aborted(handle))
642 		return -EROFS;
643 	journal = transaction->t_journal;
644 
645 	result = 1;
646 
647 	read_lock(&journal->j_state_lock);
648 
649 	/* Don't extend a locked-down transaction! */
650 	if (transaction->t_state != T_RUNNING) {
651 		jbd_debug(3, "denied handle %p %d blocks: "
652 			  "transaction not running\n", handle, nblocks);
653 		goto error_out;
654 	}
655 
656 	nblocks += DIV_ROUND_UP(
657 			handle->h_revoke_credits_requested + revoke_records,
658 			journal->j_revoke_records_per_block) -
659 		DIV_ROUND_UP(
660 			handle->h_revoke_credits_requested,
661 			journal->j_revoke_records_per_block);
662 	spin_lock(&transaction->t_handle_lock);
663 	wanted = atomic_add_return(nblocks,
664 				   &transaction->t_outstanding_credits);
665 
666 	if (wanted > journal->j_max_transaction_buffers) {
667 		jbd_debug(3, "denied handle %p %d blocks: "
668 			  "transaction too large\n", handle, nblocks);
669 		atomic_sub(nblocks, &transaction->t_outstanding_credits);
670 		goto unlock;
671 	}
672 
673 	trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
674 				 transaction->t_tid,
675 				 handle->h_type, handle->h_line_no,
676 				 handle->h_total_credits,
677 				 nblocks);
678 
679 	handle->h_total_credits += nblocks;
680 	handle->h_requested_credits += nblocks;
681 	handle->h_revoke_credits += revoke_records;
682 	handle->h_revoke_credits_requested += revoke_records;
683 	result = 0;
684 
685 	jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
686 unlock:
687 	spin_unlock(&transaction->t_handle_lock);
688 error_out:
689 	read_unlock(&journal->j_state_lock);
690 	return result;
691 }
692 
693 static void stop_this_handle(handle_t *handle)
694 {
695 	transaction_t *transaction = handle->h_transaction;
696 	journal_t *journal = transaction->t_journal;
697 	int revokes;
698 
699 	J_ASSERT(journal_current_handle() == handle);
700 	J_ASSERT(atomic_read(&transaction->t_updates) > 0);
701 	current->journal_info = NULL;
702 	/*
703 	 * Subtract necessary revoke descriptor blocks from handle credits. We
704 	 * take care to account only for revoke descriptor blocks the
705 	 * transaction will really need as large sequences of transactions with
706 	 * small numbers of revokes are relatively common.
707 	 */
708 	revokes = handle->h_revoke_credits_requested - handle->h_revoke_credits;
709 	if (revokes) {
710 		int t_revokes, revoke_descriptors;
711 		int rr_per_blk = journal->j_revoke_records_per_block;
712 
713 		WARN_ON_ONCE(DIV_ROUND_UP(revokes, rr_per_blk)
714 				> handle->h_total_credits);
715 		t_revokes = atomic_add_return(revokes,
716 				&transaction->t_outstanding_revokes);
717 		revoke_descriptors =
718 			DIV_ROUND_UP(t_revokes, rr_per_blk) -
719 			DIV_ROUND_UP(t_revokes - revokes, rr_per_blk);
720 		handle->h_total_credits -= revoke_descriptors;
721 	}
722 	atomic_sub(handle->h_total_credits,
723 		   &transaction->t_outstanding_credits);
724 	if (handle->h_rsv_handle)
725 		__jbd2_journal_unreserve_handle(handle->h_rsv_handle);
726 	if (atomic_dec_and_test(&transaction->t_updates))
727 		wake_up(&journal->j_wait_updates);
728 
729 	rwsem_release(&journal->j_trans_commit_map, _THIS_IP_);
730 	/*
731 	 * Scope of the GFP_NOFS context is over here and so we can restore the
732 	 * original alloc context.
733 	 */
734 	memalloc_nofs_restore(handle->saved_alloc_context);
735 }
736 
737 /**
738  * int jbd2_journal_restart() - restart a handle .
739  * @handle:  handle to restart
740  * @nblocks: nr credits requested
741  * @revoke_records: number of revoke record credits requested
742  * @gfp_mask: memory allocation flags (for start_this_handle)
743  *
744  * Restart a handle for a multi-transaction filesystem
745  * operation.
746  *
747  * If the jbd2_journal_extend() call above fails to grant new buffer credits
748  * to a running handle, a call to jbd2_journal_restart will commit the
749  * handle's transaction so far and reattach the handle to a new
750  * transaction capable of guaranteeing the requested number of
751  * credits. We preserve reserved handle if there's any attached to the
752  * passed in handle.
753  */
754 int jbd2__journal_restart(handle_t *handle, int nblocks, int revoke_records,
755 			  gfp_t gfp_mask)
756 {
757 	transaction_t *transaction = handle->h_transaction;
758 	journal_t *journal;
759 	tid_t		tid;
760 	int		need_to_start;
761 	int		ret;
762 
763 	/* If we've had an abort of any type, don't even think about
764 	 * actually doing the restart! */
765 	if (is_handle_aborted(handle))
766 		return 0;
767 	journal = transaction->t_journal;
768 	tid = transaction->t_tid;
769 
770 	/*
771 	 * First unlink the handle from its current transaction, and start the
772 	 * commit on that.
773 	 */
774 	jbd_debug(2, "restarting handle %p\n", handle);
775 	stop_this_handle(handle);
776 	handle->h_transaction = NULL;
777 
778 	/*
779 	 * TODO: If we use READ_ONCE / WRITE_ONCE for j_commit_request we can
780  	 * get rid of pointless j_state_lock traffic like this.
781 	 */
782 	read_lock(&journal->j_state_lock);
783 	need_to_start = !tid_geq(journal->j_commit_request, tid);
784 	read_unlock(&journal->j_state_lock);
785 	if (need_to_start)
786 		jbd2_log_start_commit(journal, tid);
787 	handle->h_total_credits = nblocks +
788 		DIV_ROUND_UP(revoke_records,
789 			     journal->j_revoke_records_per_block);
790 	handle->h_revoke_credits = revoke_records;
791 	ret = start_this_handle(journal, handle, gfp_mask);
792 	trace_jbd2_handle_restart(journal->j_fs_dev->bd_dev,
793 				 ret ? 0 : handle->h_transaction->t_tid,
794 				 handle->h_type, handle->h_line_no,
795 				 handle->h_total_credits);
796 	return ret;
797 }
798 EXPORT_SYMBOL(jbd2__journal_restart);
799 
800 
801 int jbd2_journal_restart(handle_t *handle, int nblocks)
802 {
803 	return jbd2__journal_restart(handle, nblocks, 0, GFP_NOFS);
804 }
805 EXPORT_SYMBOL(jbd2_journal_restart);
806 
807 /**
808  * void jbd2_journal_lock_updates () - establish a transaction barrier.
809  * @journal:  Journal to establish a barrier on.
810  *
811  * This locks out any further updates from being started, and blocks
812  * until all existing updates have completed, returning only once the
813  * journal is in a quiescent state with no updates running.
814  *
815  * The journal lock should not be held on entry.
816  */
817 void jbd2_journal_lock_updates(journal_t *journal)
818 {
819 	DEFINE_WAIT(wait);
820 
821 	jbd2_might_wait_for_commit(journal);
822 
823 	write_lock(&journal->j_state_lock);
824 	++journal->j_barrier_count;
825 
826 	/* Wait until there are no reserved handles */
827 	if (atomic_read(&journal->j_reserved_credits)) {
828 		write_unlock(&journal->j_state_lock);
829 		wait_event(journal->j_wait_reserved,
830 			   atomic_read(&journal->j_reserved_credits) == 0);
831 		write_lock(&journal->j_state_lock);
832 	}
833 
834 	/* Wait until there are no running updates */
835 	while (1) {
836 		transaction_t *transaction = journal->j_running_transaction;
837 
838 		if (!transaction)
839 			break;
840 
841 		spin_lock(&transaction->t_handle_lock);
842 		prepare_to_wait(&journal->j_wait_updates, &wait,
843 				TASK_UNINTERRUPTIBLE);
844 		if (!atomic_read(&transaction->t_updates)) {
845 			spin_unlock(&transaction->t_handle_lock);
846 			finish_wait(&journal->j_wait_updates, &wait);
847 			break;
848 		}
849 		spin_unlock(&transaction->t_handle_lock);
850 		write_unlock(&journal->j_state_lock);
851 		schedule();
852 		finish_wait(&journal->j_wait_updates, &wait);
853 		write_lock(&journal->j_state_lock);
854 	}
855 	write_unlock(&journal->j_state_lock);
856 
857 	/*
858 	 * We have now established a barrier against other normal updates, but
859 	 * we also need to barrier against other jbd2_journal_lock_updates() calls
860 	 * to make sure that we serialise special journal-locked operations
861 	 * too.
862 	 */
863 	mutex_lock(&journal->j_barrier);
864 }
865 
866 /**
867  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
868  * @journal:  Journal to release the barrier on.
869  *
870  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
871  *
872  * Should be called without the journal lock held.
873  */
874 void jbd2_journal_unlock_updates (journal_t *journal)
875 {
876 	J_ASSERT(journal->j_barrier_count != 0);
877 
878 	mutex_unlock(&journal->j_barrier);
879 	write_lock(&journal->j_state_lock);
880 	--journal->j_barrier_count;
881 	write_unlock(&journal->j_state_lock);
882 	wake_up(&journal->j_wait_transaction_locked);
883 }
884 
885 static void warn_dirty_buffer(struct buffer_head *bh)
886 {
887 	printk(KERN_WARNING
888 	       "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). "
889 	       "There's a risk of filesystem corruption in case of system "
890 	       "crash.\n",
891 	       bh->b_bdev, (unsigned long long)bh->b_blocknr);
892 }
893 
894 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
895 static void jbd2_freeze_jh_data(struct journal_head *jh)
896 {
897 	struct page *page;
898 	int offset;
899 	char *source;
900 	struct buffer_head *bh = jh2bh(jh);
901 
902 	J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
903 	page = bh->b_page;
904 	offset = offset_in_page(bh->b_data);
905 	source = kmap_atomic(page);
906 	/* Fire data frozen trigger just before we copy the data */
907 	jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers);
908 	memcpy(jh->b_frozen_data, source + offset, bh->b_size);
909 	kunmap_atomic(source);
910 
911 	/*
912 	 * Now that the frozen data is saved off, we need to store any matching
913 	 * triggers.
914 	 */
915 	jh->b_frozen_triggers = jh->b_triggers;
916 }
917 
918 /*
919  * If the buffer is already part of the current transaction, then there
920  * is nothing we need to do.  If it is already part of a prior
921  * transaction which we are still committing to disk, then we need to
922  * make sure that we do not overwrite the old copy: we do copy-out to
923  * preserve the copy going to disk.  We also account the buffer against
924  * the handle's metadata buffer credits (unless the buffer is already
925  * part of the transaction, that is).
926  *
927  */
928 static int
929 do_get_write_access(handle_t *handle, struct journal_head *jh,
930 			int force_copy)
931 {
932 	struct buffer_head *bh;
933 	transaction_t *transaction = handle->h_transaction;
934 	journal_t *journal;
935 	int error;
936 	char *frozen_buffer = NULL;
937 	unsigned long start_lock, time_lock;
938 
939 	if (is_handle_aborted(handle))
940 		return -EROFS;
941 	journal = transaction->t_journal;
942 
943 	jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
944 
945 	JBUFFER_TRACE(jh, "entry");
946 repeat:
947 	bh = jh2bh(jh);
948 
949 	/* @@@ Need to check for errors here at some point. */
950 
951  	start_lock = jiffies;
952 	lock_buffer(bh);
953 	spin_lock(&jh->b_state_lock);
954 
955 	/* If it takes too long to lock the buffer, trace it */
956 	time_lock = jbd2_time_diff(start_lock, jiffies);
957 	if (time_lock > HZ/10)
958 		trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
959 			jiffies_to_msecs(time_lock));
960 
961 	/* We now hold the buffer lock so it is safe to query the buffer
962 	 * state.  Is the buffer dirty?
963 	 *
964 	 * If so, there are two possibilities.  The buffer may be
965 	 * non-journaled, and undergoing a quite legitimate writeback.
966 	 * Otherwise, it is journaled, and we don't expect dirty buffers
967 	 * in that state (the buffers should be marked JBD_Dirty
968 	 * instead.)  So either the IO is being done under our own
969 	 * control and this is a bug, or it's a third party IO such as
970 	 * dump(8) (which may leave the buffer scheduled for read ---
971 	 * ie. locked but not dirty) or tune2fs (which may actually have
972 	 * the buffer dirtied, ugh.)  */
973 
974 	if (buffer_dirty(bh)) {
975 		/*
976 		 * First question: is this buffer already part of the current
977 		 * transaction or the existing committing transaction?
978 		 */
979 		if (jh->b_transaction) {
980 			J_ASSERT_JH(jh,
981 				jh->b_transaction == transaction ||
982 				jh->b_transaction ==
983 					journal->j_committing_transaction);
984 			if (jh->b_next_transaction)
985 				J_ASSERT_JH(jh, jh->b_next_transaction ==
986 							transaction);
987 			warn_dirty_buffer(bh);
988 		}
989 		/*
990 		 * In any case we need to clean the dirty flag and we must
991 		 * do it under the buffer lock to be sure we don't race
992 		 * with running write-out.
993 		 */
994 		JBUFFER_TRACE(jh, "Journalling dirty buffer");
995 		clear_buffer_dirty(bh);
996 		set_buffer_jbddirty(bh);
997 	}
998 
999 	unlock_buffer(bh);
1000 
1001 	error = -EROFS;
1002 	if (is_handle_aborted(handle)) {
1003 		spin_unlock(&jh->b_state_lock);
1004 		goto out;
1005 	}
1006 	error = 0;
1007 
1008 	/*
1009 	 * The buffer is already part of this transaction if b_transaction or
1010 	 * b_next_transaction points to it
1011 	 */
1012 	if (jh->b_transaction == transaction ||
1013 	    jh->b_next_transaction == transaction)
1014 		goto done;
1015 
1016 	/*
1017 	 * this is the first time this transaction is touching this buffer,
1018 	 * reset the modified flag
1019 	 */
1020 	jh->b_modified = 0;
1021 
1022 	/*
1023 	 * If the buffer is not journaled right now, we need to make sure it
1024 	 * doesn't get written to disk before the caller actually commits the
1025 	 * new data
1026 	 */
1027 	if (!jh->b_transaction) {
1028 		JBUFFER_TRACE(jh, "no transaction");
1029 		J_ASSERT_JH(jh, !jh->b_next_transaction);
1030 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
1031 		/*
1032 		 * Make sure all stores to jh (b_modified, b_frozen_data) are
1033 		 * visible before attaching it to the running transaction.
1034 		 * Paired with barrier in jbd2_write_access_granted()
1035 		 */
1036 		smp_wmb();
1037 		spin_lock(&journal->j_list_lock);
1038 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1039 		spin_unlock(&journal->j_list_lock);
1040 		goto done;
1041 	}
1042 	/*
1043 	 * If there is already a copy-out version of this buffer, then we don't
1044 	 * need to make another one
1045 	 */
1046 	if (jh->b_frozen_data) {
1047 		JBUFFER_TRACE(jh, "has frozen data");
1048 		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1049 		goto attach_next;
1050 	}
1051 
1052 	JBUFFER_TRACE(jh, "owned by older transaction");
1053 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1054 	J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
1055 
1056 	/*
1057 	 * There is one case we have to be very careful about.  If the
1058 	 * committing transaction is currently writing this buffer out to disk
1059 	 * and has NOT made a copy-out, then we cannot modify the buffer
1060 	 * contents at all right now.  The essence of copy-out is that it is
1061 	 * the extra copy, not the primary copy, which gets journaled.  If the
1062 	 * primary copy is already going to disk then we cannot do copy-out
1063 	 * here.
1064 	 */
1065 	if (buffer_shadow(bh)) {
1066 		JBUFFER_TRACE(jh, "on shadow: sleep");
1067 		spin_unlock(&jh->b_state_lock);
1068 		wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
1069 		goto repeat;
1070 	}
1071 
1072 	/*
1073 	 * Only do the copy if the currently-owning transaction still needs it.
1074 	 * If buffer isn't on BJ_Metadata list, the committing transaction is
1075 	 * past that stage (here we use the fact that BH_Shadow is set under
1076 	 * bh_state lock together with refiling to BJ_Shadow list and at this
1077 	 * point we know the buffer doesn't have BH_Shadow set).
1078 	 *
1079 	 * Subtle point, though: if this is a get_undo_access, then we will be
1080 	 * relying on the frozen_data to contain the new value of the
1081 	 * committed_data record after the transaction, so we HAVE to force the
1082 	 * frozen_data copy in that case.
1083 	 */
1084 	if (jh->b_jlist == BJ_Metadata || force_copy) {
1085 		JBUFFER_TRACE(jh, "generate frozen data");
1086 		if (!frozen_buffer) {
1087 			JBUFFER_TRACE(jh, "allocate memory for buffer");
1088 			spin_unlock(&jh->b_state_lock);
1089 			frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size,
1090 						   GFP_NOFS | __GFP_NOFAIL);
1091 			goto repeat;
1092 		}
1093 		jh->b_frozen_data = frozen_buffer;
1094 		frozen_buffer = NULL;
1095 		jbd2_freeze_jh_data(jh);
1096 	}
1097 attach_next:
1098 	/*
1099 	 * Make sure all stores to jh (b_modified, b_frozen_data) are visible
1100 	 * before attaching it to the running transaction. Paired with barrier
1101 	 * in jbd2_write_access_granted()
1102 	 */
1103 	smp_wmb();
1104 	jh->b_next_transaction = transaction;
1105 
1106 done:
1107 	spin_unlock(&jh->b_state_lock);
1108 
1109 	/*
1110 	 * If we are about to journal a buffer, then any revoke pending on it is
1111 	 * no longer valid
1112 	 */
1113 	jbd2_journal_cancel_revoke(handle, jh);
1114 
1115 out:
1116 	if (unlikely(frozen_buffer))	/* It's usually NULL */
1117 		jbd2_free(frozen_buffer, bh->b_size);
1118 
1119 	JBUFFER_TRACE(jh, "exit");
1120 	return error;
1121 }
1122 
1123 /* Fast check whether buffer is already attached to the required transaction */
1124 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1125 							bool undo)
1126 {
1127 	struct journal_head *jh;
1128 	bool ret = false;
1129 
1130 	/* Dirty buffers require special handling... */
1131 	if (buffer_dirty(bh))
1132 		return false;
1133 
1134 	/*
1135 	 * RCU protects us from dereferencing freed pages. So the checks we do
1136 	 * are guaranteed not to oops. However the jh slab object can get freed
1137 	 * & reallocated while we work with it. So we have to be careful. When
1138 	 * we see jh attached to the running transaction, we know it must stay
1139 	 * so until the transaction is committed. Thus jh won't be freed and
1140 	 * will be attached to the same bh while we run.  However it can
1141 	 * happen jh gets freed, reallocated, and attached to the transaction
1142 	 * just after we get pointer to it from bh. So we have to be careful
1143 	 * and recheck jh still belongs to our bh before we return success.
1144 	 */
1145 	rcu_read_lock();
1146 	if (!buffer_jbd(bh))
1147 		goto out;
1148 	/* This should be bh2jh() but that doesn't work with inline functions */
1149 	jh = READ_ONCE(bh->b_private);
1150 	if (!jh)
1151 		goto out;
1152 	/* For undo access buffer must have data copied */
1153 	if (undo && !jh->b_committed_data)
1154 		goto out;
1155 	if (jh->b_transaction != handle->h_transaction &&
1156 	    jh->b_next_transaction != handle->h_transaction)
1157 		goto out;
1158 	/*
1159 	 * There are two reasons for the barrier here:
1160 	 * 1) Make sure to fetch b_bh after we did previous checks so that we
1161 	 * detect when jh went through free, realloc, attach to transaction
1162 	 * while we were checking. Paired with implicit barrier in that path.
1163 	 * 2) So that access to bh done after jbd2_write_access_granted()
1164 	 * doesn't get reordered and see inconsistent state of concurrent
1165 	 * do_get_write_access().
1166 	 */
1167 	smp_mb();
1168 	if (unlikely(jh->b_bh != bh))
1169 		goto out;
1170 	ret = true;
1171 out:
1172 	rcu_read_unlock();
1173 	return ret;
1174 }
1175 
1176 /**
1177  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
1178  * @handle: transaction to add buffer modifications to
1179  * @bh:     bh to be used for metadata writes
1180  *
1181  * Returns: error code or 0 on success.
1182  *
1183  * In full data journalling mode the buffer may be of type BJ_AsyncData,
1184  * because we're ``write()ing`` a buffer which is also part of a shared mapping.
1185  */
1186 
1187 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1188 {
1189 	struct journal_head *jh;
1190 	int rc;
1191 
1192 	if (jbd2_write_access_granted(handle, bh, false))
1193 		return 0;
1194 
1195 	jh = jbd2_journal_add_journal_head(bh);
1196 	/* We do not want to get caught playing with fields which the
1197 	 * log thread also manipulates.  Make sure that the buffer
1198 	 * completes any outstanding IO before proceeding. */
1199 	rc = do_get_write_access(handle, jh, 0);
1200 	jbd2_journal_put_journal_head(jh);
1201 	return rc;
1202 }
1203 
1204 
1205 /*
1206  * When the user wants to journal a newly created buffer_head
1207  * (ie. getblk() returned a new buffer and we are going to populate it
1208  * manually rather than reading off disk), then we need to keep the
1209  * buffer_head locked until it has been completely filled with new
1210  * data.  In this case, we should be able to make the assertion that
1211  * the bh is not already part of an existing transaction.
1212  *
1213  * The buffer should already be locked by the caller by this point.
1214  * There is no lock ranking violation: it was a newly created,
1215  * unlocked buffer beforehand. */
1216 
1217 /**
1218  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
1219  * @handle: transaction to new buffer to
1220  * @bh: new buffer.
1221  *
1222  * Call this if you create a new bh.
1223  */
1224 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1225 {
1226 	transaction_t *transaction = handle->h_transaction;
1227 	journal_t *journal;
1228 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1229 	int err;
1230 
1231 	jbd_debug(5, "journal_head %p\n", jh);
1232 	err = -EROFS;
1233 	if (is_handle_aborted(handle))
1234 		goto out;
1235 	journal = transaction->t_journal;
1236 	err = 0;
1237 
1238 	JBUFFER_TRACE(jh, "entry");
1239 	/*
1240 	 * The buffer may already belong to this transaction due to pre-zeroing
1241 	 * in the filesystem's new_block code.  It may also be on the previous,
1242 	 * committing transaction's lists, but it HAS to be in Forget state in
1243 	 * that case: the transaction must have deleted the buffer for it to be
1244 	 * reused here.
1245 	 */
1246 	spin_lock(&jh->b_state_lock);
1247 	J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1248 		jh->b_transaction == NULL ||
1249 		(jh->b_transaction == journal->j_committing_transaction &&
1250 			  jh->b_jlist == BJ_Forget)));
1251 
1252 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1253 	J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1254 
1255 	if (jh->b_transaction == NULL) {
1256 		/*
1257 		 * Previous jbd2_journal_forget() could have left the buffer
1258 		 * with jbddirty bit set because it was being committed. When
1259 		 * the commit finished, we've filed the buffer for
1260 		 * checkpointing and marked it dirty. Now we are reallocating
1261 		 * the buffer so the transaction freeing it must have
1262 		 * committed and so it's safe to clear the dirty bit.
1263 		 */
1264 		clear_buffer_dirty(jh2bh(jh));
1265 		/* first access by this transaction */
1266 		jh->b_modified = 0;
1267 
1268 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
1269 		spin_lock(&journal->j_list_lock);
1270 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1271 		spin_unlock(&journal->j_list_lock);
1272 	} else if (jh->b_transaction == journal->j_committing_transaction) {
1273 		/* first access by this transaction */
1274 		jh->b_modified = 0;
1275 
1276 		JBUFFER_TRACE(jh, "set next transaction");
1277 		spin_lock(&journal->j_list_lock);
1278 		jh->b_next_transaction = transaction;
1279 		spin_unlock(&journal->j_list_lock);
1280 	}
1281 	spin_unlock(&jh->b_state_lock);
1282 
1283 	/*
1284 	 * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1285 	 * blocks which contain freed but then revoked metadata.  We need
1286 	 * to cancel the revoke in case we end up freeing it yet again
1287 	 * and the reallocating as data - this would cause a second revoke,
1288 	 * which hits an assertion error.
1289 	 */
1290 	JBUFFER_TRACE(jh, "cancelling revoke");
1291 	jbd2_journal_cancel_revoke(handle, jh);
1292 out:
1293 	jbd2_journal_put_journal_head(jh);
1294 	return err;
1295 }
1296 
1297 /**
1298  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1299  *     non-rewindable consequences
1300  * @handle: transaction
1301  * @bh: buffer to undo
1302  *
1303  * Sometimes there is a need to distinguish between metadata which has
1304  * been committed to disk and that which has not.  The ext3fs code uses
1305  * this for freeing and allocating space, we have to make sure that we
1306  * do not reuse freed space until the deallocation has been committed,
1307  * since if we overwrote that space we would make the delete
1308  * un-rewindable in case of a crash.
1309  *
1310  * To deal with that, jbd2_journal_get_undo_access requests write access to a
1311  * buffer for parts of non-rewindable operations such as delete
1312  * operations on the bitmaps.  The journaling code must keep a copy of
1313  * the buffer's contents prior to the undo_access call until such time
1314  * as we know that the buffer has definitely been committed to disk.
1315  *
1316  * We never need to know which transaction the committed data is part
1317  * of, buffers touched here are guaranteed to be dirtied later and so
1318  * will be committed to a new transaction in due course, at which point
1319  * we can discard the old committed data pointer.
1320  *
1321  * Returns error number or 0 on success.
1322  */
1323 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1324 {
1325 	int err;
1326 	struct journal_head *jh;
1327 	char *committed_data = NULL;
1328 
1329 	if (jbd2_write_access_granted(handle, bh, true))
1330 		return 0;
1331 
1332 	jh = jbd2_journal_add_journal_head(bh);
1333 	JBUFFER_TRACE(jh, "entry");
1334 
1335 	/*
1336 	 * Do this first --- it can drop the journal lock, so we want to
1337 	 * make sure that obtaining the committed_data is done
1338 	 * atomically wrt. completion of any outstanding commits.
1339 	 */
1340 	err = do_get_write_access(handle, jh, 1);
1341 	if (err)
1342 		goto out;
1343 
1344 repeat:
1345 	if (!jh->b_committed_data)
1346 		committed_data = jbd2_alloc(jh2bh(jh)->b_size,
1347 					    GFP_NOFS|__GFP_NOFAIL);
1348 
1349 	spin_lock(&jh->b_state_lock);
1350 	if (!jh->b_committed_data) {
1351 		/* Copy out the current buffer contents into the
1352 		 * preserved, committed copy. */
1353 		JBUFFER_TRACE(jh, "generate b_committed data");
1354 		if (!committed_data) {
1355 			spin_unlock(&jh->b_state_lock);
1356 			goto repeat;
1357 		}
1358 
1359 		jh->b_committed_data = committed_data;
1360 		committed_data = NULL;
1361 		memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1362 	}
1363 	spin_unlock(&jh->b_state_lock);
1364 out:
1365 	jbd2_journal_put_journal_head(jh);
1366 	if (unlikely(committed_data))
1367 		jbd2_free(committed_data, bh->b_size);
1368 	return err;
1369 }
1370 
1371 /**
1372  * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1373  * @bh: buffer to trigger on
1374  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1375  *
1376  * Set any triggers on this journal_head.  This is always safe, because
1377  * triggers for a committing buffer will be saved off, and triggers for
1378  * a running transaction will match the buffer in that transaction.
1379  *
1380  * Call with NULL to clear the triggers.
1381  */
1382 void jbd2_journal_set_triggers(struct buffer_head *bh,
1383 			       struct jbd2_buffer_trigger_type *type)
1384 {
1385 	struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1386 
1387 	if (WARN_ON(!jh))
1388 		return;
1389 	jh->b_triggers = type;
1390 	jbd2_journal_put_journal_head(jh);
1391 }
1392 
1393 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1394 				struct jbd2_buffer_trigger_type *triggers)
1395 {
1396 	struct buffer_head *bh = jh2bh(jh);
1397 
1398 	if (!triggers || !triggers->t_frozen)
1399 		return;
1400 
1401 	triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1402 }
1403 
1404 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1405 			       struct jbd2_buffer_trigger_type *triggers)
1406 {
1407 	if (!triggers || !triggers->t_abort)
1408 		return;
1409 
1410 	triggers->t_abort(triggers, jh2bh(jh));
1411 }
1412 
1413 /**
1414  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1415  * @handle: transaction to add buffer to.
1416  * @bh: buffer to mark
1417  *
1418  * mark dirty metadata which needs to be journaled as part of the current
1419  * transaction.
1420  *
1421  * The buffer must have previously had jbd2_journal_get_write_access()
1422  * called so that it has a valid journal_head attached to the buffer
1423  * head.
1424  *
1425  * The buffer is placed on the transaction's metadata list and is marked
1426  * as belonging to the transaction.
1427  *
1428  * Returns error number or 0 on success.
1429  *
1430  * Special care needs to be taken if the buffer already belongs to the
1431  * current committing transaction (in which case we should have frozen
1432  * data present for that commit).  In that case, we don't relink the
1433  * buffer: that only gets done when the old transaction finally
1434  * completes its commit.
1435  */
1436 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1437 {
1438 	transaction_t *transaction = handle->h_transaction;
1439 	journal_t *journal;
1440 	struct journal_head *jh;
1441 	int ret = 0;
1442 
1443 	if (is_handle_aborted(handle))
1444 		return -EROFS;
1445 	if (!buffer_jbd(bh))
1446 		return -EUCLEAN;
1447 
1448 	/*
1449 	 * We don't grab jh reference here since the buffer must be part
1450 	 * of the running transaction.
1451 	 */
1452 	jh = bh2jh(bh);
1453 	jbd_debug(5, "journal_head %p\n", jh);
1454 	JBUFFER_TRACE(jh, "entry");
1455 
1456 	/*
1457 	 * This and the following assertions are unreliable since we may see jh
1458 	 * in inconsistent state unless we grab bh_state lock. But this is
1459 	 * crucial to catch bugs so let's do a reliable check until the
1460 	 * lockless handling is fully proven.
1461 	 */
1462 	if (jh->b_transaction != transaction &&
1463 	    jh->b_next_transaction != transaction) {
1464 		spin_lock(&jh->b_state_lock);
1465 		J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1466 				jh->b_next_transaction == transaction);
1467 		spin_unlock(&jh->b_state_lock);
1468 	}
1469 	if (jh->b_modified == 1) {
1470 		/* If it's in our transaction it must be in BJ_Metadata list. */
1471 		if (jh->b_transaction == transaction &&
1472 		    jh->b_jlist != BJ_Metadata) {
1473 			spin_lock(&jh->b_state_lock);
1474 			if (jh->b_transaction == transaction &&
1475 			    jh->b_jlist != BJ_Metadata)
1476 				pr_err("JBD2: assertion failure: h_type=%u "
1477 				       "h_line_no=%u block_no=%llu jlist=%u\n",
1478 				       handle->h_type, handle->h_line_no,
1479 				       (unsigned long long) bh->b_blocknr,
1480 				       jh->b_jlist);
1481 			J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1482 					jh->b_jlist == BJ_Metadata);
1483 			spin_unlock(&jh->b_state_lock);
1484 		}
1485 		goto out;
1486 	}
1487 
1488 	journal = transaction->t_journal;
1489 	spin_lock(&jh->b_state_lock);
1490 
1491 	if (jh->b_modified == 0) {
1492 		/*
1493 		 * This buffer's got modified and becoming part
1494 		 * of the transaction. This needs to be done
1495 		 * once a transaction -bzzz
1496 		 */
1497 		if (WARN_ON_ONCE(jbd2_handle_buffer_credits(handle) <= 0)) {
1498 			ret = -ENOSPC;
1499 			goto out_unlock_bh;
1500 		}
1501 		jh->b_modified = 1;
1502 		handle->h_total_credits--;
1503 	}
1504 
1505 	/*
1506 	 * fastpath, to avoid expensive locking.  If this buffer is already
1507 	 * on the running transaction's metadata list there is nothing to do.
1508 	 * Nobody can take it off again because there is a handle open.
1509 	 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1510 	 * result in this test being false, so we go in and take the locks.
1511 	 */
1512 	if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1513 		JBUFFER_TRACE(jh, "fastpath");
1514 		if (unlikely(jh->b_transaction !=
1515 			     journal->j_running_transaction)) {
1516 			printk(KERN_ERR "JBD2: %s: "
1517 			       "jh->b_transaction (%llu, %p, %u) != "
1518 			       "journal->j_running_transaction (%p, %u)\n",
1519 			       journal->j_devname,
1520 			       (unsigned long long) bh->b_blocknr,
1521 			       jh->b_transaction,
1522 			       jh->b_transaction ? jh->b_transaction->t_tid : 0,
1523 			       journal->j_running_transaction,
1524 			       journal->j_running_transaction ?
1525 			       journal->j_running_transaction->t_tid : 0);
1526 			ret = -EINVAL;
1527 		}
1528 		goto out_unlock_bh;
1529 	}
1530 
1531 	set_buffer_jbddirty(bh);
1532 
1533 	/*
1534 	 * Metadata already on the current transaction list doesn't
1535 	 * need to be filed.  Metadata on another transaction's list must
1536 	 * be committing, and will be refiled once the commit completes:
1537 	 * leave it alone for now.
1538 	 */
1539 	if (jh->b_transaction != transaction) {
1540 		JBUFFER_TRACE(jh, "already on other transaction");
1541 		if (unlikely(((jh->b_transaction !=
1542 			       journal->j_committing_transaction)) ||
1543 			     (jh->b_next_transaction != transaction))) {
1544 			printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1545 			       "bad jh for block %llu: "
1546 			       "transaction (%p, %u), "
1547 			       "jh->b_transaction (%p, %u), "
1548 			       "jh->b_next_transaction (%p, %u), jlist %u\n",
1549 			       journal->j_devname,
1550 			       (unsigned long long) bh->b_blocknr,
1551 			       transaction, transaction->t_tid,
1552 			       jh->b_transaction,
1553 			       jh->b_transaction ?
1554 			       jh->b_transaction->t_tid : 0,
1555 			       jh->b_next_transaction,
1556 			       jh->b_next_transaction ?
1557 			       jh->b_next_transaction->t_tid : 0,
1558 			       jh->b_jlist);
1559 			WARN_ON(1);
1560 			ret = -EINVAL;
1561 		}
1562 		/* And this case is illegal: we can't reuse another
1563 		 * transaction's data buffer, ever. */
1564 		goto out_unlock_bh;
1565 	}
1566 
1567 	/* That test should have eliminated the following case: */
1568 	J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1569 
1570 	JBUFFER_TRACE(jh, "file as BJ_Metadata");
1571 	spin_lock(&journal->j_list_lock);
1572 	__jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1573 	spin_unlock(&journal->j_list_lock);
1574 out_unlock_bh:
1575 	spin_unlock(&jh->b_state_lock);
1576 out:
1577 	JBUFFER_TRACE(jh, "exit");
1578 	return ret;
1579 }
1580 
1581 /**
1582  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1583  * @handle: transaction handle
1584  * @bh:     bh to 'forget'
1585  *
1586  * We can only do the bforget if there are no commits pending against the
1587  * buffer.  If the buffer is dirty in the current running transaction we
1588  * can safely unlink it.
1589  *
1590  * bh may not be a journalled buffer at all - it may be a non-JBD
1591  * buffer which came off the hashtable.  Check for this.
1592  *
1593  * Decrements bh->b_count by one.
1594  *
1595  * Allow this call even if the handle has aborted --- it may be part of
1596  * the caller's cleanup after an abort.
1597  */
1598 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1599 {
1600 	transaction_t *transaction = handle->h_transaction;
1601 	journal_t *journal;
1602 	struct journal_head *jh;
1603 	int drop_reserve = 0;
1604 	int err = 0;
1605 	int was_modified = 0;
1606 
1607 	if (is_handle_aborted(handle))
1608 		return -EROFS;
1609 	journal = transaction->t_journal;
1610 
1611 	BUFFER_TRACE(bh, "entry");
1612 
1613 	jh = jbd2_journal_grab_journal_head(bh);
1614 	if (!jh) {
1615 		__bforget(bh);
1616 		return 0;
1617 	}
1618 
1619 	spin_lock(&jh->b_state_lock);
1620 
1621 	/* Critical error: attempting to delete a bitmap buffer, maybe?
1622 	 * Don't do any jbd operations, and return an error. */
1623 	if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1624 			 "inconsistent data on disk")) {
1625 		err = -EIO;
1626 		goto drop;
1627 	}
1628 
1629 	/* keep track of whether or not this transaction modified us */
1630 	was_modified = jh->b_modified;
1631 
1632 	/*
1633 	 * The buffer's going from the transaction, we must drop
1634 	 * all references -bzzz
1635 	 */
1636 	jh->b_modified = 0;
1637 
1638 	if (jh->b_transaction == transaction) {
1639 		J_ASSERT_JH(jh, !jh->b_frozen_data);
1640 
1641 		/* If we are forgetting a buffer which is already part
1642 		 * of this transaction, then we can just drop it from
1643 		 * the transaction immediately. */
1644 		clear_buffer_dirty(bh);
1645 		clear_buffer_jbddirty(bh);
1646 
1647 		JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1648 
1649 		/*
1650 		 * we only want to drop a reference if this transaction
1651 		 * modified the buffer
1652 		 */
1653 		if (was_modified)
1654 			drop_reserve = 1;
1655 
1656 		/*
1657 		 * We are no longer going to journal this buffer.
1658 		 * However, the commit of this transaction is still
1659 		 * important to the buffer: the delete that we are now
1660 		 * processing might obsolete an old log entry, so by
1661 		 * committing, we can satisfy the buffer's checkpoint.
1662 		 *
1663 		 * So, if we have a checkpoint on the buffer, we should
1664 		 * now refile the buffer on our BJ_Forget list so that
1665 		 * we know to remove the checkpoint after we commit.
1666 		 */
1667 
1668 		spin_lock(&journal->j_list_lock);
1669 		if (jh->b_cp_transaction) {
1670 			__jbd2_journal_temp_unlink_buffer(jh);
1671 			__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1672 		} else {
1673 			__jbd2_journal_unfile_buffer(jh);
1674 			jbd2_journal_put_journal_head(jh);
1675 		}
1676 		spin_unlock(&journal->j_list_lock);
1677 	} else if (jh->b_transaction) {
1678 		J_ASSERT_JH(jh, (jh->b_transaction ==
1679 				 journal->j_committing_transaction));
1680 		/* However, if the buffer is still owned by a prior
1681 		 * (committing) transaction, we can't drop it yet... */
1682 		JBUFFER_TRACE(jh, "belongs to older transaction");
1683 		/* ... but we CAN drop it from the new transaction through
1684 		 * marking the buffer as freed and set j_next_transaction to
1685 		 * the new transaction, so that not only the commit code
1686 		 * knows it should clear dirty bits when it is done with the
1687 		 * buffer, but also the buffer can be checkpointed only
1688 		 * after the new transaction commits. */
1689 
1690 		set_buffer_freed(bh);
1691 
1692 		if (!jh->b_next_transaction) {
1693 			spin_lock(&journal->j_list_lock);
1694 			jh->b_next_transaction = transaction;
1695 			spin_unlock(&journal->j_list_lock);
1696 		} else {
1697 			J_ASSERT(jh->b_next_transaction == transaction);
1698 
1699 			/*
1700 			 * only drop a reference if this transaction modified
1701 			 * the buffer
1702 			 */
1703 			if (was_modified)
1704 				drop_reserve = 1;
1705 		}
1706 	} else {
1707 		/*
1708 		 * Finally, if the buffer is not belongs to any
1709 		 * transaction, we can just drop it now if it has no
1710 		 * checkpoint.
1711 		 */
1712 		spin_lock(&journal->j_list_lock);
1713 		if (!jh->b_cp_transaction) {
1714 			JBUFFER_TRACE(jh, "belongs to none transaction");
1715 			spin_unlock(&journal->j_list_lock);
1716 			goto drop;
1717 		}
1718 
1719 		/*
1720 		 * Otherwise, if the buffer has been written to disk,
1721 		 * it is safe to remove the checkpoint and drop it.
1722 		 */
1723 		if (!buffer_dirty(bh)) {
1724 			__jbd2_journal_remove_checkpoint(jh);
1725 			spin_unlock(&journal->j_list_lock);
1726 			goto drop;
1727 		}
1728 
1729 		/*
1730 		 * The buffer is still not written to disk, we should
1731 		 * attach this buffer to current transaction so that the
1732 		 * buffer can be checkpointed only after the current
1733 		 * transaction commits.
1734 		 */
1735 		clear_buffer_dirty(bh);
1736 		__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1737 		spin_unlock(&journal->j_list_lock);
1738 	}
1739 drop:
1740 	__brelse(bh);
1741 	spin_unlock(&jh->b_state_lock);
1742 	jbd2_journal_put_journal_head(jh);
1743 	if (drop_reserve) {
1744 		/* no need to reserve log space for this block -bzzz */
1745 		handle->h_total_credits++;
1746 	}
1747 	return err;
1748 }
1749 
1750 /**
1751  * int jbd2_journal_stop() - complete a transaction
1752  * @handle: transaction to complete.
1753  *
1754  * All done for a particular handle.
1755  *
1756  * There is not much action needed here.  We just return any remaining
1757  * buffer credits to the transaction and remove the handle.  The only
1758  * complication is that we need to start a commit operation if the
1759  * filesystem is marked for synchronous update.
1760  *
1761  * jbd2_journal_stop itself will not usually return an error, but it may
1762  * do so in unusual circumstances.  In particular, expect it to
1763  * return -EIO if a jbd2_journal_abort has been executed since the
1764  * transaction began.
1765  */
1766 int jbd2_journal_stop(handle_t *handle)
1767 {
1768 	transaction_t *transaction = handle->h_transaction;
1769 	journal_t *journal;
1770 	int err = 0, wait_for_commit = 0;
1771 	tid_t tid;
1772 	pid_t pid;
1773 
1774 	if (--handle->h_ref > 0) {
1775 		jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1776 						 handle->h_ref);
1777 		if (is_handle_aborted(handle))
1778 			return -EIO;
1779 		return 0;
1780 	}
1781 	if (!transaction) {
1782 		/*
1783 		 * Handle is already detached from the transaction so there is
1784 		 * nothing to do other than free the handle.
1785 		 */
1786 		memalloc_nofs_restore(handle->saved_alloc_context);
1787 		goto free_and_exit;
1788 	}
1789 	journal = transaction->t_journal;
1790 	tid = transaction->t_tid;
1791 
1792 	if (is_handle_aborted(handle))
1793 		err = -EIO;
1794 
1795 	jbd_debug(4, "Handle %p going down\n", handle);
1796 	trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1797 				tid, handle->h_type, handle->h_line_no,
1798 				jiffies - handle->h_start_jiffies,
1799 				handle->h_sync, handle->h_requested_credits,
1800 				(handle->h_requested_credits -
1801 				 handle->h_total_credits));
1802 
1803 	/*
1804 	 * Implement synchronous transaction batching.  If the handle
1805 	 * was synchronous, don't force a commit immediately.  Let's
1806 	 * yield and let another thread piggyback onto this
1807 	 * transaction.  Keep doing that while new threads continue to
1808 	 * arrive.  It doesn't cost much - we're about to run a commit
1809 	 * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1810 	 * operations by 30x or more...
1811 	 *
1812 	 * We try and optimize the sleep time against what the
1813 	 * underlying disk can do, instead of having a static sleep
1814 	 * time.  This is useful for the case where our storage is so
1815 	 * fast that it is more optimal to go ahead and force a flush
1816 	 * and wait for the transaction to be committed than it is to
1817 	 * wait for an arbitrary amount of time for new writers to
1818 	 * join the transaction.  We achieve this by measuring how
1819 	 * long it takes to commit a transaction, and compare it with
1820 	 * how long this transaction has been running, and if run time
1821 	 * < commit time then we sleep for the delta and commit.  This
1822 	 * greatly helps super fast disks that would see slowdowns as
1823 	 * more threads started doing fsyncs.
1824 	 *
1825 	 * But don't do this if this process was the most recent one
1826 	 * to perform a synchronous write.  We do this to detect the
1827 	 * case where a single process is doing a stream of sync
1828 	 * writes.  No point in waiting for joiners in that case.
1829 	 *
1830 	 * Setting max_batch_time to 0 disables this completely.
1831 	 */
1832 	pid = current->pid;
1833 	if (handle->h_sync && journal->j_last_sync_writer != pid &&
1834 	    journal->j_max_batch_time) {
1835 		u64 commit_time, trans_time;
1836 
1837 		journal->j_last_sync_writer = pid;
1838 
1839 		read_lock(&journal->j_state_lock);
1840 		commit_time = journal->j_average_commit_time;
1841 		read_unlock(&journal->j_state_lock);
1842 
1843 		trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1844 						   transaction->t_start_time));
1845 
1846 		commit_time = max_t(u64, commit_time,
1847 				    1000*journal->j_min_batch_time);
1848 		commit_time = min_t(u64, commit_time,
1849 				    1000*journal->j_max_batch_time);
1850 
1851 		if (trans_time < commit_time) {
1852 			ktime_t expires = ktime_add_ns(ktime_get(),
1853 						       commit_time);
1854 			set_current_state(TASK_UNINTERRUPTIBLE);
1855 			schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1856 		}
1857 	}
1858 
1859 	if (handle->h_sync)
1860 		transaction->t_synchronous_commit = 1;
1861 
1862 	/*
1863 	 * If the handle is marked SYNC, we need to set another commit
1864 	 * going!  We also want to force a commit if the transaction is too
1865 	 * old now.
1866 	 */
1867 	if (handle->h_sync ||
1868 	    time_after_eq(jiffies, transaction->t_expires)) {
1869 		/* Do this even for aborted journals: an abort still
1870 		 * completes the commit thread, it just doesn't write
1871 		 * anything to disk. */
1872 
1873 		jbd_debug(2, "transaction too old, requesting commit for "
1874 					"handle %p\n", handle);
1875 		/* This is non-blocking */
1876 		jbd2_log_start_commit(journal, tid);
1877 
1878 		/*
1879 		 * Special case: JBD2_SYNC synchronous updates require us
1880 		 * to wait for the commit to complete.
1881 		 */
1882 		if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1883 			wait_for_commit = 1;
1884 	}
1885 
1886 	/*
1887 	 * Once stop_this_handle() drops t_updates, the transaction could start
1888 	 * committing on us and eventually disappear.  So we must not
1889 	 * dereference transaction pointer again after calling
1890 	 * stop_this_handle().
1891 	 */
1892 	stop_this_handle(handle);
1893 
1894 	if (wait_for_commit)
1895 		err = jbd2_log_wait_commit(journal, tid);
1896 
1897 free_and_exit:
1898 	if (handle->h_rsv_handle)
1899 		jbd2_free_handle(handle->h_rsv_handle);
1900 	jbd2_free_handle(handle);
1901 	return err;
1902 }
1903 
1904 /*
1905  *
1906  * List management code snippets: various functions for manipulating the
1907  * transaction buffer lists.
1908  *
1909  */
1910 
1911 /*
1912  * Append a buffer to a transaction list, given the transaction's list head
1913  * pointer.
1914  *
1915  * j_list_lock is held.
1916  *
1917  * jh->b_state_lock is held.
1918  */
1919 
1920 static inline void
1921 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1922 {
1923 	if (!*list) {
1924 		jh->b_tnext = jh->b_tprev = jh;
1925 		*list = jh;
1926 	} else {
1927 		/* Insert at the tail of the list to preserve order */
1928 		struct journal_head *first = *list, *last = first->b_tprev;
1929 		jh->b_tprev = last;
1930 		jh->b_tnext = first;
1931 		last->b_tnext = first->b_tprev = jh;
1932 	}
1933 }
1934 
1935 /*
1936  * Remove a buffer from a transaction list, given the transaction's list
1937  * head pointer.
1938  *
1939  * Called with j_list_lock held, and the journal may not be locked.
1940  *
1941  * jh->b_state_lock is held.
1942  */
1943 
1944 static inline void
1945 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1946 {
1947 	if (*list == jh) {
1948 		*list = jh->b_tnext;
1949 		if (*list == jh)
1950 			*list = NULL;
1951 	}
1952 	jh->b_tprev->b_tnext = jh->b_tnext;
1953 	jh->b_tnext->b_tprev = jh->b_tprev;
1954 }
1955 
1956 /*
1957  * Remove a buffer from the appropriate transaction list.
1958  *
1959  * Note that this function can *change* the value of
1960  * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1961  * t_reserved_list.  If the caller is holding onto a copy of one of these
1962  * pointers, it could go bad.  Generally the caller needs to re-read the
1963  * pointer from the transaction_t.
1964  *
1965  * Called under j_list_lock.
1966  */
1967 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1968 {
1969 	struct journal_head **list = NULL;
1970 	transaction_t *transaction;
1971 	struct buffer_head *bh = jh2bh(jh);
1972 
1973 	lockdep_assert_held(&jh->b_state_lock);
1974 	transaction = jh->b_transaction;
1975 	if (transaction)
1976 		assert_spin_locked(&transaction->t_journal->j_list_lock);
1977 
1978 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1979 	if (jh->b_jlist != BJ_None)
1980 		J_ASSERT_JH(jh, transaction != NULL);
1981 
1982 	switch (jh->b_jlist) {
1983 	case BJ_None:
1984 		return;
1985 	case BJ_Metadata:
1986 		transaction->t_nr_buffers--;
1987 		J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1988 		list = &transaction->t_buffers;
1989 		break;
1990 	case BJ_Forget:
1991 		list = &transaction->t_forget;
1992 		break;
1993 	case BJ_Shadow:
1994 		list = &transaction->t_shadow_list;
1995 		break;
1996 	case BJ_Reserved:
1997 		list = &transaction->t_reserved_list;
1998 		break;
1999 	}
2000 
2001 	__blist_del_buffer(list, jh);
2002 	jh->b_jlist = BJ_None;
2003 	if (transaction && is_journal_aborted(transaction->t_journal))
2004 		clear_buffer_jbddirty(bh);
2005 	else if (test_clear_buffer_jbddirty(bh))
2006 		mark_buffer_dirty(bh);	/* Expose it to the VM */
2007 }
2008 
2009 /*
2010  * Remove buffer from all transactions. The caller is responsible for dropping
2011  * the jh reference that belonged to the transaction.
2012  *
2013  * Called with bh_state lock and j_list_lock
2014  */
2015 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
2016 {
2017 	__jbd2_journal_temp_unlink_buffer(jh);
2018 	jh->b_transaction = NULL;
2019 }
2020 
2021 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
2022 {
2023 	struct buffer_head *bh = jh2bh(jh);
2024 
2025 	/* Get reference so that buffer cannot be freed before we unlock it */
2026 	get_bh(bh);
2027 	spin_lock(&jh->b_state_lock);
2028 	spin_lock(&journal->j_list_lock);
2029 	__jbd2_journal_unfile_buffer(jh);
2030 	spin_unlock(&journal->j_list_lock);
2031 	spin_unlock(&jh->b_state_lock);
2032 	jbd2_journal_put_journal_head(jh);
2033 	__brelse(bh);
2034 }
2035 
2036 /*
2037  * Called from jbd2_journal_try_to_free_buffers().
2038  *
2039  * Called under jh->b_state_lock
2040  */
2041 static void
2042 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
2043 {
2044 	struct journal_head *jh;
2045 
2046 	jh = bh2jh(bh);
2047 
2048 	if (buffer_locked(bh) || buffer_dirty(bh))
2049 		goto out;
2050 
2051 	if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
2052 		goto out;
2053 
2054 	spin_lock(&journal->j_list_lock);
2055 	if (jh->b_cp_transaction != NULL) {
2056 		/* written-back checkpointed metadata buffer */
2057 		JBUFFER_TRACE(jh, "remove from checkpoint list");
2058 		__jbd2_journal_remove_checkpoint(jh);
2059 	}
2060 	spin_unlock(&journal->j_list_lock);
2061 out:
2062 	return;
2063 }
2064 
2065 /**
2066  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
2067  * @journal: journal for operation
2068  * @page: to try and free
2069  * @gfp_mask: we use the mask to detect how hard should we try to release
2070  * buffers. If __GFP_DIRECT_RECLAIM and __GFP_FS is set, we wait for commit
2071  * code to release the buffers.
2072  *
2073  *
2074  * For all the buffers on this page,
2075  * if they are fully written out ordered data, move them onto BUF_CLEAN
2076  * so try_to_free_buffers() can reap them.
2077  *
2078  * This function returns non-zero if we wish try_to_free_buffers()
2079  * to be called. We do this if the page is releasable by try_to_free_buffers().
2080  * We also do it if the page has locked or dirty buffers and the caller wants
2081  * us to perform sync or async writeout.
2082  *
2083  * This complicates JBD locking somewhat.  We aren't protected by the
2084  * BKL here.  We wish to remove the buffer from its committing or
2085  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
2086  *
2087  * This may *change* the value of transaction_t->t_datalist, so anyone
2088  * who looks at t_datalist needs to lock against this function.
2089  *
2090  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
2091  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
2092  * will come out of the lock with the buffer dirty, which makes it
2093  * ineligible for release here.
2094  *
2095  * Who else is affected by this?  hmm...  Really the only contender
2096  * is do_get_write_access() - it could be looking at the buffer while
2097  * journal_try_to_free_buffer() is changing its state.  But that
2098  * cannot happen because we never reallocate freed data as metadata
2099  * while the data is part of a transaction.  Yes?
2100  *
2101  * Return 0 on failure, 1 on success
2102  */
2103 int jbd2_journal_try_to_free_buffers(journal_t *journal,
2104 				struct page *page, gfp_t gfp_mask)
2105 {
2106 	struct buffer_head *head;
2107 	struct buffer_head *bh;
2108 	int ret = 0;
2109 
2110 	J_ASSERT(PageLocked(page));
2111 
2112 	head = page_buffers(page);
2113 	bh = head;
2114 	do {
2115 		struct journal_head *jh;
2116 
2117 		/*
2118 		 * We take our own ref against the journal_head here to avoid
2119 		 * having to add tons of locking around each instance of
2120 		 * jbd2_journal_put_journal_head().
2121 		 */
2122 		jh = jbd2_journal_grab_journal_head(bh);
2123 		if (!jh)
2124 			continue;
2125 
2126 		spin_lock(&jh->b_state_lock);
2127 		__journal_try_to_free_buffer(journal, bh);
2128 		spin_unlock(&jh->b_state_lock);
2129 		jbd2_journal_put_journal_head(jh);
2130 		if (buffer_jbd(bh))
2131 			goto busy;
2132 	} while ((bh = bh->b_this_page) != head);
2133 
2134 	ret = try_to_free_buffers(page);
2135 
2136 busy:
2137 	return ret;
2138 }
2139 
2140 /*
2141  * This buffer is no longer needed.  If it is on an older transaction's
2142  * checkpoint list we need to record it on this transaction's forget list
2143  * to pin this buffer (and hence its checkpointing transaction) down until
2144  * this transaction commits.  If the buffer isn't on a checkpoint list, we
2145  * release it.
2146  * Returns non-zero if JBD no longer has an interest in the buffer.
2147  *
2148  * Called under j_list_lock.
2149  *
2150  * Called under jh->b_state_lock.
2151  */
2152 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2153 {
2154 	int may_free = 1;
2155 	struct buffer_head *bh = jh2bh(jh);
2156 
2157 	if (jh->b_cp_transaction) {
2158 		JBUFFER_TRACE(jh, "on running+cp transaction");
2159 		__jbd2_journal_temp_unlink_buffer(jh);
2160 		/*
2161 		 * We don't want to write the buffer anymore, clear the
2162 		 * bit so that we don't confuse checks in
2163 		 * __journal_file_buffer
2164 		 */
2165 		clear_buffer_dirty(bh);
2166 		__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2167 		may_free = 0;
2168 	} else {
2169 		JBUFFER_TRACE(jh, "on running transaction");
2170 		__jbd2_journal_unfile_buffer(jh);
2171 		jbd2_journal_put_journal_head(jh);
2172 	}
2173 	return may_free;
2174 }
2175 
2176 /*
2177  * jbd2_journal_invalidatepage
2178  *
2179  * This code is tricky.  It has a number of cases to deal with.
2180  *
2181  * There are two invariants which this code relies on:
2182  *
2183  * i_size must be updated on disk before we start calling invalidatepage on the
2184  * data.
2185  *
2186  *  This is done in ext3 by defining an ext3_setattr method which
2187  *  updates i_size before truncate gets going.  By maintaining this
2188  *  invariant, we can be sure that it is safe to throw away any buffers
2189  *  attached to the current transaction: once the transaction commits,
2190  *  we know that the data will not be needed.
2191  *
2192  *  Note however that we can *not* throw away data belonging to the
2193  *  previous, committing transaction!
2194  *
2195  * Any disk blocks which *are* part of the previous, committing
2196  * transaction (and which therefore cannot be discarded immediately) are
2197  * not going to be reused in the new running transaction
2198  *
2199  *  The bitmap committed_data images guarantee this: any block which is
2200  *  allocated in one transaction and removed in the next will be marked
2201  *  as in-use in the committed_data bitmap, so cannot be reused until
2202  *  the next transaction to delete the block commits.  This means that
2203  *  leaving committing buffers dirty is quite safe: the disk blocks
2204  *  cannot be reallocated to a different file and so buffer aliasing is
2205  *  not possible.
2206  *
2207  *
2208  * The above applies mainly to ordered data mode.  In writeback mode we
2209  * don't make guarantees about the order in which data hits disk --- in
2210  * particular we don't guarantee that new dirty data is flushed before
2211  * transaction commit --- so it is always safe just to discard data
2212  * immediately in that mode.  --sct
2213  */
2214 
2215 /*
2216  * The journal_unmap_buffer helper function returns zero if the buffer
2217  * concerned remains pinned as an anonymous buffer belonging to an older
2218  * transaction.
2219  *
2220  * We're outside-transaction here.  Either or both of j_running_transaction
2221  * and j_committing_transaction may be NULL.
2222  */
2223 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2224 				int partial_page)
2225 {
2226 	transaction_t *transaction;
2227 	struct journal_head *jh;
2228 	int may_free = 1;
2229 
2230 	BUFFER_TRACE(bh, "entry");
2231 
2232 	/*
2233 	 * It is safe to proceed here without the j_list_lock because the
2234 	 * buffers cannot be stolen by try_to_free_buffers as long as we are
2235 	 * holding the page lock. --sct
2236 	 */
2237 
2238 	jh = jbd2_journal_grab_journal_head(bh);
2239 	if (!jh)
2240 		goto zap_buffer_unlocked;
2241 
2242 	/* OK, we have data buffer in journaled mode */
2243 	write_lock(&journal->j_state_lock);
2244 	spin_lock(&jh->b_state_lock);
2245 	spin_lock(&journal->j_list_lock);
2246 
2247 	/*
2248 	 * We cannot remove the buffer from checkpoint lists until the
2249 	 * transaction adding inode to orphan list (let's call it T)
2250 	 * is committed.  Otherwise if the transaction changing the
2251 	 * buffer would be cleaned from the journal before T is
2252 	 * committed, a crash will cause that the correct contents of
2253 	 * the buffer will be lost.  On the other hand we have to
2254 	 * clear the buffer dirty bit at latest at the moment when the
2255 	 * transaction marking the buffer as freed in the filesystem
2256 	 * structures is committed because from that moment on the
2257 	 * block can be reallocated and used by a different page.
2258 	 * Since the block hasn't been freed yet but the inode has
2259 	 * already been added to orphan list, it is safe for us to add
2260 	 * the buffer to BJ_Forget list of the newest transaction.
2261 	 *
2262 	 * Also we have to clear buffer_mapped flag of a truncated buffer
2263 	 * because the buffer_head may be attached to the page straddling
2264 	 * i_size (can happen only when blocksize < pagesize) and thus the
2265 	 * buffer_head can be reused when the file is extended again. So we end
2266 	 * up keeping around invalidated buffers attached to transactions'
2267 	 * BJ_Forget list just to stop checkpointing code from cleaning up
2268 	 * the transaction this buffer was modified in.
2269 	 */
2270 	transaction = jh->b_transaction;
2271 	if (transaction == NULL) {
2272 		/* First case: not on any transaction.  If it
2273 		 * has no checkpoint link, then we can zap it:
2274 		 * it's a writeback-mode buffer so we don't care
2275 		 * if it hits disk safely. */
2276 		if (!jh->b_cp_transaction) {
2277 			JBUFFER_TRACE(jh, "not on any transaction: zap");
2278 			goto zap_buffer;
2279 		}
2280 
2281 		if (!buffer_dirty(bh)) {
2282 			/* bdflush has written it.  We can drop it now */
2283 			__jbd2_journal_remove_checkpoint(jh);
2284 			goto zap_buffer;
2285 		}
2286 
2287 		/* OK, it must be in the journal but still not
2288 		 * written fully to disk: it's metadata or
2289 		 * journaled data... */
2290 
2291 		if (journal->j_running_transaction) {
2292 			/* ... and once the current transaction has
2293 			 * committed, the buffer won't be needed any
2294 			 * longer. */
2295 			JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2296 			may_free = __dispose_buffer(jh,
2297 					journal->j_running_transaction);
2298 			goto zap_buffer;
2299 		} else {
2300 			/* There is no currently-running transaction. So the
2301 			 * orphan record which we wrote for this file must have
2302 			 * passed into commit.  We must attach this buffer to
2303 			 * the committing transaction, if it exists. */
2304 			if (journal->j_committing_transaction) {
2305 				JBUFFER_TRACE(jh, "give to committing trans");
2306 				may_free = __dispose_buffer(jh,
2307 					journal->j_committing_transaction);
2308 				goto zap_buffer;
2309 			} else {
2310 				/* The orphan record's transaction has
2311 				 * committed.  We can cleanse this buffer */
2312 				clear_buffer_jbddirty(bh);
2313 				__jbd2_journal_remove_checkpoint(jh);
2314 				goto zap_buffer;
2315 			}
2316 		}
2317 	} else if (transaction == journal->j_committing_transaction) {
2318 		JBUFFER_TRACE(jh, "on committing transaction");
2319 		/*
2320 		 * The buffer is committing, we simply cannot touch
2321 		 * it. If the page is straddling i_size we have to wait
2322 		 * for commit and try again.
2323 		 */
2324 		if (partial_page) {
2325 			spin_unlock(&journal->j_list_lock);
2326 			spin_unlock(&jh->b_state_lock);
2327 			write_unlock(&journal->j_state_lock);
2328 			jbd2_journal_put_journal_head(jh);
2329 			return -EBUSY;
2330 		}
2331 		/*
2332 		 * OK, buffer won't be reachable after truncate. We just set
2333 		 * j_next_transaction to the running transaction (if there is
2334 		 * one) and mark buffer as freed so that commit code knows it
2335 		 * should clear dirty bits when it is done with the buffer.
2336 		 */
2337 		set_buffer_freed(bh);
2338 		if (journal->j_running_transaction && buffer_jbddirty(bh))
2339 			jh->b_next_transaction = journal->j_running_transaction;
2340 		spin_unlock(&journal->j_list_lock);
2341 		spin_unlock(&jh->b_state_lock);
2342 		write_unlock(&journal->j_state_lock);
2343 		jbd2_journal_put_journal_head(jh);
2344 		return 0;
2345 	} else {
2346 		/* Good, the buffer belongs to the running transaction.
2347 		 * We are writing our own transaction's data, not any
2348 		 * previous one's, so it is safe to throw it away
2349 		 * (remember that we expect the filesystem to have set
2350 		 * i_size already for this truncate so recovery will not
2351 		 * expose the disk blocks we are discarding here.) */
2352 		J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2353 		JBUFFER_TRACE(jh, "on running transaction");
2354 		may_free = __dispose_buffer(jh, transaction);
2355 	}
2356 
2357 zap_buffer:
2358 	/*
2359 	 * This is tricky. Although the buffer is truncated, it may be reused
2360 	 * if blocksize < pagesize and it is attached to the page straddling
2361 	 * EOF. Since the buffer might have been added to BJ_Forget list of the
2362 	 * running transaction, journal_get_write_access() won't clear
2363 	 * b_modified and credit accounting gets confused. So clear b_modified
2364 	 * here.
2365 	 */
2366 	jh->b_modified = 0;
2367 	spin_unlock(&journal->j_list_lock);
2368 	spin_unlock(&jh->b_state_lock);
2369 	write_unlock(&journal->j_state_lock);
2370 	jbd2_journal_put_journal_head(jh);
2371 zap_buffer_unlocked:
2372 	clear_buffer_dirty(bh);
2373 	J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2374 	clear_buffer_mapped(bh);
2375 	clear_buffer_req(bh);
2376 	clear_buffer_new(bh);
2377 	clear_buffer_delay(bh);
2378 	clear_buffer_unwritten(bh);
2379 	bh->b_bdev = NULL;
2380 	return may_free;
2381 }
2382 
2383 /**
2384  * void jbd2_journal_invalidatepage()
2385  * @journal: journal to use for flush...
2386  * @page:    page to flush
2387  * @offset:  start of the range to invalidate
2388  * @length:  length of the range to invalidate
2389  *
2390  * Reap page buffers containing data after in the specified range in page.
2391  * Can return -EBUSY if buffers are part of the committing transaction and
2392  * the page is straddling i_size. Caller then has to wait for current commit
2393  * and try again.
2394  */
2395 int jbd2_journal_invalidatepage(journal_t *journal,
2396 				struct page *page,
2397 				unsigned int offset,
2398 				unsigned int length)
2399 {
2400 	struct buffer_head *head, *bh, *next;
2401 	unsigned int stop = offset + length;
2402 	unsigned int curr_off = 0;
2403 	int partial_page = (offset || length < PAGE_SIZE);
2404 	int may_free = 1;
2405 	int ret = 0;
2406 
2407 	if (!PageLocked(page))
2408 		BUG();
2409 	if (!page_has_buffers(page))
2410 		return 0;
2411 
2412 	BUG_ON(stop > PAGE_SIZE || stop < length);
2413 
2414 	/* We will potentially be playing with lists other than just the
2415 	 * data lists (especially for journaled data mode), so be
2416 	 * cautious in our locking. */
2417 
2418 	head = bh = page_buffers(page);
2419 	do {
2420 		unsigned int next_off = curr_off + bh->b_size;
2421 		next = bh->b_this_page;
2422 
2423 		if (next_off > stop)
2424 			return 0;
2425 
2426 		if (offset <= curr_off) {
2427 			/* This block is wholly outside the truncation point */
2428 			lock_buffer(bh);
2429 			ret = journal_unmap_buffer(journal, bh, partial_page);
2430 			unlock_buffer(bh);
2431 			if (ret < 0)
2432 				return ret;
2433 			may_free &= ret;
2434 		}
2435 		curr_off = next_off;
2436 		bh = next;
2437 
2438 	} while (bh != head);
2439 
2440 	if (!partial_page) {
2441 		if (may_free && try_to_free_buffers(page))
2442 			J_ASSERT(!page_has_buffers(page));
2443 	}
2444 	return 0;
2445 }
2446 
2447 /*
2448  * File a buffer on the given transaction list.
2449  */
2450 void __jbd2_journal_file_buffer(struct journal_head *jh,
2451 			transaction_t *transaction, int jlist)
2452 {
2453 	struct journal_head **list = NULL;
2454 	int was_dirty = 0;
2455 	struct buffer_head *bh = jh2bh(jh);
2456 
2457 	lockdep_assert_held(&jh->b_state_lock);
2458 	assert_spin_locked(&transaction->t_journal->j_list_lock);
2459 
2460 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2461 	J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2462 				jh->b_transaction == NULL);
2463 
2464 	if (jh->b_transaction && jh->b_jlist == jlist)
2465 		return;
2466 
2467 	if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2468 	    jlist == BJ_Shadow || jlist == BJ_Forget) {
2469 		/*
2470 		 * For metadata buffers, we track dirty bit in buffer_jbddirty
2471 		 * instead of buffer_dirty. We should not see a dirty bit set
2472 		 * here because we clear it in do_get_write_access but e.g.
2473 		 * tune2fs can modify the sb and set the dirty bit at any time
2474 		 * so we try to gracefully handle that.
2475 		 */
2476 		if (buffer_dirty(bh))
2477 			warn_dirty_buffer(bh);
2478 		if (test_clear_buffer_dirty(bh) ||
2479 		    test_clear_buffer_jbddirty(bh))
2480 			was_dirty = 1;
2481 	}
2482 
2483 	if (jh->b_transaction)
2484 		__jbd2_journal_temp_unlink_buffer(jh);
2485 	else
2486 		jbd2_journal_grab_journal_head(bh);
2487 	jh->b_transaction = transaction;
2488 
2489 	switch (jlist) {
2490 	case BJ_None:
2491 		J_ASSERT_JH(jh, !jh->b_committed_data);
2492 		J_ASSERT_JH(jh, !jh->b_frozen_data);
2493 		return;
2494 	case BJ_Metadata:
2495 		transaction->t_nr_buffers++;
2496 		list = &transaction->t_buffers;
2497 		break;
2498 	case BJ_Forget:
2499 		list = &transaction->t_forget;
2500 		break;
2501 	case BJ_Shadow:
2502 		list = &transaction->t_shadow_list;
2503 		break;
2504 	case BJ_Reserved:
2505 		list = &transaction->t_reserved_list;
2506 		break;
2507 	}
2508 
2509 	__blist_add_buffer(list, jh);
2510 	jh->b_jlist = jlist;
2511 
2512 	if (was_dirty)
2513 		set_buffer_jbddirty(bh);
2514 }
2515 
2516 void jbd2_journal_file_buffer(struct journal_head *jh,
2517 				transaction_t *transaction, int jlist)
2518 {
2519 	spin_lock(&jh->b_state_lock);
2520 	spin_lock(&transaction->t_journal->j_list_lock);
2521 	__jbd2_journal_file_buffer(jh, transaction, jlist);
2522 	spin_unlock(&transaction->t_journal->j_list_lock);
2523 	spin_unlock(&jh->b_state_lock);
2524 }
2525 
2526 /*
2527  * Remove a buffer from its current buffer list in preparation for
2528  * dropping it from its current transaction entirely.  If the buffer has
2529  * already started to be used by a subsequent transaction, refile the
2530  * buffer on that transaction's metadata list.
2531  *
2532  * Called under j_list_lock
2533  * Called under jh->b_state_lock
2534  *
2535  * When this function returns true, there's no next transaction to refile to
2536  * and the caller has to drop jh reference through
2537  * jbd2_journal_put_journal_head().
2538  */
2539 bool __jbd2_journal_refile_buffer(struct journal_head *jh)
2540 {
2541 	int was_dirty, jlist;
2542 	struct buffer_head *bh = jh2bh(jh);
2543 
2544 	lockdep_assert_held(&jh->b_state_lock);
2545 	if (jh->b_transaction)
2546 		assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2547 
2548 	/* If the buffer is now unused, just drop it. */
2549 	if (jh->b_next_transaction == NULL) {
2550 		__jbd2_journal_unfile_buffer(jh);
2551 		return true;
2552 	}
2553 
2554 	/*
2555 	 * It has been modified by a later transaction: add it to the new
2556 	 * transaction's metadata list.
2557 	 */
2558 
2559 	was_dirty = test_clear_buffer_jbddirty(bh);
2560 	__jbd2_journal_temp_unlink_buffer(jh);
2561 	/*
2562 	 * We set b_transaction here because b_next_transaction will inherit
2563 	 * our jh reference and thus __jbd2_journal_file_buffer() must not
2564 	 * take a new one.
2565 	 */
2566 	jh->b_transaction = jh->b_next_transaction;
2567 	jh->b_next_transaction = NULL;
2568 	if (buffer_freed(bh))
2569 		jlist = BJ_Forget;
2570 	else if (jh->b_modified)
2571 		jlist = BJ_Metadata;
2572 	else
2573 		jlist = BJ_Reserved;
2574 	__jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2575 	J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2576 
2577 	if (was_dirty)
2578 		set_buffer_jbddirty(bh);
2579 	return false;
2580 }
2581 
2582 /*
2583  * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2584  * bh reference so that we can safely unlock bh.
2585  *
2586  * The jh and bh may be freed by this call.
2587  */
2588 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2589 {
2590 	bool drop;
2591 
2592 	spin_lock(&jh->b_state_lock);
2593 	spin_lock(&journal->j_list_lock);
2594 	drop = __jbd2_journal_refile_buffer(jh);
2595 	spin_unlock(&jh->b_state_lock);
2596 	spin_unlock(&journal->j_list_lock);
2597 	if (drop)
2598 		jbd2_journal_put_journal_head(jh);
2599 }
2600 
2601 /*
2602  * File inode in the inode list of the handle's transaction
2603  */
2604 static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode,
2605 		unsigned long flags, loff_t start_byte, loff_t end_byte)
2606 {
2607 	transaction_t *transaction = handle->h_transaction;
2608 	journal_t *journal;
2609 
2610 	if (is_handle_aborted(handle))
2611 		return -EROFS;
2612 	journal = transaction->t_journal;
2613 
2614 	jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2615 			transaction->t_tid);
2616 
2617 	spin_lock(&journal->j_list_lock);
2618 	jinode->i_flags |= flags;
2619 
2620 	if (jinode->i_dirty_end) {
2621 		jinode->i_dirty_start = min(jinode->i_dirty_start, start_byte);
2622 		jinode->i_dirty_end = max(jinode->i_dirty_end, end_byte);
2623 	} else {
2624 		jinode->i_dirty_start = start_byte;
2625 		jinode->i_dirty_end = end_byte;
2626 	}
2627 
2628 	/* Is inode already attached where we need it? */
2629 	if (jinode->i_transaction == transaction ||
2630 	    jinode->i_next_transaction == transaction)
2631 		goto done;
2632 
2633 	/*
2634 	 * We only ever set this variable to 1 so the test is safe. Since
2635 	 * t_need_data_flush is likely to be set, we do the test to save some
2636 	 * cacheline bouncing
2637 	 */
2638 	if (!transaction->t_need_data_flush)
2639 		transaction->t_need_data_flush = 1;
2640 	/* On some different transaction's list - should be
2641 	 * the committing one */
2642 	if (jinode->i_transaction) {
2643 		J_ASSERT(jinode->i_next_transaction == NULL);
2644 		J_ASSERT(jinode->i_transaction ==
2645 					journal->j_committing_transaction);
2646 		jinode->i_next_transaction = transaction;
2647 		goto done;
2648 	}
2649 	/* Not on any transaction list... */
2650 	J_ASSERT(!jinode->i_next_transaction);
2651 	jinode->i_transaction = transaction;
2652 	list_add(&jinode->i_list, &transaction->t_inode_list);
2653 done:
2654 	spin_unlock(&journal->j_list_lock);
2655 
2656 	return 0;
2657 }
2658 
2659 int jbd2_journal_inode_ranged_write(handle_t *handle,
2660 		struct jbd2_inode *jinode, loff_t start_byte, loff_t length)
2661 {
2662 	return jbd2_journal_file_inode(handle, jinode,
2663 			JI_WRITE_DATA | JI_WAIT_DATA, start_byte,
2664 			start_byte + length - 1);
2665 }
2666 
2667 int jbd2_journal_inode_ranged_wait(handle_t *handle, struct jbd2_inode *jinode,
2668 		loff_t start_byte, loff_t length)
2669 {
2670 	return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA,
2671 			start_byte, start_byte + length - 1);
2672 }
2673 
2674 /*
2675  * File truncate and transaction commit interact with each other in a
2676  * non-trivial way.  If a transaction writing data block A is
2677  * committing, we cannot discard the data by truncate until we have
2678  * written them.  Otherwise if we crashed after the transaction with
2679  * write has committed but before the transaction with truncate has
2680  * committed, we could see stale data in block A.  This function is a
2681  * helper to solve this problem.  It starts writeout of the truncated
2682  * part in case it is in the committing transaction.
2683  *
2684  * Filesystem code must call this function when inode is journaled in
2685  * ordered mode before truncation happens and after the inode has been
2686  * placed on orphan list with the new inode size. The second condition
2687  * avoids the race that someone writes new data and we start
2688  * committing the transaction after this function has been called but
2689  * before a transaction for truncate is started (and furthermore it
2690  * allows us to optimize the case where the addition to orphan list
2691  * happens in the same transaction as write --- we don't have to write
2692  * any data in such case).
2693  */
2694 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2695 					struct jbd2_inode *jinode,
2696 					loff_t new_size)
2697 {
2698 	transaction_t *inode_trans, *commit_trans;
2699 	int ret = 0;
2700 
2701 	/* This is a quick check to avoid locking if not necessary */
2702 	if (!jinode->i_transaction)
2703 		goto out;
2704 	/* Locks are here just to force reading of recent values, it is
2705 	 * enough that the transaction was not committing before we started
2706 	 * a transaction adding the inode to orphan list */
2707 	read_lock(&journal->j_state_lock);
2708 	commit_trans = journal->j_committing_transaction;
2709 	read_unlock(&journal->j_state_lock);
2710 	spin_lock(&journal->j_list_lock);
2711 	inode_trans = jinode->i_transaction;
2712 	spin_unlock(&journal->j_list_lock);
2713 	if (inode_trans == commit_trans) {
2714 		ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2715 			new_size, LLONG_MAX);
2716 		if (ret)
2717 			jbd2_journal_abort(journal, ret);
2718 	}
2719 out:
2720 	return ret;
2721 }
2722