1 /* 2 * linux/fs/jbd2/transaction.c 3 * 4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 5 * 6 * Copyright 1998 Red Hat corp --- All Rights Reserved 7 * 8 * This file is part of the Linux kernel and is made available under 9 * the terms of the GNU General Public License, version 2, or at your 10 * option, any later version, incorporated herein by reference. 11 * 12 * Generic filesystem transaction handling code; part of the ext2fs 13 * journaling system. 14 * 15 * This file manages transactions (compound commits managed by the 16 * journaling code) and handles (individual atomic operations by the 17 * filesystem). 18 */ 19 20 #include <linux/time.h> 21 #include <linux/fs.h> 22 #include <linux/jbd2.h> 23 #include <linux/errno.h> 24 #include <linux/slab.h> 25 #include <linux/timer.h> 26 #include <linux/mm.h> 27 #include <linux/highmem.h> 28 #include <linux/hrtimer.h> 29 #include <linux/backing-dev.h> 30 #include <linux/bug.h> 31 #include <linux/module.h> 32 33 #include <trace/events/jbd2.h> 34 35 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh); 36 static void __jbd2_journal_unfile_buffer(struct journal_head *jh); 37 38 static struct kmem_cache *transaction_cache; 39 int __init jbd2_journal_init_transaction_cache(void) 40 { 41 J_ASSERT(!transaction_cache); 42 transaction_cache = kmem_cache_create("jbd2_transaction_s", 43 sizeof(transaction_t), 44 0, 45 SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY, 46 NULL); 47 if (transaction_cache) 48 return 0; 49 return -ENOMEM; 50 } 51 52 void jbd2_journal_destroy_transaction_cache(void) 53 { 54 if (transaction_cache) { 55 kmem_cache_destroy(transaction_cache); 56 transaction_cache = NULL; 57 } 58 } 59 60 void jbd2_journal_free_transaction(transaction_t *transaction) 61 { 62 if (unlikely(ZERO_OR_NULL_PTR(transaction))) 63 return; 64 kmem_cache_free(transaction_cache, transaction); 65 } 66 67 /* 68 * jbd2_get_transaction: obtain a new transaction_t object. 69 * 70 * Simply allocate and initialise a new transaction. Create it in 71 * RUNNING state and add it to the current journal (which should not 72 * have an existing running transaction: we only make a new transaction 73 * once we have started to commit the old one). 74 * 75 * Preconditions: 76 * The journal MUST be locked. We don't perform atomic mallocs on the 77 * new transaction and we can't block without protecting against other 78 * processes trying to touch the journal while it is in transition. 79 * 80 */ 81 82 static transaction_t * 83 jbd2_get_transaction(journal_t *journal, transaction_t *transaction) 84 { 85 transaction->t_journal = journal; 86 transaction->t_state = T_RUNNING; 87 transaction->t_start_time = ktime_get(); 88 transaction->t_tid = journal->j_transaction_sequence++; 89 transaction->t_expires = jiffies + journal->j_commit_interval; 90 spin_lock_init(&transaction->t_handle_lock); 91 atomic_set(&transaction->t_updates, 0); 92 atomic_set(&transaction->t_outstanding_credits, 0); 93 atomic_set(&transaction->t_handle_count, 0); 94 INIT_LIST_HEAD(&transaction->t_inode_list); 95 INIT_LIST_HEAD(&transaction->t_private_list); 96 97 /* Set up the commit timer for the new transaction. */ 98 journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires); 99 add_timer(&journal->j_commit_timer); 100 101 J_ASSERT(journal->j_running_transaction == NULL); 102 journal->j_running_transaction = transaction; 103 transaction->t_max_wait = 0; 104 transaction->t_start = jiffies; 105 transaction->t_requested = 0; 106 107 return transaction; 108 } 109 110 /* 111 * Handle management. 112 * 113 * A handle_t is an object which represents a single atomic update to a 114 * filesystem, and which tracks all of the modifications which form part 115 * of that one update. 116 */ 117 118 /* 119 * Update transaction's maximum wait time, if debugging is enabled. 120 * 121 * In order for t_max_wait to be reliable, it must be protected by a 122 * lock. But doing so will mean that start_this_handle() can not be 123 * run in parallel on SMP systems, which limits our scalability. So 124 * unless debugging is enabled, we no longer update t_max_wait, which 125 * means that maximum wait time reported by the jbd2_run_stats 126 * tracepoint will always be zero. 127 */ 128 static inline void update_t_max_wait(transaction_t *transaction, 129 unsigned long ts) 130 { 131 #ifdef CONFIG_JBD2_DEBUG 132 if (jbd2_journal_enable_debug && 133 time_after(transaction->t_start, ts)) { 134 ts = jbd2_time_diff(ts, transaction->t_start); 135 spin_lock(&transaction->t_handle_lock); 136 if (ts > transaction->t_max_wait) 137 transaction->t_max_wait = ts; 138 spin_unlock(&transaction->t_handle_lock); 139 } 140 #endif 141 } 142 143 /* 144 * start_this_handle: Given a handle, deal with any locking or stalling 145 * needed to make sure that there is enough journal space for the handle 146 * to begin. Attach the handle to a transaction and set up the 147 * transaction's buffer credits. 148 */ 149 150 static int start_this_handle(journal_t *journal, handle_t *handle, 151 gfp_t gfp_mask) 152 { 153 transaction_t *transaction, *new_transaction = NULL; 154 tid_t tid; 155 int needed, need_to_start; 156 int nblocks = handle->h_buffer_credits; 157 unsigned long ts = jiffies; 158 159 if (nblocks > journal->j_max_transaction_buffers) { 160 printk(KERN_ERR "JBD2: %s wants too many credits (%d > %d)\n", 161 current->comm, nblocks, 162 journal->j_max_transaction_buffers); 163 return -ENOSPC; 164 } 165 166 alloc_transaction: 167 if (!journal->j_running_transaction) { 168 new_transaction = kmem_cache_zalloc(transaction_cache, 169 gfp_mask); 170 if (!new_transaction) { 171 /* 172 * If __GFP_FS is not present, then we may be 173 * being called from inside the fs writeback 174 * layer, so we MUST NOT fail. Since 175 * __GFP_NOFAIL is going away, we will arrange 176 * to retry the allocation ourselves. 177 */ 178 if ((gfp_mask & __GFP_FS) == 0) { 179 congestion_wait(BLK_RW_ASYNC, HZ/50); 180 goto alloc_transaction; 181 } 182 return -ENOMEM; 183 } 184 } 185 186 jbd_debug(3, "New handle %p going live.\n", handle); 187 188 /* 189 * We need to hold j_state_lock until t_updates has been incremented, 190 * for proper journal barrier handling 191 */ 192 repeat: 193 read_lock(&journal->j_state_lock); 194 BUG_ON(journal->j_flags & JBD2_UNMOUNT); 195 if (is_journal_aborted(journal) || 196 (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) { 197 read_unlock(&journal->j_state_lock); 198 jbd2_journal_free_transaction(new_transaction); 199 return -EROFS; 200 } 201 202 /* Wait on the journal's transaction barrier if necessary */ 203 if (journal->j_barrier_count) { 204 read_unlock(&journal->j_state_lock); 205 wait_event(journal->j_wait_transaction_locked, 206 journal->j_barrier_count == 0); 207 goto repeat; 208 } 209 210 if (!journal->j_running_transaction) { 211 read_unlock(&journal->j_state_lock); 212 if (!new_transaction) 213 goto alloc_transaction; 214 write_lock(&journal->j_state_lock); 215 if (!journal->j_running_transaction && 216 !journal->j_barrier_count) { 217 jbd2_get_transaction(journal, new_transaction); 218 new_transaction = NULL; 219 } 220 write_unlock(&journal->j_state_lock); 221 goto repeat; 222 } 223 224 transaction = journal->j_running_transaction; 225 226 /* 227 * If the current transaction is locked down for commit, wait for the 228 * lock to be released. 229 */ 230 if (transaction->t_state == T_LOCKED) { 231 DEFINE_WAIT(wait); 232 233 prepare_to_wait(&journal->j_wait_transaction_locked, 234 &wait, TASK_UNINTERRUPTIBLE); 235 read_unlock(&journal->j_state_lock); 236 schedule(); 237 finish_wait(&journal->j_wait_transaction_locked, &wait); 238 goto repeat; 239 } 240 241 /* 242 * If there is not enough space left in the log to write all potential 243 * buffers requested by this operation, we need to stall pending a log 244 * checkpoint to free some more log space. 245 */ 246 needed = atomic_add_return(nblocks, 247 &transaction->t_outstanding_credits); 248 249 if (needed > journal->j_max_transaction_buffers) { 250 /* 251 * If the current transaction is already too large, then start 252 * to commit it: we can then go back and attach this handle to 253 * a new transaction. 254 */ 255 DEFINE_WAIT(wait); 256 257 jbd_debug(2, "Handle %p starting new commit...\n", handle); 258 atomic_sub(nblocks, &transaction->t_outstanding_credits); 259 prepare_to_wait(&journal->j_wait_transaction_locked, &wait, 260 TASK_UNINTERRUPTIBLE); 261 tid = transaction->t_tid; 262 need_to_start = !tid_geq(journal->j_commit_request, tid); 263 read_unlock(&journal->j_state_lock); 264 if (need_to_start) 265 jbd2_log_start_commit(journal, tid); 266 schedule(); 267 finish_wait(&journal->j_wait_transaction_locked, &wait); 268 goto repeat; 269 } 270 271 /* 272 * The commit code assumes that it can get enough log space 273 * without forcing a checkpoint. This is *critical* for 274 * correctness: a checkpoint of a buffer which is also 275 * associated with a committing transaction creates a deadlock, 276 * so commit simply cannot force through checkpoints. 277 * 278 * We must therefore ensure the necessary space in the journal 279 * *before* starting to dirty potentially checkpointed buffers 280 * in the new transaction. 281 * 282 * The worst part is, any transaction currently committing can 283 * reduce the free space arbitrarily. Be careful to account for 284 * those buffers when checkpointing. 285 */ 286 287 /* 288 * @@@ AKPM: This seems rather over-defensive. We're giving commit 289 * a _lot_ of headroom: 1/4 of the journal plus the size of 290 * the committing transaction. Really, we only need to give it 291 * committing_transaction->t_outstanding_credits plus "enough" for 292 * the log control blocks. 293 * Also, this test is inconsistent with the matching one in 294 * jbd2_journal_extend(). 295 */ 296 if (__jbd2_log_space_left(journal) < jbd_space_needed(journal)) { 297 jbd_debug(2, "Handle %p waiting for checkpoint...\n", handle); 298 atomic_sub(nblocks, &transaction->t_outstanding_credits); 299 read_unlock(&journal->j_state_lock); 300 write_lock(&journal->j_state_lock); 301 if (__jbd2_log_space_left(journal) < jbd_space_needed(journal)) 302 __jbd2_log_wait_for_space(journal); 303 write_unlock(&journal->j_state_lock); 304 goto repeat; 305 } 306 307 /* OK, account for the buffers that this operation expects to 308 * use and add the handle to the running transaction. 309 */ 310 update_t_max_wait(transaction, ts); 311 handle->h_transaction = transaction; 312 handle->h_requested_credits = nblocks; 313 handle->h_start_jiffies = jiffies; 314 atomic_inc(&transaction->t_updates); 315 atomic_inc(&transaction->t_handle_count); 316 jbd_debug(4, "Handle %p given %d credits (total %d, free %d)\n", 317 handle, nblocks, 318 atomic_read(&transaction->t_outstanding_credits), 319 __jbd2_log_space_left(journal)); 320 read_unlock(&journal->j_state_lock); 321 322 lock_map_acquire(&handle->h_lockdep_map); 323 jbd2_journal_free_transaction(new_transaction); 324 return 0; 325 } 326 327 static struct lock_class_key jbd2_handle_key; 328 329 /* Allocate a new handle. This should probably be in a slab... */ 330 static handle_t *new_handle(int nblocks) 331 { 332 handle_t *handle = jbd2_alloc_handle(GFP_NOFS); 333 if (!handle) 334 return NULL; 335 memset(handle, 0, sizeof(*handle)); 336 handle->h_buffer_credits = nblocks; 337 handle->h_ref = 1; 338 339 lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle", 340 &jbd2_handle_key, 0); 341 342 return handle; 343 } 344 345 /** 346 * handle_t *jbd2_journal_start() - Obtain a new handle. 347 * @journal: Journal to start transaction on. 348 * @nblocks: number of block buffer we might modify 349 * 350 * We make sure that the transaction can guarantee at least nblocks of 351 * modified buffers in the log. We block until the log can guarantee 352 * that much space. 353 * 354 * This function is visible to journal users (like ext3fs), so is not 355 * called with the journal already locked. 356 * 357 * Return a pointer to a newly allocated handle, or an ERR_PTR() value 358 * on failure. 359 */ 360 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, gfp_t gfp_mask, 361 unsigned int type, unsigned int line_no) 362 { 363 handle_t *handle = journal_current_handle(); 364 int err; 365 366 if (!journal) 367 return ERR_PTR(-EROFS); 368 369 if (handle) { 370 J_ASSERT(handle->h_transaction->t_journal == journal); 371 handle->h_ref++; 372 return handle; 373 } 374 375 handle = new_handle(nblocks); 376 if (!handle) 377 return ERR_PTR(-ENOMEM); 378 379 current->journal_info = handle; 380 381 err = start_this_handle(journal, handle, gfp_mask); 382 if (err < 0) { 383 jbd2_free_handle(handle); 384 current->journal_info = NULL; 385 return ERR_PTR(err); 386 } 387 handle->h_type = type; 388 handle->h_line_no = line_no; 389 trace_jbd2_handle_start(journal->j_fs_dev->bd_dev, 390 handle->h_transaction->t_tid, type, 391 line_no, nblocks); 392 return handle; 393 } 394 EXPORT_SYMBOL(jbd2__journal_start); 395 396 397 handle_t *jbd2_journal_start(journal_t *journal, int nblocks) 398 { 399 return jbd2__journal_start(journal, nblocks, GFP_NOFS, 0, 0); 400 } 401 EXPORT_SYMBOL(jbd2_journal_start); 402 403 404 /** 405 * int jbd2_journal_extend() - extend buffer credits. 406 * @handle: handle to 'extend' 407 * @nblocks: nr blocks to try to extend by. 408 * 409 * Some transactions, such as large extends and truncates, can be done 410 * atomically all at once or in several stages. The operation requests 411 * a credit for a number of buffer modications in advance, but can 412 * extend its credit if it needs more. 413 * 414 * jbd2_journal_extend tries to give the running handle more buffer credits. 415 * It does not guarantee that allocation - this is a best-effort only. 416 * The calling process MUST be able to deal cleanly with a failure to 417 * extend here. 418 * 419 * Return 0 on success, non-zero on failure. 420 * 421 * return code < 0 implies an error 422 * return code > 0 implies normal transaction-full status. 423 */ 424 int jbd2_journal_extend(handle_t *handle, int nblocks) 425 { 426 transaction_t *transaction = handle->h_transaction; 427 journal_t *journal = transaction->t_journal; 428 int result; 429 int wanted; 430 431 result = -EIO; 432 if (is_handle_aborted(handle)) 433 goto out; 434 435 result = 1; 436 437 read_lock(&journal->j_state_lock); 438 439 /* Don't extend a locked-down transaction! */ 440 if (handle->h_transaction->t_state != T_RUNNING) { 441 jbd_debug(3, "denied handle %p %d blocks: " 442 "transaction not running\n", handle, nblocks); 443 goto error_out; 444 } 445 446 spin_lock(&transaction->t_handle_lock); 447 wanted = atomic_read(&transaction->t_outstanding_credits) + nblocks; 448 449 if (wanted > journal->j_max_transaction_buffers) { 450 jbd_debug(3, "denied handle %p %d blocks: " 451 "transaction too large\n", handle, nblocks); 452 goto unlock; 453 } 454 455 if (wanted > __jbd2_log_space_left(journal)) { 456 jbd_debug(3, "denied handle %p %d blocks: " 457 "insufficient log space\n", handle, nblocks); 458 goto unlock; 459 } 460 461 trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev, 462 handle->h_transaction->t_tid, 463 handle->h_type, handle->h_line_no, 464 handle->h_buffer_credits, 465 nblocks); 466 467 handle->h_buffer_credits += nblocks; 468 handle->h_requested_credits += nblocks; 469 atomic_add(nblocks, &transaction->t_outstanding_credits); 470 result = 0; 471 472 jbd_debug(3, "extended handle %p by %d\n", handle, nblocks); 473 unlock: 474 spin_unlock(&transaction->t_handle_lock); 475 error_out: 476 read_unlock(&journal->j_state_lock); 477 out: 478 return result; 479 } 480 481 482 /** 483 * int jbd2_journal_restart() - restart a handle . 484 * @handle: handle to restart 485 * @nblocks: nr credits requested 486 * 487 * Restart a handle for a multi-transaction filesystem 488 * operation. 489 * 490 * If the jbd2_journal_extend() call above fails to grant new buffer credits 491 * to a running handle, a call to jbd2_journal_restart will commit the 492 * handle's transaction so far and reattach the handle to a new 493 * transaction capabable of guaranteeing the requested number of 494 * credits. 495 */ 496 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask) 497 { 498 transaction_t *transaction = handle->h_transaction; 499 journal_t *journal = transaction->t_journal; 500 tid_t tid; 501 int need_to_start, ret; 502 503 /* If we've had an abort of any type, don't even think about 504 * actually doing the restart! */ 505 if (is_handle_aborted(handle)) 506 return 0; 507 508 /* 509 * First unlink the handle from its current transaction, and start the 510 * commit on that. 511 */ 512 J_ASSERT(atomic_read(&transaction->t_updates) > 0); 513 J_ASSERT(journal_current_handle() == handle); 514 515 read_lock(&journal->j_state_lock); 516 spin_lock(&transaction->t_handle_lock); 517 atomic_sub(handle->h_buffer_credits, 518 &transaction->t_outstanding_credits); 519 if (atomic_dec_and_test(&transaction->t_updates)) 520 wake_up(&journal->j_wait_updates); 521 spin_unlock(&transaction->t_handle_lock); 522 523 jbd_debug(2, "restarting handle %p\n", handle); 524 tid = transaction->t_tid; 525 need_to_start = !tid_geq(journal->j_commit_request, tid); 526 read_unlock(&journal->j_state_lock); 527 if (need_to_start) 528 jbd2_log_start_commit(journal, tid); 529 530 lock_map_release(&handle->h_lockdep_map); 531 handle->h_buffer_credits = nblocks; 532 ret = start_this_handle(journal, handle, gfp_mask); 533 return ret; 534 } 535 EXPORT_SYMBOL(jbd2__journal_restart); 536 537 538 int jbd2_journal_restart(handle_t *handle, int nblocks) 539 { 540 return jbd2__journal_restart(handle, nblocks, GFP_NOFS); 541 } 542 EXPORT_SYMBOL(jbd2_journal_restart); 543 544 /** 545 * void jbd2_journal_lock_updates () - establish a transaction barrier. 546 * @journal: Journal to establish a barrier on. 547 * 548 * This locks out any further updates from being started, and blocks 549 * until all existing updates have completed, returning only once the 550 * journal is in a quiescent state with no updates running. 551 * 552 * The journal lock should not be held on entry. 553 */ 554 void jbd2_journal_lock_updates(journal_t *journal) 555 { 556 DEFINE_WAIT(wait); 557 558 write_lock(&journal->j_state_lock); 559 ++journal->j_barrier_count; 560 561 /* Wait until there are no running updates */ 562 while (1) { 563 transaction_t *transaction = journal->j_running_transaction; 564 565 if (!transaction) 566 break; 567 568 spin_lock(&transaction->t_handle_lock); 569 prepare_to_wait(&journal->j_wait_updates, &wait, 570 TASK_UNINTERRUPTIBLE); 571 if (!atomic_read(&transaction->t_updates)) { 572 spin_unlock(&transaction->t_handle_lock); 573 finish_wait(&journal->j_wait_updates, &wait); 574 break; 575 } 576 spin_unlock(&transaction->t_handle_lock); 577 write_unlock(&journal->j_state_lock); 578 schedule(); 579 finish_wait(&journal->j_wait_updates, &wait); 580 write_lock(&journal->j_state_lock); 581 } 582 write_unlock(&journal->j_state_lock); 583 584 /* 585 * We have now established a barrier against other normal updates, but 586 * we also need to barrier against other jbd2_journal_lock_updates() calls 587 * to make sure that we serialise special journal-locked operations 588 * too. 589 */ 590 mutex_lock(&journal->j_barrier); 591 } 592 593 /** 594 * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier 595 * @journal: Journal to release the barrier on. 596 * 597 * Release a transaction barrier obtained with jbd2_journal_lock_updates(). 598 * 599 * Should be called without the journal lock held. 600 */ 601 void jbd2_journal_unlock_updates (journal_t *journal) 602 { 603 J_ASSERT(journal->j_barrier_count != 0); 604 605 mutex_unlock(&journal->j_barrier); 606 write_lock(&journal->j_state_lock); 607 --journal->j_barrier_count; 608 write_unlock(&journal->j_state_lock); 609 wake_up(&journal->j_wait_transaction_locked); 610 } 611 612 static void warn_dirty_buffer(struct buffer_head *bh) 613 { 614 char b[BDEVNAME_SIZE]; 615 616 printk(KERN_WARNING 617 "JBD2: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). " 618 "There's a risk of filesystem corruption in case of system " 619 "crash.\n", 620 bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr); 621 } 622 623 /* 624 * If the buffer is already part of the current transaction, then there 625 * is nothing we need to do. If it is already part of a prior 626 * transaction which we are still committing to disk, then we need to 627 * make sure that we do not overwrite the old copy: we do copy-out to 628 * preserve the copy going to disk. We also account the buffer against 629 * the handle's metadata buffer credits (unless the buffer is already 630 * part of the transaction, that is). 631 * 632 */ 633 static int 634 do_get_write_access(handle_t *handle, struct journal_head *jh, 635 int force_copy) 636 { 637 struct buffer_head *bh; 638 transaction_t *transaction; 639 journal_t *journal; 640 int error; 641 char *frozen_buffer = NULL; 642 int need_copy = 0; 643 644 if (is_handle_aborted(handle)) 645 return -EROFS; 646 647 transaction = handle->h_transaction; 648 journal = transaction->t_journal; 649 650 jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy); 651 652 JBUFFER_TRACE(jh, "entry"); 653 repeat: 654 bh = jh2bh(jh); 655 656 /* @@@ Need to check for errors here at some point. */ 657 658 lock_buffer(bh); 659 jbd_lock_bh_state(bh); 660 661 /* We now hold the buffer lock so it is safe to query the buffer 662 * state. Is the buffer dirty? 663 * 664 * If so, there are two possibilities. The buffer may be 665 * non-journaled, and undergoing a quite legitimate writeback. 666 * Otherwise, it is journaled, and we don't expect dirty buffers 667 * in that state (the buffers should be marked JBD_Dirty 668 * instead.) So either the IO is being done under our own 669 * control and this is a bug, or it's a third party IO such as 670 * dump(8) (which may leave the buffer scheduled for read --- 671 * ie. locked but not dirty) or tune2fs (which may actually have 672 * the buffer dirtied, ugh.) */ 673 674 if (buffer_dirty(bh)) { 675 /* 676 * First question: is this buffer already part of the current 677 * transaction or the existing committing transaction? 678 */ 679 if (jh->b_transaction) { 680 J_ASSERT_JH(jh, 681 jh->b_transaction == transaction || 682 jh->b_transaction == 683 journal->j_committing_transaction); 684 if (jh->b_next_transaction) 685 J_ASSERT_JH(jh, jh->b_next_transaction == 686 transaction); 687 warn_dirty_buffer(bh); 688 } 689 /* 690 * In any case we need to clean the dirty flag and we must 691 * do it under the buffer lock to be sure we don't race 692 * with running write-out. 693 */ 694 JBUFFER_TRACE(jh, "Journalling dirty buffer"); 695 clear_buffer_dirty(bh); 696 set_buffer_jbddirty(bh); 697 } 698 699 unlock_buffer(bh); 700 701 error = -EROFS; 702 if (is_handle_aborted(handle)) { 703 jbd_unlock_bh_state(bh); 704 goto out; 705 } 706 error = 0; 707 708 /* 709 * The buffer is already part of this transaction if b_transaction or 710 * b_next_transaction points to it 711 */ 712 if (jh->b_transaction == transaction || 713 jh->b_next_transaction == transaction) 714 goto done; 715 716 /* 717 * this is the first time this transaction is touching this buffer, 718 * reset the modified flag 719 */ 720 jh->b_modified = 0; 721 722 /* 723 * If there is already a copy-out version of this buffer, then we don't 724 * need to make another one 725 */ 726 if (jh->b_frozen_data) { 727 JBUFFER_TRACE(jh, "has frozen data"); 728 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 729 jh->b_next_transaction = transaction; 730 goto done; 731 } 732 733 /* Is there data here we need to preserve? */ 734 735 if (jh->b_transaction && jh->b_transaction != transaction) { 736 JBUFFER_TRACE(jh, "owned by older transaction"); 737 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 738 J_ASSERT_JH(jh, jh->b_transaction == 739 journal->j_committing_transaction); 740 741 /* There is one case we have to be very careful about. 742 * If the committing transaction is currently writing 743 * this buffer out to disk and has NOT made a copy-out, 744 * then we cannot modify the buffer contents at all 745 * right now. The essence of copy-out is that it is the 746 * extra copy, not the primary copy, which gets 747 * journaled. If the primary copy is already going to 748 * disk then we cannot do copy-out here. */ 749 750 if (jh->b_jlist == BJ_Shadow) { 751 DEFINE_WAIT_BIT(wait, &bh->b_state, BH_Unshadow); 752 wait_queue_head_t *wqh; 753 754 wqh = bit_waitqueue(&bh->b_state, BH_Unshadow); 755 756 JBUFFER_TRACE(jh, "on shadow: sleep"); 757 jbd_unlock_bh_state(bh); 758 /* commit wakes up all shadow buffers after IO */ 759 for ( ; ; ) { 760 prepare_to_wait(wqh, &wait.wait, 761 TASK_UNINTERRUPTIBLE); 762 if (jh->b_jlist != BJ_Shadow) 763 break; 764 schedule(); 765 } 766 finish_wait(wqh, &wait.wait); 767 goto repeat; 768 } 769 770 /* Only do the copy if the currently-owning transaction 771 * still needs it. If it is on the Forget list, the 772 * committing transaction is past that stage. The 773 * buffer had better remain locked during the kmalloc, 774 * but that should be true --- we hold the journal lock 775 * still and the buffer is already on the BUF_JOURNAL 776 * list so won't be flushed. 777 * 778 * Subtle point, though: if this is a get_undo_access, 779 * then we will be relying on the frozen_data to contain 780 * the new value of the committed_data record after the 781 * transaction, so we HAVE to force the frozen_data copy 782 * in that case. */ 783 784 if (jh->b_jlist != BJ_Forget || force_copy) { 785 JBUFFER_TRACE(jh, "generate frozen data"); 786 if (!frozen_buffer) { 787 JBUFFER_TRACE(jh, "allocate memory for buffer"); 788 jbd_unlock_bh_state(bh); 789 frozen_buffer = 790 jbd2_alloc(jh2bh(jh)->b_size, 791 GFP_NOFS); 792 if (!frozen_buffer) { 793 printk(KERN_EMERG 794 "%s: OOM for frozen_buffer\n", 795 __func__); 796 JBUFFER_TRACE(jh, "oom!"); 797 error = -ENOMEM; 798 jbd_lock_bh_state(bh); 799 goto done; 800 } 801 goto repeat; 802 } 803 jh->b_frozen_data = frozen_buffer; 804 frozen_buffer = NULL; 805 need_copy = 1; 806 } 807 jh->b_next_transaction = transaction; 808 } 809 810 811 /* 812 * Finally, if the buffer is not journaled right now, we need to make 813 * sure it doesn't get written to disk before the caller actually 814 * commits the new data 815 */ 816 if (!jh->b_transaction) { 817 JBUFFER_TRACE(jh, "no transaction"); 818 J_ASSERT_JH(jh, !jh->b_next_transaction); 819 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 820 spin_lock(&journal->j_list_lock); 821 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 822 spin_unlock(&journal->j_list_lock); 823 } 824 825 done: 826 if (need_copy) { 827 struct page *page; 828 int offset; 829 char *source; 830 831 J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)), 832 "Possible IO failure.\n"); 833 page = jh2bh(jh)->b_page; 834 offset = offset_in_page(jh2bh(jh)->b_data); 835 source = kmap_atomic(page); 836 /* Fire data frozen trigger just before we copy the data */ 837 jbd2_buffer_frozen_trigger(jh, source + offset, 838 jh->b_triggers); 839 memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size); 840 kunmap_atomic(source); 841 842 /* 843 * Now that the frozen data is saved off, we need to store 844 * any matching triggers. 845 */ 846 jh->b_frozen_triggers = jh->b_triggers; 847 } 848 jbd_unlock_bh_state(bh); 849 850 /* 851 * If we are about to journal a buffer, then any revoke pending on it is 852 * no longer valid 853 */ 854 jbd2_journal_cancel_revoke(handle, jh); 855 856 out: 857 if (unlikely(frozen_buffer)) /* It's usually NULL */ 858 jbd2_free(frozen_buffer, bh->b_size); 859 860 JBUFFER_TRACE(jh, "exit"); 861 return error; 862 } 863 864 /** 865 * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update. 866 * @handle: transaction to add buffer modifications to 867 * @bh: bh to be used for metadata writes 868 * 869 * Returns an error code or 0 on success. 870 * 871 * In full data journalling mode the buffer may be of type BJ_AsyncData, 872 * because we're write()ing a buffer which is also part of a shared mapping. 873 */ 874 875 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh) 876 { 877 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 878 int rc; 879 880 /* We do not want to get caught playing with fields which the 881 * log thread also manipulates. Make sure that the buffer 882 * completes any outstanding IO before proceeding. */ 883 rc = do_get_write_access(handle, jh, 0); 884 jbd2_journal_put_journal_head(jh); 885 return rc; 886 } 887 888 889 /* 890 * When the user wants to journal a newly created buffer_head 891 * (ie. getblk() returned a new buffer and we are going to populate it 892 * manually rather than reading off disk), then we need to keep the 893 * buffer_head locked until it has been completely filled with new 894 * data. In this case, we should be able to make the assertion that 895 * the bh is not already part of an existing transaction. 896 * 897 * The buffer should already be locked by the caller by this point. 898 * There is no lock ranking violation: it was a newly created, 899 * unlocked buffer beforehand. */ 900 901 /** 902 * int jbd2_journal_get_create_access () - notify intent to use newly created bh 903 * @handle: transaction to new buffer to 904 * @bh: new buffer. 905 * 906 * Call this if you create a new bh. 907 */ 908 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh) 909 { 910 transaction_t *transaction = handle->h_transaction; 911 journal_t *journal = transaction->t_journal; 912 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 913 int err; 914 915 jbd_debug(5, "journal_head %p\n", jh); 916 err = -EROFS; 917 if (is_handle_aborted(handle)) 918 goto out; 919 err = 0; 920 921 JBUFFER_TRACE(jh, "entry"); 922 /* 923 * The buffer may already belong to this transaction due to pre-zeroing 924 * in the filesystem's new_block code. It may also be on the previous, 925 * committing transaction's lists, but it HAS to be in Forget state in 926 * that case: the transaction must have deleted the buffer for it to be 927 * reused here. 928 */ 929 jbd_lock_bh_state(bh); 930 spin_lock(&journal->j_list_lock); 931 J_ASSERT_JH(jh, (jh->b_transaction == transaction || 932 jh->b_transaction == NULL || 933 (jh->b_transaction == journal->j_committing_transaction && 934 jh->b_jlist == BJ_Forget))); 935 936 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 937 J_ASSERT_JH(jh, buffer_locked(jh2bh(jh))); 938 939 if (jh->b_transaction == NULL) { 940 /* 941 * Previous jbd2_journal_forget() could have left the buffer 942 * with jbddirty bit set because it was being committed. When 943 * the commit finished, we've filed the buffer for 944 * checkpointing and marked it dirty. Now we are reallocating 945 * the buffer so the transaction freeing it must have 946 * committed and so it's safe to clear the dirty bit. 947 */ 948 clear_buffer_dirty(jh2bh(jh)); 949 /* first access by this transaction */ 950 jh->b_modified = 0; 951 952 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 953 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 954 } else if (jh->b_transaction == journal->j_committing_transaction) { 955 /* first access by this transaction */ 956 jh->b_modified = 0; 957 958 JBUFFER_TRACE(jh, "set next transaction"); 959 jh->b_next_transaction = transaction; 960 } 961 spin_unlock(&journal->j_list_lock); 962 jbd_unlock_bh_state(bh); 963 964 /* 965 * akpm: I added this. ext3_alloc_branch can pick up new indirect 966 * blocks which contain freed but then revoked metadata. We need 967 * to cancel the revoke in case we end up freeing it yet again 968 * and the reallocating as data - this would cause a second revoke, 969 * which hits an assertion error. 970 */ 971 JBUFFER_TRACE(jh, "cancelling revoke"); 972 jbd2_journal_cancel_revoke(handle, jh); 973 out: 974 jbd2_journal_put_journal_head(jh); 975 return err; 976 } 977 978 /** 979 * int jbd2_journal_get_undo_access() - Notify intent to modify metadata with 980 * non-rewindable consequences 981 * @handle: transaction 982 * @bh: buffer to undo 983 * 984 * Sometimes there is a need to distinguish between metadata which has 985 * been committed to disk and that which has not. The ext3fs code uses 986 * this for freeing and allocating space, we have to make sure that we 987 * do not reuse freed space until the deallocation has been committed, 988 * since if we overwrote that space we would make the delete 989 * un-rewindable in case of a crash. 990 * 991 * To deal with that, jbd2_journal_get_undo_access requests write access to a 992 * buffer for parts of non-rewindable operations such as delete 993 * operations on the bitmaps. The journaling code must keep a copy of 994 * the buffer's contents prior to the undo_access call until such time 995 * as we know that the buffer has definitely been committed to disk. 996 * 997 * We never need to know which transaction the committed data is part 998 * of, buffers touched here are guaranteed to be dirtied later and so 999 * will be committed to a new transaction in due course, at which point 1000 * we can discard the old committed data pointer. 1001 * 1002 * Returns error number or 0 on success. 1003 */ 1004 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh) 1005 { 1006 int err; 1007 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 1008 char *committed_data = NULL; 1009 1010 JBUFFER_TRACE(jh, "entry"); 1011 1012 /* 1013 * Do this first --- it can drop the journal lock, so we want to 1014 * make sure that obtaining the committed_data is done 1015 * atomically wrt. completion of any outstanding commits. 1016 */ 1017 err = do_get_write_access(handle, jh, 1); 1018 if (err) 1019 goto out; 1020 1021 repeat: 1022 if (!jh->b_committed_data) { 1023 committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS); 1024 if (!committed_data) { 1025 printk(KERN_EMERG "%s: No memory for committed data\n", 1026 __func__); 1027 err = -ENOMEM; 1028 goto out; 1029 } 1030 } 1031 1032 jbd_lock_bh_state(bh); 1033 if (!jh->b_committed_data) { 1034 /* Copy out the current buffer contents into the 1035 * preserved, committed copy. */ 1036 JBUFFER_TRACE(jh, "generate b_committed data"); 1037 if (!committed_data) { 1038 jbd_unlock_bh_state(bh); 1039 goto repeat; 1040 } 1041 1042 jh->b_committed_data = committed_data; 1043 committed_data = NULL; 1044 memcpy(jh->b_committed_data, bh->b_data, bh->b_size); 1045 } 1046 jbd_unlock_bh_state(bh); 1047 out: 1048 jbd2_journal_put_journal_head(jh); 1049 if (unlikely(committed_data)) 1050 jbd2_free(committed_data, bh->b_size); 1051 return err; 1052 } 1053 1054 /** 1055 * void jbd2_journal_set_triggers() - Add triggers for commit writeout 1056 * @bh: buffer to trigger on 1057 * @type: struct jbd2_buffer_trigger_type containing the trigger(s). 1058 * 1059 * Set any triggers on this journal_head. This is always safe, because 1060 * triggers for a committing buffer will be saved off, and triggers for 1061 * a running transaction will match the buffer in that transaction. 1062 * 1063 * Call with NULL to clear the triggers. 1064 */ 1065 void jbd2_journal_set_triggers(struct buffer_head *bh, 1066 struct jbd2_buffer_trigger_type *type) 1067 { 1068 struct journal_head *jh = bh2jh(bh); 1069 1070 jh->b_triggers = type; 1071 } 1072 1073 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data, 1074 struct jbd2_buffer_trigger_type *triggers) 1075 { 1076 struct buffer_head *bh = jh2bh(jh); 1077 1078 if (!triggers || !triggers->t_frozen) 1079 return; 1080 1081 triggers->t_frozen(triggers, bh, mapped_data, bh->b_size); 1082 } 1083 1084 void jbd2_buffer_abort_trigger(struct journal_head *jh, 1085 struct jbd2_buffer_trigger_type *triggers) 1086 { 1087 if (!triggers || !triggers->t_abort) 1088 return; 1089 1090 triggers->t_abort(triggers, jh2bh(jh)); 1091 } 1092 1093 1094 1095 /** 1096 * int jbd2_journal_dirty_metadata() - mark a buffer as containing dirty metadata 1097 * @handle: transaction to add buffer to. 1098 * @bh: buffer to mark 1099 * 1100 * mark dirty metadata which needs to be journaled as part of the current 1101 * transaction. 1102 * 1103 * The buffer must have previously had jbd2_journal_get_write_access() 1104 * called so that it has a valid journal_head attached to the buffer 1105 * head. 1106 * 1107 * The buffer is placed on the transaction's metadata list and is marked 1108 * as belonging to the transaction. 1109 * 1110 * Returns error number or 0 on success. 1111 * 1112 * Special care needs to be taken if the buffer already belongs to the 1113 * current committing transaction (in which case we should have frozen 1114 * data present for that commit). In that case, we don't relink the 1115 * buffer: that only gets done when the old transaction finally 1116 * completes its commit. 1117 */ 1118 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh) 1119 { 1120 transaction_t *transaction = handle->h_transaction; 1121 journal_t *journal = transaction->t_journal; 1122 struct journal_head *jh = bh2jh(bh); 1123 int ret = 0; 1124 1125 jbd_debug(5, "journal_head %p\n", jh); 1126 JBUFFER_TRACE(jh, "entry"); 1127 if (is_handle_aborted(handle)) 1128 goto out; 1129 if (!buffer_jbd(bh)) { 1130 ret = -EUCLEAN; 1131 goto out; 1132 } 1133 1134 jbd_lock_bh_state(bh); 1135 1136 if (jh->b_modified == 0) { 1137 /* 1138 * This buffer's got modified and becoming part 1139 * of the transaction. This needs to be done 1140 * once a transaction -bzzz 1141 */ 1142 jh->b_modified = 1; 1143 J_ASSERT_JH(jh, handle->h_buffer_credits > 0); 1144 handle->h_buffer_credits--; 1145 } 1146 1147 /* 1148 * fastpath, to avoid expensive locking. If this buffer is already 1149 * on the running transaction's metadata list there is nothing to do. 1150 * Nobody can take it off again because there is a handle open. 1151 * I _think_ we're OK here with SMP barriers - a mistaken decision will 1152 * result in this test being false, so we go in and take the locks. 1153 */ 1154 if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) { 1155 JBUFFER_TRACE(jh, "fastpath"); 1156 if (unlikely(jh->b_transaction != 1157 journal->j_running_transaction)) { 1158 printk(KERN_EMERG "JBD: %s: " 1159 "jh->b_transaction (%llu, %p, %u) != " 1160 "journal->j_running_transaction (%p, %u)", 1161 journal->j_devname, 1162 (unsigned long long) bh->b_blocknr, 1163 jh->b_transaction, 1164 jh->b_transaction ? jh->b_transaction->t_tid : 0, 1165 journal->j_running_transaction, 1166 journal->j_running_transaction ? 1167 journal->j_running_transaction->t_tid : 0); 1168 ret = -EINVAL; 1169 } 1170 goto out_unlock_bh; 1171 } 1172 1173 set_buffer_jbddirty(bh); 1174 1175 /* 1176 * Metadata already on the current transaction list doesn't 1177 * need to be filed. Metadata on another transaction's list must 1178 * be committing, and will be refiled once the commit completes: 1179 * leave it alone for now. 1180 */ 1181 if (jh->b_transaction != transaction) { 1182 JBUFFER_TRACE(jh, "already on other transaction"); 1183 if (unlikely(jh->b_transaction != 1184 journal->j_committing_transaction)) { 1185 printk(KERN_EMERG "JBD: %s: " 1186 "jh->b_transaction (%llu, %p, %u) != " 1187 "journal->j_committing_transaction (%p, %u)", 1188 journal->j_devname, 1189 (unsigned long long) bh->b_blocknr, 1190 jh->b_transaction, 1191 jh->b_transaction ? jh->b_transaction->t_tid : 0, 1192 journal->j_committing_transaction, 1193 journal->j_committing_transaction ? 1194 journal->j_committing_transaction->t_tid : 0); 1195 ret = -EINVAL; 1196 } 1197 if (unlikely(jh->b_next_transaction != transaction)) { 1198 printk(KERN_EMERG "JBD: %s: " 1199 "jh->b_next_transaction (%llu, %p, %u) != " 1200 "transaction (%p, %u)", 1201 journal->j_devname, 1202 (unsigned long long) bh->b_blocknr, 1203 jh->b_next_transaction, 1204 jh->b_next_transaction ? 1205 jh->b_next_transaction->t_tid : 0, 1206 transaction, transaction->t_tid); 1207 ret = -EINVAL; 1208 } 1209 /* And this case is illegal: we can't reuse another 1210 * transaction's data buffer, ever. */ 1211 goto out_unlock_bh; 1212 } 1213 1214 /* That test should have eliminated the following case: */ 1215 J_ASSERT_JH(jh, jh->b_frozen_data == NULL); 1216 1217 JBUFFER_TRACE(jh, "file as BJ_Metadata"); 1218 spin_lock(&journal->j_list_lock); 1219 __jbd2_journal_file_buffer(jh, handle->h_transaction, BJ_Metadata); 1220 spin_unlock(&journal->j_list_lock); 1221 out_unlock_bh: 1222 jbd_unlock_bh_state(bh); 1223 out: 1224 JBUFFER_TRACE(jh, "exit"); 1225 WARN_ON(ret); /* All errors are bugs, so dump the stack */ 1226 return ret; 1227 } 1228 1229 /** 1230 * void jbd2_journal_forget() - bforget() for potentially-journaled buffers. 1231 * @handle: transaction handle 1232 * @bh: bh to 'forget' 1233 * 1234 * We can only do the bforget if there are no commits pending against the 1235 * buffer. If the buffer is dirty in the current running transaction we 1236 * can safely unlink it. 1237 * 1238 * bh may not be a journalled buffer at all - it may be a non-JBD 1239 * buffer which came off the hashtable. Check for this. 1240 * 1241 * Decrements bh->b_count by one. 1242 * 1243 * Allow this call even if the handle has aborted --- it may be part of 1244 * the caller's cleanup after an abort. 1245 */ 1246 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh) 1247 { 1248 transaction_t *transaction = handle->h_transaction; 1249 journal_t *journal = transaction->t_journal; 1250 struct journal_head *jh; 1251 int drop_reserve = 0; 1252 int err = 0; 1253 int was_modified = 0; 1254 1255 BUFFER_TRACE(bh, "entry"); 1256 1257 jbd_lock_bh_state(bh); 1258 spin_lock(&journal->j_list_lock); 1259 1260 if (!buffer_jbd(bh)) 1261 goto not_jbd; 1262 jh = bh2jh(bh); 1263 1264 /* Critical error: attempting to delete a bitmap buffer, maybe? 1265 * Don't do any jbd operations, and return an error. */ 1266 if (!J_EXPECT_JH(jh, !jh->b_committed_data, 1267 "inconsistent data on disk")) { 1268 err = -EIO; 1269 goto not_jbd; 1270 } 1271 1272 /* keep track of whether or not this transaction modified us */ 1273 was_modified = jh->b_modified; 1274 1275 /* 1276 * The buffer's going from the transaction, we must drop 1277 * all references -bzzz 1278 */ 1279 jh->b_modified = 0; 1280 1281 if (jh->b_transaction == handle->h_transaction) { 1282 J_ASSERT_JH(jh, !jh->b_frozen_data); 1283 1284 /* If we are forgetting a buffer which is already part 1285 * of this transaction, then we can just drop it from 1286 * the transaction immediately. */ 1287 clear_buffer_dirty(bh); 1288 clear_buffer_jbddirty(bh); 1289 1290 JBUFFER_TRACE(jh, "belongs to current transaction: unfile"); 1291 1292 /* 1293 * we only want to drop a reference if this transaction 1294 * modified the buffer 1295 */ 1296 if (was_modified) 1297 drop_reserve = 1; 1298 1299 /* 1300 * We are no longer going to journal this buffer. 1301 * However, the commit of this transaction is still 1302 * important to the buffer: the delete that we are now 1303 * processing might obsolete an old log entry, so by 1304 * committing, we can satisfy the buffer's checkpoint. 1305 * 1306 * So, if we have a checkpoint on the buffer, we should 1307 * now refile the buffer on our BJ_Forget list so that 1308 * we know to remove the checkpoint after we commit. 1309 */ 1310 1311 if (jh->b_cp_transaction) { 1312 __jbd2_journal_temp_unlink_buffer(jh); 1313 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1314 } else { 1315 __jbd2_journal_unfile_buffer(jh); 1316 if (!buffer_jbd(bh)) { 1317 spin_unlock(&journal->j_list_lock); 1318 jbd_unlock_bh_state(bh); 1319 __bforget(bh); 1320 goto drop; 1321 } 1322 } 1323 } else if (jh->b_transaction) { 1324 J_ASSERT_JH(jh, (jh->b_transaction == 1325 journal->j_committing_transaction)); 1326 /* However, if the buffer is still owned by a prior 1327 * (committing) transaction, we can't drop it yet... */ 1328 JBUFFER_TRACE(jh, "belongs to older transaction"); 1329 /* ... but we CAN drop it from the new transaction if we 1330 * have also modified it since the original commit. */ 1331 1332 if (jh->b_next_transaction) { 1333 J_ASSERT(jh->b_next_transaction == transaction); 1334 jh->b_next_transaction = NULL; 1335 1336 /* 1337 * only drop a reference if this transaction modified 1338 * the buffer 1339 */ 1340 if (was_modified) 1341 drop_reserve = 1; 1342 } 1343 } 1344 1345 not_jbd: 1346 spin_unlock(&journal->j_list_lock); 1347 jbd_unlock_bh_state(bh); 1348 __brelse(bh); 1349 drop: 1350 if (drop_reserve) { 1351 /* no need to reserve log space for this block -bzzz */ 1352 handle->h_buffer_credits++; 1353 } 1354 return err; 1355 } 1356 1357 /** 1358 * int jbd2_journal_stop() - complete a transaction 1359 * @handle: tranaction to complete. 1360 * 1361 * All done for a particular handle. 1362 * 1363 * There is not much action needed here. We just return any remaining 1364 * buffer credits to the transaction and remove the handle. The only 1365 * complication is that we need to start a commit operation if the 1366 * filesystem is marked for synchronous update. 1367 * 1368 * jbd2_journal_stop itself will not usually return an error, but it may 1369 * do so in unusual circumstances. In particular, expect it to 1370 * return -EIO if a jbd2_journal_abort has been executed since the 1371 * transaction began. 1372 */ 1373 int jbd2_journal_stop(handle_t *handle) 1374 { 1375 transaction_t *transaction = handle->h_transaction; 1376 journal_t *journal = transaction->t_journal; 1377 int err, wait_for_commit = 0; 1378 tid_t tid; 1379 pid_t pid; 1380 1381 J_ASSERT(journal_current_handle() == handle); 1382 1383 if (is_handle_aborted(handle)) 1384 err = -EIO; 1385 else { 1386 J_ASSERT(atomic_read(&transaction->t_updates) > 0); 1387 err = 0; 1388 } 1389 1390 if (--handle->h_ref > 0) { 1391 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1, 1392 handle->h_ref); 1393 return err; 1394 } 1395 1396 jbd_debug(4, "Handle %p going down\n", handle); 1397 trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev, 1398 handle->h_transaction->t_tid, 1399 handle->h_type, handle->h_line_no, 1400 jiffies - handle->h_start_jiffies, 1401 handle->h_sync, handle->h_requested_credits, 1402 (handle->h_requested_credits - 1403 handle->h_buffer_credits)); 1404 1405 /* 1406 * Implement synchronous transaction batching. If the handle 1407 * was synchronous, don't force a commit immediately. Let's 1408 * yield and let another thread piggyback onto this 1409 * transaction. Keep doing that while new threads continue to 1410 * arrive. It doesn't cost much - we're about to run a commit 1411 * and sleep on IO anyway. Speeds up many-threaded, many-dir 1412 * operations by 30x or more... 1413 * 1414 * We try and optimize the sleep time against what the 1415 * underlying disk can do, instead of having a static sleep 1416 * time. This is useful for the case where our storage is so 1417 * fast that it is more optimal to go ahead and force a flush 1418 * and wait for the transaction to be committed than it is to 1419 * wait for an arbitrary amount of time for new writers to 1420 * join the transaction. We achieve this by measuring how 1421 * long it takes to commit a transaction, and compare it with 1422 * how long this transaction has been running, and if run time 1423 * < commit time then we sleep for the delta and commit. This 1424 * greatly helps super fast disks that would see slowdowns as 1425 * more threads started doing fsyncs. 1426 * 1427 * But don't do this if this process was the most recent one 1428 * to perform a synchronous write. We do this to detect the 1429 * case where a single process is doing a stream of sync 1430 * writes. No point in waiting for joiners in that case. 1431 */ 1432 pid = current->pid; 1433 if (handle->h_sync && journal->j_last_sync_writer != pid) { 1434 u64 commit_time, trans_time; 1435 1436 journal->j_last_sync_writer = pid; 1437 1438 read_lock(&journal->j_state_lock); 1439 commit_time = journal->j_average_commit_time; 1440 read_unlock(&journal->j_state_lock); 1441 1442 trans_time = ktime_to_ns(ktime_sub(ktime_get(), 1443 transaction->t_start_time)); 1444 1445 commit_time = max_t(u64, commit_time, 1446 1000*journal->j_min_batch_time); 1447 commit_time = min_t(u64, commit_time, 1448 1000*journal->j_max_batch_time); 1449 1450 if (trans_time < commit_time) { 1451 ktime_t expires = ktime_add_ns(ktime_get(), 1452 commit_time); 1453 set_current_state(TASK_UNINTERRUPTIBLE); 1454 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS); 1455 } 1456 } 1457 1458 if (handle->h_sync) 1459 transaction->t_synchronous_commit = 1; 1460 current->journal_info = NULL; 1461 atomic_sub(handle->h_buffer_credits, 1462 &transaction->t_outstanding_credits); 1463 1464 /* 1465 * If the handle is marked SYNC, we need to set another commit 1466 * going! We also want to force a commit if the current 1467 * transaction is occupying too much of the log, or if the 1468 * transaction is too old now. 1469 */ 1470 if (handle->h_sync || 1471 (atomic_read(&transaction->t_outstanding_credits) > 1472 journal->j_max_transaction_buffers) || 1473 time_after_eq(jiffies, transaction->t_expires)) { 1474 /* Do this even for aborted journals: an abort still 1475 * completes the commit thread, it just doesn't write 1476 * anything to disk. */ 1477 1478 jbd_debug(2, "transaction too old, requesting commit for " 1479 "handle %p\n", handle); 1480 /* This is non-blocking */ 1481 jbd2_log_start_commit(journal, transaction->t_tid); 1482 1483 /* 1484 * Special case: JBD2_SYNC synchronous updates require us 1485 * to wait for the commit to complete. 1486 */ 1487 if (handle->h_sync && !(current->flags & PF_MEMALLOC)) 1488 wait_for_commit = 1; 1489 } 1490 1491 /* 1492 * Once we drop t_updates, if it goes to zero the transaction 1493 * could start committing on us and eventually disappear. So 1494 * once we do this, we must not dereference transaction 1495 * pointer again. 1496 */ 1497 tid = transaction->t_tid; 1498 if (atomic_dec_and_test(&transaction->t_updates)) { 1499 wake_up(&journal->j_wait_updates); 1500 if (journal->j_barrier_count) 1501 wake_up(&journal->j_wait_transaction_locked); 1502 } 1503 1504 if (wait_for_commit) 1505 err = jbd2_log_wait_commit(journal, tid); 1506 1507 lock_map_release(&handle->h_lockdep_map); 1508 1509 jbd2_free_handle(handle); 1510 return err; 1511 } 1512 1513 /** 1514 * int jbd2_journal_force_commit() - force any uncommitted transactions 1515 * @journal: journal to force 1516 * 1517 * For synchronous operations: force any uncommitted transactions 1518 * to disk. May seem kludgy, but it reuses all the handle batching 1519 * code in a very simple manner. 1520 */ 1521 int jbd2_journal_force_commit(journal_t *journal) 1522 { 1523 handle_t *handle; 1524 int ret; 1525 1526 handle = jbd2_journal_start(journal, 1); 1527 if (IS_ERR(handle)) { 1528 ret = PTR_ERR(handle); 1529 } else { 1530 handle->h_sync = 1; 1531 ret = jbd2_journal_stop(handle); 1532 } 1533 return ret; 1534 } 1535 1536 /* 1537 * 1538 * List management code snippets: various functions for manipulating the 1539 * transaction buffer lists. 1540 * 1541 */ 1542 1543 /* 1544 * Append a buffer to a transaction list, given the transaction's list head 1545 * pointer. 1546 * 1547 * j_list_lock is held. 1548 * 1549 * jbd_lock_bh_state(jh2bh(jh)) is held. 1550 */ 1551 1552 static inline void 1553 __blist_add_buffer(struct journal_head **list, struct journal_head *jh) 1554 { 1555 if (!*list) { 1556 jh->b_tnext = jh->b_tprev = jh; 1557 *list = jh; 1558 } else { 1559 /* Insert at the tail of the list to preserve order */ 1560 struct journal_head *first = *list, *last = first->b_tprev; 1561 jh->b_tprev = last; 1562 jh->b_tnext = first; 1563 last->b_tnext = first->b_tprev = jh; 1564 } 1565 } 1566 1567 /* 1568 * Remove a buffer from a transaction list, given the transaction's list 1569 * head pointer. 1570 * 1571 * Called with j_list_lock held, and the journal may not be locked. 1572 * 1573 * jbd_lock_bh_state(jh2bh(jh)) is held. 1574 */ 1575 1576 static inline void 1577 __blist_del_buffer(struct journal_head **list, struct journal_head *jh) 1578 { 1579 if (*list == jh) { 1580 *list = jh->b_tnext; 1581 if (*list == jh) 1582 *list = NULL; 1583 } 1584 jh->b_tprev->b_tnext = jh->b_tnext; 1585 jh->b_tnext->b_tprev = jh->b_tprev; 1586 } 1587 1588 /* 1589 * Remove a buffer from the appropriate transaction list. 1590 * 1591 * Note that this function can *change* the value of 1592 * bh->b_transaction->t_buffers, t_forget, t_iobuf_list, t_shadow_list, 1593 * t_log_list or t_reserved_list. If the caller is holding onto a copy of one 1594 * of these pointers, it could go bad. Generally the caller needs to re-read 1595 * the pointer from the transaction_t. 1596 * 1597 * Called under j_list_lock. 1598 */ 1599 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh) 1600 { 1601 struct journal_head **list = NULL; 1602 transaction_t *transaction; 1603 struct buffer_head *bh = jh2bh(jh); 1604 1605 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 1606 transaction = jh->b_transaction; 1607 if (transaction) 1608 assert_spin_locked(&transaction->t_journal->j_list_lock); 1609 1610 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 1611 if (jh->b_jlist != BJ_None) 1612 J_ASSERT_JH(jh, transaction != NULL); 1613 1614 switch (jh->b_jlist) { 1615 case BJ_None: 1616 return; 1617 case BJ_Metadata: 1618 transaction->t_nr_buffers--; 1619 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0); 1620 list = &transaction->t_buffers; 1621 break; 1622 case BJ_Forget: 1623 list = &transaction->t_forget; 1624 break; 1625 case BJ_IO: 1626 list = &transaction->t_iobuf_list; 1627 break; 1628 case BJ_Shadow: 1629 list = &transaction->t_shadow_list; 1630 break; 1631 case BJ_LogCtl: 1632 list = &transaction->t_log_list; 1633 break; 1634 case BJ_Reserved: 1635 list = &transaction->t_reserved_list; 1636 break; 1637 } 1638 1639 __blist_del_buffer(list, jh); 1640 jh->b_jlist = BJ_None; 1641 if (test_clear_buffer_jbddirty(bh)) 1642 mark_buffer_dirty(bh); /* Expose it to the VM */ 1643 } 1644 1645 /* 1646 * Remove buffer from all transactions. 1647 * 1648 * Called with bh_state lock and j_list_lock 1649 * 1650 * jh and bh may be already freed when this function returns. 1651 */ 1652 static void __jbd2_journal_unfile_buffer(struct journal_head *jh) 1653 { 1654 __jbd2_journal_temp_unlink_buffer(jh); 1655 jh->b_transaction = NULL; 1656 jbd2_journal_put_journal_head(jh); 1657 } 1658 1659 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh) 1660 { 1661 struct buffer_head *bh = jh2bh(jh); 1662 1663 /* Get reference so that buffer cannot be freed before we unlock it */ 1664 get_bh(bh); 1665 jbd_lock_bh_state(bh); 1666 spin_lock(&journal->j_list_lock); 1667 __jbd2_journal_unfile_buffer(jh); 1668 spin_unlock(&journal->j_list_lock); 1669 jbd_unlock_bh_state(bh); 1670 __brelse(bh); 1671 } 1672 1673 /* 1674 * Called from jbd2_journal_try_to_free_buffers(). 1675 * 1676 * Called under jbd_lock_bh_state(bh) 1677 */ 1678 static void 1679 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh) 1680 { 1681 struct journal_head *jh; 1682 1683 jh = bh2jh(bh); 1684 1685 if (buffer_locked(bh) || buffer_dirty(bh)) 1686 goto out; 1687 1688 if (jh->b_next_transaction != NULL) 1689 goto out; 1690 1691 spin_lock(&journal->j_list_lock); 1692 if (jh->b_cp_transaction != NULL && jh->b_transaction == NULL) { 1693 /* written-back checkpointed metadata buffer */ 1694 JBUFFER_TRACE(jh, "remove from checkpoint list"); 1695 __jbd2_journal_remove_checkpoint(jh); 1696 } 1697 spin_unlock(&journal->j_list_lock); 1698 out: 1699 return; 1700 } 1701 1702 /** 1703 * int jbd2_journal_try_to_free_buffers() - try to free page buffers. 1704 * @journal: journal for operation 1705 * @page: to try and free 1706 * @gfp_mask: we use the mask to detect how hard should we try to release 1707 * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to 1708 * release the buffers. 1709 * 1710 * 1711 * For all the buffers on this page, 1712 * if they are fully written out ordered data, move them onto BUF_CLEAN 1713 * so try_to_free_buffers() can reap them. 1714 * 1715 * This function returns non-zero if we wish try_to_free_buffers() 1716 * to be called. We do this if the page is releasable by try_to_free_buffers(). 1717 * We also do it if the page has locked or dirty buffers and the caller wants 1718 * us to perform sync or async writeout. 1719 * 1720 * This complicates JBD locking somewhat. We aren't protected by the 1721 * BKL here. We wish to remove the buffer from its committing or 1722 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer. 1723 * 1724 * This may *change* the value of transaction_t->t_datalist, so anyone 1725 * who looks at t_datalist needs to lock against this function. 1726 * 1727 * Even worse, someone may be doing a jbd2_journal_dirty_data on this 1728 * buffer. So we need to lock against that. jbd2_journal_dirty_data() 1729 * will come out of the lock with the buffer dirty, which makes it 1730 * ineligible for release here. 1731 * 1732 * Who else is affected by this? hmm... Really the only contender 1733 * is do_get_write_access() - it could be looking at the buffer while 1734 * journal_try_to_free_buffer() is changing its state. But that 1735 * cannot happen because we never reallocate freed data as metadata 1736 * while the data is part of a transaction. Yes? 1737 * 1738 * Return 0 on failure, 1 on success 1739 */ 1740 int jbd2_journal_try_to_free_buffers(journal_t *journal, 1741 struct page *page, gfp_t gfp_mask) 1742 { 1743 struct buffer_head *head; 1744 struct buffer_head *bh; 1745 int ret = 0; 1746 1747 J_ASSERT(PageLocked(page)); 1748 1749 head = page_buffers(page); 1750 bh = head; 1751 do { 1752 struct journal_head *jh; 1753 1754 /* 1755 * We take our own ref against the journal_head here to avoid 1756 * having to add tons of locking around each instance of 1757 * jbd2_journal_put_journal_head(). 1758 */ 1759 jh = jbd2_journal_grab_journal_head(bh); 1760 if (!jh) 1761 continue; 1762 1763 jbd_lock_bh_state(bh); 1764 __journal_try_to_free_buffer(journal, bh); 1765 jbd2_journal_put_journal_head(jh); 1766 jbd_unlock_bh_state(bh); 1767 if (buffer_jbd(bh)) 1768 goto busy; 1769 } while ((bh = bh->b_this_page) != head); 1770 1771 ret = try_to_free_buffers(page); 1772 1773 busy: 1774 return ret; 1775 } 1776 1777 /* 1778 * This buffer is no longer needed. If it is on an older transaction's 1779 * checkpoint list we need to record it on this transaction's forget list 1780 * to pin this buffer (and hence its checkpointing transaction) down until 1781 * this transaction commits. If the buffer isn't on a checkpoint list, we 1782 * release it. 1783 * Returns non-zero if JBD no longer has an interest in the buffer. 1784 * 1785 * Called under j_list_lock. 1786 * 1787 * Called under jbd_lock_bh_state(bh). 1788 */ 1789 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction) 1790 { 1791 int may_free = 1; 1792 struct buffer_head *bh = jh2bh(jh); 1793 1794 if (jh->b_cp_transaction) { 1795 JBUFFER_TRACE(jh, "on running+cp transaction"); 1796 __jbd2_journal_temp_unlink_buffer(jh); 1797 /* 1798 * We don't want to write the buffer anymore, clear the 1799 * bit so that we don't confuse checks in 1800 * __journal_file_buffer 1801 */ 1802 clear_buffer_dirty(bh); 1803 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1804 may_free = 0; 1805 } else { 1806 JBUFFER_TRACE(jh, "on running transaction"); 1807 __jbd2_journal_unfile_buffer(jh); 1808 } 1809 return may_free; 1810 } 1811 1812 /* 1813 * jbd2_journal_invalidatepage 1814 * 1815 * This code is tricky. It has a number of cases to deal with. 1816 * 1817 * There are two invariants which this code relies on: 1818 * 1819 * i_size must be updated on disk before we start calling invalidatepage on the 1820 * data. 1821 * 1822 * This is done in ext3 by defining an ext3_setattr method which 1823 * updates i_size before truncate gets going. By maintaining this 1824 * invariant, we can be sure that it is safe to throw away any buffers 1825 * attached to the current transaction: once the transaction commits, 1826 * we know that the data will not be needed. 1827 * 1828 * Note however that we can *not* throw away data belonging to the 1829 * previous, committing transaction! 1830 * 1831 * Any disk blocks which *are* part of the previous, committing 1832 * transaction (and which therefore cannot be discarded immediately) are 1833 * not going to be reused in the new running transaction 1834 * 1835 * The bitmap committed_data images guarantee this: any block which is 1836 * allocated in one transaction and removed in the next will be marked 1837 * as in-use in the committed_data bitmap, so cannot be reused until 1838 * the next transaction to delete the block commits. This means that 1839 * leaving committing buffers dirty is quite safe: the disk blocks 1840 * cannot be reallocated to a different file and so buffer aliasing is 1841 * not possible. 1842 * 1843 * 1844 * The above applies mainly to ordered data mode. In writeback mode we 1845 * don't make guarantees about the order in which data hits disk --- in 1846 * particular we don't guarantee that new dirty data is flushed before 1847 * transaction commit --- so it is always safe just to discard data 1848 * immediately in that mode. --sct 1849 */ 1850 1851 /* 1852 * The journal_unmap_buffer helper function returns zero if the buffer 1853 * concerned remains pinned as an anonymous buffer belonging to an older 1854 * transaction. 1855 * 1856 * We're outside-transaction here. Either or both of j_running_transaction 1857 * and j_committing_transaction may be NULL. 1858 */ 1859 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh, 1860 int partial_page) 1861 { 1862 transaction_t *transaction; 1863 struct journal_head *jh; 1864 int may_free = 1; 1865 1866 BUFFER_TRACE(bh, "entry"); 1867 1868 /* 1869 * It is safe to proceed here without the j_list_lock because the 1870 * buffers cannot be stolen by try_to_free_buffers as long as we are 1871 * holding the page lock. --sct 1872 */ 1873 1874 if (!buffer_jbd(bh)) 1875 goto zap_buffer_unlocked; 1876 1877 /* OK, we have data buffer in journaled mode */ 1878 write_lock(&journal->j_state_lock); 1879 jbd_lock_bh_state(bh); 1880 spin_lock(&journal->j_list_lock); 1881 1882 jh = jbd2_journal_grab_journal_head(bh); 1883 if (!jh) 1884 goto zap_buffer_no_jh; 1885 1886 /* 1887 * We cannot remove the buffer from checkpoint lists until the 1888 * transaction adding inode to orphan list (let's call it T) 1889 * is committed. Otherwise if the transaction changing the 1890 * buffer would be cleaned from the journal before T is 1891 * committed, a crash will cause that the correct contents of 1892 * the buffer will be lost. On the other hand we have to 1893 * clear the buffer dirty bit at latest at the moment when the 1894 * transaction marking the buffer as freed in the filesystem 1895 * structures is committed because from that moment on the 1896 * block can be reallocated and used by a different page. 1897 * Since the block hasn't been freed yet but the inode has 1898 * already been added to orphan list, it is safe for us to add 1899 * the buffer to BJ_Forget list of the newest transaction. 1900 * 1901 * Also we have to clear buffer_mapped flag of a truncated buffer 1902 * because the buffer_head may be attached to the page straddling 1903 * i_size (can happen only when blocksize < pagesize) and thus the 1904 * buffer_head can be reused when the file is extended again. So we end 1905 * up keeping around invalidated buffers attached to transactions' 1906 * BJ_Forget list just to stop checkpointing code from cleaning up 1907 * the transaction this buffer was modified in. 1908 */ 1909 transaction = jh->b_transaction; 1910 if (transaction == NULL) { 1911 /* First case: not on any transaction. If it 1912 * has no checkpoint link, then we can zap it: 1913 * it's a writeback-mode buffer so we don't care 1914 * if it hits disk safely. */ 1915 if (!jh->b_cp_transaction) { 1916 JBUFFER_TRACE(jh, "not on any transaction: zap"); 1917 goto zap_buffer; 1918 } 1919 1920 if (!buffer_dirty(bh)) { 1921 /* bdflush has written it. We can drop it now */ 1922 goto zap_buffer; 1923 } 1924 1925 /* OK, it must be in the journal but still not 1926 * written fully to disk: it's metadata or 1927 * journaled data... */ 1928 1929 if (journal->j_running_transaction) { 1930 /* ... and once the current transaction has 1931 * committed, the buffer won't be needed any 1932 * longer. */ 1933 JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget"); 1934 may_free = __dispose_buffer(jh, 1935 journal->j_running_transaction); 1936 goto zap_buffer; 1937 } else { 1938 /* There is no currently-running transaction. So the 1939 * orphan record which we wrote for this file must have 1940 * passed into commit. We must attach this buffer to 1941 * the committing transaction, if it exists. */ 1942 if (journal->j_committing_transaction) { 1943 JBUFFER_TRACE(jh, "give to committing trans"); 1944 may_free = __dispose_buffer(jh, 1945 journal->j_committing_transaction); 1946 goto zap_buffer; 1947 } else { 1948 /* The orphan record's transaction has 1949 * committed. We can cleanse this buffer */ 1950 clear_buffer_jbddirty(bh); 1951 goto zap_buffer; 1952 } 1953 } 1954 } else if (transaction == journal->j_committing_transaction) { 1955 JBUFFER_TRACE(jh, "on committing transaction"); 1956 /* 1957 * The buffer is committing, we simply cannot touch 1958 * it. If the page is straddling i_size we have to wait 1959 * for commit and try again. 1960 */ 1961 if (partial_page) { 1962 jbd2_journal_put_journal_head(jh); 1963 spin_unlock(&journal->j_list_lock); 1964 jbd_unlock_bh_state(bh); 1965 write_unlock(&journal->j_state_lock); 1966 return -EBUSY; 1967 } 1968 /* 1969 * OK, buffer won't be reachable after truncate. We just set 1970 * j_next_transaction to the running transaction (if there is 1971 * one) and mark buffer as freed so that commit code knows it 1972 * should clear dirty bits when it is done with the buffer. 1973 */ 1974 set_buffer_freed(bh); 1975 if (journal->j_running_transaction && buffer_jbddirty(bh)) 1976 jh->b_next_transaction = journal->j_running_transaction; 1977 jbd2_journal_put_journal_head(jh); 1978 spin_unlock(&journal->j_list_lock); 1979 jbd_unlock_bh_state(bh); 1980 write_unlock(&journal->j_state_lock); 1981 return 0; 1982 } else { 1983 /* Good, the buffer belongs to the running transaction. 1984 * We are writing our own transaction's data, not any 1985 * previous one's, so it is safe to throw it away 1986 * (remember that we expect the filesystem to have set 1987 * i_size already for this truncate so recovery will not 1988 * expose the disk blocks we are discarding here.) */ 1989 J_ASSERT_JH(jh, transaction == journal->j_running_transaction); 1990 JBUFFER_TRACE(jh, "on running transaction"); 1991 may_free = __dispose_buffer(jh, transaction); 1992 } 1993 1994 zap_buffer: 1995 /* 1996 * This is tricky. Although the buffer is truncated, it may be reused 1997 * if blocksize < pagesize and it is attached to the page straddling 1998 * EOF. Since the buffer might have been added to BJ_Forget list of the 1999 * running transaction, journal_get_write_access() won't clear 2000 * b_modified and credit accounting gets confused. So clear b_modified 2001 * here. 2002 */ 2003 jh->b_modified = 0; 2004 jbd2_journal_put_journal_head(jh); 2005 zap_buffer_no_jh: 2006 spin_unlock(&journal->j_list_lock); 2007 jbd_unlock_bh_state(bh); 2008 write_unlock(&journal->j_state_lock); 2009 zap_buffer_unlocked: 2010 clear_buffer_dirty(bh); 2011 J_ASSERT_BH(bh, !buffer_jbddirty(bh)); 2012 clear_buffer_mapped(bh); 2013 clear_buffer_req(bh); 2014 clear_buffer_new(bh); 2015 clear_buffer_delay(bh); 2016 clear_buffer_unwritten(bh); 2017 bh->b_bdev = NULL; 2018 return may_free; 2019 } 2020 2021 /** 2022 * void jbd2_journal_invalidatepage() 2023 * @journal: journal to use for flush... 2024 * @page: page to flush 2025 * @offset: length of page to invalidate. 2026 * 2027 * Reap page buffers containing data after offset in page. Can return -EBUSY 2028 * if buffers are part of the committing transaction and the page is straddling 2029 * i_size. Caller then has to wait for current commit and try again. 2030 */ 2031 int jbd2_journal_invalidatepage(journal_t *journal, 2032 struct page *page, 2033 unsigned long offset) 2034 { 2035 struct buffer_head *head, *bh, *next; 2036 unsigned int curr_off = 0; 2037 int may_free = 1; 2038 int ret = 0; 2039 2040 if (!PageLocked(page)) 2041 BUG(); 2042 if (!page_has_buffers(page)) 2043 return 0; 2044 2045 /* We will potentially be playing with lists other than just the 2046 * data lists (especially for journaled data mode), so be 2047 * cautious in our locking. */ 2048 2049 head = bh = page_buffers(page); 2050 do { 2051 unsigned int next_off = curr_off + bh->b_size; 2052 next = bh->b_this_page; 2053 2054 if (offset <= curr_off) { 2055 /* This block is wholly outside the truncation point */ 2056 lock_buffer(bh); 2057 ret = journal_unmap_buffer(journal, bh, offset > 0); 2058 unlock_buffer(bh); 2059 if (ret < 0) 2060 return ret; 2061 may_free &= ret; 2062 } 2063 curr_off = next_off; 2064 bh = next; 2065 2066 } while (bh != head); 2067 2068 if (!offset) { 2069 if (may_free && try_to_free_buffers(page)) 2070 J_ASSERT(!page_has_buffers(page)); 2071 } 2072 return 0; 2073 } 2074 2075 /* 2076 * File a buffer on the given transaction list. 2077 */ 2078 void __jbd2_journal_file_buffer(struct journal_head *jh, 2079 transaction_t *transaction, int jlist) 2080 { 2081 struct journal_head **list = NULL; 2082 int was_dirty = 0; 2083 struct buffer_head *bh = jh2bh(jh); 2084 2085 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 2086 assert_spin_locked(&transaction->t_journal->j_list_lock); 2087 2088 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 2089 J_ASSERT_JH(jh, jh->b_transaction == transaction || 2090 jh->b_transaction == NULL); 2091 2092 if (jh->b_transaction && jh->b_jlist == jlist) 2093 return; 2094 2095 if (jlist == BJ_Metadata || jlist == BJ_Reserved || 2096 jlist == BJ_Shadow || jlist == BJ_Forget) { 2097 /* 2098 * For metadata buffers, we track dirty bit in buffer_jbddirty 2099 * instead of buffer_dirty. We should not see a dirty bit set 2100 * here because we clear it in do_get_write_access but e.g. 2101 * tune2fs can modify the sb and set the dirty bit at any time 2102 * so we try to gracefully handle that. 2103 */ 2104 if (buffer_dirty(bh)) 2105 warn_dirty_buffer(bh); 2106 if (test_clear_buffer_dirty(bh) || 2107 test_clear_buffer_jbddirty(bh)) 2108 was_dirty = 1; 2109 } 2110 2111 if (jh->b_transaction) 2112 __jbd2_journal_temp_unlink_buffer(jh); 2113 else 2114 jbd2_journal_grab_journal_head(bh); 2115 jh->b_transaction = transaction; 2116 2117 switch (jlist) { 2118 case BJ_None: 2119 J_ASSERT_JH(jh, !jh->b_committed_data); 2120 J_ASSERT_JH(jh, !jh->b_frozen_data); 2121 return; 2122 case BJ_Metadata: 2123 transaction->t_nr_buffers++; 2124 list = &transaction->t_buffers; 2125 break; 2126 case BJ_Forget: 2127 list = &transaction->t_forget; 2128 break; 2129 case BJ_IO: 2130 list = &transaction->t_iobuf_list; 2131 break; 2132 case BJ_Shadow: 2133 list = &transaction->t_shadow_list; 2134 break; 2135 case BJ_LogCtl: 2136 list = &transaction->t_log_list; 2137 break; 2138 case BJ_Reserved: 2139 list = &transaction->t_reserved_list; 2140 break; 2141 } 2142 2143 __blist_add_buffer(list, jh); 2144 jh->b_jlist = jlist; 2145 2146 if (was_dirty) 2147 set_buffer_jbddirty(bh); 2148 } 2149 2150 void jbd2_journal_file_buffer(struct journal_head *jh, 2151 transaction_t *transaction, int jlist) 2152 { 2153 jbd_lock_bh_state(jh2bh(jh)); 2154 spin_lock(&transaction->t_journal->j_list_lock); 2155 __jbd2_journal_file_buffer(jh, transaction, jlist); 2156 spin_unlock(&transaction->t_journal->j_list_lock); 2157 jbd_unlock_bh_state(jh2bh(jh)); 2158 } 2159 2160 /* 2161 * Remove a buffer from its current buffer list in preparation for 2162 * dropping it from its current transaction entirely. If the buffer has 2163 * already started to be used by a subsequent transaction, refile the 2164 * buffer on that transaction's metadata list. 2165 * 2166 * Called under j_list_lock 2167 * Called under jbd_lock_bh_state(jh2bh(jh)) 2168 * 2169 * jh and bh may be already free when this function returns 2170 */ 2171 void __jbd2_journal_refile_buffer(struct journal_head *jh) 2172 { 2173 int was_dirty, jlist; 2174 struct buffer_head *bh = jh2bh(jh); 2175 2176 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 2177 if (jh->b_transaction) 2178 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock); 2179 2180 /* If the buffer is now unused, just drop it. */ 2181 if (jh->b_next_transaction == NULL) { 2182 __jbd2_journal_unfile_buffer(jh); 2183 return; 2184 } 2185 2186 /* 2187 * It has been modified by a later transaction: add it to the new 2188 * transaction's metadata list. 2189 */ 2190 2191 was_dirty = test_clear_buffer_jbddirty(bh); 2192 __jbd2_journal_temp_unlink_buffer(jh); 2193 /* 2194 * We set b_transaction here because b_next_transaction will inherit 2195 * our jh reference and thus __jbd2_journal_file_buffer() must not 2196 * take a new one. 2197 */ 2198 jh->b_transaction = jh->b_next_transaction; 2199 jh->b_next_transaction = NULL; 2200 if (buffer_freed(bh)) 2201 jlist = BJ_Forget; 2202 else if (jh->b_modified) 2203 jlist = BJ_Metadata; 2204 else 2205 jlist = BJ_Reserved; 2206 __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist); 2207 J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING); 2208 2209 if (was_dirty) 2210 set_buffer_jbddirty(bh); 2211 } 2212 2213 /* 2214 * __jbd2_journal_refile_buffer() with necessary locking added. We take our 2215 * bh reference so that we can safely unlock bh. 2216 * 2217 * The jh and bh may be freed by this call. 2218 */ 2219 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh) 2220 { 2221 struct buffer_head *bh = jh2bh(jh); 2222 2223 /* Get reference so that buffer cannot be freed before we unlock it */ 2224 get_bh(bh); 2225 jbd_lock_bh_state(bh); 2226 spin_lock(&journal->j_list_lock); 2227 __jbd2_journal_refile_buffer(jh); 2228 jbd_unlock_bh_state(bh); 2229 spin_unlock(&journal->j_list_lock); 2230 __brelse(bh); 2231 } 2232 2233 /* 2234 * File inode in the inode list of the handle's transaction 2235 */ 2236 int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode) 2237 { 2238 transaction_t *transaction = handle->h_transaction; 2239 journal_t *journal = transaction->t_journal; 2240 2241 if (is_handle_aborted(handle)) 2242 return -EIO; 2243 2244 jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino, 2245 transaction->t_tid); 2246 2247 /* 2248 * First check whether inode isn't already on the transaction's 2249 * lists without taking the lock. Note that this check is safe 2250 * without the lock as we cannot race with somebody removing inode 2251 * from the transaction. The reason is that we remove inode from the 2252 * transaction only in journal_release_jbd_inode() and when we commit 2253 * the transaction. We are guarded from the first case by holding 2254 * a reference to the inode. We are safe against the second case 2255 * because if jinode->i_transaction == transaction, commit code 2256 * cannot touch the transaction because we hold reference to it, 2257 * and if jinode->i_next_transaction == transaction, commit code 2258 * will only file the inode where we want it. 2259 */ 2260 if (jinode->i_transaction == transaction || 2261 jinode->i_next_transaction == transaction) 2262 return 0; 2263 2264 spin_lock(&journal->j_list_lock); 2265 2266 if (jinode->i_transaction == transaction || 2267 jinode->i_next_transaction == transaction) 2268 goto done; 2269 2270 /* 2271 * We only ever set this variable to 1 so the test is safe. Since 2272 * t_need_data_flush is likely to be set, we do the test to save some 2273 * cacheline bouncing 2274 */ 2275 if (!transaction->t_need_data_flush) 2276 transaction->t_need_data_flush = 1; 2277 /* On some different transaction's list - should be 2278 * the committing one */ 2279 if (jinode->i_transaction) { 2280 J_ASSERT(jinode->i_next_transaction == NULL); 2281 J_ASSERT(jinode->i_transaction == 2282 journal->j_committing_transaction); 2283 jinode->i_next_transaction = transaction; 2284 goto done; 2285 } 2286 /* Not on any transaction list... */ 2287 J_ASSERT(!jinode->i_next_transaction); 2288 jinode->i_transaction = transaction; 2289 list_add(&jinode->i_list, &transaction->t_inode_list); 2290 done: 2291 spin_unlock(&journal->j_list_lock); 2292 2293 return 0; 2294 } 2295 2296 /* 2297 * File truncate and transaction commit interact with each other in a 2298 * non-trivial way. If a transaction writing data block A is 2299 * committing, we cannot discard the data by truncate until we have 2300 * written them. Otherwise if we crashed after the transaction with 2301 * write has committed but before the transaction with truncate has 2302 * committed, we could see stale data in block A. This function is a 2303 * helper to solve this problem. It starts writeout of the truncated 2304 * part in case it is in the committing transaction. 2305 * 2306 * Filesystem code must call this function when inode is journaled in 2307 * ordered mode before truncation happens and after the inode has been 2308 * placed on orphan list with the new inode size. The second condition 2309 * avoids the race that someone writes new data and we start 2310 * committing the transaction after this function has been called but 2311 * before a transaction for truncate is started (and furthermore it 2312 * allows us to optimize the case where the addition to orphan list 2313 * happens in the same transaction as write --- we don't have to write 2314 * any data in such case). 2315 */ 2316 int jbd2_journal_begin_ordered_truncate(journal_t *journal, 2317 struct jbd2_inode *jinode, 2318 loff_t new_size) 2319 { 2320 transaction_t *inode_trans, *commit_trans; 2321 int ret = 0; 2322 2323 /* This is a quick check to avoid locking if not necessary */ 2324 if (!jinode->i_transaction) 2325 goto out; 2326 /* Locks are here just to force reading of recent values, it is 2327 * enough that the transaction was not committing before we started 2328 * a transaction adding the inode to orphan list */ 2329 read_lock(&journal->j_state_lock); 2330 commit_trans = journal->j_committing_transaction; 2331 read_unlock(&journal->j_state_lock); 2332 spin_lock(&journal->j_list_lock); 2333 inode_trans = jinode->i_transaction; 2334 spin_unlock(&journal->j_list_lock); 2335 if (inode_trans == commit_trans) { 2336 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping, 2337 new_size, LLONG_MAX); 2338 if (ret) 2339 jbd2_journal_abort(journal, ret); 2340 } 2341 out: 2342 return ret; 2343 } 2344