1 /* 2 * linux/fs/jbd2/transaction.c 3 * 4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 5 * 6 * Copyright 1998 Red Hat corp --- All Rights Reserved 7 * 8 * This file is part of the Linux kernel and is made available under 9 * the terms of the GNU General Public License, version 2, or at your 10 * option, any later version, incorporated herein by reference. 11 * 12 * Generic filesystem transaction handling code; part of the ext2fs 13 * journaling system. 14 * 15 * This file manages transactions (compound commits managed by the 16 * journaling code) and handles (individual atomic operations by the 17 * filesystem). 18 */ 19 20 #include <linux/time.h> 21 #include <linux/fs.h> 22 #include <linux/jbd2.h> 23 #include <linux/errno.h> 24 #include <linux/slab.h> 25 #include <linux/timer.h> 26 #include <linux/mm.h> 27 #include <linux/highmem.h> 28 29 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh); 30 31 /* 32 * jbd2_get_transaction: obtain a new transaction_t object. 33 * 34 * Simply allocate and initialise a new transaction. Create it in 35 * RUNNING state and add it to the current journal (which should not 36 * have an existing running transaction: we only make a new transaction 37 * once we have started to commit the old one). 38 * 39 * Preconditions: 40 * The journal MUST be locked. We don't perform atomic mallocs on the 41 * new transaction and we can't block without protecting against other 42 * processes trying to touch the journal while it is in transition. 43 * 44 */ 45 46 static transaction_t * 47 jbd2_get_transaction(journal_t *journal, transaction_t *transaction) 48 { 49 transaction->t_journal = journal; 50 transaction->t_state = T_RUNNING; 51 transaction->t_tid = journal->j_transaction_sequence++; 52 transaction->t_expires = jiffies + journal->j_commit_interval; 53 spin_lock_init(&transaction->t_handle_lock); 54 INIT_LIST_HEAD(&transaction->t_inode_list); 55 INIT_LIST_HEAD(&transaction->t_private_list); 56 57 /* Set up the commit timer for the new transaction. */ 58 journal->j_commit_timer.expires = round_jiffies(transaction->t_expires); 59 add_timer(&journal->j_commit_timer); 60 61 J_ASSERT(journal->j_running_transaction == NULL); 62 journal->j_running_transaction = transaction; 63 transaction->t_max_wait = 0; 64 transaction->t_start = jiffies; 65 66 return transaction; 67 } 68 69 /* 70 * Handle management. 71 * 72 * A handle_t is an object which represents a single atomic update to a 73 * filesystem, and which tracks all of the modifications which form part 74 * of that one update. 75 */ 76 77 /* 78 * start_this_handle: Given a handle, deal with any locking or stalling 79 * needed to make sure that there is enough journal space for the handle 80 * to begin. Attach the handle to a transaction and set up the 81 * transaction's buffer credits. 82 */ 83 84 static int start_this_handle(journal_t *journal, handle_t *handle) 85 { 86 transaction_t *transaction; 87 int needed; 88 int nblocks = handle->h_buffer_credits; 89 transaction_t *new_transaction = NULL; 90 int ret = 0; 91 unsigned long ts = jiffies; 92 93 if (nblocks > journal->j_max_transaction_buffers) { 94 printk(KERN_ERR "JBD: %s wants too many credits (%d > %d)\n", 95 current->comm, nblocks, 96 journal->j_max_transaction_buffers); 97 ret = -ENOSPC; 98 goto out; 99 } 100 101 alloc_transaction: 102 if (!journal->j_running_transaction) { 103 new_transaction = kzalloc(sizeof(*new_transaction), 104 GFP_NOFS|__GFP_NOFAIL); 105 if (!new_transaction) { 106 ret = -ENOMEM; 107 goto out; 108 } 109 } 110 111 jbd_debug(3, "New handle %p going live.\n", handle); 112 113 repeat: 114 115 /* 116 * We need to hold j_state_lock until t_updates has been incremented, 117 * for proper journal barrier handling 118 */ 119 spin_lock(&journal->j_state_lock); 120 repeat_locked: 121 if (is_journal_aborted(journal) || 122 (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) { 123 spin_unlock(&journal->j_state_lock); 124 ret = -EROFS; 125 goto out; 126 } 127 128 /* Wait on the journal's transaction barrier if necessary */ 129 if (journal->j_barrier_count) { 130 spin_unlock(&journal->j_state_lock); 131 wait_event(journal->j_wait_transaction_locked, 132 journal->j_barrier_count == 0); 133 goto repeat; 134 } 135 136 if (!journal->j_running_transaction) { 137 if (!new_transaction) { 138 spin_unlock(&journal->j_state_lock); 139 goto alloc_transaction; 140 } 141 jbd2_get_transaction(journal, new_transaction); 142 new_transaction = NULL; 143 } 144 145 transaction = journal->j_running_transaction; 146 147 /* 148 * If the current transaction is locked down for commit, wait for the 149 * lock to be released. 150 */ 151 if (transaction->t_state == T_LOCKED) { 152 DEFINE_WAIT(wait); 153 154 prepare_to_wait(&journal->j_wait_transaction_locked, 155 &wait, TASK_UNINTERRUPTIBLE); 156 spin_unlock(&journal->j_state_lock); 157 schedule(); 158 finish_wait(&journal->j_wait_transaction_locked, &wait); 159 goto repeat; 160 } 161 162 /* 163 * If there is not enough space left in the log to write all potential 164 * buffers requested by this operation, we need to stall pending a log 165 * checkpoint to free some more log space. 166 */ 167 spin_lock(&transaction->t_handle_lock); 168 needed = transaction->t_outstanding_credits + nblocks; 169 170 if (needed > journal->j_max_transaction_buffers) { 171 /* 172 * If the current transaction is already too large, then start 173 * to commit it: we can then go back and attach this handle to 174 * a new transaction. 175 */ 176 DEFINE_WAIT(wait); 177 178 jbd_debug(2, "Handle %p starting new commit...\n", handle); 179 spin_unlock(&transaction->t_handle_lock); 180 prepare_to_wait(&journal->j_wait_transaction_locked, &wait, 181 TASK_UNINTERRUPTIBLE); 182 __jbd2_log_start_commit(journal, transaction->t_tid); 183 spin_unlock(&journal->j_state_lock); 184 schedule(); 185 finish_wait(&journal->j_wait_transaction_locked, &wait); 186 goto repeat; 187 } 188 189 /* 190 * The commit code assumes that it can get enough log space 191 * without forcing a checkpoint. This is *critical* for 192 * correctness: a checkpoint of a buffer which is also 193 * associated with a committing transaction creates a deadlock, 194 * so commit simply cannot force through checkpoints. 195 * 196 * We must therefore ensure the necessary space in the journal 197 * *before* starting to dirty potentially checkpointed buffers 198 * in the new transaction. 199 * 200 * The worst part is, any transaction currently committing can 201 * reduce the free space arbitrarily. Be careful to account for 202 * those buffers when checkpointing. 203 */ 204 205 /* 206 * @@@ AKPM: This seems rather over-defensive. We're giving commit 207 * a _lot_ of headroom: 1/4 of the journal plus the size of 208 * the committing transaction. Really, we only need to give it 209 * committing_transaction->t_outstanding_credits plus "enough" for 210 * the log control blocks. 211 * Also, this test is inconsitent with the matching one in 212 * jbd2_journal_extend(). 213 */ 214 if (__jbd2_log_space_left(journal) < jbd_space_needed(journal)) { 215 jbd_debug(2, "Handle %p waiting for checkpoint...\n", handle); 216 spin_unlock(&transaction->t_handle_lock); 217 __jbd2_log_wait_for_space(journal); 218 goto repeat_locked; 219 } 220 221 /* OK, account for the buffers that this operation expects to 222 * use and add the handle to the running transaction. */ 223 224 if (time_after(transaction->t_start, ts)) { 225 ts = jbd2_time_diff(ts, transaction->t_start); 226 if (ts > transaction->t_max_wait) 227 transaction->t_max_wait = ts; 228 } 229 230 handle->h_transaction = transaction; 231 transaction->t_outstanding_credits += nblocks; 232 transaction->t_updates++; 233 transaction->t_handle_count++; 234 jbd_debug(4, "Handle %p given %d credits (total %d, free %d)\n", 235 handle, nblocks, transaction->t_outstanding_credits, 236 __jbd2_log_space_left(journal)); 237 spin_unlock(&transaction->t_handle_lock); 238 spin_unlock(&journal->j_state_lock); 239 out: 240 if (unlikely(new_transaction)) /* It's usually NULL */ 241 kfree(new_transaction); 242 return ret; 243 } 244 245 static struct lock_class_key jbd2_handle_key; 246 247 /* Allocate a new handle. This should probably be in a slab... */ 248 static handle_t *new_handle(int nblocks) 249 { 250 handle_t *handle = jbd2_alloc_handle(GFP_NOFS); 251 if (!handle) 252 return NULL; 253 memset(handle, 0, sizeof(*handle)); 254 handle->h_buffer_credits = nblocks; 255 handle->h_ref = 1; 256 257 lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle", 258 &jbd2_handle_key, 0); 259 260 return handle; 261 } 262 263 /** 264 * handle_t *jbd2_journal_start() - Obtain a new handle. 265 * @journal: Journal to start transaction on. 266 * @nblocks: number of block buffer we might modify 267 * 268 * We make sure that the transaction can guarantee at least nblocks of 269 * modified buffers in the log. We block until the log can guarantee 270 * that much space. 271 * 272 * This function is visible to journal users (like ext3fs), so is not 273 * called with the journal already locked. 274 * 275 * Return a pointer to a newly allocated handle, or NULL on failure 276 */ 277 handle_t *jbd2_journal_start(journal_t *journal, int nblocks) 278 { 279 handle_t *handle = journal_current_handle(); 280 int err; 281 282 if (!journal) 283 return ERR_PTR(-EROFS); 284 285 if (handle) { 286 J_ASSERT(handle->h_transaction->t_journal == journal); 287 handle->h_ref++; 288 return handle; 289 } 290 291 handle = new_handle(nblocks); 292 if (!handle) 293 return ERR_PTR(-ENOMEM); 294 295 current->journal_info = handle; 296 297 err = start_this_handle(journal, handle); 298 if (err < 0) { 299 jbd2_free_handle(handle); 300 current->journal_info = NULL; 301 handle = ERR_PTR(err); 302 goto out; 303 } 304 305 lock_map_acquire(&handle->h_lockdep_map); 306 out: 307 return handle; 308 } 309 310 /** 311 * int jbd2_journal_extend() - extend buffer credits. 312 * @handle: handle to 'extend' 313 * @nblocks: nr blocks to try to extend by. 314 * 315 * Some transactions, such as large extends and truncates, can be done 316 * atomically all at once or in several stages. The operation requests 317 * a credit for a number of buffer modications in advance, but can 318 * extend its credit if it needs more. 319 * 320 * jbd2_journal_extend tries to give the running handle more buffer credits. 321 * It does not guarantee that allocation - this is a best-effort only. 322 * The calling process MUST be able to deal cleanly with a failure to 323 * extend here. 324 * 325 * Return 0 on success, non-zero on failure. 326 * 327 * return code < 0 implies an error 328 * return code > 0 implies normal transaction-full status. 329 */ 330 int jbd2_journal_extend(handle_t *handle, int nblocks) 331 { 332 transaction_t *transaction = handle->h_transaction; 333 journal_t *journal = transaction->t_journal; 334 int result; 335 int wanted; 336 337 result = -EIO; 338 if (is_handle_aborted(handle)) 339 goto out; 340 341 result = 1; 342 343 spin_lock(&journal->j_state_lock); 344 345 /* Don't extend a locked-down transaction! */ 346 if (handle->h_transaction->t_state != T_RUNNING) { 347 jbd_debug(3, "denied handle %p %d blocks: " 348 "transaction not running\n", handle, nblocks); 349 goto error_out; 350 } 351 352 spin_lock(&transaction->t_handle_lock); 353 wanted = transaction->t_outstanding_credits + nblocks; 354 355 if (wanted > journal->j_max_transaction_buffers) { 356 jbd_debug(3, "denied handle %p %d blocks: " 357 "transaction too large\n", handle, nblocks); 358 goto unlock; 359 } 360 361 if (wanted > __jbd2_log_space_left(journal)) { 362 jbd_debug(3, "denied handle %p %d blocks: " 363 "insufficient log space\n", handle, nblocks); 364 goto unlock; 365 } 366 367 handle->h_buffer_credits += nblocks; 368 transaction->t_outstanding_credits += nblocks; 369 result = 0; 370 371 jbd_debug(3, "extended handle %p by %d\n", handle, nblocks); 372 unlock: 373 spin_unlock(&transaction->t_handle_lock); 374 error_out: 375 spin_unlock(&journal->j_state_lock); 376 out: 377 return result; 378 } 379 380 381 /** 382 * int jbd2_journal_restart() - restart a handle . 383 * @handle: handle to restart 384 * @nblocks: nr credits requested 385 * 386 * Restart a handle for a multi-transaction filesystem 387 * operation. 388 * 389 * If the jbd2_journal_extend() call above fails to grant new buffer credits 390 * to a running handle, a call to jbd2_journal_restart will commit the 391 * handle's transaction so far and reattach the handle to a new 392 * transaction capabable of guaranteeing the requested number of 393 * credits. 394 */ 395 396 int jbd2_journal_restart(handle_t *handle, int nblocks) 397 { 398 transaction_t *transaction = handle->h_transaction; 399 journal_t *journal = transaction->t_journal; 400 int ret; 401 402 /* If we've had an abort of any type, don't even think about 403 * actually doing the restart! */ 404 if (is_handle_aborted(handle)) 405 return 0; 406 407 /* 408 * First unlink the handle from its current transaction, and start the 409 * commit on that. 410 */ 411 J_ASSERT(transaction->t_updates > 0); 412 J_ASSERT(journal_current_handle() == handle); 413 414 spin_lock(&journal->j_state_lock); 415 spin_lock(&transaction->t_handle_lock); 416 transaction->t_outstanding_credits -= handle->h_buffer_credits; 417 transaction->t_updates--; 418 419 if (!transaction->t_updates) 420 wake_up(&journal->j_wait_updates); 421 spin_unlock(&transaction->t_handle_lock); 422 423 jbd_debug(2, "restarting handle %p\n", handle); 424 __jbd2_log_start_commit(journal, transaction->t_tid); 425 spin_unlock(&journal->j_state_lock); 426 427 handle->h_buffer_credits = nblocks; 428 ret = start_this_handle(journal, handle); 429 return ret; 430 } 431 432 433 /** 434 * void jbd2_journal_lock_updates () - establish a transaction barrier. 435 * @journal: Journal to establish a barrier on. 436 * 437 * This locks out any further updates from being started, and blocks 438 * until all existing updates have completed, returning only once the 439 * journal is in a quiescent state with no updates running. 440 * 441 * The journal lock should not be held on entry. 442 */ 443 void jbd2_journal_lock_updates(journal_t *journal) 444 { 445 DEFINE_WAIT(wait); 446 447 spin_lock(&journal->j_state_lock); 448 ++journal->j_barrier_count; 449 450 /* Wait until there are no running updates */ 451 while (1) { 452 transaction_t *transaction = journal->j_running_transaction; 453 454 if (!transaction) 455 break; 456 457 spin_lock(&transaction->t_handle_lock); 458 if (!transaction->t_updates) { 459 spin_unlock(&transaction->t_handle_lock); 460 break; 461 } 462 prepare_to_wait(&journal->j_wait_updates, &wait, 463 TASK_UNINTERRUPTIBLE); 464 spin_unlock(&transaction->t_handle_lock); 465 spin_unlock(&journal->j_state_lock); 466 schedule(); 467 finish_wait(&journal->j_wait_updates, &wait); 468 spin_lock(&journal->j_state_lock); 469 } 470 spin_unlock(&journal->j_state_lock); 471 472 /* 473 * We have now established a barrier against other normal updates, but 474 * we also need to barrier against other jbd2_journal_lock_updates() calls 475 * to make sure that we serialise special journal-locked operations 476 * too. 477 */ 478 mutex_lock(&journal->j_barrier); 479 } 480 481 /** 482 * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier 483 * @journal: Journal to release the barrier on. 484 * 485 * Release a transaction barrier obtained with jbd2_journal_lock_updates(). 486 * 487 * Should be called without the journal lock held. 488 */ 489 void jbd2_journal_unlock_updates (journal_t *journal) 490 { 491 J_ASSERT(journal->j_barrier_count != 0); 492 493 mutex_unlock(&journal->j_barrier); 494 spin_lock(&journal->j_state_lock); 495 --journal->j_barrier_count; 496 spin_unlock(&journal->j_state_lock); 497 wake_up(&journal->j_wait_transaction_locked); 498 } 499 500 /* 501 * Report any unexpected dirty buffers which turn up. Normally those 502 * indicate an error, but they can occur if the user is running (say) 503 * tune2fs to modify the live filesystem, so we need the option of 504 * continuing as gracefully as possible. # 505 * 506 * The caller should already hold the journal lock and 507 * j_list_lock spinlock: most callers will need those anyway 508 * in order to probe the buffer's journaling state safely. 509 */ 510 static void jbd_unexpected_dirty_buffer(struct journal_head *jh) 511 { 512 int jlist; 513 514 /* If this buffer is one which might reasonably be dirty 515 * --- ie. data, or not part of this journal --- then 516 * we're OK to leave it alone, but otherwise we need to 517 * move the dirty bit to the journal's own internal 518 * JBDDirty bit. */ 519 jlist = jh->b_jlist; 520 521 if (jlist == BJ_Metadata || jlist == BJ_Reserved || 522 jlist == BJ_Shadow || jlist == BJ_Forget) { 523 struct buffer_head *bh = jh2bh(jh); 524 525 if (test_clear_buffer_dirty(bh)) 526 set_buffer_jbddirty(bh); 527 } 528 } 529 530 /* 531 * If the buffer is already part of the current transaction, then there 532 * is nothing we need to do. If it is already part of a prior 533 * transaction which we are still committing to disk, then we need to 534 * make sure that we do not overwrite the old copy: we do copy-out to 535 * preserve the copy going to disk. We also account the buffer against 536 * the handle's metadata buffer credits (unless the buffer is already 537 * part of the transaction, that is). 538 * 539 */ 540 static int 541 do_get_write_access(handle_t *handle, struct journal_head *jh, 542 int force_copy) 543 { 544 struct buffer_head *bh; 545 transaction_t *transaction; 546 journal_t *journal; 547 int error; 548 char *frozen_buffer = NULL; 549 int need_copy = 0; 550 551 if (is_handle_aborted(handle)) 552 return -EROFS; 553 554 transaction = handle->h_transaction; 555 journal = transaction->t_journal; 556 557 jbd_debug(5, "buffer_head %p, force_copy %d\n", jh, force_copy); 558 559 JBUFFER_TRACE(jh, "entry"); 560 repeat: 561 bh = jh2bh(jh); 562 563 /* @@@ Need to check for errors here at some point. */ 564 565 lock_buffer(bh); 566 jbd_lock_bh_state(bh); 567 568 /* We now hold the buffer lock so it is safe to query the buffer 569 * state. Is the buffer dirty? 570 * 571 * If so, there are two possibilities. The buffer may be 572 * non-journaled, and undergoing a quite legitimate writeback. 573 * Otherwise, it is journaled, and we don't expect dirty buffers 574 * in that state (the buffers should be marked JBD_Dirty 575 * instead.) So either the IO is being done under our own 576 * control and this is a bug, or it's a third party IO such as 577 * dump(8) (which may leave the buffer scheduled for read --- 578 * ie. locked but not dirty) or tune2fs (which may actually have 579 * the buffer dirtied, ugh.) */ 580 581 if (buffer_dirty(bh)) { 582 /* 583 * First question: is this buffer already part of the current 584 * transaction or the existing committing transaction? 585 */ 586 if (jh->b_transaction) { 587 J_ASSERT_JH(jh, 588 jh->b_transaction == transaction || 589 jh->b_transaction == 590 journal->j_committing_transaction); 591 if (jh->b_next_transaction) 592 J_ASSERT_JH(jh, jh->b_next_transaction == 593 transaction); 594 } 595 /* 596 * In any case we need to clean the dirty flag and we must 597 * do it under the buffer lock to be sure we don't race 598 * with running write-out. 599 */ 600 JBUFFER_TRACE(jh, "Unexpected dirty buffer"); 601 jbd_unexpected_dirty_buffer(jh); 602 } 603 604 unlock_buffer(bh); 605 606 error = -EROFS; 607 if (is_handle_aborted(handle)) { 608 jbd_unlock_bh_state(bh); 609 goto out; 610 } 611 error = 0; 612 613 /* 614 * The buffer is already part of this transaction if b_transaction or 615 * b_next_transaction points to it 616 */ 617 if (jh->b_transaction == transaction || 618 jh->b_next_transaction == transaction) 619 goto done; 620 621 /* 622 * this is the first time this transaction is touching this buffer, 623 * reset the modified flag 624 */ 625 jh->b_modified = 0; 626 627 /* 628 * If there is already a copy-out version of this buffer, then we don't 629 * need to make another one 630 */ 631 if (jh->b_frozen_data) { 632 JBUFFER_TRACE(jh, "has frozen data"); 633 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 634 jh->b_next_transaction = transaction; 635 goto done; 636 } 637 638 /* Is there data here we need to preserve? */ 639 640 if (jh->b_transaction && jh->b_transaction != transaction) { 641 JBUFFER_TRACE(jh, "owned by older transaction"); 642 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 643 J_ASSERT_JH(jh, jh->b_transaction == 644 journal->j_committing_transaction); 645 646 /* There is one case we have to be very careful about. 647 * If the committing transaction is currently writing 648 * this buffer out to disk and has NOT made a copy-out, 649 * then we cannot modify the buffer contents at all 650 * right now. The essence of copy-out is that it is the 651 * extra copy, not the primary copy, which gets 652 * journaled. If the primary copy is already going to 653 * disk then we cannot do copy-out here. */ 654 655 if (jh->b_jlist == BJ_Shadow) { 656 DEFINE_WAIT_BIT(wait, &bh->b_state, BH_Unshadow); 657 wait_queue_head_t *wqh; 658 659 wqh = bit_waitqueue(&bh->b_state, BH_Unshadow); 660 661 JBUFFER_TRACE(jh, "on shadow: sleep"); 662 jbd_unlock_bh_state(bh); 663 /* commit wakes up all shadow buffers after IO */ 664 for ( ; ; ) { 665 prepare_to_wait(wqh, &wait.wait, 666 TASK_UNINTERRUPTIBLE); 667 if (jh->b_jlist != BJ_Shadow) 668 break; 669 schedule(); 670 } 671 finish_wait(wqh, &wait.wait); 672 goto repeat; 673 } 674 675 /* Only do the copy if the currently-owning transaction 676 * still needs it. If it is on the Forget list, the 677 * committing transaction is past that stage. The 678 * buffer had better remain locked during the kmalloc, 679 * but that should be true --- we hold the journal lock 680 * still and the buffer is already on the BUF_JOURNAL 681 * list so won't be flushed. 682 * 683 * Subtle point, though: if this is a get_undo_access, 684 * then we will be relying on the frozen_data to contain 685 * the new value of the committed_data record after the 686 * transaction, so we HAVE to force the frozen_data copy 687 * in that case. */ 688 689 if (jh->b_jlist != BJ_Forget || force_copy) { 690 JBUFFER_TRACE(jh, "generate frozen data"); 691 if (!frozen_buffer) { 692 JBUFFER_TRACE(jh, "allocate memory for buffer"); 693 jbd_unlock_bh_state(bh); 694 frozen_buffer = 695 jbd2_alloc(jh2bh(jh)->b_size, 696 GFP_NOFS); 697 if (!frozen_buffer) { 698 printk(KERN_EMERG 699 "%s: OOM for frozen_buffer\n", 700 __func__); 701 JBUFFER_TRACE(jh, "oom!"); 702 error = -ENOMEM; 703 jbd_lock_bh_state(bh); 704 goto done; 705 } 706 goto repeat; 707 } 708 jh->b_frozen_data = frozen_buffer; 709 frozen_buffer = NULL; 710 need_copy = 1; 711 } 712 jh->b_next_transaction = transaction; 713 } 714 715 716 /* 717 * Finally, if the buffer is not journaled right now, we need to make 718 * sure it doesn't get written to disk before the caller actually 719 * commits the new data 720 */ 721 if (!jh->b_transaction) { 722 JBUFFER_TRACE(jh, "no transaction"); 723 J_ASSERT_JH(jh, !jh->b_next_transaction); 724 jh->b_transaction = transaction; 725 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 726 spin_lock(&journal->j_list_lock); 727 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 728 spin_unlock(&journal->j_list_lock); 729 } 730 731 done: 732 if (need_copy) { 733 struct page *page; 734 int offset; 735 char *source; 736 737 J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)), 738 "Possible IO failure.\n"); 739 page = jh2bh(jh)->b_page; 740 offset = ((unsigned long) jh2bh(jh)->b_data) & ~PAGE_MASK; 741 source = kmap_atomic(page, KM_USER0); 742 memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size); 743 kunmap_atomic(source, KM_USER0); 744 } 745 jbd_unlock_bh_state(bh); 746 747 /* 748 * If we are about to journal a buffer, then any revoke pending on it is 749 * no longer valid 750 */ 751 jbd2_journal_cancel_revoke(handle, jh); 752 753 out: 754 if (unlikely(frozen_buffer)) /* It's usually NULL */ 755 jbd2_free(frozen_buffer, bh->b_size); 756 757 JBUFFER_TRACE(jh, "exit"); 758 return error; 759 } 760 761 /** 762 * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update. 763 * @handle: transaction to add buffer modifications to 764 * @bh: bh to be used for metadata writes 765 * @credits: variable that will receive credits for the buffer 766 * 767 * Returns an error code or 0 on success. 768 * 769 * In full data journalling mode the buffer may be of type BJ_AsyncData, 770 * because we're write()ing a buffer which is also part of a shared mapping. 771 */ 772 773 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh) 774 { 775 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 776 int rc; 777 778 /* We do not want to get caught playing with fields which the 779 * log thread also manipulates. Make sure that the buffer 780 * completes any outstanding IO before proceeding. */ 781 rc = do_get_write_access(handle, jh, 0); 782 jbd2_journal_put_journal_head(jh); 783 return rc; 784 } 785 786 787 /* 788 * When the user wants to journal a newly created buffer_head 789 * (ie. getblk() returned a new buffer and we are going to populate it 790 * manually rather than reading off disk), then we need to keep the 791 * buffer_head locked until it has been completely filled with new 792 * data. In this case, we should be able to make the assertion that 793 * the bh is not already part of an existing transaction. 794 * 795 * The buffer should already be locked by the caller by this point. 796 * There is no lock ranking violation: it was a newly created, 797 * unlocked buffer beforehand. */ 798 799 /** 800 * int jbd2_journal_get_create_access () - notify intent to use newly created bh 801 * @handle: transaction to new buffer to 802 * @bh: new buffer. 803 * 804 * Call this if you create a new bh. 805 */ 806 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh) 807 { 808 transaction_t *transaction = handle->h_transaction; 809 journal_t *journal = transaction->t_journal; 810 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 811 int err; 812 813 jbd_debug(5, "journal_head %p\n", jh); 814 err = -EROFS; 815 if (is_handle_aborted(handle)) 816 goto out; 817 err = 0; 818 819 JBUFFER_TRACE(jh, "entry"); 820 /* 821 * The buffer may already belong to this transaction due to pre-zeroing 822 * in the filesystem's new_block code. It may also be on the previous, 823 * committing transaction's lists, but it HAS to be in Forget state in 824 * that case: the transaction must have deleted the buffer for it to be 825 * reused here. 826 */ 827 jbd_lock_bh_state(bh); 828 spin_lock(&journal->j_list_lock); 829 J_ASSERT_JH(jh, (jh->b_transaction == transaction || 830 jh->b_transaction == NULL || 831 (jh->b_transaction == journal->j_committing_transaction && 832 jh->b_jlist == BJ_Forget))); 833 834 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 835 J_ASSERT_JH(jh, buffer_locked(jh2bh(jh))); 836 837 if (jh->b_transaction == NULL) { 838 jh->b_transaction = transaction; 839 840 /* first access by this transaction */ 841 jh->b_modified = 0; 842 843 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 844 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 845 } else if (jh->b_transaction == journal->j_committing_transaction) { 846 /* first access by this transaction */ 847 jh->b_modified = 0; 848 849 JBUFFER_TRACE(jh, "set next transaction"); 850 jh->b_next_transaction = transaction; 851 } 852 spin_unlock(&journal->j_list_lock); 853 jbd_unlock_bh_state(bh); 854 855 /* 856 * akpm: I added this. ext3_alloc_branch can pick up new indirect 857 * blocks which contain freed but then revoked metadata. We need 858 * to cancel the revoke in case we end up freeing it yet again 859 * and the reallocating as data - this would cause a second revoke, 860 * which hits an assertion error. 861 */ 862 JBUFFER_TRACE(jh, "cancelling revoke"); 863 jbd2_journal_cancel_revoke(handle, jh); 864 jbd2_journal_put_journal_head(jh); 865 out: 866 return err; 867 } 868 869 /** 870 * int jbd2_journal_get_undo_access() - Notify intent to modify metadata with 871 * non-rewindable consequences 872 * @handle: transaction 873 * @bh: buffer to undo 874 * @credits: store the number of taken credits here (if not NULL) 875 * 876 * Sometimes there is a need to distinguish between metadata which has 877 * been committed to disk and that which has not. The ext3fs code uses 878 * this for freeing and allocating space, we have to make sure that we 879 * do not reuse freed space until the deallocation has been committed, 880 * since if we overwrote that space we would make the delete 881 * un-rewindable in case of a crash. 882 * 883 * To deal with that, jbd2_journal_get_undo_access requests write access to a 884 * buffer for parts of non-rewindable operations such as delete 885 * operations on the bitmaps. The journaling code must keep a copy of 886 * the buffer's contents prior to the undo_access call until such time 887 * as we know that the buffer has definitely been committed to disk. 888 * 889 * We never need to know which transaction the committed data is part 890 * of, buffers touched here are guaranteed to be dirtied later and so 891 * will be committed to a new transaction in due course, at which point 892 * we can discard the old committed data pointer. 893 * 894 * Returns error number or 0 on success. 895 */ 896 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh) 897 { 898 int err; 899 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 900 char *committed_data = NULL; 901 902 JBUFFER_TRACE(jh, "entry"); 903 904 /* 905 * Do this first --- it can drop the journal lock, so we want to 906 * make sure that obtaining the committed_data is done 907 * atomically wrt. completion of any outstanding commits. 908 */ 909 err = do_get_write_access(handle, jh, 1); 910 if (err) 911 goto out; 912 913 repeat: 914 if (!jh->b_committed_data) { 915 committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS); 916 if (!committed_data) { 917 printk(KERN_EMERG "%s: No memory for committed data\n", 918 __func__); 919 err = -ENOMEM; 920 goto out; 921 } 922 } 923 924 jbd_lock_bh_state(bh); 925 if (!jh->b_committed_data) { 926 /* Copy out the current buffer contents into the 927 * preserved, committed copy. */ 928 JBUFFER_TRACE(jh, "generate b_committed data"); 929 if (!committed_data) { 930 jbd_unlock_bh_state(bh); 931 goto repeat; 932 } 933 934 jh->b_committed_data = committed_data; 935 committed_data = NULL; 936 memcpy(jh->b_committed_data, bh->b_data, bh->b_size); 937 } 938 jbd_unlock_bh_state(bh); 939 out: 940 jbd2_journal_put_journal_head(jh); 941 if (unlikely(committed_data)) 942 jbd2_free(committed_data, bh->b_size); 943 return err; 944 } 945 946 /** 947 * int jbd2_journal_dirty_metadata() - mark a buffer as containing dirty metadata 948 * @handle: transaction to add buffer to. 949 * @bh: buffer to mark 950 * 951 * mark dirty metadata which needs to be journaled as part of the current 952 * transaction. 953 * 954 * The buffer is placed on the transaction's metadata list and is marked 955 * as belonging to the transaction. 956 * 957 * Returns error number or 0 on success. 958 * 959 * Special care needs to be taken if the buffer already belongs to the 960 * current committing transaction (in which case we should have frozen 961 * data present for that commit). In that case, we don't relink the 962 * buffer: that only gets done when the old transaction finally 963 * completes its commit. 964 */ 965 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh) 966 { 967 transaction_t *transaction = handle->h_transaction; 968 journal_t *journal = transaction->t_journal; 969 struct journal_head *jh = bh2jh(bh); 970 971 jbd_debug(5, "journal_head %p\n", jh); 972 JBUFFER_TRACE(jh, "entry"); 973 if (is_handle_aborted(handle)) 974 goto out; 975 976 jbd_lock_bh_state(bh); 977 978 if (jh->b_modified == 0) { 979 /* 980 * This buffer's got modified and becoming part 981 * of the transaction. This needs to be done 982 * once a transaction -bzzz 983 */ 984 jh->b_modified = 1; 985 J_ASSERT_JH(jh, handle->h_buffer_credits > 0); 986 handle->h_buffer_credits--; 987 } 988 989 /* 990 * fastpath, to avoid expensive locking. If this buffer is already 991 * on the running transaction's metadata list there is nothing to do. 992 * Nobody can take it off again because there is a handle open. 993 * I _think_ we're OK here with SMP barriers - a mistaken decision will 994 * result in this test being false, so we go in and take the locks. 995 */ 996 if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) { 997 JBUFFER_TRACE(jh, "fastpath"); 998 J_ASSERT_JH(jh, jh->b_transaction == 999 journal->j_running_transaction); 1000 goto out_unlock_bh; 1001 } 1002 1003 set_buffer_jbddirty(bh); 1004 1005 /* 1006 * Metadata already on the current transaction list doesn't 1007 * need to be filed. Metadata on another transaction's list must 1008 * be committing, and will be refiled once the commit completes: 1009 * leave it alone for now. 1010 */ 1011 if (jh->b_transaction != transaction) { 1012 JBUFFER_TRACE(jh, "already on other transaction"); 1013 J_ASSERT_JH(jh, jh->b_transaction == 1014 journal->j_committing_transaction); 1015 J_ASSERT_JH(jh, jh->b_next_transaction == transaction); 1016 /* And this case is illegal: we can't reuse another 1017 * transaction's data buffer, ever. */ 1018 goto out_unlock_bh; 1019 } 1020 1021 /* That test should have eliminated the following case: */ 1022 J_ASSERT_JH(jh, jh->b_frozen_data == NULL); 1023 1024 JBUFFER_TRACE(jh, "file as BJ_Metadata"); 1025 spin_lock(&journal->j_list_lock); 1026 __jbd2_journal_file_buffer(jh, handle->h_transaction, BJ_Metadata); 1027 spin_unlock(&journal->j_list_lock); 1028 out_unlock_bh: 1029 jbd_unlock_bh_state(bh); 1030 out: 1031 JBUFFER_TRACE(jh, "exit"); 1032 return 0; 1033 } 1034 1035 /* 1036 * jbd2_journal_release_buffer: undo a get_write_access without any buffer 1037 * updates, if the update decided in the end that it didn't need access. 1038 * 1039 */ 1040 void 1041 jbd2_journal_release_buffer(handle_t *handle, struct buffer_head *bh) 1042 { 1043 BUFFER_TRACE(bh, "entry"); 1044 } 1045 1046 /** 1047 * void jbd2_journal_forget() - bforget() for potentially-journaled buffers. 1048 * @handle: transaction handle 1049 * @bh: bh to 'forget' 1050 * 1051 * We can only do the bforget if there are no commits pending against the 1052 * buffer. If the buffer is dirty in the current running transaction we 1053 * can safely unlink it. 1054 * 1055 * bh may not be a journalled buffer at all - it may be a non-JBD 1056 * buffer which came off the hashtable. Check for this. 1057 * 1058 * Decrements bh->b_count by one. 1059 * 1060 * Allow this call even if the handle has aborted --- it may be part of 1061 * the caller's cleanup after an abort. 1062 */ 1063 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh) 1064 { 1065 transaction_t *transaction = handle->h_transaction; 1066 journal_t *journal = transaction->t_journal; 1067 struct journal_head *jh; 1068 int drop_reserve = 0; 1069 int err = 0; 1070 int was_modified = 0; 1071 1072 BUFFER_TRACE(bh, "entry"); 1073 1074 jbd_lock_bh_state(bh); 1075 spin_lock(&journal->j_list_lock); 1076 1077 if (!buffer_jbd(bh)) 1078 goto not_jbd; 1079 jh = bh2jh(bh); 1080 1081 /* Critical error: attempting to delete a bitmap buffer, maybe? 1082 * Don't do any jbd operations, and return an error. */ 1083 if (!J_EXPECT_JH(jh, !jh->b_committed_data, 1084 "inconsistent data on disk")) { 1085 err = -EIO; 1086 goto not_jbd; 1087 } 1088 1089 /* keep track of wether or not this transaction modified us */ 1090 was_modified = jh->b_modified; 1091 1092 /* 1093 * The buffer's going from the transaction, we must drop 1094 * all references -bzzz 1095 */ 1096 jh->b_modified = 0; 1097 1098 if (jh->b_transaction == handle->h_transaction) { 1099 J_ASSERT_JH(jh, !jh->b_frozen_data); 1100 1101 /* If we are forgetting a buffer which is already part 1102 * of this transaction, then we can just drop it from 1103 * the transaction immediately. */ 1104 clear_buffer_dirty(bh); 1105 clear_buffer_jbddirty(bh); 1106 1107 JBUFFER_TRACE(jh, "belongs to current transaction: unfile"); 1108 1109 /* 1110 * we only want to drop a reference if this transaction 1111 * modified the buffer 1112 */ 1113 if (was_modified) 1114 drop_reserve = 1; 1115 1116 /* 1117 * We are no longer going to journal this buffer. 1118 * However, the commit of this transaction is still 1119 * important to the buffer: the delete that we are now 1120 * processing might obsolete an old log entry, so by 1121 * committing, we can satisfy the buffer's checkpoint. 1122 * 1123 * So, if we have a checkpoint on the buffer, we should 1124 * now refile the buffer on our BJ_Forget list so that 1125 * we know to remove the checkpoint after we commit. 1126 */ 1127 1128 if (jh->b_cp_transaction) { 1129 __jbd2_journal_temp_unlink_buffer(jh); 1130 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1131 } else { 1132 __jbd2_journal_unfile_buffer(jh); 1133 jbd2_journal_remove_journal_head(bh); 1134 __brelse(bh); 1135 if (!buffer_jbd(bh)) { 1136 spin_unlock(&journal->j_list_lock); 1137 jbd_unlock_bh_state(bh); 1138 __bforget(bh); 1139 goto drop; 1140 } 1141 } 1142 } else if (jh->b_transaction) { 1143 J_ASSERT_JH(jh, (jh->b_transaction == 1144 journal->j_committing_transaction)); 1145 /* However, if the buffer is still owned by a prior 1146 * (committing) transaction, we can't drop it yet... */ 1147 JBUFFER_TRACE(jh, "belongs to older transaction"); 1148 /* ... but we CAN drop it from the new transaction if we 1149 * have also modified it since the original commit. */ 1150 1151 if (jh->b_next_transaction) { 1152 J_ASSERT(jh->b_next_transaction == transaction); 1153 jh->b_next_transaction = NULL; 1154 1155 /* 1156 * only drop a reference if this transaction modified 1157 * the buffer 1158 */ 1159 if (was_modified) 1160 drop_reserve = 1; 1161 } 1162 } 1163 1164 not_jbd: 1165 spin_unlock(&journal->j_list_lock); 1166 jbd_unlock_bh_state(bh); 1167 __brelse(bh); 1168 drop: 1169 if (drop_reserve) { 1170 /* no need to reserve log space for this block -bzzz */ 1171 handle->h_buffer_credits++; 1172 } 1173 return err; 1174 } 1175 1176 /** 1177 * int jbd2_journal_stop() - complete a transaction 1178 * @handle: tranaction to complete. 1179 * 1180 * All done for a particular handle. 1181 * 1182 * There is not much action needed here. We just return any remaining 1183 * buffer credits to the transaction and remove the handle. The only 1184 * complication is that we need to start a commit operation if the 1185 * filesystem is marked for synchronous update. 1186 * 1187 * jbd2_journal_stop itself will not usually return an error, but it may 1188 * do so in unusual circumstances. In particular, expect it to 1189 * return -EIO if a jbd2_journal_abort has been executed since the 1190 * transaction began. 1191 */ 1192 int jbd2_journal_stop(handle_t *handle) 1193 { 1194 transaction_t *transaction = handle->h_transaction; 1195 journal_t *journal = transaction->t_journal; 1196 int old_handle_count, err; 1197 pid_t pid; 1198 1199 J_ASSERT(journal_current_handle() == handle); 1200 1201 if (is_handle_aborted(handle)) 1202 err = -EIO; 1203 else { 1204 J_ASSERT(transaction->t_updates > 0); 1205 err = 0; 1206 } 1207 1208 if (--handle->h_ref > 0) { 1209 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1, 1210 handle->h_ref); 1211 return err; 1212 } 1213 1214 jbd_debug(4, "Handle %p going down\n", handle); 1215 1216 /* 1217 * Implement synchronous transaction batching. If the handle 1218 * was synchronous, don't force a commit immediately. Let's 1219 * yield and let another thread piggyback onto this transaction. 1220 * Keep doing that while new threads continue to arrive. 1221 * It doesn't cost much - we're about to run a commit and sleep 1222 * on IO anyway. Speeds up many-threaded, many-dir operations 1223 * by 30x or more... 1224 * 1225 * But don't do this if this process was the most recent one to 1226 * perform a synchronous write. We do this to detect the case where a 1227 * single process is doing a stream of sync writes. No point in waiting 1228 * for joiners in that case. 1229 */ 1230 pid = current->pid; 1231 if (handle->h_sync && journal->j_last_sync_writer != pid) { 1232 journal->j_last_sync_writer = pid; 1233 do { 1234 old_handle_count = transaction->t_handle_count; 1235 schedule_timeout_uninterruptible(1); 1236 } while (old_handle_count != transaction->t_handle_count); 1237 } 1238 1239 current->journal_info = NULL; 1240 spin_lock(&journal->j_state_lock); 1241 spin_lock(&transaction->t_handle_lock); 1242 transaction->t_outstanding_credits -= handle->h_buffer_credits; 1243 transaction->t_updates--; 1244 if (!transaction->t_updates) { 1245 wake_up(&journal->j_wait_updates); 1246 if (journal->j_barrier_count) 1247 wake_up(&journal->j_wait_transaction_locked); 1248 } 1249 1250 /* 1251 * If the handle is marked SYNC, we need to set another commit 1252 * going! We also want to force a commit if the current 1253 * transaction is occupying too much of the log, or if the 1254 * transaction is too old now. 1255 */ 1256 if (handle->h_sync || 1257 transaction->t_outstanding_credits > 1258 journal->j_max_transaction_buffers || 1259 time_after_eq(jiffies, transaction->t_expires)) { 1260 /* Do this even for aborted journals: an abort still 1261 * completes the commit thread, it just doesn't write 1262 * anything to disk. */ 1263 tid_t tid = transaction->t_tid; 1264 1265 spin_unlock(&transaction->t_handle_lock); 1266 jbd_debug(2, "transaction too old, requesting commit for " 1267 "handle %p\n", handle); 1268 /* This is non-blocking */ 1269 __jbd2_log_start_commit(journal, transaction->t_tid); 1270 spin_unlock(&journal->j_state_lock); 1271 1272 /* 1273 * Special case: JBD2_SYNC synchronous updates require us 1274 * to wait for the commit to complete. 1275 */ 1276 if (handle->h_sync && !(current->flags & PF_MEMALLOC)) 1277 err = jbd2_log_wait_commit(journal, tid); 1278 } else { 1279 spin_unlock(&transaction->t_handle_lock); 1280 spin_unlock(&journal->j_state_lock); 1281 } 1282 1283 lock_map_release(&handle->h_lockdep_map); 1284 1285 jbd2_free_handle(handle); 1286 return err; 1287 } 1288 1289 /** 1290 * int jbd2_journal_force_commit() - force any uncommitted transactions 1291 * @journal: journal to force 1292 * 1293 * For synchronous operations: force any uncommitted transactions 1294 * to disk. May seem kludgy, but it reuses all the handle batching 1295 * code in a very simple manner. 1296 */ 1297 int jbd2_journal_force_commit(journal_t *journal) 1298 { 1299 handle_t *handle; 1300 int ret; 1301 1302 handle = jbd2_journal_start(journal, 1); 1303 if (IS_ERR(handle)) { 1304 ret = PTR_ERR(handle); 1305 } else { 1306 handle->h_sync = 1; 1307 ret = jbd2_journal_stop(handle); 1308 } 1309 return ret; 1310 } 1311 1312 /* 1313 * 1314 * List management code snippets: various functions for manipulating the 1315 * transaction buffer lists. 1316 * 1317 */ 1318 1319 /* 1320 * Append a buffer to a transaction list, given the transaction's list head 1321 * pointer. 1322 * 1323 * j_list_lock is held. 1324 * 1325 * jbd_lock_bh_state(jh2bh(jh)) is held. 1326 */ 1327 1328 static inline void 1329 __blist_add_buffer(struct journal_head **list, struct journal_head *jh) 1330 { 1331 if (!*list) { 1332 jh->b_tnext = jh->b_tprev = jh; 1333 *list = jh; 1334 } else { 1335 /* Insert at the tail of the list to preserve order */ 1336 struct journal_head *first = *list, *last = first->b_tprev; 1337 jh->b_tprev = last; 1338 jh->b_tnext = first; 1339 last->b_tnext = first->b_tprev = jh; 1340 } 1341 } 1342 1343 /* 1344 * Remove a buffer from a transaction list, given the transaction's list 1345 * head pointer. 1346 * 1347 * Called with j_list_lock held, and the journal may not be locked. 1348 * 1349 * jbd_lock_bh_state(jh2bh(jh)) is held. 1350 */ 1351 1352 static inline void 1353 __blist_del_buffer(struct journal_head **list, struct journal_head *jh) 1354 { 1355 if (*list == jh) { 1356 *list = jh->b_tnext; 1357 if (*list == jh) 1358 *list = NULL; 1359 } 1360 jh->b_tprev->b_tnext = jh->b_tnext; 1361 jh->b_tnext->b_tprev = jh->b_tprev; 1362 } 1363 1364 /* 1365 * Remove a buffer from the appropriate transaction list. 1366 * 1367 * Note that this function can *change* the value of 1368 * bh->b_transaction->t_buffers, t_forget, t_iobuf_list, t_shadow_list, 1369 * t_log_list or t_reserved_list. If the caller is holding onto a copy of one 1370 * of these pointers, it could go bad. Generally the caller needs to re-read 1371 * the pointer from the transaction_t. 1372 * 1373 * Called under j_list_lock. The journal may not be locked. 1374 */ 1375 void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh) 1376 { 1377 struct journal_head **list = NULL; 1378 transaction_t *transaction; 1379 struct buffer_head *bh = jh2bh(jh); 1380 1381 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 1382 transaction = jh->b_transaction; 1383 if (transaction) 1384 assert_spin_locked(&transaction->t_journal->j_list_lock); 1385 1386 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 1387 if (jh->b_jlist != BJ_None) 1388 J_ASSERT_JH(jh, transaction != NULL); 1389 1390 switch (jh->b_jlist) { 1391 case BJ_None: 1392 return; 1393 case BJ_Metadata: 1394 transaction->t_nr_buffers--; 1395 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0); 1396 list = &transaction->t_buffers; 1397 break; 1398 case BJ_Forget: 1399 list = &transaction->t_forget; 1400 break; 1401 case BJ_IO: 1402 list = &transaction->t_iobuf_list; 1403 break; 1404 case BJ_Shadow: 1405 list = &transaction->t_shadow_list; 1406 break; 1407 case BJ_LogCtl: 1408 list = &transaction->t_log_list; 1409 break; 1410 case BJ_Reserved: 1411 list = &transaction->t_reserved_list; 1412 break; 1413 } 1414 1415 __blist_del_buffer(list, jh); 1416 jh->b_jlist = BJ_None; 1417 if (test_clear_buffer_jbddirty(bh)) 1418 mark_buffer_dirty(bh); /* Expose it to the VM */ 1419 } 1420 1421 void __jbd2_journal_unfile_buffer(struct journal_head *jh) 1422 { 1423 __jbd2_journal_temp_unlink_buffer(jh); 1424 jh->b_transaction = NULL; 1425 } 1426 1427 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh) 1428 { 1429 jbd_lock_bh_state(jh2bh(jh)); 1430 spin_lock(&journal->j_list_lock); 1431 __jbd2_journal_unfile_buffer(jh); 1432 spin_unlock(&journal->j_list_lock); 1433 jbd_unlock_bh_state(jh2bh(jh)); 1434 } 1435 1436 /* 1437 * Called from jbd2_journal_try_to_free_buffers(). 1438 * 1439 * Called under jbd_lock_bh_state(bh) 1440 */ 1441 static void 1442 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh) 1443 { 1444 struct journal_head *jh; 1445 1446 jh = bh2jh(bh); 1447 1448 if (buffer_locked(bh) || buffer_dirty(bh)) 1449 goto out; 1450 1451 if (jh->b_next_transaction != NULL) 1452 goto out; 1453 1454 spin_lock(&journal->j_list_lock); 1455 if (jh->b_cp_transaction != NULL && jh->b_transaction == NULL) { 1456 /* written-back checkpointed metadata buffer */ 1457 if (jh->b_jlist == BJ_None) { 1458 JBUFFER_TRACE(jh, "remove from checkpoint list"); 1459 __jbd2_journal_remove_checkpoint(jh); 1460 jbd2_journal_remove_journal_head(bh); 1461 __brelse(bh); 1462 } 1463 } 1464 spin_unlock(&journal->j_list_lock); 1465 out: 1466 return; 1467 } 1468 1469 /* 1470 * jbd2_journal_try_to_free_buffers() could race with 1471 * jbd2_journal_commit_transaction(). The later might still hold the 1472 * reference count to the buffers when inspecting them on 1473 * t_syncdata_list or t_locked_list. 1474 * 1475 * jbd2_journal_try_to_free_buffers() will call this function to 1476 * wait for the current transaction to finish syncing data buffers, before 1477 * try to free that buffer. 1478 * 1479 * Called with journal->j_state_lock hold. 1480 */ 1481 static void jbd2_journal_wait_for_transaction_sync_data(journal_t *journal) 1482 { 1483 transaction_t *transaction; 1484 tid_t tid; 1485 1486 spin_lock(&journal->j_state_lock); 1487 transaction = journal->j_committing_transaction; 1488 1489 if (!transaction) { 1490 spin_unlock(&journal->j_state_lock); 1491 return; 1492 } 1493 1494 tid = transaction->t_tid; 1495 spin_unlock(&journal->j_state_lock); 1496 jbd2_log_wait_commit(journal, tid); 1497 } 1498 1499 /** 1500 * int jbd2_journal_try_to_free_buffers() - try to free page buffers. 1501 * @journal: journal for operation 1502 * @page: to try and free 1503 * @gfp_mask: we use the mask to detect how hard should we try to release 1504 * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to 1505 * release the buffers. 1506 * 1507 * 1508 * For all the buffers on this page, 1509 * if they are fully written out ordered data, move them onto BUF_CLEAN 1510 * so try_to_free_buffers() can reap them. 1511 * 1512 * This function returns non-zero if we wish try_to_free_buffers() 1513 * to be called. We do this if the page is releasable by try_to_free_buffers(). 1514 * We also do it if the page has locked or dirty buffers and the caller wants 1515 * us to perform sync or async writeout. 1516 * 1517 * This complicates JBD locking somewhat. We aren't protected by the 1518 * BKL here. We wish to remove the buffer from its committing or 1519 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer. 1520 * 1521 * This may *change* the value of transaction_t->t_datalist, so anyone 1522 * who looks at t_datalist needs to lock against this function. 1523 * 1524 * Even worse, someone may be doing a jbd2_journal_dirty_data on this 1525 * buffer. So we need to lock against that. jbd2_journal_dirty_data() 1526 * will come out of the lock with the buffer dirty, which makes it 1527 * ineligible for release here. 1528 * 1529 * Who else is affected by this? hmm... Really the only contender 1530 * is do_get_write_access() - it could be looking at the buffer while 1531 * journal_try_to_free_buffer() is changing its state. But that 1532 * cannot happen because we never reallocate freed data as metadata 1533 * while the data is part of a transaction. Yes? 1534 * 1535 * Return 0 on failure, 1 on success 1536 */ 1537 int jbd2_journal_try_to_free_buffers(journal_t *journal, 1538 struct page *page, gfp_t gfp_mask) 1539 { 1540 struct buffer_head *head; 1541 struct buffer_head *bh; 1542 int ret = 0; 1543 1544 J_ASSERT(PageLocked(page)); 1545 1546 head = page_buffers(page); 1547 bh = head; 1548 do { 1549 struct journal_head *jh; 1550 1551 /* 1552 * We take our own ref against the journal_head here to avoid 1553 * having to add tons of locking around each instance of 1554 * jbd2_journal_remove_journal_head() and 1555 * jbd2_journal_put_journal_head(). 1556 */ 1557 jh = jbd2_journal_grab_journal_head(bh); 1558 if (!jh) 1559 continue; 1560 1561 jbd_lock_bh_state(bh); 1562 __journal_try_to_free_buffer(journal, bh); 1563 jbd2_journal_put_journal_head(jh); 1564 jbd_unlock_bh_state(bh); 1565 if (buffer_jbd(bh)) 1566 goto busy; 1567 } while ((bh = bh->b_this_page) != head); 1568 1569 ret = try_to_free_buffers(page); 1570 1571 /* 1572 * There are a number of places where jbd2_journal_try_to_free_buffers() 1573 * could race with jbd2_journal_commit_transaction(), the later still 1574 * holds the reference to the buffers to free while processing them. 1575 * try_to_free_buffers() failed to free those buffers. Some of the 1576 * caller of releasepage() request page buffers to be dropped, otherwise 1577 * treat the fail-to-free as errors (such as generic_file_direct_IO()) 1578 * 1579 * So, if the caller of try_to_release_page() wants the synchronous 1580 * behaviour(i.e make sure buffers are dropped upon return), 1581 * let's wait for the current transaction to finish flush of 1582 * dirty data buffers, then try to free those buffers again, 1583 * with the journal locked. 1584 */ 1585 if (ret == 0 && (gfp_mask & __GFP_WAIT) && (gfp_mask & __GFP_FS)) { 1586 jbd2_journal_wait_for_transaction_sync_data(journal); 1587 ret = try_to_free_buffers(page); 1588 } 1589 1590 busy: 1591 return ret; 1592 } 1593 1594 /* 1595 * This buffer is no longer needed. If it is on an older transaction's 1596 * checkpoint list we need to record it on this transaction's forget list 1597 * to pin this buffer (and hence its checkpointing transaction) down until 1598 * this transaction commits. If the buffer isn't on a checkpoint list, we 1599 * release it. 1600 * Returns non-zero if JBD no longer has an interest in the buffer. 1601 * 1602 * Called under j_list_lock. 1603 * 1604 * Called under jbd_lock_bh_state(bh). 1605 */ 1606 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction) 1607 { 1608 int may_free = 1; 1609 struct buffer_head *bh = jh2bh(jh); 1610 1611 __jbd2_journal_unfile_buffer(jh); 1612 1613 if (jh->b_cp_transaction) { 1614 JBUFFER_TRACE(jh, "on running+cp transaction"); 1615 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1616 clear_buffer_jbddirty(bh); 1617 may_free = 0; 1618 } else { 1619 JBUFFER_TRACE(jh, "on running transaction"); 1620 jbd2_journal_remove_journal_head(bh); 1621 __brelse(bh); 1622 } 1623 return may_free; 1624 } 1625 1626 /* 1627 * jbd2_journal_invalidatepage 1628 * 1629 * This code is tricky. It has a number of cases to deal with. 1630 * 1631 * There are two invariants which this code relies on: 1632 * 1633 * i_size must be updated on disk before we start calling invalidatepage on the 1634 * data. 1635 * 1636 * This is done in ext3 by defining an ext3_setattr method which 1637 * updates i_size before truncate gets going. By maintaining this 1638 * invariant, we can be sure that it is safe to throw away any buffers 1639 * attached to the current transaction: once the transaction commits, 1640 * we know that the data will not be needed. 1641 * 1642 * Note however that we can *not* throw away data belonging to the 1643 * previous, committing transaction! 1644 * 1645 * Any disk blocks which *are* part of the previous, committing 1646 * transaction (and which therefore cannot be discarded immediately) are 1647 * not going to be reused in the new running transaction 1648 * 1649 * The bitmap committed_data images guarantee this: any block which is 1650 * allocated in one transaction and removed in the next will be marked 1651 * as in-use in the committed_data bitmap, so cannot be reused until 1652 * the next transaction to delete the block commits. This means that 1653 * leaving committing buffers dirty is quite safe: the disk blocks 1654 * cannot be reallocated to a different file and so buffer aliasing is 1655 * not possible. 1656 * 1657 * 1658 * The above applies mainly to ordered data mode. In writeback mode we 1659 * don't make guarantees about the order in which data hits disk --- in 1660 * particular we don't guarantee that new dirty data is flushed before 1661 * transaction commit --- so it is always safe just to discard data 1662 * immediately in that mode. --sct 1663 */ 1664 1665 /* 1666 * The journal_unmap_buffer helper function returns zero if the buffer 1667 * concerned remains pinned as an anonymous buffer belonging to an older 1668 * transaction. 1669 * 1670 * We're outside-transaction here. Either or both of j_running_transaction 1671 * and j_committing_transaction may be NULL. 1672 */ 1673 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh) 1674 { 1675 transaction_t *transaction; 1676 struct journal_head *jh; 1677 int may_free = 1; 1678 int ret; 1679 1680 BUFFER_TRACE(bh, "entry"); 1681 1682 /* 1683 * It is safe to proceed here without the j_list_lock because the 1684 * buffers cannot be stolen by try_to_free_buffers as long as we are 1685 * holding the page lock. --sct 1686 */ 1687 1688 if (!buffer_jbd(bh)) 1689 goto zap_buffer_unlocked; 1690 1691 /* OK, we have data buffer in journaled mode */ 1692 spin_lock(&journal->j_state_lock); 1693 jbd_lock_bh_state(bh); 1694 spin_lock(&journal->j_list_lock); 1695 1696 jh = jbd2_journal_grab_journal_head(bh); 1697 if (!jh) 1698 goto zap_buffer_no_jh; 1699 1700 transaction = jh->b_transaction; 1701 if (transaction == NULL) { 1702 /* First case: not on any transaction. If it 1703 * has no checkpoint link, then we can zap it: 1704 * it's a writeback-mode buffer so we don't care 1705 * if it hits disk safely. */ 1706 if (!jh->b_cp_transaction) { 1707 JBUFFER_TRACE(jh, "not on any transaction: zap"); 1708 goto zap_buffer; 1709 } 1710 1711 if (!buffer_dirty(bh)) { 1712 /* bdflush has written it. We can drop it now */ 1713 goto zap_buffer; 1714 } 1715 1716 /* OK, it must be in the journal but still not 1717 * written fully to disk: it's metadata or 1718 * journaled data... */ 1719 1720 if (journal->j_running_transaction) { 1721 /* ... and once the current transaction has 1722 * committed, the buffer won't be needed any 1723 * longer. */ 1724 JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget"); 1725 ret = __dispose_buffer(jh, 1726 journal->j_running_transaction); 1727 jbd2_journal_put_journal_head(jh); 1728 spin_unlock(&journal->j_list_lock); 1729 jbd_unlock_bh_state(bh); 1730 spin_unlock(&journal->j_state_lock); 1731 return ret; 1732 } else { 1733 /* There is no currently-running transaction. So the 1734 * orphan record which we wrote for this file must have 1735 * passed into commit. We must attach this buffer to 1736 * the committing transaction, if it exists. */ 1737 if (journal->j_committing_transaction) { 1738 JBUFFER_TRACE(jh, "give to committing trans"); 1739 ret = __dispose_buffer(jh, 1740 journal->j_committing_transaction); 1741 jbd2_journal_put_journal_head(jh); 1742 spin_unlock(&journal->j_list_lock); 1743 jbd_unlock_bh_state(bh); 1744 spin_unlock(&journal->j_state_lock); 1745 return ret; 1746 } else { 1747 /* The orphan record's transaction has 1748 * committed. We can cleanse this buffer */ 1749 clear_buffer_jbddirty(bh); 1750 goto zap_buffer; 1751 } 1752 } 1753 } else if (transaction == journal->j_committing_transaction) { 1754 JBUFFER_TRACE(jh, "on committing transaction"); 1755 /* 1756 * If it is committing, we simply cannot touch it. We 1757 * can remove it's next_transaction pointer from the 1758 * running transaction if that is set, but nothing 1759 * else. */ 1760 set_buffer_freed(bh); 1761 if (jh->b_next_transaction) { 1762 J_ASSERT(jh->b_next_transaction == 1763 journal->j_running_transaction); 1764 jh->b_next_transaction = NULL; 1765 } 1766 jbd2_journal_put_journal_head(jh); 1767 spin_unlock(&journal->j_list_lock); 1768 jbd_unlock_bh_state(bh); 1769 spin_unlock(&journal->j_state_lock); 1770 return 0; 1771 } else { 1772 /* Good, the buffer belongs to the running transaction. 1773 * We are writing our own transaction's data, not any 1774 * previous one's, so it is safe to throw it away 1775 * (remember that we expect the filesystem to have set 1776 * i_size already for this truncate so recovery will not 1777 * expose the disk blocks we are discarding here.) */ 1778 J_ASSERT_JH(jh, transaction == journal->j_running_transaction); 1779 JBUFFER_TRACE(jh, "on running transaction"); 1780 may_free = __dispose_buffer(jh, transaction); 1781 } 1782 1783 zap_buffer: 1784 jbd2_journal_put_journal_head(jh); 1785 zap_buffer_no_jh: 1786 spin_unlock(&journal->j_list_lock); 1787 jbd_unlock_bh_state(bh); 1788 spin_unlock(&journal->j_state_lock); 1789 zap_buffer_unlocked: 1790 clear_buffer_dirty(bh); 1791 J_ASSERT_BH(bh, !buffer_jbddirty(bh)); 1792 clear_buffer_mapped(bh); 1793 clear_buffer_req(bh); 1794 clear_buffer_new(bh); 1795 bh->b_bdev = NULL; 1796 return may_free; 1797 } 1798 1799 /** 1800 * void jbd2_journal_invalidatepage() 1801 * @journal: journal to use for flush... 1802 * @page: page to flush 1803 * @offset: length of page to invalidate. 1804 * 1805 * Reap page buffers containing data after offset in page. 1806 * 1807 */ 1808 void jbd2_journal_invalidatepage(journal_t *journal, 1809 struct page *page, 1810 unsigned long offset) 1811 { 1812 struct buffer_head *head, *bh, *next; 1813 unsigned int curr_off = 0; 1814 int may_free = 1; 1815 1816 if (!PageLocked(page)) 1817 BUG(); 1818 if (!page_has_buffers(page)) 1819 return; 1820 1821 /* We will potentially be playing with lists other than just the 1822 * data lists (especially for journaled data mode), so be 1823 * cautious in our locking. */ 1824 1825 head = bh = page_buffers(page); 1826 do { 1827 unsigned int next_off = curr_off + bh->b_size; 1828 next = bh->b_this_page; 1829 1830 if (offset <= curr_off) { 1831 /* This block is wholly outside the truncation point */ 1832 lock_buffer(bh); 1833 may_free &= journal_unmap_buffer(journal, bh); 1834 unlock_buffer(bh); 1835 } 1836 curr_off = next_off; 1837 bh = next; 1838 1839 } while (bh != head); 1840 1841 if (!offset) { 1842 if (may_free && try_to_free_buffers(page)) 1843 J_ASSERT(!page_has_buffers(page)); 1844 } 1845 } 1846 1847 /* 1848 * File a buffer on the given transaction list. 1849 */ 1850 void __jbd2_journal_file_buffer(struct journal_head *jh, 1851 transaction_t *transaction, int jlist) 1852 { 1853 struct journal_head **list = NULL; 1854 int was_dirty = 0; 1855 struct buffer_head *bh = jh2bh(jh); 1856 1857 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 1858 assert_spin_locked(&transaction->t_journal->j_list_lock); 1859 1860 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 1861 J_ASSERT_JH(jh, jh->b_transaction == transaction || 1862 jh->b_transaction == NULL); 1863 1864 if (jh->b_transaction && jh->b_jlist == jlist) 1865 return; 1866 1867 /* The following list of buffer states needs to be consistent 1868 * with __jbd_unexpected_dirty_buffer()'s handling of dirty 1869 * state. */ 1870 1871 if (jlist == BJ_Metadata || jlist == BJ_Reserved || 1872 jlist == BJ_Shadow || jlist == BJ_Forget) { 1873 if (test_clear_buffer_dirty(bh) || 1874 test_clear_buffer_jbddirty(bh)) 1875 was_dirty = 1; 1876 } 1877 1878 if (jh->b_transaction) 1879 __jbd2_journal_temp_unlink_buffer(jh); 1880 jh->b_transaction = transaction; 1881 1882 switch (jlist) { 1883 case BJ_None: 1884 J_ASSERT_JH(jh, !jh->b_committed_data); 1885 J_ASSERT_JH(jh, !jh->b_frozen_data); 1886 return; 1887 case BJ_Metadata: 1888 transaction->t_nr_buffers++; 1889 list = &transaction->t_buffers; 1890 break; 1891 case BJ_Forget: 1892 list = &transaction->t_forget; 1893 break; 1894 case BJ_IO: 1895 list = &transaction->t_iobuf_list; 1896 break; 1897 case BJ_Shadow: 1898 list = &transaction->t_shadow_list; 1899 break; 1900 case BJ_LogCtl: 1901 list = &transaction->t_log_list; 1902 break; 1903 case BJ_Reserved: 1904 list = &transaction->t_reserved_list; 1905 break; 1906 } 1907 1908 __blist_add_buffer(list, jh); 1909 jh->b_jlist = jlist; 1910 1911 if (was_dirty) 1912 set_buffer_jbddirty(bh); 1913 } 1914 1915 void jbd2_journal_file_buffer(struct journal_head *jh, 1916 transaction_t *transaction, int jlist) 1917 { 1918 jbd_lock_bh_state(jh2bh(jh)); 1919 spin_lock(&transaction->t_journal->j_list_lock); 1920 __jbd2_journal_file_buffer(jh, transaction, jlist); 1921 spin_unlock(&transaction->t_journal->j_list_lock); 1922 jbd_unlock_bh_state(jh2bh(jh)); 1923 } 1924 1925 /* 1926 * Remove a buffer from its current buffer list in preparation for 1927 * dropping it from its current transaction entirely. If the buffer has 1928 * already started to be used by a subsequent transaction, refile the 1929 * buffer on that transaction's metadata list. 1930 * 1931 * Called under journal->j_list_lock 1932 * 1933 * Called under jbd_lock_bh_state(jh2bh(jh)) 1934 */ 1935 void __jbd2_journal_refile_buffer(struct journal_head *jh) 1936 { 1937 int was_dirty; 1938 struct buffer_head *bh = jh2bh(jh); 1939 1940 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 1941 if (jh->b_transaction) 1942 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock); 1943 1944 /* If the buffer is now unused, just drop it. */ 1945 if (jh->b_next_transaction == NULL) { 1946 __jbd2_journal_unfile_buffer(jh); 1947 return; 1948 } 1949 1950 /* 1951 * It has been modified by a later transaction: add it to the new 1952 * transaction's metadata list. 1953 */ 1954 1955 was_dirty = test_clear_buffer_jbddirty(bh); 1956 __jbd2_journal_temp_unlink_buffer(jh); 1957 jh->b_transaction = jh->b_next_transaction; 1958 jh->b_next_transaction = NULL; 1959 __jbd2_journal_file_buffer(jh, jh->b_transaction, 1960 jh->b_modified ? BJ_Metadata : BJ_Reserved); 1961 J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING); 1962 1963 if (was_dirty) 1964 set_buffer_jbddirty(bh); 1965 } 1966 1967 /* 1968 * For the unlocked version of this call, also make sure that any 1969 * hanging journal_head is cleaned up if necessary. 1970 * 1971 * __jbd2_journal_refile_buffer is usually called as part of a single locked 1972 * operation on a buffer_head, in which the caller is probably going to 1973 * be hooking the journal_head onto other lists. In that case it is up 1974 * to the caller to remove the journal_head if necessary. For the 1975 * unlocked jbd2_journal_refile_buffer call, the caller isn't going to be 1976 * doing anything else to the buffer so we need to do the cleanup 1977 * ourselves to avoid a jh leak. 1978 * 1979 * *** The journal_head may be freed by this call! *** 1980 */ 1981 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh) 1982 { 1983 struct buffer_head *bh = jh2bh(jh); 1984 1985 jbd_lock_bh_state(bh); 1986 spin_lock(&journal->j_list_lock); 1987 1988 __jbd2_journal_refile_buffer(jh); 1989 jbd_unlock_bh_state(bh); 1990 jbd2_journal_remove_journal_head(bh); 1991 1992 spin_unlock(&journal->j_list_lock); 1993 __brelse(bh); 1994 } 1995 1996 /* 1997 * File inode in the inode list of the handle's transaction 1998 */ 1999 int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode) 2000 { 2001 transaction_t *transaction = handle->h_transaction; 2002 journal_t *journal = transaction->t_journal; 2003 2004 if (is_handle_aborted(handle)) 2005 return -EIO; 2006 2007 jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino, 2008 transaction->t_tid); 2009 2010 /* 2011 * First check whether inode isn't already on the transaction's 2012 * lists without taking the lock. Note that this check is safe 2013 * without the lock as we cannot race with somebody removing inode 2014 * from the transaction. The reason is that we remove inode from the 2015 * transaction only in journal_release_jbd_inode() and when we commit 2016 * the transaction. We are guarded from the first case by holding 2017 * a reference to the inode. We are safe against the second case 2018 * because if jinode->i_transaction == transaction, commit code 2019 * cannot touch the transaction because we hold reference to it, 2020 * and if jinode->i_next_transaction == transaction, commit code 2021 * will only file the inode where we want it. 2022 */ 2023 if (jinode->i_transaction == transaction || 2024 jinode->i_next_transaction == transaction) 2025 return 0; 2026 2027 spin_lock(&journal->j_list_lock); 2028 2029 if (jinode->i_transaction == transaction || 2030 jinode->i_next_transaction == transaction) 2031 goto done; 2032 2033 /* On some different transaction's list - should be 2034 * the committing one */ 2035 if (jinode->i_transaction) { 2036 J_ASSERT(jinode->i_next_transaction == NULL); 2037 J_ASSERT(jinode->i_transaction == 2038 journal->j_committing_transaction); 2039 jinode->i_next_transaction = transaction; 2040 goto done; 2041 } 2042 /* Not on any transaction list... */ 2043 J_ASSERT(!jinode->i_next_transaction); 2044 jinode->i_transaction = transaction; 2045 list_add(&jinode->i_list, &transaction->t_inode_list); 2046 done: 2047 spin_unlock(&journal->j_list_lock); 2048 2049 return 0; 2050 } 2051 2052 /* 2053 * This function must be called when inode is journaled in ordered mode 2054 * before truncation happens. It starts writeout of truncated part in 2055 * case it is in the committing transaction so that we stand to ordered 2056 * mode consistency guarantees. 2057 */ 2058 int jbd2_journal_begin_ordered_truncate(struct jbd2_inode *inode, 2059 loff_t new_size) 2060 { 2061 journal_t *journal; 2062 transaction_t *commit_trans; 2063 int ret = 0; 2064 2065 if (!inode->i_transaction && !inode->i_next_transaction) 2066 goto out; 2067 journal = inode->i_transaction->t_journal; 2068 spin_lock(&journal->j_state_lock); 2069 commit_trans = journal->j_committing_transaction; 2070 spin_unlock(&journal->j_state_lock); 2071 if (inode->i_transaction == commit_trans) { 2072 ret = filemap_fdatawrite_range(inode->i_vfs_inode->i_mapping, 2073 new_size, LLONG_MAX); 2074 if (ret) 2075 jbd2_journal_abort(journal, ret); 2076 } 2077 out: 2078 return ret; 2079 } 2080