xref: /linux/fs/jbd2/transaction.c (revision 12871a0bd67dd4db4418e1daafcd46e9d329ef10)
1 /*
2  * linux/fs/jbd2/transaction.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem transaction handling code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages transactions (compound commits managed by the
16  * journaling code) and handles (individual atomic operations by the
17  * filesystem).
18  */
19 
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd2.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/hrtimer.h>
29 #include <linux/backing-dev.h>
30 #include <linux/module.h>
31 
32 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
33 
34 /*
35  * jbd2_get_transaction: obtain a new transaction_t object.
36  *
37  * Simply allocate and initialise a new transaction.  Create it in
38  * RUNNING state and add it to the current journal (which should not
39  * have an existing running transaction: we only make a new transaction
40  * once we have started to commit the old one).
41  *
42  * Preconditions:
43  *	The journal MUST be locked.  We don't perform atomic mallocs on the
44  *	new transaction	and we can't block without protecting against other
45  *	processes trying to touch the journal while it is in transition.
46  *
47  */
48 
49 static transaction_t *
50 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
51 {
52 	transaction->t_journal = journal;
53 	transaction->t_state = T_RUNNING;
54 	transaction->t_start_time = ktime_get();
55 	transaction->t_tid = journal->j_transaction_sequence++;
56 	transaction->t_expires = jiffies + journal->j_commit_interval;
57 	spin_lock_init(&transaction->t_handle_lock);
58 	atomic_set(&transaction->t_updates, 0);
59 	atomic_set(&transaction->t_outstanding_credits, 0);
60 	atomic_set(&transaction->t_handle_count, 0);
61 	INIT_LIST_HEAD(&transaction->t_inode_list);
62 	INIT_LIST_HEAD(&transaction->t_private_list);
63 
64 	/* Set up the commit timer for the new transaction. */
65 	journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
66 	add_timer(&journal->j_commit_timer);
67 
68 	J_ASSERT(journal->j_running_transaction == NULL);
69 	journal->j_running_transaction = transaction;
70 	transaction->t_max_wait = 0;
71 	transaction->t_start = jiffies;
72 
73 	return transaction;
74 }
75 
76 /*
77  * Handle management.
78  *
79  * A handle_t is an object which represents a single atomic update to a
80  * filesystem, and which tracks all of the modifications which form part
81  * of that one update.
82  */
83 
84 /*
85  * Update transaction's maximum wait time, if debugging is enabled.
86  *
87  * In order for t_max_wait to be reliable, it must be protected by a
88  * lock.  But doing so will mean that start_this_handle() can not be
89  * run in parallel on SMP systems, which limits our scalability.  So
90  * unless debugging is enabled, we no longer update t_max_wait, which
91  * means that maximum wait time reported by the jbd2_run_stats
92  * tracepoint will always be zero.
93  */
94 static inline void update_t_max_wait(transaction_t *transaction,
95 				     unsigned long ts)
96 {
97 #ifdef CONFIG_JBD2_DEBUG
98 	if (jbd2_journal_enable_debug &&
99 	    time_after(transaction->t_start, ts)) {
100 		ts = jbd2_time_diff(ts, transaction->t_start);
101 		spin_lock(&transaction->t_handle_lock);
102 		if (ts > transaction->t_max_wait)
103 			transaction->t_max_wait = ts;
104 		spin_unlock(&transaction->t_handle_lock);
105 	}
106 #endif
107 }
108 
109 /*
110  * start_this_handle: Given a handle, deal with any locking or stalling
111  * needed to make sure that there is enough journal space for the handle
112  * to begin.  Attach the handle to a transaction and set up the
113  * transaction's buffer credits.
114  */
115 
116 static int start_this_handle(journal_t *journal, handle_t *handle,
117 			     int gfp_mask)
118 {
119 	transaction_t	*transaction, *new_transaction = NULL;
120 	tid_t		tid;
121 	int		needed, need_to_start;
122 	int		nblocks = handle->h_buffer_credits;
123 	unsigned long ts = jiffies;
124 
125 	if (nblocks > journal->j_max_transaction_buffers) {
126 		printk(KERN_ERR "JBD: %s wants too many credits (%d > %d)\n",
127 		       current->comm, nblocks,
128 		       journal->j_max_transaction_buffers);
129 		return -ENOSPC;
130 	}
131 
132 alloc_transaction:
133 	if (!journal->j_running_transaction) {
134 		new_transaction = kzalloc(sizeof(*new_transaction), gfp_mask);
135 		if (!new_transaction) {
136 			/*
137 			 * If __GFP_FS is not present, then we may be
138 			 * being called from inside the fs writeback
139 			 * layer, so we MUST NOT fail.  Since
140 			 * __GFP_NOFAIL is going away, we will arrange
141 			 * to retry the allocation ourselves.
142 			 */
143 			if ((gfp_mask & __GFP_FS) == 0) {
144 				congestion_wait(BLK_RW_ASYNC, HZ/50);
145 				goto alloc_transaction;
146 			}
147 			return -ENOMEM;
148 		}
149 	}
150 
151 	jbd_debug(3, "New handle %p going live.\n", handle);
152 
153 	/*
154 	 * We need to hold j_state_lock until t_updates has been incremented,
155 	 * for proper journal barrier handling
156 	 */
157 repeat:
158 	read_lock(&journal->j_state_lock);
159 	BUG_ON(journal->j_flags & JBD2_UNMOUNT);
160 	if (is_journal_aborted(journal) ||
161 	    (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
162 		read_unlock(&journal->j_state_lock);
163 		kfree(new_transaction);
164 		return -EROFS;
165 	}
166 
167 	/* Wait on the journal's transaction barrier if necessary */
168 	if (journal->j_barrier_count) {
169 		read_unlock(&journal->j_state_lock);
170 		wait_event(journal->j_wait_transaction_locked,
171 				journal->j_barrier_count == 0);
172 		goto repeat;
173 	}
174 
175 	if (!journal->j_running_transaction) {
176 		read_unlock(&journal->j_state_lock);
177 		if (!new_transaction)
178 			goto alloc_transaction;
179 		write_lock(&journal->j_state_lock);
180 		if (!journal->j_running_transaction) {
181 			jbd2_get_transaction(journal, new_transaction);
182 			new_transaction = NULL;
183 		}
184 		write_unlock(&journal->j_state_lock);
185 		goto repeat;
186 	}
187 
188 	transaction = journal->j_running_transaction;
189 
190 	/*
191 	 * If the current transaction is locked down for commit, wait for the
192 	 * lock to be released.
193 	 */
194 	if (transaction->t_state == T_LOCKED) {
195 		DEFINE_WAIT(wait);
196 
197 		prepare_to_wait(&journal->j_wait_transaction_locked,
198 					&wait, TASK_UNINTERRUPTIBLE);
199 		read_unlock(&journal->j_state_lock);
200 		schedule();
201 		finish_wait(&journal->j_wait_transaction_locked, &wait);
202 		goto repeat;
203 	}
204 
205 	/*
206 	 * If there is not enough space left in the log to write all potential
207 	 * buffers requested by this operation, we need to stall pending a log
208 	 * checkpoint to free some more log space.
209 	 */
210 	needed = atomic_add_return(nblocks,
211 				   &transaction->t_outstanding_credits);
212 
213 	if (needed > journal->j_max_transaction_buffers) {
214 		/*
215 		 * If the current transaction is already too large, then start
216 		 * to commit it: we can then go back and attach this handle to
217 		 * a new transaction.
218 		 */
219 		DEFINE_WAIT(wait);
220 
221 		jbd_debug(2, "Handle %p starting new commit...\n", handle);
222 		atomic_sub(nblocks, &transaction->t_outstanding_credits);
223 		prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
224 				TASK_UNINTERRUPTIBLE);
225 		tid = transaction->t_tid;
226 		need_to_start = !tid_geq(journal->j_commit_request, tid);
227 		read_unlock(&journal->j_state_lock);
228 		if (need_to_start)
229 			jbd2_log_start_commit(journal, tid);
230 		schedule();
231 		finish_wait(&journal->j_wait_transaction_locked, &wait);
232 		goto repeat;
233 	}
234 
235 	/*
236 	 * The commit code assumes that it can get enough log space
237 	 * without forcing a checkpoint.  This is *critical* for
238 	 * correctness: a checkpoint of a buffer which is also
239 	 * associated with a committing transaction creates a deadlock,
240 	 * so commit simply cannot force through checkpoints.
241 	 *
242 	 * We must therefore ensure the necessary space in the journal
243 	 * *before* starting to dirty potentially checkpointed buffers
244 	 * in the new transaction.
245 	 *
246 	 * The worst part is, any transaction currently committing can
247 	 * reduce the free space arbitrarily.  Be careful to account for
248 	 * those buffers when checkpointing.
249 	 */
250 
251 	/*
252 	 * @@@ AKPM: This seems rather over-defensive.  We're giving commit
253 	 * a _lot_ of headroom: 1/4 of the journal plus the size of
254 	 * the committing transaction.  Really, we only need to give it
255 	 * committing_transaction->t_outstanding_credits plus "enough" for
256 	 * the log control blocks.
257 	 * Also, this test is inconsistent with the matching one in
258 	 * jbd2_journal_extend().
259 	 */
260 	if (__jbd2_log_space_left(journal) < jbd_space_needed(journal)) {
261 		jbd_debug(2, "Handle %p waiting for checkpoint...\n", handle);
262 		atomic_sub(nblocks, &transaction->t_outstanding_credits);
263 		read_unlock(&journal->j_state_lock);
264 		write_lock(&journal->j_state_lock);
265 		if (__jbd2_log_space_left(journal) < jbd_space_needed(journal))
266 			__jbd2_log_wait_for_space(journal);
267 		write_unlock(&journal->j_state_lock);
268 		goto repeat;
269 	}
270 
271 	/* OK, account for the buffers that this operation expects to
272 	 * use and add the handle to the running transaction.
273 	 */
274 	update_t_max_wait(transaction, ts);
275 	handle->h_transaction = transaction;
276 	atomic_inc(&transaction->t_updates);
277 	atomic_inc(&transaction->t_handle_count);
278 	jbd_debug(4, "Handle %p given %d credits (total %d, free %d)\n",
279 		  handle, nblocks,
280 		  atomic_read(&transaction->t_outstanding_credits),
281 		  __jbd2_log_space_left(journal));
282 	read_unlock(&journal->j_state_lock);
283 
284 	lock_map_acquire(&handle->h_lockdep_map);
285 	kfree(new_transaction);
286 	return 0;
287 }
288 
289 static struct lock_class_key jbd2_handle_key;
290 
291 /* Allocate a new handle.  This should probably be in a slab... */
292 static handle_t *new_handle(int nblocks)
293 {
294 	handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
295 	if (!handle)
296 		return NULL;
297 	memset(handle, 0, sizeof(*handle));
298 	handle->h_buffer_credits = nblocks;
299 	handle->h_ref = 1;
300 
301 	lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle",
302 						&jbd2_handle_key, 0);
303 
304 	return handle;
305 }
306 
307 /**
308  * handle_t *jbd2_journal_start() - Obtain a new handle.
309  * @journal: Journal to start transaction on.
310  * @nblocks: number of block buffer we might modify
311  *
312  * We make sure that the transaction can guarantee at least nblocks of
313  * modified buffers in the log.  We block until the log can guarantee
314  * that much space.
315  *
316  * This function is visible to journal users (like ext3fs), so is not
317  * called with the journal already locked.
318  *
319  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
320  * on failure.
321  */
322 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int gfp_mask)
323 {
324 	handle_t *handle = journal_current_handle();
325 	int err;
326 
327 	if (!journal)
328 		return ERR_PTR(-EROFS);
329 
330 	if (handle) {
331 		J_ASSERT(handle->h_transaction->t_journal == journal);
332 		handle->h_ref++;
333 		return handle;
334 	}
335 
336 	handle = new_handle(nblocks);
337 	if (!handle)
338 		return ERR_PTR(-ENOMEM);
339 
340 	current->journal_info = handle;
341 
342 	err = start_this_handle(journal, handle, gfp_mask);
343 	if (err < 0) {
344 		jbd2_free_handle(handle);
345 		current->journal_info = NULL;
346 		handle = ERR_PTR(err);
347 	}
348 	return handle;
349 }
350 EXPORT_SYMBOL(jbd2__journal_start);
351 
352 
353 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
354 {
355 	return jbd2__journal_start(journal, nblocks, GFP_NOFS);
356 }
357 EXPORT_SYMBOL(jbd2_journal_start);
358 
359 
360 /**
361  * int jbd2_journal_extend() - extend buffer credits.
362  * @handle:  handle to 'extend'
363  * @nblocks: nr blocks to try to extend by.
364  *
365  * Some transactions, such as large extends and truncates, can be done
366  * atomically all at once or in several stages.  The operation requests
367  * a credit for a number of buffer modications in advance, but can
368  * extend its credit if it needs more.
369  *
370  * jbd2_journal_extend tries to give the running handle more buffer credits.
371  * It does not guarantee that allocation - this is a best-effort only.
372  * The calling process MUST be able to deal cleanly with a failure to
373  * extend here.
374  *
375  * Return 0 on success, non-zero on failure.
376  *
377  * return code < 0 implies an error
378  * return code > 0 implies normal transaction-full status.
379  */
380 int jbd2_journal_extend(handle_t *handle, int nblocks)
381 {
382 	transaction_t *transaction = handle->h_transaction;
383 	journal_t *journal = transaction->t_journal;
384 	int result;
385 	int wanted;
386 
387 	result = -EIO;
388 	if (is_handle_aborted(handle))
389 		goto out;
390 
391 	result = 1;
392 
393 	read_lock(&journal->j_state_lock);
394 
395 	/* Don't extend a locked-down transaction! */
396 	if (handle->h_transaction->t_state != T_RUNNING) {
397 		jbd_debug(3, "denied handle %p %d blocks: "
398 			  "transaction not running\n", handle, nblocks);
399 		goto error_out;
400 	}
401 
402 	spin_lock(&transaction->t_handle_lock);
403 	wanted = atomic_read(&transaction->t_outstanding_credits) + nblocks;
404 
405 	if (wanted > journal->j_max_transaction_buffers) {
406 		jbd_debug(3, "denied handle %p %d blocks: "
407 			  "transaction too large\n", handle, nblocks);
408 		goto unlock;
409 	}
410 
411 	if (wanted > __jbd2_log_space_left(journal)) {
412 		jbd_debug(3, "denied handle %p %d blocks: "
413 			  "insufficient log space\n", handle, nblocks);
414 		goto unlock;
415 	}
416 
417 	handle->h_buffer_credits += nblocks;
418 	atomic_add(nblocks, &transaction->t_outstanding_credits);
419 	result = 0;
420 
421 	jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
422 unlock:
423 	spin_unlock(&transaction->t_handle_lock);
424 error_out:
425 	read_unlock(&journal->j_state_lock);
426 out:
427 	return result;
428 }
429 
430 
431 /**
432  * int jbd2_journal_restart() - restart a handle .
433  * @handle:  handle to restart
434  * @nblocks: nr credits requested
435  *
436  * Restart a handle for a multi-transaction filesystem
437  * operation.
438  *
439  * If the jbd2_journal_extend() call above fails to grant new buffer credits
440  * to a running handle, a call to jbd2_journal_restart will commit the
441  * handle's transaction so far and reattach the handle to a new
442  * transaction capabable of guaranteeing the requested number of
443  * credits.
444  */
445 int jbd2__journal_restart(handle_t *handle, int nblocks, int gfp_mask)
446 {
447 	transaction_t *transaction = handle->h_transaction;
448 	journal_t *journal = transaction->t_journal;
449 	tid_t		tid;
450 	int		need_to_start, ret;
451 
452 	/* If we've had an abort of any type, don't even think about
453 	 * actually doing the restart! */
454 	if (is_handle_aborted(handle))
455 		return 0;
456 
457 	/*
458 	 * First unlink the handle from its current transaction, and start the
459 	 * commit on that.
460 	 */
461 	J_ASSERT(atomic_read(&transaction->t_updates) > 0);
462 	J_ASSERT(journal_current_handle() == handle);
463 
464 	read_lock(&journal->j_state_lock);
465 	spin_lock(&transaction->t_handle_lock);
466 	atomic_sub(handle->h_buffer_credits,
467 		   &transaction->t_outstanding_credits);
468 	if (atomic_dec_and_test(&transaction->t_updates))
469 		wake_up(&journal->j_wait_updates);
470 	spin_unlock(&transaction->t_handle_lock);
471 
472 	jbd_debug(2, "restarting handle %p\n", handle);
473 	tid = transaction->t_tid;
474 	need_to_start = !tid_geq(journal->j_commit_request, tid);
475 	read_unlock(&journal->j_state_lock);
476 	if (need_to_start)
477 		jbd2_log_start_commit(journal, tid);
478 
479 	lock_map_release(&handle->h_lockdep_map);
480 	handle->h_buffer_credits = nblocks;
481 	ret = start_this_handle(journal, handle, gfp_mask);
482 	return ret;
483 }
484 EXPORT_SYMBOL(jbd2__journal_restart);
485 
486 
487 int jbd2_journal_restart(handle_t *handle, int nblocks)
488 {
489 	return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
490 }
491 EXPORT_SYMBOL(jbd2_journal_restart);
492 
493 /**
494  * void jbd2_journal_lock_updates () - establish a transaction barrier.
495  * @journal:  Journal to establish a barrier on.
496  *
497  * This locks out any further updates from being started, and blocks
498  * until all existing updates have completed, returning only once the
499  * journal is in a quiescent state with no updates running.
500  *
501  * The journal lock should not be held on entry.
502  */
503 void jbd2_journal_lock_updates(journal_t *journal)
504 {
505 	DEFINE_WAIT(wait);
506 
507 	write_lock(&journal->j_state_lock);
508 	++journal->j_barrier_count;
509 
510 	/* Wait until there are no running updates */
511 	while (1) {
512 		transaction_t *transaction = journal->j_running_transaction;
513 
514 		if (!transaction)
515 			break;
516 
517 		spin_lock(&transaction->t_handle_lock);
518 		if (!atomic_read(&transaction->t_updates)) {
519 			spin_unlock(&transaction->t_handle_lock);
520 			break;
521 		}
522 		prepare_to_wait(&journal->j_wait_updates, &wait,
523 				TASK_UNINTERRUPTIBLE);
524 		spin_unlock(&transaction->t_handle_lock);
525 		write_unlock(&journal->j_state_lock);
526 		schedule();
527 		finish_wait(&journal->j_wait_updates, &wait);
528 		write_lock(&journal->j_state_lock);
529 	}
530 	write_unlock(&journal->j_state_lock);
531 
532 	/*
533 	 * We have now established a barrier against other normal updates, but
534 	 * we also need to barrier against other jbd2_journal_lock_updates() calls
535 	 * to make sure that we serialise special journal-locked operations
536 	 * too.
537 	 */
538 	mutex_lock(&journal->j_barrier);
539 }
540 
541 /**
542  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
543  * @journal:  Journal to release the barrier on.
544  *
545  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
546  *
547  * Should be called without the journal lock held.
548  */
549 void jbd2_journal_unlock_updates (journal_t *journal)
550 {
551 	J_ASSERT(journal->j_barrier_count != 0);
552 
553 	mutex_unlock(&journal->j_barrier);
554 	write_lock(&journal->j_state_lock);
555 	--journal->j_barrier_count;
556 	write_unlock(&journal->j_state_lock);
557 	wake_up(&journal->j_wait_transaction_locked);
558 }
559 
560 static void warn_dirty_buffer(struct buffer_head *bh)
561 {
562 	char b[BDEVNAME_SIZE];
563 
564 	printk(KERN_WARNING
565 	       "JBD: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). "
566 	       "There's a risk of filesystem corruption in case of system "
567 	       "crash.\n",
568 	       bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr);
569 }
570 
571 /*
572  * If the buffer is already part of the current transaction, then there
573  * is nothing we need to do.  If it is already part of a prior
574  * transaction which we are still committing to disk, then we need to
575  * make sure that we do not overwrite the old copy: we do copy-out to
576  * preserve the copy going to disk.  We also account the buffer against
577  * the handle's metadata buffer credits (unless the buffer is already
578  * part of the transaction, that is).
579  *
580  */
581 static int
582 do_get_write_access(handle_t *handle, struct journal_head *jh,
583 			int force_copy)
584 {
585 	struct buffer_head *bh;
586 	transaction_t *transaction;
587 	journal_t *journal;
588 	int error;
589 	char *frozen_buffer = NULL;
590 	int need_copy = 0;
591 
592 	if (is_handle_aborted(handle))
593 		return -EROFS;
594 
595 	transaction = handle->h_transaction;
596 	journal = transaction->t_journal;
597 
598 	jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
599 
600 	JBUFFER_TRACE(jh, "entry");
601 repeat:
602 	bh = jh2bh(jh);
603 
604 	/* @@@ Need to check for errors here at some point. */
605 
606 	lock_buffer(bh);
607 	jbd_lock_bh_state(bh);
608 
609 	/* We now hold the buffer lock so it is safe to query the buffer
610 	 * state.  Is the buffer dirty?
611 	 *
612 	 * If so, there are two possibilities.  The buffer may be
613 	 * non-journaled, and undergoing a quite legitimate writeback.
614 	 * Otherwise, it is journaled, and we don't expect dirty buffers
615 	 * in that state (the buffers should be marked JBD_Dirty
616 	 * instead.)  So either the IO is being done under our own
617 	 * control and this is a bug, or it's a third party IO such as
618 	 * dump(8) (which may leave the buffer scheduled for read ---
619 	 * ie. locked but not dirty) or tune2fs (which may actually have
620 	 * the buffer dirtied, ugh.)  */
621 
622 	if (buffer_dirty(bh)) {
623 		/*
624 		 * First question: is this buffer already part of the current
625 		 * transaction or the existing committing transaction?
626 		 */
627 		if (jh->b_transaction) {
628 			J_ASSERT_JH(jh,
629 				jh->b_transaction == transaction ||
630 				jh->b_transaction ==
631 					journal->j_committing_transaction);
632 			if (jh->b_next_transaction)
633 				J_ASSERT_JH(jh, jh->b_next_transaction ==
634 							transaction);
635 			warn_dirty_buffer(bh);
636 		}
637 		/*
638 		 * In any case we need to clean the dirty flag and we must
639 		 * do it under the buffer lock to be sure we don't race
640 		 * with running write-out.
641 		 */
642 		JBUFFER_TRACE(jh, "Journalling dirty buffer");
643 		clear_buffer_dirty(bh);
644 		set_buffer_jbddirty(bh);
645 	}
646 
647 	unlock_buffer(bh);
648 
649 	error = -EROFS;
650 	if (is_handle_aborted(handle)) {
651 		jbd_unlock_bh_state(bh);
652 		goto out;
653 	}
654 	error = 0;
655 
656 	/*
657 	 * The buffer is already part of this transaction if b_transaction or
658 	 * b_next_transaction points to it
659 	 */
660 	if (jh->b_transaction == transaction ||
661 	    jh->b_next_transaction == transaction)
662 		goto done;
663 
664 	/*
665 	 * this is the first time this transaction is touching this buffer,
666 	 * reset the modified flag
667 	 */
668        jh->b_modified = 0;
669 
670 	/*
671 	 * If there is already a copy-out version of this buffer, then we don't
672 	 * need to make another one
673 	 */
674 	if (jh->b_frozen_data) {
675 		JBUFFER_TRACE(jh, "has frozen data");
676 		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
677 		jh->b_next_transaction = transaction;
678 		goto done;
679 	}
680 
681 	/* Is there data here we need to preserve? */
682 
683 	if (jh->b_transaction && jh->b_transaction != transaction) {
684 		JBUFFER_TRACE(jh, "owned by older transaction");
685 		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
686 		J_ASSERT_JH(jh, jh->b_transaction ==
687 					journal->j_committing_transaction);
688 
689 		/* There is one case we have to be very careful about.
690 		 * If the committing transaction is currently writing
691 		 * this buffer out to disk and has NOT made a copy-out,
692 		 * then we cannot modify the buffer contents at all
693 		 * right now.  The essence of copy-out is that it is the
694 		 * extra copy, not the primary copy, which gets
695 		 * journaled.  If the primary copy is already going to
696 		 * disk then we cannot do copy-out here. */
697 
698 		if (jh->b_jlist == BJ_Shadow) {
699 			DEFINE_WAIT_BIT(wait, &bh->b_state, BH_Unshadow);
700 			wait_queue_head_t *wqh;
701 
702 			wqh = bit_waitqueue(&bh->b_state, BH_Unshadow);
703 
704 			JBUFFER_TRACE(jh, "on shadow: sleep");
705 			jbd_unlock_bh_state(bh);
706 			/* commit wakes up all shadow buffers after IO */
707 			for ( ; ; ) {
708 				prepare_to_wait(wqh, &wait.wait,
709 						TASK_UNINTERRUPTIBLE);
710 				if (jh->b_jlist != BJ_Shadow)
711 					break;
712 				schedule();
713 			}
714 			finish_wait(wqh, &wait.wait);
715 			goto repeat;
716 		}
717 
718 		/* Only do the copy if the currently-owning transaction
719 		 * still needs it.  If it is on the Forget list, the
720 		 * committing transaction is past that stage.  The
721 		 * buffer had better remain locked during the kmalloc,
722 		 * but that should be true --- we hold the journal lock
723 		 * still and the buffer is already on the BUF_JOURNAL
724 		 * list so won't be flushed.
725 		 *
726 		 * Subtle point, though: if this is a get_undo_access,
727 		 * then we will be relying on the frozen_data to contain
728 		 * the new value of the committed_data record after the
729 		 * transaction, so we HAVE to force the frozen_data copy
730 		 * in that case. */
731 
732 		if (jh->b_jlist != BJ_Forget || force_copy) {
733 			JBUFFER_TRACE(jh, "generate frozen data");
734 			if (!frozen_buffer) {
735 				JBUFFER_TRACE(jh, "allocate memory for buffer");
736 				jbd_unlock_bh_state(bh);
737 				frozen_buffer =
738 					jbd2_alloc(jh2bh(jh)->b_size,
739 							 GFP_NOFS);
740 				if (!frozen_buffer) {
741 					printk(KERN_EMERG
742 					       "%s: OOM for frozen_buffer\n",
743 					       __func__);
744 					JBUFFER_TRACE(jh, "oom!");
745 					error = -ENOMEM;
746 					jbd_lock_bh_state(bh);
747 					goto done;
748 				}
749 				goto repeat;
750 			}
751 			jh->b_frozen_data = frozen_buffer;
752 			frozen_buffer = NULL;
753 			need_copy = 1;
754 		}
755 		jh->b_next_transaction = transaction;
756 	}
757 
758 
759 	/*
760 	 * Finally, if the buffer is not journaled right now, we need to make
761 	 * sure it doesn't get written to disk before the caller actually
762 	 * commits the new data
763 	 */
764 	if (!jh->b_transaction) {
765 		JBUFFER_TRACE(jh, "no transaction");
766 		J_ASSERT_JH(jh, !jh->b_next_transaction);
767 		jh->b_transaction = transaction;
768 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
769 		spin_lock(&journal->j_list_lock);
770 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
771 		spin_unlock(&journal->j_list_lock);
772 	}
773 
774 done:
775 	if (need_copy) {
776 		struct page *page;
777 		int offset;
778 		char *source;
779 
780 		J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)),
781 			    "Possible IO failure.\n");
782 		page = jh2bh(jh)->b_page;
783 		offset = offset_in_page(jh2bh(jh)->b_data);
784 		source = kmap_atomic(page, KM_USER0);
785 		/* Fire data frozen trigger just before we copy the data */
786 		jbd2_buffer_frozen_trigger(jh, source + offset,
787 					   jh->b_triggers);
788 		memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size);
789 		kunmap_atomic(source, KM_USER0);
790 
791 		/*
792 		 * Now that the frozen data is saved off, we need to store
793 		 * any matching triggers.
794 		 */
795 		jh->b_frozen_triggers = jh->b_triggers;
796 	}
797 	jbd_unlock_bh_state(bh);
798 
799 	/*
800 	 * If we are about to journal a buffer, then any revoke pending on it is
801 	 * no longer valid
802 	 */
803 	jbd2_journal_cancel_revoke(handle, jh);
804 
805 out:
806 	if (unlikely(frozen_buffer))	/* It's usually NULL */
807 		jbd2_free(frozen_buffer, bh->b_size);
808 
809 	JBUFFER_TRACE(jh, "exit");
810 	return error;
811 }
812 
813 /**
814  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
815  * @handle: transaction to add buffer modifications to
816  * @bh:     bh to be used for metadata writes
817  * @credits: variable that will receive credits for the buffer
818  *
819  * Returns an error code or 0 on success.
820  *
821  * In full data journalling mode the buffer may be of type BJ_AsyncData,
822  * because we're write()ing a buffer which is also part of a shared mapping.
823  */
824 
825 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
826 {
827 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
828 	int rc;
829 
830 	/* We do not want to get caught playing with fields which the
831 	 * log thread also manipulates.  Make sure that the buffer
832 	 * completes any outstanding IO before proceeding. */
833 	rc = do_get_write_access(handle, jh, 0);
834 	jbd2_journal_put_journal_head(jh);
835 	return rc;
836 }
837 
838 
839 /*
840  * When the user wants to journal a newly created buffer_head
841  * (ie. getblk() returned a new buffer and we are going to populate it
842  * manually rather than reading off disk), then we need to keep the
843  * buffer_head locked until it has been completely filled with new
844  * data.  In this case, we should be able to make the assertion that
845  * the bh is not already part of an existing transaction.
846  *
847  * The buffer should already be locked by the caller by this point.
848  * There is no lock ranking violation: it was a newly created,
849  * unlocked buffer beforehand. */
850 
851 /**
852  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
853  * @handle: transaction to new buffer to
854  * @bh: new buffer.
855  *
856  * Call this if you create a new bh.
857  */
858 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
859 {
860 	transaction_t *transaction = handle->h_transaction;
861 	journal_t *journal = transaction->t_journal;
862 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
863 	int err;
864 
865 	jbd_debug(5, "journal_head %p\n", jh);
866 	err = -EROFS;
867 	if (is_handle_aborted(handle))
868 		goto out;
869 	err = 0;
870 
871 	JBUFFER_TRACE(jh, "entry");
872 	/*
873 	 * The buffer may already belong to this transaction due to pre-zeroing
874 	 * in the filesystem's new_block code.  It may also be on the previous,
875 	 * committing transaction's lists, but it HAS to be in Forget state in
876 	 * that case: the transaction must have deleted the buffer for it to be
877 	 * reused here.
878 	 */
879 	jbd_lock_bh_state(bh);
880 	spin_lock(&journal->j_list_lock);
881 	J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
882 		jh->b_transaction == NULL ||
883 		(jh->b_transaction == journal->j_committing_transaction &&
884 			  jh->b_jlist == BJ_Forget)));
885 
886 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
887 	J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
888 
889 	if (jh->b_transaction == NULL) {
890 		/*
891 		 * Previous jbd2_journal_forget() could have left the buffer
892 		 * with jbddirty bit set because it was being committed. When
893 		 * the commit finished, we've filed the buffer for
894 		 * checkpointing and marked it dirty. Now we are reallocating
895 		 * the buffer so the transaction freeing it must have
896 		 * committed and so it's safe to clear the dirty bit.
897 		 */
898 		clear_buffer_dirty(jh2bh(jh));
899 		jh->b_transaction = transaction;
900 
901 		/* first access by this transaction */
902 		jh->b_modified = 0;
903 
904 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
905 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
906 	} else if (jh->b_transaction == journal->j_committing_transaction) {
907 		/* first access by this transaction */
908 		jh->b_modified = 0;
909 
910 		JBUFFER_TRACE(jh, "set next transaction");
911 		jh->b_next_transaction = transaction;
912 	}
913 	spin_unlock(&journal->j_list_lock);
914 	jbd_unlock_bh_state(bh);
915 
916 	/*
917 	 * akpm: I added this.  ext3_alloc_branch can pick up new indirect
918 	 * blocks which contain freed but then revoked metadata.  We need
919 	 * to cancel the revoke in case we end up freeing it yet again
920 	 * and the reallocating as data - this would cause a second revoke,
921 	 * which hits an assertion error.
922 	 */
923 	JBUFFER_TRACE(jh, "cancelling revoke");
924 	jbd2_journal_cancel_revoke(handle, jh);
925 out:
926 	jbd2_journal_put_journal_head(jh);
927 	return err;
928 }
929 
930 /**
931  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
932  *     non-rewindable consequences
933  * @handle: transaction
934  * @bh: buffer to undo
935  * @credits: store the number of taken credits here (if not NULL)
936  *
937  * Sometimes there is a need to distinguish between metadata which has
938  * been committed to disk and that which has not.  The ext3fs code uses
939  * this for freeing and allocating space, we have to make sure that we
940  * do not reuse freed space until the deallocation has been committed,
941  * since if we overwrote that space we would make the delete
942  * un-rewindable in case of a crash.
943  *
944  * To deal with that, jbd2_journal_get_undo_access requests write access to a
945  * buffer for parts of non-rewindable operations such as delete
946  * operations on the bitmaps.  The journaling code must keep a copy of
947  * the buffer's contents prior to the undo_access call until such time
948  * as we know that the buffer has definitely been committed to disk.
949  *
950  * We never need to know which transaction the committed data is part
951  * of, buffers touched here are guaranteed to be dirtied later and so
952  * will be committed to a new transaction in due course, at which point
953  * we can discard the old committed data pointer.
954  *
955  * Returns error number or 0 on success.
956  */
957 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
958 {
959 	int err;
960 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
961 	char *committed_data = NULL;
962 
963 	JBUFFER_TRACE(jh, "entry");
964 
965 	/*
966 	 * Do this first --- it can drop the journal lock, so we want to
967 	 * make sure that obtaining the committed_data is done
968 	 * atomically wrt. completion of any outstanding commits.
969 	 */
970 	err = do_get_write_access(handle, jh, 1);
971 	if (err)
972 		goto out;
973 
974 repeat:
975 	if (!jh->b_committed_data) {
976 		committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS);
977 		if (!committed_data) {
978 			printk(KERN_EMERG "%s: No memory for committed data\n",
979 				__func__);
980 			err = -ENOMEM;
981 			goto out;
982 		}
983 	}
984 
985 	jbd_lock_bh_state(bh);
986 	if (!jh->b_committed_data) {
987 		/* Copy out the current buffer contents into the
988 		 * preserved, committed copy. */
989 		JBUFFER_TRACE(jh, "generate b_committed data");
990 		if (!committed_data) {
991 			jbd_unlock_bh_state(bh);
992 			goto repeat;
993 		}
994 
995 		jh->b_committed_data = committed_data;
996 		committed_data = NULL;
997 		memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
998 	}
999 	jbd_unlock_bh_state(bh);
1000 out:
1001 	jbd2_journal_put_journal_head(jh);
1002 	if (unlikely(committed_data))
1003 		jbd2_free(committed_data, bh->b_size);
1004 	return err;
1005 }
1006 
1007 /**
1008  * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1009  * @bh: buffer to trigger on
1010  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1011  *
1012  * Set any triggers on this journal_head.  This is always safe, because
1013  * triggers for a committing buffer will be saved off, and triggers for
1014  * a running transaction will match the buffer in that transaction.
1015  *
1016  * Call with NULL to clear the triggers.
1017  */
1018 void jbd2_journal_set_triggers(struct buffer_head *bh,
1019 			       struct jbd2_buffer_trigger_type *type)
1020 {
1021 	struct journal_head *jh = bh2jh(bh);
1022 
1023 	jh->b_triggers = type;
1024 }
1025 
1026 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1027 				struct jbd2_buffer_trigger_type *triggers)
1028 {
1029 	struct buffer_head *bh = jh2bh(jh);
1030 
1031 	if (!triggers || !triggers->t_frozen)
1032 		return;
1033 
1034 	triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1035 }
1036 
1037 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1038 			       struct jbd2_buffer_trigger_type *triggers)
1039 {
1040 	if (!triggers || !triggers->t_abort)
1041 		return;
1042 
1043 	triggers->t_abort(triggers, jh2bh(jh));
1044 }
1045 
1046 
1047 
1048 /**
1049  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1050  * @handle: transaction to add buffer to.
1051  * @bh: buffer to mark
1052  *
1053  * mark dirty metadata which needs to be journaled as part of the current
1054  * transaction.
1055  *
1056  * The buffer is placed on the transaction's metadata list and is marked
1057  * as belonging to the transaction.
1058  *
1059  * Returns error number or 0 on success.
1060  *
1061  * Special care needs to be taken if the buffer already belongs to the
1062  * current committing transaction (in which case we should have frozen
1063  * data present for that commit).  In that case, we don't relink the
1064  * buffer: that only gets done when the old transaction finally
1065  * completes its commit.
1066  */
1067 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1068 {
1069 	transaction_t *transaction = handle->h_transaction;
1070 	journal_t *journal = transaction->t_journal;
1071 	struct journal_head *jh = bh2jh(bh);
1072 
1073 	jbd_debug(5, "journal_head %p\n", jh);
1074 	JBUFFER_TRACE(jh, "entry");
1075 	if (is_handle_aborted(handle))
1076 		goto out;
1077 
1078 	jbd_lock_bh_state(bh);
1079 
1080 	if (jh->b_modified == 0) {
1081 		/*
1082 		 * This buffer's got modified and becoming part
1083 		 * of the transaction. This needs to be done
1084 		 * once a transaction -bzzz
1085 		 */
1086 		jh->b_modified = 1;
1087 		J_ASSERT_JH(jh, handle->h_buffer_credits > 0);
1088 		handle->h_buffer_credits--;
1089 	}
1090 
1091 	/*
1092 	 * fastpath, to avoid expensive locking.  If this buffer is already
1093 	 * on the running transaction's metadata list there is nothing to do.
1094 	 * Nobody can take it off again because there is a handle open.
1095 	 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1096 	 * result in this test being false, so we go in and take the locks.
1097 	 */
1098 	if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1099 		JBUFFER_TRACE(jh, "fastpath");
1100 		J_ASSERT_JH(jh, jh->b_transaction ==
1101 					journal->j_running_transaction);
1102 		goto out_unlock_bh;
1103 	}
1104 
1105 	set_buffer_jbddirty(bh);
1106 
1107 	/*
1108 	 * Metadata already on the current transaction list doesn't
1109 	 * need to be filed.  Metadata on another transaction's list must
1110 	 * be committing, and will be refiled once the commit completes:
1111 	 * leave it alone for now.
1112 	 */
1113 	if (jh->b_transaction != transaction) {
1114 		JBUFFER_TRACE(jh, "already on other transaction");
1115 		J_ASSERT_JH(jh, jh->b_transaction ==
1116 					journal->j_committing_transaction);
1117 		J_ASSERT_JH(jh, jh->b_next_transaction == transaction);
1118 		/* And this case is illegal: we can't reuse another
1119 		 * transaction's data buffer, ever. */
1120 		goto out_unlock_bh;
1121 	}
1122 
1123 	/* That test should have eliminated the following case: */
1124 	J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1125 
1126 	JBUFFER_TRACE(jh, "file as BJ_Metadata");
1127 	spin_lock(&journal->j_list_lock);
1128 	__jbd2_journal_file_buffer(jh, handle->h_transaction, BJ_Metadata);
1129 	spin_unlock(&journal->j_list_lock);
1130 out_unlock_bh:
1131 	jbd_unlock_bh_state(bh);
1132 out:
1133 	JBUFFER_TRACE(jh, "exit");
1134 	return 0;
1135 }
1136 
1137 /*
1138  * jbd2_journal_release_buffer: undo a get_write_access without any buffer
1139  * updates, if the update decided in the end that it didn't need access.
1140  *
1141  */
1142 void
1143 jbd2_journal_release_buffer(handle_t *handle, struct buffer_head *bh)
1144 {
1145 	BUFFER_TRACE(bh, "entry");
1146 }
1147 
1148 /**
1149  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1150  * @handle: transaction handle
1151  * @bh:     bh to 'forget'
1152  *
1153  * We can only do the bforget if there are no commits pending against the
1154  * buffer.  If the buffer is dirty in the current running transaction we
1155  * can safely unlink it.
1156  *
1157  * bh may not be a journalled buffer at all - it may be a non-JBD
1158  * buffer which came off the hashtable.  Check for this.
1159  *
1160  * Decrements bh->b_count by one.
1161  *
1162  * Allow this call even if the handle has aborted --- it may be part of
1163  * the caller's cleanup after an abort.
1164  */
1165 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1166 {
1167 	transaction_t *transaction = handle->h_transaction;
1168 	journal_t *journal = transaction->t_journal;
1169 	struct journal_head *jh;
1170 	int drop_reserve = 0;
1171 	int err = 0;
1172 	int was_modified = 0;
1173 
1174 	BUFFER_TRACE(bh, "entry");
1175 
1176 	jbd_lock_bh_state(bh);
1177 	spin_lock(&journal->j_list_lock);
1178 
1179 	if (!buffer_jbd(bh))
1180 		goto not_jbd;
1181 	jh = bh2jh(bh);
1182 
1183 	/* Critical error: attempting to delete a bitmap buffer, maybe?
1184 	 * Don't do any jbd operations, and return an error. */
1185 	if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1186 			 "inconsistent data on disk")) {
1187 		err = -EIO;
1188 		goto not_jbd;
1189 	}
1190 
1191 	/* keep track of wether or not this transaction modified us */
1192 	was_modified = jh->b_modified;
1193 
1194 	/*
1195 	 * The buffer's going from the transaction, we must drop
1196 	 * all references -bzzz
1197 	 */
1198 	jh->b_modified = 0;
1199 
1200 	if (jh->b_transaction == handle->h_transaction) {
1201 		J_ASSERT_JH(jh, !jh->b_frozen_data);
1202 
1203 		/* If we are forgetting a buffer which is already part
1204 		 * of this transaction, then we can just drop it from
1205 		 * the transaction immediately. */
1206 		clear_buffer_dirty(bh);
1207 		clear_buffer_jbddirty(bh);
1208 
1209 		JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1210 
1211 		/*
1212 		 * we only want to drop a reference if this transaction
1213 		 * modified the buffer
1214 		 */
1215 		if (was_modified)
1216 			drop_reserve = 1;
1217 
1218 		/*
1219 		 * We are no longer going to journal this buffer.
1220 		 * However, the commit of this transaction is still
1221 		 * important to the buffer: the delete that we are now
1222 		 * processing might obsolete an old log entry, so by
1223 		 * committing, we can satisfy the buffer's checkpoint.
1224 		 *
1225 		 * So, if we have a checkpoint on the buffer, we should
1226 		 * now refile the buffer on our BJ_Forget list so that
1227 		 * we know to remove the checkpoint after we commit.
1228 		 */
1229 
1230 		if (jh->b_cp_transaction) {
1231 			__jbd2_journal_temp_unlink_buffer(jh);
1232 			__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1233 		} else {
1234 			__jbd2_journal_unfile_buffer(jh);
1235 			jbd2_journal_remove_journal_head(bh);
1236 			__brelse(bh);
1237 			if (!buffer_jbd(bh)) {
1238 				spin_unlock(&journal->j_list_lock);
1239 				jbd_unlock_bh_state(bh);
1240 				__bforget(bh);
1241 				goto drop;
1242 			}
1243 		}
1244 	} else if (jh->b_transaction) {
1245 		J_ASSERT_JH(jh, (jh->b_transaction ==
1246 				 journal->j_committing_transaction));
1247 		/* However, if the buffer is still owned by a prior
1248 		 * (committing) transaction, we can't drop it yet... */
1249 		JBUFFER_TRACE(jh, "belongs to older transaction");
1250 		/* ... but we CAN drop it from the new transaction if we
1251 		 * have also modified it since the original commit. */
1252 
1253 		if (jh->b_next_transaction) {
1254 			J_ASSERT(jh->b_next_transaction == transaction);
1255 			jh->b_next_transaction = NULL;
1256 
1257 			/*
1258 			 * only drop a reference if this transaction modified
1259 			 * the buffer
1260 			 */
1261 			if (was_modified)
1262 				drop_reserve = 1;
1263 		}
1264 	}
1265 
1266 not_jbd:
1267 	spin_unlock(&journal->j_list_lock);
1268 	jbd_unlock_bh_state(bh);
1269 	__brelse(bh);
1270 drop:
1271 	if (drop_reserve) {
1272 		/* no need to reserve log space for this block -bzzz */
1273 		handle->h_buffer_credits++;
1274 	}
1275 	return err;
1276 }
1277 
1278 /**
1279  * int jbd2_journal_stop() - complete a transaction
1280  * @handle: tranaction to complete.
1281  *
1282  * All done for a particular handle.
1283  *
1284  * There is not much action needed here.  We just return any remaining
1285  * buffer credits to the transaction and remove the handle.  The only
1286  * complication is that we need to start a commit operation if the
1287  * filesystem is marked for synchronous update.
1288  *
1289  * jbd2_journal_stop itself will not usually return an error, but it may
1290  * do so in unusual circumstances.  In particular, expect it to
1291  * return -EIO if a jbd2_journal_abort has been executed since the
1292  * transaction began.
1293  */
1294 int jbd2_journal_stop(handle_t *handle)
1295 {
1296 	transaction_t *transaction = handle->h_transaction;
1297 	journal_t *journal = transaction->t_journal;
1298 	int err, wait_for_commit = 0;
1299 	tid_t tid;
1300 	pid_t pid;
1301 
1302 	J_ASSERT(journal_current_handle() == handle);
1303 
1304 	if (is_handle_aborted(handle))
1305 		err = -EIO;
1306 	else {
1307 		J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1308 		err = 0;
1309 	}
1310 
1311 	if (--handle->h_ref > 0) {
1312 		jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1313 			  handle->h_ref);
1314 		return err;
1315 	}
1316 
1317 	jbd_debug(4, "Handle %p going down\n", handle);
1318 
1319 	/*
1320 	 * Implement synchronous transaction batching.  If the handle
1321 	 * was synchronous, don't force a commit immediately.  Let's
1322 	 * yield and let another thread piggyback onto this
1323 	 * transaction.  Keep doing that while new threads continue to
1324 	 * arrive.  It doesn't cost much - we're about to run a commit
1325 	 * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1326 	 * operations by 30x or more...
1327 	 *
1328 	 * We try and optimize the sleep time against what the
1329 	 * underlying disk can do, instead of having a static sleep
1330 	 * time.  This is useful for the case where our storage is so
1331 	 * fast that it is more optimal to go ahead and force a flush
1332 	 * and wait for the transaction to be committed than it is to
1333 	 * wait for an arbitrary amount of time for new writers to
1334 	 * join the transaction.  We achieve this by measuring how
1335 	 * long it takes to commit a transaction, and compare it with
1336 	 * how long this transaction has been running, and if run time
1337 	 * < commit time then we sleep for the delta and commit.  This
1338 	 * greatly helps super fast disks that would see slowdowns as
1339 	 * more threads started doing fsyncs.
1340 	 *
1341 	 * But don't do this if this process was the most recent one
1342 	 * to perform a synchronous write.  We do this to detect the
1343 	 * case where a single process is doing a stream of sync
1344 	 * writes.  No point in waiting for joiners in that case.
1345 	 */
1346 	pid = current->pid;
1347 	if (handle->h_sync && journal->j_last_sync_writer != pid) {
1348 		u64 commit_time, trans_time;
1349 
1350 		journal->j_last_sync_writer = pid;
1351 
1352 		read_lock(&journal->j_state_lock);
1353 		commit_time = journal->j_average_commit_time;
1354 		read_unlock(&journal->j_state_lock);
1355 
1356 		trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1357 						   transaction->t_start_time));
1358 
1359 		commit_time = max_t(u64, commit_time,
1360 				    1000*journal->j_min_batch_time);
1361 		commit_time = min_t(u64, commit_time,
1362 				    1000*journal->j_max_batch_time);
1363 
1364 		if (trans_time < commit_time) {
1365 			ktime_t expires = ktime_add_ns(ktime_get(),
1366 						       commit_time);
1367 			set_current_state(TASK_UNINTERRUPTIBLE);
1368 			schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1369 		}
1370 	}
1371 
1372 	if (handle->h_sync)
1373 		transaction->t_synchronous_commit = 1;
1374 	current->journal_info = NULL;
1375 	atomic_sub(handle->h_buffer_credits,
1376 		   &transaction->t_outstanding_credits);
1377 
1378 	/*
1379 	 * If the handle is marked SYNC, we need to set another commit
1380 	 * going!  We also want to force a commit if the current
1381 	 * transaction is occupying too much of the log, or if the
1382 	 * transaction is too old now.
1383 	 */
1384 	if (handle->h_sync ||
1385 	    (atomic_read(&transaction->t_outstanding_credits) >
1386 	     journal->j_max_transaction_buffers) ||
1387 	    time_after_eq(jiffies, transaction->t_expires)) {
1388 		/* Do this even for aborted journals: an abort still
1389 		 * completes the commit thread, it just doesn't write
1390 		 * anything to disk. */
1391 
1392 		jbd_debug(2, "transaction too old, requesting commit for "
1393 					"handle %p\n", handle);
1394 		/* This is non-blocking */
1395 		jbd2_log_start_commit(journal, transaction->t_tid);
1396 
1397 		/*
1398 		 * Special case: JBD2_SYNC synchronous updates require us
1399 		 * to wait for the commit to complete.
1400 		 */
1401 		if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1402 			wait_for_commit = 1;
1403 	}
1404 
1405 	/*
1406 	 * Once we drop t_updates, if it goes to zero the transaction
1407 	 * could start committing on us and eventually disappear.  So
1408 	 * once we do this, we must not dereference transaction
1409 	 * pointer again.
1410 	 */
1411 	tid = transaction->t_tid;
1412 	if (atomic_dec_and_test(&transaction->t_updates)) {
1413 		wake_up(&journal->j_wait_updates);
1414 		if (journal->j_barrier_count)
1415 			wake_up(&journal->j_wait_transaction_locked);
1416 	}
1417 
1418 	if (wait_for_commit)
1419 		err = jbd2_log_wait_commit(journal, tid);
1420 
1421 	lock_map_release(&handle->h_lockdep_map);
1422 
1423 	jbd2_free_handle(handle);
1424 	return err;
1425 }
1426 
1427 /**
1428  * int jbd2_journal_force_commit() - force any uncommitted transactions
1429  * @journal: journal to force
1430  *
1431  * For synchronous operations: force any uncommitted transactions
1432  * to disk.  May seem kludgy, but it reuses all the handle batching
1433  * code in a very simple manner.
1434  */
1435 int jbd2_journal_force_commit(journal_t *journal)
1436 {
1437 	handle_t *handle;
1438 	int ret;
1439 
1440 	handle = jbd2_journal_start(journal, 1);
1441 	if (IS_ERR(handle)) {
1442 		ret = PTR_ERR(handle);
1443 	} else {
1444 		handle->h_sync = 1;
1445 		ret = jbd2_journal_stop(handle);
1446 	}
1447 	return ret;
1448 }
1449 
1450 /*
1451  *
1452  * List management code snippets: various functions for manipulating the
1453  * transaction buffer lists.
1454  *
1455  */
1456 
1457 /*
1458  * Append a buffer to a transaction list, given the transaction's list head
1459  * pointer.
1460  *
1461  * j_list_lock is held.
1462  *
1463  * jbd_lock_bh_state(jh2bh(jh)) is held.
1464  */
1465 
1466 static inline void
1467 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1468 {
1469 	if (!*list) {
1470 		jh->b_tnext = jh->b_tprev = jh;
1471 		*list = jh;
1472 	} else {
1473 		/* Insert at the tail of the list to preserve order */
1474 		struct journal_head *first = *list, *last = first->b_tprev;
1475 		jh->b_tprev = last;
1476 		jh->b_tnext = first;
1477 		last->b_tnext = first->b_tprev = jh;
1478 	}
1479 }
1480 
1481 /*
1482  * Remove a buffer from a transaction list, given the transaction's list
1483  * head pointer.
1484  *
1485  * Called with j_list_lock held, and the journal may not be locked.
1486  *
1487  * jbd_lock_bh_state(jh2bh(jh)) is held.
1488  */
1489 
1490 static inline void
1491 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1492 {
1493 	if (*list == jh) {
1494 		*list = jh->b_tnext;
1495 		if (*list == jh)
1496 			*list = NULL;
1497 	}
1498 	jh->b_tprev->b_tnext = jh->b_tnext;
1499 	jh->b_tnext->b_tprev = jh->b_tprev;
1500 }
1501 
1502 /*
1503  * Remove a buffer from the appropriate transaction list.
1504  *
1505  * Note that this function can *change* the value of
1506  * bh->b_transaction->t_buffers, t_forget, t_iobuf_list, t_shadow_list,
1507  * t_log_list or t_reserved_list.  If the caller is holding onto a copy of one
1508  * of these pointers, it could go bad.  Generally the caller needs to re-read
1509  * the pointer from the transaction_t.
1510  *
1511  * Called under j_list_lock.  The journal may not be locked.
1512  */
1513 void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1514 {
1515 	struct journal_head **list = NULL;
1516 	transaction_t *transaction;
1517 	struct buffer_head *bh = jh2bh(jh);
1518 
1519 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1520 	transaction = jh->b_transaction;
1521 	if (transaction)
1522 		assert_spin_locked(&transaction->t_journal->j_list_lock);
1523 
1524 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1525 	if (jh->b_jlist != BJ_None)
1526 		J_ASSERT_JH(jh, transaction != NULL);
1527 
1528 	switch (jh->b_jlist) {
1529 	case BJ_None:
1530 		return;
1531 	case BJ_Metadata:
1532 		transaction->t_nr_buffers--;
1533 		J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1534 		list = &transaction->t_buffers;
1535 		break;
1536 	case BJ_Forget:
1537 		list = &transaction->t_forget;
1538 		break;
1539 	case BJ_IO:
1540 		list = &transaction->t_iobuf_list;
1541 		break;
1542 	case BJ_Shadow:
1543 		list = &transaction->t_shadow_list;
1544 		break;
1545 	case BJ_LogCtl:
1546 		list = &transaction->t_log_list;
1547 		break;
1548 	case BJ_Reserved:
1549 		list = &transaction->t_reserved_list;
1550 		break;
1551 	}
1552 
1553 	__blist_del_buffer(list, jh);
1554 	jh->b_jlist = BJ_None;
1555 	if (test_clear_buffer_jbddirty(bh))
1556 		mark_buffer_dirty(bh);	/* Expose it to the VM */
1557 }
1558 
1559 void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1560 {
1561 	__jbd2_journal_temp_unlink_buffer(jh);
1562 	jh->b_transaction = NULL;
1563 }
1564 
1565 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1566 {
1567 	jbd_lock_bh_state(jh2bh(jh));
1568 	spin_lock(&journal->j_list_lock);
1569 	__jbd2_journal_unfile_buffer(jh);
1570 	spin_unlock(&journal->j_list_lock);
1571 	jbd_unlock_bh_state(jh2bh(jh));
1572 }
1573 
1574 /*
1575  * Called from jbd2_journal_try_to_free_buffers().
1576  *
1577  * Called under jbd_lock_bh_state(bh)
1578  */
1579 static void
1580 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1581 {
1582 	struct journal_head *jh;
1583 
1584 	jh = bh2jh(bh);
1585 
1586 	if (buffer_locked(bh) || buffer_dirty(bh))
1587 		goto out;
1588 
1589 	if (jh->b_next_transaction != NULL)
1590 		goto out;
1591 
1592 	spin_lock(&journal->j_list_lock);
1593 	if (jh->b_cp_transaction != NULL && jh->b_transaction == NULL) {
1594 		/* written-back checkpointed metadata buffer */
1595 		if (jh->b_jlist == BJ_None) {
1596 			JBUFFER_TRACE(jh, "remove from checkpoint list");
1597 			__jbd2_journal_remove_checkpoint(jh);
1598 			jbd2_journal_remove_journal_head(bh);
1599 			__brelse(bh);
1600 		}
1601 	}
1602 	spin_unlock(&journal->j_list_lock);
1603 out:
1604 	return;
1605 }
1606 
1607 /**
1608  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1609  * @journal: journal for operation
1610  * @page: to try and free
1611  * @gfp_mask: we use the mask to detect how hard should we try to release
1612  * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to
1613  * release the buffers.
1614  *
1615  *
1616  * For all the buffers on this page,
1617  * if they are fully written out ordered data, move them onto BUF_CLEAN
1618  * so try_to_free_buffers() can reap them.
1619  *
1620  * This function returns non-zero if we wish try_to_free_buffers()
1621  * to be called. We do this if the page is releasable by try_to_free_buffers().
1622  * We also do it if the page has locked or dirty buffers and the caller wants
1623  * us to perform sync or async writeout.
1624  *
1625  * This complicates JBD locking somewhat.  We aren't protected by the
1626  * BKL here.  We wish to remove the buffer from its committing or
1627  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1628  *
1629  * This may *change* the value of transaction_t->t_datalist, so anyone
1630  * who looks at t_datalist needs to lock against this function.
1631  *
1632  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1633  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
1634  * will come out of the lock with the buffer dirty, which makes it
1635  * ineligible for release here.
1636  *
1637  * Who else is affected by this?  hmm...  Really the only contender
1638  * is do_get_write_access() - it could be looking at the buffer while
1639  * journal_try_to_free_buffer() is changing its state.  But that
1640  * cannot happen because we never reallocate freed data as metadata
1641  * while the data is part of a transaction.  Yes?
1642  *
1643  * Return 0 on failure, 1 on success
1644  */
1645 int jbd2_journal_try_to_free_buffers(journal_t *journal,
1646 				struct page *page, gfp_t gfp_mask)
1647 {
1648 	struct buffer_head *head;
1649 	struct buffer_head *bh;
1650 	int ret = 0;
1651 
1652 	J_ASSERT(PageLocked(page));
1653 
1654 	head = page_buffers(page);
1655 	bh = head;
1656 	do {
1657 		struct journal_head *jh;
1658 
1659 		/*
1660 		 * We take our own ref against the journal_head here to avoid
1661 		 * having to add tons of locking around each instance of
1662 		 * jbd2_journal_remove_journal_head() and
1663 		 * jbd2_journal_put_journal_head().
1664 		 */
1665 		jh = jbd2_journal_grab_journal_head(bh);
1666 		if (!jh)
1667 			continue;
1668 
1669 		jbd_lock_bh_state(bh);
1670 		__journal_try_to_free_buffer(journal, bh);
1671 		jbd2_journal_put_journal_head(jh);
1672 		jbd_unlock_bh_state(bh);
1673 		if (buffer_jbd(bh))
1674 			goto busy;
1675 	} while ((bh = bh->b_this_page) != head);
1676 
1677 	ret = try_to_free_buffers(page);
1678 
1679 busy:
1680 	return ret;
1681 }
1682 
1683 /*
1684  * This buffer is no longer needed.  If it is on an older transaction's
1685  * checkpoint list we need to record it on this transaction's forget list
1686  * to pin this buffer (and hence its checkpointing transaction) down until
1687  * this transaction commits.  If the buffer isn't on a checkpoint list, we
1688  * release it.
1689  * Returns non-zero if JBD no longer has an interest in the buffer.
1690  *
1691  * Called under j_list_lock.
1692  *
1693  * Called under jbd_lock_bh_state(bh).
1694  */
1695 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
1696 {
1697 	int may_free = 1;
1698 	struct buffer_head *bh = jh2bh(jh);
1699 
1700 	__jbd2_journal_unfile_buffer(jh);
1701 
1702 	if (jh->b_cp_transaction) {
1703 		JBUFFER_TRACE(jh, "on running+cp transaction");
1704 		/*
1705 		 * We don't want to write the buffer anymore, clear the
1706 		 * bit so that we don't confuse checks in
1707 		 * __journal_file_buffer
1708 		 */
1709 		clear_buffer_dirty(bh);
1710 		__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1711 		may_free = 0;
1712 	} else {
1713 		JBUFFER_TRACE(jh, "on running transaction");
1714 		jbd2_journal_remove_journal_head(bh);
1715 		__brelse(bh);
1716 	}
1717 	return may_free;
1718 }
1719 
1720 /*
1721  * jbd2_journal_invalidatepage
1722  *
1723  * This code is tricky.  It has a number of cases to deal with.
1724  *
1725  * There are two invariants which this code relies on:
1726  *
1727  * i_size must be updated on disk before we start calling invalidatepage on the
1728  * data.
1729  *
1730  *  This is done in ext3 by defining an ext3_setattr method which
1731  *  updates i_size before truncate gets going.  By maintaining this
1732  *  invariant, we can be sure that it is safe to throw away any buffers
1733  *  attached to the current transaction: once the transaction commits,
1734  *  we know that the data will not be needed.
1735  *
1736  *  Note however that we can *not* throw away data belonging to the
1737  *  previous, committing transaction!
1738  *
1739  * Any disk blocks which *are* part of the previous, committing
1740  * transaction (and which therefore cannot be discarded immediately) are
1741  * not going to be reused in the new running transaction
1742  *
1743  *  The bitmap committed_data images guarantee this: any block which is
1744  *  allocated in one transaction and removed in the next will be marked
1745  *  as in-use in the committed_data bitmap, so cannot be reused until
1746  *  the next transaction to delete the block commits.  This means that
1747  *  leaving committing buffers dirty is quite safe: the disk blocks
1748  *  cannot be reallocated to a different file and so buffer aliasing is
1749  *  not possible.
1750  *
1751  *
1752  * The above applies mainly to ordered data mode.  In writeback mode we
1753  * don't make guarantees about the order in which data hits disk --- in
1754  * particular we don't guarantee that new dirty data is flushed before
1755  * transaction commit --- so it is always safe just to discard data
1756  * immediately in that mode.  --sct
1757  */
1758 
1759 /*
1760  * The journal_unmap_buffer helper function returns zero if the buffer
1761  * concerned remains pinned as an anonymous buffer belonging to an older
1762  * transaction.
1763  *
1764  * We're outside-transaction here.  Either or both of j_running_transaction
1765  * and j_committing_transaction may be NULL.
1766  */
1767 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh)
1768 {
1769 	transaction_t *transaction;
1770 	struct journal_head *jh;
1771 	int may_free = 1;
1772 	int ret;
1773 
1774 	BUFFER_TRACE(bh, "entry");
1775 
1776 	/*
1777 	 * It is safe to proceed here without the j_list_lock because the
1778 	 * buffers cannot be stolen by try_to_free_buffers as long as we are
1779 	 * holding the page lock. --sct
1780 	 */
1781 
1782 	if (!buffer_jbd(bh))
1783 		goto zap_buffer_unlocked;
1784 
1785 	/* OK, we have data buffer in journaled mode */
1786 	write_lock(&journal->j_state_lock);
1787 	jbd_lock_bh_state(bh);
1788 	spin_lock(&journal->j_list_lock);
1789 
1790 	jh = jbd2_journal_grab_journal_head(bh);
1791 	if (!jh)
1792 		goto zap_buffer_no_jh;
1793 
1794 	/*
1795 	 * We cannot remove the buffer from checkpoint lists until the
1796 	 * transaction adding inode to orphan list (let's call it T)
1797 	 * is committed.  Otherwise if the transaction changing the
1798 	 * buffer would be cleaned from the journal before T is
1799 	 * committed, a crash will cause that the correct contents of
1800 	 * the buffer will be lost.  On the other hand we have to
1801 	 * clear the buffer dirty bit at latest at the moment when the
1802 	 * transaction marking the buffer as freed in the filesystem
1803 	 * structures is committed because from that moment on the
1804 	 * buffer can be reallocated and used by a different page.
1805 	 * Since the block hasn't been freed yet but the inode has
1806 	 * already been added to orphan list, it is safe for us to add
1807 	 * the buffer to BJ_Forget list of the newest transaction.
1808 	 */
1809 	transaction = jh->b_transaction;
1810 	if (transaction == NULL) {
1811 		/* First case: not on any transaction.  If it
1812 		 * has no checkpoint link, then we can zap it:
1813 		 * it's a writeback-mode buffer so we don't care
1814 		 * if it hits disk safely. */
1815 		if (!jh->b_cp_transaction) {
1816 			JBUFFER_TRACE(jh, "not on any transaction: zap");
1817 			goto zap_buffer;
1818 		}
1819 
1820 		if (!buffer_dirty(bh)) {
1821 			/* bdflush has written it.  We can drop it now */
1822 			goto zap_buffer;
1823 		}
1824 
1825 		/* OK, it must be in the journal but still not
1826 		 * written fully to disk: it's metadata or
1827 		 * journaled data... */
1828 
1829 		if (journal->j_running_transaction) {
1830 			/* ... and once the current transaction has
1831 			 * committed, the buffer won't be needed any
1832 			 * longer. */
1833 			JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
1834 			ret = __dispose_buffer(jh,
1835 					journal->j_running_transaction);
1836 			jbd2_journal_put_journal_head(jh);
1837 			spin_unlock(&journal->j_list_lock);
1838 			jbd_unlock_bh_state(bh);
1839 			write_unlock(&journal->j_state_lock);
1840 			return ret;
1841 		} else {
1842 			/* There is no currently-running transaction. So the
1843 			 * orphan record which we wrote for this file must have
1844 			 * passed into commit.  We must attach this buffer to
1845 			 * the committing transaction, if it exists. */
1846 			if (journal->j_committing_transaction) {
1847 				JBUFFER_TRACE(jh, "give to committing trans");
1848 				ret = __dispose_buffer(jh,
1849 					journal->j_committing_transaction);
1850 				jbd2_journal_put_journal_head(jh);
1851 				spin_unlock(&journal->j_list_lock);
1852 				jbd_unlock_bh_state(bh);
1853 				write_unlock(&journal->j_state_lock);
1854 				return ret;
1855 			} else {
1856 				/* The orphan record's transaction has
1857 				 * committed.  We can cleanse this buffer */
1858 				clear_buffer_jbddirty(bh);
1859 				goto zap_buffer;
1860 			}
1861 		}
1862 	} else if (transaction == journal->j_committing_transaction) {
1863 		JBUFFER_TRACE(jh, "on committing transaction");
1864 		/*
1865 		 * The buffer is committing, we simply cannot touch
1866 		 * it. So we just set j_next_transaction to the
1867 		 * running transaction (if there is one) and mark
1868 		 * buffer as freed so that commit code knows it should
1869 		 * clear dirty bits when it is done with the buffer.
1870 		 */
1871 		set_buffer_freed(bh);
1872 		if (journal->j_running_transaction && buffer_jbddirty(bh))
1873 			jh->b_next_transaction = journal->j_running_transaction;
1874 		jbd2_journal_put_journal_head(jh);
1875 		spin_unlock(&journal->j_list_lock);
1876 		jbd_unlock_bh_state(bh);
1877 		write_unlock(&journal->j_state_lock);
1878 		return 0;
1879 	} else {
1880 		/* Good, the buffer belongs to the running transaction.
1881 		 * We are writing our own transaction's data, not any
1882 		 * previous one's, so it is safe to throw it away
1883 		 * (remember that we expect the filesystem to have set
1884 		 * i_size already for this truncate so recovery will not
1885 		 * expose the disk blocks we are discarding here.) */
1886 		J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
1887 		JBUFFER_TRACE(jh, "on running transaction");
1888 		may_free = __dispose_buffer(jh, transaction);
1889 	}
1890 
1891 zap_buffer:
1892 	jbd2_journal_put_journal_head(jh);
1893 zap_buffer_no_jh:
1894 	spin_unlock(&journal->j_list_lock);
1895 	jbd_unlock_bh_state(bh);
1896 	write_unlock(&journal->j_state_lock);
1897 zap_buffer_unlocked:
1898 	clear_buffer_dirty(bh);
1899 	J_ASSERT_BH(bh, !buffer_jbddirty(bh));
1900 	clear_buffer_mapped(bh);
1901 	clear_buffer_req(bh);
1902 	clear_buffer_new(bh);
1903 	bh->b_bdev = NULL;
1904 	return may_free;
1905 }
1906 
1907 /**
1908  * void jbd2_journal_invalidatepage()
1909  * @journal: journal to use for flush...
1910  * @page:    page to flush
1911  * @offset:  length of page to invalidate.
1912  *
1913  * Reap page buffers containing data after offset in page.
1914  *
1915  */
1916 void jbd2_journal_invalidatepage(journal_t *journal,
1917 		      struct page *page,
1918 		      unsigned long offset)
1919 {
1920 	struct buffer_head *head, *bh, *next;
1921 	unsigned int curr_off = 0;
1922 	int may_free = 1;
1923 
1924 	if (!PageLocked(page))
1925 		BUG();
1926 	if (!page_has_buffers(page))
1927 		return;
1928 
1929 	/* We will potentially be playing with lists other than just the
1930 	 * data lists (especially for journaled data mode), so be
1931 	 * cautious in our locking. */
1932 
1933 	head = bh = page_buffers(page);
1934 	do {
1935 		unsigned int next_off = curr_off + bh->b_size;
1936 		next = bh->b_this_page;
1937 
1938 		if (offset <= curr_off) {
1939 			/* This block is wholly outside the truncation point */
1940 			lock_buffer(bh);
1941 			may_free &= journal_unmap_buffer(journal, bh);
1942 			unlock_buffer(bh);
1943 		}
1944 		curr_off = next_off;
1945 		bh = next;
1946 
1947 	} while (bh != head);
1948 
1949 	if (!offset) {
1950 		if (may_free && try_to_free_buffers(page))
1951 			J_ASSERT(!page_has_buffers(page));
1952 	}
1953 }
1954 
1955 /*
1956  * File a buffer on the given transaction list.
1957  */
1958 void __jbd2_journal_file_buffer(struct journal_head *jh,
1959 			transaction_t *transaction, int jlist)
1960 {
1961 	struct journal_head **list = NULL;
1962 	int was_dirty = 0;
1963 	struct buffer_head *bh = jh2bh(jh);
1964 
1965 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1966 	assert_spin_locked(&transaction->t_journal->j_list_lock);
1967 
1968 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1969 	J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1970 				jh->b_transaction == NULL);
1971 
1972 	if (jh->b_transaction && jh->b_jlist == jlist)
1973 		return;
1974 
1975 	if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
1976 	    jlist == BJ_Shadow || jlist == BJ_Forget) {
1977 		/*
1978 		 * For metadata buffers, we track dirty bit in buffer_jbddirty
1979 		 * instead of buffer_dirty. We should not see a dirty bit set
1980 		 * here because we clear it in do_get_write_access but e.g.
1981 		 * tune2fs can modify the sb and set the dirty bit at any time
1982 		 * so we try to gracefully handle that.
1983 		 */
1984 		if (buffer_dirty(bh))
1985 			warn_dirty_buffer(bh);
1986 		if (test_clear_buffer_dirty(bh) ||
1987 		    test_clear_buffer_jbddirty(bh))
1988 			was_dirty = 1;
1989 	}
1990 
1991 	if (jh->b_transaction)
1992 		__jbd2_journal_temp_unlink_buffer(jh);
1993 	jh->b_transaction = transaction;
1994 
1995 	switch (jlist) {
1996 	case BJ_None:
1997 		J_ASSERT_JH(jh, !jh->b_committed_data);
1998 		J_ASSERT_JH(jh, !jh->b_frozen_data);
1999 		return;
2000 	case BJ_Metadata:
2001 		transaction->t_nr_buffers++;
2002 		list = &transaction->t_buffers;
2003 		break;
2004 	case BJ_Forget:
2005 		list = &transaction->t_forget;
2006 		break;
2007 	case BJ_IO:
2008 		list = &transaction->t_iobuf_list;
2009 		break;
2010 	case BJ_Shadow:
2011 		list = &transaction->t_shadow_list;
2012 		break;
2013 	case BJ_LogCtl:
2014 		list = &transaction->t_log_list;
2015 		break;
2016 	case BJ_Reserved:
2017 		list = &transaction->t_reserved_list;
2018 		break;
2019 	}
2020 
2021 	__blist_add_buffer(list, jh);
2022 	jh->b_jlist = jlist;
2023 
2024 	if (was_dirty)
2025 		set_buffer_jbddirty(bh);
2026 }
2027 
2028 void jbd2_journal_file_buffer(struct journal_head *jh,
2029 				transaction_t *transaction, int jlist)
2030 {
2031 	jbd_lock_bh_state(jh2bh(jh));
2032 	spin_lock(&transaction->t_journal->j_list_lock);
2033 	__jbd2_journal_file_buffer(jh, transaction, jlist);
2034 	spin_unlock(&transaction->t_journal->j_list_lock);
2035 	jbd_unlock_bh_state(jh2bh(jh));
2036 }
2037 
2038 /*
2039  * Remove a buffer from its current buffer list in preparation for
2040  * dropping it from its current transaction entirely.  If the buffer has
2041  * already started to be used by a subsequent transaction, refile the
2042  * buffer on that transaction's metadata list.
2043  *
2044  * Called under journal->j_list_lock
2045  *
2046  * Called under jbd_lock_bh_state(jh2bh(jh))
2047  */
2048 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2049 {
2050 	int was_dirty, jlist;
2051 	struct buffer_head *bh = jh2bh(jh);
2052 
2053 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2054 	if (jh->b_transaction)
2055 		assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2056 
2057 	/* If the buffer is now unused, just drop it. */
2058 	if (jh->b_next_transaction == NULL) {
2059 		__jbd2_journal_unfile_buffer(jh);
2060 		return;
2061 	}
2062 
2063 	/*
2064 	 * It has been modified by a later transaction: add it to the new
2065 	 * transaction's metadata list.
2066 	 */
2067 
2068 	was_dirty = test_clear_buffer_jbddirty(bh);
2069 	__jbd2_journal_temp_unlink_buffer(jh);
2070 	jh->b_transaction = jh->b_next_transaction;
2071 	jh->b_next_transaction = NULL;
2072 	if (buffer_freed(bh))
2073 		jlist = BJ_Forget;
2074 	else if (jh->b_modified)
2075 		jlist = BJ_Metadata;
2076 	else
2077 		jlist = BJ_Reserved;
2078 	__jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2079 	J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2080 
2081 	if (was_dirty)
2082 		set_buffer_jbddirty(bh);
2083 }
2084 
2085 /*
2086  * For the unlocked version of this call, also make sure that any
2087  * hanging journal_head is cleaned up if necessary.
2088  *
2089  * __jbd2_journal_refile_buffer is usually called as part of a single locked
2090  * operation on a buffer_head, in which the caller is probably going to
2091  * be hooking the journal_head onto other lists.  In that case it is up
2092  * to the caller to remove the journal_head if necessary.  For the
2093  * unlocked jbd2_journal_refile_buffer call, the caller isn't going to be
2094  * doing anything else to the buffer so we need to do the cleanup
2095  * ourselves to avoid a jh leak.
2096  *
2097  * *** The journal_head may be freed by this call! ***
2098  */
2099 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2100 {
2101 	struct buffer_head *bh = jh2bh(jh);
2102 
2103 	jbd_lock_bh_state(bh);
2104 	spin_lock(&journal->j_list_lock);
2105 
2106 	__jbd2_journal_refile_buffer(jh);
2107 	jbd_unlock_bh_state(bh);
2108 	jbd2_journal_remove_journal_head(bh);
2109 
2110 	spin_unlock(&journal->j_list_lock);
2111 	__brelse(bh);
2112 }
2113 
2114 /*
2115  * File inode in the inode list of the handle's transaction
2116  */
2117 int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode)
2118 {
2119 	transaction_t *transaction = handle->h_transaction;
2120 	journal_t *journal = transaction->t_journal;
2121 
2122 	if (is_handle_aborted(handle))
2123 		return -EIO;
2124 
2125 	jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2126 			transaction->t_tid);
2127 
2128 	/*
2129 	 * First check whether inode isn't already on the transaction's
2130 	 * lists without taking the lock. Note that this check is safe
2131 	 * without the lock as we cannot race with somebody removing inode
2132 	 * from the transaction. The reason is that we remove inode from the
2133 	 * transaction only in journal_release_jbd_inode() and when we commit
2134 	 * the transaction. We are guarded from the first case by holding
2135 	 * a reference to the inode. We are safe against the second case
2136 	 * because if jinode->i_transaction == transaction, commit code
2137 	 * cannot touch the transaction because we hold reference to it,
2138 	 * and if jinode->i_next_transaction == transaction, commit code
2139 	 * will only file the inode where we want it.
2140 	 */
2141 	if (jinode->i_transaction == transaction ||
2142 	    jinode->i_next_transaction == transaction)
2143 		return 0;
2144 
2145 	spin_lock(&journal->j_list_lock);
2146 
2147 	if (jinode->i_transaction == transaction ||
2148 	    jinode->i_next_transaction == transaction)
2149 		goto done;
2150 
2151 	/*
2152 	 * We only ever set this variable to 1 so the test is safe. Since
2153 	 * t_need_data_flush is likely to be set, we do the test to save some
2154 	 * cacheline bouncing
2155 	 */
2156 	if (!transaction->t_need_data_flush)
2157 		transaction->t_need_data_flush = 1;
2158 	/* On some different transaction's list - should be
2159 	 * the committing one */
2160 	if (jinode->i_transaction) {
2161 		J_ASSERT(jinode->i_next_transaction == NULL);
2162 		J_ASSERT(jinode->i_transaction ==
2163 					journal->j_committing_transaction);
2164 		jinode->i_next_transaction = transaction;
2165 		goto done;
2166 	}
2167 	/* Not on any transaction list... */
2168 	J_ASSERT(!jinode->i_next_transaction);
2169 	jinode->i_transaction = transaction;
2170 	list_add(&jinode->i_list, &transaction->t_inode_list);
2171 done:
2172 	spin_unlock(&journal->j_list_lock);
2173 
2174 	return 0;
2175 }
2176 
2177 /*
2178  * File truncate and transaction commit interact with each other in a
2179  * non-trivial way.  If a transaction writing data block A is
2180  * committing, we cannot discard the data by truncate until we have
2181  * written them.  Otherwise if we crashed after the transaction with
2182  * write has committed but before the transaction with truncate has
2183  * committed, we could see stale data in block A.  This function is a
2184  * helper to solve this problem.  It starts writeout of the truncated
2185  * part in case it is in the committing transaction.
2186  *
2187  * Filesystem code must call this function when inode is journaled in
2188  * ordered mode before truncation happens and after the inode has been
2189  * placed on orphan list with the new inode size. The second condition
2190  * avoids the race that someone writes new data and we start
2191  * committing the transaction after this function has been called but
2192  * before a transaction for truncate is started (and furthermore it
2193  * allows us to optimize the case where the addition to orphan list
2194  * happens in the same transaction as write --- we don't have to write
2195  * any data in such case).
2196  */
2197 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2198 					struct jbd2_inode *jinode,
2199 					loff_t new_size)
2200 {
2201 	transaction_t *inode_trans, *commit_trans;
2202 	int ret = 0;
2203 
2204 	/* This is a quick check to avoid locking if not necessary */
2205 	if (!jinode->i_transaction)
2206 		goto out;
2207 	/* Locks are here just to force reading of recent values, it is
2208 	 * enough that the transaction was not committing before we started
2209 	 * a transaction adding the inode to orphan list */
2210 	read_lock(&journal->j_state_lock);
2211 	commit_trans = journal->j_committing_transaction;
2212 	read_unlock(&journal->j_state_lock);
2213 	spin_lock(&journal->j_list_lock);
2214 	inode_trans = jinode->i_transaction;
2215 	spin_unlock(&journal->j_list_lock);
2216 	if (inode_trans == commit_trans) {
2217 		ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2218 			new_size, LLONG_MAX);
2219 		if (ret)
2220 			jbd2_journal_abort(journal, ret);
2221 	}
2222 out:
2223 	return ret;
2224 }
2225