xref: /linux/fs/jbd2/transaction.c (revision 5bf2b19320ec31d094d7370fdf536f7fd91fd799)
1 /*
2  * linux/fs/jbd2/transaction.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem transaction handling code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages transactions (compound commits managed by the
16  * journaling code) and handles (individual atomic operations by the
17  * filesystem).
18  */
19 
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd2.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/hrtimer.h>
29 #include <linux/backing-dev.h>
30 #include <linux/module.h>
31 
32 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
33 
34 /*
35  * jbd2_get_transaction: obtain a new transaction_t object.
36  *
37  * Simply allocate and initialise a new transaction.  Create it in
38  * RUNNING state and add it to the current journal (which should not
39  * have an existing running transaction: we only make a new transaction
40  * once we have started to commit the old one).
41  *
42  * Preconditions:
43  *	The journal MUST be locked.  We don't perform atomic mallocs on the
44  *	new transaction	and we can't block without protecting against other
45  *	processes trying to touch the journal while it is in transition.
46  *
47  */
48 
49 static transaction_t *
50 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
51 {
52 	transaction->t_journal = journal;
53 	transaction->t_state = T_RUNNING;
54 	transaction->t_start_time = ktime_get();
55 	transaction->t_tid = journal->j_transaction_sequence++;
56 	transaction->t_expires = jiffies + journal->j_commit_interval;
57 	spin_lock_init(&transaction->t_handle_lock);
58 	atomic_set(&transaction->t_updates, 0);
59 	atomic_set(&transaction->t_outstanding_credits, 0);
60 	atomic_set(&transaction->t_handle_count, 0);
61 	INIT_LIST_HEAD(&transaction->t_inode_list);
62 	INIT_LIST_HEAD(&transaction->t_private_list);
63 
64 	/* Set up the commit timer for the new transaction. */
65 	journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
66 	add_timer(&journal->j_commit_timer);
67 
68 	J_ASSERT(journal->j_running_transaction == NULL);
69 	journal->j_running_transaction = transaction;
70 	transaction->t_max_wait = 0;
71 	transaction->t_start = jiffies;
72 
73 	return transaction;
74 }
75 
76 /*
77  * Handle management.
78  *
79  * A handle_t is an object which represents a single atomic update to a
80  * filesystem, and which tracks all of the modifications which form part
81  * of that one update.
82  */
83 
84 /*
85  * start_this_handle: Given a handle, deal with any locking or stalling
86  * needed to make sure that there is enough journal space for the handle
87  * to begin.  Attach the handle to a transaction and set up the
88  * transaction's buffer credits.
89  */
90 
91 static int start_this_handle(journal_t *journal, handle_t *handle,
92 			     int gfp_mask)
93 {
94 	transaction_t *transaction;
95 	int needed;
96 	int nblocks = handle->h_buffer_credits;
97 	transaction_t *new_transaction = NULL;
98 	unsigned long ts = jiffies;
99 
100 	if (nblocks > journal->j_max_transaction_buffers) {
101 		printk(KERN_ERR "JBD: %s wants too many credits (%d > %d)\n",
102 		       current->comm, nblocks,
103 		       journal->j_max_transaction_buffers);
104 		return -ENOSPC;
105 	}
106 
107 alloc_transaction:
108 	if (!journal->j_running_transaction) {
109 		new_transaction = kzalloc(sizeof(*new_transaction), gfp_mask);
110 		if (!new_transaction) {
111 			/*
112 			 * If __GFP_FS is not present, then we may be
113 			 * being called from inside the fs writeback
114 			 * layer, so we MUST NOT fail.  Since
115 			 * __GFP_NOFAIL is going away, we will arrange
116 			 * to retry the allocation ourselves.
117 			 */
118 			if ((gfp_mask & __GFP_FS) == 0) {
119 				congestion_wait(BLK_RW_ASYNC, HZ/50);
120 				goto alloc_transaction;
121 			}
122 			return -ENOMEM;
123 		}
124 	}
125 
126 	jbd_debug(3, "New handle %p going live.\n", handle);
127 
128 	/*
129 	 * We need to hold j_state_lock until t_updates has been incremented,
130 	 * for proper journal barrier handling
131 	 */
132 repeat:
133 	read_lock(&journal->j_state_lock);
134 	if (is_journal_aborted(journal) ||
135 	    (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
136 		read_unlock(&journal->j_state_lock);
137 		kfree(new_transaction);
138 		return -EROFS;
139 	}
140 
141 	/* Wait on the journal's transaction barrier if necessary */
142 	if (journal->j_barrier_count) {
143 		read_unlock(&journal->j_state_lock);
144 		wait_event(journal->j_wait_transaction_locked,
145 				journal->j_barrier_count == 0);
146 		goto repeat;
147 	}
148 
149 	if (!journal->j_running_transaction) {
150 		read_unlock(&journal->j_state_lock);
151 		if (!new_transaction)
152 			goto alloc_transaction;
153 		write_lock(&journal->j_state_lock);
154 		if (!journal->j_running_transaction) {
155 			jbd2_get_transaction(journal, new_transaction);
156 			new_transaction = NULL;
157 		}
158 		write_unlock(&journal->j_state_lock);
159 		goto repeat;
160 	}
161 
162 	transaction = journal->j_running_transaction;
163 
164 	/*
165 	 * If the current transaction is locked down for commit, wait for the
166 	 * lock to be released.
167 	 */
168 	if (transaction->t_state == T_LOCKED) {
169 		DEFINE_WAIT(wait);
170 
171 		prepare_to_wait(&journal->j_wait_transaction_locked,
172 					&wait, TASK_UNINTERRUPTIBLE);
173 		read_unlock(&journal->j_state_lock);
174 		schedule();
175 		finish_wait(&journal->j_wait_transaction_locked, &wait);
176 		goto repeat;
177 	}
178 
179 	/*
180 	 * If there is not enough space left in the log to write all potential
181 	 * buffers requested by this operation, we need to stall pending a log
182 	 * checkpoint to free some more log space.
183 	 */
184 	needed = atomic_add_return(nblocks,
185 				   &transaction->t_outstanding_credits);
186 
187 	if (needed > journal->j_max_transaction_buffers) {
188 		/*
189 		 * If the current transaction is already too large, then start
190 		 * to commit it: we can then go back and attach this handle to
191 		 * a new transaction.
192 		 */
193 		DEFINE_WAIT(wait);
194 
195 		jbd_debug(2, "Handle %p starting new commit...\n", handle);
196 		atomic_sub(nblocks, &transaction->t_outstanding_credits);
197 		prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
198 				TASK_UNINTERRUPTIBLE);
199 		__jbd2_log_start_commit(journal, transaction->t_tid);
200 		read_unlock(&journal->j_state_lock);
201 		schedule();
202 		finish_wait(&journal->j_wait_transaction_locked, &wait);
203 		goto repeat;
204 	}
205 
206 	/*
207 	 * The commit code assumes that it can get enough log space
208 	 * without forcing a checkpoint.  This is *critical* for
209 	 * correctness: a checkpoint of a buffer which is also
210 	 * associated with a committing transaction creates a deadlock,
211 	 * so commit simply cannot force through checkpoints.
212 	 *
213 	 * We must therefore ensure the necessary space in the journal
214 	 * *before* starting to dirty potentially checkpointed buffers
215 	 * in the new transaction.
216 	 *
217 	 * The worst part is, any transaction currently committing can
218 	 * reduce the free space arbitrarily.  Be careful to account for
219 	 * those buffers when checkpointing.
220 	 */
221 
222 	/*
223 	 * @@@ AKPM: This seems rather over-defensive.  We're giving commit
224 	 * a _lot_ of headroom: 1/4 of the journal plus the size of
225 	 * the committing transaction.  Really, we only need to give it
226 	 * committing_transaction->t_outstanding_credits plus "enough" for
227 	 * the log control blocks.
228 	 * Also, this test is inconsitent with the matching one in
229 	 * jbd2_journal_extend().
230 	 */
231 	if (__jbd2_log_space_left(journal) < jbd_space_needed(journal)) {
232 		jbd_debug(2, "Handle %p waiting for checkpoint...\n", handle);
233 		atomic_sub(nblocks, &transaction->t_outstanding_credits);
234 		read_unlock(&journal->j_state_lock);
235 		write_lock(&journal->j_state_lock);
236 		if (__jbd2_log_space_left(journal) < jbd_space_needed(journal))
237 			__jbd2_log_wait_for_space(journal);
238 		write_unlock(&journal->j_state_lock);
239 		goto repeat;
240 	}
241 
242 	/* OK, account for the buffers that this operation expects to
243 	 * use and add the handle to the running transaction.
244 	 *
245 	 * In order for t_max_wait to be reliable, it must be
246 	 * protected by a lock.  But doing so will mean that
247 	 * start_this_handle() can not be run in parallel on SMP
248 	 * systems, which limits our scalability.  So we only enable
249 	 * it when debugging is enabled.  We may want to use a
250 	 * separate flag, eventually, so we can enable this
251 	 * independently of debugging.
252 	 */
253 #ifdef CONFIG_JBD2_DEBUG
254 	if (jbd2_journal_enable_debug &&
255 	    time_after(transaction->t_start, ts)) {
256 		ts = jbd2_time_diff(ts, transaction->t_start);
257 		spin_lock(&transaction->t_handle_lock);
258 		if (ts > transaction->t_max_wait)
259 			transaction->t_max_wait = ts;
260 		spin_unlock(&transaction->t_handle_lock);
261 	}
262 #endif
263 	handle->h_transaction = transaction;
264 	atomic_inc(&transaction->t_updates);
265 	atomic_inc(&transaction->t_handle_count);
266 	jbd_debug(4, "Handle %p given %d credits (total %d, free %d)\n",
267 		  handle, nblocks,
268 		  atomic_read(&transaction->t_outstanding_credits),
269 		  __jbd2_log_space_left(journal));
270 	read_unlock(&journal->j_state_lock);
271 
272 	lock_map_acquire(&handle->h_lockdep_map);
273 	kfree(new_transaction);
274 	return 0;
275 }
276 
277 static struct lock_class_key jbd2_handle_key;
278 
279 /* Allocate a new handle.  This should probably be in a slab... */
280 static handle_t *new_handle(int nblocks)
281 {
282 	handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
283 	if (!handle)
284 		return NULL;
285 	memset(handle, 0, sizeof(*handle));
286 	handle->h_buffer_credits = nblocks;
287 	handle->h_ref = 1;
288 
289 	lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle",
290 						&jbd2_handle_key, 0);
291 
292 	return handle;
293 }
294 
295 /**
296  * handle_t *jbd2_journal_start() - Obtain a new handle.
297  * @journal: Journal to start transaction on.
298  * @nblocks: number of block buffer we might modify
299  *
300  * We make sure that the transaction can guarantee at least nblocks of
301  * modified buffers in the log.  We block until the log can guarantee
302  * that much space.
303  *
304  * This function is visible to journal users (like ext3fs), so is not
305  * called with the journal already locked.
306  *
307  * Return a pointer to a newly allocated handle, or NULL on failure
308  */
309 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int gfp_mask)
310 {
311 	handle_t *handle = journal_current_handle();
312 	int err;
313 
314 	if (!journal)
315 		return ERR_PTR(-EROFS);
316 
317 	if (handle) {
318 		J_ASSERT(handle->h_transaction->t_journal == journal);
319 		handle->h_ref++;
320 		return handle;
321 	}
322 
323 	handle = new_handle(nblocks);
324 	if (!handle)
325 		return ERR_PTR(-ENOMEM);
326 
327 	current->journal_info = handle;
328 
329 	err = start_this_handle(journal, handle, gfp_mask);
330 	if (err < 0) {
331 		jbd2_free_handle(handle);
332 		current->journal_info = NULL;
333 		handle = ERR_PTR(err);
334 		goto out;
335 	}
336 out:
337 	return handle;
338 }
339 EXPORT_SYMBOL(jbd2__journal_start);
340 
341 
342 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
343 {
344 	return jbd2__journal_start(journal, nblocks, GFP_NOFS);
345 }
346 EXPORT_SYMBOL(jbd2_journal_start);
347 
348 
349 /**
350  * int jbd2_journal_extend() - extend buffer credits.
351  * @handle:  handle to 'extend'
352  * @nblocks: nr blocks to try to extend by.
353  *
354  * Some transactions, such as large extends and truncates, can be done
355  * atomically all at once or in several stages.  The operation requests
356  * a credit for a number of buffer modications in advance, but can
357  * extend its credit if it needs more.
358  *
359  * jbd2_journal_extend tries to give the running handle more buffer credits.
360  * It does not guarantee that allocation - this is a best-effort only.
361  * The calling process MUST be able to deal cleanly with a failure to
362  * extend here.
363  *
364  * Return 0 on success, non-zero on failure.
365  *
366  * return code < 0 implies an error
367  * return code > 0 implies normal transaction-full status.
368  */
369 int jbd2_journal_extend(handle_t *handle, int nblocks)
370 {
371 	transaction_t *transaction = handle->h_transaction;
372 	journal_t *journal = transaction->t_journal;
373 	int result;
374 	int wanted;
375 
376 	result = -EIO;
377 	if (is_handle_aborted(handle))
378 		goto out;
379 
380 	result = 1;
381 
382 	read_lock(&journal->j_state_lock);
383 
384 	/* Don't extend a locked-down transaction! */
385 	if (handle->h_transaction->t_state != T_RUNNING) {
386 		jbd_debug(3, "denied handle %p %d blocks: "
387 			  "transaction not running\n", handle, nblocks);
388 		goto error_out;
389 	}
390 
391 	spin_lock(&transaction->t_handle_lock);
392 	wanted = atomic_read(&transaction->t_outstanding_credits) + nblocks;
393 
394 	if (wanted > journal->j_max_transaction_buffers) {
395 		jbd_debug(3, "denied handle %p %d blocks: "
396 			  "transaction too large\n", handle, nblocks);
397 		goto unlock;
398 	}
399 
400 	if (wanted > __jbd2_log_space_left(journal)) {
401 		jbd_debug(3, "denied handle %p %d blocks: "
402 			  "insufficient log space\n", handle, nblocks);
403 		goto unlock;
404 	}
405 
406 	handle->h_buffer_credits += nblocks;
407 	atomic_add(nblocks, &transaction->t_outstanding_credits);
408 	result = 0;
409 
410 	jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
411 unlock:
412 	spin_unlock(&transaction->t_handle_lock);
413 error_out:
414 	read_unlock(&journal->j_state_lock);
415 out:
416 	return result;
417 }
418 
419 
420 /**
421  * int jbd2_journal_restart() - restart a handle .
422  * @handle:  handle to restart
423  * @nblocks: nr credits requested
424  *
425  * Restart a handle for a multi-transaction filesystem
426  * operation.
427  *
428  * If the jbd2_journal_extend() call above fails to grant new buffer credits
429  * to a running handle, a call to jbd2_journal_restart will commit the
430  * handle's transaction so far and reattach the handle to a new
431  * transaction capabable of guaranteeing the requested number of
432  * credits.
433  */
434 int jbd2__journal_restart(handle_t *handle, int nblocks, int gfp_mask)
435 {
436 	transaction_t *transaction = handle->h_transaction;
437 	journal_t *journal = transaction->t_journal;
438 	int ret;
439 
440 	/* If we've had an abort of any type, don't even think about
441 	 * actually doing the restart! */
442 	if (is_handle_aborted(handle))
443 		return 0;
444 
445 	/*
446 	 * First unlink the handle from its current transaction, and start the
447 	 * commit on that.
448 	 */
449 	J_ASSERT(atomic_read(&transaction->t_updates) > 0);
450 	J_ASSERT(journal_current_handle() == handle);
451 
452 	read_lock(&journal->j_state_lock);
453 	spin_lock(&transaction->t_handle_lock);
454 	atomic_sub(handle->h_buffer_credits,
455 		   &transaction->t_outstanding_credits);
456 	if (atomic_dec_and_test(&transaction->t_updates))
457 		wake_up(&journal->j_wait_updates);
458 	spin_unlock(&transaction->t_handle_lock);
459 
460 	jbd_debug(2, "restarting handle %p\n", handle);
461 	__jbd2_log_start_commit(journal, transaction->t_tid);
462 	read_unlock(&journal->j_state_lock);
463 
464 	lock_map_release(&handle->h_lockdep_map);
465 	handle->h_buffer_credits = nblocks;
466 	ret = start_this_handle(journal, handle, gfp_mask);
467 	return ret;
468 }
469 EXPORT_SYMBOL(jbd2__journal_restart);
470 
471 
472 int jbd2_journal_restart(handle_t *handle, int nblocks)
473 {
474 	return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
475 }
476 EXPORT_SYMBOL(jbd2_journal_restart);
477 
478 /**
479  * void jbd2_journal_lock_updates () - establish a transaction barrier.
480  * @journal:  Journal to establish a barrier on.
481  *
482  * This locks out any further updates from being started, and blocks
483  * until all existing updates have completed, returning only once the
484  * journal is in a quiescent state with no updates running.
485  *
486  * The journal lock should not be held on entry.
487  */
488 void jbd2_journal_lock_updates(journal_t *journal)
489 {
490 	DEFINE_WAIT(wait);
491 
492 	write_lock(&journal->j_state_lock);
493 	++journal->j_barrier_count;
494 
495 	/* Wait until there are no running updates */
496 	while (1) {
497 		transaction_t *transaction = journal->j_running_transaction;
498 
499 		if (!transaction)
500 			break;
501 
502 		spin_lock(&transaction->t_handle_lock);
503 		if (!atomic_read(&transaction->t_updates)) {
504 			spin_unlock(&transaction->t_handle_lock);
505 			break;
506 		}
507 		prepare_to_wait(&journal->j_wait_updates, &wait,
508 				TASK_UNINTERRUPTIBLE);
509 		spin_unlock(&transaction->t_handle_lock);
510 		write_unlock(&journal->j_state_lock);
511 		schedule();
512 		finish_wait(&journal->j_wait_updates, &wait);
513 		write_lock(&journal->j_state_lock);
514 	}
515 	write_unlock(&journal->j_state_lock);
516 
517 	/*
518 	 * We have now established a barrier against other normal updates, but
519 	 * we also need to barrier against other jbd2_journal_lock_updates() calls
520 	 * to make sure that we serialise special journal-locked operations
521 	 * too.
522 	 */
523 	mutex_lock(&journal->j_barrier);
524 }
525 
526 /**
527  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
528  * @journal:  Journal to release the barrier on.
529  *
530  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
531  *
532  * Should be called without the journal lock held.
533  */
534 void jbd2_journal_unlock_updates (journal_t *journal)
535 {
536 	J_ASSERT(journal->j_barrier_count != 0);
537 
538 	mutex_unlock(&journal->j_barrier);
539 	write_lock(&journal->j_state_lock);
540 	--journal->j_barrier_count;
541 	write_unlock(&journal->j_state_lock);
542 	wake_up(&journal->j_wait_transaction_locked);
543 }
544 
545 static void warn_dirty_buffer(struct buffer_head *bh)
546 {
547 	char b[BDEVNAME_SIZE];
548 
549 	printk(KERN_WARNING
550 	       "JBD: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). "
551 	       "There's a risk of filesystem corruption in case of system "
552 	       "crash.\n",
553 	       bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr);
554 }
555 
556 /*
557  * If the buffer is already part of the current transaction, then there
558  * is nothing we need to do.  If it is already part of a prior
559  * transaction which we are still committing to disk, then we need to
560  * make sure that we do not overwrite the old copy: we do copy-out to
561  * preserve the copy going to disk.  We also account the buffer against
562  * the handle's metadata buffer credits (unless the buffer is already
563  * part of the transaction, that is).
564  *
565  */
566 static int
567 do_get_write_access(handle_t *handle, struct journal_head *jh,
568 			int force_copy)
569 {
570 	struct buffer_head *bh;
571 	transaction_t *transaction;
572 	journal_t *journal;
573 	int error;
574 	char *frozen_buffer = NULL;
575 	int need_copy = 0;
576 
577 	if (is_handle_aborted(handle))
578 		return -EROFS;
579 
580 	transaction = handle->h_transaction;
581 	journal = transaction->t_journal;
582 
583 	jbd_debug(5, "buffer_head %p, force_copy %d\n", jh, force_copy);
584 
585 	JBUFFER_TRACE(jh, "entry");
586 repeat:
587 	bh = jh2bh(jh);
588 
589 	/* @@@ Need to check for errors here at some point. */
590 
591 	lock_buffer(bh);
592 	jbd_lock_bh_state(bh);
593 
594 	/* We now hold the buffer lock so it is safe to query the buffer
595 	 * state.  Is the buffer dirty?
596 	 *
597 	 * If so, there are two possibilities.  The buffer may be
598 	 * non-journaled, and undergoing a quite legitimate writeback.
599 	 * Otherwise, it is journaled, and we don't expect dirty buffers
600 	 * in that state (the buffers should be marked JBD_Dirty
601 	 * instead.)  So either the IO is being done under our own
602 	 * control and this is a bug, or it's a third party IO such as
603 	 * dump(8) (which may leave the buffer scheduled for read ---
604 	 * ie. locked but not dirty) or tune2fs (which may actually have
605 	 * the buffer dirtied, ugh.)  */
606 
607 	if (buffer_dirty(bh)) {
608 		/*
609 		 * First question: is this buffer already part of the current
610 		 * transaction or the existing committing transaction?
611 		 */
612 		if (jh->b_transaction) {
613 			J_ASSERT_JH(jh,
614 				jh->b_transaction == transaction ||
615 				jh->b_transaction ==
616 					journal->j_committing_transaction);
617 			if (jh->b_next_transaction)
618 				J_ASSERT_JH(jh, jh->b_next_transaction ==
619 							transaction);
620 			warn_dirty_buffer(bh);
621 		}
622 		/*
623 		 * In any case we need to clean the dirty flag and we must
624 		 * do it under the buffer lock to be sure we don't race
625 		 * with running write-out.
626 		 */
627 		JBUFFER_TRACE(jh, "Journalling dirty buffer");
628 		clear_buffer_dirty(bh);
629 		set_buffer_jbddirty(bh);
630 	}
631 
632 	unlock_buffer(bh);
633 
634 	error = -EROFS;
635 	if (is_handle_aborted(handle)) {
636 		jbd_unlock_bh_state(bh);
637 		goto out;
638 	}
639 	error = 0;
640 
641 	/*
642 	 * The buffer is already part of this transaction if b_transaction or
643 	 * b_next_transaction points to it
644 	 */
645 	if (jh->b_transaction == transaction ||
646 	    jh->b_next_transaction == transaction)
647 		goto done;
648 
649 	/*
650 	 * this is the first time this transaction is touching this buffer,
651 	 * reset the modified flag
652 	 */
653        jh->b_modified = 0;
654 
655 	/*
656 	 * If there is already a copy-out version of this buffer, then we don't
657 	 * need to make another one
658 	 */
659 	if (jh->b_frozen_data) {
660 		JBUFFER_TRACE(jh, "has frozen data");
661 		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
662 		jh->b_next_transaction = transaction;
663 		goto done;
664 	}
665 
666 	/* Is there data here we need to preserve? */
667 
668 	if (jh->b_transaction && jh->b_transaction != transaction) {
669 		JBUFFER_TRACE(jh, "owned by older transaction");
670 		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
671 		J_ASSERT_JH(jh, jh->b_transaction ==
672 					journal->j_committing_transaction);
673 
674 		/* There is one case we have to be very careful about.
675 		 * If the committing transaction is currently writing
676 		 * this buffer out to disk and has NOT made a copy-out,
677 		 * then we cannot modify the buffer contents at all
678 		 * right now.  The essence of copy-out is that it is the
679 		 * extra copy, not the primary copy, which gets
680 		 * journaled.  If the primary copy is already going to
681 		 * disk then we cannot do copy-out here. */
682 
683 		if (jh->b_jlist == BJ_Shadow) {
684 			DEFINE_WAIT_BIT(wait, &bh->b_state, BH_Unshadow);
685 			wait_queue_head_t *wqh;
686 
687 			wqh = bit_waitqueue(&bh->b_state, BH_Unshadow);
688 
689 			JBUFFER_TRACE(jh, "on shadow: sleep");
690 			jbd_unlock_bh_state(bh);
691 			/* commit wakes up all shadow buffers after IO */
692 			for ( ; ; ) {
693 				prepare_to_wait(wqh, &wait.wait,
694 						TASK_UNINTERRUPTIBLE);
695 				if (jh->b_jlist != BJ_Shadow)
696 					break;
697 				schedule();
698 			}
699 			finish_wait(wqh, &wait.wait);
700 			goto repeat;
701 		}
702 
703 		/* Only do the copy if the currently-owning transaction
704 		 * still needs it.  If it is on the Forget list, the
705 		 * committing transaction is past that stage.  The
706 		 * buffer had better remain locked during the kmalloc,
707 		 * but that should be true --- we hold the journal lock
708 		 * still and the buffer is already on the BUF_JOURNAL
709 		 * list so won't be flushed.
710 		 *
711 		 * Subtle point, though: if this is a get_undo_access,
712 		 * then we will be relying on the frozen_data to contain
713 		 * the new value of the committed_data record after the
714 		 * transaction, so we HAVE to force the frozen_data copy
715 		 * in that case. */
716 
717 		if (jh->b_jlist != BJ_Forget || force_copy) {
718 			JBUFFER_TRACE(jh, "generate frozen data");
719 			if (!frozen_buffer) {
720 				JBUFFER_TRACE(jh, "allocate memory for buffer");
721 				jbd_unlock_bh_state(bh);
722 				frozen_buffer =
723 					jbd2_alloc(jh2bh(jh)->b_size,
724 							 GFP_NOFS);
725 				if (!frozen_buffer) {
726 					printk(KERN_EMERG
727 					       "%s: OOM for frozen_buffer\n",
728 					       __func__);
729 					JBUFFER_TRACE(jh, "oom!");
730 					error = -ENOMEM;
731 					jbd_lock_bh_state(bh);
732 					goto done;
733 				}
734 				goto repeat;
735 			}
736 			jh->b_frozen_data = frozen_buffer;
737 			frozen_buffer = NULL;
738 			need_copy = 1;
739 		}
740 		jh->b_next_transaction = transaction;
741 	}
742 
743 
744 	/*
745 	 * Finally, if the buffer is not journaled right now, we need to make
746 	 * sure it doesn't get written to disk before the caller actually
747 	 * commits the new data
748 	 */
749 	if (!jh->b_transaction) {
750 		JBUFFER_TRACE(jh, "no transaction");
751 		J_ASSERT_JH(jh, !jh->b_next_transaction);
752 		jh->b_transaction = transaction;
753 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
754 		spin_lock(&journal->j_list_lock);
755 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
756 		spin_unlock(&journal->j_list_lock);
757 	}
758 
759 done:
760 	if (need_copy) {
761 		struct page *page;
762 		int offset;
763 		char *source;
764 
765 		J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)),
766 			    "Possible IO failure.\n");
767 		page = jh2bh(jh)->b_page;
768 		offset = ((unsigned long) jh2bh(jh)->b_data) & ~PAGE_MASK;
769 		source = kmap_atomic(page, KM_USER0);
770 		/* Fire data frozen trigger just before we copy the data */
771 		jbd2_buffer_frozen_trigger(jh, source + offset,
772 					   jh->b_triggers);
773 		memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size);
774 		kunmap_atomic(source, KM_USER0);
775 
776 		/*
777 		 * Now that the frozen data is saved off, we need to store
778 		 * any matching triggers.
779 		 */
780 		jh->b_frozen_triggers = jh->b_triggers;
781 	}
782 	jbd_unlock_bh_state(bh);
783 
784 	/*
785 	 * If we are about to journal a buffer, then any revoke pending on it is
786 	 * no longer valid
787 	 */
788 	jbd2_journal_cancel_revoke(handle, jh);
789 
790 out:
791 	if (unlikely(frozen_buffer))	/* It's usually NULL */
792 		jbd2_free(frozen_buffer, bh->b_size);
793 
794 	JBUFFER_TRACE(jh, "exit");
795 	return error;
796 }
797 
798 /**
799  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
800  * @handle: transaction to add buffer modifications to
801  * @bh:     bh to be used for metadata writes
802  * @credits: variable that will receive credits for the buffer
803  *
804  * Returns an error code or 0 on success.
805  *
806  * In full data journalling mode the buffer may be of type BJ_AsyncData,
807  * because we're write()ing a buffer which is also part of a shared mapping.
808  */
809 
810 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
811 {
812 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
813 	int rc;
814 
815 	/* We do not want to get caught playing with fields which the
816 	 * log thread also manipulates.  Make sure that the buffer
817 	 * completes any outstanding IO before proceeding. */
818 	rc = do_get_write_access(handle, jh, 0);
819 	jbd2_journal_put_journal_head(jh);
820 	return rc;
821 }
822 
823 
824 /*
825  * When the user wants to journal a newly created buffer_head
826  * (ie. getblk() returned a new buffer and we are going to populate it
827  * manually rather than reading off disk), then we need to keep the
828  * buffer_head locked until it has been completely filled with new
829  * data.  In this case, we should be able to make the assertion that
830  * the bh is not already part of an existing transaction.
831  *
832  * The buffer should already be locked by the caller by this point.
833  * There is no lock ranking violation: it was a newly created,
834  * unlocked buffer beforehand. */
835 
836 /**
837  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
838  * @handle: transaction to new buffer to
839  * @bh: new buffer.
840  *
841  * Call this if you create a new bh.
842  */
843 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
844 {
845 	transaction_t *transaction = handle->h_transaction;
846 	journal_t *journal = transaction->t_journal;
847 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
848 	int err;
849 
850 	jbd_debug(5, "journal_head %p\n", jh);
851 	err = -EROFS;
852 	if (is_handle_aborted(handle))
853 		goto out;
854 	err = 0;
855 
856 	JBUFFER_TRACE(jh, "entry");
857 	/*
858 	 * The buffer may already belong to this transaction due to pre-zeroing
859 	 * in the filesystem's new_block code.  It may also be on the previous,
860 	 * committing transaction's lists, but it HAS to be in Forget state in
861 	 * that case: the transaction must have deleted the buffer for it to be
862 	 * reused here.
863 	 */
864 	jbd_lock_bh_state(bh);
865 	spin_lock(&journal->j_list_lock);
866 	J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
867 		jh->b_transaction == NULL ||
868 		(jh->b_transaction == journal->j_committing_transaction &&
869 			  jh->b_jlist == BJ_Forget)));
870 
871 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
872 	J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
873 
874 	if (jh->b_transaction == NULL) {
875 		/*
876 		 * Previous jbd2_journal_forget() could have left the buffer
877 		 * with jbddirty bit set because it was being committed. When
878 		 * the commit finished, we've filed the buffer for
879 		 * checkpointing and marked it dirty. Now we are reallocating
880 		 * the buffer so the transaction freeing it must have
881 		 * committed and so it's safe to clear the dirty bit.
882 		 */
883 		clear_buffer_dirty(jh2bh(jh));
884 		jh->b_transaction = transaction;
885 
886 		/* first access by this transaction */
887 		jh->b_modified = 0;
888 
889 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
890 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
891 	} else if (jh->b_transaction == journal->j_committing_transaction) {
892 		/* first access by this transaction */
893 		jh->b_modified = 0;
894 
895 		JBUFFER_TRACE(jh, "set next transaction");
896 		jh->b_next_transaction = transaction;
897 	}
898 	spin_unlock(&journal->j_list_lock);
899 	jbd_unlock_bh_state(bh);
900 
901 	/*
902 	 * akpm: I added this.  ext3_alloc_branch can pick up new indirect
903 	 * blocks which contain freed but then revoked metadata.  We need
904 	 * to cancel the revoke in case we end up freeing it yet again
905 	 * and the reallocating as data - this would cause a second revoke,
906 	 * which hits an assertion error.
907 	 */
908 	JBUFFER_TRACE(jh, "cancelling revoke");
909 	jbd2_journal_cancel_revoke(handle, jh);
910 	jbd2_journal_put_journal_head(jh);
911 out:
912 	return err;
913 }
914 
915 /**
916  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
917  *     non-rewindable consequences
918  * @handle: transaction
919  * @bh: buffer to undo
920  * @credits: store the number of taken credits here (if not NULL)
921  *
922  * Sometimes there is a need to distinguish between metadata which has
923  * been committed to disk and that which has not.  The ext3fs code uses
924  * this for freeing and allocating space, we have to make sure that we
925  * do not reuse freed space until the deallocation has been committed,
926  * since if we overwrote that space we would make the delete
927  * un-rewindable in case of a crash.
928  *
929  * To deal with that, jbd2_journal_get_undo_access requests write access to a
930  * buffer for parts of non-rewindable operations such as delete
931  * operations on the bitmaps.  The journaling code must keep a copy of
932  * the buffer's contents prior to the undo_access call until such time
933  * as we know that the buffer has definitely been committed to disk.
934  *
935  * We never need to know which transaction the committed data is part
936  * of, buffers touched here are guaranteed to be dirtied later and so
937  * will be committed to a new transaction in due course, at which point
938  * we can discard the old committed data pointer.
939  *
940  * Returns error number or 0 on success.
941  */
942 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
943 {
944 	int err;
945 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
946 	char *committed_data = NULL;
947 
948 	JBUFFER_TRACE(jh, "entry");
949 
950 	/*
951 	 * Do this first --- it can drop the journal lock, so we want to
952 	 * make sure that obtaining the committed_data is done
953 	 * atomically wrt. completion of any outstanding commits.
954 	 */
955 	err = do_get_write_access(handle, jh, 1);
956 	if (err)
957 		goto out;
958 
959 repeat:
960 	if (!jh->b_committed_data) {
961 		committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS);
962 		if (!committed_data) {
963 			printk(KERN_EMERG "%s: No memory for committed data\n",
964 				__func__);
965 			err = -ENOMEM;
966 			goto out;
967 		}
968 	}
969 
970 	jbd_lock_bh_state(bh);
971 	if (!jh->b_committed_data) {
972 		/* Copy out the current buffer contents into the
973 		 * preserved, committed copy. */
974 		JBUFFER_TRACE(jh, "generate b_committed data");
975 		if (!committed_data) {
976 			jbd_unlock_bh_state(bh);
977 			goto repeat;
978 		}
979 
980 		jh->b_committed_data = committed_data;
981 		committed_data = NULL;
982 		memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
983 	}
984 	jbd_unlock_bh_state(bh);
985 out:
986 	jbd2_journal_put_journal_head(jh);
987 	if (unlikely(committed_data))
988 		jbd2_free(committed_data, bh->b_size);
989 	return err;
990 }
991 
992 /**
993  * void jbd2_journal_set_triggers() - Add triggers for commit writeout
994  * @bh: buffer to trigger on
995  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
996  *
997  * Set any triggers on this journal_head.  This is always safe, because
998  * triggers for a committing buffer will be saved off, and triggers for
999  * a running transaction will match the buffer in that transaction.
1000  *
1001  * Call with NULL to clear the triggers.
1002  */
1003 void jbd2_journal_set_triggers(struct buffer_head *bh,
1004 			       struct jbd2_buffer_trigger_type *type)
1005 {
1006 	struct journal_head *jh = bh2jh(bh);
1007 
1008 	jh->b_triggers = type;
1009 }
1010 
1011 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1012 				struct jbd2_buffer_trigger_type *triggers)
1013 {
1014 	struct buffer_head *bh = jh2bh(jh);
1015 
1016 	if (!triggers || !triggers->t_frozen)
1017 		return;
1018 
1019 	triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1020 }
1021 
1022 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1023 			       struct jbd2_buffer_trigger_type *triggers)
1024 {
1025 	if (!triggers || !triggers->t_abort)
1026 		return;
1027 
1028 	triggers->t_abort(triggers, jh2bh(jh));
1029 }
1030 
1031 
1032 
1033 /**
1034  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1035  * @handle: transaction to add buffer to.
1036  * @bh: buffer to mark
1037  *
1038  * mark dirty metadata which needs to be journaled as part of the current
1039  * transaction.
1040  *
1041  * The buffer is placed on the transaction's metadata list and is marked
1042  * as belonging to the transaction.
1043  *
1044  * Returns error number or 0 on success.
1045  *
1046  * Special care needs to be taken if the buffer already belongs to the
1047  * current committing transaction (in which case we should have frozen
1048  * data present for that commit).  In that case, we don't relink the
1049  * buffer: that only gets done when the old transaction finally
1050  * completes its commit.
1051  */
1052 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1053 {
1054 	transaction_t *transaction = handle->h_transaction;
1055 	journal_t *journal = transaction->t_journal;
1056 	struct journal_head *jh = bh2jh(bh);
1057 
1058 	jbd_debug(5, "journal_head %p\n", jh);
1059 	JBUFFER_TRACE(jh, "entry");
1060 	if (is_handle_aborted(handle))
1061 		goto out;
1062 
1063 	jbd_lock_bh_state(bh);
1064 
1065 	if (jh->b_modified == 0) {
1066 		/*
1067 		 * This buffer's got modified and becoming part
1068 		 * of the transaction. This needs to be done
1069 		 * once a transaction -bzzz
1070 		 */
1071 		jh->b_modified = 1;
1072 		J_ASSERT_JH(jh, handle->h_buffer_credits > 0);
1073 		handle->h_buffer_credits--;
1074 	}
1075 
1076 	/*
1077 	 * fastpath, to avoid expensive locking.  If this buffer is already
1078 	 * on the running transaction's metadata list there is nothing to do.
1079 	 * Nobody can take it off again because there is a handle open.
1080 	 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1081 	 * result in this test being false, so we go in and take the locks.
1082 	 */
1083 	if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1084 		JBUFFER_TRACE(jh, "fastpath");
1085 		J_ASSERT_JH(jh, jh->b_transaction ==
1086 					journal->j_running_transaction);
1087 		goto out_unlock_bh;
1088 	}
1089 
1090 	set_buffer_jbddirty(bh);
1091 
1092 	/*
1093 	 * Metadata already on the current transaction list doesn't
1094 	 * need to be filed.  Metadata on another transaction's list must
1095 	 * be committing, and will be refiled once the commit completes:
1096 	 * leave it alone for now.
1097 	 */
1098 	if (jh->b_transaction != transaction) {
1099 		JBUFFER_TRACE(jh, "already on other transaction");
1100 		J_ASSERT_JH(jh, jh->b_transaction ==
1101 					journal->j_committing_transaction);
1102 		J_ASSERT_JH(jh, jh->b_next_transaction == transaction);
1103 		/* And this case is illegal: we can't reuse another
1104 		 * transaction's data buffer, ever. */
1105 		goto out_unlock_bh;
1106 	}
1107 
1108 	/* That test should have eliminated the following case: */
1109 	J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1110 
1111 	JBUFFER_TRACE(jh, "file as BJ_Metadata");
1112 	spin_lock(&journal->j_list_lock);
1113 	__jbd2_journal_file_buffer(jh, handle->h_transaction, BJ_Metadata);
1114 	spin_unlock(&journal->j_list_lock);
1115 out_unlock_bh:
1116 	jbd_unlock_bh_state(bh);
1117 out:
1118 	JBUFFER_TRACE(jh, "exit");
1119 	return 0;
1120 }
1121 
1122 /*
1123  * jbd2_journal_release_buffer: undo a get_write_access without any buffer
1124  * updates, if the update decided in the end that it didn't need access.
1125  *
1126  */
1127 void
1128 jbd2_journal_release_buffer(handle_t *handle, struct buffer_head *bh)
1129 {
1130 	BUFFER_TRACE(bh, "entry");
1131 }
1132 
1133 /**
1134  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1135  * @handle: transaction handle
1136  * @bh:     bh to 'forget'
1137  *
1138  * We can only do the bforget if there are no commits pending against the
1139  * buffer.  If the buffer is dirty in the current running transaction we
1140  * can safely unlink it.
1141  *
1142  * bh may not be a journalled buffer at all - it may be a non-JBD
1143  * buffer which came off the hashtable.  Check for this.
1144  *
1145  * Decrements bh->b_count by one.
1146  *
1147  * Allow this call even if the handle has aborted --- it may be part of
1148  * the caller's cleanup after an abort.
1149  */
1150 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1151 {
1152 	transaction_t *transaction = handle->h_transaction;
1153 	journal_t *journal = transaction->t_journal;
1154 	struct journal_head *jh;
1155 	int drop_reserve = 0;
1156 	int err = 0;
1157 	int was_modified = 0;
1158 
1159 	BUFFER_TRACE(bh, "entry");
1160 
1161 	jbd_lock_bh_state(bh);
1162 	spin_lock(&journal->j_list_lock);
1163 
1164 	if (!buffer_jbd(bh))
1165 		goto not_jbd;
1166 	jh = bh2jh(bh);
1167 
1168 	/* Critical error: attempting to delete a bitmap buffer, maybe?
1169 	 * Don't do any jbd operations, and return an error. */
1170 	if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1171 			 "inconsistent data on disk")) {
1172 		err = -EIO;
1173 		goto not_jbd;
1174 	}
1175 
1176 	/* keep track of wether or not this transaction modified us */
1177 	was_modified = jh->b_modified;
1178 
1179 	/*
1180 	 * The buffer's going from the transaction, we must drop
1181 	 * all references -bzzz
1182 	 */
1183 	jh->b_modified = 0;
1184 
1185 	if (jh->b_transaction == handle->h_transaction) {
1186 		J_ASSERT_JH(jh, !jh->b_frozen_data);
1187 
1188 		/* If we are forgetting a buffer which is already part
1189 		 * of this transaction, then we can just drop it from
1190 		 * the transaction immediately. */
1191 		clear_buffer_dirty(bh);
1192 		clear_buffer_jbddirty(bh);
1193 
1194 		JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1195 
1196 		/*
1197 		 * we only want to drop a reference if this transaction
1198 		 * modified the buffer
1199 		 */
1200 		if (was_modified)
1201 			drop_reserve = 1;
1202 
1203 		/*
1204 		 * We are no longer going to journal this buffer.
1205 		 * However, the commit of this transaction is still
1206 		 * important to the buffer: the delete that we are now
1207 		 * processing might obsolete an old log entry, so by
1208 		 * committing, we can satisfy the buffer's checkpoint.
1209 		 *
1210 		 * So, if we have a checkpoint on the buffer, we should
1211 		 * now refile the buffer on our BJ_Forget list so that
1212 		 * we know to remove the checkpoint after we commit.
1213 		 */
1214 
1215 		if (jh->b_cp_transaction) {
1216 			__jbd2_journal_temp_unlink_buffer(jh);
1217 			__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1218 		} else {
1219 			__jbd2_journal_unfile_buffer(jh);
1220 			jbd2_journal_remove_journal_head(bh);
1221 			__brelse(bh);
1222 			if (!buffer_jbd(bh)) {
1223 				spin_unlock(&journal->j_list_lock);
1224 				jbd_unlock_bh_state(bh);
1225 				__bforget(bh);
1226 				goto drop;
1227 			}
1228 		}
1229 	} else if (jh->b_transaction) {
1230 		J_ASSERT_JH(jh, (jh->b_transaction ==
1231 				 journal->j_committing_transaction));
1232 		/* However, if the buffer is still owned by a prior
1233 		 * (committing) transaction, we can't drop it yet... */
1234 		JBUFFER_TRACE(jh, "belongs to older transaction");
1235 		/* ... but we CAN drop it from the new transaction if we
1236 		 * have also modified it since the original commit. */
1237 
1238 		if (jh->b_next_transaction) {
1239 			J_ASSERT(jh->b_next_transaction == transaction);
1240 			jh->b_next_transaction = NULL;
1241 
1242 			/*
1243 			 * only drop a reference if this transaction modified
1244 			 * the buffer
1245 			 */
1246 			if (was_modified)
1247 				drop_reserve = 1;
1248 		}
1249 	}
1250 
1251 not_jbd:
1252 	spin_unlock(&journal->j_list_lock);
1253 	jbd_unlock_bh_state(bh);
1254 	__brelse(bh);
1255 drop:
1256 	if (drop_reserve) {
1257 		/* no need to reserve log space for this block -bzzz */
1258 		handle->h_buffer_credits++;
1259 	}
1260 	return err;
1261 }
1262 
1263 /**
1264  * int jbd2_journal_stop() - complete a transaction
1265  * @handle: tranaction to complete.
1266  *
1267  * All done for a particular handle.
1268  *
1269  * There is not much action needed here.  We just return any remaining
1270  * buffer credits to the transaction and remove the handle.  The only
1271  * complication is that we need to start a commit operation if the
1272  * filesystem is marked for synchronous update.
1273  *
1274  * jbd2_journal_stop itself will not usually return an error, but it may
1275  * do so in unusual circumstances.  In particular, expect it to
1276  * return -EIO if a jbd2_journal_abort has been executed since the
1277  * transaction began.
1278  */
1279 int jbd2_journal_stop(handle_t *handle)
1280 {
1281 	transaction_t *transaction = handle->h_transaction;
1282 	journal_t *journal = transaction->t_journal;
1283 	int err, wait_for_commit = 0;
1284 	tid_t tid;
1285 	pid_t pid;
1286 
1287 	J_ASSERT(journal_current_handle() == handle);
1288 
1289 	if (is_handle_aborted(handle))
1290 		err = -EIO;
1291 	else {
1292 		J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1293 		err = 0;
1294 	}
1295 
1296 	if (--handle->h_ref > 0) {
1297 		jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1298 			  handle->h_ref);
1299 		return err;
1300 	}
1301 
1302 	jbd_debug(4, "Handle %p going down\n", handle);
1303 
1304 	/*
1305 	 * Implement synchronous transaction batching.  If the handle
1306 	 * was synchronous, don't force a commit immediately.  Let's
1307 	 * yield and let another thread piggyback onto this
1308 	 * transaction.  Keep doing that while new threads continue to
1309 	 * arrive.  It doesn't cost much - we're about to run a commit
1310 	 * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1311 	 * operations by 30x or more...
1312 	 *
1313 	 * We try and optimize the sleep time against what the
1314 	 * underlying disk can do, instead of having a static sleep
1315 	 * time.  This is useful for the case where our storage is so
1316 	 * fast that it is more optimal to go ahead and force a flush
1317 	 * and wait for the transaction to be committed than it is to
1318 	 * wait for an arbitrary amount of time for new writers to
1319 	 * join the transaction.  We achieve this by measuring how
1320 	 * long it takes to commit a transaction, and compare it with
1321 	 * how long this transaction has been running, and if run time
1322 	 * < commit time then we sleep for the delta and commit.  This
1323 	 * greatly helps super fast disks that would see slowdowns as
1324 	 * more threads started doing fsyncs.
1325 	 *
1326 	 * But don't do this if this process was the most recent one
1327 	 * to perform a synchronous write.  We do this to detect the
1328 	 * case where a single process is doing a stream of sync
1329 	 * writes.  No point in waiting for joiners in that case.
1330 	 */
1331 	pid = current->pid;
1332 	if (handle->h_sync && journal->j_last_sync_writer != pid) {
1333 		u64 commit_time, trans_time;
1334 
1335 		journal->j_last_sync_writer = pid;
1336 
1337 		read_lock(&journal->j_state_lock);
1338 		commit_time = journal->j_average_commit_time;
1339 		read_unlock(&journal->j_state_lock);
1340 
1341 		trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1342 						   transaction->t_start_time));
1343 
1344 		commit_time = max_t(u64, commit_time,
1345 				    1000*journal->j_min_batch_time);
1346 		commit_time = min_t(u64, commit_time,
1347 				    1000*journal->j_max_batch_time);
1348 
1349 		if (trans_time < commit_time) {
1350 			ktime_t expires = ktime_add_ns(ktime_get(),
1351 						       commit_time);
1352 			set_current_state(TASK_UNINTERRUPTIBLE);
1353 			schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1354 		}
1355 	}
1356 
1357 	if (handle->h_sync)
1358 		transaction->t_synchronous_commit = 1;
1359 	current->journal_info = NULL;
1360 	atomic_sub(handle->h_buffer_credits,
1361 		   &transaction->t_outstanding_credits);
1362 
1363 	/*
1364 	 * If the handle is marked SYNC, we need to set another commit
1365 	 * going!  We also want to force a commit if the current
1366 	 * transaction is occupying too much of the log, or if the
1367 	 * transaction is too old now.
1368 	 */
1369 	if (handle->h_sync ||
1370 	    (atomic_read(&transaction->t_outstanding_credits) >
1371 	     journal->j_max_transaction_buffers) ||
1372 	    time_after_eq(jiffies, transaction->t_expires)) {
1373 		/* Do this even for aborted journals: an abort still
1374 		 * completes the commit thread, it just doesn't write
1375 		 * anything to disk. */
1376 
1377 		jbd_debug(2, "transaction too old, requesting commit for "
1378 					"handle %p\n", handle);
1379 		/* This is non-blocking */
1380 		jbd2_log_start_commit(journal, transaction->t_tid);
1381 
1382 		/*
1383 		 * Special case: JBD2_SYNC synchronous updates require us
1384 		 * to wait for the commit to complete.
1385 		 */
1386 		if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1387 			wait_for_commit = 1;
1388 	}
1389 
1390 	/*
1391 	 * Once we drop t_updates, if it goes to zero the transaction
1392 	 * could start commiting on us and eventually disappear.  So
1393 	 * once we do this, we must not dereference transaction
1394 	 * pointer again.
1395 	 */
1396 	tid = transaction->t_tid;
1397 	if (atomic_dec_and_test(&transaction->t_updates)) {
1398 		wake_up(&journal->j_wait_updates);
1399 		if (journal->j_barrier_count)
1400 			wake_up(&journal->j_wait_transaction_locked);
1401 	}
1402 
1403 	if (wait_for_commit)
1404 		err = jbd2_log_wait_commit(journal, tid);
1405 
1406 	lock_map_release(&handle->h_lockdep_map);
1407 
1408 	jbd2_free_handle(handle);
1409 	return err;
1410 }
1411 
1412 /**
1413  * int jbd2_journal_force_commit() - force any uncommitted transactions
1414  * @journal: journal to force
1415  *
1416  * For synchronous operations: force any uncommitted transactions
1417  * to disk.  May seem kludgy, but it reuses all the handle batching
1418  * code in a very simple manner.
1419  */
1420 int jbd2_journal_force_commit(journal_t *journal)
1421 {
1422 	handle_t *handle;
1423 	int ret;
1424 
1425 	handle = jbd2_journal_start(journal, 1);
1426 	if (IS_ERR(handle)) {
1427 		ret = PTR_ERR(handle);
1428 	} else {
1429 		handle->h_sync = 1;
1430 		ret = jbd2_journal_stop(handle);
1431 	}
1432 	return ret;
1433 }
1434 
1435 /*
1436  *
1437  * List management code snippets: various functions for manipulating the
1438  * transaction buffer lists.
1439  *
1440  */
1441 
1442 /*
1443  * Append a buffer to a transaction list, given the transaction's list head
1444  * pointer.
1445  *
1446  * j_list_lock is held.
1447  *
1448  * jbd_lock_bh_state(jh2bh(jh)) is held.
1449  */
1450 
1451 static inline void
1452 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1453 {
1454 	if (!*list) {
1455 		jh->b_tnext = jh->b_tprev = jh;
1456 		*list = jh;
1457 	} else {
1458 		/* Insert at the tail of the list to preserve order */
1459 		struct journal_head *first = *list, *last = first->b_tprev;
1460 		jh->b_tprev = last;
1461 		jh->b_tnext = first;
1462 		last->b_tnext = first->b_tprev = jh;
1463 	}
1464 }
1465 
1466 /*
1467  * Remove a buffer from a transaction list, given the transaction's list
1468  * head pointer.
1469  *
1470  * Called with j_list_lock held, and the journal may not be locked.
1471  *
1472  * jbd_lock_bh_state(jh2bh(jh)) is held.
1473  */
1474 
1475 static inline void
1476 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1477 {
1478 	if (*list == jh) {
1479 		*list = jh->b_tnext;
1480 		if (*list == jh)
1481 			*list = NULL;
1482 	}
1483 	jh->b_tprev->b_tnext = jh->b_tnext;
1484 	jh->b_tnext->b_tprev = jh->b_tprev;
1485 }
1486 
1487 /*
1488  * Remove a buffer from the appropriate transaction list.
1489  *
1490  * Note that this function can *change* the value of
1491  * bh->b_transaction->t_buffers, t_forget, t_iobuf_list, t_shadow_list,
1492  * t_log_list or t_reserved_list.  If the caller is holding onto a copy of one
1493  * of these pointers, it could go bad.  Generally the caller needs to re-read
1494  * the pointer from the transaction_t.
1495  *
1496  * Called under j_list_lock.  The journal may not be locked.
1497  */
1498 void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1499 {
1500 	struct journal_head **list = NULL;
1501 	transaction_t *transaction;
1502 	struct buffer_head *bh = jh2bh(jh);
1503 
1504 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1505 	transaction = jh->b_transaction;
1506 	if (transaction)
1507 		assert_spin_locked(&transaction->t_journal->j_list_lock);
1508 
1509 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1510 	if (jh->b_jlist != BJ_None)
1511 		J_ASSERT_JH(jh, transaction != NULL);
1512 
1513 	switch (jh->b_jlist) {
1514 	case BJ_None:
1515 		return;
1516 	case BJ_Metadata:
1517 		transaction->t_nr_buffers--;
1518 		J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1519 		list = &transaction->t_buffers;
1520 		break;
1521 	case BJ_Forget:
1522 		list = &transaction->t_forget;
1523 		break;
1524 	case BJ_IO:
1525 		list = &transaction->t_iobuf_list;
1526 		break;
1527 	case BJ_Shadow:
1528 		list = &transaction->t_shadow_list;
1529 		break;
1530 	case BJ_LogCtl:
1531 		list = &transaction->t_log_list;
1532 		break;
1533 	case BJ_Reserved:
1534 		list = &transaction->t_reserved_list;
1535 		break;
1536 	}
1537 
1538 	__blist_del_buffer(list, jh);
1539 	jh->b_jlist = BJ_None;
1540 	if (test_clear_buffer_jbddirty(bh))
1541 		mark_buffer_dirty(bh);	/* Expose it to the VM */
1542 }
1543 
1544 void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1545 {
1546 	__jbd2_journal_temp_unlink_buffer(jh);
1547 	jh->b_transaction = NULL;
1548 }
1549 
1550 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1551 {
1552 	jbd_lock_bh_state(jh2bh(jh));
1553 	spin_lock(&journal->j_list_lock);
1554 	__jbd2_journal_unfile_buffer(jh);
1555 	spin_unlock(&journal->j_list_lock);
1556 	jbd_unlock_bh_state(jh2bh(jh));
1557 }
1558 
1559 /*
1560  * Called from jbd2_journal_try_to_free_buffers().
1561  *
1562  * Called under jbd_lock_bh_state(bh)
1563  */
1564 static void
1565 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1566 {
1567 	struct journal_head *jh;
1568 
1569 	jh = bh2jh(bh);
1570 
1571 	if (buffer_locked(bh) || buffer_dirty(bh))
1572 		goto out;
1573 
1574 	if (jh->b_next_transaction != NULL)
1575 		goto out;
1576 
1577 	spin_lock(&journal->j_list_lock);
1578 	if (jh->b_cp_transaction != NULL && jh->b_transaction == NULL) {
1579 		/* written-back checkpointed metadata buffer */
1580 		if (jh->b_jlist == BJ_None) {
1581 			JBUFFER_TRACE(jh, "remove from checkpoint list");
1582 			__jbd2_journal_remove_checkpoint(jh);
1583 			jbd2_journal_remove_journal_head(bh);
1584 			__brelse(bh);
1585 		}
1586 	}
1587 	spin_unlock(&journal->j_list_lock);
1588 out:
1589 	return;
1590 }
1591 
1592 /**
1593  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1594  * @journal: journal for operation
1595  * @page: to try and free
1596  * @gfp_mask: we use the mask to detect how hard should we try to release
1597  * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to
1598  * release the buffers.
1599  *
1600  *
1601  * For all the buffers on this page,
1602  * if they are fully written out ordered data, move them onto BUF_CLEAN
1603  * so try_to_free_buffers() can reap them.
1604  *
1605  * This function returns non-zero if we wish try_to_free_buffers()
1606  * to be called. We do this if the page is releasable by try_to_free_buffers().
1607  * We also do it if the page has locked or dirty buffers and the caller wants
1608  * us to perform sync or async writeout.
1609  *
1610  * This complicates JBD locking somewhat.  We aren't protected by the
1611  * BKL here.  We wish to remove the buffer from its committing or
1612  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1613  *
1614  * This may *change* the value of transaction_t->t_datalist, so anyone
1615  * who looks at t_datalist needs to lock against this function.
1616  *
1617  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1618  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
1619  * will come out of the lock with the buffer dirty, which makes it
1620  * ineligible for release here.
1621  *
1622  * Who else is affected by this?  hmm...  Really the only contender
1623  * is do_get_write_access() - it could be looking at the buffer while
1624  * journal_try_to_free_buffer() is changing its state.  But that
1625  * cannot happen because we never reallocate freed data as metadata
1626  * while the data is part of a transaction.  Yes?
1627  *
1628  * Return 0 on failure, 1 on success
1629  */
1630 int jbd2_journal_try_to_free_buffers(journal_t *journal,
1631 				struct page *page, gfp_t gfp_mask)
1632 {
1633 	struct buffer_head *head;
1634 	struct buffer_head *bh;
1635 	int ret = 0;
1636 
1637 	J_ASSERT(PageLocked(page));
1638 
1639 	head = page_buffers(page);
1640 	bh = head;
1641 	do {
1642 		struct journal_head *jh;
1643 
1644 		/*
1645 		 * We take our own ref against the journal_head here to avoid
1646 		 * having to add tons of locking around each instance of
1647 		 * jbd2_journal_remove_journal_head() and
1648 		 * jbd2_journal_put_journal_head().
1649 		 */
1650 		jh = jbd2_journal_grab_journal_head(bh);
1651 		if (!jh)
1652 			continue;
1653 
1654 		jbd_lock_bh_state(bh);
1655 		__journal_try_to_free_buffer(journal, bh);
1656 		jbd2_journal_put_journal_head(jh);
1657 		jbd_unlock_bh_state(bh);
1658 		if (buffer_jbd(bh))
1659 			goto busy;
1660 	} while ((bh = bh->b_this_page) != head);
1661 
1662 	ret = try_to_free_buffers(page);
1663 
1664 busy:
1665 	return ret;
1666 }
1667 
1668 /*
1669  * This buffer is no longer needed.  If it is on an older transaction's
1670  * checkpoint list we need to record it on this transaction's forget list
1671  * to pin this buffer (and hence its checkpointing transaction) down until
1672  * this transaction commits.  If the buffer isn't on a checkpoint list, we
1673  * release it.
1674  * Returns non-zero if JBD no longer has an interest in the buffer.
1675  *
1676  * Called under j_list_lock.
1677  *
1678  * Called under jbd_lock_bh_state(bh).
1679  */
1680 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
1681 {
1682 	int may_free = 1;
1683 	struct buffer_head *bh = jh2bh(jh);
1684 
1685 	__jbd2_journal_unfile_buffer(jh);
1686 
1687 	if (jh->b_cp_transaction) {
1688 		JBUFFER_TRACE(jh, "on running+cp transaction");
1689 		/*
1690 		 * We don't want to write the buffer anymore, clear the
1691 		 * bit so that we don't confuse checks in
1692 		 * __journal_file_buffer
1693 		 */
1694 		clear_buffer_dirty(bh);
1695 		__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1696 		may_free = 0;
1697 	} else {
1698 		JBUFFER_TRACE(jh, "on running transaction");
1699 		jbd2_journal_remove_journal_head(bh);
1700 		__brelse(bh);
1701 	}
1702 	return may_free;
1703 }
1704 
1705 /*
1706  * jbd2_journal_invalidatepage
1707  *
1708  * This code is tricky.  It has a number of cases to deal with.
1709  *
1710  * There are two invariants which this code relies on:
1711  *
1712  * i_size must be updated on disk before we start calling invalidatepage on the
1713  * data.
1714  *
1715  *  This is done in ext3 by defining an ext3_setattr method which
1716  *  updates i_size before truncate gets going.  By maintaining this
1717  *  invariant, we can be sure that it is safe to throw away any buffers
1718  *  attached to the current transaction: once the transaction commits,
1719  *  we know that the data will not be needed.
1720  *
1721  *  Note however that we can *not* throw away data belonging to the
1722  *  previous, committing transaction!
1723  *
1724  * Any disk blocks which *are* part of the previous, committing
1725  * transaction (and which therefore cannot be discarded immediately) are
1726  * not going to be reused in the new running transaction
1727  *
1728  *  The bitmap committed_data images guarantee this: any block which is
1729  *  allocated in one transaction and removed in the next will be marked
1730  *  as in-use in the committed_data bitmap, so cannot be reused until
1731  *  the next transaction to delete the block commits.  This means that
1732  *  leaving committing buffers dirty is quite safe: the disk blocks
1733  *  cannot be reallocated to a different file and so buffer aliasing is
1734  *  not possible.
1735  *
1736  *
1737  * The above applies mainly to ordered data mode.  In writeback mode we
1738  * don't make guarantees about the order in which data hits disk --- in
1739  * particular we don't guarantee that new dirty data is flushed before
1740  * transaction commit --- so it is always safe just to discard data
1741  * immediately in that mode.  --sct
1742  */
1743 
1744 /*
1745  * The journal_unmap_buffer helper function returns zero if the buffer
1746  * concerned remains pinned as an anonymous buffer belonging to an older
1747  * transaction.
1748  *
1749  * We're outside-transaction here.  Either or both of j_running_transaction
1750  * and j_committing_transaction may be NULL.
1751  */
1752 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh)
1753 {
1754 	transaction_t *transaction;
1755 	struct journal_head *jh;
1756 	int may_free = 1;
1757 	int ret;
1758 
1759 	BUFFER_TRACE(bh, "entry");
1760 
1761 	/*
1762 	 * It is safe to proceed here without the j_list_lock because the
1763 	 * buffers cannot be stolen by try_to_free_buffers as long as we are
1764 	 * holding the page lock. --sct
1765 	 */
1766 
1767 	if (!buffer_jbd(bh))
1768 		goto zap_buffer_unlocked;
1769 
1770 	/* OK, we have data buffer in journaled mode */
1771 	write_lock(&journal->j_state_lock);
1772 	jbd_lock_bh_state(bh);
1773 	spin_lock(&journal->j_list_lock);
1774 
1775 	jh = jbd2_journal_grab_journal_head(bh);
1776 	if (!jh)
1777 		goto zap_buffer_no_jh;
1778 
1779 	/*
1780 	 * We cannot remove the buffer from checkpoint lists until the
1781 	 * transaction adding inode to orphan list (let's call it T)
1782 	 * is committed.  Otherwise if the transaction changing the
1783 	 * buffer would be cleaned from the journal before T is
1784 	 * committed, a crash will cause that the correct contents of
1785 	 * the buffer will be lost.  On the other hand we have to
1786 	 * clear the buffer dirty bit at latest at the moment when the
1787 	 * transaction marking the buffer as freed in the filesystem
1788 	 * structures is committed because from that moment on the
1789 	 * buffer can be reallocated and used by a different page.
1790 	 * Since the block hasn't been freed yet but the inode has
1791 	 * already been added to orphan list, it is safe for us to add
1792 	 * the buffer to BJ_Forget list of the newest transaction.
1793 	 */
1794 	transaction = jh->b_transaction;
1795 	if (transaction == NULL) {
1796 		/* First case: not on any transaction.  If it
1797 		 * has no checkpoint link, then we can zap it:
1798 		 * it's a writeback-mode buffer so we don't care
1799 		 * if it hits disk safely. */
1800 		if (!jh->b_cp_transaction) {
1801 			JBUFFER_TRACE(jh, "not on any transaction: zap");
1802 			goto zap_buffer;
1803 		}
1804 
1805 		if (!buffer_dirty(bh)) {
1806 			/* bdflush has written it.  We can drop it now */
1807 			goto zap_buffer;
1808 		}
1809 
1810 		/* OK, it must be in the journal but still not
1811 		 * written fully to disk: it's metadata or
1812 		 * journaled data... */
1813 
1814 		if (journal->j_running_transaction) {
1815 			/* ... and once the current transaction has
1816 			 * committed, the buffer won't be needed any
1817 			 * longer. */
1818 			JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
1819 			ret = __dispose_buffer(jh,
1820 					journal->j_running_transaction);
1821 			jbd2_journal_put_journal_head(jh);
1822 			spin_unlock(&journal->j_list_lock);
1823 			jbd_unlock_bh_state(bh);
1824 			write_unlock(&journal->j_state_lock);
1825 			return ret;
1826 		} else {
1827 			/* There is no currently-running transaction. So the
1828 			 * orphan record which we wrote for this file must have
1829 			 * passed into commit.  We must attach this buffer to
1830 			 * the committing transaction, if it exists. */
1831 			if (journal->j_committing_transaction) {
1832 				JBUFFER_TRACE(jh, "give to committing trans");
1833 				ret = __dispose_buffer(jh,
1834 					journal->j_committing_transaction);
1835 				jbd2_journal_put_journal_head(jh);
1836 				spin_unlock(&journal->j_list_lock);
1837 				jbd_unlock_bh_state(bh);
1838 				write_unlock(&journal->j_state_lock);
1839 				return ret;
1840 			} else {
1841 				/* The orphan record's transaction has
1842 				 * committed.  We can cleanse this buffer */
1843 				clear_buffer_jbddirty(bh);
1844 				goto zap_buffer;
1845 			}
1846 		}
1847 	} else if (transaction == journal->j_committing_transaction) {
1848 		JBUFFER_TRACE(jh, "on committing transaction");
1849 		/*
1850 		 * The buffer is committing, we simply cannot touch
1851 		 * it. So we just set j_next_transaction to the
1852 		 * running transaction (if there is one) and mark
1853 		 * buffer as freed so that commit code knows it should
1854 		 * clear dirty bits when it is done with the buffer.
1855 		 */
1856 		set_buffer_freed(bh);
1857 		if (journal->j_running_transaction && buffer_jbddirty(bh))
1858 			jh->b_next_transaction = journal->j_running_transaction;
1859 		jbd2_journal_put_journal_head(jh);
1860 		spin_unlock(&journal->j_list_lock);
1861 		jbd_unlock_bh_state(bh);
1862 		write_unlock(&journal->j_state_lock);
1863 		return 0;
1864 	} else {
1865 		/* Good, the buffer belongs to the running transaction.
1866 		 * We are writing our own transaction's data, not any
1867 		 * previous one's, so it is safe to throw it away
1868 		 * (remember that we expect the filesystem to have set
1869 		 * i_size already for this truncate so recovery will not
1870 		 * expose the disk blocks we are discarding here.) */
1871 		J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
1872 		JBUFFER_TRACE(jh, "on running transaction");
1873 		may_free = __dispose_buffer(jh, transaction);
1874 	}
1875 
1876 zap_buffer:
1877 	jbd2_journal_put_journal_head(jh);
1878 zap_buffer_no_jh:
1879 	spin_unlock(&journal->j_list_lock);
1880 	jbd_unlock_bh_state(bh);
1881 	write_unlock(&journal->j_state_lock);
1882 zap_buffer_unlocked:
1883 	clear_buffer_dirty(bh);
1884 	J_ASSERT_BH(bh, !buffer_jbddirty(bh));
1885 	clear_buffer_mapped(bh);
1886 	clear_buffer_req(bh);
1887 	clear_buffer_new(bh);
1888 	bh->b_bdev = NULL;
1889 	return may_free;
1890 }
1891 
1892 /**
1893  * void jbd2_journal_invalidatepage()
1894  * @journal: journal to use for flush...
1895  * @page:    page to flush
1896  * @offset:  length of page to invalidate.
1897  *
1898  * Reap page buffers containing data after offset in page.
1899  *
1900  */
1901 void jbd2_journal_invalidatepage(journal_t *journal,
1902 		      struct page *page,
1903 		      unsigned long offset)
1904 {
1905 	struct buffer_head *head, *bh, *next;
1906 	unsigned int curr_off = 0;
1907 	int may_free = 1;
1908 
1909 	if (!PageLocked(page))
1910 		BUG();
1911 	if (!page_has_buffers(page))
1912 		return;
1913 
1914 	/* We will potentially be playing with lists other than just the
1915 	 * data lists (especially for journaled data mode), so be
1916 	 * cautious in our locking. */
1917 
1918 	head = bh = page_buffers(page);
1919 	do {
1920 		unsigned int next_off = curr_off + bh->b_size;
1921 		next = bh->b_this_page;
1922 
1923 		if (offset <= curr_off) {
1924 			/* This block is wholly outside the truncation point */
1925 			lock_buffer(bh);
1926 			may_free &= journal_unmap_buffer(journal, bh);
1927 			unlock_buffer(bh);
1928 		}
1929 		curr_off = next_off;
1930 		bh = next;
1931 
1932 	} while (bh != head);
1933 
1934 	if (!offset) {
1935 		if (may_free && try_to_free_buffers(page))
1936 			J_ASSERT(!page_has_buffers(page));
1937 	}
1938 }
1939 
1940 /*
1941  * File a buffer on the given transaction list.
1942  */
1943 void __jbd2_journal_file_buffer(struct journal_head *jh,
1944 			transaction_t *transaction, int jlist)
1945 {
1946 	struct journal_head **list = NULL;
1947 	int was_dirty = 0;
1948 	struct buffer_head *bh = jh2bh(jh);
1949 
1950 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1951 	assert_spin_locked(&transaction->t_journal->j_list_lock);
1952 
1953 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1954 	J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1955 				jh->b_transaction == NULL);
1956 
1957 	if (jh->b_transaction && jh->b_jlist == jlist)
1958 		return;
1959 
1960 	if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
1961 	    jlist == BJ_Shadow || jlist == BJ_Forget) {
1962 		/*
1963 		 * For metadata buffers, we track dirty bit in buffer_jbddirty
1964 		 * instead of buffer_dirty. We should not see a dirty bit set
1965 		 * here because we clear it in do_get_write_access but e.g.
1966 		 * tune2fs can modify the sb and set the dirty bit at any time
1967 		 * so we try to gracefully handle that.
1968 		 */
1969 		if (buffer_dirty(bh))
1970 			warn_dirty_buffer(bh);
1971 		if (test_clear_buffer_dirty(bh) ||
1972 		    test_clear_buffer_jbddirty(bh))
1973 			was_dirty = 1;
1974 	}
1975 
1976 	if (jh->b_transaction)
1977 		__jbd2_journal_temp_unlink_buffer(jh);
1978 	jh->b_transaction = transaction;
1979 
1980 	switch (jlist) {
1981 	case BJ_None:
1982 		J_ASSERT_JH(jh, !jh->b_committed_data);
1983 		J_ASSERT_JH(jh, !jh->b_frozen_data);
1984 		return;
1985 	case BJ_Metadata:
1986 		transaction->t_nr_buffers++;
1987 		list = &transaction->t_buffers;
1988 		break;
1989 	case BJ_Forget:
1990 		list = &transaction->t_forget;
1991 		break;
1992 	case BJ_IO:
1993 		list = &transaction->t_iobuf_list;
1994 		break;
1995 	case BJ_Shadow:
1996 		list = &transaction->t_shadow_list;
1997 		break;
1998 	case BJ_LogCtl:
1999 		list = &transaction->t_log_list;
2000 		break;
2001 	case BJ_Reserved:
2002 		list = &transaction->t_reserved_list;
2003 		break;
2004 	}
2005 
2006 	__blist_add_buffer(list, jh);
2007 	jh->b_jlist = jlist;
2008 
2009 	if (was_dirty)
2010 		set_buffer_jbddirty(bh);
2011 }
2012 
2013 void jbd2_journal_file_buffer(struct journal_head *jh,
2014 				transaction_t *transaction, int jlist)
2015 {
2016 	jbd_lock_bh_state(jh2bh(jh));
2017 	spin_lock(&transaction->t_journal->j_list_lock);
2018 	__jbd2_journal_file_buffer(jh, transaction, jlist);
2019 	spin_unlock(&transaction->t_journal->j_list_lock);
2020 	jbd_unlock_bh_state(jh2bh(jh));
2021 }
2022 
2023 /*
2024  * Remove a buffer from its current buffer list in preparation for
2025  * dropping it from its current transaction entirely.  If the buffer has
2026  * already started to be used by a subsequent transaction, refile the
2027  * buffer on that transaction's metadata list.
2028  *
2029  * Called under journal->j_list_lock
2030  *
2031  * Called under jbd_lock_bh_state(jh2bh(jh))
2032  */
2033 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2034 {
2035 	int was_dirty, jlist;
2036 	struct buffer_head *bh = jh2bh(jh);
2037 
2038 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2039 	if (jh->b_transaction)
2040 		assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2041 
2042 	/* If the buffer is now unused, just drop it. */
2043 	if (jh->b_next_transaction == NULL) {
2044 		__jbd2_journal_unfile_buffer(jh);
2045 		return;
2046 	}
2047 
2048 	/*
2049 	 * It has been modified by a later transaction: add it to the new
2050 	 * transaction's metadata list.
2051 	 */
2052 
2053 	was_dirty = test_clear_buffer_jbddirty(bh);
2054 	__jbd2_journal_temp_unlink_buffer(jh);
2055 	jh->b_transaction = jh->b_next_transaction;
2056 	jh->b_next_transaction = NULL;
2057 	if (buffer_freed(bh))
2058 		jlist = BJ_Forget;
2059 	else if (jh->b_modified)
2060 		jlist = BJ_Metadata;
2061 	else
2062 		jlist = BJ_Reserved;
2063 	__jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2064 	J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2065 
2066 	if (was_dirty)
2067 		set_buffer_jbddirty(bh);
2068 }
2069 
2070 /*
2071  * For the unlocked version of this call, also make sure that any
2072  * hanging journal_head is cleaned up if necessary.
2073  *
2074  * __jbd2_journal_refile_buffer is usually called as part of a single locked
2075  * operation on a buffer_head, in which the caller is probably going to
2076  * be hooking the journal_head onto other lists.  In that case it is up
2077  * to the caller to remove the journal_head if necessary.  For the
2078  * unlocked jbd2_journal_refile_buffer call, the caller isn't going to be
2079  * doing anything else to the buffer so we need to do the cleanup
2080  * ourselves to avoid a jh leak.
2081  *
2082  * *** The journal_head may be freed by this call! ***
2083  */
2084 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2085 {
2086 	struct buffer_head *bh = jh2bh(jh);
2087 
2088 	jbd_lock_bh_state(bh);
2089 	spin_lock(&journal->j_list_lock);
2090 
2091 	__jbd2_journal_refile_buffer(jh);
2092 	jbd_unlock_bh_state(bh);
2093 	jbd2_journal_remove_journal_head(bh);
2094 
2095 	spin_unlock(&journal->j_list_lock);
2096 	__brelse(bh);
2097 }
2098 
2099 /*
2100  * File inode in the inode list of the handle's transaction
2101  */
2102 int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode)
2103 {
2104 	transaction_t *transaction = handle->h_transaction;
2105 	journal_t *journal = transaction->t_journal;
2106 
2107 	if (is_handle_aborted(handle))
2108 		return -EIO;
2109 
2110 	jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2111 			transaction->t_tid);
2112 
2113 	/*
2114 	 * First check whether inode isn't already on the transaction's
2115 	 * lists without taking the lock. Note that this check is safe
2116 	 * without the lock as we cannot race with somebody removing inode
2117 	 * from the transaction. The reason is that we remove inode from the
2118 	 * transaction only in journal_release_jbd_inode() and when we commit
2119 	 * the transaction. We are guarded from the first case by holding
2120 	 * a reference to the inode. We are safe against the second case
2121 	 * because if jinode->i_transaction == transaction, commit code
2122 	 * cannot touch the transaction because we hold reference to it,
2123 	 * and if jinode->i_next_transaction == transaction, commit code
2124 	 * will only file the inode where we want it.
2125 	 */
2126 	if (jinode->i_transaction == transaction ||
2127 	    jinode->i_next_transaction == transaction)
2128 		return 0;
2129 
2130 	spin_lock(&journal->j_list_lock);
2131 
2132 	if (jinode->i_transaction == transaction ||
2133 	    jinode->i_next_transaction == transaction)
2134 		goto done;
2135 
2136 	/* On some different transaction's list - should be
2137 	 * the committing one */
2138 	if (jinode->i_transaction) {
2139 		J_ASSERT(jinode->i_next_transaction == NULL);
2140 		J_ASSERT(jinode->i_transaction ==
2141 					journal->j_committing_transaction);
2142 		jinode->i_next_transaction = transaction;
2143 		goto done;
2144 	}
2145 	/* Not on any transaction list... */
2146 	J_ASSERT(!jinode->i_next_transaction);
2147 	jinode->i_transaction = transaction;
2148 	list_add(&jinode->i_list, &transaction->t_inode_list);
2149 done:
2150 	spin_unlock(&journal->j_list_lock);
2151 
2152 	return 0;
2153 }
2154 
2155 /*
2156  * File truncate and transaction commit interact with each other in a
2157  * non-trivial way.  If a transaction writing data block A is
2158  * committing, we cannot discard the data by truncate until we have
2159  * written them.  Otherwise if we crashed after the transaction with
2160  * write has committed but before the transaction with truncate has
2161  * committed, we could see stale data in block A.  This function is a
2162  * helper to solve this problem.  It starts writeout of the truncated
2163  * part in case it is in the committing transaction.
2164  *
2165  * Filesystem code must call this function when inode is journaled in
2166  * ordered mode before truncation happens and after the inode has been
2167  * placed on orphan list with the new inode size. The second condition
2168  * avoids the race that someone writes new data and we start
2169  * committing the transaction after this function has been called but
2170  * before a transaction for truncate is started (and furthermore it
2171  * allows us to optimize the case where the addition to orphan list
2172  * happens in the same transaction as write --- we don't have to write
2173  * any data in such case).
2174  */
2175 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2176 					struct jbd2_inode *jinode,
2177 					loff_t new_size)
2178 {
2179 	transaction_t *inode_trans, *commit_trans;
2180 	int ret = 0;
2181 
2182 	/* This is a quick check to avoid locking if not necessary */
2183 	if (!jinode->i_transaction)
2184 		goto out;
2185 	/* Locks are here just to force reading of recent values, it is
2186 	 * enough that the transaction was not committing before we started
2187 	 * a transaction adding the inode to orphan list */
2188 	read_lock(&journal->j_state_lock);
2189 	commit_trans = journal->j_committing_transaction;
2190 	read_unlock(&journal->j_state_lock);
2191 	spin_lock(&journal->j_list_lock);
2192 	inode_trans = jinode->i_transaction;
2193 	spin_unlock(&journal->j_list_lock);
2194 	if (inode_trans == commit_trans) {
2195 		ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2196 			new_size, LLONG_MAX);
2197 		if (ret)
2198 			jbd2_journal_abort(journal, ret);
2199 	}
2200 out:
2201 	return ret;
2202 }
2203