xref: /linux/fs/jbd2/transaction.c (revision 61d0b5a4b2777dcf5daef245e212b3c1fa8091ca)
1 /*
2  * linux/fs/jbd2/transaction.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem transaction handling code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages transactions (compound commits managed by the
16  * journaling code) and handles (individual atomic operations by the
17  * filesystem).
18  */
19 
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd2.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/hrtimer.h>
29 #include <linux/backing-dev.h>
30 #include <linux/bug.h>
31 #include <linux/module.h>
32 
33 #include <trace/events/jbd2.h>
34 
35 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
36 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
37 
38 static struct kmem_cache *transaction_cache;
39 int __init jbd2_journal_init_transaction_cache(void)
40 {
41 	J_ASSERT(!transaction_cache);
42 	transaction_cache = kmem_cache_create("jbd2_transaction_s",
43 					sizeof(transaction_t),
44 					0,
45 					SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
46 					NULL);
47 	if (transaction_cache)
48 		return 0;
49 	return -ENOMEM;
50 }
51 
52 void jbd2_journal_destroy_transaction_cache(void)
53 {
54 	if (transaction_cache) {
55 		kmem_cache_destroy(transaction_cache);
56 		transaction_cache = NULL;
57 	}
58 }
59 
60 void jbd2_journal_free_transaction(transaction_t *transaction)
61 {
62 	if (unlikely(ZERO_OR_NULL_PTR(transaction)))
63 		return;
64 	kmem_cache_free(transaction_cache, transaction);
65 }
66 
67 /*
68  * jbd2_get_transaction: obtain a new transaction_t object.
69  *
70  * Simply allocate and initialise a new transaction.  Create it in
71  * RUNNING state and add it to the current journal (which should not
72  * have an existing running transaction: we only make a new transaction
73  * once we have started to commit the old one).
74  *
75  * Preconditions:
76  *	The journal MUST be locked.  We don't perform atomic mallocs on the
77  *	new transaction	and we can't block without protecting against other
78  *	processes trying to touch the journal while it is in transition.
79  *
80  */
81 
82 static transaction_t *
83 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
84 {
85 	transaction->t_journal = journal;
86 	transaction->t_state = T_RUNNING;
87 	transaction->t_start_time = ktime_get();
88 	transaction->t_tid = journal->j_transaction_sequence++;
89 	transaction->t_expires = jiffies + journal->j_commit_interval;
90 	spin_lock_init(&transaction->t_handle_lock);
91 	atomic_set(&transaction->t_updates, 0);
92 	atomic_set(&transaction->t_outstanding_credits, 0);
93 	atomic_set(&transaction->t_handle_count, 0);
94 	INIT_LIST_HEAD(&transaction->t_inode_list);
95 	INIT_LIST_HEAD(&transaction->t_private_list);
96 
97 	/* Set up the commit timer for the new transaction. */
98 	journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
99 	add_timer(&journal->j_commit_timer);
100 
101 	J_ASSERT(journal->j_running_transaction == NULL);
102 	journal->j_running_transaction = transaction;
103 	transaction->t_max_wait = 0;
104 	transaction->t_start = jiffies;
105 	transaction->t_requested = 0;
106 
107 	return transaction;
108 }
109 
110 /*
111  * Handle management.
112  *
113  * A handle_t is an object which represents a single atomic update to a
114  * filesystem, and which tracks all of the modifications which form part
115  * of that one update.
116  */
117 
118 /*
119  * Update transaction's maximum wait time, if debugging is enabled.
120  *
121  * In order for t_max_wait to be reliable, it must be protected by a
122  * lock.  But doing so will mean that start_this_handle() can not be
123  * run in parallel on SMP systems, which limits our scalability.  So
124  * unless debugging is enabled, we no longer update t_max_wait, which
125  * means that maximum wait time reported by the jbd2_run_stats
126  * tracepoint will always be zero.
127  */
128 static inline void update_t_max_wait(transaction_t *transaction,
129 				     unsigned long ts)
130 {
131 #ifdef CONFIG_JBD2_DEBUG
132 	if (jbd2_journal_enable_debug &&
133 	    time_after(transaction->t_start, ts)) {
134 		ts = jbd2_time_diff(ts, transaction->t_start);
135 		spin_lock(&transaction->t_handle_lock);
136 		if (ts > transaction->t_max_wait)
137 			transaction->t_max_wait = ts;
138 		spin_unlock(&transaction->t_handle_lock);
139 	}
140 #endif
141 }
142 
143 /*
144  * start_this_handle: Given a handle, deal with any locking or stalling
145  * needed to make sure that there is enough journal space for the handle
146  * to begin.  Attach the handle to a transaction and set up the
147  * transaction's buffer credits.
148  */
149 
150 static int start_this_handle(journal_t *journal, handle_t *handle,
151 			     gfp_t gfp_mask)
152 {
153 	transaction_t	*transaction, *new_transaction = NULL;
154 	tid_t		tid;
155 	int		needed, need_to_start;
156 	int		nblocks = handle->h_buffer_credits;
157 	unsigned long ts = jiffies;
158 
159 	if (nblocks > journal->j_max_transaction_buffers) {
160 		printk(KERN_ERR "JBD2: %s wants too many credits (%d > %d)\n",
161 		       current->comm, nblocks,
162 		       journal->j_max_transaction_buffers);
163 		return -ENOSPC;
164 	}
165 
166 alloc_transaction:
167 	if (!journal->j_running_transaction) {
168 		new_transaction = kmem_cache_zalloc(transaction_cache,
169 						    gfp_mask);
170 		if (!new_transaction) {
171 			/*
172 			 * If __GFP_FS is not present, then we may be
173 			 * being called from inside the fs writeback
174 			 * layer, so we MUST NOT fail.  Since
175 			 * __GFP_NOFAIL is going away, we will arrange
176 			 * to retry the allocation ourselves.
177 			 */
178 			if ((gfp_mask & __GFP_FS) == 0) {
179 				congestion_wait(BLK_RW_ASYNC, HZ/50);
180 				goto alloc_transaction;
181 			}
182 			return -ENOMEM;
183 		}
184 	}
185 
186 	jbd_debug(3, "New handle %p going live.\n", handle);
187 
188 	/*
189 	 * We need to hold j_state_lock until t_updates has been incremented,
190 	 * for proper journal barrier handling
191 	 */
192 repeat:
193 	read_lock(&journal->j_state_lock);
194 	BUG_ON(journal->j_flags & JBD2_UNMOUNT);
195 	if (is_journal_aborted(journal) ||
196 	    (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
197 		read_unlock(&journal->j_state_lock);
198 		jbd2_journal_free_transaction(new_transaction);
199 		return -EROFS;
200 	}
201 
202 	/* Wait on the journal's transaction barrier if necessary */
203 	if (journal->j_barrier_count) {
204 		read_unlock(&journal->j_state_lock);
205 		wait_event(journal->j_wait_transaction_locked,
206 				journal->j_barrier_count == 0);
207 		goto repeat;
208 	}
209 
210 	if (!journal->j_running_transaction) {
211 		read_unlock(&journal->j_state_lock);
212 		if (!new_transaction)
213 			goto alloc_transaction;
214 		write_lock(&journal->j_state_lock);
215 		if (!journal->j_running_transaction &&
216 		    !journal->j_barrier_count) {
217 			jbd2_get_transaction(journal, new_transaction);
218 			new_transaction = NULL;
219 		}
220 		write_unlock(&journal->j_state_lock);
221 		goto repeat;
222 	}
223 
224 	transaction = journal->j_running_transaction;
225 
226 	/*
227 	 * If the current transaction is locked down for commit, wait for the
228 	 * lock to be released.
229 	 */
230 	if (transaction->t_state == T_LOCKED) {
231 		DEFINE_WAIT(wait);
232 
233 		prepare_to_wait(&journal->j_wait_transaction_locked,
234 					&wait, TASK_UNINTERRUPTIBLE);
235 		read_unlock(&journal->j_state_lock);
236 		schedule();
237 		finish_wait(&journal->j_wait_transaction_locked, &wait);
238 		goto repeat;
239 	}
240 
241 	/*
242 	 * If there is not enough space left in the log to write all potential
243 	 * buffers requested by this operation, we need to stall pending a log
244 	 * checkpoint to free some more log space.
245 	 */
246 	needed = atomic_add_return(nblocks,
247 				   &transaction->t_outstanding_credits);
248 
249 	if (needed > journal->j_max_transaction_buffers) {
250 		/*
251 		 * If the current transaction is already too large, then start
252 		 * to commit it: we can then go back and attach this handle to
253 		 * a new transaction.
254 		 */
255 		DEFINE_WAIT(wait);
256 
257 		jbd_debug(2, "Handle %p starting new commit...\n", handle);
258 		atomic_sub(nblocks, &transaction->t_outstanding_credits);
259 		prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
260 				TASK_UNINTERRUPTIBLE);
261 		tid = transaction->t_tid;
262 		need_to_start = !tid_geq(journal->j_commit_request, tid);
263 		read_unlock(&journal->j_state_lock);
264 		if (need_to_start)
265 			jbd2_log_start_commit(journal, tid);
266 		schedule();
267 		finish_wait(&journal->j_wait_transaction_locked, &wait);
268 		goto repeat;
269 	}
270 
271 	/*
272 	 * The commit code assumes that it can get enough log space
273 	 * without forcing a checkpoint.  This is *critical* for
274 	 * correctness: a checkpoint of a buffer which is also
275 	 * associated with a committing transaction creates a deadlock,
276 	 * so commit simply cannot force through checkpoints.
277 	 *
278 	 * We must therefore ensure the necessary space in the journal
279 	 * *before* starting to dirty potentially checkpointed buffers
280 	 * in the new transaction.
281 	 *
282 	 * The worst part is, any transaction currently committing can
283 	 * reduce the free space arbitrarily.  Be careful to account for
284 	 * those buffers when checkpointing.
285 	 */
286 
287 	/*
288 	 * @@@ AKPM: This seems rather over-defensive.  We're giving commit
289 	 * a _lot_ of headroom: 1/4 of the journal plus the size of
290 	 * the committing transaction.  Really, we only need to give it
291 	 * committing_transaction->t_outstanding_credits plus "enough" for
292 	 * the log control blocks.
293 	 * Also, this test is inconsistent with the matching one in
294 	 * jbd2_journal_extend().
295 	 */
296 	if (__jbd2_log_space_left(journal) < jbd_space_needed(journal)) {
297 		jbd_debug(2, "Handle %p waiting for checkpoint...\n", handle);
298 		atomic_sub(nblocks, &transaction->t_outstanding_credits);
299 		read_unlock(&journal->j_state_lock);
300 		write_lock(&journal->j_state_lock);
301 		if (__jbd2_log_space_left(journal) < jbd_space_needed(journal))
302 			__jbd2_log_wait_for_space(journal);
303 		write_unlock(&journal->j_state_lock);
304 		goto repeat;
305 	}
306 
307 	/* OK, account for the buffers that this operation expects to
308 	 * use and add the handle to the running transaction.
309 	 */
310 	update_t_max_wait(transaction, ts);
311 	handle->h_transaction = transaction;
312 	handle->h_requested_credits = nblocks;
313 	handle->h_start_jiffies = jiffies;
314 	atomic_inc(&transaction->t_updates);
315 	atomic_inc(&transaction->t_handle_count);
316 	jbd_debug(4, "Handle %p given %d credits (total %d, free %d)\n",
317 		  handle, nblocks,
318 		  atomic_read(&transaction->t_outstanding_credits),
319 		  __jbd2_log_space_left(journal));
320 	read_unlock(&journal->j_state_lock);
321 
322 	lock_map_acquire(&handle->h_lockdep_map);
323 	jbd2_journal_free_transaction(new_transaction);
324 	return 0;
325 }
326 
327 static struct lock_class_key jbd2_handle_key;
328 
329 /* Allocate a new handle.  This should probably be in a slab... */
330 static handle_t *new_handle(int nblocks)
331 {
332 	handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
333 	if (!handle)
334 		return NULL;
335 	memset(handle, 0, sizeof(*handle));
336 	handle->h_buffer_credits = nblocks;
337 	handle->h_ref = 1;
338 
339 	lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle",
340 						&jbd2_handle_key, 0);
341 
342 	return handle;
343 }
344 
345 /**
346  * handle_t *jbd2_journal_start() - Obtain a new handle.
347  * @journal: Journal to start transaction on.
348  * @nblocks: number of block buffer we might modify
349  *
350  * We make sure that the transaction can guarantee at least nblocks of
351  * modified buffers in the log.  We block until the log can guarantee
352  * that much space.
353  *
354  * This function is visible to journal users (like ext3fs), so is not
355  * called with the journal already locked.
356  *
357  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
358  * on failure.
359  */
360 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, gfp_t gfp_mask,
361 			      unsigned int type, unsigned int line_no)
362 {
363 	handle_t *handle = journal_current_handle();
364 	int err;
365 
366 	if (!journal)
367 		return ERR_PTR(-EROFS);
368 
369 	if (handle) {
370 		J_ASSERT(handle->h_transaction->t_journal == journal);
371 		handle->h_ref++;
372 		return handle;
373 	}
374 
375 	handle = new_handle(nblocks);
376 	if (!handle)
377 		return ERR_PTR(-ENOMEM);
378 
379 	current->journal_info = handle;
380 
381 	err = start_this_handle(journal, handle, gfp_mask);
382 	if (err < 0) {
383 		jbd2_free_handle(handle);
384 		current->journal_info = NULL;
385 		return ERR_PTR(err);
386 	}
387 	handle->h_type = type;
388 	handle->h_line_no = line_no;
389 	trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
390 				handle->h_transaction->t_tid, type,
391 				line_no, nblocks);
392 	return handle;
393 }
394 EXPORT_SYMBOL(jbd2__journal_start);
395 
396 
397 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
398 {
399 	return jbd2__journal_start(journal, nblocks, GFP_NOFS, 0, 0);
400 }
401 EXPORT_SYMBOL(jbd2_journal_start);
402 
403 
404 /**
405  * int jbd2_journal_extend() - extend buffer credits.
406  * @handle:  handle to 'extend'
407  * @nblocks: nr blocks to try to extend by.
408  *
409  * Some transactions, such as large extends and truncates, can be done
410  * atomically all at once or in several stages.  The operation requests
411  * a credit for a number of buffer modications in advance, but can
412  * extend its credit if it needs more.
413  *
414  * jbd2_journal_extend tries to give the running handle more buffer credits.
415  * It does not guarantee that allocation - this is a best-effort only.
416  * The calling process MUST be able to deal cleanly with a failure to
417  * extend here.
418  *
419  * Return 0 on success, non-zero on failure.
420  *
421  * return code < 0 implies an error
422  * return code > 0 implies normal transaction-full status.
423  */
424 int jbd2_journal_extend(handle_t *handle, int nblocks)
425 {
426 	transaction_t *transaction = handle->h_transaction;
427 	journal_t *journal = transaction->t_journal;
428 	int result;
429 	int wanted;
430 
431 	result = -EIO;
432 	if (is_handle_aborted(handle))
433 		goto out;
434 
435 	result = 1;
436 
437 	read_lock(&journal->j_state_lock);
438 
439 	/* Don't extend a locked-down transaction! */
440 	if (handle->h_transaction->t_state != T_RUNNING) {
441 		jbd_debug(3, "denied handle %p %d blocks: "
442 			  "transaction not running\n", handle, nblocks);
443 		goto error_out;
444 	}
445 
446 	spin_lock(&transaction->t_handle_lock);
447 	wanted = atomic_read(&transaction->t_outstanding_credits) + nblocks;
448 
449 	if (wanted > journal->j_max_transaction_buffers) {
450 		jbd_debug(3, "denied handle %p %d blocks: "
451 			  "transaction too large\n", handle, nblocks);
452 		goto unlock;
453 	}
454 
455 	if (wanted > __jbd2_log_space_left(journal)) {
456 		jbd_debug(3, "denied handle %p %d blocks: "
457 			  "insufficient log space\n", handle, nblocks);
458 		goto unlock;
459 	}
460 
461 	trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
462 				 handle->h_transaction->t_tid,
463 				 handle->h_type, handle->h_line_no,
464 				 handle->h_buffer_credits,
465 				 nblocks);
466 
467 	handle->h_buffer_credits += nblocks;
468 	handle->h_requested_credits += nblocks;
469 	atomic_add(nblocks, &transaction->t_outstanding_credits);
470 	result = 0;
471 
472 	jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
473 unlock:
474 	spin_unlock(&transaction->t_handle_lock);
475 error_out:
476 	read_unlock(&journal->j_state_lock);
477 out:
478 	return result;
479 }
480 
481 
482 /**
483  * int jbd2_journal_restart() - restart a handle .
484  * @handle:  handle to restart
485  * @nblocks: nr credits requested
486  *
487  * Restart a handle for a multi-transaction filesystem
488  * operation.
489  *
490  * If the jbd2_journal_extend() call above fails to grant new buffer credits
491  * to a running handle, a call to jbd2_journal_restart will commit the
492  * handle's transaction so far and reattach the handle to a new
493  * transaction capabable of guaranteeing the requested number of
494  * credits.
495  */
496 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
497 {
498 	transaction_t *transaction = handle->h_transaction;
499 	journal_t *journal = transaction->t_journal;
500 	tid_t		tid;
501 	int		need_to_start, ret;
502 
503 	/* If we've had an abort of any type, don't even think about
504 	 * actually doing the restart! */
505 	if (is_handle_aborted(handle))
506 		return 0;
507 
508 	/*
509 	 * First unlink the handle from its current transaction, and start the
510 	 * commit on that.
511 	 */
512 	J_ASSERT(atomic_read(&transaction->t_updates) > 0);
513 	J_ASSERT(journal_current_handle() == handle);
514 
515 	read_lock(&journal->j_state_lock);
516 	spin_lock(&transaction->t_handle_lock);
517 	atomic_sub(handle->h_buffer_credits,
518 		   &transaction->t_outstanding_credits);
519 	if (atomic_dec_and_test(&transaction->t_updates))
520 		wake_up(&journal->j_wait_updates);
521 	spin_unlock(&transaction->t_handle_lock);
522 
523 	jbd_debug(2, "restarting handle %p\n", handle);
524 	tid = transaction->t_tid;
525 	need_to_start = !tid_geq(journal->j_commit_request, tid);
526 	read_unlock(&journal->j_state_lock);
527 	if (need_to_start)
528 		jbd2_log_start_commit(journal, tid);
529 
530 	lock_map_release(&handle->h_lockdep_map);
531 	handle->h_buffer_credits = nblocks;
532 	ret = start_this_handle(journal, handle, gfp_mask);
533 	return ret;
534 }
535 EXPORT_SYMBOL(jbd2__journal_restart);
536 
537 
538 int jbd2_journal_restart(handle_t *handle, int nblocks)
539 {
540 	return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
541 }
542 EXPORT_SYMBOL(jbd2_journal_restart);
543 
544 /**
545  * void jbd2_journal_lock_updates () - establish a transaction barrier.
546  * @journal:  Journal to establish a barrier on.
547  *
548  * This locks out any further updates from being started, and blocks
549  * until all existing updates have completed, returning only once the
550  * journal is in a quiescent state with no updates running.
551  *
552  * The journal lock should not be held on entry.
553  */
554 void jbd2_journal_lock_updates(journal_t *journal)
555 {
556 	DEFINE_WAIT(wait);
557 
558 	write_lock(&journal->j_state_lock);
559 	++journal->j_barrier_count;
560 
561 	/* Wait until there are no running updates */
562 	while (1) {
563 		transaction_t *transaction = journal->j_running_transaction;
564 
565 		if (!transaction)
566 			break;
567 
568 		spin_lock(&transaction->t_handle_lock);
569 		prepare_to_wait(&journal->j_wait_updates, &wait,
570 				TASK_UNINTERRUPTIBLE);
571 		if (!atomic_read(&transaction->t_updates)) {
572 			spin_unlock(&transaction->t_handle_lock);
573 			finish_wait(&journal->j_wait_updates, &wait);
574 			break;
575 		}
576 		spin_unlock(&transaction->t_handle_lock);
577 		write_unlock(&journal->j_state_lock);
578 		schedule();
579 		finish_wait(&journal->j_wait_updates, &wait);
580 		write_lock(&journal->j_state_lock);
581 	}
582 	write_unlock(&journal->j_state_lock);
583 
584 	/*
585 	 * We have now established a barrier against other normal updates, but
586 	 * we also need to barrier against other jbd2_journal_lock_updates() calls
587 	 * to make sure that we serialise special journal-locked operations
588 	 * too.
589 	 */
590 	mutex_lock(&journal->j_barrier);
591 }
592 
593 /**
594  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
595  * @journal:  Journal to release the barrier on.
596  *
597  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
598  *
599  * Should be called without the journal lock held.
600  */
601 void jbd2_journal_unlock_updates (journal_t *journal)
602 {
603 	J_ASSERT(journal->j_barrier_count != 0);
604 
605 	mutex_unlock(&journal->j_barrier);
606 	write_lock(&journal->j_state_lock);
607 	--journal->j_barrier_count;
608 	write_unlock(&journal->j_state_lock);
609 	wake_up(&journal->j_wait_transaction_locked);
610 }
611 
612 static void warn_dirty_buffer(struct buffer_head *bh)
613 {
614 	char b[BDEVNAME_SIZE];
615 
616 	printk(KERN_WARNING
617 	       "JBD2: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). "
618 	       "There's a risk of filesystem corruption in case of system "
619 	       "crash.\n",
620 	       bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr);
621 }
622 
623 /*
624  * If the buffer is already part of the current transaction, then there
625  * is nothing we need to do.  If it is already part of a prior
626  * transaction which we are still committing to disk, then we need to
627  * make sure that we do not overwrite the old copy: we do copy-out to
628  * preserve the copy going to disk.  We also account the buffer against
629  * the handle's metadata buffer credits (unless the buffer is already
630  * part of the transaction, that is).
631  *
632  */
633 static int
634 do_get_write_access(handle_t *handle, struct journal_head *jh,
635 			int force_copy)
636 {
637 	struct buffer_head *bh;
638 	transaction_t *transaction;
639 	journal_t *journal;
640 	int error;
641 	char *frozen_buffer = NULL;
642 	int need_copy = 0;
643 
644 	if (is_handle_aborted(handle))
645 		return -EROFS;
646 
647 	transaction = handle->h_transaction;
648 	journal = transaction->t_journal;
649 
650 	jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
651 
652 	JBUFFER_TRACE(jh, "entry");
653 repeat:
654 	bh = jh2bh(jh);
655 
656 	/* @@@ Need to check for errors here at some point. */
657 
658 	lock_buffer(bh);
659 	jbd_lock_bh_state(bh);
660 
661 	/* We now hold the buffer lock so it is safe to query the buffer
662 	 * state.  Is the buffer dirty?
663 	 *
664 	 * If so, there are two possibilities.  The buffer may be
665 	 * non-journaled, and undergoing a quite legitimate writeback.
666 	 * Otherwise, it is journaled, and we don't expect dirty buffers
667 	 * in that state (the buffers should be marked JBD_Dirty
668 	 * instead.)  So either the IO is being done under our own
669 	 * control and this is a bug, or it's a third party IO such as
670 	 * dump(8) (which may leave the buffer scheduled for read ---
671 	 * ie. locked but not dirty) or tune2fs (which may actually have
672 	 * the buffer dirtied, ugh.)  */
673 
674 	if (buffer_dirty(bh)) {
675 		/*
676 		 * First question: is this buffer already part of the current
677 		 * transaction or the existing committing transaction?
678 		 */
679 		if (jh->b_transaction) {
680 			J_ASSERT_JH(jh,
681 				jh->b_transaction == transaction ||
682 				jh->b_transaction ==
683 					journal->j_committing_transaction);
684 			if (jh->b_next_transaction)
685 				J_ASSERT_JH(jh, jh->b_next_transaction ==
686 							transaction);
687 			warn_dirty_buffer(bh);
688 		}
689 		/*
690 		 * In any case we need to clean the dirty flag and we must
691 		 * do it under the buffer lock to be sure we don't race
692 		 * with running write-out.
693 		 */
694 		JBUFFER_TRACE(jh, "Journalling dirty buffer");
695 		clear_buffer_dirty(bh);
696 		set_buffer_jbddirty(bh);
697 	}
698 
699 	unlock_buffer(bh);
700 
701 	error = -EROFS;
702 	if (is_handle_aborted(handle)) {
703 		jbd_unlock_bh_state(bh);
704 		goto out;
705 	}
706 	error = 0;
707 
708 	/*
709 	 * The buffer is already part of this transaction if b_transaction or
710 	 * b_next_transaction points to it
711 	 */
712 	if (jh->b_transaction == transaction ||
713 	    jh->b_next_transaction == transaction)
714 		goto done;
715 
716 	/*
717 	 * this is the first time this transaction is touching this buffer,
718 	 * reset the modified flag
719 	 */
720        jh->b_modified = 0;
721 
722 	/*
723 	 * If there is already a copy-out version of this buffer, then we don't
724 	 * need to make another one
725 	 */
726 	if (jh->b_frozen_data) {
727 		JBUFFER_TRACE(jh, "has frozen data");
728 		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
729 		jh->b_next_transaction = transaction;
730 		goto done;
731 	}
732 
733 	/* Is there data here we need to preserve? */
734 
735 	if (jh->b_transaction && jh->b_transaction != transaction) {
736 		JBUFFER_TRACE(jh, "owned by older transaction");
737 		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
738 		J_ASSERT_JH(jh, jh->b_transaction ==
739 					journal->j_committing_transaction);
740 
741 		/* There is one case we have to be very careful about.
742 		 * If the committing transaction is currently writing
743 		 * this buffer out to disk and has NOT made a copy-out,
744 		 * then we cannot modify the buffer contents at all
745 		 * right now.  The essence of copy-out is that it is the
746 		 * extra copy, not the primary copy, which gets
747 		 * journaled.  If the primary copy is already going to
748 		 * disk then we cannot do copy-out here. */
749 
750 		if (jh->b_jlist == BJ_Shadow) {
751 			DEFINE_WAIT_BIT(wait, &bh->b_state, BH_Unshadow);
752 			wait_queue_head_t *wqh;
753 
754 			wqh = bit_waitqueue(&bh->b_state, BH_Unshadow);
755 
756 			JBUFFER_TRACE(jh, "on shadow: sleep");
757 			jbd_unlock_bh_state(bh);
758 			/* commit wakes up all shadow buffers after IO */
759 			for ( ; ; ) {
760 				prepare_to_wait(wqh, &wait.wait,
761 						TASK_UNINTERRUPTIBLE);
762 				if (jh->b_jlist != BJ_Shadow)
763 					break;
764 				schedule();
765 			}
766 			finish_wait(wqh, &wait.wait);
767 			goto repeat;
768 		}
769 
770 		/* Only do the copy if the currently-owning transaction
771 		 * still needs it.  If it is on the Forget list, the
772 		 * committing transaction is past that stage.  The
773 		 * buffer had better remain locked during the kmalloc,
774 		 * but that should be true --- we hold the journal lock
775 		 * still and the buffer is already on the BUF_JOURNAL
776 		 * list so won't be flushed.
777 		 *
778 		 * Subtle point, though: if this is a get_undo_access,
779 		 * then we will be relying on the frozen_data to contain
780 		 * the new value of the committed_data record after the
781 		 * transaction, so we HAVE to force the frozen_data copy
782 		 * in that case. */
783 
784 		if (jh->b_jlist != BJ_Forget || force_copy) {
785 			JBUFFER_TRACE(jh, "generate frozen data");
786 			if (!frozen_buffer) {
787 				JBUFFER_TRACE(jh, "allocate memory for buffer");
788 				jbd_unlock_bh_state(bh);
789 				frozen_buffer =
790 					jbd2_alloc(jh2bh(jh)->b_size,
791 							 GFP_NOFS);
792 				if (!frozen_buffer) {
793 					printk(KERN_EMERG
794 					       "%s: OOM for frozen_buffer\n",
795 					       __func__);
796 					JBUFFER_TRACE(jh, "oom!");
797 					error = -ENOMEM;
798 					jbd_lock_bh_state(bh);
799 					goto done;
800 				}
801 				goto repeat;
802 			}
803 			jh->b_frozen_data = frozen_buffer;
804 			frozen_buffer = NULL;
805 			need_copy = 1;
806 		}
807 		jh->b_next_transaction = transaction;
808 	}
809 
810 
811 	/*
812 	 * Finally, if the buffer is not journaled right now, we need to make
813 	 * sure it doesn't get written to disk before the caller actually
814 	 * commits the new data
815 	 */
816 	if (!jh->b_transaction) {
817 		JBUFFER_TRACE(jh, "no transaction");
818 		J_ASSERT_JH(jh, !jh->b_next_transaction);
819 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
820 		spin_lock(&journal->j_list_lock);
821 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
822 		spin_unlock(&journal->j_list_lock);
823 	}
824 
825 done:
826 	if (need_copy) {
827 		struct page *page;
828 		int offset;
829 		char *source;
830 
831 		J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)),
832 			    "Possible IO failure.\n");
833 		page = jh2bh(jh)->b_page;
834 		offset = offset_in_page(jh2bh(jh)->b_data);
835 		source = kmap_atomic(page);
836 		/* Fire data frozen trigger just before we copy the data */
837 		jbd2_buffer_frozen_trigger(jh, source + offset,
838 					   jh->b_triggers);
839 		memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size);
840 		kunmap_atomic(source);
841 
842 		/*
843 		 * Now that the frozen data is saved off, we need to store
844 		 * any matching triggers.
845 		 */
846 		jh->b_frozen_triggers = jh->b_triggers;
847 	}
848 	jbd_unlock_bh_state(bh);
849 
850 	/*
851 	 * If we are about to journal a buffer, then any revoke pending on it is
852 	 * no longer valid
853 	 */
854 	jbd2_journal_cancel_revoke(handle, jh);
855 
856 out:
857 	if (unlikely(frozen_buffer))	/* It's usually NULL */
858 		jbd2_free(frozen_buffer, bh->b_size);
859 
860 	JBUFFER_TRACE(jh, "exit");
861 	return error;
862 }
863 
864 /**
865  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
866  * @handle: transaction to add buffer modifications to
867  * @bh:     bh to be used for metadata writes
868  *
869  * Returns an error code or 0 on success.
870  *
871  * In full data journalling mode the buffer may be of type BJ_AsyncData,
872  * because we're write()ing a buffer which is also part of a shared mapping.
873  */
874 
875 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
876 {
877 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
878 	int rc;
879 
880 	/* We do not want to get caught playing with fields which the
881 	 * log thread also manipulates.  Make sure that the buffer
882 	 * completes any outstanding IO before proceeding. */
883 	rc = do_get_write_access(handle, jh, 0);
884 	jbd2_journal_put_journal_head(jh);
885 	return rc;
886 }
887 
888 
889 /*
890  * When the user wants to journal a newly created buffer_head
891  * (ie. getblk() returned a new buffer and we are going to populate it
892  * manually rather than reading off disk), then we need to keep the
893  * buffer_head locked until it has been completely filled with new
894  * data.  In this case, we should be able to make the assertion that
895  * the bh is not already part of an existing transaction.
896  *
897  * The buffer should already be locked by the caller by this point.
898  * There is no lock ranking violation: it was a newly created,
899  * unlocked buffer beforehand. */
900 
901 /**
902  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
903  * @handle: transaction to new buffer to
904  * @bh: new buffer.
905  *
906  * Call this if you create a new bh.
907  */
908 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
909 {
910 	transaction_t *transaction = handle->h_transaction;
911 	journal_t *journal = transaction->t_journal;
912 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
913 	int err;
914 
915 	jbd_debug(5, "journal_head %p\n", jh);
916 	err = -EROFS;
917 	if (is_handle_aborted(handle))
918 		goto out;
919 	err = 0;
920 
921 	JBUFFER_TRACE(jh, "entry");
922 	/*
923 	 * The buffer may already belong to this transaction due to pre-zeroing
924 	 * in the filesystem's new_block code.  It may also be on the previous,
925 	 * committing transaction's lists, but it HAS to be in Forget state in
926 	 * that case: the transaction must have deleted the buffer for it to be
927 	 * reused here.
928 	 */
929 	jbd_lock_bh_state(bh);
930 	spin_lock(&journal->j_list_lock);
931 	J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
932 		jh->b_transaction == NULL ||
933 		(jh->b_transaction == journal->j_committing_transaction &&
934 			  jh->b_jlist == BJ_Forget)));
935 
936 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
937 	J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
938 
939 	if (jh->b_transaction == NULL) {
940 		/*
941 		 * Previous jbd2_journal_forget() could have left the buffer
942 		 * with jbddirty bit set because it was being committed. When
943 		 * the commit finished, we've filed the buffer for
944 		 * checkpointing and marked it dirty. Now we are reallocating
945 		 * the buffer so the transaction freeing it must have
946 		 * committed and so it's safe to clear the dirty bit.
947 		 */
948 		clear_buffer_dirty(jh2bh(jh));
949 		/* first access by this transaction */
950 		jh->b_modified = 0;
951 
952 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
953 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
954 	} else if (jh->b_transaction == journal->j_committing_transaction) {
955 		/* first access by this transaction */
956 		jh->b_modified = 0;
957 
958 		JBUFFER_TRACE(jh, "set next transaction");
959 		jh->b_next_transaction = transaction;
960 	}
961 	spin_unlock(&journal->j_list_lock);
962 	jbd_unlock_bh_state(bh);
963 
964 	/*
965 	 * akpm: I added this.  ext3_alloc_branch can pick up new indirect
966 	 * blocks which contain freed but then revoked metadata.  We need
967 	 * to cancel the revoke in case we end up freeing it yet again
968 	 * and the reallocating as data - this would cause a second revoke,
969 	 * which hits an assertion error.
970 	 */
971 	JBUFFER_TRACE(jh, "cancelling revoke");
972 	jbd2_journal_cancel_revoke(handle, jh);
973 out:
974 	jbd2_journal_put_journal_head(jh);
975 	return err;
976 }
977 
978 /**
979  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
980  *     non-rewindable consequences
981  * @handle: transaction
982  * @bh: buffer to undo
983  *
984  * Sometimes there is a need to distinguish between metadata which has
985  * been committed to disk and that which has not.  The ext3fs code uses
986  * this for freeing and allocating space, we have to make sure that we
987  * do not reuse freed space until the deallocation has been committed,
988  * since if we overwrote that space we would make the delete
989  * un-rewindable in case of a crash.
990  *
991  * To deal with that, jbd2_journal_get_undo_access requests write access to a
992  * buffer for parts of non-rewindable operations such as delete
993  * operations on the bitmaps.  The journaling code must keep a copy of
994  * the buffer's contents prior to the undo_access call until such time
995  * as we know that the buffer has definitely been committed to disk.
996  *
997  * We never need to know which transaction the committed data is part
998  * of, buffers touched here are guaranteed to be dirtied later and so
999  * will be committed to a new transaction in due course, at which point
1000  * we can discard the old committed data pointer.
1001  *
1002  * Returns error number or 0 on success.
1003  */
1004 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1005 {
1006 	int err;
1007 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1008 	char *committed_data = NULL;
1009 
1010 	JBUFFER_TRACE(jh, "entry");
1011 
1012 	/*
1013 	 * Do this first --- it can drop the journal lock, so we want to
1014 	 * make sure that obtaining the committed_data is done
1015 	 * atomically wrt. completion of any outstanding commits.
1016 	 */
1017 	err = do_get_write_access(handle, jh, 1);
1018 	if (err)
1019 		goto out;
1020 
1021 repeat:
1022 	if (!jh->b_committed_data) {
1023 		committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS);
1024 		if (!committed_data) {
1025 			printk(KERN_EMERG "%s: No memory for committed data\n",
1026 				__func__);
1027 			err = -ENOMEM;
1028 			goto out;
1029 		}
1030 	}
1031 
1032 	jbd_lock_bh_state(bh);
1033 	if (!jh->b_committed_data) {
1034 		/* Copy out the current buffer contents into the
1035 		 * preserved, committed copy. */
1036 		JBUFFER_TRACE(jh, "generate b_committed data");
1037 		if (!committed_data) {
1038 			jbd_unlock_bh_state(bh);
1039 			goto repeat;
1040 		}
1041 
1042 		jh->b_committed_data = committed_data;
1043 		committed_data = NULL;
1044 		memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1045 	}
1046 	jbd_unlock_bh_state(bh);
1047 out:
1048 	jbd2_journal_put_journal_head(jh);
1049 	if (unlikely(committed_data))
1050 		jbd2_free(committed_data, bh->b_size);
1051 	return err;
1052 }
1053 
1054 /**
1055  * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1056  * @bh: buffer to trigger on
1057  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1058  *
1059  * Set any triggers on this journal_head.  This is always safe, because
1060  * triggers for a committing buffer will be saved off, and triggers for
1061  * a running transaction will match the buffer in that transaction.
1062  *
1063  * Call with NULL to clear the triggers.
1064  */
1065 void jbd2_journal_set_triggers(struct buffer_head *bh,
1066 			       struct jbd2_buffer_trigger_type *type)
1067 {
1068 	struct journal_head *jh = bh2jh(bh);
1069 
1070 	jh->b_triggers = type;
1071 }
1072 
1073 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1074 				struct jbd2_buffer_trigger_type *triggers)
1075 {
1076 	struct buffer_head *bh = jh2bh(jh);
1077 
1078 	if (!triggers || !triggers->t_frozen)
1079 		return;
1080 
1081 	triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1082 }
1083 
1084 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1085 			       struct jbd2_buffer_trigger_type *triggers)
1086 {
1087 	if (!triggers || !triggers->t_abort)
1088 		return;
1089 
1090 	triggers->t_abort(triggers, jh2bh(jh));
1091 }
1092 
1093 
1094 
1095 /**
1096  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1097  * @handle: transaction to add buffer to.
1098  * @bh: buffer to mark
1099  *
1100  * mark dirty metadata which needs to be journaled as part of the current
1101  * transaction.
1102  *
1103  * The buffer must have previously had jbd2_journal_get_write_access()
1104  * called so that it has a valid journal_head attached to the buffer
1105  * head.
1106  *
1107  * The buffer is placed on the transaction's metadata list and is marked
1108  * as belonging to the transaction.
1109  *
1110  * Returns error number or 0 on success.
1111  *
1112  * Special care needs to be taken if the buffer already belongs to the
1113  * current committing transaction (in which case we should have frozen
1114  * data present for that commit).  In that case, we don't relink the
1115  * buffer: that only gets done when the old transaction finally
1116  * completes its commit.
1117  */
1118 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1119 {
1120 	transaction_t *transaction = handle->h_transaction;
1121 	journal_t *journal = transaction->t_journal;
1122 	struct journal_head *jh = bh2jh(bh);
1123 	int ret = 0;
1124 
1125 	jbd_debug(5, "journal_head %p\n", jh);
1126 	JBUFFER_TRACE(jh, "entry");
1127 	if (is_handle_aborted(handle))
1128 		goto out;
1129 	if (!buffer_jbd(bh)) {
1130 		ret = -EUCLEAN;
1131 		goto out;
1132 	}
1133 
1134 	jbd_lock_bh_state(bh);
1135 
1136 	if (jh->b_modified == 0) {
1137 		/*
1138 		 * This buffer's got modified and becoming part
1139 		 * of the transaction. This needs to be done
1140 		 * once a transaction -bzzz
1141 		 */
1142 		jh->b_modified = 1;
1143 		J_ASSERT_JH(jh, handle->h_buffer_credits > 0);
1144 		handle->h_buffer_credits--;
1145 	}
1146 
1147 	/*
1148 	 * fastpath, to avoid expensive locking.  If this buffer is already
1149 	 * on the running transaction's metadata list there is nothing to do.
1150 	 * Nobody can take it off again because there is a handle open.
1151 	 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1152 	 * result in this test being false, so we go in and take the locks.
1153 	 */
1154 	if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1155 		JBUFFER_TRACE(jh, "fastpath");
1156 		if (unlikely(jh->b_transaction !=
1157 			     journal->j_running_transaction)) {
1158 			printk(KERN_EMERG "JBD: %s: "
1159 			       "jh->b_transaction (%llu, %p, %u) != "
1160 			       "journal->j_running_transaction (%p, %u)",
1161 			       journal->j_devname,
1162 			       (unsigned long long) bh->b_blocknr,
1163 			       jh->b_transaction,
1164 			       jh->b_transaction ? jh->b_transaction->t_tid : 0,
1165 			       journal->j_running_transaction,
1166 			       journal->j_running_transaction ?
1167 			       journal->j_running_transaction->t_tid : 0);
1168 			ret = -EINVAL;
1169 		}
1170 		goto out_unlock_bh;
1171 	}
1172 
1173 	set_buffer_jbddirty(bh);
1174 
1175 	/*
1176 	 * Metadata already on the current transaction list doesn't
1177 	 * need to be filed.  Metadata on another transaction's list must
1178 	 * be committing, and will be refiled once the commit completes:
1179 	 * leave it alone for now.
1180 	 */
1181 	if (jh->b_transaction != transaction) {
1182 		JBUFFER_TRACE(jh, "already on other transaction");
1183 		if (unlikely(jh->b_transaction !=
1184 			     journal->j_committing_transaction)) {
1185 			printk(KERN_EMERG "JBD: %s: "
1186 			       "jh->b_transaction (%llu, %p, %u) != "
1187 			       "journal->j_committing_transaction (%p, %u)",
1188 			       journal->j_devname,
1189 			       (unsigned long long) bh->b_blocknr,
1190 			       jh->b_transaction,
1191 			       jh->b_transaction ? jh->b_transaction->t_tid : 0,
1192 			       journal->j_committing_transaction,
1193 			       journal->j_committing_transaction ?
1194 			       journal->j_committing_transaction->t_tid : 0);
1195 			ret = -EINVAL;
1196 		}
1197 		if (unlikely(jh->b_next_transaction != transaction)) {
1198 			printk(KERN_EMERG "JBD: %s: "
1199 			       "jh->b_next_transaction (%llu, %p, %u) != "
1200 			       "transaction (%p, %u)",
1201 			       journal->j_devname,
1202 			       (unsigned long long) bh->b_blocknr,
1203 			       jh->b_next_transaction,
1204 			       jh->b_next_transaction ?
1205 			       jh->b_next_transaction->t_tid : 0,
1206 			       transaction, transaction->t_tid);
1207 			ret = -EINVAL;
1208 		}
1209 		/* And this case is illegal: we can't reuse another
1210 		 * transaction's data buffer, ever. */
1211 		goto out_unlock_bh;
1212 	}
1213 
1214 	/* That test should have eliminated the following case: */
1215 	J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1216 
1217 	JBUFFER_TRACE(jh, "file as BJ_Metadata");
1218 	spin_lock(&journal->j_list_lock);
1219 	__jbd2_journal_file_buffer(jh, handle->h_transaction, BJ_Metadata);
1220 	spin_unlock(&journal->j_list_lock);
1221 out_unlock_bh:
1222 	jbd_unlock_bh_state(bh);
1223 out:
1224 	JBUFFER_TRACE(jh, "exit");
1225 	WARN_ON(ret);	/* All errors are bugs, so dump the stack */
1226 	return ret;
1227 }
1228 
1229 /**
1230  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1231  * @handle: transaction handle
1232  * @bh:     bh to 'forget'
1233  *
1234  * We can only do the bforget if there are no commits pending against the
1235  * buffer.  If the buffer is dirty in the current running transaction we
1236  * can safely unlink it.
1237  *
1238  * bh may not be a journalled buffer at all - it may be a non-JBD
1239  * buffer which came off the hashtable.  Check for this.
1240  *
1241  * Decrements bh->b_count by one.
1242  *
1243  * Allow this call even if the handle has aborted --- it may be part of
1244  * the caller's cleanup after an abort.
1245  */
1246 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1247 {
1248 	transaction_t *transaction = handle->h_transaction;
1249 	journal_t *journal = transaction->t_journal;
1250 	struct journal_head *jh;
1251 	int drop_reserve = 0;
1252 	int err = 0;
1253 	int was_modified = 0;
1254 
1255 	BUFFER_TRACE(bh, "entry");
1256 
1257 	jbd_lock_bh_state(bh);
1258 	spin_lock(&journal->j_list_lock);
1259 
1260 	if (!buffer_jbd(bh))
1261 		goto not_jbd;
1262 	jh = bh2jh(bh);
1263 
1264 	/* Critical error: attempting to delete a bitmap buffer, maybe?
1265 	 * Don't do any jbd operations, and return an error. */
1266 	if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1267 			 "inconsistent data on disk")) {
1268 		err = -EIO;
1269 		goto not_jbd;
1270 	}
1271 
1272 	/* keep track of whether or not this transaction modified us */
1273 	was_modified = jh->b_modified;
1274 
1275 	/*
1276 	 * The buffer's going from the transaction, we must drop
1277 	 * all references -bzzz
1278 	 */
1279 	jh->b_modified = 0;
1280 
1281 	if (jh->b_transaction == handle->h_transaction) {
1282 		J_ASSERT_JH(jh, !jh->b_frozen_data);
1283 
1284 		/* If we are forgetting a buffer which is already part
1285 		 * of this transaction, then we can just drop it from
1286 		 * the transaction immediately. */
1287 		clear_buffer_dirty(bh);
1288 		clear_buffer_jbddirty(bh);
1289 
1290 		JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1291 
1292 		/*
1293 		 * we only want to drop a reference if this transaction
1294 		 * modified the buffer
1295 		 */
1296 		if (was_modified)
1297 			drop_reserve = 1;
1298 
1299 		/*
1300 		 * We are no longer going to journal this buffer.
1301 		 * However, the commit of this transaction is still
1302 		 * important to the buffer: the delete that we are now
1303 		 * processing might obsolete an old log entry, so by
1304 		 * committing, we can satisfy the buffer's checkpoint.
1305 		 *
1306 		 * So, if we have a checkpoint on the buffer, we should
1307 		 * now refile the buffer on our BJ_Forget list so that
1308 		 * we know to remove the checkpoint after we commit.
1309 		 */
1310 
1311 		if (jh->b_cp_transaction) {
1312 			__jbd2_journal_temp_unlink_buffer(jh);
1313 			__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1314 		} else {
1315 			__jbd2_journal_unfile_buffer(jh);
1316 			if (!buffer_jbd(bh)) {
1317 				spin_unlock(&journal->j_list_lock);
1318 				jbd_unlock_bh_state(bh);
1319 				__bforget(bh);
1320 				goto drop;
1321 			}
1322 		}
1323 	} else if (jh->b_transaction) {
1324 		J_ASSERT_JH(jh, (jh->b_transaction ==
1325 				 journal->j_committing_transaction));
1326 		/* However, if the buffer is still owned by a prior
1327 		 * (committing) transaction, we can't drop it yet... */
1328 		JBUFFER_TRACE(jh, "belongs to older transaction");
1329 		/* ... but we CAN drop it from the new transaction if we
1330 		 * have also modified it since the original commit. */
1331 
1332 		if (jh->b_next_transaction) {
1333 			J_ASSERT(jh->b_next_transaction == transaction);
1334 			jh->b_next_transaction = NULL;
1335 
1336 			/*
1337 			 * only drop a reference if this transaction modified
1338 			 * the buffer
1339 			 */
1340 			if (was_modified)
1341 				drop_reserve = 1;
1342 		}
1343 	}
1344 
1345 not_jbd:
1346 	spin_unlock(&journal->j_list_lock);
1347 	jbd_unlock_bh_state(bh);
1348 	__brelse(bh);
1349 drop:
1350 	if (drop_reserve) {
1351 		/* no need to reserve log space for this block -bzzz */
1352 		handle->h_buffer_credits++;
1353 	}
1354 	return err;
1355 }
1356 
1357 /**
1358  * int jbd2_journal_stop() - complete a transaction
1359  * @handle: tranaction to complete.
1360  *
1361  * All done for a particular handle.
1362  *
1363  * There is not much action needed here.  We just return any remaining
1364  * buffer credits to the transaction and remove the handle.  The only
1365  * complication is that we need to start a commit operation if the
1366  * filesystem is marked for synchronous update.
1367  *
1368  * jbd2_journal_stop itself will not usually return an error, but it may
1369  * do so in unusual circumstances.  In particular, expect it to
1370  * return -EIO if a jbd2_journal_abort has been executed since the
1371  * transaction began.
1372  */
1373 int jbd2_journal_stop(handle_t *handle)
1374 {
1375 	transaction_t *transaction = handle->h_transaction;
1376 	journal_t *journal = transaction->t_journal;
1377 	int err, wait_for_commit = 0;
1378 	tid_t tid;
1379 	pid_t pid;
1380 
1381 	J_ASSERT(journal_current_handle() == handle);
1382 
1383 	if (is_handle_aborted(handle))
1384 		err = -EIO;
1385 	else {
1386 		J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1387 		err = 0;
1388 	}
1389 
1390 	if (--handle->h_ref > 0) {
1391 		jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1392 			  handle->h_ref);
1393 		return err;
1394 	}
1395 
1396 	jbd_debug(4, "Handle %p going down\n", handle);
1397 	trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1398 				handle->h_transaction->t_tid,
1399 				handle->h_type, handle->h_line_no,
1400 				jiffies - handle->h_start_jiffies,
1401 				handle->h_sync, handle->h_requested_credits,
1402 				(handle->h_requested_credits -
1403 				 handle->h_buffer_credits));
1404 
1405 	/*
1406 	 * Implement synchronous transaction batching.  If the handle
1407 	 * was synchronous, don't force a commit immediately.  Let's
1408 	 * yield and let another thread piggyback onto this
1409 	 * transaction.  Keep doing that while new threads continue to
1410 	 * arrive.  It doesn't cost much - we're about to run a commit
1411 	 * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1412 	 * operations by 30x or more...
1413 	 *
1414 	 * We try and optimize the sleep time against what the
1415 	 * underlying disk can do, instead of having a static sleep
1416 	 * time.  This is useful for the case where our storage is so
1417 	 * fast that it is more optimal to go ahead and force a flush
1418 	 * and wait for the transaction to be committed than it is to
1419 	 * wait for an arbitrary amount of time for new writers to
1420 	 * join the transaction.  We achieve this by measuring how
1421 	 * long it takes to commit a transaction, and compare it with
1422 	 * how long this transaction has been running, and if run time
1423 	 * < commit time then we sleep for the delta and commit.  This
1424 	 * greatly helps super fast disks that would see slowdowns as
1425 	 * more threads started doing fsyncs.
1426 	 *
1427 	 * But don't do this if this process was the most recent one
1428 	 * to perform a synchronous write.  We do this to detect the
1429 	 * case where a single process is doing a stream of sync
1430 	 * writes.  No point in waiting for joiners in that case.
1431 	 */
1432 	pid = current->pid;
1433 	if (handle->h_sync && journal->j_last_sync_writer != pid) {
1434 		u64 commit_time, trans_time;
1435 
1436 		journal->j_last_sync_writer = pid;
1437 
1438 		read_lock(&journal->j_state_lock);
1439 		commit_time = journal->j_average_commit_time;
1440 		read_unlock(&journal->j_state_lock);
1441 
1442 		trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1443 						   transaction->t_start_time));
1444 
1445 		commit_time = max_t(u64, commit_time,
1446 				    1000*journal->j_min_batch_time);
1447 		commit_time = min_t(u64, commit_time,
1448 				    1000*journal->j_max_batch_time);
1449 
1450 		if (trans_time < commit_time) {
1451 			ktime_t expires = ktime_add_ns(ktime_get(),
1452 						       commit_time);
1453 			set_current_state(TASK_UNINTERRUPTIBLE);
1454 			schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1455 		}
1456 	}
1457 
1458 	if (handle->h_sync)
1459 		transaction->t_synchronous_commit = 1;
1460 	current->journal_info = NULL;
1461 	atomic_sub(handle->h_buffer_credits,
1462 		   &transaction->t_outstanding_credits);
1463 
1464 	/*
1465 	 * If the handle is marked SYNC, we need to set another commit
1466 	 * going!  We also want to force a commit if the current
1467 	 * transaction is occupying too much of the log, or if the
1468 	 * transaction is too old now.
1469 	 */
1470 	if (handle->h_sync ||
1471 	    (atomic_read(&transaction->t_outstanding_credits) >
1472 	     journal->j_max_transaction_buffers) ||
1473 	    time_after_eq(jiffies, transaction->t_expires)) {
1474 		/* Do this even for aborted journals: an abort still
1475 		 * completes the commit thread, it just doesn't write
1476 		 * anything to disk. */
1477 
1478 		jbd_debug(2, "transaction too old, requesting commit for "
1479 					"handle %p\n", handle);
1480 		/* This is non-blocking */
1481 		jbd2_log_start_commit(journal, transaction->t_tid);
1482 
1483 		/*
1484 		 * Special case: JBD2_SYNC synchronous updates require us
1485 		 * to wait for the commit to complete.
1486 		 */
1487 		if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1488 			wait_for_commit = 1;
1489 	}
1490 
1491 	/*
1492 	 * Once we drop t_updates, if it goes to zero the transaction
1493 	 * could start committing on us and eventually disappear.  So
1494 	 * once we do this, we must not dereference transaction
1495 	 * pointer again.
1496 	 */
1497 	tid = transaction->t_tid;
1498 	if (atomic_dec_and_test(&transaction->t_updates)) {
1499 		wake_up(&journal->j_wait_updates);
1500 		if (journal->j_barrier_count)
1501 			wake_up(&journal->j_wait_transaction_locked);
1502 	}
1503 
1504 	if (wait_for_commit)
1505 		err = jbd2_log_wait_commit(journal, tid);
1506 
1507 	lock_map_release(&handle->h_lockdep_map);
1508 
1509 	jbd2_free_handle(handle);
1510 	return err;
1511 }
1512 
1513 /**
1514  * int jbd2_journal_force_commit() - force any uncommitted transactions
1515  * @journal: journal to force
1516  *
1517  * For synchronous operations: force any uncommitted transactions
1518  * to disk.  May seem kludgy, but it reuses all the handle batching
1519  * code in a very simple manner.
1520  */
1521 int jbd2_journal_force_commit(journal_t *journal)
1522 {
1523 	handle_t *handle;
1524 	int ret;
1525 
1526 	handle = jbd2_journal_start(journal, 1);
1527 	if (IS_ERR(handle)) {
1528 		ret = PTR_ERR(handle);
1529 	} else {
1530 		handle->h_sync = 1;
1531 		ret = jbd2_journal_stop(handle);
1532 	}
1533 	return ret;
1534 }
1535 
1536 /*
1537  *
1538  * List management code snippets: various functions for manipulating the
1539  * transaction buffer lists.
1540  *
1541  */
1542 
1543 /*
1544  * Append a buffer to a transaction list, given the transaction's list head
1545  * pointer.
1546  *
1547  * j_list_lock is held.
1548  *
1549  * jbd_lock_bh_state(jh2bh(jh)) is held.
1550  */
1551 
1552 static inline void
1553 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1554 {
1555 	if (!*list) {
1556 		jh->b_tnext = jh->b_tprev = jh;
1557 		*list = jh;
1558 	} else {
1559 		/* Insert at the tail of the list to preserve order */
1560 		struct journal_head *first = *list, *last = first->b_tprev;
1561 		jh->b_tprev = last;
1562 		jh->b_tnext = first;
1563 		last->b_tnext = first->b_tprev = jh;
1564 	}
1565 }
1566 
1567 /*
1568  * Remove a buffer from a transaction list, given the transaction's list
1569  * head pointer.
1570  *
1571  * Called with j_list_lock held, and the journal may not be locked.
1572  *
1573  * jbd_lock_bh_state(jh2bh(jh)) is held.
1574  */
1575 
1576 static inline void
1577 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1578 {
1579 	if (*list == jh) {
1580 		*list = jh->b_tnext;
1581 		if (*list == jh)
1582 			*list = NULL;
1583 	}
1584 	jh->b_tprev->b_tnext = jh->b_tnext;
1585 	jh->b_tnext->b_tprev = jh->b_tprev;
1586 }
1587 
1588 /*
1589  * Remove a buffer from the appropriate transaction list.
1590  *
1591  * Note that this function can *change* the value of
1592  * bh->b_transaction->t_buffers, t_forget, t_iobuf_list, t_shadow_list,
1593  * t_log_list or t_reserved_list.  If the caller is holding onto a copy of one
1594  * of these pointers, it could go bad.  Generally the caller needs to re-read
1595  * the pointer from the transaction_t.
1596  *
1597  * Called under j_list_lock.
1598  */
1599 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1600 {
1601 	struct journal_head **list = NULL;
1602 	transaction_t *transaction;
1603 	struct buffer_head *bh = jh2bh(jh);
1604 
1605 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1606 	transaction = jh->b_transaction;
1607 	if (transaction)
1608 		assert_spin_locked(&transaction->t_journal->j_list_lock);
1609 
1610 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1611 	if (jh->b_jlist != BJ_None)
1612 		J_ASSERT_JH(jh, transaction != NULL);
1613 
1614 	switch (jh->b_jlist) {
1615 	case BJ_None:
1616 		return;
1617 	case BJ_Metadata:
1618 		transaction->t_nr_buffers--;
1619 		J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1620 		list = &transaction->t_buffers;
1621 		break;
1622 	case BJ_Forget:
1623 		list = &transaction->t_forget;
1624 		break;
1625 	case BJ_IO:
1626 		list = &transaction->t_iobuf_list;
1627 		break;
1628 	case BJ_Shadow:
1629 		list = &transaction->t_shadow_list;
1630 		break;
1631 	case BJ_LogCtl:
1632 		list = &transaction->t_log_list;
1633 		break;
1634 	case BJ_Reserved:
1635 		list = &transaction->t_reserved_list;
1636 		break;
1637 	}
1638 
1639 	__blist_del_buffer(list, jh);
1640 	jh->b_jlist = BJ_None;
1641 	if (test_clear_buffer_jbddirty(bh))
1642 		mark_buffer_dirty(bh);	/* Expose it to the VM */
1643 }
1644 
1645 /*
1646  * Remove buffer from all transactions.
1647  *
1648  * Called with bh_state lock and j_list_lock
1649  *
1650  * jh and bh may be already freed when this function returns.
1651  */
1652 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1653 {
1654 	__jbd2_journal_temp_unlink_buffer(jh);
1655 	jh->b_transaction = NULL;
1656 	jbd2_journal_put_journal_head(jh);
1657 }
1658 
1659 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1660 {
1661 	struct buffer_head *bh = jh2bh(jh);
1662 
1663 	/* Get reference so that buffer cannot be freed before we unlock it */
1664 	get_bh(bh);
1665 	jbd_lock_bh_state(bh);
1666 	spin_lock(&journal->j_list_lock);
1667 	__jbd2_journal_unfile_buffer(jh);
1668 	spin_unlock(&journal->j_list_lock);
1669 	jbd_unlock_bh_state(bh);
1670 	__brelse(bh);
1671 }
1672 
1673 /*
1674  * Called from jbd2_journal_try_to_free_buffers().
1675  *
1676  * Called under jbd_lock_bh_state(bh)
1677  */
1678 static void
1679 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1680 {
1681 	struct journal_head *jh;
1682 
1683 	jh = bh2jh(bh);
1684 
1685 	if (buffer_locked(bh) || buffer_dirty(bh))
1686 		goto out;
1687 
1688 	if (jh->b_next_transaction != NULL)
1689 		goto out;
1690 
1691 	spin_lock(&journal->j_list_lock);
1692 	if (jh->b_cp_transaction != NULL && jh->b_transaction == NULL) {
1693 		/* written-back checkpointed metadata buffer */
1694 		JBUFFER_TRACE(jh, "remove from checkpoint list");
1695 		__jbd2_journal_remove_checkpoint(jh);
1696 	}
1697 	spin_unlock(&journal->j_list_lock);
1698 out:
1699 	return;
1700 }
1701 
1702 /**
1703  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1704  * @journal: journal for operation
1705  * @page: to try and free
1706  * @gfp_mask: we use the mask to detect how hard should we try to release
1707  * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to
1708  * release the buffers.
1709  *
1710  *
1711  * For all the buffers on this page,
1712  * if they are fully written out ordered data, move them onto BUF_CLEAN
1713  * so try_to_free_buffers() can reap them.
1714  *
1715  * This function returns non-zero if we wish try_to_free_buffers()
1716  * to be called. We do this if the page is releasable by try_to_free_buffers().
1717  * We also do it if the page has locked or dirty buffers and the caller wants
1718  * us to perform sync or async writeout.
1719  *
1720  * This complicates JBD locking somewhat.  We aren't protected by the
1721  * BKL here.  We wish to remove the buffer from its committing or
1722  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1723  *
1724  * This may *change* the value of transaction_t->t_datalist, so anyone
1725  * who looks at t_datalist needs to lock against this function.
1726  *
1727  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1728  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
1729  * will come out of the lock with the buffer dirty, which makes it
1730  * ineligible for release here.
1731  *
1732  * Who else is affected by this?  hmm...  Really the only contender
1733  * is do_get_write_access() - it could be looking at the buffer while
1734  * journal_try_to_free_buffer() is changing its state.  But that
1735  * cannot happen because we never reallocate freed data as metadata
1736  * while the data is part of a transaction.  Yes?
1737  *
1738  * Return 0 on failure, 1 on success
1739  */
1740 int jbd2_journal_try_to_free_buffers(journal_t *journal,
1741 				struct page *page, gfp_t gfp_mask)
1742 {
1743 	struct buffer_head *head;
1744 	struct buffer_head *bh;
1745 	int ret = 0;
1746 
1747 	J_ASSERT(PageLocked(page));
1748 
1749 	head = page_buffers(page);
1750 	bh = head;
1751 	do {
1752 		struct journal_head *jh;
1753 
1754 		/*
1755 		 * We take our own ref against the journal_head here to avoid
1756 		 * having to add tons of locking around each instance of
1757 		 * jbd2_journal_put_journal_head().
1758 		 */
1759 		jh = jbd2_journal_grab_journal_head(bh);
1760 		if (!jh)
1761 			continue;
1762 
1763 		jbd_lock_bh_state(bh);
1764 		__journal_try_to_free_buffer(journal, bh);
1765 		jbd2_journal_put_journal_head(jh);
1766 		jbd_unlock_bh_state(bh);
1767 		if (buffer_jbd(bh))
1768 			goto busy;
1769 	} while ((bh = bh->b_this_page) != head);
1770 
1771 	ret = try_to_free_buffers(page);
1772 
1773 busy:
1774 	return ret;
1775 }
1776 
1777 /*
1778  * This buffer is no longer needed.  If it is on an older transaction's
1779  * checkpoint list we need to record it on this transaction's forget list
1780  * to pin this buffer (and hence its checkpointing transaction) down until
1781  * this transaction commits.  If the buffer isn't on a checkpoint list, we
1782  * release it.
1783  * Returns non-zero if JBD no longer has an interest in the buffer.
1784  *
1785  * Called under j_list_lock.
1786  *
1787  * Called under jbd_lock_bh_state(bh).
1788  */
1789 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
1790 {
1791 	int may_free = 1;
1792 	struct buffer_head *bh = jh2bh(jh);
1793 
1794 	if (jh->b_cp_transaction) {
1795 		JBUFFER_TRACE(jh, "on running+cp transaction");
1796 		__jbd2_journal_temp_unlink_buffer(jh);
1797 		/*
1798 		 * We don't want to write the buffer anymore, clear the
1799 		 * bit so that we don't confuse checks in
1800 		 * __journal_file_buffer
1801 		 */
1802 		clear_buffer_dirty(bh);
1803 		__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1804 		may_free = 0;
1805 	} else {
1806 		JBUFFER_TRACE(jh, "on running transaction");
1807 		__jbd2_journal_unfile_buffer(jh);
1808 	}
1809 	return may_free;
1810 }
1811 
1812 /*
1813  * jbd2_journal_invalidatepage
1814  *
1815  * This code is tricky.  It has a number of cases to deal with.
1816  *
1817  * There are two invariants which this code relies on:
1818  *
1819  * i_size must be updated on disk before we start calling invalidatepage on the
1820  * data.
1821  *
1822  *  This is done in ext3 by defining an ext3_setattr method which
1823  *  updates i_size before truncate gets going.  By maintaining this
1824  *  invariant, we can be sure that it is safe to throw away any buffers
1825  *  attached to the current transaction: once the transaction commits,
1826  *  we know that the data will not be needed.
1827  *
1828  *  Note however that we can *not* throw away data belonging to the
1829  *  previous, committing transaction!
1830  *
1831  * Any disk blocks which *are* part of the previous, committing
1832  * transaction (and which therefore cannot be discarded immediately) are
1833  * not going to be reused in the new running transaction
1834  *
1835  *  The bitmap committed_data images guarantee this: any block which is
1836  *  allocated in one transaction and removed in the next will be marked
1837  *  as in-use in the committed_data bitmap, so cannot be reused until
1838  *  the next transaction to delete the block commits.  This means that
1839  *  leaving committing buffers dirty is quite safe: the disk blocks
1840  *  cannot be reallocated to a different file and so buffer aliasing is
1841  *  not possible.
1842  *
1843  *
1844  * The above applies mainly to ordered data mode.  In writeback mode we
1845  * don't make guarantees about the order in which data hits disk --- in
1846  * particular we don't guarantee that new dirty data is flushed before
1847  * transaction commit --- so it is always safe just to discard data
1848  * immediately in that mode.  --sct
1849  */
1850 
1851 /*
1852  * The journal_unmap_buffer helper function returns zero if the buffer
1853  * concerned remains pinned as an anonymous buffer belonging to an older
1854  * transaction.
1855  *
1856  * We're outside-transaction here.  Either or both of j_running_transaction
1857  * and j_committing_transaction may be NULL.
1858  */
1859 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
1860 				int partial_page)
1861 {
1862 	transaction_t *transaction;
1863 	struct journal_head *jh;
1864 	int may_free = 1;
1865 
1866 	BUFFER_TRACE(bh, "entry");
1867 
1868 	/*
1869 	 * It is safe to proceed here without the j_list_lock because the
1870 	 * buffers cannot be stolen by try_to_free_buffers as long as we are
1871 	 * holding the page lock. --sct
1872 	 */
1873 
1874 	if (!buffer_jbd(bh))
1875 		goto zap_buffer_unlocked;
1876 
1877 	/* OK, we have data buffer in journaled mode */
1878 	write_lock(&journal->j_state_lock);
1879 	jbd_lock_bh_state(bh);
1880 	spin_lock(&journal->j_list_lock);
1881 
1882 	jh = jbd2_journal_grab_journal_head(bh);
1883 	if (!jh)
1884 		goto zap_buffer_no_jh;
1885 
1886 	/*
1887 	 * We cannot remove the buffer from checkpoint lists until the
1888 	 * transaction adding inode to orphan list (let's call it T)
1889 	 * is committed.  Otherwise if the transaction changing the
1890 	 * buffer would be cleaned from the journal before T is
1891 	 * committed, a crash will cause that the correct contents of
1892 	 * the buffer will be lost.  On the other hand we have to
1893 	 * clear the buffer dirty bit at latest at the moment when the
1894 	 * transaction marking the buffer as freed in the filesystem
1895 	 * structures is committed because from that moment on the
1896 	 * block can be reallocated and used by a different page.
1897 	 * Since the block hasn't been freed yet but the inode has
1898 	 * already been added to orphan list, it is safe for us to add
1899 	 * the buffer to BJ_Forget list of the newest transaction.
1900 	 *
1901 	 * Also we have to clear buffer_mapped flag of a truncated buffer
1902 	 * because the buffer_head may be attached to the page straddling
1903 	 * i_size (can happen only when blocksize < pagesize) and thus the
1904 	 * buffer_head can be reused when the file is extended again. So we end
1905 	 * up keeping around invalidated buffers attached to transactions'
1906 	 * BJ_Forget list just to stop checkpointing code from cleaning up
1907 	 * the transaction this buffer was modified in.
1908 	 */
1909 	transaction = jh->b_transaction;
1910 	if (transaction == NULL) {
1911 		/* First case: not on any transaction.  If it
1912 		 * has no checkpoint link, then we can zap it:
1913 		 * it's a writeback-mode buffer so we don't care
1914 		 * if it hits disk safely. */
1915 		if (!jh->b_cp_transaction) {
1916 			JBUFFER_TRACE(jh, "not on any transaction: zap");
1917 			goto zap_buffer;
1918 		}
1919 
1920 		if (!buffer_dirty(bh)) {
1921 			/* bdflush has written it.  We can drop it now */
1922 			goto zap_buffer;
1923 		}
1924 
1925 		/* OK, it must be in the journal but still not
1926 		 * written fully to disk: it's metadata or
1927 		 * journaled data... */
1928 
1929 		if (journal->j_running_transaction) {
1930 			/* ... and once the current transaction has
1931 			 * committed, the buffer won't be needed any
1932 			 * longer. */
1933 			JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
1934 			may_free = __dispose_buffer(jh,
1935 					journal->j_running_transaction);
1936 			goto zap_buffer;
1937 		} else {
1938 			/* There is no currently-running transaction. So the
1939 			 * orphan record which we wrote for this file must have
1940 			 * passed into commit.  We must attach this buffer to
1941 			 * the committing transaction, if it exists. */
1942 			if (journal->j_committing_transaction) {
1943 				JBUFFER_TRACE(jh, "give to committing trans");
1944 				may_free = __dispose_buffer(jh,
1945 					journal->j_committing_transaction);
1946 				goto zap_buffer;
1947 			} else {
1948 				/* The orphan record's transaction has
1949 				 * committed.  We can cleanse this buffer */
1950 				clear_buffer_jbddirty(bh);
1951 				goto zap_buffer;
1952 			}
1953 		}
1954 	} else if (transaction == journal->j_committing_transaction) {
1955 		JBUFFER_TRACE(jh, "on committing transaction");
1956 		/*
1957 		 * The buffer is committing, we simply cannot touch
1958 		 * it. If the page is straddling i_size we have to wait
1959 		 * for commit and try again.
1960 		 */
1961 		if (partial_page) {
1962 			jbd2_journal_put_journal_head(jh);
1963 			spin_unlock(&journal->j_list_lock);
1964 			jbd_unlock_bh_state(bh);
1965 			write_unlock(&journal->j_state_lock);
1966 			return -EBUSY;
1967 		}
1968 		/*
1969 		 * OK, buffer won't be reachable after truncate. We just set
1970 		 * j_next_transaction to the running transaction (if there is
1971 		 * one) and mark buffer as freed so that commit code knows it
1972 		 * should clear dirty bits when it is done with the buffer.
1973 		 */
1974 		set_buffer_freed(bh);
1975 		if (journal->j_running_transaction && buffer_jbddirty(bh))
1976 			jh->b_next_transaction = journal->j_running_transaction;
1977 		jbd2_journal_put_journal_head(jh);
1978 		spin_unlock(&journal->j_list_lock);
1979 		jbd_unlock_bh_state(bh);
1980 		write_unlock(&journal->j_state_lock);
1981 		return 0;
1982 	} else {
1983 		/* Good, the buffer belongs to the running transaction.
1984 		 * We are writing our own transaction's data, not any
1985 		 * previous one's, so it is safe to throw it away
1986 		 * (remember that we expect the filesystem to have set
1987 		 * i_size already for this truncate so recovery will not
1988 		 * expose the disk blocks we are discarding here.) */
1989 		J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
1990 		JBUFFER_TRACE(jh, "on running transaction");
1991 		may_free = __dispose_buffer(jh, transaction);
1992 	}
1993 
1994 zap_buffer:
1995 	/*
1996 	 * This is tricky. Although the buffer is truncated, it may be reused
1997 	 * if blocksize < pagesize and it is attached to the page straddling
1998 	 * EOF. Since the buffer might have been added to BJ_Forget list of the
1999 	 * running transaction, journal_get_write_access() won't clear
2000 	 * b_modified and credit accounting gets confused. So clear b_modified
2001 	 * here.
2002 	 */
2003 	jh->b_modified = 0;
2004 	jbd2_journal_put_journal_head(jh);
2005 zap_buffer_no_jh:
2006 	spin_unlock(&journal->j_list_lock);
2007 	jbd_unlock_bh_state(bh);
2008 	write_unlock(&journal->j_state_lock);
2009 zap_buffer_unlocked:
2010 	clear_buffer_dirty(bh);
2011 	J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2012 	clear_buffer_mapped(bh);
2013 	clear_buffer_req(bh);
2014 	clear_buffer_new(bh);
2015 	clear_buffer_delay(bh);
2016 	clear_buffer_unwritten(bh);
2017 	bh->b_bdev = NULL;
2018 	return may_free;
2019 }
2020 
2021 /**
2022  * void jbd2_journal_invalidatepage()
2023  * @journal: journal to use for flush...
2024  * @page:    page to flush
2025  * @offset:  length of page to invalidate.
2026  *
2027  * Reap page buffers containing data after offset in page. Can return -EBUSY
2028  * if buffers are part of the committing transaction and the page is straddling
2029  * i_size. Caller then has to wait for current commit and try again.
2030  */
2031 int jbd2_journal_invalidatepage(journal_t *journal,
2032 				struct page *page,
2033 				unsigned long offset)
2034 {
2035 	struct buffer_head *head, *bh, *next;
2036 	unsigned int curr_off = 0;
2037 	int may_free = 1;
2038 	int ret = 0;
2039 
2040 	if (!PageLocked(page))
2041 		BUG();
2042 	if (!page_has_buffers(page))
2043 		return 0;
2044 
2045 	/* We will potentially be playing with lists other than just the
2046 	 * data lists (especially for journaled data mode), so be
2047 	 * cautious in our locking. */
2048 
2049 	head = bh = page_buffers(page);
2050 	do {
2051 		unsigned int next_off = curr_off + bh->b_size;
2052 		next = bh->b_this_page;
2053 
2054 		if (offset <= curr_off) {
2055 			/* This block is wholly outside the truncation point */
2056 			lock_buffer(bh);
2057 			ret = journal_unmap_buffer(journal, bh, offset > 0);
2058 			unlock_buffer(bh);
2059 			if (ret < 0)
2060 				return ret;
2061 			may_free &= ret;
2062 		}
2063 		curr_off = next_off;
2064 		bh = next;
2065 
2066 	} while (bh != head);
2067 
2068 	if (!offset) {
2069 		if (may_free && try_to_free_buffers(page))
2070 			J_ASSERT(!page_has_buffers(page));
2071 	}
2072 	return 0;
2073 }
2074 
2075 /*
2076  * File a buffer on the given transaction list.
2077  */
2078 void __jbd2_journal_file_buffer(struct journal_head *jh,
2079 			transaction_t *transaction, int jlist)
2080 {
2081 	struct journal_head **list = NULL;
2082 	int was_dirty = 0;
2083 	struct buffer_head *bh = jh2bh(jh);
2084 
2085 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2086 	assert_spin_locked(&transaction->t_journal->j_list_lock);
2087 
2088 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2089 	J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2090 				jh->b_transaction == NULL);
2091 
2092 	if (jh->b_transaction && jh->b_jlist == jlist)
2093 		return;
2094 
2095 	if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2096 	    jlist == BJ_Shadow || jlist == BJ_Forget) {
2097 		/*
2098 		 * For metadata buffers, we track dirty bit in buffer_jbddirty
2099 		 * instead of buffer_dirty. We should not see a dirty bit set
2100 		 * here because we clear it in do_get_write_access but e.g.
2101 		 * tune2fs can modify the sb and set the dirty bit at any time
2102 		 * so we try to gracefully handle that.
2103 		 */
2104 		if (buffer_dirty(bh))
2105 			warn_dirty_buffer(bh);
2106 		if (test_clear_buffer_dirty(bh) ||
2107 		    test_clear_buffer_jbddirty(bh))
2108 			was_dirty = 1;
2109 	}
2110 
2111 	if (jh->b_transaction)
2112 		__jbd2_journal_temp_unlink_buffer(jh);
2113 	else
2114 		jbd2_journal_grab_journal_head(bh);
2115 	jh->b_transaction = transaction;
2116 
2117 	switch (jlist) {
2118 	case BJ_None:
2119 		J_ASSERT_JH(jh, !jh->b_committed_data);
2120 		J_ASSERT_JH(jh, !jh->b_frozen_data);
2121 		return;
2122 	case BJ_Metadata:
2123 		transaction->t_nr_buffers++;
2124 		list = &transaction->t_buffers;
2125 		break;
2126 	case BJ_Forget:
2127 		list = &transaction->t_forget;
2128 		break;
2129 	case BJ_IO:
2130 		list = &transaction->t_iobuf_list;
2131 		break;
2132 	case BJ_Shadow:
2133 		list = &transaction->t_shadow_list;
2134 		break;
2135 	case BJ_LogCtl:
2136 		list = &transaction->t_log_list;
2137 		break;
2138 	case BJ_Reserved:
2139 		list = &transaction->t_reserved_list;
2140 		break;
2141 	}
2142 
2143 	__blist_add_buffer(list, jh);
2144 	jh->b_jlist = jlist;
2145 
2146 	if (was_dirty)
2147 		set_buffer_jbddirty(bh);
2148 }
2149 
2150 void jbd2_journal_file_buffer(struct journal_head *jh,
2151 				transaction_t *transaction, int jlist)
2152 {
2153 	jbd_lock_bh_state(jh2bh(jh));
2154 	spin_lock(&transaction->t_journal->j_list_lock);
2155 	__jbd2_journal_file_buffer(jh, transaction, jlist);
2156 	spin_unlock(&transaction->t_journal->j_list_lock);
2157 	jbd_unlock_bh_state(jh2bh(jh));
2158 }
2159 
2160 /*
2161  * Remove a buffer from its current buffer list in preparation for
2162  * dropping it from its current transaction entirely.  If the buffer has
2163  * already started to be used by a subsequent transaction, refile the
2164  * buffer on that transaction's metadata list.
2165  *
2166  * Called under j_list_lock
2167  * Called under jbd_lock_bh_state(jh2bh(jh))
2168  *
2169  * jh and bh may be already free when this function returns
2170  */
2171 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2172 {
2173 	int was_dirty, jlist;
2174 	struct buffer_head *bh = jh2bh(jh);
2175 
2176 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2177 	if (jh->b_transaction)
2178 		assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2179 
2180 	/* If the buffer is now unused, just drop it. */
2181 	if (jh->b_next_transaction == NULL) {
2182 		__jbd2_journal_unfile_buffer(jh);
2183 		return;
2184 	}
2185 
2186 	/*
2187 	 * It has been modified by a later transaction: add it to the new
2188 	 * transaction's metadata list.
2189 	 */
2190 
2191 	was_dirty = test_clear_buffer_jbddirty(bh);
2192 	__jbd2_journal_temp_unlink_buffer(jh);
2193 	/*
2194 	 * We set b_transaction here because b_next_transaction will inherit
2195 	 * our jh reference and thus __jbd2_journal_file_buffer() must not
2196 	 * take a new one.
2197 	 */
2198 	jh->b_transaction = jh->b_next_transaction;
2199 	jh->b_next_transaction = NULL;
2200 	if (buffer_freed(bh))
2201 		jlist = BJ_Forget;
2202 	else if (jh->b_modified)
2203 		jlist = BJ_Metadata;
2204 	else
2205 		jlist = BJ_Reserved;
2206 	__jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2207 	J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2208 
2209 	if (was_dirty)
2210 		set_buffer_jbddirty(bh);
2211 }
2212 
2213 /*
2214  * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2215  * bh reference so that we can safely unlock bh.
2216  *
2217  * The jh and bh may be freed by this call.
2218  */
2219 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2220 {
2221 	struct buffer_head *bh = jh2bh(jh);
2222 
2223 	/* Get reference so that buffer cannot be freed before we unlock it */
2224 	get_bh(bh);
2225 	jbd_lock_bh_state(bh);
2226 	spin_lock(&journal->j_list_lock);
2227 	__jbd2_journal_refile_buffer(jh);
2228 	jbd_unlock_bh_state(bh);
2229 	spin_unlock(&journal->j_list_lock);
2230 	__brelse(bh);
2231 }
2232 
2233 /*
2234  * File inode in the inode list of the handle's transaction
2235  */
2236 int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode)
2237 {
2238 	transaction_t *transaction = handle->h_transaction;
2239 	journal_t *journal = transaction->t_journal;
2240 
2241 	if (is_handle_aborted(handle))
2242 		return -EIO;
2243 
2244 	jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2245 			transaction->t_tid);
2246 
2247 	/*
2248 	 * First check whether inode isn't already on the transaction's
2249 	 * lists without taking the lock. Note that this check is safe
2250 	 * without the lock as we cannot race with somebody removing inode
2251 	 * from the transaction. The reason is that we remove inode from the
2252 	 * transaction only in journal_release_jbd_inode() and when we commit
2253 	 * the transaction. We are guarded from the first case by holding
2254 	 * a reference to the inode. We are safe against the second case
2255 	 * because if jinode->i_transaction == transaction, commit code
2256 	 * cannot touch the transaction because we hold reference to it,
2257 	 * and if jinode->i_next_transaction == transaction, commit code
2258 	 * will only file the inode where we want it.
2259 	 */
2260 	if (jinode->i_transaction == transaction ||
2261 	    jinode->i_next_transaction == transaction)
2262 		return 0;
2263 
2264 	spin_lock(&journal->j_list_lock);
2265 
2266 	if (jinode->i_transaction == transaction ||
2267 	    jinode->i_next_transaction == transaction)
2268 		goto done;
2269 
2270 	/*
2271 	 * We only ever set this variable to 1 so the test is safe. Since
2272 	 * t_need_data_flush is likely to be set, we do the test to save some
2273 	 * cacheline bouncing
2274 	 */
2275 	if (!transaction->t_need_data_flush)
2276 		transaction->t_need_data_flush = 1;
2277 	/* On some different transaction's list - should be
2278 	 * the committing one */
2279 	if (jinode->i_transaction) {
2280 		J_ASSERT(jinode->i_next_transaction == NULL);
2281 		J_ASSERT(jinode->i_transaction ==
2282 					journal->j_committing_transaction);
2283 		jinode->i_next_transaction = transaction;
2284 		goto done;
2285 	}
2286 	/* Not on any transaction list... */
2287 	J_ASSERT(!jinode->i_next_transaction);
2288 	jinode->i_transaction = transaction;
2289 	list_add(&jinode->i_list, &transaction->t_inode_list);
2290 done:
2291 	spin_unlock(&journal->j_list_lock);
2292 
2293 	return 0;
2294 }
2295 
2296 /*
2297  * File truncate and transaction commit interact with each other in a
2298  * non-trivial way.  If a transaction writing data block A is
2299  * committing, we cannot discard the data by truncate until we have
2300  * written them.  Otherwise if we crashed after the transaction with
2301  * write has committed but before the transaction with truncate has
2302  * committed, we could see stale data in block A.  This function is a
2303  * helper to solve this problem.  It starts writeout of the truncated
2304  * part in case it is in the committing transaction.
2305  *
2306  * Filesystem code must call this function when inode is journaled in
2307  * ordered mode before truncation happens and after the inode has been
2308  * placed on orphan list with the new inode size. The second condition
2309  * avoids the race that someone writes new data and we start
2310  * committing the transaction after this function has been called but
2311  * before a transaction for truncate is started (and furthermore it
2312  * allows us to optimize the case where the addition to orphan list
2313  * happens in the same transaction as write --- we don't have to write
2314  * any data in such case).
2315  */
2316 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2317 					struct jbd2_inode *jinode,
2318 					loff_t new_size)
2319 {
2320 	transaction_t *inode_trans, *commit_trans;
2321 	int ret = 0;
2322 
2323 	/* This is a quick check to avoid locking if not necessary */
2324 	if (!jinode->i_transaction)
2325 		goto out;
2326 	/* Locks are here just to force reading of recent values, it is
2327 	 * enough that the transaction was not committing before we started
2328 	 * a transaction adding the inode to orphan list */
2329 	read_lock(&journal->j_state_lock);
2330 	commit_trans = journal->j_committing_transaction;
2331 	read_unlock(&journal->j_state_lock);
2332 	spin_lock(&journal->j_list_lock);
2333 	inode_trans = jinode->i_transaction;
2334 	spin_unlock(&journal->j_list_lock);
2335 	if (inode_trans == commit_trans) {
2336 		ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2337 			new_size, LLONG_MAX);
2338 		if (ret)
2339 			jbd2_journal_abort(journal, ret);
2340 	}
2341 out:
2342 	return ret;
2343 }
2344