xref: /linux/fs/jbd2/transaction.c (revision 4e0ae876f77bc01a7e77724dea57b4b82bd53244)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * linux/fs/jbd2/transaction.c
4  *
5  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6  *
7  * Copyright 1998 Red Hat corp --- All Rights Reserved
8  *
9  * Generic filesystem transaction handling code; part of the ext2fs
10  * journaling system.
11  *
12  * This file manages transactions (compound commits managed by the
13  * journaling code) and handles (individual atomic operations by the
14  * filesystem).
15  */
16 
17 #include <linux/time.h>
18 #include <linux/fs.h>
19 #include <linux/jbd2.h>
20 #include <linux/errno.h>
21 #include <linux/slab.h>
22 #include <linux/timer.h>
23 #include <linux/mm.h>
24 #include <linux/highmem.h>
25 #include <linux/hrtimer.h>
26 #include <linux/backing-dev.h>
27 #include <linux/bug.h>
28 #include <linux/module.h>
29 #include <linux/sched/mm.h>
30 
31 #include <trace/events/jbd2.h>
32 
33 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
34 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
35 
36 static struct kmem_cache *transaction_cache;
37 int __init jbd2_journal_init_transaction_cache(void)
38 {
39 	J_ASSERT(!transaction_cache);
40 	transaction_cache = kmem_cache_create("jbd2_transaction_s",
41 					sizeof(transaction_t),
42 					0,
43 					SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
44 					NULL);
45 	if (transaction_cache)
46 		return 0;
47 	return -ENOMEM;
48 }
49 
50 void jbd2_journal_destroy_transaction_cache(void)
51 {
52 	kmem_cache_destroy(transaction_cache);
53 	transaction_cache = NULL;
54 }
55 
56 void jbd2_journal_free_transaction(transaction_t *transaction)
57 {
58 	if (unlikely(ZERO_OR_NULL_PTR(transaction)))
59 		return;
60 	kmem_cache_free(transaction_cache, transaction);
61 }
62 
63 /*
64  * jbd2_get_transaction: obtain a new transaction_t object.
65  *
66  * Simply initialise a new transaction. Initialize it in
67  * RUNNING state and add it to the current journal (which should not
68  * have an existing running transaction: we only make a new transaction
69  * once we have started to commit the old one).
70  *
71  * Preconditions:
72  *	The journal MUST be locked.  We don't perform atomic mallocs on the
73  *	new transaction	and we can't block without protecting against other
74  *	processes trying to touch the journal while it is in transition.
75  *
76  */
77 
78 static void jbd2_get_transaction(journal_t *journal,
79 				transaction_t *transaction)
80 {
81 	transaction->t_journal = journal;
82 	transaction->t_state = T_RUNNING;
83 	transaction->t_start_time = ktime_get();
84 	transaction->t_tid = journal->j_transaction_sequence++;
85 	transaction->t_expires = jiffies + journal->j_commit_interval;
86 	spin_lock_init(&transaction->t_handle_lock);
87 	atomic_set(&transaction->t_updates, 0);
88 	atomic_set(&transaction->t_outstanding_credits,
89 		   atomic_read(&journal->j_reserved_credits));
90 	atomic_set(&transaction->t_handle_count, 0);
91 	INIT_LIST_HEAD(&transaction->t_inode_list);
92 	INIT_LIST_HEAD(&transaction->t_private_list);
93 
94 	/* Set up the commit timer for the new transaction. */
95 	journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
96 	add_timer(&journal->j_commit_timer);
97 
98 	J_ASSERT(journal->j_running_transaction == NULL);
99 	journal->j_running_transaction = transaction;
100 	transaction->t_max_wait = 0;
101 	transaction->t_start = jiffies;
102 	transaction->t_requested = 0;
103 }
104 
105 /*
106  * Handle management.
107  *
108  * A handle_t is an object which represents a single atomic update to a
109  * filesystem, and which tracks all of the modifications which form part
110  * of that one update.
111  */
112 
113 /*
114  * Update transaction's maximum wait time, if debugging is enabled.
115  *
116  * In order for t_max_wait to be reliable, it must be protected by a
117  * lock.  But doing so will mean that start_this_handle() can not be
118  * run in parallel on SMP systems, which limits our scalability.  So
119  * unless debugging is enabled, we no longer update t_max_wait, which
120  * means that maximum wait time reported by the jbd2_run_stats
121  * tracepoint will always be zero.
122  */
123 static inline void update_t_max_wait(transaction_t *transaction,
124 				     unsigned long ts)
125 {
126 #ifdef CONFIG_JBD2_DEBUG
127 	if (jbd2_journal_enable_debug &&
128 	    time_after(transaction->t_start, ts)) {
129 		ts = jbd2_time_diff(ts, transaction->t_start);
130 		spin_lock(&transaction->t_handle_lock);
131 		if (ts > transaction->t_max_wait)
132 			transaction->t_max_wait = ts;
133 		spin_unlock(&transaction->t_handle_lock);
134 	}
135 #endif
136 }
137 
138 /*
139  * Wait until running transaction passes to T_FLUSH state and new transaction
140  * can thus be started. Also starts the commit if needed. The function expects
141  * running transaction to exist and releases j_state_lock.
142  */
143 static void wait_transaction_locked(journal_t *journal)
144 	__releases(journal->j_state_lock)
145 {
146 	DEFINE_WAIT(wait);
147 	int need_to_start;
148 	tid_t tid = journal->j_running_transaction->t_tid;
149 
150 	prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
151 			TASK_UNINTERRUPTIBLE);
152 	need_to_start = !tid_geq(journal->j_commit_request, tid);
153 	read_unlock(&journal->j_state_lock);
154 	if (need_to_start)
155 		jbd2_log_start_commit(journal, tid);
156 	jbd2_might_wait_for_commit(journal);
157 	schedule();
158 	finish_wait(&journal->j_wait_transaction_locked, &wait);
159 }
160 
161 /*
162  * Wait until running transaction transitions from T_SWITCH to T_FLUSH
163  * state and new transaction can thus be started. The function releases
164  * j_state_lock.
165  */
166 static void wait_transaction_switching(journal_t *journal)
167 	__releases(journal->j_state_lock)
168 {
169 	DEFINE_WAIT(wait);
170 
171 	if (WARN_ON(!journal->j_running_transaction ||
172 		    journal->j_running_transaction->t_state != T_SWITCH))
173 		return;
174 	prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
175 			TASK_UNINTERRUPTIBLE);
176 	read_unlock(&journal->j_state_lock);
177 	/*
178 	 * We don't call jbd2_might_wait_for_commit() here as there's no
179 	 * waiting for outstanding handles happening anymore in T_SWITCH state
180 	 * and handling of reserved handles actually relies on that for
181 	 * correctness.
182 	 */
183 	schedule();
184 	finish_wait(&journal->j_wait_transaction_locked, &wait);
185 }
186 
187 static void sub_reserved_credits(journal_t *journal, int blocks)
188 {
189 	atomic_sub(blocks, &journal->j_reserved_credits);
190 	wake_up(&journal->j_wait_reserved);
191 }
192 
193 /*
194  * Wait until we can add credits for handle to the running transaction.  Called
195  * with j_state_lock held for reading. Returns 0 if handle joined the running
196  * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
197  * caller must retry.
198  */
199 static int add_transaction_credits(journal_t *journal, int blocks,
200 				   int rsv_blocks)
201 {
202 	transaction_t *t = journal->j_running_transaction;
203 	int needed;
204 	int total = blocks + rsv_blocks;
205 
206 	/*
207 	 * If the current transaction is locked down for commit, wait
208 	 * for the lock to be released.
209 	 */
210 	if (t->t_state != T_RUNNING) {
211 		WARN_ON_ONCE(t->t_state >= T_FLUSH);
212 		wait_transaction_locked(journal);
213 		return 1;
214 	}
215 
216 	/*
217 	 * If there is not enough space left in the log to write all
218 	 * potential buffers requested by this operation, we need to
219 	 * stall pending a log checkpoint to free some more log space.
220 	 */
221 	needed = atomic_add_return(total, &t->t_outstanding_credits);
222 	if (needed > journal->j_max_transaction_buffers) {
223 		/*
224 		 * If the current transaction is already too large,
225 		 * then start to commit it: we can then go back and
226 		 * attach this handle to a new transaction.
227 		 */
228 		atomic_sub(total, &t->t_outstanding_credits);
229 
230 		/*
231 		 * Is the number of reserved credits in the current transaction too
232 		 * big to fit this handle? Wait until reserved credits are freed.
233 		 */
234 		if (atomic_read(&journal->j_reserved_credits) + total >
235 		    journal->j_max_transaction_buffers) {
236 			read_unlock(&journal->j_state_lock);
237 			jbd2_might_wait_for_commit(journal);
238 			wait_event(journal->j_wait_reserved,
239 				   atomic_read(&journal->j_reserved_credits) + total <=
240 				   journal->j_max_transaction_buffers);
241 			return 1;
242 		}
243 
244 		wait_transaction_locked(journal);
245 		return 1;
246 	}
247 
248 	/*
249 	 * The commit code assumes that it can get enough log space
250 	 * without forcing a checkpoint.  This is *critical* for
251 	 * correctness: a checkpoint of a buffer which is also
252 	 * associated with a committing transaction creates a deadlock,
253 	 * so commit simply cannot force through checkpoints.
254 	 *
255 	 * We must therefore ensure the necessary space in the journal
256 	 * *before* starting to dirty potentially checkpointed buffers
257 	 * in the new transaction.
258 	 */
259 	if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) {
260 		atomic_sub(total, &t->t_outstanding_credits);
261 		read_unlock(&journal->j_state_lock);
262 		jbd2_might_wait_for_commit(journal);
263 		write_lock(&journal->j_state_lock);
264 		if (jbd2_log_space_left(journal) < jbd2_space_needed(journal))
265 			__jbd2_log_wait_for_space(journal);
266 		write_unlock(&journal->j_state_lock);
267 		return 1;
268 	}
269 
270 	/* No reservation? We are done... */
271 	if (!rsv_blocks)
272 		return 0;
273 
274 	needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
275 	/* We allow at most half of a transaction to be reserved */
276 	if (needed > journal->j_max_transaction_buffers / 2) {
277 		sub_reserved_credits(journal, rsv_blocks);
278 		atomic_sub(total, &t->t_outstanding_credits);
279 		read_unlock(&journal->j_state_lock);
280 		jbd2_might_wait_for_commit(journal);
281 		wait_event(journal->j_wait_reserved,
282 			 atomic_read(&journal->j_reserved_credits) + rsv_blocks
283 			 <= journal->j_max_transaction_buffers / 2);
284 		return 1;
285 	}
286 	return 0;
287 }
288 
289 /*
290  * start_this_handle: Given a handle, deal with any locking or stalling
291  * needed to make sure that there is enough journal space for the handle
292  * to begin.  Attach the handle to a transaction and set up the
293  * transaction's buffer credits.
294  */
295 
296 static int start_this_handle(journal_t *journal, handle_t *handle,
297 			     gfp_t gfp_mask)
298 {
299 	transaction_t	*transaction, *new_transaction = NULL;
300 	int		blocks = handle->h_buffer_credits;
301 	int		rsv_blocks = 0;
302 	unsigned long ts = jiffies;
303 
304 	if (handle->h_rsv_handle)
305 		rsv_blocks = handle->h_rsv_handle->h_buffer_credits;
306 
307 	/*
308 	 * Limit the number of reserved credits to 1/2 of maximum transaction
309 	 * size and limit the number of total credits to not exceed maximum
310 	 * transaction size per operation.
311 	 */
312 	if ((rsv_blocks > journal->j_max_transaction_buffers / 2) ||
313 	    (rsv_blocks + blocks > journal->j_max_transaction_buffers)) {
314 		printk(KERN_ERR "JBD2: %s wants too many credits "
315 		       "credits:%d rsv_credits:%d max:%d\n",
316 		       current->comm, blocks, rsv_blocks,
317 		       journal->j_max_transaction_buffers);
318 		WARN_ON(1);
319 		return -ENOSPC;
320 	}
321 
322 alloc_transaction:
323 	if (!journal->j_running_transaction) {
324 		/*
325 		 * If __GFP_FS is not present, then we may be being called from
326 		 * inside the fs writeback layer, so we MUST NOT fail.
327 		 */
328 		if ((gfp_mask & __GFP_FS) == 0)
329 			gfp_mask |= __GFP_NOFAIL;
330 		new_transaction = kmem_cache_zalloc(transaction_cache,
331 						    gfp_mask);
332 		if (!new_transaction)
333 			return -ENOMEM;
334 	}
335 
336 	jbd_debug(3, "New handle %p going live.\n", handle);
337 
338 	/*
339 	 * We need to hold j_state_lock until t_updates has been incremented,
340 	 * for proper journal barrier handling
341 	 */
342 repeat:
343 	read_lock(&journal->j_state_lock);
344 	BUG_ON(journal->j_flags & JBD2_UNMOUNT);
345 	if (is_journal_aborted(journal) ||
346 	    (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
347 		read_unlock(&journal->j_state_lock);
348 		jbd2_journal_free_transaction(new_transaction);
349 		return -EROFS;
350 	}
351 
352 	/*
353 	 * Wait on the journal's transaction barrier if necessary. Specifically
354 	 * we allow reserved handles to proceed because otherwise commit could
355 	 * deadlock on page writeback not being able to complete.
356 	 */
357 	if (!handle->h_reserved && journal->j_barrier_count) {
358 		read_unlock(&journal->j_state_lock);
359 		wait_event(journal->j_wait_transaction_locked,
360 				journal->j_barrier_count == 0);
361 		goto repeat;
362 	}
363 
364 	if (!journal->j_running_transaction) {
365 		read_unlock(&journal->j_state_lock);
366 		if (!new_transaction)
367 			goto alloc_transaction;
368 		write_lock(&journal->j_state_lock);
369 		if (!journal->j_running_transaction &&
370 		    (handle->h_reserved || !journal->j_barrier_count)) {
371 			jbd2_get_transaction(journal, new_transaction);
372 			new_transaction = NULL;
373 		}
374 		write_unlock(&journal->j_state_lock);
375 		goto repeat;
376 	}
377 
378 	transaction = journal->j_running_transaction;
379 
380 	if (!handle->h_reserved) {
381 		/* We may have dropped j_state_lock - restart in that case */
382 		if (add_transaction_credits(journal, blocks, rsv_blocks))
383 			goto repeat;
384 	} else {
385 		/*
386 		 * We have handle reserved so we are allowed to join T_LOCKED
387 		 * transaction and we don't have to check for transaction size
388 		 * and journal space. But we still have to wait while running
389 		 * transaction is being switched to a committing one as it
390 		 * won't wait for any handles anymore.
391 		 */
392 		if (transaction->t_state == T_SWITCH) {
393 			wait_transaction_switching(journal);
394 			goto repeat;
395 		}
396 		sub_reserved_credits(journal, blocks);
397 		handle->h_reserved = 0;
398 	}
399 
400 	/* OK, account for the buffers that this operation expects to
401 	 * use and add the handle to the running transaction.
402 	 */
403 	update_t_max_wait(transaction, ts);
404 	handle->h_transaction = transaction;
405 	handle->h_requested_credits = blocks;
406 	handle->h_start_jiffies = jiffies;
407 	atomic_inc(&transaction->t_updates);
408 	atomic_inc(&transaction->t_handle_count);
409 	jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
410 		  handle, blocks,
411 		  atomic_read(&transaction->t_outstanding_credits),
412 		  jbd2_log_space_left(journal));
413 	read_unlock(&journal->j_state_lock);
414 	current->journal_info = handle;
415 
416 	rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_);
417 	jbd2_journal_free_transaction(new_transaction);
418 	/*
419 	 * Ensure that no allocations done while the transaction is open are
420 	 * going to recurse back to the fs layer.
421 	 */
422 	handle->saved_alloc_context = memalloc_nofs_save();
423 	return 0;
424 }
425 
426 /* Allocate a new handle.  This should probably be in a slab... */
427 static handle_t *new_handle(int nblocks)
428 {
429 	handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
430 	if (!handle)
431 		return NULL;
432 	handle->h_buffer_credits = nblocks;
433 	handle->h_ref = 1;
434 
435 	return handle;
436 }
437 
438 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
439 			      gfp_t gfp_mask, unsigned int type,
440 			      unsigned int line_no)
441 {
442 	handle_t *handle = journal_current_handle();
443 	int err;
444 
445 	if (!journal)
446 		return ERR_PTR(-EROFS);
447 
448 	if (handle) {
449 		J_ASSERT(handle->h_transaction->t_journal == journal);
450 		handle->h_ref++;
451 		return handle;
452 	}
453 
454 	handle = new_handle(nblocks);
455 	if (!handle)
456 		return ERR_PTR(-ENOMEM);
457 	if (rsv_blocks) {
458 		handle_t *rsv_handle;
459 
460 		rsv_handle = new_handle(rsv_blocks);
461 		if (!rsv_handle) {
462 			jbd2_free_handle(handle);
463 			return ERR_PTR(-ENOMEM);
464 		}
465 		rsv_handle->h_reserved = 1;
466 		rsv_handle->h_journal = journal;
467 		handle->h_rsv_handle = rsv_handle;
468 	}
469 
470 	err = start_this_handle(journal, handle, gfp_mask);
471 	if (err < 0) {
472 		if (handle->h_rsv_handle)
473 			jbd2_free_handle(handle->h_rsv_handle);
474 		jbd2_free_handle(handle);
475 		return ERR_PTR(err);
476 	}
477 	handle->h_type = type;
478 	handle->h_line_no = line_no;
479 	trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
480 				handle->h_transaction->t_tid, type,
481 				line_no, nblocks);
482 
483 	return handle;
484 }
485 EXPORT_SYMBOL(jbd2__journal_start);
486 
487 
488 /**
489  * handle_t *jbd2_journal_start() - Obtain a new handle.
490  * @journal: Journal to start transaction on.
491  * @nblocks: number of block buffer we might modify
492  *
493  * We make sure that the transaction can guarantee at least nblocks of
494  * modified buffers in the log.  We block until the log can guarantee
495  * that much space. Additionally, if rsv_blocks > 0, we also create another
496  * handle with rsv_blocks reserved blocks in the journal. This handle is
497  * is stored in h_rsv_handle. It is not attached to any particular transaction
498  * and thus doesn't block transaction commit. If the caller uses this reserved
499  * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
500  * on the parent handle will dispose the reserved one. Reserved handle has to
501  * be converted to a normal handle using jbd2_journal_start_reserved() before
502  * it can be used.
503  *
504  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
505  * on failure.
506  */
507 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
508 {
509 	return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0);
510 }
511 EXPORT_SYMBOL(jbd2_journal_start);
512 
513 void jbd2_journal_free_reserved(handle_t *handle)
514 {
515 	journal_t *journal = handle->h_journal;
516 
517 	WARN_ON(!handle->h_reserved);
518 	sub_reserved_credits(journal, handle->h_buffer_credits);
519 	jbd2_free_handle(handle);
520 }
521 EXPORT_SYMBOL(jbd2_journal_free_reserved);
522 
523 /**
524  * int jbd2_journal_start_reserved() - start reserved handle
525  * @handle: handle to start
526  * @type: for handle statistics
527  * @line_no: for handle statistics
528  *
529  * Start handle that has been previously reserved with jbd2_journal_reserve().
530  * This attaches @handle to the running transaction (or creates one if there's
531  * not transaction running). Unlike jbd2_journal_start() this function cannot
532  * block on journal commit, checkpointing, or similar stuff. It can block on
533  * memory allocation or frozen journal though.
534  *
535  * Return 0 on success, non-zero on error - handle is freed in that case.
536  */
537 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
538 				unsigned int line_no)
539 {
540 	journal_t *journal = handle->h_journal;
541 	int ret = -EIO;
542 
543 	if (WARN_ON(!handle->h_reserved)) {
544 		/* Someone passed in normal handle? Just stop it. */
545 		jbd2_journal_stop(handle);
546 		return ret;
547 	}
548 	/*
549 	 * Usefulness of mixing of reserved and unreserved handles is
550 	 * questionable. So far nobody seems to need it so just error out.
551 	 */
552 	if (WARN_ON(current->journal_info)) {
553 		jbd2_journal_free_reserved(handle);
554 		return ret;
555 	}
556 
557 	handle->h_journal = NULL;
558 	/*
559 	 * GFP_NOFS is here because callers are likely from writeback or
560 	 * similarly constrained call sites
561 	 */
562 	ret = start_this_handle(journal, handle, GFP_NOFS);
563 	if (ret < 0) {
564 		handle->h_journal = journal;
565 		jbd2_journal_free_reserved(handle);
566 		return ret;
567 	}
568 	handle->h_type = type;
569 	handle->h_line_no = line_no;
570 	return 0;
571 }
572 EXPORT_SYMBOL(jbd2_journal_start_reserved);
573 
574 /**
575  * int jbd2_journal_extend() - extend buffer credits.
576  * @handle:  handle to 'extend'
577  * @nblocks: nr blocks to try to extend by.
578  *
579  * Some transactions, such as large extends and truncates, can be done
580  * atomically all at once or in several stages.  The operation requests
581  * a credit for a number of buffer modifications in advance, but can
582  * extend its credit if it needs more.
583  *
584  * jbd2_journal_extend tries to give the running handle more buffer credits.
585  * It does not guarantee that allocation - this is a best-effort only.
586  * The calling process MUST be able to deal cleanly with a failure to
587  * extend here.
588  *
589  * Return 0 on success, non-zero on failure.
590  *
591  * return code < 0 implies an error
592  * return code > 0 implies normal transaction-full status.
593  */
594 int jbd2_journal_extend(handle_t *handle, int nblocks)
595 {
596 	transaction_t *transaction = handle->h_transaction;
597 	journal_t *journal;
598 	int result;
599 	int wanted;
600 
601 	if (is_handle_aborted(handle))
602 		return -EROFS;
603 	journal = transaction->t_journal;
604 
605 	result = 1;
606 
607 	read_lock(&journal->j_state_lock);
608 
609 	/* Don't extend a locked-down transaction! */
610 	if (transaction->t_state != T_RUNNING) {
611 		jbd_debug(3, "denied handle %p %d blocks: "
612 			  "transaction not running\n", handle, nblocks);
613 		goto error_out;
614 	}
615 
616 	spin_lock(&transaction->t_handle_lock);
617 	wanted = atomic_add_return(nblocks,
618 				   &transaction->t_outstanding_credits);
619 
620 	if (wanted > journal->j_max_transaction_buffers) {
621 		jbd_debug(3, "denied handle %p %d blocks: "
622 			  "transaction too large\n", handle, nblocks);
623 		atomic_sub(nblocks, &transaction->t_outstanding_credits);
624 		goto unlock;
625 	}
626 
627 	if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) >
628 	    jbd2_log_space_left(journal)) {
629 		jbd_debug(3, "denied handle %p %d blocks: "
630 			  "insufficient log space\n", handle, nblocks);
631 		atomic_sub(nblocks, &transaction->t_outstanding_credits);
632 		goto unlock;
633 	}
634 
635 	trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
636 				 transaction->t_tid,
637 				 handle->h_type, handle->h_line_no,
638 				 handle->h_buffer_credits,
639 				 nblocks);
640 
641 	handle->h_buffer_credits += nblocks;
642 	handle->h_requested_credits += nblocks;
643 	result = 0;
644 
645 	jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
646 unlock:
647 	spin_unlock(&transaction->t_handle_lock);
648 error_out:
649 	read_unlock(&journal->j_state_lock);
650 	return result;
651 }
652 
653 
654 /**
655  * int jbd2_journal_restart() - restart a handle .
656  * @handle:  handle to restart
657  * @nblocks: nr credits requested
658  * @gfp_mask: memory allocation flags (for start_this_handle)
659  *
660  * Restart a handle for a multi-transaction filesystem
661  * operation.
662  *
663  * If the jbd2_journal_extend() call above fails to grant new buffer credits
664  * to a running handle, a call to jbd2_journal_restart will commit the
665  * handle's transaction so far and reattach the handle to a new
666  * transaction capable of guaranteeing the requested number of
667  * credits. We preserve reserved handle if there's any attached to the
668  * passed in handle.
669  */
670 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
671 {
672 	transaction_t *transaction = handle->h_transaction;
673 	journal_t *journal;
674 	tid_t		tid;
675 	int		need_to_start, ret;
676 
677 	/* If we've had an abort of any type, don't even think about
678 	 * actually doing the restart! */
679 	if (is_handle_aborted(handle))
680 		return 0;
681 	journal = transaction->t_journal;
682 
683 	/*
684 	 * First unlink the handle from its current transaction, and start the
685 	 * commit on that.
686 	 */
687 	J_ASSERT(atomic_read(&transaction->t_updates) > 0);
688 	J_ASSERT(journal_current_handle() == handle);
689 
690 	read_lock(&journal->j_state_lock);
691 	spin_lock(&transaction->t_handle_lock);
692 	atomic_sub(handle->h_buffer_credits,
693 		   &transaction->t_outstanding_credits);
694 	if (handle->h_rsv_handle) {
695 		sub_reserved_credits(journal,
696 				     handle->h_rsv_handle->h_buffer_credits);
697 	}
698 	if (atomic_dec_and_test(&transaction->t_updates))
699 		wake_up(&journal->j_wait_updates);
700 	tid = transaction->t_tid;
701 	spin_unlock(&transaction->t_handle_lock);
702 	handle->h_transaction = NULL;
703 	current->journal_info = NULL;
704 
705 	jbd_debug(2, "restarting handle %p\n", handle);
706 	need_to_start = !tid_geq(journal->j_commit_request, tid);
707 	read_unlock(&journal->j_state_lock);
708 	if (need_to_start)
709 		jbd2_log_start_commit(journal, tid);
710 
711 	rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_);
712 	handle->h_buffer_credits = nblocks;
713 	/*
714 	 * Restore the original nofs context because the journal restart
715 	 * is basically the same thing as journal stop and start.
716 	 * start_this_handle will start a new nofs context.
717 	 */
718 	memalloc_nofs_restore(handle->saved_alloc_context);
719 	ret = start_this_handle(journal, handle, gfp_mask);
720 	return ret;
721 }
722 EXPORT_SYMBOL(jbd2__journal_restart);
723 
724 
725 int jbd2_journal_restart(handle_t *handle, int nblocks)
726 {
727 	return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
728 }
729 EXPORT_SYMBOL(jbd2_journal_restart);
730 
731 /**
732  * void jbd2_journal_lock_updates () - establish a transaction barrier.
733  * @journal:  Journal to establish a barrier on.
734  *
735  * This locks out any further updates from being started, and blocks
736  * until all existing updates have completed, returning only once the
737  * journal is in a quiescent state with no updates running.
738  *
739  * The journal lock should not be held on entry.
740  */
741 void jbd2_journal_lock_updates(journal_t *journal)
742 {
743 	DEFINE_WAIT(wait);
744 
745 	jbd2_might_wait_for_commit(journal);
746 
747 	write_lock(&journal->j_state_lock);
748 	++journal->j_barrier_count;
749 
750 	/* Wait until there are no reserved handles */
751 	if (atomic_read(&journal->j_reserved_credits)) {
752 		write_unlock(&journal->j_state_lock);
753 		wait_event(journal->j_wait_reserved,
754 			   atomic_read(&journal->j_reserved_credits) == 0);
755 		write_lock(&journal->j_state_lock);
756 	}
757 
758 	/* Wait until there are no running updates */
759 	while (1) {
760 		transaction_t *transaction = journal->j_running_transaction;
761 
762 		if (!transaction)
763 			break;
764 
765 		spin_lock(&transaction->t_handle_lock);
766 		prepare_to_wait(&journal->j_wait_updates, &wait,
767 				TASK_UNINTERRUPTIBLE);
768 		if (!atomic_read(&transaction->t_updates)) {
769 			spin_unlock(&transaction->t_handle_lock);
770 			finish_wait(&journal->j_wait_updates, &wait);
771 			break;
772 		}
773 		spin_unlock(&transaction->t_handle_lock);
774 		write_unlock(&journal->j_state_lock);
775 		schedule();
776 		finish_wait(&journal->j_wait_updates, &wait);
777 		write_lock(&journal->j_state_lock);
778 	}
779 	write_unlock(&journal->j_state_lock);
780 
781 	/*
782 	 * We have now established a barrier against other normal updates, but
783 	 * we also need to barrier against other jbd2_journal_lock_updates() calls
784 	 * to make sure that we serialise special journal-locked operations
785 	 * too.
786 	 */
787 	mutex_lock(&journal->j_barrier);
788 }
789 
790 /**
791  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
792  * @journal:  Journal to release the barrier on.
793  *
794  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
795  *
796  * Should be called without the journal lock held.
797  */
798 void jbd2_journal_unlock_updates (journal_t *journal)
799 {
800 	J_ASSERT(journal->j_barrier_count != 0);
801 
802 	mutex_unlock(&journal->j_barrier);
803 	write_lock(&journal->j_state_lock);
804 	--journal->j_barrier_count;
805 	write_unlock(&journal->j_state_lock);
806 	wake_up(&journal->j_wait_transaction_locked);
807 }
808 
809 static void warn_dirty_buffer(struct buffer_head *bh)
810 {
811 	printk(KERN_WARNING
812 	       "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). "
813 	       "There's a risk of filesystem corruption in case of system "
814 	       "crash.\n",
815 	       bh->b_bdev, (unsigned long long)bh->b_blocknr);
816 }
817 
818 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
819 static void jbd2_freeze_jh_data(struct journal_head *jh)
820 {
821 	struct page *page;
822 	int offset;
823 	char *source;
824 	struct buffer_head *bh = jh2bh(jh);
825 
826 	J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
827 	page = bh->b_page;
828 	offset = offset_in_page(bh->b_data);
829 	source = kmap_atomic(page);
830 	/* Fire data frozen trigger just before we copy the data */
831 	jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers);
832 	memcpy(jh->b_frozen_data, source + offset, bh->b_size);
833 	kunmap_atomic(source);
834 
835 	/*
836 	 * Now that the frozen data is saved off, we need to store any matching
837 	 * triggers.
838 	 */
839 	jh->b_frozen_triggers = jh->b_triggers;
840 }
841 
842 /*
843  * If the buffer is already part of the current transaction, then there
844  * is nothing we need to do.  If it is already part of a prior
845  * transaction which we are still committing to disk, then we need to
846  * make sure that we do not overwrite the old copy: we do copy-out to
847  * preserve the copy going to disk.  We also account the buffer against
848  * the handle's metadata buffer credits (unless the buffer is already
849  * part of the transaction, that is).
850  *
851  */
852 static int
853 do_get_write_access(handle_t *handle, struct journal_head *jh,
854 			int force_copy)
855 {
856 	struct buffer_head *bh;
857 	transaction_t *transaction = handle->h_transaction;
858 	journal_t *journal;
859 	int error;
860 	char *frozen_buffer = NULL;
861 	unsigned long start_lock, time_lock;
862 
863 	if (is_handle_aborted(handle))
864 		return -EROFS;
865 	journal = transaction->t_journal;
866 
867 	jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
868 
869 	JBUFFER_TRACE(jh, "entry");
870 repeat:
871 	bh = jh2bh(jh);
872 
873 	/* @@@ Need to check for errors here at some point. */
874 
875  	start_lock = jiffies;
876 	lock_buffer(bh);
877 	jbd_lock_bh_state(bh);
878 
879 	/* If it takes too long to lock the buffer, trace it */
880 	time_lock = jbd2_time_diff(start_lock, jiffies);
881 	if (time_lock > HZ/10)
882 		trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
883 			jiffies_to_msecs(time_lock));
884 
885 	/* We now hold the buffer lock so it is safe to query the buffer
886 	 * state.  Is the buffer dirty?
887 	 *
888 	 * If so, there are two possibilities.  The buffer may be
889 	 * non-journaled, and undergoing a quite legitimate writeback.
890 	 * Otherwise, it is journaled, and we don't expect dirty buffers
891 	 * in that state (the buffers should be marked JBD_Dirty
892 	 * instead.)  So either the IO is being done under our own
893 	 * control and this is a bug, or it's a third party IO such as
894 	 * dump(8) (which may leave the buffer scheduled for read ---
895 	 * ie. locked but not dirty) or tune2fs (which may actually have
896 	 * the buffer dirtied, ugh.)  */
897 
898 	if (buffer_dirty(bh)) {
899 		/*
900 		 * First question: is this buffer already part of the current
901 		 * transaction or the existing committing transaction?
902 		 */
903 		if (jh->b_transaction) {
904 			J_ASSERT_JH(jh,
905 				jh->b_transaction == transaction ||
906 				jh->b_transaction ==
907 					journal->j_committing_transaction);
908 			if (jh->b_next_transaction)
909 				J_ASSERT_JH(jh, jh->b_next_transaction ==
910 							transaction);
911 			warn_dirty_buffer(bh);
912 		}
913 		/*
914 		 * In any case we need to clean the dirty flag and we must
915 		 * do it under the buffer lock to be sure we don't race
916 		 * with running write-out.
917 		 */
918 		JBUFFER_TRACE(jh, "Journalling dirty buffer");
919 		clear_buffer_dirty(bh);
920 		set_buffer_jbddirty(bh);
921 	}
922 
923 	unlock_buffer(bh);
924 
925 	error = -EROFS;
926 	if (is_handle_aborted(handle)) {
927 		jbd_unlock_bh_state(bh);
928 		goto out;
929 	}
930 	error = 0;
931 
932 	/*
933 	 * The buffer is already part of this transaction if b_transaction or
934 	 * b_next_transaction points to it
935 	 */
936 	if (jh->b_transaction == transaction ||
937 	    jh->b_next_transaction == transaction)
938 		goto done;
939 
940 	/*
941 	 * this is the first time this transaction is touching this buffer,
942 	 * reset the modified flag
943 	 */
944 	jh->b_modified = 0;
945 
946 	/*
947 	 * If the buffer is not journaled right now, we need to make sure it
948 	 * doesn't get written to disk before the caller actually commits the
949 	 * new data
950 	 */
951 	if (!jh->b_transaction) {
952 		JBUFFER_TRACE(jh, "no transaction");
953 		J_ASSERT_JH(jh, !jh->b_next_transaction);
954 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
955 		/*
956 		 * Make sure all stores to jh (b_modified, b_frozen_data) are
957 		 * visible before attaching it to the running transaction.
958 		 * Paired with barrier in jbd2_write_access_granted()
959 		 */
960 		smp_wmb();
961 		spin_lock(&journal->j_list_lock);
962 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
963 		spin_unlock(&journal->j_list_lock);
964 		goto done;
965 	}
966 	/*
967 	 * If there is already a copy-out version of this buffer, then we don't
968 	 * need to make another one
969 	 */
970 	if (jh->b_frozen_data) {
971 		JBUFFER_TRACE(jh, "has frozen data");
972 		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
973 		goto attach_next;
974 	}
975 
976 	JBUFFER_TRACE(jh, "owned by older transaction");
977 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
978 	J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
979 
980 	/*
981 	 * There is one case we have to be very careful about.  If the
982 	 * committing transaction is currently writing this buffer out to disk
983 	 * and has NOT made a copy-out, then we cannot modify the buffer
984 	 * contents at all right now.  The essence of copy-out is that it is
985 	 * the extra copy, not the primary copy, which gets journaled.  If the
986 	 * primary copy is already going to disk then we cannot do copy-out
987 	 * here.
988 	 */
989 	if (buffer_shadow(bh)) {
990 		JBUFFER_TRACE(jh, "on shadow: sleep");
991 		jbd_unlock_bh_state(bh);
992 		wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
993 		goto repeat;
994 	}
995 
996 	/*
997 	 * Only do the copy if the currently-owning transaction still needs it.
998 	 * If buffer isn't on BJ_Metadata list, the committing transaction is
999 	 * past that stage (here we use the fact that BH_Shadow is set under
1000 	 * bh_state lock together with refiling to BJ_Shadow list and at this
1001 	 * point we know the buffer doesn't have BH_Shadow set).
1002 	 *
1003 	 * Subtle point, though: if this is a get_undo_access, then we will be
1004 	 * relying on the frozen_data to contain the new value of the
1005 	 * committed_data record after the transaction, so we HAVE to force the
1006 	 * frozen_data copy in that case.
1007 	 */
1008 	if (jh->b_jlist == BJ_Metadata || force_copy) {
1009 		JBUFFER_TRACE(jh, "generate frozen data");
1010 		if (!frozen_buffer) {
1011 			JBUFFER_TRACE(jh, "allocate memory for buffer");
1012 			jbd_unlock_bh_state(bh);
1013 			frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size,
1014 						   GFP_NOFS | __GFP_NOFAIL);
1015 			goto repeat;
1016 		}
1017 		jh->b_frozen_data = frozen_buffer;
1018 		frozen_buffer = NULL;
1019 		jbd2_freeze_jh_data(jh);
1020 	}
1021 attach_next:
1022 	/*
1023 	 * Make sure all stores to jh (b_modified, b_frozen_data) are visible
1024 	 * before attaching it to the running transaction. Paired with barrier
1025 	 * in jbd2_write_access_granted()
1026 	 */
1027 	smp_wmb();
1028 	jh->b_next_transaction = transaction;
1029 
1030 done:
1031 	jbd_unlock_bh_state(bh);
1032 
1033 	/*
1034 	 * If we are about to journal a buffer, then any revoke pending on it is
1035 	 * no longer valid
1036 	 */
1037 	jbd2_journal_cancel_revoke(handle, jh);
1038 
1039 out:
1040 	if (unlikely(frozen_buffer))	/* It's usually NULL */
1041 		jbd2_free(frozen_buffer, bh->b_size);
1042 
1043 	JBUFFER_TRACE(jh, "exit");
1044 	return error;
1045 }
1046 
1047 /* Fast check whether buffer is already attached to the required transaction */
1048 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1049 							bool undo)
1050 {
1051 	struct journal_head *jh;
1052 	bool ret = false;
1053 
1054 	/* Dirty buffers require special handling... */
1055 	if (buffer_dirty(bh))
1056 		return false;
1057 
1058 	/*
1059 	 * RCU protects us from dereferencing freed pages. So the checks we do
1060 	 * are guaranteed not to oops. However the jh slab object can get freed
1061 	 * & reallocated while we work with it. So we have to be careful. When
1062 	 * we see jh attached to the running transaction, we know it must stay
1063 	 * so until the transaction is committed. Thus jh won't be freed and
1064 	 * will be attached to the same bh while we run.  However it can
1065 	 * happen jh gets freed, reallocated, and attached to the transaction
1066 	 * just after we get pointer to it from bh. So we have to be careful
1067 	 * and recheck jh still belongs to our bh before we return success.
1068 	 */
1069 	rcu_read_lock();
1070 	if (!buffer_jbd(bh))
1071 		goto out;
1072 	/* This should be bh2jh() but that doesn't work with inline functions */
1073 	jh = READ_ONCE(bh->b_private);
1074 	if (!jh)
1075 		goto out;
1076 	/* For undo access buffer must have data copied */
1077 	if (undo && !jh->b_committed_data)
1078 		goto out;
1079 	if (jh->b_transaction != handle->h_transaction &&
1080 	    jh->b_next_transaction != handle->h_transaction)
1081 		goto out;
1082 	/*
1083 	 * There are two reasons for the barrier here:
1084 	 * 1) Make sure to fetch b_bh after we did previous checks so that we
1085 	 * detect when jh went through free, realloc, attach to transaction
1086 	 * while we were checking. Paired with implicit barrier in that path.
1087 	 * 2) So that access to bh done after jbd2_write_access_granted()
1088 	 * doesn't get reordered and see inconsistent state of concurrent
1089 	 * do_get_write_access().
1090 	 */
1091 	smp_mb();
1092 	if (unlikely(jh->b_bh != bh))
1093 		goto out;
1094 	ret = true;
1095 out:
1096 	rcu_read_unlock();
1097 	return ret;
1098 }
1099 
1100 /**
1101  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
1102  * @handle: transaction to add buffer modifications to
1103  * @bh:     bh to be used for metadata writes
1104  *
1105  * Returns: error code or 0 on success.
1106  *
1107  * In full data journalling mode the buffer may be of type BJ_AsyncData,
1108  * because we're ``write()ing`` a buffer which is also part of a shared mapping.
1109  */
1110 
1111 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1112 {
1113 	struct journal_head *jh;
1114 	int rc;
1115 
1116 	if (jbd2_write_access_granted(handle, bh, false))
1117 		return 0;
1118 
1119 	jh = jbd2_journal_add_journal_head(bh);
1120 	/* We do not want to get caught playing with fields which the
1121 	 * log thread also manipulates.  Make sure that the buffer
1122 	 * completes any outstanding IO before proceeding. */
1123 	rc = do_get_write_access(handle, jh, 0);
1124 	jbd2_journal_put_journal_head(jh);
1125 	return rc;
1126 }
1127 
1128 
1129 /*
1130  * When the user wants to journal a newly created buffer_head
1131  * (ie. getblk() returned a new buffer and we are going to populate it
1132  * manually rather than reading off disk), then we need to keep the
1133  * buffer_head locked until it has been completely filled with new
1134  * data.  In this case, we should be able to make the assertion that
1135  * the bh is not already part of an existing transaction.
1136  *
1137  * The buffer should already be locked by the caller by this point.
1138  * There is no lock ranking violation: it was a newly created,
1139  * unlocked buffer beforehand. */
1140 
1141 /**
1142  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
1143  * @handle: transaction to new buffer to
1144  * @bh: new buffer.
1145  *
1146  * Call this if you create a new bh.
1147  */
1148 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1149 {
1150 	transaction_t *transaction = handle->h_transaction;
1151 	journal_t *journal;
1152 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1153 	int err;
1154 
1155 	jbd_debug(5, "journal_head %p\n", jh);
1156 	err = -EROFS;
1157 	if (is_handle_aborted(handle))
1158 		goto out;
1159 	journal = transaction->t_journal;
1160 	err = 0;
1161 
1162 	JBUFFER_TRACE(jh, "entry");
1163 	/*
1164 	 * The buffer may already belong to this transaction due to pre-zeroing
1165 	 * in the filesystem's new_block code.  It may also be on the previous,
1166 	 * committing transaction's lists, but it HAS to be in Forget state in
1167 	 * that case: the transaction must have deleted the buffer for it to be
1168 	 * reused here.
1169 	 */
1170 	jbd_lock_bh_state(bh);
1171 	J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1172 		jh->b_transaction == NULL ||
1173 		(jh->b_transaction == journal->j_committing_transaction &&
1174 			  jh->b_jlist == BJ_Forget)));
1175 
1176 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1177 	J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1178 
1179 	if (jh->b_transaction == NULL) {
1180 		/*
1181 		 * Previous jbd2_journal_forget() could have left the buffer
1182 		 * with jbddirty bit set because it was being committed. When
1183 		 * the commit finished, we've filed the buffer for
1184 		 * checkpointing and marked it dirty. Now we are reallocating
1185 		 * the buffer so the transaction freeing it must have
1186 		 * committed and so it's safe to clear the dirty bit.
1187 		 */
1188 		clear_buffer_dirty(jh2bh(jh));
1189 		/* first access by this transaction */
1190 		jh->b_modified = 0;
1191 
1192 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
1193 		spin_lock(&journal->j_list_lock);
1194 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1195 		spin_unlock(&journal->j_list_lock);
1196 	} else if (jh->b_transaction == journal->j_committing_transaction) {
1197 		/* first access by this transaction */
1198 		jh->b_modified = 0;
1199 
1200 		JBUFFER_TRACE(jh, "set next transaction");
1201 		spin_lock(&journal->j_list_lock);
1202 		jh->b_next_transaction = transaction;
1203 		spin_unlock(&journal->j_list_lock);
1204 	}
1205 	jbd_unlock_bh_state(bh);
1206 
1207 	/*
1208 	 * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1209 	 * blocks which contain freed but then revoked metadata.  We need
1210 	 * to cancel the revoke in case we end up freeing it yet again
1211 	 * and the reallocating as data - this would cause a second revoke,
1212 	 * which hits an assertion error.
1213 	 */
1214 	JBUFFER_TRACE(jh, "cancelling revoke");
1215 	jbd2_journal_cancel_revoke(handle, jh);
1216 out:
1217 	jbd2_journal_put_journal_head(jh);
1218 	return err;
1219 }
1220 
1221 /**
1222  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1223  *     non-rewindable consequences
1224  * @handle: transaction
1225  * @bh: buffer to undo
1226  *
1227  * Sometimes there is a need to distinguish between metadata which has
1228  * been committed to disk and that which has not.  The ext3fs code uses
1229  * this for freeing and allocating space, we have to make sure that we
1230  * do not reuse freed space until the deallocation has been committed,
1231  * since if we overwrote that space we would make the delete
1232  * un-rewindable in case of a crash.
1233  *
1234  * To deal with that, jbd2_journal_get_undo_access requests write access to a
1235  * buffer for parts of non-rewindable operations such as delete
1236  * operations on the bitmaps.  The journaling code must keep a copy of
1237  * the buffer's contents prior to the undo_access call until such time
1238  * as we know that the buffer has definitely been committed to disk.
1239  *
1240  * We never need to know which transaction the committed data is part
1241  * of, buffers touched here are guaranteed to be dirtied later and so
1242  * will be committed to a new transaction in due course, at which point
1243  * we can discard the old committed data pointer.
1244  *
1245  * Returns error number or 0 on success.
1246  */
1247 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1248 {
1249 	int err;
1250 	struct journal_head *jh;
1251 	char *committed_data = NULL;
1252 
1253 	if (jbd2_write_access_granted(handle, bh, true))
1254 		return 0;
1255 
1256 	jh = jbd2_journal_add_journal_head(bh);
1257 	JBUFFER_TRACE(jh, "entry");
1258 
1259 	/*
1260 	 * Do this first --- it can drop the journal lock, so we want to
1261 	 * make sure that obtaining the committed_data is done
1262 	 * atomically wrt. completion of any outstanding commits.
1263 	 */
1264 	err = do_get_write_access(handle, jh, 1);
1265 	if (err)
1266 		goto out;
1267 
1268 repeat:
1269 	if (!jh->b_committed_data)
1270 		committed_data = jbd2_alloc(jh2bh(jh)->b_size,
1271 					    GFP_NOFS|__GFP_NOFAIL);
1272 
1273 	jbd_lock_bh_state(bh);
1274 	if (!jh->b_committed_data) {
1275 		/* Copy out the current buffer contents into the
1276 		 * preserved, committed copy. */
1277 		JBUFFER_TRACE(jh, "generate b_committed data");
1278 		if (!committed_data) {
1279 			jbd_unlock_bh_state(bh);
1280 			goto repeat;
1281 		}
1282 
1283 		jh->b_committed_data = committed_data;
1284 		committed_data = NULL;
1285 		memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1286 	}
1287 	jbd_unlock_bh_state(bh);
1288 out:
1289 	jbd2_journal_put_journal_head(jh);
1290 	if (unlikely(committed_data))
1291 		jbd2_free(committed_data, bh->b_size);
1292 	return err;
1293 }
1294 
1295 /**
1296  * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1297  * @bh: buffer to trigger on
1298  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1299  *
1300  * Set any triggers on this journal_head.  This is always safe, because
1301  * triggers for a committing buffer will be saved off, and triggers for
1302  * a running transaction will match the buffer in that transaction.
1303  *
1304  * Call with NULL to clear the triggers.
1305  */
1306 void jbd2_journal_set_triggers(struct buffer_head *bh,
1307 			       struct jbd2_buffer_trigger_type *type)
1308 {
1309 	struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1310 
1311 	if (WARN_ON(!jh))
1312 		return;
1313 	jh->b_triggers = type;
1314 	jbd2_journal_put_journal_head(jh);
1315 }
1316 
1317 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1318 				struct jbd2_buffer_trigger_type *triggers)
1319 {
1320 	struct buffer_head *bh = jh2bh(jh);
1321 
1322 	if (!triggers || !triggers->t_frozen)
1323 		return;
1324 
1325 	triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1326 }
1327 
1328 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1329 			       struct jbd2_buffer_trigger_type *triggers)
1330 {
1331 	if (!triggers || !triggers->t_abort)
1332 		return;
1333 
1334 	triggers->t_abort(triggers, jh2bh(jh));
1335 }
1336 
1337 /**
1338  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1339  * @handle: transaction to add buffer to.
1340  * @bh: buffer to mark
1341  *
1342  * mark dirty metadata which needs to be journaled as part of the current
1343  * transaction.
1344  *
1345  * The buffer must have previously had jbd2_journal_get_write_access()
1346  * called so that it has a valid journal_head attached to the buffer
1347  * head.
1348  *
1349  * The buffer is placed on the transaction's metadata list and is marked
1350  * as belonging to the transaction.
1351  *
1352  * Returns error number or 0 on success.
1353  *
1354  * Special care needs to be taken if the buffer already belongs to the
1355  * current committing transaction (in which case we should have frozen
1356  * data present for that commit).  In that case, we don't relink the
1357  * buffer: that only gets done when the old transaction finally
1358  * completes its commit.
1359  */
1360 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1361 {
1362 	transaction_t *transaction = handle->h_transaction;
1363 	journal_t *journal;
1364 	struct journal_head *jh;
1365 	int ret = 0;
1366 
1367 	if (is_handle_aborted(handle))
1368 		return -EROFS;
1369 	if (!buffer_jbd(bh))
1370 		return -EUCLEAN;
1371 
1372 	/*
1373 	 * We don't grab jh reference here since the buffer must be part
1374 	 * of the running transaction.
1375 	 */
1376 	jh = bh2jh(bh);
1377 	jbd_debug(5, "journal_head %p\n", jh);
1378 	JBUFFER_TRACE(jh, "entry");
1379 
1380 	/*
1381 	 * This and the following assertions are unreliable since we may see jh
1382 	 * in inconsistent state unless we grab bh_state lock. But this is
1383 	 * crucial to catch bugs so let's do a reliable check until the
1384 	 * lockless handling is fully proven.
1385 	 */
1386 	if (jh->b_transaction != transaction &&
1387 	    jh->b_next_transaction != transaction) {
1388 		jbd_lock_bh_state(bh);
1389 		J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1390 				jh->b_next_transaction == transaction);
1391 		jbd_unlock_bh_state(bh);
1392 	}
1393 	if (jh->b_modified == 1) {
1394 		/* If it's in our transaction it must be in BJ_Metadata list. */
1395 		if (jh->b_transaction == transaction &&
1396 		    jh->b_jlist != BJ_Metadata) {
1397 			jbd_lock_bh_state(bh);
1398 			if (jh->b_transaction == transaction &&
1399 			    jh->b_jlist != BJ_Metadata)
1400 				pr_err("JBD2: assertion failure: h_type=%u "
1401 				       "h_line_no=%u block_no=%llu jlist=%u\n",
1402 				       handle->h_type, handle->h_line_no,
1403 				       (unsigned long long) bh->b_blocknr,
1404 				       jh->b_jlist);
1405 			J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1406 					jh->b_jlist == BJ_Metadata);
1407 			jbd_unlock_bh_state(bh);
1408 		}
1409 		goto out;
1410 	}
1411 
1412 	journal = transaction->t_journal;
1413 	jbd_lock_bh_state(bh);
1414 
1415 	if (jh->b_modified == 0) {
1416 		/*
1417 		 * This buffer's got modified and becoming part
1418 		 * of the transaction. This needs to be done
1419 		 * once a transaction -bzzz
1420 		 */
1421 		if (handle->h_buffer_credits <= 0) {
1422 			ret = -ENOSPC;
1423 			goto out_unlock_bh;
1424 		}
1425 		jh->b_modified = 1;
1426 		handle->h_buffer_credits--;
1427 	}
1428 
1429 	/*
1430 	 * fastpath, to avoid expensive locking.  If this buffer is already
1431 	 * on the running transaction's metadata list there is nothing to do.
1432 	 * Nobody can take it off again because there is a handle open.
1433 	 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1434 	 * result in this test being false, so we go in and take the locks.
1435 	 */
1436 	if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1437 		JBUFFER_TRACE(jh, "fastpath");
1438 		if (unlikely(jh->b_transaction !=
1439 			     journal->j_running_transaction)) {
1440 			printk(KERN_ERR "JBD2: %s: "
1441 			       "jh->b_transaction (%llu, %p, %u) != "
1442 			       "journal->j_running_transaction (%p, %u)\n",
1443 			       journal->j_devname,
1444 			       (unsigned long long) bh->b_blocknr,
1445 			       jh->b_transaction,
1446 			       jh->b_transaction ? jh->b_transaction->t_tid : 0,
1447 			       journal->j_running_transaction,
1448 			       journal->j_running_transaction ?
1449 			       journal->j_running_transaction->t_tid : 0);
1450 			ret = -EINVAL;
1451 		}
1452 		goto out_unlock_bh;
1453 	}
1454 
1455 	set_buffer_jbddirty(bh);
1456 
1457 	/*
1458 	 * Metadata already on the current transaction list doesn't
1459 	 * need to be filed.  Metadata on another transaction's list must
1460 	 * be committing, and will be refiled once the commit completes:
1461 	 * leave it alone for now.
1462 	 */
1463 	if (jh->b_transaction != transaction) {
1464 		JBUFFER_TRACE(jh, "already on other transaction");
1465 		if (unlikely(((jh->b_transaction !=
1466 			       journal->j_committing_transaction)) ||
1467 			     (jh->b_next_transaction != transaction))) {
1468 			printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1469 			       "bad jh for block %llu: "
1470 			       "transaction (%p, %u), "
1471 			       "jh->b_transaction (%p, %u), "
1472 			       "jh->b_next_transaction (%p, %u), jlist %u\n",
1473 			       journal->j_devname,
1474 			       (unsigned long long) bh->b_blocknr,
1475 			       transaction, transaction->t_tid,
1476 			       jh->b_transaction,
1477 			       jh->b_transaction ?
1478 			       jh->b_transaction->t_tid : 0,
1479 			       jh->b_next_transaction,
1480 			       jh->b_next_transaction ?
1481 			       jh->b_next_transaction->t_tid : 0,
1482 			       jh->b_jlist);
1483 			WARN_ON(1);
1484 			ret = -EINVAL;
1485 		}
1486 		/* And this case is illegal: we can't reuse another
1487 		 * transaction's data buffer, ever. */
1488 		goto out_unlock_bh;
1489 	}
1490 
1491 	/* That test should have eliminated the following case: */
1492 	J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1493 
1494 	JBUFFER_TRACE(jh, "file as BJ_Metadata");
1495 	spin_lock(&journal->j_list_lock);
1496 	__jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1497 	spin_unlock(&journal->j_list_lock);
1498 out_unlock_bh:
1499 	jbd_unlock_bh_state(bh);
1500 out:
1501 	JBUFFER_TRACE(jh, "exit");
1502 	return ret;
1503 }
1504 
1505 /**
1506  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1507  * @handle: transaction handle
1508  * @bh:     bh to 'forget'
1509  *
1510  * We can only do the bforget if there are no commits pending against the
1511  * buffer.  If the buffer is dirty in the current running transaction we
1512  * can safely unlink it.
1513  *
1514  * bh may not be a journalled buffer at all - it may be a non-JBD
1515  * buffer which came off the hashtable.  Check for this.
1516  *
1517  * Decrements bh->b_count by one.
1518  *
1519  * Allow this call even if the handle has aborted --- it may be part of
1520  * the caller's cleanup after an abort.
1521  */
1522 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1523 {
1524 	transaction_t *transaction = handle->h_transaction;
1525 	journal_t *journal;
1526 	struct journal_head *jh;
1527 	int drop_reserve = 0;
1528 	int err = 0;
1529 	int was_modified = 0;
1530 
1531 	if (is_handle_aborted(handle))
1532 		return -EROFS;
1533 	journal = transaction->t_journal;
1534 
1535 	BUFFER_TRACE(bh, "entry");
1536 
1537 	jbd_lock_bh_state(bh);
1538 
1539 	if (!buffer_jbd(bh))
1540 		goto not_jbd;
1541 	jh = bh2jh(bh);
1542 
1543 	/* Critical error: attempting to delete a bitmap buffer, maybe?
1544 	 * Don't do any jbd operations, and return an error. */
1545 	if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1546 			 "inconsistent data on disk")) {
1547 		err = -EIO;
1548 		goto not_jbd;
1549 	}
1550 
1551 	/* keep track of whether or not this transaction modified us */
1552 	was_modified = jh->b_modified;
1553 
1554 	/*
1555 	 * The buffer's going from the transaction, we must drop
1556 	 * all references -bzzz
1557 	 */
1558 	jh->b_modified = 0;
1559 
1560 	if (jh->b_transaction == transaction) {
1561 		J_ASSERT_JH(jh, !jh->b_frozen_data);
1562 
1563 		/* If we are forgetting a buffer which is already part
1564 		 * of this transaction, then we can just drop it from
1565 		 * the transaction immediately. */
1566 		clear_buffer_dirty(bh);
1567 		clear_buffer_jbddirty(bh);
1568 
1569 		JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1570 
1571 		/*
1572 		 * we only want to drop a reference if this transaction
1573 		 * modified the buffer
1574 		 */
1575 		if (was_modified)
1576 			drop_reserve = 1;
1577 
1578 		/*
1579 		 * We are no longer going to journal this buffer.
1580 		 * However, the commit of this transaction is still
1581 		 * important to the buffer: the delete that we are now
1582 		 * processing might obsolete an old log entry, so by
1583 		 * committing, we can satisfy the buffer's checkpoint.
1584 		 *
1585 		 * So, if we have a checkpoint on the buffer, we should
1586 		 * now refile the buffer on our BJ_Forget list so that
1587 		 * we know to remove the checkpoint after we commit.
1588 		 */
1589 
1590 		spin_lock(&journal->j_list_lock);
1591 		if (jh->b_cp_transaction) {
1592 			__jbd2_journal_temp_unlink_buffer(jh);
1593 			__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1594 		} else {
1595 			__jbd2_journal_unfile_buffer(jh);
1596 			if (!buffer_jbd(bh)) {
1597 				spin_unlock(&journal->j_list_lock);
1598 				goto not_jbd;
1599 			}
1600 		}
1601 		spin_unlock(&journal->j_list_lock);
1602 	} else if (jh->b_transaction) {
1603 		J_ASSERT_JH(jh, (jh->b_transaction ==
1604 				 journal->j_committing_transaction));
1605 		/* However, if the buffer is still owned by a prior
1606 		 * (committing) transaction, we can't drop it yet... */
1607 		JBUFFER_TRACE(jh, "belongs to older transaction");
1608 		/* ... but we CAN drop it from the new transaction through
1609 		 * marking the buffer as freed and set j_next_transaction to
1610 		 * the new transaction, so that not only the commit code
1611 		 * knows it should clear dirty bits when it is done with the
1612 		 * buffer, but also the buffer can be checkpointed only
1613 		 * after the new transaction commits. */
1614 
1615 		set_buffer_freed(bh);
1616 
1617 		if (!jh->b_next_transaction) {
1618 			spin_lock(&journal->j_list_lock);
1619 			jh->b_next_transaction = transaction;
1620 			spin_unlock(&journal->j_list_lock);
1621 		} else {
1622 			J_ASSERT(jh->b_next_transaction == transaction);
1623 
1624 			/*
1625 			 * only drop a reference if this transaction modified
1626 			 * the buffer
1627 			 */
1628 			if (was_modified)
1629 				drop_reserve = 1;
1630 		}
1631 	} else {
1632 		/*
1633 		 * Finally, if the buffer is not belongs to any
1634 		 * transaction, we can just drop it now if it has no
1635 		 * checkpoint.
1636 		 */
1637 		spin_lock(&journal->j_list_lock);
1638 		if (!jh->b_cp_transaction) {
1639 			JBUFFER_TRACE(jh, "belongs to none transaction");
1640 			spin_unlock(&journal->j_list_lock);
1641 			goto not_jbd;
1642 		}
1643 
1644 		/*
1645 		 * Otherwise, if the buffer has been written to disk,
1646 		 * it is safe to remove the checkpoint and drop it.
1647 		 */
1648 		if (!buffer_dirty(bh)) {
1649 			__jbd2_journal_remove_checkpoint(jh);
1650 			spin_unlock(&journal->j_list_lock);
1651 			goto not_jbd;
1652 		}
1653 
1654 		/*
1655 		 * The buffer is still not written to disk, we should
1656 		 * attach this buffer to current transaction so that the
1657 		 * buffer can be checkpointed only after the current
1658 		 * transaction commits.
1659 		 */
1660 		clear_buffer_dirty(bh);
1661 		__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1662 		spin_unlock(&journal->j_list_lock);
1663 	}
1664 
1665 	jbd_unlock_bh_state(bh);
1666 	__brelse(bh);
1667 drop:
1668 	if (drop_reserve) {
1669 		/* no need to reserve log space for this block -bzzz */
1670 		handle->h_buffer_credits++;
1671 	}
1672 	return err;
1673 
1674 not_jbd:
1675 	jbd_unlock_bh_state(bh);
1676 	__bforget(bh);
1677 	goto drop;
1678 }
1679 
1680 /**
1681  * int jbd2_journal_stop() - complete a transaction
1682  * @handle: transaction to complete.
1683  *
1684  * All done for a particular handle.
1685  *
1686  * There is not much action needed here.  We just return any remaining
1687  * buffer credits to the transaction and remove the handle.  The only
1688  * complication is that we need to start a commit operation if the
1689  * filesystem is marked for synchronous update.
1690  *
1691  * jbd2_journal_stop itself will not usually return an error, but it may
1692  * do so in unusual circumstances.  In particular, expect it to
1693  * return -EIO if a jbd2_journal_abort has been executed since the
1694  * transaction began.
1695  */
1696 int jbd2_journal_stop(handle_t *handle)
1697 {
1698 	transaction_t *transaction = handle->h_transaction;
1699 	journal_t *journal;
1700 	int err = 0, wait_for_commit = 0;
1701 	tid_t tid;
1702 	pid_t pid;
1703 
1704 	if (!transaction) {
1705 		/*
1706 		 * Handle is already detached from the transaction so
1707 		 * there is nothing to do other than decrease a refcount,
1708 		 * or free the handle if refcount drops to zero
1709 		 */
1710 		if (--handle->h_ref > 0) {
1711 			jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1712 							 handle->h_ref);
1713 			return err;
1714 		} else {
1715 			if (handle->h_rsv_handle)
1716 				jbd2_free_handle(handle->h_rsv_handle);
1717 			goto free_and_exit;
1718 		}
1719 	}
1720 	journal = transaction->t_journal;
1721 
1722 	J_ASSERT(journal_current_handle() == handle);
1723 
1724 	if (is_handle_aborted(handle))
1725 		err = -EIO;
1726 	else
1727 		J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1728 
1729 	if (--handle->h_ref > 0) {
1730 		jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1731 			  handle->h_ref);
1732 		return err;
1733 	}
1734 
1735 	jbd_debug(4, "Handle %p going down\n", handle);
1736 	trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1737 				transaction->t_tid,
1738 				handle->h_type, handle->h_line_no,
1739 				jiffies - handle->h_start_jiffies,
1740 				handle->h_sync, handle->h_requested_credits,
1741 				(handle->h_requested_credits -
1742 				 handle->h_buffer_credits));
1743 
1744 	/*
1745 	 * Implement synchronous transaction batching.  If the handle
1746 	 * was synchronous, don't force a commit immediately.  Let's
1747 	 * yield and let another thread piggyback onto this
1748 	 * transaction.  Keep doing that while new threads continue to
1749 	 * arrive.  It doesn't cost much - we're about to run a commit
1750 	 * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1751 	 * operations by 30x or more...
1752 	 *
1753 	 * We try and optimize the sleep time against what the
1754 	 * underlying disk can do, instead of having a static sleep
1755 	 * time.  This is useful for the case where our storage is so
1756 	 * fast that it is more optimal to go ahead and force a flush
1757 	 * and wait for the transaction to be committed than it is to
1758 	 * wait for an arbitrary amount of time for new writers to
1759 	 * join the transaction.  We achieve this by measuring how
1760 	 * long it takes to commit a transaction, and compare it with
1761 	 * how long this transaction has been running, and if run time
1762 	 * < commit time then we sleep for the delta and commit.  This
1763 	 * greatly helps super fast disks that would see slowdowns as
1764 	 * more threads started doing fsyncs.
1765 	 *
1766 	 * But don't do this if this process was the most recent one
1767 	 * to perform a synchronous write.  We do this to detect the
1768 	 * case where a single process is doing a stream of sync
1769 	 * writes.  No point in waiting for joiners in that case.
1770 	 *
1771 	 * Setting max_batch_time to 0 disables this completely.
1772 	 */
1773 	pid = current->pid;
1774 	if (handle->h_sync && journal->j_last_sync_writer != pid &&
1775 	    journal->j_max_batch_time) {
1776 		u64 commit_time, trans_time;
1777 
1778 		journal->j_last_sync_writer = pid;
1779 
1780 		read_lock(&journal->j_state_lock);
1781 		commit_time = journal->j_average_commit_time;
1782 		read_unlock(&journal->j_state_lock);
1783 
1784 		trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1785 						   transaction->t_start_time));
1786 
1787 		commit_time = max_t(u64, commit_time,
1788 				    1000*journal->j_min_batch_time);
1789 		commit_time = min_t(u64, commit_time,
1790 				    1000*journal->j_max_batch_time);
1791 
1792 		if (trans_time < commit_time) {
1793 			ktime_t expires = ktime_add_ns(ktime_get(),
1794 						       commit_time);
1795 			set_current_state(TASK_UNINTERRUPTIBLE);
1796 			schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1797 		}
1798 	}
1799 
1800 	if (handle->h_sync)
1801 		transaction->t_synchronous_commit = 1;
1802 	current->journal_info = NULL;
1803 	atomic_sub(handle->h_buffer_credits,
1804 		   &transaction->t_outstanding_credits);
1805 
1806 	/*
1807 	 * If the handle is marked SYNC, we need to set another commit
1808 	 * going!  We also want to force a commit if the current
1809 	 * transaction is occupying too much of the log, or if the
1810 	 * transaction is too old now.
1811 	 */
1812 	if (handle->h_sync ||
1813 	    (atomic_read(&transaction->t_outstanding_credits) >
1814 	     journal->j_max_transaction_buffers) ||
1815 	    time_after_eq(jiffies, transaction->t_expires)) {
1816 		/* Do this even for aborted journals: an abort still
1817 		 * completes the commit thread, it just doesn't write
1818 		 * anything to disk. */
1819 
1820 		jbd_debug(2, "transaction too old, requesting commit for "
1821 					"handle %p\n", handle);
1822 		/* This is non-blocking */
1823 		jbd2_log_start_commit(journal, transaction->t_tid);
1824 
1825 		/*
1826 		 * Special case: JBD2_SYNC synchronous updates require us
1827 		 * to wait for the commit to complete.
1828 		 */
1829 		if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1830 			wait_for_commit = 1;
1831 	}
1832 
1833 	/*
1834 	 * Once we drop t_updates, if it goes to zero the transaction
1835 	 * could start committing on us and eventually disappear.  So
1836 	 * once we do this, we must not dereference transaction
1837 	 * pointer again.
1838 	 */
1839 	tid = transaction->t_tid;
1840 	if (atomic_dec_and_test(&transaction->t_updates)) {
1841 		wake_up(&journal->j_wait_updates);
1842 		if (journal->j_barrier_count)
1843 			wake_up(&journal->j_wait_transaction_locked);
1844 	}
1845 
1846 	rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_);
1847 
1848 	if (wait_for_commit)
1849 		err = jbd2_log_wait_commit(journal, tid);
1850 
1851 	if (handle->h_rsv_handle)
1852 		jbd2_journal_free_reserved(handle->h_rsv_handle);
1853 free_and_exit:
1854 	/*
1855 	 * Scope of the GFP_NOFS context is over here and so we can restore the
1856 	 * original alloc context.
1857 	 */
1858 	memalloc_nofs_restore(handle->saved_alloc_context);
1859 	jbd2_free_handle(handle);
1860 	return err;
1861 }
1862 
1863 /*
1864  *
1865  * List management code snippets: various functions for manipulating the
1866  * transaction buffer lists.
1867  *
1868  */
1869 
1870 /*
1871  * Append a buffer to a transaction list, given the transaction's list head
1872  * pointer.
1873  *
1874  * j_list_lock is held.
1875  *
1876  * jbd_lock_bh_state(jh2bh(jh)) is held.
1877  */
1878 
1879 static inline void
1880 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1881 {
1882 	if (!*list) {
1883 		jh->b_tnext = jh->b_tprev = jh;
1884 		*list = jh;
1885 	} else {
1886 		/* Insert at the tail of the list to preserve order */
1887 		struct journal_head *first = *list, *last = first->b_tprev;
1888 		jh->b_tprev = last;
1889 		jh->b_tnext = first;
1890 		last->b_tnext = first->b_tprev = jh;
1891 	}
1892 }
1893 
1894 /*
1895  * Remove a buffer from a transaction list, given the transaction's list
1896  * head pointer.
1897  *
1898  * Called with j_list_lock held, and the journal may not be locked.
1899  *
1900  * jbd_lock_bh_state(jh2bh(jh)) is held.
1901  */
1902 
1903 static inline void
1904 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1905 {
1906 	if (*list == jh) {
1907 		*list = jh->b_tnext;
1908 		if (*list == jh)
1909 			*list = NULL;
1910 	}
1911 	jh->b_tprev->b_tnext = jh->b_tnext;
1912 	jh->b_tnext->b_tprev = jh->b_tprev;
1913 }
1914 
1915 /*
1916  * Remove a buffer from the appropriate transaction list.
1917  *
1918  * Note that this function can *change* the value of
1919  * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1920  * t_reserved_list.  If the caller is holding onto a copy of one of these
1921  * pointers, it could go bad.  Generally the caller needs to re-read the
1922  * pointer from the transaction_t.
1923  *
1924  * Called under j_list_lock.
1925  */
1926 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1927 {
1928 	struct journal_head **list = NULL;
1929 	transaction_t *transaction;
1930 	struct buffer_head *bh = jh2bh(jh);
1931 
1932 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1933 	transaction = jh->b_transaction;
1934 	if (transaction)
1935 		assert_spin_locked(&transaction->t_journal->j_list_lock);
1936 
1937 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1938 	if (jh->b_jlist != BJ_None)
1939 		J_ASSERT_JH(jh, transaction != NULL);
1940 
1941 	switch (jh->b_jlist) {
1942 	case BJ_None:
1943 		return;
1944 	case BJ_Metadata:
1945 		transaction->t_nr_buffers--;
1946 		J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1947 		list = &transaction->t_buffers;
1948 		break;
1949 	case BJ_Forget:
1950 		list = &transaction->t_forget;
1951 		break;
1952 	case BJ_Shadow:
1953 		list = &transaction->t_shadow_list;
1954 		break;
1955 	case BJ_Reserved:
1956 		list = &transaction->t_reserved_list;
1957 		break;
1958 	}
1959 
1960 	__blist_del_buffer(list, jh);
1961 	jh->b_jlist = BJ_None;
1962 	if (transaction && is_journal_aborted(transaction->t_journal))
1963 		clear_buffer_jbddirty(bh);
1964 	else if (test_clear_buffer_jbddirty(bh))
1965 		mark_buffer_dirty(bh);	/* Expose it to the VM */
1966 }
1967 
1968 /*
1969  * Remove buffer from all transactions.
1970  *
1971  * Called with bh_state lock and j_list_lock
1972  *
1973  * jh and bh may be already freed when this function returns.
1974  */
1975 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1976 {
1977 	__jbd2_journal_temp_unlink_buffer(jh);
1978 	jh->b_transaction = NULL;
1979 	jbd2_journal_put_journal_head(jh);
1980 }
1981 
1982 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1983 {
1984 	struct buffer_head *bh = jh2bh(jh);
1985 
1986 	/* Get reference so that buffer cannot be freed before we unlock it */
1987 	get_bh(bh);
1988 	jbd_lock_bh_state(bh);
1989 	spin_lock(&journal->j_list_lock);
1990 	__jbd2_journal_unfile_buffer(jh);
1991 	spin_unlock(&journal->j_list_lock);
1992 	jbd_unlock_bh_state(bh);
1993 	__brelse(bh);
1994 }
1995 
1996 /*
1997  * Called from jbd2_journal_try_to_free_buffers().
1998  *
1999  * Called under jbd_lock_bh_state(bh)
2000  */
2001 static void
2002 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
2003 {
2004 	struct journal_head *jh;
2005 
2006 	jh = bh2jh(bh);
2007 
2008 	if (buffer_locked(bh) || buffer_dirty(bh))
2009 		goto out;
2010 
2011 	if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
2012 		goto out;
2013 
2014 	spin_lock(&journal->j_list_lock);
2015 	if (jh->b_cp_transaction != NULL) {
2016 		/* written-back checkpointed metadata buffer */
2017 		JBUFFER_TRACE(jh, "remove from checkpoint list");
2018 		__jbd2_journal_remove_checkpoint(jh);
2019 	}
2020 	spin_unlock(&journal->j_list_lock);
2021 out:
2022 	return;
2023 }
2024 
2025 /**
2026  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
2027  * @journal: journal for operation
2028  * @page: to try and free
2029  * @gfp_mask: we use the mask to detect how hard should we try to release
2030  * buffers. If __GFP_DIRECT_RECLAIM and __GFP_FS is set, we wait for commit
2031  * code to release the buffers.
2032  *
2033  *
2034  * For all the buffers on this page,
2035  * if they are fully written out ordered data, move them onto BUF_CLEAN
2036  * so try_to_free_buffers() can reap them.
2037  *
2038  * This function returns non-zero if we wish try_to_free_buffers()
2039  * to be called. We do this if the page is releasable by try_to_free_buffers().
2040  * We also do it if the page has locked or dirty buffers and the caller wants
2041  * us to perform sync or async writeout.
2042  *
2043  * This complicates JBD locking somewhat.  We aren't protected by the
2044  * BKL here.  We wish to remove the buffer from its committing or
2045  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
2046  *
2047  * This may *change* the value of transaction_t->t_datalist, so anyone
2048  * who looks at t_datalist needs to lock against this function.
2049  *
2050  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
2051  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
2052  * will come out of the lock with the buffer dirty, which makes it
2053  * ineligible for release here.
2054  *
2055  * Who else is affected by this?  hmm...  Really the only contender
2056  * is do_get_write_access() - it could be looking at the buffer while
2057  * journal_try_to_free_buffer() is changing its state.  But that
2058  * cannot happen because we never reallocate freed data as metadata
2059  * while the data is part of a transaction.  Yes?
2060  *
2061  * Return 0 on failure, 1 on success
2062  */
2063 int jbd2_journal_try_to_free_buffers(journal_t *journal,
2064 				struct page *page, gfp_t gfp_mask)
2065 {
2066 	struct buffer_head *head;
2067 	struct buffer_head *bh;
2068 	int ret = 0;
2069 
2070 	J_ASSERT(PageLocked(page));
2071 
2072 	head = page_buffers(page);
2073 	bh = head;
2074 	do {
2075 		struct journal_head *jh;
2076 
2077 		/*
2078 		 * We take our own ref against the journal_head here to avoid
2079 		 * having to add tons of locking around each instance of
2080 		 * jbd2_journal_put_journal_head().
2081 		 */
2082 		jh = jbd2_journal_grab_journal_head(bh);
2083 		if (!jh)
2084 			continue;
2085 
2086 		jbd_lock_bh_state(bh);
2087 		__journal_try_to_free_buffer(journal, bh);
2088 		jbd2_journal_put_journal_head(jh);
2089 		jbd_unlock_bh_state(bh);
2090 		if (buffer_jbd(bh))
2091 			goto busy;
2092 	} while ((bh = bh->b_this_page) != head);
2093 
2094 	ret = try_to_free_buffers(page);
2095 
2096 busy:
2097 	return ret;
2098 }
2099 
2100 /*
2101  * This buffer is no longer needed.  If it is on an older transaction's
2102  * checkpoint list we need to record it on this transaction's forget list
2103  * to pin this buffer (and hence its checkpointing transaction) down until
2104  * this transaction commits.  If the buffer isn't on a checkpoint list, we
2105  * release it.
2106  * Returns non-zero if JBD no longer has an interest in the buffer.
2107  *
2108  * Called under j_list_lock.
2109  *
2110  * Called under jbd_lock_bh_state(bh).
2111  */
2112 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2113 {
2114 	int may_free = 1;
2115 	struct buffer_head *bh = jh2bh(jh);
2116 
2117 	if (jh->b_cp_transaction) {
2118 		JBUFFER_TRACE(jh, "on running+cp transaction");
2119 		__jbd2_journal_temp_unlink_buffer(jh);
2120 		/*
2121 		 * We don't want to write the buffer anymore, clear the
2122 		 * bit so that we don't confuse checks in
2123 		 * __journal_file_buffer
2124 		 */
2125 		clear_buffer_dirty(bh);
2126 		__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2127 		may_free = 0;
2128 	} else {
2129 		JBUFFER_TRACE(jh, "on running transaction");
2130 		__jbd2_journal_unfile_buffer(jh);
2131 	}
2132 	return may_free;
2133 }
2134 
2135 /*
2136  * jbd2_journal_invalidatepage
2137  *
2138  * This code is tricky.  It has a number of cases to deal with.
2139  *
2140  * There are two invariants which this code relies on:
2141  *
2142  * i_size must be updated on disk before we start calling invalidatepage on the
2143  * data.
2144  *
2145  *  This is done in ext3 by defining an ext3_setattr method which
2146  *  updates i_size before truncate gets going.  By maintaining this
2147  *  invariant, we can be sure that it is safe to throw away any buffers
2148  *  attached to the current transaction: once the transaction commits,
2149  *  we know that the data will not be needed.
2150  *
2151  *  Note however that we can *not* throw away data belonging to the
2152  *  previous, committing transaction!
2153  *
2154  * Any disk blocks which *are* part of the previous, committing
2155  * transaction (and which therefore cannot be discarded immediately) are
2156  * not going to be reused in the new running transaction
2157  *
2158  *  The bitmap committed_data images guarantee this: any block which is
2159  *  allocated in one transaction and removed in the next will be marked
2160  *  as in-use in the committed_data bitmap, so cannot be reused until
2161  *  the next transaction to delete the block commits.  This means that
2162  *  leaving committing buffers dirty is quite safe: the disk blocks
2163  *  cannot be reallocated to a different file and so buffer aliasing is
2164  *  not possible.
2165  *
2166  *
2167  * The above applies mainly to ordered data mode.  In writeback mode we
2168  * don't make guarantees about the order in which data hits disk --- in
2169  * particular we don't guarantee that new dirty data is flushed before
2170  * transaction commit --- so it is always safe just to discard data
2171  * immediately in that mode.  --sct
2172  */
2173 
2174 /*
2175  * The journal_unmap_buffer helper function returns zero if the buffer
2176  * concerned remains pinned as an anonymous buffer belonging to an older
2177  * transaction.
2178  *
2179  * We're outside-transaction here.  Either or both of j_running_transaction
2180  * and j_committing_transaction may be NULL.
2181  */
2182 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2183 				int partial_page)
2184 {
2185 	transaction_t *transaction;
2186 	struct journal_head *jh;
2187 	int may_free = 1;
2188 
2189 	BUFFER_TRACE(bh, "entry");
2190 
2191 	/*
2192 	 * It is safe to proceed here without the j_list_lock because the
2193 	 * buffers cannot be stolen by try_to_free_buffers as long as we are
2194 	 * holding the page lock. --sct
2195 	 */
2196 
2197 	if (!buffer_jbd(bh))
2198 		goto zap_buffer_unlocked;
2199 
2200 	/* OK, we have data buffer in journaled mode */
2201 	write_lock(&journal->j_state_lock);
2202 	jbd_lock_bh_state(bh);
2203 	spin_lock(&journal->j_list_lock);
2204 
2205 	jh = jbd2_journal_grab_journal_head(bh);
2206 	if (!jh)
2207 		goto zap_buffer_no_jh;
2208 
2209 	/*
2210 	 * We cannot remove the buffer from checkpoint lists until the
2211 	 * transaction adding inode to orphan list (let's call it T)
2212 	 * is committed.  Otherwise if the transaction changing the
2213 	 * buffer would be cleaned from the journal before T is
2214 	 * committed, a crash will cause that the correct contents of
2215 	 * the buffer will be lost.  On the other hand we have to
2216 	 * clear the buffer dirty bit at latest at the moment when the
2217 	 * transaction marking the buffer as freed in the filesystem
2218 	 * structures is committed because from that moment on the
2219 	 * block can be reallocated and used by a different page.
2220 	 * Since the block hasn't been freed yet but the inode has
2221 	 * already been added to orphan list, it is safe for us to add
2222 	 * the buffer to BJ_Forget list of the newest transaction.
2223 	 *
2224 	 * Also we have to clear buffer_mapped flag of a truncated buffer
2225 	 * because the buffer_head may be attached to the page straddling
2226 	 * i_size (can happen only when blocksize < pagesize) and thus the
2227 	 * buffer_head can be reused when the file is extended again. So we end
2228 	 * up keeping around invalidated buffers attached to transactions'
2229 	 * BJ_Forget list just to stop checkpointing code from cleaning up
2230 	 * the transaction this buffer was modified in.
2231 	 */
2232 	transaction = jh->b_transaction;
2233 	if (transaction == NULL) {
2234 		/* First case: not on any transaction.  If it
2235 		 * has no checkpoint link, then we can zap it:
2236 		 * it's a writeback-mode buffer so we don't care
2237 		 * if it hits disk safely. */
2238 		if (!jh->b_cp_transaction) {
2239 			JBUFFER_TRACE(jh, "not on any transaction: zap");
2240 			goto zap_buffer;
2241 		}
2242 
2243 		if (!buffer_dirty(bh)) {
2244 			/* bdflush has written it.  We can drop it now */
2245 			__jbd2_journal_remove_checkpoint(jh);
2246 			goto zap_buffer;
2247 		}
2248 
2249 		/* OK, it must be in the journal but still not
2250 		 * written fully to disk: it's metadata or
2251 		 * journaled data... */
2252 
2253 		if (journal->j_running_transaction) {
2254 			/* ... and once the current transaction has
2255 			 * committed, the buffer won't be needed any
2256 			 * longer. */
2257 			JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2258 			may_free = __dispose_buffer(jh,
2259 					journal->j_running_transaction);
2260 			goto zap_buffer;
2261 		} else {
2262 			/* There is no currently-running transaction. So the
2263 			 * orphan record which we wrote for this file must have
2264 			 * passed into commit.  We must attach this buffer to
2265 			 * the committing transaction, if it exists. */
2266 			if (journal->j_committing_transaction) {
2267 				JBUFFER_TRACE(jh, "give to committing trans");
2268 				may_free = __dispose_buffer(jh,
2269 					journal->j_committing_transaction);
2270 				goto zap_buffer;
2271 			} else {
2272 				/* The orphan record's transaction has
2273 				 * committed.  We can cleanse this buffer */
2274 				clear_buffer_jbddirty(bh);
2275 				__jbd2_journal_remove_checkpoint(jh);
2276 				goto zap_buffer;
2277 			}
2278 		}
2279 	} else if (transaction == journal->j_committing_transaction) {
2280 		JBUFFER_TRACE(jh, "on committing transaction");
2281 		/*
2282 		 * The buffer is committing, we simply cannot touch
2283 		 * it. If the page is straddling i_size we have to wait
2284 		 * for commit and try again.
2285 		 */
2286 		if (partial_page) {
2287 			jbd2_journal_put_journal_head(jh);
2288 			spin_unlock(&journal->j_list_lock);
2289 			jbd_unlock_bh_state(bh);
2290 			write_unlock(&journal->j_state_lock);
2291 			return -EBUSY;
2292 		}
2293 		/*
2294 		 * OK, buffer won't be reachable after truncate. We just set
2295 		 * j_next_transaction to the running transaction (if there is
2296 		 * one) and mark buffer as freed so that commit code knows it
2297 		 * should clear dirty bits when it is done with the buffer.
2298 		 */
2299 		set_buffer_freed(bh);
2300 		if (journal->j_running_transaction && buffer_jbddirty(bh))
2301 			jh->b_next_transaction = journal->j_running_transaction;
2302 		jbd2_journal_put_journal_head(jh);
2303 		spin_unlock(&journal->j_list_lock);
2304 		jbd_unlock_bh_state(bh);
2305 		write_unlock(&journal->j_state_lock);
2306 		return 0;
2307 	} else {
2308 		/* Good, the buffer belongs to the running transaction.
2309 		 * We are writing our own transaction's data, not any
2310 		 * previous one's, so it is safe to throw it away
2311 		 * (remember that we expect the filesystem to have set
2312 		 * i_size already for this truncate so recovery will not
2313 		 * expose the disk blocks we are discarding here.) */
2314 		J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2315 		JBUFFER_TRACE(jh, "on running transaction");
2316 		may_free = __dispose_buffer(jh, transaction);
2317 	}
2318 
2319 zap_buffer:
2320 	/*
2321 	 * This is tricky. Although the buffer is truncated, it may be reused
2322 	 * if blocksize < pagesize and it is attached to the page straddling
2323 	 * EOF. Since the buffer might have been added to BJ_Forget list of the
2324 	 * running transaction, journal_get_write_access() won't clear
2325 	 * b_modified and credit accounting gets confused. So clear b_modified
2326 	 * here.
2327 	 */
2328 	jh->b_modified = 0;
2329 	jbd2_journal_put_journal_head(jh);
2330 zap_buffer_no_jh:
2331 	spin_unlock(&journal->j_list_lock);
2332 	jbd_unlock_bh_state(bh);
2333 	write_unlock(&journal->j_state_lock);
2334 zap_buffer_unlocked:
2335 	clear_buffer_dirty(bh);
2336 	J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2337 	clear_buffer_mapped(bh);
2338 	clear_buffer_req(bh);
2339 	clear_buffer_new(bh);
2340 	clear_buffer_delay(bh);
2341 	clear_buffer_unwritten(bh);
2342 	bh->b_bdev = NULL;
2343 	return may_free;
2344 }
2345 
2346 /**
2347  * void jbd2_journal_invalidatepage()
2348  * @journal: journal to use for flush...
2349  * @page:    page to flush
2350  * @offset:  start of the range to invalidate
2351  * @length:  length of the range to invalidate
2352  *
2353  * Reap page buffers containing data after in the specified range in page.
2354  * Can return -EBUSY if buffers are part of the committing transaction and
2355  * the page is straddling i_size. Caller then has to wait for current commit
2356  * and try again.
2357  */
2358 int jbd2_journal_invalidatepage(journal_t *journal,
2359 				struct page *page,
2360 				unsigned int offset,
2361 				unsigned int length)
2362 {
2363 	struct buffer_head *head, *bh, *next;
2364 	unsigned int stop = offset + length;
2365 	unsigned int curr_off = 0;
2366 	int partial_page = (offset || length < PAGE_SIZE);
2367 	int may_free = 1;
2368 	int ret = 0;
2369 
2370 	if (!PageLocked(page))
2371 		BUG();
2372 	if (!page_has_buffers(page))
2373 		return 0;
2374 
2375 	BUG_ON(stop > PAGE_SIZE || stop < length);
2376 
2377 	/* We will potentially be playing with lists other than just the
2378 	 * data lists (especially for journaled data mode), so be
2379 	 * cautious in our locking. */
2380 
2381 	head = bh = page_buffers(page);
2382 	do {
2383 		unsigned int next_off = curr_off + bh->b_size;
2384 		next = bh->b_this_page;
2385 
2386 		if (next_off > stop)
2387 			return 0;
2388 
2389 		if (offset <= curr_off) {
2390 			/* This block is wholly outside the truncation point */
2391 			lock_buffer(bh);
2392 			ret = journal_unmap_buffer(journal, bh, partial_page);
2393 			unlock_buffer(bh);
2394 			if (ret < 0)
2395 				return ret;
2396 			may_free &= ret;
2397 		}
2398 		curr_off = next_off;
2399 		bh = next;
2400 
2401 	} while (bh != head);
2402 
2403 	if (!partial_page) {
2404 		if (may_free && try_to_free_buffers(page))
2405 			J_ASSERT(!page_has_buffers(page));
2406 	}
2407 	return 0;
2408 }
2409 
2410 /*
2411  * File a buffer on the given transaction list.
2412  */
2413 void __jbd2_journal_file_buffer(struct journal_head *jh,
2414 			transaction_t *transaction, int jlist)
2415 {
2416 	struct journal_head **list = NULL;
2417 	int was_dirty = 0;
2418 	struct buffer_head *bh = jh2bh(jh);
2419 
2420 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2421 	assert_spin_locked(&transaction->t_journal->j_list_lock);
2422 
2423 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2424 	J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2425 				jh->b_transaction == NULL);
2426 
2427 	if (jh->b_transaction && jh->b_jlist == jlist)
2428 		return;
2429 
2430 	if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2431 	    jlist == BJ_Shadow || jlist == BJ_Forget) {
2432 		/*
2433 		 * For metadata buffers, we track dirty bit in buffer_jbddirty
2434 		 * instead of buffer_dirty. We should not see a dirty bit set
2435 		 * here because we clear it in do_get_write_access but e.g.
2436 		 * tune2fs can modify the sb and set the dirty bit at any time
2437 		 * so we try to gracefully handle that.
2438 		 */
2439 		if (buffer_dirty(bh))
2440 			warn_dirty_buffer(bh);
2441 		if (test_clear_buffer_dirty(bh) ||
2442 		    test_clear_buffer_jbddirty(bh))
2443 			was_dirty = 1;
2444 	}
2445 
2446 	if (jh->b_transaction)
2447 		__jbd2_journal_temp_unlink_buffer(jh);
2448 	else
2449 		jbd2_journal_grab_journal_head(bh);
2450 	jh->b_transaction = transaction;
2451 
2452 	switch (jlist) {
2453 	case BJ_None:
2454 		J_ASSERT_JH(jh, !jh->b_committed_data);
2455 		J_ASSERT_JH(jh, !jh->b_frozen_data);
2456 		return;
2457 	case BJ_Metadata:
2458 		transaction->t_nr_buffers++;
2459 		list = &transaction->t_buffers;
2460 		break;
2461 	case BJ_Forget:
2462 		list = &transaction->t_forget;
2463 		break;
2464 	case BJ_Shadow:
2465 		list = &transaction->t_shadow_list;
2466 		break;
2467 	case BJ_Reserved:
2468 		list = &transaction->t_reserved_list;
2469 		break;
2470 	}
2471 
2472 	__blist_add_buffer(list, jh);
2473 	jh->b_jlist = jlist;
2474 
2475 	if (was_dirty)
2476 		set_buffer_jbddirty(bh);
2477 }
2478 
2479 void jbd2_journal_file_buffer(struct journal_head *jh,
2480 				transaction_t *transaction, int jlist)
2481 {
2482 	jbd_lock_bh_state(jh2bh(jh));
2483 	spin_lock(&transaction->t_journal->j_list_lock);
2484 	__jbd2_journal_file_buffer(jh, transaction, jlist);
2485 	spin_unlock(&transaction->t_journal->j_list_lock);
2486 	jbd_unlock_bh_state(jh2bh(jh));
2487 }
2488 
2489 /*
2490  * Remove a buffer from its current buffer list in preparation for
2491  * dropping it from its current transaction entirely.  If the buffer has
2492  * already started to be used by a subsequent transaction, refile the
2493  * buffer on that transaction's metadata list.
2494  *
2495  * Called under j_list_lock
2496  * Called under jbd_lock_bh_state(jh2bh(jh))
2497  *
2498  * jh and bh may be already free when this function returns
2499  */
2500 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2501 {
2502 	int was_dirty, jlist;
2503 	struct buffer_head *bh = jh2bh(jh);
2504 
2505 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2506 	if (jh->b_transaction)
2507 		assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2508 
2509 	/* If the buffer is now unused, just drop it. */
2510 	if (jh->b_next_transaction == NULL) {
2511 		__jbd2_journal_unfile_buffer(jh);
2512 		return;
2513 	}
2514 
2515 	/*
2516 	 * It has been modified by a later transaction: add it to the new
2517 	 * transaction's metadata list.
2518 	 */
2519 
2520 	was_dirty = test_clear_buffer_jbddirty(bh);
2521 	__jbd2_journal_temp_unlink_buffer(jh);
2522 	/*
2523 	 * We set b_transaction here because b_next_transaction will inherit
2524 	 * our jh reference and thus __jbd2_journal_file_buffer() must not
2525 	 * take a new one.
2526 	 */
2527 	jh->b_transaction = jh->b_next_transaction;
2528 	jh->b_next_transaction = NULL;
2529 	if (buffer_freed(bh))
2530 		jlist = BJ_Forget;
2531 	else if (jh->b_modified)
2532 		jlist = BJ_Metadata;
2533 	else
2534 		jlist = BJ_Reserved;
2535 	__jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2536 	J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2537 
2538 	if (was_dirty)
2539 		set_buffer_jbddirty(bh);
2540 }
2541 
2542 /*
2543  * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2544  * bh reference so that we can safely unlock bh.
2545  *
2546  * The jh and bh may be freed by this call.
2547  */
2548 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2549 {
2550 	struct buffer_head *bh = jh2bh(jh);
2551 
2552 	/* Get reference so that buffer cannot be freed before we unlock it */
2553 	get_bh(bh);
2554 	jbd_lock_bh_state(bh);
2555 	spin_lock(&journal->j_list_lock);
2556 	__jbd2_journal_refile_buffer(jh);
2557 	jbd_unlock_bh_state(bh);
2558 	spin_unlock(&journal->j_list_lock);
2559 	__brelse(bh);
2560 }
2561 
2562 /*
2563  * File inode in the inode list of the handle's transaction
2564  */
2565 static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode,
2566 				   unsigned long flags)
2567 {
2568 	transaction_t *transaction = handle->h_transaction;
2569 	journal_t *journal;
2570 
2571 	if (is_handle_aborted(handle))
2572 		return -EROFS;
2573 	journal = transaction->t_journal;
2574 
2575 	jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2576 			transaction->t_tid);
2577 
2578 	/*
2579 	 * First check whether inode isn't already on the transaction's
2580 	 * lists without taking the lock. Note that this check is safe
2581 	 * without the lock as we cannot race with somebody removing inode
2582 	 * from the transaction. The reason is that we remove inode from the
2583 	 * transaction only in journal_release_jbd_inode() and when we commit
2584 	 * the transaction. We are guarded from the first case by holding
2585 	 * a reference to the inode. We are safe against the second case
2586 	 * because if jinode->i_transaction == transaction, commit code
2587 	 * cannot touch the transaction because we hold reference to it,
2588 	 * and if jinode->i_next_transaction == transaction, commit code
2589 	 * will only file the inode where we want it.
2590 	 */
2591 	if ((jinode->i_transaction == transaction ||
2592 	    jinode->i_next_transaction == transaction) &&
2593 	    (jinode->i_flags & flags) == flags)
2594 		return 0;
2595 
2596 	spin_lock(&journal->j_list_lock);
2597 	jinode->i_flags |= flags;
2598 	/* Is inode already attached where we need it? */
2599 	if (jinode->i_transaction == transaction ||
2600 	    jinode->i_next_transaction == transaction)
2601 		goto done;
2602 
2603 	/*
2604 	 * We only ever set this variable to 1 so the test is safe. Since
2605 	 * t_need_data_flush is likely to be set, we do the test to save some
2606 	 * cacheline bouncing
2607 	 */
2608 	if (!transaction->t_need_data_flush)
2609 		transaction->t_need_data_flush = 1;
2610 	/* On some different transaction's list - should be
2611 	 * the committing one */
2612 	if (jinode->i_transaction) {
2613 		J_ASSERT(jinode->i_next_transaction == NULL);
2614 		J_ASSERT(jinode->i_transaction ==
2615 					journal->j_committing_transaction);
2616 		jinode->i_next_transaction = transaction;
2617 		goto done;
2618 	}
2619 	/* Not on any transaction list... */
2620 	J_ASSERT(!jinode->i_next_transaction);
2621 	jinode->i_transaction = transaction;
2622 	list_add(&jinode->i_list, &transaction->t_inode_list);
2623 done:
2624 	spin_unlock(&journal->j_list_lock);
2625 
2626 	return 0;
2627 }
2628 
2629 int jbd2_journal_inode_add_write(handle_t *handle, struct jbd2_inode *jinode)
2630 {
2631 	return jbd2_journal_file_inode(handle, jinode,
2632 				       JI_WRITE_DATA | JI_WAIT_DATA);
2633 }
2634 
2635 int jbd2_journal_inode_add_wait(handle_t *handle, struct jbd2_inode *jinode)
2636 {
2637 	return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA);
2638 }
2639 
2640 /*
2641  * File truncate and transaction commit interact with each other in a
2642  * non-trivial way.  If a transaction writing data block A is
2643  * committing, we cannot discard the data by truncate until we have
2644  * written them.  Otherwise if we crashed after the transaction with
2645  * write has committed but before the transaction with truncate has
2646  * committed, we could see stale data in block A.  This function is a
2647  * helper to solve this problem.  It starts writeout of the truncated
2648  * part in case it is in the committing transaction.
2649  *
2650  * Filesystem code must call this function when inode is journaled in
2651  * ordered mode before truncation happens and after the inode has been
2652  * placed on orphan list with the new inode size. The second condition
2653  * avoids the race that someone writes new data and we start
2654  * committing the transaction after this function has been called but
2655  * before a transaction for truncate is started (and furthermore it
2656  * allows us to optimize the case where the addition to orphan list
2657  * happens in the same transaction as write --- we don't have to write
2658  * any data in such case).
2659  */
2660 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2661 					struct jbd2_inode *jinode,
2662 					loff_t new_size)
2663 {
2664 	transaction_t *inode_trans, *commit_trans;
2665 	int ret = 0;
2666 
2667 	/* This is a quick check to avoid locking if not necessary */
2668 	if (!jinode->i_transaction)
2669 		goto out;
2670 	/* Locks are here just to force reading of recent values, it is
2671 	 * enough that the transaction was not committing before we started
2672 	 * a transaction adding the inode to orphan list */
2673 	read_lock(&journal->j_state_lock);
2674 	commit_trans = journal->j_committing_transaction;
2675 	read_unlock(&journal->j_state_lock);
2676 	spin_lock(&journal->j_list_lock);
2677 	inode_trans = jinode->i_transaction;
2678 	spin_unlock(&journal->j_list_lock);
2679 	if (inode_trans == commit_trans) {
2680 		ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2681 			new_size, LLONG_MAX);
2682 		if (ret)
2683 			jbd2_journal_abort(journal, ret);
2684 	}
2685 out:
2686 	return ret;
2687 }
2688