1 /* 2 * linux/fs/jbd2/transaction.c 3 * 4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 5 * 6 * Copyright 1998 Red Hat corp --- All Rights Reserved 7 * 8 * This file is part of the Linux kernel and is made available under 9 * the terms of the GNU General Public License, version 2, or at your 10 * option, any later version, incorporated herein by reference. 11 * 12 * Generic filesystem transaction handling code; part of the ext2fs 13 * journaling system. 14 * 15 * This file manages transactions (compound commits managed by the 16 * journaling code) and handles (individual atomic operations by the 17 * filesystem). 18 */ 19 20 #include <linux/time.h> 21 #include <linux/fs.h> 22 #include <linux/jbd2.h> 23 #include <linux/errno.h> 24 #include <linux/slab.h> 25 #include <linux/timer.h> 26 #include <linux/mm.h> 27 #include <linux/highmem.h> 28 #include <linux/hrtimer.h> 29 #include <linux/backing-dev.h> 30 #include <linux/module.h> 31 32 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh); 33 34 /* 35 * jbd2_get_transaction: obtain a new transaction_t object. 36 * 37 * Simply allocate and initialise a new transaction. Create it in 38 * RUNNING state and add it to the current journal (which should not 39 * have an existing running transaction: we only make a new transaction 40 * once we have started to commit the old one). 41 * 42 * Preconditions: 43 * The journal MUST be locked. We don't perform atomic mallocs on the 44 * new transaction and we can't block without protecting against other 45 * processes trying to touch the journal while it is in transition. 46 * 47 */ 48 49 static transaction_t * 50 jbd2_get_transaction(journal_t *journal, transaction_t *transaction) 51 { 52 transaction->t_journal = journal; 53 transaction->t_state = T_RUNNING; 54 transaction->t_start_time = ktime_get(); 55 transaction->t_tid = journal->j_transaction_sequence++; 56 transaction->t_expires = jiffies + journal->j_commit_interval; 57 spin_lock_init(&transaction->t_handle_lock); 58 atomic_set(&transaction->t_updates, 0); 59 atomic_set(&transaction->t_outstanding_credits, 0); 60 atomic_set(&transaction->t_handle_count, 0); 61 INIT_LIST_HEAD(&transaction->t_inode_list); 62 INIT_LIST_HEAD(&transaction->t_private_list); 63 64 /* Set up the commit timer for the new transaction. */ 65 journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires); 66 add_timer(&journal->j_commit_timer); 67 68 J_ASSERT(journal->j_running_transaction == NULL); 69 journal->j_running_transaction = transaction; 70 transaction->t_max_wait = 0; 71 transaction->t_start = jiffies; 72 73 return transaction; 74 } 75 76 /* 77 * Handle management. 78 * 79 * A handle_t is an object which represents a single atomic update to a 80 * filesystem, and which tracks all of the modifications which form part 81 * of that one update. 82 */ 83 84 /* 85 * Update transaction's maximum wait time, if debugging is enabled. 86 * 87 * In order for t_max_wait to be reliable, it must be protected by a 88 * lock. But doing so will mean that start_this_handle() can not be 89 * run in parallel on SMP systems, which limits our scalability. So 90 * unless debugging is enabled, we no longer update t_max_wait, which 91 * means that maximum wait time reported by the jbd2_run_stats 92 * tracepoint will always be zero. 93 */ 94 static inline void update_t_max_wait(transaction_t *transaction, 95 unsigned long ts) 96 { 97 #ifdef CONFIG_JBD2_DEBUG 98 if (jbd2_journal_enable_debug && 99 time_after(transaction->t_start, ts)) { 100 ts = jbd2_time_diff(ts, transaction->t_start); 101 spin_lock(&transaction->t_handle_lock); 102 if (ts > transaction->t_max_wait) 103 transaction->t_max_wait = ts; 104 spin_unlock(&transaction->t_handle_lock); 105 } 106 #endif 107 } 108 109 /* 110 * start_this_handle: Given a handle, deal with any locking or stalling 111 * needed to make sure that there is enough journal space for the handle 112 * to begin. Attach the handle to a transaction and set up the 113 * transaction's buffer credits. 114 */ 115 116 static int start_this_handle(journal_t *journal, handle_t *handle, 117 int gfp_mask) 118 { 119 transaction_t *transaction, *new_transaction = NULL; 120 tid_t tid; 121 int needed, need_to_start; 122 int nblocks = handle->h_buffer_credits; 123 unsigned long ts = jiffies; 124 125 if (nblocks > journal->j_max_transaction_buffers) { 126 printk(KERN_ERR "JBD: %s wants too many credits (%d > %d)\n", 127 current->comm, nblocks, 128 journal->j_max_transaction_buffers); 129 return -ENOSPC; 130 } 131 132 alloc_transaction: 133 if (!journal->j_running_transaction) { 134 new_transaction = kzalloc(sizeof(*new_transaction), gfp_mask); 135 if (!new_transaction) { 136 /* 137 * If __GFP_FS is not present, then we may be 138 * being called from inside the fs writeback 139 * layer, so we MUST NOT fail. Since 140 * __GFP_NOFAIL is going away, we will arrange 141 * to retry the allocation ourselves. 142 */ 143 if ((gfp_mask & __GFP_FS) == 0) { 144 congestion_wait(BLK_RW_ASYNC, HZ/50); 145 goto alloc_transaction; 146 } 147 return -ENOMEM; 148 } 149 } 150 151 jbd_debug(3, "New handle %p going live.\n", handle); 152 153 /* 154 * We need to hold j_state_lock until t_updates has been incremented, 155 * for proper journal barrier handling 156 */ 157 repeat: 158 read_lock(&journal->j_state_lock); 159 BUG_ON(journal->j_flags & JBD2_UNMOUNT); 160 if (is_journal_aborted(journal) || 161 (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) { 162 read_unlock(&journal->j_state_lock); 163 kfree(new_transaction); 164 return -EROFS; 165 } 166 167 /* Wait on the journal's transaction barrier if necessary */ 168 if (journal->j_barrier_count) { 169 read_unlock(&journal->j_state_lock); 170 wait_event(journal->j_wait_transaction_locked, 171 journal->j_barrier_count == 0); 172 goto repeat; 173 } 174 175 if (!journal->j_running_transaction) { 176 read_unlock(&journal->j_state_lock); 177 if (!new_transaction) 178 goto alloc_transaction; 179 write_lock(&journal->j_state_lock); 180 if (!journal->j_running_transaction) { 181 jbd2_get_transaction(journal, new_transaction); 182 new_transaction = NULL; 183 } 184 write_unlock(&journal->j_state_lock); 185 goto repeat; 186 } 187 188 transaction = journal->j_running_transaction; 189 190 /* 191 * If the current transaction is locked down for commit, wait for the 192 * lock to be released. 193 */ 194 if (transaction->t_state == T_LOCKED) { 195 DEFINE_WAIT(wait); 196 197 prepare_to_wait(&journal->j_wait_transaction_locked, 198 &wait, TASK_UNINTERRUPTIBLE); 199 read_unlock(&journal->j_state_lock); 200 schedule(); 201 finish_wait(&journal->j_wait_transaction_locked, &wait); 202 goto repeat; 203 } 204 205 /* 206 * If there is not enough space left in the log to write all potential 207 * buffers requested by this operation, we need to stall pending a log 208 * checkpoint to free some more log space. 209 */ 210 needed = atomic_add_return(nblocks, 211 &transaction->t_outstanding_credits); 212 213 if (needed > journal->j_max_transaction_buffers) { 214 /* 215 * If the current transaction is already too large, then start 216 * to commit it: we can then go back and attach this handle to 217 * a new transaction. 218 */ 219 DEFINE_WAIT(wait); 220 221 jbd_debug(2, "Handle %p starting new commit...\n", handle); 222 atomic_sub(nblocks, &transaction->t_outstanding_credits); 223 prepare_to_wait(&journal->j_wait_transaction_locked, &wait, 224 TASK_UNINTERRUPTIBLE); 225 tid = transaction->t_tid; 226 need_to_start = !tid_geq(journal->j_commit_request, tid); 227 read_unlock(&journal->j_state_lock); 228 if (need_to_start) 229 jbd2_log_start_commit(journal, tid); 230 schedule(); 231 finish_wait(&journal->j_wait_transaction_locked, &wait); 232 goto repeat; 233 } 234 235 /* 236 * The commit code assumes that it can get enough log space 237 * without forcing a checkpoint. This is *critical* for 238 * correctness: a checkpoint of a buffer which is also 239 * associated with a committing transaction creates a deadlock, 240 * so commit simply cannot force through checkpoints. 241 * 242 * We must therefore ensure the necessary space in the journal 243 * *before* starting to dirty potentially checkpointed buffers 244 * in the new transaction. 245 * 246 * The worst part is, any transaction currently committing can 247 * reduce the free space arbitrarily. Be careful to account for 248 * those buffers when checkpointing. 249 */ 250 251 /* 252 * @@@ AKPM: This seems rather over-defensive. We're giving commit 253 * a _lot_ of headroom: 1/4 of the journal plus the size of 254 * the committing transaction. Really, we only need to give it 255 * committing_transaction->t_outstanding_credits plus "enough" for 256 * the log control blocks. 257 * Also, this test is inconsistent with the matching one in 258 * jbd2_journal_extend(). 259 */ 260 if (__jbd2_log_space_left(journal) < jbd_space_needed(journal)) { 261 jbd_debug(2, "Handle %p waiting for checkpoint...\n", handle); 262 atomic_sub(nblocks, &transaction->t_outstanding_credits); 263 read_unlock(&journal->j_state_lock); 264 write_lock(&journal->j_state_lock); 265 if (__jbd2_log_space_left(journal) < jbd_space_needed(journal)) 266 __jbd2_log_wait_for_space(journal); 267 write_unlock(&journal->j_state_lock); 268 goto repeat; 269 } 270 271 /* OK, account for the buffers that this operation expects to 272 * use and add the handle to the running transaction. 273 */ 274 update_t_max_wait(transaction, ts); 275 handle->h_transaction = transaction; 276 atomic_inc(&transaction->t_updates); 277 atomic_inc(&transaction->t_handle_count); 278 jbd_debug(4, "Handle %p given %d credits (total %d, free %d)\n", 279 handle, nblocks, 280 atomic_read(&transaction->t_outstanding_credits), 281 __jbd2_log_space_left(journal)); 282 read_unlock(&journal->j_state_lock); 283 284 lock_map_acquire(&handle->h_lockdep_map); 285 kfree(new_transaction); 286 return 0; 287 } 288 289 static struct lock_class_key jbd2_handle_key; 290 291 /* Allocate a new handle. This should probably be in a slab... */ 292 static handle_t *new_handle(int nblocks) 293 { 294 handle_t *handle = jbd2_alloc_handle(GFP_NOFS); 295 if (!handle) 296 return NULL; 297 memset(handle, 0, sizeof(*handle)); 298 handle->h_buffer_credits = nblocks; 299 handle->h_ref = 1; 300 301 lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle", 302 &jbd2_handle_key, 0); 303 304 return handle; 305 } 306 307 /** 308 * handle_t *jbd2_journal_start() - Obtain a new handle. 309 * @journal: Journal to start transaction on. 310 * @nblocks: number of block buffer we might modify 311 * 312 * We make sure that the transaction can guarantee at least nblocks of 313 * modified buffers in the log. We block until the log can guarantee 314 * that much space. 315 * 316 * This function is visible to journal users (like ext3fs), so is not 317 * called with the journal already locked. 318 * 319 * Return a pointer to a newly allocated handle, or an ERR_PTR() value 320 * on failure. 321 */ 322 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int gfp_mask) 323 { 324 handle_t *handle = journal_current_handle(); 325 int err; 326 327 if (!journal) 328 return ERR_PTR(-EROFS); 329 330 if (handle) { 331 J_ASSERT(handle->h_transaction->t_journal == journal); 332 handle->h_ref++; 333 return handle; 334 } 335 336 handle = new_handle(nblocks); 337 if (!handle) 338 return ERR_PTR(-ENOMEM); 339 340 current->journal_info = handle; 341 342 err = start_this_handle(journal, handle, gfp_mask); 343 if (err < 0) { 344 jbd2_free_handle(handle); 345 current->journal_info = NULL; 346 handle = ERR_PTR(err); 347 } 348 return handle; 349 } 350 EXPORT_SYMBOL(jbd2__journal_start); 351 352 353 handle_t *jbd2_journal_start(journal_t *journal, int nblocks) 354 { 355 return jbd2__journal_start(journal, nblocks, GFP_NOFS); 356 } 357 EXPORT_SYMBOL(jbd2_journal_start); 358 359 360 /** 361 * int jbd2_journal_extend() - extend buffer credits. 362 * @handle: handle to 'extend' 363 * @nblocks: nr blocks to try to extend by. 364 * 365 * Some transactions, such as large extends and truncates, can be done 366 * atomically all at once or in several stages. The operation requests 367 * a credit for a number of buffer modications in advance, but can 368 * extend its credit if it needs more. 369 * 370 * jbd2_journal_extend tries to give the running handle more buffer credits. 371 * It does not guarantee that allocation - this is a best-effort only. 372 * The calling process MUST be able to deal cleanly with a failure to 373 * extend here. 374 * 375 * Return 0 on success, non-zero on failure. 376 * 377 * return code < 0 implies an error 378 * return code > 0 implies normal transaction-full status. 379 */ 380 int jbd2_journal_extend(handle_t *handle, int nblocks) 381 { 382 transaction_t *transaction = handle->h_transaction; 383 journal_t *journal = transaction->t_journal; 384 int result; 385 int wanted; 386 387 result = -EIO; 388 if (is_handle_aborted(handle)) 389 goto out; 390 391 result = 1; 392 393 read_lock(&journal->j_state_lock); 394 395 /* Don't extend a locked-down transaction! */ 396 if (handle->h_transaction->t_state != T_RUNNING) { 397 jbd_debug(3, "denied handle %p %d blocks: " 398 "transaction not running\n", handle, nblocks); 399 goto error_out; 400 } 401 402 spin_lock(&transaction->t_handle_lock); 403 wanted = atomic_read(&transaction->t_outstanding_credits) + nblocks; 404 405 if (wanted > journal->j_max_transaction_buffers) { 406 jbd_debug(3, "denied handle %p %d blocks: " 407 "transaction too large\n", handle, nblocks); 408 goto unlock; 409 } 410 411 if (wanted > __jbd2_log_space_left(journal)) { 412 jbd_debug(3, "denied handle %p %d blocks: " 413 "insufficient log space\n", handle, nblocks); 414 goto unlock; 415 } 416 417 handle->h_buffer_credits += nblocks; 418 atomic_add(nblocks, &transaction->t_outstanding_credits); 419 result = 0; 420 421 jbd_debug(3, "extended handle %p by %d\n", handle, nblocks); 422 unlock: 423 spin_unlock(&transaction->t_handle_lock); 424 error_out: 425 read_unlock(&journal->j_state_lock); 426 out: 427 return result; 428 } 429 430 431 /** 432 * int jbd2_journal_restart() - restart a handle . 433 * @handle: handle to restart 434 * @nblocks: nr credits requested 435 * 436 * Restart a handle for a multi-transaction filesystem 437 * operation. 438 * 439 * If the jbd2_journal_extend() call above fails to grant new buffer credits 440 * to a running handle, a call to jbd2_journal_restart will commit the 441 * handle's transaction so far and reattach the handle to a new 442 * transaction capabable of guaranteeing the requested number of 443 * credits. 444 */ 445 int jbd2__journal_restart(handle_t *handle, int nblocks, int gfp_mask) 446 { 447 transaction_t *transaction = handle->h_transaction; 448 journal_t *journal = transaction->t_journal; 449 tid_t tid; 450 int need_to_start, ret; 451 452 /* If we've had an abort of any type, don't even think about 453 * actually doing the restart! */ 454 if (is_handle_aborted(handle)) 455 return 0; 456 457 /* 458 * First unlink the handle from its current transaction, and start the 459 * commit on that. 460 */ 461 J_ASSERT(atomic_read(&transaction->t_updates) > 0); 462 J_ASSERT(journal_current_handle() == handle); 463 464 read_lock(&journal->j_state_lock); 465 spin_lock(&transaction->t_handle_lock); 466 atomic_sub(handle->h_buffer_credits, 467 &transaction->t_outstanding_credits); 468 if (atomic_dec_and_test(&transaction->t_updates)) 469 wake_up(&journal->j_wait_updates); 470 spin_unlock(&transaction->t_handle_lock); 471 472 jbd_debug(2, "restarting handle %p\n", handle); 473 tid = transaction->t_tid; 474 need_to_start = !tid_geq(journal->j_commit_request, tid); 475 read_unlock(&journal->j_state_lock); 476 if (need_to_start) 477 jbd2_log_start_commit(journal, tid); 478 479 lock_map_release(&handle->h_lockdep_map); 480 handle->h_buffer_credits = nblocks; 481 ret = start_this_handle(journal, handle, gfp_mask); 482 return ret; 483 } 484 EXPORT_SYMBOL(jbd2__journal_restart); 485 486 487 int jbd2_journal_restart(handle_t *handle, int nblocks) 488 { 489 return jbd2__journal_restart(handle, nblocks, GFP_NOFS); 490 } 491 EXPORT_SYMBOL(jbd2_journal_restart); 492 493 /** 494 * void jbd2_journal_lock_updates () - establish a transaction barrier. 495 * @journal: Journal to establish a barrier on. 496 * 497 * This locks out any further updates from being started, and blocks 498 * until all existing updates have completed, returning only once the 499 * journal is in a quiescent state with no updates running. 500 * 501 * The journal lock should not be held on entry. 502 */ 503 void jbd2_journal_lock_updates(journal_t *journal) 504 { 505 DEFINE_WAIT(wait); 506 507 write_lock(&journal->j_state_lock); 508 ++journal->j_barrier_count; 509 510 /* Wait until there are no running updates */ 511 while (1) { 512 transaction_t *transaction = journal->j_running_transaction; 513 514 if (!transaction) 515 break; 516 517 spin_lock(&transaction->t_handle_lock); 518 if (!atomic_read(&transaction->t_updates)) { 519 spin_unlock(&transaction->t_handle_lock); 520 break; 521 } 522 prepare_to_wait(&journal->j_wait_updates, &wait, 523 TASK_UNINTERRUPTIBLE); 524 spin_unlock(&transaction->t_handle_lock); 525 write_unlock(&journal->j_state_lock); 526 schedule(); 527 finish_wait(&journal->j_wait_updates, &wait); 528 write_lock(&journal->j_state_lock); 529 } 530 write_unlock(&journal->j_state_lock); 531 532 /* 533 * We have now established a barrier against other normal updates, but 534 * we also need to barrier against other jbd2_journal_lock_updates() calls 535 * to make sure that we serialise special journal-locked operations 536 * too. 537 */ 538 mutex_lock(&journal->j_barrier); 539 } 540 541 /** 542 * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier 543 * @journal: Journal to release the barrier on. 544 * 545 * Release a transaction barrier obtained with jbd2_journal_lock_updates(). 546 * 547 * Should be called without the journal lock held. 548 */ 549 void jbd2_journal_unlock_updates (journal_t *journal) 550 { 551 J_ASSERT(journal->j_barrier_count != 0); 552 553 mutex_unlock(&journal->j_barrier); 554 write_lock(&journal->j_state_lock); 555 --journal->j_barrier_count; 556 write_unlock(&journal->j_state_lock); 557 wake_up(&journal->j_wait_transaction_locked); 558 } 559 560 static void warn_dirty_buffer(struct buffer_head *bh) 561 { 562 char b[BDEVNAME_SIZE]; 563 564 printk(KERN_WARNING 565 "JBD: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). " 566 "There's a risk of filesystem corruption in case of system " 567 "crash.\n", 568 bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr); 569 } 570 571 /* 572 * If the buffer is already part of the current transaction, then there 573 * is nothing we need to do. If it is already part of a prior 574 * transaction which we are still committing to disk, then we need to 575 * make sure that we do not overwrite the old copy: we do copy-out to 576 * preserve the copy going to disk. We also account the buffer against 577 * the handle's metadata buffer credits (unless the buffer is already 578 * part of the transaction, that is). 579 * 580 */ 581 static int 582 do_get_write_access(handle_t *handle, struct journal_head *jh, 583 int force_copy) 584 { 585 struct buffer_head *bh; 586 transaction_t *transaction; 587 journal_t *journal; 588 int error; 589 char *frozen_buffer = NULL; 590 int need_copy = 0; 591 592 if (is_handle_aborted(handle)) 593 return -EROFS; 594 595 transaction = handle->h_transaction; 596 journal = transaction->t_journal; 597 598 jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy); 599 600 JBUFFER_TRACE(jh, "entry"); 601 repeat: 602 bh = jh2bh(jh); 603 604 /* @@@ Need to check for errors here at some point. */ 605 606 lock_buffer(bh); 607 jbd_lock_bh_state(bh); 608 609 /* We now hold the buffer lock so it is safe to query the buffer 610 * state. Is the buffer dirty? 611 * 612 * If so, there are two possibilities. The buffer may be 613 * non-journaled, and undergoing a quite legitimate writeback. 614 * Otherwise, it is journaled, and we don't expect dirty buffers 615 * in that state (the buffers should be marked JBD_Dirty 616 * instead.) So either the IO is being done under our own 617 * control and this is a bug, or it's a third party IO such as 618 * dump(8) (which may leave the buffer scheduled for read --- 619 * ie. locked but not dirty) or tune2fs (which may actually have 620 * the buffer dirtied, ugh.) */ 621 622 if (buffer_dirty(bh)) { 623 /* 624 * First question: is this buffer already part of the current 625 * transaction or the existing committing transaction? 626 */ 627 if (jh->b_transaction) { 628 J_ASSERT_JH(jh, 629 jh->b_transaction == transaction || 630 jh->b_transaction == 631 journal->j_committing_transaction); 632 if (jh->b_next_transaction) 633 J_ASSERT_JH(jh, jh->b_next_transaction == 634 transaction); 635 warn_dirty_buffer(bh); 636 } 637 /* 638 * In any case we need to clean the dirty flag and we must 639 * do it under the buffer lock to be sure we don't race 640 * with running write-out. 641 */ 642 JBUFFER_TRACE(jh, "Journalling dirty buffer"); 643 clear_buffer_dirty(bh); 644 set_buffer_jbddirty(bh); 645 } 646 647 unlock_buffer(bh); 648 649 error = -EROFS; 650 if (is_handle_aborted(handle)) { 651 jbd_unlock_bh_state(bh); 652 goto out; 653 } 654 error = 0; 655 656 /* 657 * The buffer is already part of this transaction if b_transaction or 658 * b_next_transaction points to it 659 */ 660 if (jh->b_transaction == transaction || 661 jh->b_next_transaction == transaction) 662 goto done; 663 664 /* 665 * this is the first time this transaction is touching this buffer, 666 * reset the modified flag 667 */ 668 jh->b_modified = 0; 669 670 /* 671 * If there is already a copy-out version of this buffer, then we don't 672 * need to make another one 673 */ 674 if (jh->b_frozen_data) { 675 JBUFFER_TRACE(jh, "has frozen data"); 676 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 677 jh->b_next_transaction = transaction; 678 goto done; 679 } 680 681 /* Is there data here we need to preserve? */ 682 683 if (jh->b_transaction && jh->b_transaction != transaction) { 684 JBUFFER_TRACE(jh, "owned by older transaction"); 685 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 686 J_ASSERT_JH(jh, jh->b_transaction == 687 journal->j_committing_transaction); 688 689 /* There is one case we have to be very careful about. 690 * If the committing transaction is currently writing 691 * this buffer out to disk and has NOT made a copy-out, 692 * then we cannot modify the buffer contents at all 693 * right now. The essence of copy-out is that it is the 694 * extra copy, not the primary copy, which gets 695 * journaled. If the primary copy is already going to 696 * disk then we cannot do copy-out here. */ 697 698 if (jh->b_jlist == BJ_Shadow) { 699 DEFINE_WAIT_BIT(wait, &bh->b_state, BH_Unshadow); 700 wait_queue_head_t *wqh; 701 702 wqh = bit_waitqueue(&bh->b_state, BH_Unshadow); 703 704 JBUFFER_TRACE(jh, "on shadow: sleep"); 705 jbd_unlock_bh_state(bh); 706 /* commit wakes up all shadow buffers after IO */ 707 for ( ; ; ) { 708 prepare_to_wait(wqh, &wait.wait, 709 TASK_UNINTERRUPTIBLE); 710 if (jh->b_jlist != BJ_Shadow) 711 break; 712 schedule(); 713 } 714 finish_wait(wqh, &wait.wait); 715 goto repeat; 716 } 717 718 /* Only do the copy if the currently-owning transaction 719 * still needs it. If it is on the Forget list, the 720 * committing transaction is past that stage. The 721 * buffer had better remain locked during the kmalloc, 722 * but that should be true --- we hold the journal lock 723 * still and the buffer is already on the BUF_JOURNAL 724 * list so won't be flushed. 725 * 726 * Subtle point, though: if this is a get_undo_access, 727 * then we will be relying on the frozen_data to contain 728 * the new value of the committed_data record after the 729 * transaction, so we HAVE to force the frozen_data copy 730 * in that case. */ 731 732 if (jh->b_jlist != BJ_Forget || force_copy) { 733 JBUFFER_TRACE(jh, "generate frozen data"); 734 if (!frozen_buffer) { 735 JBUFFER_TRACE(jh, "allocate memory for buffer"); 736 jbd_unlock_bh_state(bh); 737 frozen_buffer = 738 jbd2_alloc(jh2bh(jh)->b_size, 739 GFP_NOFS); 740 if (!frozen_buffer) { 741 printk(KERN_EMERG 742 "%s: OOM for frozen_buffer\n", 743 __func__); 744 JBUFFER_TRACE(jh, "oom!"); 745 error = -ENOMEM; 746 jbd_lock_bh_state(bh); 747 goto done; 748 } 749 goto repeat; 750 } 751 jh->b_frozen_data = frozen_buffer; 752 frozen_buffer = NULL; 753 need_copy = 1; 754 } 755 jh->b_next_transaction = transaction; 756 } 757 758 759 /* 760 * Finally, if the buffer is not journaled right now, we need to make 761 * sure it doesn't get written to disk before the caller actually 762 * commits the new data 763 */ 764 if (!jh->b_transaction) { 765 JBUFFER_TRACE(jh, "no transaction"); 766 J_ASSERT_JH(jh, !jh->b_next_transaction); 767 jh->b_transaction = transaction; 768 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 769 spin_lock(&journal->j_list_lock); 770 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 771 spin_unlock(&journal->j_list_lock); 772 } 773 774 done: 775 if (need_copy) { 776 struct page *page; 777 int offset; 778 char *source; 779 780 J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)), 781 "Possible IO failure.\n"); 782 page = jh2bh(jh)->b_page; 783 offset = offset_in_page(jh2bh(jh)->b_data); 784 source = kmap_atomic(page, KM_USER0); 785 /* Fire data frozen trigger just before we copy the data */ 786 jbd2_buffer_frozen_trigger(jh, source + offset, 787 jh->b_triggers); 788 memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size); 789 kunmap_atomic(source, KM_USER0); 790 791 /* 792 * Now that the frozen data is saved off, we need to store 793 * any matching triggers. 794 */ 795 jh->b_frozen_triggers = jh->b_triggers; 796 } 797 jbd_unlock_bh_state(bh); 798 799 /* 800 * If we are about to journal a buffer, then any revoke pending on it is 801 * no longer valid 802 */ 803 jbd2_journal_cancel_revoke(handle, jh); 804 805 out: 806 if (unlikely(frozen_buffer)) /* It's usually NULL */ 807 jbd2_free(frozen_buffer, bh->b_size); 808 809 JBUFFER_TRACE(jh, "exit"); 810 return error; 811 } 812 813 /** 814 * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update. 815 * @handle: transaction to add buffer modifications to 816 * @bh: bh to be used for metadata writes 817 * @credits: variable that will receive credits for the buffer 818 * 819 * Returns an error code or 0 on success. 820 * 821 * In full data journalling mode the buffer may be of type BJ_AsyncData, 822 * because we're write()ing a buffer which is also part of a shared mapping. 823 */ 824 825 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh) 826 { 827 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 828 int rc; 829 830 /* We do not want to get caught playing with fields which the 831 * log thread also manipulates. Make sure that the buffer 832 * completes any outstanding IO before proceeding. */ 833 rc = do_get_write_access(handle, jh, 0); 834 jbd2_journal_put_journal_head(jh); 835 return rc; 836 } 837 838 839 /* 840 * When the user wants to journal a newly created buffer_head 841 * (ie. getblk() returned a new buffer and we are going to populate it 842 * manually rather than reading off disk), then we need to keep the 843 * buffer_head locked until it has been completely filled with new 844 * data. In this case, we should be able to make the assertion that 845 * the bh is not already part of an existing transaction. 846 * 847 * The buffer should already be locked by the caller by this point. 848 * There is no lock ranking violation: it was a newly created, 849 * unlocked buffer beforehand. */ 850 851 /** 852 * int jbd2_journal_get_create_access () - notify intent to use newly created bh 853 * @handle: transaction to new buffer to 854 * @bh: new buffer. 855 * 856 * Call this if you create a new bh. 857 */ 858 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh) 859 { 860 transaction_t *transaction = handle->h_transaction; 861 journal_t *journal = transaction->t_journal; 862 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 863 int err; 864 865 jbd_debug(5, "journal_head %p\n", jh); 866 err = -EROFS; 867 if (is_handle_aborted(handle)) 868 goto out; 869 err = 0; 870 871 JBUFFER_TRACE(jh, "entry"); 872 /* 873 * The buffer may already belong to this transaction due to pre-zeroing 874 * in the filesystem's new_block code. It may also be on the previous, 875 * committing transaction's lists, but it HAS to be in Forget state in 876 * that case: the transaction must have deleted the buffer for it to be 877 * reused here. 878 */ 879 jbd_lock_bh_state(bh); 880 spin_lock(&journal->j_list_lock); 881 J_ASSERT_JH(jh, (jh->b_transaction == transaction || 882 jh->b_transaction == NULL || 883 (jh->b_transaction == journal->j_committing_transaction && 884 jh->b_jlist == BJ_Forget))); 885 886 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 887 J_ASSERT_JH(jh, buffer_locked(jh2bh(jh))); 888 889 if (jh->b_transaction == NULL) { 890 /* 891 * Previous jbd2_journal_forget() could have left the buffer 892 * with jbddirty bit set because it was being committed. When 893 * the commit finished, we've filed the buffer for 894 * checkpointing and marked it dirty. Now we are reallocating 895 * the buffer so the transaction freeing it must have 896 * committed and so it's safe to clear the dirty bit. 897 */ 898 clear_buffer_dirty(jh2bh(jh)); 899 jh->b_transaction = transaction; 900 901 /* first access by this transaction */ 902 jh->b_modified = 0; 903 904 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 905 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 906 } else if (jh->b_transaction == journal->j_committing_transaction) { 907 /* first access by this transaction */ 908 jh->b_modified = 0; 909 910 JBUFFER_TRACE(jh, "set next transaction"); 911 jh->b_next_transaction = transaction; 912 } 913 spin_unlock(&journal->j_list_lock); 914 jbd_unlock_bh_state(bh); 915 916 /* 917 * akpm: I added this. ext3_alloc_branch can pick up new indirect 918 * blocks which contain freed but then revoked metadata. We need 919 * to cancel the revoke in case we end up freeing it yet again 920 * and the reallocating as data - this would cause a second revoke, 921 * which hits an assertion error. 922 */ 923 JBUFFER_TRACE(jh, "cancelling revoke"); 924 jbd2_journal_cancel_revoke(handle, jh); 925 out: 926 jbd2_journal_put_journal_head(jh); 927 return err; 928 } 929 930 /** 931 * int jbd2_journal_get_undo_access() - Notify intent to modify metadata with 932 * non-rewindable consequences 933 * @handle: transaction 934 * @bh: buffer to undo 935 * @credits: store the number of taken credits here (if not NULL) 936 * 937 * Sometimes there is a need to distinguish between metadata which has 938 * been committed to disk and that which has not. The ext3fs code uses 939 * this for freeing and allocating space, we have to make sure that we 940 * do not reuse freed space until the deallocation has been committed, 941 * since if we overwrote that space we would make the delete 942 * un-rewindable in case of a crash. 943 * 944 * To deal with that, jbd2_journal_get_undo_access requests write access to a 945 * buffer for parts of non-rewindable operations such as delete 946 * operations on the bitmaps. The journaling code must keep a copy of 947 * the buffer's contents prior to the undo_access call until such time 948 * as we know that the buffer has definitely been committed to disk. 949 * 950 * We never need to know which transaction the committed data is part 951 * of, buffers touched here are guaranteed to be dirtied later and so 952 * will be committed to a new transaction in due course, at which point 953 * we can discard the old committed data pointer. 954 * 955 * Returns error number or 0 on success. 956 */ 957 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh) 958 { 959 int err; 960 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 961 char *committed_data = NULL; 962 963 JBUFFER_TRACE(jh, "entry"); 964 965 /* 966 * Do this first --- it can drop the journal lock, so we want to 967 * make sure that obtaining the committed_data is done 968 * atomically wrt. completion of any outstanding commits. 969 */ 970 err = do_get_write_access(handle, jh, 1); 971 if (err) 972 goto out; 973 974 repeat: 975 if (!jh->b_committed_data) { 976 committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS); 977 if (!committed_data) { 978 printk(KERN_EMERG "%s: No memory for committed data\n", 979 __func__); 980 err = -ENOMEM; 981 goto out; 982 } 983 } 984 985 jbd_lock_bh_state(bh); 986 if (!jh->b_committed_data) { 987 /* Copy out the current buffer contents into the 988 * preserved, committed copy. */ 989 JBUFFER_TRACE(jh, "generate b_committed data"); 990 if (!committed_data) { 991 jbd_unlock_bh_state(bh); 992 goto repeat; 993 } 994 995 jh->b_committed_data = committed_data; 996 committed_data = NULL; 997 memcpy(jh->b_committed_data, bh->b_data, bh->b_size); 998 } 999 jbd_unlock_bh_state(bh); 1000 out: 1001 jbd2_journal_put_journal_head(jh); 1002 if (unlikely(committed_data)) 1003 jbd2_free(committed_data, bh->b_size); 1004 return err; 1005 } 1006 1007 /** 1008 * void jbd2_journal_set_triggers() - Add triggers for commit writeout 1009 * @bh: buffer to trigger on 1010 * @type: struct jbd2_buffer_trigger_type containing the trigger(s). 1011 * 1012 * Set any triggers on this journal_head. This is always safe, because 1013 * triggers for a committing buffer will be saved off, and triggers for 1014 * a running transaction will match the buffer in that transaction. 1015 * 1016 * Call with NULL to clear the triggers. 1017 */ 1018 void jbd2_journal_set_triggers(struct buffer_head *bh, 1019 struct jbd2_buffer_trigger_type *type) 1020 { 1021 struct journal_head *jh = bh2jh(bh); 1022 1023 jh->b_triggers = type; 1024 } 1025 1026 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data, 1027 struct jbd2_buffer_trigger_type *triggers) 1028 { 1029 struct buffer_head *bh = jh2bh(jh); 1030 1031 if (!triggers || !triggers->t_frozen) 1032 return; 1033 1034 triggers->t_frozen(triggers, bh, mapped_data, bh->b_size); 1035 } 1036 1037 void jbd2_buffer_abort_trigger(struct journal_head *jh, 1038 struct jbd2_buffer_trigger_type *triggers) 1039 { 1040 if (!triggers || !triggers->t_abort) 1041 return; 1042 1043 triggers->t_abort(triggers, jh2bh(jh)); 1044 } 1045 1046 1047 1048 /** 1049 * int jbd2_journal_dirty_metadata() - mark a buffer as containing dirty metadata 1050 * @handle: transaction to add buffer to. 1051 * @bh: buffer to mark 1052 * 1053 * mark dirty metadata which needs to be journaled as part of the current 1054 * transaction. 1055 * 1056 * The buffer is placed on the transaction's metadata list and is marked 1057 * as belonging to the transaction. 1058 * 1059 * Returns error number or 0 on success. 1060 * 1061 * Special care needs to be taken if the buffer already belongs to the 1062 * current committing transaction (in which case we should have frozen 1063 * data present for that commit). In that case, we don't relink the 1064 * buffer: that only gets done when the old transaction finally 1065 * completes its commit. 1066 */ 1067 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh) 1068 { 1069 transaction_t *transaction = handle->h_transaction; 1070 journal_t *journal = transaction->t_journal; 1071 struct journal_head *jh = bh2jh(bh); 1072 1073 jbd_debug(5, "journal_head %p\n", jh); 1074 JBUFFER_TRACE(jh, "entry"); 1075 if (is_handle_aborted(handle)) 1076 goto out; 1077 1078 jbd_lock_bh_state(bh); 1079 1080 if (jh->b_modified == 0) { 1081 /* 1082 * This buffer's got modified and becoming part 1083 * of the transaction. This needs to be done 1084 * once a transaction -bzzz 1085 */ 1086 jh->b_modified = 1; 1087 J_ASSERT_JH(jh, handle->h_buffer_credits > 0); 1088 handle->h_buffer_credits--; 1089 } 1090 1091 /* 1092 * fastpath, to avoid expensive locking. If this buffer is already 1093 * on the running transaction's metadata list there is nothing to do. 1094 * Nobody can take it off again because there is a handle open. 1095 * I _think_ we're OK here with SMP barriers - a mistaken decision will 1096 * result in this test being false, so we go in and take the locks. 1097 */ 1098 if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) { 1099 JBUFFER_TRACE(jh, "fastpath"); 1100 J_ASSERT_JH(jh, jh->b_transaction == 1101 journal->j_running_transaction); 1102 goto out_unlock_bh; 1103 } 1104 1105 set_buffer_jbddirty(bh); 1106 1107 /* 1108 * Metadata already on the current transaction list doesn't 1109 * need to be filed. Metadata on another transaction's list must 1110 * be committing, and will be refiled once the commit completes: 1111 * leave it alone for now. 1112 */ 1113 if (jh->b_transaction != transaction) { 1114 JBUFFER_TRACE(jh, "already on other transaction"); 1115 J_ASSERT_JH(jh, jh->b_transaction == 1116 journal->j_committing_transaction); 1117 J_ASSERT_JH(jh, jh->b_next_transaction == transaction); 1118 /* And this case is illegal: we can't reuse another 1119 * transaction's data buffer, ever. */ 1120 goto out_unlock_bh; 1121 } 1122 1123 /* That test should have eliminated the following case: */ 1124 J_ASSERT_JH(jh, jh->b_frozen_data == NULL); 1125 1126 JBUFFER_TRACE(jh, "file as BJ_Metadata"); 1127 spin_lock(&journal->j_list_lock); 1128 __jbd2_journal_file_buffer(jh, handle->h_transaction, BJ_Metadata); 1129 spin_unlock(&journal->j_list_lock); 1130 out_unlock_bh: 1131 jbd_unlock_bh_state(bh); 1132 out: 1133 JBUFFER_TRACE(jh, "exit"); 1134 return 0; 1135 } 1136 1137 /* 1138 * jbd2_journal_release_buffer: undo a get_write_access without any buffer 1139 * updates, if the update decided in the end that it didn't need access. 1140 * 1141 */ 1142 void 1143 jbd2_journal_release_buffer(handle_t *handle, struct buffer_head *bh) 1144 { 1145 BUFFER_TRACE(bh, "entry"); 1146 } 1147 1148 /** 1149 * void jbd2_journal_forget() - bforget() for potentially-journaled buffers. 1150 * @handle: transaction handle 1151 * @bh: bh to 'forget' 1152 * 1153 * We can only do the bforget if there are no commits pending against the 1154 * buffer. If the buffer is dirty in the current running transaction we 1155 * can safely unlink it. 1156 * 1157 * bh may not be a journalled buffer at all - it may be a non-JBD 1158 * buffer which came off the hashtable. Check for this. 1159 * 1160 * Decrements bh->b_count by one. 1161 * 1162 * Allow this call even if the handle has aborted --- it may be part of 1163 * the caller's cleanup after an abort. 1164 */ 1165 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh) 1166 { 1167 transaction_t *transaction = handle->h_transaction; 1168 journal_t *journal = transaction->t_journal; 1169 struct journal_head *jh; 1170 int drop_reserve = 0; 1171 int err = 0; 1172 int was_modified = 0; 1173 1174 BUFFER_TRACE(bh, "entry"); 1175 1176 jbd_lock_bh_state(bh); 1177 spin_lock(&journal->j_list_lock); 1178 1179 if (!buffer_jbd(bh)) 1180 goto not_jbd; 1181 jh = bh2jh(bh); 1182 1183 /* Critical error: attempting to delete a bitmap buffer, maybe? 1184 * Don't do any jbd operations, and return an error. */ 1185 if (!J_EXPECT_JH(jh, !jh->b_committed_data, 1186 "inconsistent data on disk")) { 1187 err = -EIO; 1188 goto not_jbd; 1189 } 1190 1191 /* keep track of wether or not this transaction modified us */ 1192 was_modified = jh->b_modified; 1193 1194 /* 1195 * The buffer's going from the transaction, we must drop 1196 * all references -bzzz 1197 */ 1198 jh->b_modified = 0; 1199 1200 if (jh->b_transaction == handle->h_transaction) { 1201 J_ASSERT_JH(jh, !jh->b_frozen_data); 1202 1203 /* If we are forgetting a buffer which is already part 1204 * of this transaction, then we can just drop it from 1205 * the transaction immediately. */ 1206 clear_buffer_dirty(bh); 1207 clear_buffer_jbddirty(bh); 1208 1209 JBUFFER_TRACE(jh, "belongs to current transaction: unfile"); 1210 1211 /* 1212 * we only want to drop a reference if this transaction 1213 * modified the buffer 1214 */ 1215 if (was_modified) 1216 drop_reserve = 1; 1217 1218 /* 1219 * We are no longer going to journal this buffer. 1220 * However, the commit of this transaction is still 1221 * important to the buffer: the delete that we are now 1222 * processing might obsolete an old log entry, so by 1223 * committing, we can satisfy the buffer's checkpoint. 1224 * 1225 * So, if we have a checkpoint on the buffer, we should 1226 * now refile the buffer on our BJ_Forget list so that 1227 * we know to remove the checkpoint after we commit. 1228 */ 1229 1230 if (jh->b_cp_transaction) { 1231 __jbd2_journal_temp_unlink_buffer(jh); 1232 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1233 } else { 1234 __jbd2_journal_unfile_buffer(jh); 1235 jbd2_journal_remove_journal_head(bh); 1236 __brelse(bh); 1237 if (!buffer_jbd(bh)) { 1238 spin_unlock(&journal->j_list_lock); 1239 jbd_unlock_bh_state(bh); 1240 __bforget(bh); 1241 goto drop; 1242 } 1243 } 1244 } else if (jh->b_transaction) { 1245 J_ASSERT_JH(jh, (jh->b_transaction == 1246 journal->j_committing_transaction)); 1247 /* However, if the buffer is still owned by a prior 1248 * (committing) transaction, we can't drop it yet... */ 1249 JBUFFER_TRACE(jh, "belongs to older transaction"); 1250 /* ... but we CAN drop it from the new transaction if we 1251 * have also modified it since the original commit. */ 1252 1253 if (jh->b_next_transaction) { 1254 J_ASSERT(jh->b_next_transaction == transaction); 1255 jh->b_next_transaction = NULL; 1256 1257 /* 1258 * only drop a reference if this transaction modified 1259 * the buffer 1260 */ 1261 if (was_modified) 1262 drop_reserve = 1; 1263 } 1264 } 1265 1266 not_jbd: 1267 spin_unlock(&journal->j_list_lock); 1268 jbd_unlock_bh_state(bh); 1269 __brelse(bh); 1270 drop: 1271 if (drop_reserve) { 1272 /* no need to reserve log space for this block -bzzz */ 1273 handle->h_buffer_credits++; 1274 } 1275 return err; 1276 } 1277 1278 /** 1279 * int jbd2_journal_stop() - complete a transaction 1280 * @handle: tranaction to complete. 1281 * 1282 * All done for a particular handle. 1283 * 1284 * There is not much action needed here. We just return any remaining 1285 * buffer credits to the transaction and remove the handle. The only 1286 * complication is that we need to start a commit operation if the 1287 * filesystem is marked for synchronous update. 1288 * 1289 * jbd2_journal_stop itself will not usually return an error, but it may 1290 * do so in unusual circumstances. In particular, expect it to 1291 * return -EIO if a jbd2_journal_abort has been executed since the 1292 * transaction began. 1293 */ 1294 int jbd2_journal_stop(handle_t *handle) 1295 { 1296 transaction_t *transaction = handle->h_transaction; 1297 journal_t *journal = transaction->t_journal; 1298 int err, wait_for_commit = 0; 1299 tid_t tid; 1300 pid_t pid; 1301 1302 J_ASSERT(journal_current_handle() == handle); 1303 1304 if (is_handle_aborted(handle)) 1305 err = -EIO; 1306 else { 1307 J_ASSERT(atomic_read(&transaction->t_updates) > 0); 1308 err = 0; 1309 } 1310 1311 if (--handle->h_ref > 0) { 1312 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1, 1313 handle->h_ref); 1314 return err; 1315 } 1316 1317 jbd_debug(4, "Handle %p going down\n", handle); 1318 1319 /* 1320 * Implement synchronous transaction batching. If the handle 1321 * was synchronous, don't force a commit immediately. Let's 1322 * yield and let another thread piggyback onto this 1323 * transaction. Keep doing that while new threads continue to 1324 * arrive. It doesn't cost much - we're about to run a commit 1325 * and sleep on IO anyway. Speeds up many-threaded, many-dir 1326 * operations by 30x or more... 1327 * 1328 * We try and optimize the sleep time against what the 1329 * underlying disk can do, instead of having a static sleep 1330 * time. This is useful for the case where our storage is so 1331 * fast that it is more optimal to go ahead and force a flush 1332 * and wait for the transaction to be committed than it is to 1333 * wait for an arbitrary amount of time for new writers to 1334 * join the transaction. We achieve this by measuring how 1335 * long it takes to commit a transaction, and compare it with 1336 * how long this transaction has been running, and if run time 1337 * < commit time then we sleep for the delta and commit. This 1338 * greatly helps super fast disks that would see slowdowns as 1339 * more threads started doing fsyncs. 1340 * 1341 * But don't do this if this process was the most recent one 1342 * to perform a synchronous write. We do this to detect the 1343 * case where a single process is doing a stream of sync 1344 * writes. No point in waiting for joiners in that case. 1345 */ 1346 pid = current->pid; 1347 if (handle->h_sync && journal->j_last_sync_writer != pid) { 1348 u64 commit_time, trans_time; 1349 1350 journal->j_last_sync_writer = pid; 1351 1352 read_lock(&journal->j_state_lock); 1353 commit_time = journal->j_average_commit_time; 1354 read_unlock(&journal->j_state_lock); 1355 1356 trans_time = ktime_to_ns(ktime_sub(ktime_get(), 1357 transaction->t_start_time)); 1358 1359 commit_time = max_t(u64, commit_time, 1360 1000*journal->j_min_batch_time); 1361 commit_time = min_t(u64, commit_time, 1362 1000*journal->j_max_batch_time); 1363 1364 if (trans_time < commit_time) { 1365 ktime_t expires = ktime_add_ns(ktime_get(), 1366 commit_time); 1367 set_current_state(TASK_UNINTERRUPTIBLE); 1368 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS); 1369 } 1370 } 1371 1372 if (handle->h_sync) 1373 transaction->t_synchronous_commit = 1; 1374 current->journal_info = NULL; 1375 atomic_sub(handle->h_buffer_credits, 1376 &transaction->t_outstanding_credits); 1377 1378 /* 1379 * If the handle is marked SYNC, we need to set another commit 1380 * going! We also want to force a commit if the current 1381 * transaction is occupying too much of the log, or if the 1382 * transaction is too old now. 1383 */ 1384 if (handle->h_sync || 1385 (atomic_read(&transaction->t_outstanding_credits) > 1386 journal->j_max_transaction_buffers) || 1387 time_after_eq(jiffies, transaction->t_expires)) { 1388 /* Do this even for aborted journals: an abort still 1389 * completes the commit thread, it just doesn't write 1390 * anything to disk. */ 1391 1392 jbd_debug(2, "transaction too old, requesting commit for " 1393 "handle %p\n", handle); 1394 /* This is non-blocking */ 1395 jbd2_log_start_commit(journal, transaction->t_tid); 1396 1397 /* 1398 * Special case: JBD2_SYNC synchronous updates require us 1399 * to wait for the commit to complete. 1400 */ 1401 if (handle->h_sync && !(current->flags & PF_MEMALLOC)) 1402 wait_for_commit = 1; 1403 } 1404 1405 /* 1406 * Once we drop t_updates, if it goes to zero the transaction 1407 * could start committing on us and eventually disappear. So 1408 * once we do this, we must not dereference transaction 1409 * pointer again. 1410 */ 1411 tid = transaction->t_tid; 1412 if (atomic_dec_and_test(&transaction->t_updates)) { 1413 wake_up(&journal->j_wait_updates); 1414 if (journal->j_barrier_count) 1415 wake_up(&journal->j_wait_transaction_locked); 1416 } 1417 1418 if (wait_for_commit) 1419 err = jbd2_log_wait_commit(journal, tid); 1420 1421 lock_map_release(&handle->h_lockdep_map); 1422 1423 jbd2_free_handle(handle); 1424 return err; 1425 } 1426 1427 /** 1428 * int jbd2_journal_force_commit() - force any uncommitted transactions 1429 * @journal: journal to force 1430 * 1431 * For synchronous operations: force any uncommitted transactions 1432 * to disk. May seem kludgy, but it reuses all the handle batching 1433 * code in a very simple manner. 1434 */ 1435 int jbd2_journal_force_commit(journal_t *journal) 1436 { 1437 handle_t *handle; 1438 int ret; 1439 1440 handle = jbd2_journal_start(journal, 1); 1441 if (IS_ERR(handle)) { 1442 ret = PTR_ERR(handle); 1443 } else { 1444 handle->h_sync = 1; 1445 ret = jbd2_journal_stop(handle); 1446 } 1447 return ret; 1448 } 1449 1450 /* 1451 * 1452 * List management code snippets: various functions for manipulating the 1453 * transaction buffer lists. 1454 * 1455 */ 1456 1457 /* 1458 * Append a buffer to a transaction list, given the transaction's list head 1459 * pointer. 1460 * 1461 * j_list_lock is held. 1462 * 1463 * jbd_lock_bh_state(jh2bh(jh)) is held. 1464 */ 1465 1466 static inline void 1467 __blist_add_buffer(struct journal_head **list, struct journal_head *jh) 1468 { 1469 if (!*list) { 1470 jh->b_tnext = jh->b_tprev = jh; 1471 *list = jh; 1472 } else { 1473 /* Insert at the tail of the list to preserve order */ 1474 struct journal_head *first = *list, *last = first->b_tprev; 1475 jh->b_tprev = last; 1476 jh->b_tnext = first; 1477 last->b_tnext = first->b_tprev = jh; 1478 } 1479 } 1480 1481 /* 1482 * Remove a buffer from a transaction list, given the transaction's list 1483 * head pointer. 1484 * 1485 * Called with j_list_lock held, and the journal may not be locked. 1486 * 1487 * jbd_lock_bh_state(jh2bh(jh)) is held. 1488 */ 1489 1490 static inline void 1491 __blist_del_buffer(struct journal_head **list, struct journal_head *jh) 1492 { 1493 if (*list == jh) { 1494 *list = jh->b_tnext; 1495 if (*list == jh) 1496 *list = NULL; 1497 } 1498 jh->b_tprev->b_tnext = jh->b_tnext; 1499 jh->b_tnext->b_tprev = jh->b_tprev; 1500 } 1501 1502 /* 1503 * Remove a buffer from the appropriate transaction list. 1504 * 1505 * Note that this function can *change* the value of 1506 * bh->b_transaction->t_buffers, t_forget, t_iobuf_list, t_shadow_list, 1507 * t_log_list or t_reserved_list. If the caller is holding onto a copy of one 1508 * of these pointers, it could go bad. Generally the caller needs to re-read 1509 * the pointer from the transaction_t. 1510 * 1511 * Called under j_list_lock. The journal may not be locked. 1512 */ 1513 void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh) 1514 { 1515 struct journal_head **list = NULL; 1516 transaction_t *transaction; 1517 struct buffer_head *bh = jh2bh(jh); 1518 1519 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 1520 transaction = jh->b_transaction; 1521 if (transaction) 1522 assert_spin_locked(&transaction->t_journal->j_list_lock); 1523 1524 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 1525 if (jh->b_jlist != BJ_None) 1526 J_ASSERT_JH(jh, transaction != NULL); 1527 1528 switch (jh->b_jlist) { 1529 case BJ_None: 1530 return; 1531 case BJ_Metadata: 1532 transaction->t_nr_buffers--; 1533 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0); 1534 list = &transaction->t_buffers; 1535 break; 1536 case BJ_Forget: 1537 list = &transaction->t_forget; 1538 break; 1539 case BJ_IO: 1540 list = &transaction->t_iobuf_list; 1541 break; 1542 case BJ_Shadow: 1543 list = &transaction->t_shadow_list; 1544 break; 1545 case BJ_LogCtl: 1546 list = &transaction->t_log_list; 1547 break; 1548 case BJ_Reserved: 1549 list = &transaction->t_reserved_list; 1550 break; 1551 } 1552 1553 __blist_del_buffer(list, jh); 1554 jh->b_jlist = BJ_None; 1555 if (test_clear_buffer_jbddirty(bh)) 1556 mark_buffer_dirty(bh); /* Expose it to the VM */ 1557 } 1558 1559 void __jbd2_journal_unfile_buffer(struct journal_head *jh) 1560 { 1561 __jbd2_journal_temp_unlink_buffer(jh); 1562 jh->b_transaction = NULL; 1563 } 1564 1565 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh) 1566 { 1567 jbd_lock_bh_state(jh2bh(jh)); 1568 spin_lock(&journal->j_list_lock); 1569 __jbd2_journal_unfile_buffer(jh); 1570 spin_unlock(&journal->j_list_lock); 1571 jbd_unlock_bh_state(jh2bh(jh)); 1572 } 1573 1574 /* 1575 * Called from jbd2_journal_try_to_free_buffers(). 1576 * 1577 * Called under jbd_lock_bh_state(bh) 1578 */ 1579 static void 1580 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh) 1581 { 1582 struct journal_head *jh; 1583 1584 jh = bh2jh(bh); 1585 1586 if (buffer_locked(bh) || buffer_dirty(bh)) 1587 goto out; 1588 1589 if (jh->b_next_transaction != NULL) 1590 goto out; 1591 1592 spin_lock(&journal->j_list_lock); 1593 if (jh->b_cp_transaction != NULL && jh->b_transaction == NULL) { 1594 /* written-back checkpointed metadata buffer */ 1595 if (jh->b_jlist == BJ_None) { 1596 JBUFFER_TRACE(jh, "remove from checkpoint list"); 1597 __jbd2_journal_remove_checkpoint(jh); 1598 jbd2_journal_remove_journal_head(bh); 1599 __brelse(bh); 1600 } 1601 } 1602 spin_unlock(&journal->j_list_lock); 1603 out: 1604 return; 1605 } 1606 1607 /** 1608 * int jbd2_journal_try_to_free_buffers() - try to free page buffers. 1609 * @journal: journal for operation 1610 * @page: to try and free 1611 * @gfp_mask: we use the mask to detect how hard should we try to release 1612 * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to 1613 * release the buffers. 1614 * 1615 * 1616 * For all the buffers on this page, 1617 * if they are fully written out ordered data, move them onto BUF_CLEAN 1618 * so try_to_free_buffers() can reap them. 1619 * 1620 * This function returns non-zero if we wish try_to_free_buffers() 1621 * to be called. We do this if the page is releasable by try_to_free_buffers(). 1622 * We also do it if the page has locked or dirty buffers and the caller wants 1623 * us to perform sync or async writeout. 1624 * 1625 * This complicates JBD locking somewhat. We aren't protected by the 1626 * BKL here. We wish to remove the buffer from its committing or 1627 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer. 1628 * 1629 * This may *change* the value of transaction_t->t_datalist, so anyone 1630 * who looks at t_datalist needs to lock against this function. 1631 * 1632 * Even worse, someone may be doing a jbd2_journal_dirty_data on this 1633 * buffer. So we need to lock against that. jbd2_journal_dirty_data() 1634 * will come out of the lock with the buffer dirty, which makes it 1635 * ineligible for release here. 1636 * 1637 * Who else is affected by this? hmm... Really the only contender 1638 * is do_get_write_access() - it could be looking at the buffer while 1639 * journal_try_to_free_buffer() is changing its state. But that 1640 * cannot happen because we never reallocate freed data as metadata 1641 * while the data is part of a transaction. Yes? 1642 * 1643 * Return 0 on failure, 1 on success 1644 */ 1645 int jbd2_journal_try_to_free_buffers(journal_t *journal, 1646 struct page *page, gfp_t gfp_mask) 1647 { 1648 struct buffer_head *head; 1649 struct buffer_head *bh; 1650 int ret = 0; 1651 1652 J_ASSERT(PageLocked(page)); 1653 1654 head = page_buffers(page); 1655 bh = head; 1656 do { 1657 struct journal_head *jh; 1658 1659 /* 1660 * We take our own ref against the journal_head here to avoid 1661 * having to add tons of locking around each instance of 1662 * jbd2_journal_remove_journal_head() and 1663 * jbd2_journal_put_journal_head(). 1664 */ 1665 jh = jbd2_journal_grab_journal_head(bh); 1666 if (!jh) 1667 continue; 1668 1669 jbd_lock_bh_state(bh); 1670 __journal_try_to_free_buffer(journal, bh); 1671 jbd2_journal_put_journal_head(jh); 1672 jbd_unlock_bh_state(bh); 1673 if (buffer_jbd(bh)) 1674 goto busy; 1675 } while ((bh = bh->b_this_page) != head); 1676 1677 ret = try_to_free_buffers(page); 1678 1679 busy: 1680 return ret; 1681 } 1682 1683 /* 1684 * This buffer is no longer needed. If it is on an older transaction's 1685 * checkpoint list we need to record it on this transaction's forget list 1686 * to pin this buffer (and hence its checkpointing transaction) down until 1687 * this transaction commits. If the buffer isn't on a checkpoint list, we 1688 * release it. 1689 * Returns non-zero if JBD no longer has an interest in the buffer. 1690 * 1691 * Called under j_list_lock. 1692 * 1693 * Called under jbd_lock_bh_state(bh). 1694 */ 1695 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction) 1696 { 1697 int may_free = 1; 1698 struct buffer_head *bh = jh2bh(jh); 1699 1700 __jbd2_journal_unfile_buffer(jh); 1701 1702 if (jh->b_cp_transaction) { 1703 JBUFFER_TRACE(jh, "on running+cp transaction"); 1704 /* 1705 * We don't want to write the buffer anymore, clear the 1706 * bit so that we don't confuse checks in 1707 * __journal_file_buffer 1708 */ 1709 clear_buffer_dirty(bh); 1710 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1711 may_free = 0; 1712 } else { 1713 JBUFFER_TRACE(jh, "on running transaction"); 1714 jbd2_journal_remove_journal_head(bh); 1715 __brelse(bh); 1716 } 1717 return may_free; 1718 } 1719 1720 /* 1721 * jbd2_journal_invalidatepage 1722 * 1723 * This code is tricky. It has a number of cases to deal with. 1724 * 1725 * There are two invariants which this code relies on: 1726 * 1727 * i_size must be updated on disk before we start calling invalidatepage on the 1728 * data. 1729 * 1730 * This is done in ext3 by defining an ext3_setattr method which 1731 * updates i_size before truncate gets going. By maintaining this 1732 * invariant, we can be sure that it is safe to throw away any buffers 1733 * attached to the current transaction: once the transaction commits, 1734 * we know that the data will not be needed. 1735 * 1736 * Note however that we can *not* throw away data belonging to the 1737 * previous, committing transaction! 1738 * 1739 * Any disk blocks which *are* part of the previous, committing 1740 * transaction (and which therefore cannot be discarded immediately) are 1741 * not going to be reused in the new running transaction 1742 * 1743 * The bitmap committed_data images guarantee this: any block which is 1744 * allocated in one transaction and removed in the next will be marked 1745 * as in-use in the committed_data bitmap, so cannot be reused until 1746 * the next transaction to delete the block commits. This means that 1747 * leaving committing buffers dirty is quite safe: the disk blocks 1748 * cannot be reallocated to a different file and so buffer aliasing is 1749 * not possible. 1750 * 1751 * 1752 * The above applies mainly to ordered data mode. In writeback mode we 1753 * don't make guarantees about the order in which data hits disk --- in 1754 * particular we don't guarantee that new dirty data is flushed before 1755 * transaction commit --- so it is always safe just to discard data 1756 * immediately in that mode. --sct 1757 */ 1758 1759 /* 1760 * The journal_unmap_buffer helper function returns zero if the buffer 1761 * concerned remains pinned as an anonymous buffer belonging to an older 1762 * transaction. 1763 * 1764 * We're outside-transaction here. Either or both of j_running_transaction 1765 * and j_committing_transaction may be NULL. 1766 */ 1767 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh) 1768 { 1769 transaction_t *transaction; 1770 struct journal_head *jh; 1771 int may_free = 1; 1772 int ret; 1773 1774 BUFFER_TRACE(bh, "entry"); 1775 1776 /* 1777 * It is safe to proceed here without the j_list_lock because the 1778 * buffers cannot be stolen by try_to_free_buffers as long as we are 1779 * holding the page lock. --sct 1780 */ 1781 1782 if (!buffer_jbd(bh)) 1783 goto zap_buffer_unlocked; 1784 1785 /* OK, we have data buffer in journaled mode */ 1786 write_lock(&journal->j_state_lock); 1787 jbd_lock_bh_state(bh); 1788 spin_lock(&journal->j_list_lock); 1789 1790 jh = jbd2_journal_grab_journal_head(bh); 1791 if (!jh) 1792 goto zap_buffer_no_jh; 1793 1794 /* 1795 * We cannot remove the buffer from checkpoint lists until the 1796 * transaction adding inode to orphan list (let's call it T) 1797 * is committed. Otherwise if the transaction changing the 1798 * buffer would be cleaned from the journal before T is 1799 * committed, a crash will cause that the correct contents of 1800 * the buffer will be lost. On the other hand we have to 1801 * clear the buffer dirty bit at latest at the moment when the 1802 * transaction marking the buffer as freed in the filesystem 1803 * structures is committed because from that moment on the 1804 * buffer can be reallocated and used by a different page. 1805 * Since the block hasn't been freed yet but the inode has 1806 * already been added to orphan list, it is safe for us to add 1807 * the buffer to BJ_Forget list of the newest transaction. 1808 */ 1809 transaction = jh->b_transaction; 1810 if (transaction == NULL) { 1811 /* First case: not on any transaction. If it 1812 * has no checkpoint link, then we can zap it: 1813 * it's a writeback-mode buffer so we don't care 1814 * if it hits disk safely. */ 1815 if (!jh->b_cp_transaction) { 1816 JBUFFER_TRACE(jh, "not on any transaction: zap"); 1817 goto zap_buffer; 1818 } 1819 1820 if (!buffer_dirty(bh)) { 1821 /* bdflush has written it. We can drop it now */ 1822 goto zap_buffer; 1823 } 1824 1825 /* OK, it must be in the journal but still not 1826 * written fully to disk: it's metadata or 1827 * journaled data... */ 1828 1829 if (journal->j_running_transaction) { 1830 /* ... and once the current transaction has 1831 * committed, the buffer won't be needed any 1832 * longer. */ 1833 JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget"); 1834 ret = __dispose_buffer(jh, 1835 journal->j_running_transaction); 1836 jbd2_journal_put_journal_head(jh); 1837 spin_unlock(&journal->j_list_lock); 1838 jbd_unlock_bh_state(bh); 1839 write_unlock(&journal->j_state_lock); 1840 return ret; 1841 } else { 1842 /* There is no currently-running transaction. So the 1843 * orphan record which we wrote for this file must have 1844 * passed into commit. We must attach this buffer to 1845 * the committing transaction, if it exists. */ 1846 if (journal->j_committing_transaction) { 1847 JBUFFER_TRACE(jh, "give to committing trans"); 1848 ret = __dispose_buffer(jh, 1849 journal->j_committing_transaction); 1850 jbd2_journal_put_journal_head(jh); 1851 spin_unlock(&journal->j_list_lock); 1852 jbd_unlock_bh_state(bh); 1853 write_unlock(&journal->j_state_lock); 1854 return ret; 1855 } else { 1856 /* The orphan record's transaction has 1857 * committed. We can cleanse this buffer */ 1858 clear_buffer_jbddirty(bh); 1859 goto zap_buffer; 1860 } 1861 } 1862 } else if (transaction == journal->j_committing_transaction) { 1863 JBUFFER_TRACE(jh, "on committing transaction"); 1864 /* 1865 * The buffer is committing, we simply cannot touch 1866 * it. So we just set j_next_transaction to the 1867 * running transaction (if there is one) and mark 1868 * buffer as freed so that commit code knows it should 1869 * clear dirty bits when it is done with the buffer. 1870 */ 1871 set_buffer_freed(bh); 1872 if (journal->j_running_transaction && buffer_jbddirty(bh)) 1873 jh->b_next_transaction = journal->j_running_transaction; 1874 jbd2_journal_put_journal_head(jh); 1875 spin_unlock(&journal->j_list_lock); 1876 jbd_unlock_bh_state(bh); 1877 write_unlock(&journal->j_state_lock); 1878 return 0; 1879 } else { 1880 /* Good, the buffer belongs to the running transaction. 1881 * We are writing our own transaction's data, not any 1882 * previous one's, so it is safe to throw it away 1883 * (remember that we expect the filesystem to have set 1884 * i_size already for this truncate so recovery will not 1885 * expose the disk blocks we are discarding here.) */ 1886 J_ASSERT_JH(jh, transaction == journal->j_running_transaction); 1887 JBUFFER_TRACE(jh, "on running transaction"); 1888 may_free = __dispose_buffer(jh, transaction); 1889 } 1890 1891 zap_buffer: 1892 jbd2_journal_put_journal_head(jh); 1893 zap_buffer_no_jh: 1894 spin_unlock(&journal->j_list_lock); 1895 jbd_unlock_bh_state(bh); 1896 write_unlock(&journal->j_state_lock); 1897 zap_buffer_unlocked: 1898 clear_buffer_dirty(bh); 1899 J_ASSERT_BH(bh, !buffer_jbddirty(bh)); 1900 clear_buffer_mapped(bh); 1901 clear_buffer_req(bh); 1902 clear_buffer_new(bh); 1903 bh->b_bdev = NULL; 1904 return may_free; 1905 } 1906 1907 /** 1908 * void jbd2_journal_invalidatepage() 1909 * @journal: journal to use for flush... 1910 * @page: page to flush 1911 * @offset: length of page to invalidate. 1912 * 1913 * Reap page buffers containing data after offset in page. 1914 * 1915 */ 1916 void jbd2_journal_invalidatepage(journal_t *journal, 1917 struct page *page, 1918 unsigned long offset) 1919 { 1920 struct buffer_head *head, *bh, *next; 1921 unsigned int curr_off = 0; 1922 int may_free = 1; 1923 1924 if (!PageLocked(page)) 1925 BUG(); 1926 if (!page_has_buffers(page)) 1927 return; 1928 1929 /* We will potentially be playing with lists other than just the 1930 * data lists (especially for journaled data mode), so be 1931 * cautious in our locking. */ 1932 1933 head = bh = page_buffers(page); 1934 do { 1935 unsigned int next_off = curr_off + bh->b_size; 1936 next = bh->b_this_page; 1937 1938 if (offset <= curr_off) { 1939 /* This block is wholly outside the truncation point */ 1940 lock_buffer(bh); 1941 may_free &= journal_unmap_buffer(journal, bh); 1942 unlock_buffer(bh); 1943 } 1944 curr_off = next_off; 1945 bh = next; 1946 1947 } while (bh != head); 1948 1949 if (!offset) { 1950 if (may_free && try_to_free_buffers(page)) 1951 J_ASSERT(!page_has_buffers(page)); 1952 } 1953 } 1954 1955 /* 1956 * File a buffer on the given transaction list. 1957 */ 1958 void __jbd2_journal_file_buffer(struct journal_head *jh, 1959 transaction_t *transaction, int jlist) 1960 { 1961 struct journal_head **list = NULL; 1962 int was_dirty = 0; 1963 struct buffer_head *bh = jh2bh(jh); 1964 1965 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 1966 assert_spin_locked(&transaction->t_journal->j_list_lock); 1967 1968 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 1969 J_ASSERT_JH(jh, jh->b_transaction == transaction || 1970 jh->b_transaction == NULL); 1971 1972 if (jh->b_transaction && jh->b_jlist == jlist) 1973 return; 1974 1975 if (jlist == BJ_Metadata || jlist == BJ_Reserved || 1976 jlist == BJ_Shadow || jlist == BJ_Forget) { 1977 /* 1978 * For metadata buffers, we track dirty bit in buffer_jbddirty 1979 * instead of buffer_dirty. We should not see a dirty bit set 1980 * here because we clear it in do_get_write_access but e.g. 1981 * tune2fs can modify the sb and set the dirty bit at any time 1982 * so we try to gracefully handle that. 1983 */ 1984 if (buffer_dirty(bh)) 1985 warn_dirty_buffer(bh); 1986 if (test_clear_buffer_dirty(bh) || 1987 test_clear_buffer_jbddirty(bh)) 1988 was_dirty = 1; 1989 } 1990 1991 if (jh->b_transaction) 1992 __jbd2_journal_temp_unlink_buffer(jh); 1993 jh->b_transaction = transaction; 1994 1995 switch (jlist) { 1996 case BJ_None: 1997 J_ASSERT_JH(jh, !jh->b_committed_data); 1998 J_ASSERT_JH(jh, !jh->b_frozen_data); 1999 return; 2000 case BJ_Metadata: 2001 transaction->t_nr_buffers++; 2002 list = &transaction->t_buffers; 2003 break; 2004 case BJ_Forget: 2005 list = &transaction->t_forget; 2006 break; 2007 case BJ_IO: 2008 list = &transaction->t_iobuf_list; 2009 break; 2010 case BJ_Shadow: 2011 list = &transaction->t_shadow_list; 2012 break; 2013 case BJ_LogCtl: 2014 list = &transaction->t_log_list; 2015 break; 2016 case BJ_Reserved: 2017 list = &transaction->t_reserved_list; 2018 break; 2019 } 2020 2021 __blist_add_buffer(list, jh); 2022 jh->b_jlist = jlist; 2023 2024 if (was_dirty) 2025 set_buffer_jbddirty(bh); 2026 } 2027 2028 void jbd2_journal_file_buffer(struct journal_head *jh, 2029 transaction_t *transaction, int jlist) 2030 { 2031 jbd_lock_bh_state(jh2bh(jh)); 2032 spin_lock(&transaction->t_journal->j_list_lock); 2033 __jbd2_journal_file_buffer(jh, transaction, jlist); 2034 spin_unlock(&transaction->t_journal->j_list_lock); 2035 jbd_unlock_bh_state(jh2bh(jh)); 2036 } 2037 2038 /* 2039 * Remove a buffer from its current buffer list in preparation for 2040 * dropping it from its current transaction entirely. If the buffer has 2041 * already started to be used by a subsequent transaction, refile the 2042 * buffer on that transaction's metadata list. 2043 * 2044 * Called under journal->j_list_lock 2045 * 2046 * Called under jbd_lock_bh_state(jh2bh(jh)) 2047 */ 2048 void __jbd2_journal_refile_buffer(struct journal_head *jh) 2049 { 2050 int was_dirty, jlist; 2051 struct buffer_head *bh = jh2bh(jh); 2052 2053 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 2054 if (jh->b_transaction) 2055 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock); 2056 2057 /* If the buffer is now unused, just drop it. */ 2058 if (jh->b_next_transaction == NULL) { 2059 __jbd2_journal_unfile_buffer(jh); 2060 return; 2061 } 2062 2063 /* 2064 * It has been modified by a later transaction: add it to the new 2065 * transaction's metadata list. 2066 */ 2067 2068 was_dirty = test_clear_buffer_jbddirty(bh); 2069 __jbd2_journal_temp_unlink_buffer(jh); 2070 jh->b_transaction = jh->b_next_transaction; 2071 jh->b_next_transaction = NULL; 2072 if (buffer_freed(bh)) 2073 jlist = BJ_Forget; 2074 else if (jh->b_modified) 2075 jlist = BJ_Metadata; 2076 else 2077 jlist = BJ_Reserved; 2078 __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist); 2079 J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING); 2080 2081 if (was_dirty) 2082 set_buffer_jbddirty(bh); 2083 } 2084 2085 /* 2086 * For the unlocked version of this call, also make sure that any 2087 * hanging journal_head is cleaned up if necessary. 2088 * 2089 * __jbd2_journal_refile_buffer is usually called as part of a single locked 2090 * operation on a buffer_head, in which the caller is probably going to 2091 * be hooking the journal_head onto other lists. In that case it is up 2092 * to the caller to remove the journal_head if necessary. For the 2093 * unlocked jbd2_journal_refile_buffer call, the caller isn't going to be 2094 * doing anything else to the buffer so we need to do the cleanup 2095 * ourselves to avoid a jh leak. 2096 * 2097 * *** The journal_head may be freed by this call! *** 2098 */ 2099 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh) 2100 { 2101 struct buffer_head *bh = jh2bh(jh); 2102 2103 jbd_lock_bh_state(bh); 2104 spin_lock(&journal->j_list_lock); 2105 2106 __jbd2_journal_refile_buffer(jh); 2107 jbd_unlock_bh_state(bh); 2108 jbd2_journal_remove_journal_head(bh); 2109 2110 spin_unlock(&journal->j_list_lock); 2111 __brelse(bh); 2112 } 2113 2114 /* 2115 * File inode in the inode list of the handle's transaction 2116 */ 2117 int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode) 2118 { 2119 transaction_t *transaction = handle->h_transaction; 2120 journal_t *journal = transaction->t_journal; 2121 2122 if (is_handle_aborted(handle)) 2123 return -EIO; 2124 2125 jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino, 2126 transaction->t_tid); 2127 2128 /* 2129 * First check whether inode isn't already on the transaction's 2130 * lists without taking the lock. Note that this check is safe 2131 * without the lock as we cannot race with somebody removing inode 2132 * from the transaction. The reason is that we remove inode from the 2133 * transaction only in journal_release_jbd_inode() and when we commit 2134 * the transaction. We are guarded from the first case by holding 2135 * a reference to the inode. We are safe against the second case 2136 * because if jinode->i_transaction == transaction, commit code 2137 * cannot touch the transaction because we hold reference to it, 2138 * and if jinode->i_next_transaction == transaction, commit code 2139 * will only file the inode where we want it. 2140 */ 2141 if (jinode->i_transaction == transaction || 2142 jinode->i_next_transaction == transaction) 2143 return 0; 2144 2145 spin_lock(&journal->j_list_lock); 2146 2147 if (jinode->i_transaction == transaction || 2148 jinode->i_next_transaction == transaction) 2149 goto done; 2150 2151 /* 2152 * We only ever set this variable to 1 so the test is safe. Since 2153 * t_need_data_flush is likely to be set, we do the test to save some 2154 * cacheline bouncing 2155 */ 2156 if (!transaction->t_need_data_flush) 2157 transaction->t_need_data_flush = 1; 2158 /* On some different transaction's list - should be 2159 * the committing one */ 2160 if (jinode->i_transaction) { 2161 J_ASSERT(jinode->i_next_transaction == NULL); 2162 J_ASSERT(jinode->i_transaction == 2163 journal->j_committing_transaction); 2164 jinode->i_next_transaction = transaction; 2165 goto done; 2166 } 2167 /* Not on any transaction list... */ 2168 J_ASSERT(!jinode->i_next_transaction); 2169 jinode->i_transaction = transaction; 2170 list_add(&jinode->i_list, &transaction->t_inode_list); 2171 done: 2172 spin_unlock(&journal->j_list_lock); 2173 2174 return 0; 2175 } 2176 2177 /* 2178 * File truncate and transaction commit interact with each other in a 2179 * non-trivial way. If a transaction writing data block A is 2180 * committing, we cannot discard the data by truncate until we have 2181 * written them. Otherwise if we crashed after the transaction with 2182 * write has committed but before the transaction with truncate has 2183 * committed, we could see stale data in block A. This function is a 2184 * helper to solve this problem. It starts writeout of the truncated 2185 * part in case it is in the committing transaction. 2186 * 2187 * Filesystem code must call this function when inode is journaled in 2188 * ordered mode before truncation happens and after the inode has been 2189 * placed on orphan list with the new inode size. The second condition 2190 * avoids the race that someone writes new data and we start 2191 * committing the transaction after this function has been called but 2192 * before a transaction for truncate is started (and furthermore it 2193 * allows us to optimize the case where the addition to orphan list 2194 * happens in the same transaction as write --- we don't have to write 2195 * any data in such case). 2196 */ 2197 int jbd2_journal_begin_ordered_truncate(journal_t *journal, 2198 struct jbd2_inode *jinode, 2199 loff_t new_size) 2200 { 2201 transaction_t *inode_trans, *commit_trans; 2202 int ret = 0; 2203 2204 /* This is a quick check to avoid locking if not necessary */ 2205 if (!jinode->i_transaction) 2206 goto out; 2207 /* Locks are here just to force reading of recent values, it is 2208 * enough that the transaction was not committing before we started 2209 * a transaction adding the inode to orphan list */ 2210 read_lock(&journal->j_state_lock); 2211 commit_trans = journal->j_committing_transaction; 2212 read_unlock(&journal->j_state_lock); 2213 spin_lock(&journal->j_list_lock); 2214 inode_trans = jinode->i_transaction; 2215 spin_unlock(&journal->j_list_lock); 2216 if (inode_trans == commit_trans) { 2217 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping, 2218 new_size, LLONG_MAX); 2219 if (ret) 2220 jbd2_journal_abort(journal, ret); 2221 } 2222 out: 2223 return ret; 2224 } 2225