xref: /linux/fs/jbd2/transaction.c (revision 005438a8eef063495ac059d128eea71b58de50e5)
1 /*
2  * linux/fs/jbd2/transaction.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem transaction handling code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages transactions (compound commits managed by the
16  * journaling code) and handles (individual atomic operations by the
17  * filesystem).
18  */
19 
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd2.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/hrtimer.h>
29 #include <linux/backing-dev.h>
30 #include <linux/bug.h>
31 #include <linux/module.h>
32 
33 #include <trace/events/jbd2.h>
34 
35 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
36 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
37 
38 static struct kmem_cache *transaction_cache;
39 int __init jbd2_journal_init_transaction_cache(void)
40 {
41 	J_ASSERT(!transaction_cache);
42 	transaction_cache = kmem_cache_create("jbd2_transaction_s",
43 					sizeof(transaction_t),
44 					0,
45 					SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
46 					NULL);
47 	if (transaction_cache)
48 		return 0;
49 	return -ENOMEM;
50 }
51 
52 void jbd2_journal_destroy_transaction_cache(void)
53 {
54 	if (transaction_cache) {
55 		kmem_cache_destroy(transaction_cache);
56 		transaction_cache = NULL;
57 	}
58 }
59 
60 void jbd2_journal_free_transaction(transaction_t *transaction)
61 {
62 	if (unlikely(ZERO_OR_NULL_PTR(transaction)))
63 		return;
64 	kmem_cache_free(transaction_cache, transaction);
65 }
66 
67 /*
68  * jbd2_get_transaction: obtain a new transaction_t object.
69  *
70  * Simply allocate and initialise a new transaction.  Create it in
71  * RUNNING state and add it to the current journal (which should not
72  * have an existing running transaction: we only make a new transaction
73  * once we have started to commit the old one).
74  *
75  * Preconditions:
76  *	The journal MUST be locked.  We don't perform atomic mallocs on the
77  *	new transaction	and we can't block without protecting against other
78  *	processes trying to touch the journal while it is in transition.
79  *
80  */
81 
82 static transaction_t *
83 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
84 {
85 	transaction->t_journal = journal;
86 	transaction->t_state = T_RUNNING;
87 	transaction->t_start_time = ktime_get();
88 	transaction->t_tid = journal->j_transaction_sequence++;
89 	transaction->t_expires = jiffies + journal->j_commit_interval;
90 	spin_lock_init(&transaction->t_handle_lock);
91 	atomic_set(&transaction->t_updates, 0);
92 	atomic_set(&transaction->t_outstanding_credits,
93 		   atomic_read(&journal->j_reserved_credits));
94 	atomic_set(&transaction->t_handle_count, 0);
95 	INIT_LIST_HEAD(&transaction->t_inode_list);
96 	INIT_LIST_HEAD(&transaction->t_private_list);
97 
98 	/* Set up the commit timer for the new transaction. */
99 	journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
100 	add_timer(&journal->j_commit_timer);
101 
102 	J_ASSERT(journal->j_running_transaction == NULL);
103 	journal->j_running_transaction = transaction;
104 	transaction->t_max_wait = 0;
105 	transaction->t_start = jiffies;
106 	transaction->t_requested = 0;
107 
108 	return transaction;
109 }
110 
111 /*
112  * Handle management.
113  *
114  * A handle_t is an object which represents a single atomic update to a
115  * filesystem, and which tracks all of the modifications which form part
116  * of that one update.
117  */
118 
119 /*
120  * Update transaction's maximum wait time, if debugging is enabled.
121  *
122  * In order for t_max_wait to be reliable, it must be protected by a
123  * lock.  But doing so will mean that start_this_handle() can not be
124  * run in parallel on SMP systems, which limits our scalability.  So
125  * unless debugging is enabled, we no longer update t_max_wait, which
126  * means that maximum wait time reported by the jbd2_run_stats
127  * tracepoint will always be zero.
128  */
129 static inline void update_t_max_wait(transaction_t *transaction,
130 				     unsigned long ts)
131 {
132 #ifdef CONFIG_JBD2_DEBUG
133 	if (jbd2_journal_enable_debug &&
134 	    time_after(transaction->t_start, ts)) {
135 		ts = jbd2_time_diff(ts, transaction->t_start);
136 		spin_lock(&transaction->t_handle_lock);
137 		if (ts > transaction->t_max_wait)
138 			transaction->t_max_wait = ts;
139 		spin_unlock(&transaction->t_handle_lock);
140 	}
141 #endif
142 }
143 
144 /*
145  * Wait until running transaction passes T_LOCKED state. Also starts the commit
146  * if needed. The function expects running transaction to exist and releases
147  * j_state_lock.
148  */
149 static void wait_transaction_locked(journal_t *journal)
150 	__releases(journal->j_state_lock)
151 {
152 	DEFINE_WAIT(wait);
153 	int need_to_start;
154 	tid_t tid = journal->j_running_transaction->t_tid;
155 
156 	prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
157 			TASK_UNINTERRUPTIBLE);
158 	need_to_start = !tid_geq(journal->j_commit_request, tid);
159 	read_unlock(&journal->j_state_lock);
160 	if (need_to_start)
161 		jbd2_log_start_commit(journal, tid);
162 	schedule();
163 	finish_wait(&journal->j_wait_transaction_locked, &wait);
164 }
165 
166 static void sub_reserved_credits(journal_t *journal, int blocks)
167 {
168 	atomic_sub(blocks, &journal->j_reserved_credits);
169 	wake_up(&journal->j_wait_reserved);
170 }
171 
172 /*
173  * Wait until we can add credits for handle to the running transaction.  Called
174  * with j_state_lock held for reading. Returns 0 if handle joined the running
175  * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
176  * caller must retry.
177  */
178 static int add_transaction_credits(journal_t *journal, int blocks,
179 				   int rsv_blocks)
180 {
181 	transaction_t *t = journal->j_running_transaction;
182 	int needed;
183 	int total = blocks + rsv_blocks;
184 
185 	/*
186 	 * If the current transaction is locked down for commit, wait
187 	 * for the lock to be released.
188 	 */
189 	if (t->t_state == T_LOCKED) {
190 		wait_transaction_locked(journal);
191 		return 1;
192 	}
193 
194 	/*
195 	 * If there is not enough space left in the log to write all
196 	 * potential buffers requested by this operation, we need to
197 	 * stall pending a log checkpoint to free some more log space.
198 	 */
199 	needed = atomic_add_return(total, &t->t_outstanding_credits);
200 	if (needed > journal->j_max_transaction_buffers) {
201 		/*
202 		 * If the current transaction is already too large,
203 		 * then start to commit it: we can then go back and
204 		 * attach this handle to a new transaction.
205 		 */
206 		atomic_sub(total, &t->t_outstanding_credits);
207 		wait_transaction_locked(journal);
208 		return 1;
209 	}
210 
211 	/*
212 	 * The commit code assumes that it can get enough log space
213 	 * without forcing a checkpoint.  This is *critical* for
214 	 * correctness: a checkpoint of a buffer which is also
215 	 * associated with a committing transaction creates a deadlock,
216 	 * so commit simply cannot force through checkpoints.
217 	 *
218 	 * We must therefore ensure the necessary space in the journal
219 	 * *before* starting to dirty potentially checkpointed buffers
220 	 * in the new transaction.
221 	 */
222 	if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) {
223 		atomic_sub(total, &t->t_outstanding_credits);
224 		read_unlock(&journal->j_state_lock);
225 		write_lock(&journal->j_state_lock);
226 		if (jbd2_log_space_left(journal) < jbd2_space_needed(journal))
227 			__jbd2_log_wait_for_space(journal);
228 		write_unlock(&journal->j_state_lock);
229 		return 1;
230 	}
231 
232 	/* No reservation? We are done... */
233 	if (!rsv_blocks)
234 		return 0;
235 
236 	needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
237 	/* We allow at most half of a transaction to be reserved */
238 	if (needed > journal->j_max_transaction_buffers / 2) {
239 		sub_reserved_credits(journal, rsv_blocks);
240 		atomic_sub(total, &t->t_outstanding_credits);
241 		read_unlock(&journal->j_state_lock);
242 		wait_event(journal->j_wait_reserved,
243 			 atomic_read(&journal->j_reserved_credits) + rsv_blocks
244 			 <= journal->j_max_transaction_buffers / 2);
245 		return 1;
246 	}
247 	return 0;
248 }
249 
250 /*
251  * start_this_handle: Given a handle, deal with any locking or stalling
252  * needed to make sure that there is enough journal space for the handle
253  * to begin.  Attach the handle to a transaction and set up the
254  * transaction's buffer credits.
255  */
256 
257 static int start_this_handle(journal_t *journal, handle_t *handle,
258 			     gfp_t gfp_mask)
259 {
260 	transaction_t	*transaction, *new_transaction = NULL;
261 	int		blocks = handle->h_buffer_credits;
262 	int		rsv_blocks = 0;
263 	unsigned long ts = jiffies;
264 
265 	/*
266 	 * 1/2 of transaction can be reserved so we can practically handle
267 	 * only 1/2 of maximum transaction size per operation
268 	 */
269 	if (WARN_ON(blocks > journal->j_max_transaction_buffers / 2)) {
270 		printk(KERN_ERR "JBD2: %s wants too many credits (%d > %d)\n",
271 		       current->comm, blocks,
272 		       journal->j_max_transaction_buffers / 2);
273 		return -ENOSPC;
274 	}
275 
276 	if (handle->h_rsv_handle)
277 		rsv_blocks = handle->h_rsv_handle->h_buffer_credits;
278 
279 alloc_transaction:
280 	if (!journal->j_running_transaction) {
281 		/*
282 		 * If __GFP_FS is not present, then we may be being called from
283 		 * inside the fs writeback layer, so we MUST NOT fail.
284 		 */
285 		if ((gfp_mask & __GFP_FS) == 0)
286 			gfp_mask |= __GFP_NOFAIL;
287 		new_transaction = kmem_cache_zalloc(transaction_cache,
288 						    gfp_mask);
289 		if (!new_transaction)
290 			return -ENOMEM;
291 	}
292 
293 	jbd_debug(3, "New handle %p going live.\n", handle);
294 
295 	/*
296 	 * We need to hold j_state_lock until t_updates has been incremented,
297 	 * for proper journal barrier handling
298 	 */
299 repeat:
300 	read_lock(&journal->j_state_lock);
301 	BUG_ON(journal->j_flags & JBD2_UNMOUNT);
302 	if (is_journal_aborted(journal) ||
303 	    (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
304 		read_unlock(&journal->j_state_lock);
305 		jbd2_journal_free_transaction(new_transaction);
306 		return -EROFS;
307 	}
308 
309 	/*
310 	 * Wait on the journal's transaction barrier if necessary. Specifically
311 	 * we allow reserved handles to proceed because otherwise commit could
312 	 * deadlock on page writeback not being able to complete.
313 	 */
314 	if (!handle->h_reserved && journal->j_barrier_count) {
315 		read_unlock(&journal->j_state_lock);
316 		wait_event(journal->j_wait_transaction_locked,
317 				journal->j_barrier_count == 0);
318 		goto repeat;
319 	}
320 
321 	if (!journal->j_running_transaction) {
322 		read_unlock(&journal->j_state_lock);
323 		if (!new_transaction)
324 			goto alloc_transaction;
325 		write_lock(&journal->j_state_lock);
326 		if (!journal->j_running_transaction &&
327 		    (handle->h_reserved || !journal->j_barrier_count)) {
328 			jbd2_get_transaction(journal, new_transaction);
329 			new_transaction = NULL;
330 		}
331 		write_unlock(&journal->j_state_lock);
332 		goto repeat;
333 	}
334 
335 	transaction = journal->j_running_transaction;
336 
337 	if (!handle->h_reserved) {
338 		/* We may have dropped j_state_lock - restart in that case */
339 		if (add_transaction_credits(journal, blocks, rsv_blocks))
340 			goto repeat;
341 	} else {
342 		/*
343 		 * We have handle reserved so we are allowed to join T_LOCKED
344 		 * transaction and we don't have to check for transaction size
345 		 * and journal space.
346 		 */
347 		sub_reserved_credits(journal, blocks);
348 		handle->h_reserved = 0;
349 	}
350 
351 	/* OK, account for the buffers that this operation expects to
352 	 * use and add the handle to the running transaction.
353 	 */
354 	update_t_max_wait(transaction, ts);
355 	handle->h_transaction = transaction;
356 	handle->h_requested_credits = blocks;
357 	handle->h_start_jiffies = jiffies;
358 	atomic_inc(&transaction->t_updates);
359 	atomic_inc(&transaction->t_handle_count);
360 	jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
361 		  handle, blocks,
362 		  atomic_read(&transaction->t_outstanding_credits),
363 		  jbd2_log_space_left(journal));
364 	read_unlock(&journal->j_state_lock);
365 	current->journal_info = handle;
366 
367 	lock_map_acquire(&handle->h_lockdep_map);
368 	jbd2_journal_free_transaction(new_transaction);
369 	return 0;
370 }
371 
372 static struct lock_class_key jbd2_handle_key;
373 
374 /* Allocate a new handle.  This should probably be in a slab... */
375 static handle_t *new_handle(int nblocks)
376 {
377 	handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
378 	if (!handle)
379 		return NULL;
380 	handle->h_buffer_credits = nblocks;
381 	handle->h_ref = 1;
382 
383 	lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle",
384 						&jbd2_handle_key, 0);
385 
386 	return handle;
387 }
388 
389 /**
390  * handle_t *jbd2_journal_start() - Obtain a new handle.
391  * @journal: Journal to start transaction on.
392  * @nblocks: number of block buffer we might modify
393  *
394  * We make sure that the transaction can guarantee at least nblocks of
395  * modified buffers in the log.  We block until the log can guarantee
396  * that much space. Additionally, if rsv_blocks > 0, we also create another
397  * handle with rsv_blocks reserved blocks in the journal. This handle is
398  * is stored in h_rsv_handle. It is not attached to any particular transaction
399  * and thus doesn't block transaction commit. If the caller uses this reserved
400  * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
401  * on the parent handle will dispose the reserved one. Reserved handle has to
402  * be converted to a normal handle using jbd2_journal_start_reserved() before
403  * it can be used.
404  *
405  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
406  * on failure.
407  */
408 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
409 			      gfp_t gfp_mask, unsigned int type,
410 			      unsigned int line_no)
411 {
412 	handle_t *handle = journal_current_handle();
413 	int err;
414 
415 	if (!journal)
416 		return ERR_PTR(-EROFS);
417 
418 	if (handle) {
419 		J_ASSERT(handle->h_transaction->t_journal == journal);
420 		handle->h_ref++;
421 		return handle;
422 	}
423 
424 	handle = new_handle(nblocks);
425 	if (!handle)
426 		return ERR_PTR(-ENOMEM);
427 	if (rsv_blocks) {
428 		handle_t *rsv_handle;
429 
430 		rsv_handle = new_handle(rsv_blocks);
431 		if (!rsv_handle) {
432 			jbd2_free_handle(handle);
433 			return ERR_PTR(-ENOMEM);
434 		}
435 		rsv_handle->h_reserved = 1;
436 		rsv_handle->h_journal = journal;
437 		handle->h_rsv_handle = rsv_handle;
438 	}
439 
440 	err = start_this_handle(journal, handle, gfp_mask);
441 	if (err < 0) {
442 		if (handle->h_rsv_handle)
443 			jbd2_free_handle(handle->h_rsv_handle);
444 		jbd2_free_handle(handle);
445 		return ERR_PTR(err);
446 	}
447 	handle->h_type = type;
448 	handle->h_line_no = line_no;
449 	trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
450 				handle->h_transaction->t_tid, type,
451 				line_no, nblocks);
452 	return handle;
453 }
454 EXPORT_SYMBOL(jbd2__journal_start);
455 
456 
457 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
458 {
459 	return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0);
460 }
461 EXPORT_SYMBOL(jbd2_journal_start);
462 
463 void jbd2_journal_free_reserved(handle_t *handle)
464 {
465 	journal_t *journal = handle->h_journal;
466 
467 	WARN_ON(!handle->h_reserved);
468 	sub_reserved_credits(journal, handle->h_buffer_credits);
469 	jbd2_free_handle(handle);
470 }
471 EXPORT_SYMBOL(jbd2_journal_free_reserved);
472 
473 /**
474  * int jbd2_journal_start_reserved(handle_t *handle) - start reserved handle
475  * @handle: handle to start
476  *
477  * Start handle that has been previously reserved with jbd2_journal_reserve().
478  * This attaches @handle to the running transaction (or creates one if there's
479  * not transaction running). Unlike jbd2_journal_start() this function cannot
480  * block on journal commit, checkpointing, or similar stuff. It can block on
481  * memory allocation or frozen journal though.
482  *
483  * Return 0 on success, non-zero on error - handle is freed in that case.
484  */
485 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
486 				unsigned int line_no)
487 {
488 	journal_t *journal = handle->h_journal;
489 	int ret = -EIO;
490 
491 	if (WARN_ON(!handle->h_reserved)) {
492 		/* Someone passed in normal handle? Just stop it. */
493 		jbd2_journal_stop(handle);
494 		return ret;
495 	}
496 	/*
497 	 * Usefulness of mixing of reserved and unreserved handles is
498 	 * questionable. So far nobody seems to need it so just error out.
499 	 */
500 	if (WARN_ON(current->journal_info)) {
501 		jbd2_journal_free_reserved(handle);
502 		return ret;
503 	}
504 
505 	handle->h_journal = NULL;
506 	/*
507 	 * GFP_NOFS is here because callers are likely from writeback or
508 	 * similarly constrained call sites
509 	 */
510 	ret = start_this_handle(journal, handle, GFP_NOFS);
511 	if (ret < 0) {
512 		jbd2_journal_free_reserved(handle);
513 		return ret;
514 	}
515 	handle->h_type = type;
516 	handle->h_line_no = line_no;
517 	return 0;
518 }
519 EXPORT_SYMBOL(jbd2_journal_start_reserved);
520 
521 /**
522  * int jbd2_journal_extend() - extend buffer credits.
523  * @handle:  handle to 'extend'
524  * @nblocks: nr blocks to try to extend by.
525  *
526  * Some transactions, such as large extends and truncates, can be done
527  * atomically all at once or in several stages.  The operation requests
528  * a credit for a number of buffer modications in advance, but can
529  * extend its credit if it needs more.
530  *
531  * jbd2_journal_extend tries to give the running handle more buffer credits.
532  * It does not guarantee that allocation - this is a best-effort only.
533  * The calling process MUST be able to deal cleanly with a failure to
534  * extend here.
535  *
536  * Return 0 on success, non-zero on failure.
537  *
538  * return code < 0 implies an error
539  * return code > 0 implies normal transaction-full status.
540  */
541 int jbd2_journal_extend(handle_t *handle, int nblocks)
542 {
543 	transaction_t *transaction = handle->h_transaction;
544 	journal_t *journal;
545 	int result;
546 	int wanted;
547 
548 	if (is_handle_aborted(handle))
549 		return -EROFS;
550 	journal = transaction->t_journal;
551 
552 	result = 1;
553 
554 	read_lock(&journal->j_state_lock);
555 
556 	/* Don't extend a locked-down transaction! */
557 	if (transaction->t_state != T_RUNNING) {
558 		jbd_debug(3, "denied handle %p %d blocks: "
559 			  "transaction not running\n", handle, nblocks);
560 		goto error_out;
561 	}
562 
563 	spin_lock(&transaction->t_handle_lock);
564 	wanted = atomic_add_return(nblocks,
565 				   &transaction->t_outstanding_credits);
566 
567 	if (wanted > journal->j_max_transaction_buffers) {
568 		jbd_debug(3, "denied handle %p %d blocks: "
569 			  "transaction too large\n", handle, nblocks);
570 		atomic_sub(nblocks, &transaction->t_outstanding_credits);
571 		goto unlock;
572 	}
573 
574 	if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) >
575 	    jbd2_log_space_left(journal)) {
576 		jbd_debug(3, "denied handle %p %d blocks: "
577 			  "insufficient log space\n", handle, nblocks);
578 		atomic_sub(nblocks, &transaction->t_outstanding_credits);
579 		goto unlock;
580 	}
581 
582 	trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
583 				 transaction->t_tid,
584 				 handle->h_type, handle->h_line_no,
585 				 handle->h_buffer_credits,
586 				 nblocks);
587 
588 	handle->h_buffer_credits += nblocks;
589 	handle->h_requested_credits += nblocks;
590 	result = 0;
591 
592 	jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
593 unlock:
594 	spin_unlock(&transaction->t_handle_lock);
595 error_out:
596 	read_unlock(&journal->j_state_lock);
597 	return result;
598 }
599 
600 
601 /**
602  * int jbd2_journal_restart() - restart a handle .
603  * @handle:  handle to restart
604  * @nblocks: nr credits requested
605  *
606  * Restart a handle for a multi-transaction filesystem
607  * operation.
608  *
609  * If the jbd2_journal_extend() call above fails to grant new buffer credits
610  * to a running handle, a call to jbd2_journal_restart will commit the
611  * handle's transaction so far and reattach the handle to a new
612  * transaction capabable of guaranteeing the requested number of
613  * credits. We preserve reserved handle if there's any attached to the
614  * passed in handle.
615  */
616 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
617 {
618 	transaction_t *transaction = handle->h_transaction;
619 	journal_t *journal;
620 	tid_t		tid;
621 	int		need_to_start, ret;
622 
623 	/* If we've had an abort of any type, don't even think about
624 	 * actually doing the restart! */
625 	if (is_handle_aborted(handle))
626 		return 0;
627 	journal = transaction->t_journal;
628 
629 	/*
630 	 * First unlink the handle from its current transaction, and start the
631 	 * commit on that.
632 	 */
633 	J_ASSERT(atomic_read(&transaction->t_updates) > 0);
634 	J_ASSERT(journal_current_handle() == handle);
635 
636 	read_lock(&journal->j_state_lock);
637 	spin_lock(&transaction->t_handle_lock);
638 	atomic_sub(handle->h_buffer_credits,
639 		   &transaction->t_outstanding_credits);
640 	if (handle->h_rsv_handle) {
641 		sub_reserved_credits(journal,
642 				     handle->h_rsv_handle->h_buffer_credits);
643 	}
644 	if (atomic_dec_and_test(&transaction->t_updates))
645 		wake_up(&journal->j_wait_updates);
646 	tid = transaction->t_tid;
647 	spin_unlock(&transaction->t_handle_lock);
648 	handle->h_transaction = NULL;
649 	current->journal_info = NULL;
650 
651 	jbd_debug(2, "restarting handle %p\n", handle);
652 	need_to_start = !tid_geq(journal->j_commit_request, tid);
653 	read_unlock(&journal->j_state_lock);
654 	if (need_to_start)
655 		jbd2_log_start_commit(journal, tid);
656 
657 	lock_map_release(&handle->h_lockdep_map);
658 	handle->h_buffer_credits = nblocks;
659 	ret = start_this_handle(journal, handle, gfp_mask);
660 	return ret;
661 }
662 EXPORT_SYMBOL(jbd2__journal_restart);
663 
664 
665 int jbd2_journal_restart(handle_t *handle, int nblocks)
666 {
667 	return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
668 }
669 EXPORT_SYMBOL(jbd2_journal_restart);
670 
671 /**
672  * void jbd2_journal_lock_updates () - establish a transaction barrier.
673  * @journal:  Journal to establish a barrier on.
674  *
675  * This locks out any further updates from being started, and blocks
676  * until all existing updates have completed, returning only once the
677  * journal is in a quiescent state with no updates running.
678  *
679  * The journal lock should not be held on entry.
680  */
681 void jbd2_journal_lock_updates(journal_t *journal)
682 {
683 	DEFINE_WAIT(wait);
684 
685 	write_lock(&journal->j_state_lock);
686 	++journal->j_barrier_count;
687 
688 	/* Wait until there are no reserved handles */
689 	if (atomic_read(&journal->j_reserved_credits)) {
690 		write_unlock(&journal->j_state_lock);
691 		wait_event(journal->j_wait_reserved,
692 			   atomic_read(&journal->j_reserved_credits) == 0);
693 		write_lock(&journal->j_state_lock);
694 	}
695 
696 	/* Wait until there are no running updates */
697 	while (1) {
698 		transaction_t *transaction = journal->j_running_transaction;
699 
700 		if (!transaction)
701 			break;
702 
703 		spin_lock(&transaction->t_handle_lock);
704 		prepare_to_wait(&journal->j_wait_updates, &wait,
705 				TASK_UNINTERRUPTIBLE);
706 		if (!atomic_read(&transaction->t_updates)) {
707 			spin_unlock(&transaction->t_handle_lock);
708 			finish_wait(&journal->j_wait_updates, &wait);
709 			break;
710 		}
711 		spin_unlock(&transaction->t_handle_lock);
712 		write_unlock(&journal->j_state_lock);
713 		schedule();
714 		finish_wait(&journal->j_wait_updates, &wait);
715 		write_lock(&journal->j_state_lock);
716 	}
717 	write_unlock(&journal->j_state_lock);
718 
719 	/*
720 	 * We have now established a barrier against other normal updates, but
721 	 * we also need to barrier against other jbd2_journal_lock_updates() calls
722 	 * to make sure that we serialise special journal-locked operations
723 	 * too.
724 	 */
725 	mutex_lock(&journal->j_barrier);
726 }
727 
728 /**
729  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
730  * @journal:  Journal to release the barrier on.
731  *
732  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
733  *
734  * Should be called without the journal lock held.
735  */
736 void jbd2_journal_unlock_updates (journal_t *journal)
737 {
738 	J_ASSERT(journal->j_barrier_count != 0);
739 
740 	mutex_unlock(&journal->j_barrier);
741 	write_lock(&journal->j_state_lock);
742 	--journal->j_barrier_count;
743 	write_unlock(&journal->j_state_lock);
744 	wake_up(&journal->j_wait_transaction_locked);
745 }
746 
747 static void warn_dirty_buffer(struct buffer_head *bh)
748 {
749 	char b[BDEVNAME_SIZE];
750 
751 	printk(KERN_WARNING
752 	       "JBD2: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). "
753 	       "There's a risk of filesystem corruption in case of system "
754 	       "crash.\n",
755 	       bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr);
756 }
757 
758 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
759 static void jbd2_freeze_jh_data(struct journal_head *jh)
760 {
761 	struct page *page;
762 	int offset;
763 	char *source;
764 	struct buffer_head *bh = jh2bh(jh);
765 
766 	J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
767 	page = bh->b_page;
768 	offset = offset_in_page(bh->b_data);
769 	source = kmap_atomic(page);
770 	/* Fire data frozen trigger just before we copy the data */
771 	jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers);
772 	memcpy(jh->b_frozen_data, source + offset, bh->b_size);
773 	kunmap_atomic(source);
774 
775 	/*
776 	 * Now that the frozen data is saved off, we need to store any matching
777 	 * triggers.
778 	 */
779 	jh->b_frozen_triggers = jh->b_triggers;
780 }
781 
782 /*
783  * If the buffer is already part of the current transaction, then there
784  * is nothing we need to do.  If it is already part of a prior
785  * transaction which we are still committing to disk, then we need to
786  * make sure that we do not overwrite the old copy: we do copy-out to
787  * preserve the copy going to disk.  We also account the buffer against
788  * the handle's metadata buffer credits (unless the buffer is already
789  * part of the transaction, that is).
790  *
791  */
792 static int
793 do_get_write_access(handle_t *handle, struct journal_head *jh,
794 			int force_copy)
795 {
796 	struct buffer_head *bh;
797 	transaction_t *transaction = handle->h_transaction;
798 	journal_t *journal;
799 	int error;
800 	char *frozen_buffer = NULL;
801 	unsigned long start_lock, time_lock;
802 
803 	if (is_handle_aborted(handle))
804 		return -EROFS;
805 	journal = transaction->t_journal;
806 
807 	jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
808 
809 	JBUFFER_TRACE(jh, "entry");
810 repeat:
811 	bh = jh2bh(jh);
812 
813 	/* @@@ Need to check for errors here at some point. */
814 
815  	start_lock = jiffies;
816 	lock_buffer(bh);
817 	jbd_lock_bh_state(bh);
818 
819 	/* If it takes too long to lock the buffer, trace it */
820 	time_lock = jbd2_time_diff(start_lock, jiffies);
821 	if (time_lock > HZ/10)
822 		trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
823 			jiffies_to_msecs(time_lock));
824 
825 	/* We now hold the buffer lock so it is safe to query the buffer
826 	 * state.  Is the buffer dirty?
827 	 *
828 	 * If so, there are two possibilities.  The buffer may be
829 	 * non-journaled, and undergoing a quite legitimate writeback.
830 	 * Otherwise, it is journaled, and we don't expect dirty buffers
831 	 * in that state (the buffers should be marked JBD_Dirty
832 	 * instead.)  So either the IO is being done under our own
833 	 * control and this is a bug, or it's a third party IO such as
834 	 * dump(8) (which may leave the buffer scheduled for read ---
835 	 * ie. locked but not dirty) or tune2fs (which may actually have
836 	 * the buffer dirtied, ugh.)  */
837 
838 	if (buffer_dirty(bh)) {
839 		/*
840 		 * First question: is this buffer already part of the current
841 		 * transaction or the existing committing transaction?
842 		 */
843 		if (jh->b_transaction) {
844 			J_ASSERT_JH(jh,
845 				jh->b_transaction == transaction ||
846 				jh->b_transaction ==
847 					journal->j_committing_transaction);
848 			if (jh->b_next_transaction)
849 				J_ASSERT_JH(jh, jh->b_next_transaction ==
850 							transaction);
851 			warn_dirty_buffer(bh);
852 		}
853 		/*
854 		 * In any case we need to clean the dirty flag and we must
855 		 * do it under the buffer lock to be sure we don't race
856 		 * with running write-out.
857 		 */
858 		JBUFFER_TRACE(jh, "Journalling dirty buffer");
859 		clear_buffer_dirty(bh);
860 		set_buffer_jbddirty(bh);
861 	}
862 
863 	unlock_buffer(bh);
864 
865 	error = -EROFS;
866 	if (is_handle_aborted(handle)) {
867 		jbd_unlock_bh_state(bh);
868 		goto out;
869 	}
870 	error = 0;
871 
872 	/*
873 	 * The buffer is already part of this transaction if b_transaction or
874 	 * b_next_transaction points to it
875 	 */
876 	if (jh->b_transaction == transaction ||
877 	    jh->b_next_transaction == transaction)
878 		goto done;
879 
880 	/*
881 	 * this is the first time this transaction is touching this buffer,
882 	 * reset the modified flag
883 	 */
884        jh->b_modified = 0;
885 
886 	/*
887 	 * If the buffer is not journaled right now, we need to make sure it
888 	 * doesn't get written to disk before the caller actually commits the
889 	 * new data
890 	 */
891 	if (!jh->b_transaction) {
892 		JBUFFER_TRACE(jh, "no transaction");
893 		J_ASSERT_JH(jh, !jh->b_next_transaction);
894 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
895 		/*
896 		 * Make sure all stores to jh (b_modified, b_frozen_data) are
897 		 * visible before attaching it to the running transaction.
898 		 * Paired with barrier in jbd2_write_access_granted()
899 		 */
900 		smp_wmb();
901 		spin_lock(&journal->j_list_lock);
902 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
903 		spin_unlock(&journal->j_list_lock);
904 		goto done;
905 	}
906 	/*
907 	 * If there is already a copy-out version of this buffer, then we don't
908 	 * need to make another one
909 	 */
910 	if (jh->b_frozen_data) {
911 		JBUFFER_TRACE(jh, "has frozen data");
912 		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
913 		goto attach_next;
914 	}
915 
916 	JBUFFER_TRACE(jh, "owned by older transaction");
917 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
918 	J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
919 
920 	/*
921 	 * There is one case we have to be very careful about.  If the
922 	 * committing transaction is currently writing this buffer out to disk
923 	 * and has NOT made a copy-out, then we cannot modify the buffer
924 	 * contents at all right now.  The essence of copy-out is that it is
925 	 * the extra copy, not the primary copy, which gets journaled.  If the
926 	 * primary copy is already going to disk then we cannot do copy-out
927 	 * here.
928 	 */
929 	if (buffer_shadow(bh)) {
930 		JBUFFER_TRACE(jh, "on shadow: sleep");
931 		jbd_unlock_bh_state(bh);
932 		wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
933 		goto repeat;
934 	}
935 
936 	/*
937 	 * Only do the copy if the currently-owning transaction still needs it.
938 	 * If buffer isn't on BJ_Metadata list, the committing transaction is
939 	 * past that stage (here we use the fact that BH_Shadow is set under
940 	 * bh_state lock together with refiling to BJ_Shadow list and at this
941 	 * point we know the buffer doesn't have BH_Shadow set).
942 	 *
943 	 * Subtle point, though: if this is a get_undo_access, then we will be
944 	 * relying on the frozen_data to contain the new value of the
945 	 * committed_data record after the transaction, so we HAVE to force the
946 	 * frozen_data copy in that case.
947 	 */
948 	if (jh->b_jlist == BJ_Metadata || force_copy) {
949 		JBUFFER_TRACE(jh, "generate frozen data");
950 		if (!frozen_buffer) {
951 			JBUFFER_TRACE(jh, "allocate memory for buffer");
952 			jbd_unlock_bh_state(bh);
953 			frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS);
954 			if (!frozen_buffer) {
955 				printk(KERN_ERR "%s: OOM for frozen_buffer\n",
956 				       __func__);
957 				JBUFFER_TRACE(jh, "oom!");
958 				error = -ENOMEM;
959 				goto out;
960 			}
961 			goto repeat;
962 		}
963 		jh->b_frozen_data = frozen_buffer;
964 		frozen_buffer = NULL;
965 		jbd2_freeze_jh_data(jh);
966 	}
967 attach_next:
968 	/*
969 	 * Make sure all stores to jh (b_modified, b_frozen_data) are visible
970 	 * before attaching it to the running transaction. Paired with barrier
971 	 * in jbd2_write_access_granted()
972 	 */
973 	smp_wmb();
974 	jh->b_next_transaction = transaction;
975 
976 done:
977 	jbd_unlock_bh_state(bh);
978 
979 	/*
980 	 * If we are about to journal a buffer, then any revoke pending on it is
981 	 * no longer valid
982 	 */
983 	jbd2_journal_cancel_revoke(handle, jh);
984 
985 out:
986 	if (unlikely(frozen_buffer))	/* It's usually NULL */
987 		jbd2_free(frozen_buffer, bh->b_size);
988 
989 	JBUFFER_TRACE(jh, "exit");
990 	return error;
991 }
992 
993 /* Fast check whether buffer is already attached to the required transaction */
994 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh)
995 {
996 	struct journal_head *jh;
997 	bool ret = false;
998 
999 	/* Dirty buffers require special handling... */
1000 	if (buffer_dirty(bh))
1001 		return false;
1002 
1003 	/*
1004 	 * RCU protects us from dereferencing freed pages. So the checks we do
1005 	 * are guaranteed not to oops. However the jh slab object can get freed
1006 	 * & reallocated while we work with it. So we have to be careful. When
1007 	 * we see jh attached to the running transaction, we know it must stay
1008 	 * so until the transaction is committed. Thus jh won't be freed and
1009 	 * will be attached to the same bh while we run.  However it can
1010 	 * happen jh gets freed, reallocated, and attached to the transaction
1011 	 * just after we get pointer to it from bh. So we have to be careful
1012 	 * and recheck jh still belongs to our bh before we return success.
1013 	 */
1014 	rcu_read_lock();
1015 	if (!buffer_jbd(bh))
1016 		goto out;
1017 	/* This should be bh2jh() but that doesn't work with inline functions */
1018 	jh = READ_ONCE(bh->b_private);
1019 	if (!jh)
1020 		goto out;
1021 	if (jh->b_transaction != handle->h_transaction &&
1022 	    jh->b_next_transaction != handle->h_transaction)
1023 		goto out;
1024 	/*
1025 	 * There are two reasons for the barrier here:
1026 	 * 1) Make sure to fetch b_bh after we did previous checks so that we
1027 	 * detect when jh went through free, realloc, attach to transaction
1028 	 * while we were checking. Paired with implicit barrier in that path.
1029 	 * 2) So that access to bh done after jbd2_write_access_granted()
1030 	 * doesn't get reordered and see inconsistent state of concurrent
1031 	 * do_get_write_access().
1032 	 */
1033 	smp_mb();
1034 	if (unlikely(jh->b_bh != bh))
1035 		goto out;
1036 	ret = true;
1037 out:
1038 	rcu_read_unlock();
1039 	return ret;
1040 }
1041 
1042 /**
1043  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
1044  * @handle: transaction to add buffer modifications to
1045  * @bh:     bh to be used for metadata writes
1046  *
1047  * Returns an error code or 0 on success.
1048  *
1049  * In full data journalling mode the buffer may be of type BJ_AsyncData,
1050  * because we're write()ing a buffer which is also part of a shared mapping.
1051  */
1052 
1053 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1054 {
1055 	struct journal_head *jh;
1056 	int rc;
1057 
1058 	if (jbd2_write_access_granted(handle, bh))
1059 		return 0;
1060 
1061 	jh = jbd2_journal_add_journal_head(bh);
1062 	/* We do not want to get caught playing with fields which the
1063 	 * log thread also manipulates.  Make sure that the buffer
1064 	 * completes any outstanding IO before proceeding. */
1065 	rc = do_get_write_access(handle, jh, 0);
1066 	jbd2_journal_put_journal_head(jh);
1067 	return rc;
1068 }
1069 
1070 
1071 /*
1072  * When the user wants to journal a newly created buffer_head
1073  * (ie. getblk() returned a new buffer and we are going to populate it
1074  * manually rather than reading off disk), then we need to keep the
1075  * buffer_head locked until it has been completely filled with new
1076  * data.  In this case, we should be able to make the assertion that
1077  * the bh is not already part of an existing transaction.
1078  *
1079  * The buffer should already be locked by the caller by this point.
1080  * There is no lock ranking violation: it was a newly created,
1081  * unlocked buffer beforehand. */
1082 
1083 /**
1084  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
1085  * @handle: transaction to new buffer to
1086  * @bh: new buffer.
1087  *
1088  * Call this if you create a new bh.
1089  */
1090 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1091 {
1092 	transaction_t *transaction = handle->h_transaction;
1093 	journal_t *journal;
1094 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1095 	int err;
1096 
1097 	jbd_debug(5, "journal_head %p\n", jh);
1098 	err = -EROFS;
1099 	if (is_handle_aborted(handle))
1100 		goto out;
1101 	journal = transaction->t_journal;
1102 	err = 0;
1103 
1104 	JBUFFER_TRACE(jh, "entry");
1105 	/*
1106 	 * The buffer may already belong to this transaction due to pre-zeroing
1107 	 * in the filesystem's new_block code.  It may also be on the previous,
1108 	 * committing transaction's lists, but it HAS to be in Forget state in
1109 	 * that case: the transaction must have deleted the buffer for it to be
1110 	 * reused here.
1111 	 */
1112 	jbd_lock_bh_state(bh);
1113 	J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1114 		jh->b_transaction == NULL ||
1115 		(jh->b_transaction == journal->j_committing_transaction &&
1116 			  jh->b_jlist == BJ_Forget)));
1117 
1118 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1119 	J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1120 
1121 	if (jh->b_transaction == NULL) {
1122 		/*
1123 		 * Previous jbd2_journal_forget() could have left the buffer
1124 		 * with jbddirty bit set because it was being committed. When
1125 		 * the commit finished, we've filed the buffer for
1126 		 * checkpointing and marked it dirty. Now we are reallocating
1127 		 * the buffer so the transaction freeing it must have
1128 		 * committed and so it's safe to clear the dirty bit.
1129 		 */
1130 		clear_buffer_dirty(jh2bh(jh));
1131 		/* first access by this transaction */
1132 		jh->b_modified = 0;
1133 
1134 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
1135 		spin_lock(&journal->j_list_lock);
1136 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1137 	} else if (jh->b_transaction == journal->j_committing_transaction) {
1138 		/* first access by this transaction */
1139 		jh->b_modified = 0;
1140 
1141 		JBUFFER_TRACE(jh, "set next transaction");
1142 		spin_lock(&journal->j_list_lock);
1143 		jh->b_next_transaction = transaction;
1144 	}
1145 	spin_unlock(&journal->j_list_lock);
1146 	jbd_unlock_bh_state(bh);
1147 
1148 	/*
1149 	 * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1150 	 * blocks which contain freed but then revoked metadata.  We need
1151 	 * to cancel the revoke in case we end up freeing it yet again
1152 	 * and the reallocating as data - this would cause a second revoke,
1153 	 * which hits an assertion error.
1154 	 */
1155 	JBUFFER_TRACE(jh, "cancelling revoke");
1156 	jbd2_journal_cancel_revoke(handle, jh);
1157 out:
1158 	jbd2_journal_put_journal_head(jh);
1159 	return err;
1160 }
1161 
1162 /**
1163  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1164  *     non-rewindable consequences
1165  * @handle: transaction
1166  * @bh: buffer to undo
1167  *
1168  * Sometimes there is a need to distinguish between metadata which has
1169  * been committed to disk and that which has not.  The ext3fs code uses
1170  * this for freeing and allocating space, we have to make sure that we
1171  * do not reuse freed space until the deallocation has been committed,
1172  * since if we overwrote that space we would make the delete
1173  * un-rewindable in case of a crash.
1174  *
1175  * To deal with that, jbd2_journal_get_undo_access requests write access to a
1176  * buffer for parts of non-rewindable operations such as delete
1177  * operations on the bitmaps.  The journaling code must keep a copy of
1178  * the buffer's contents prior to the undo_access call until such time
1179  * as we know that the buffer has definitely been committed to disk.
1180  *
1181  * We never need to know which transaction the committed data is part
1182  * of, buffers touched here are guaranteed to be dirtied later and so
1183  * will be committed to a new transaction in due course, at which point
1184  * we can discard the old committed data pointer.
1185  *
1186  * Returns error number or 0 on success.
1187  */
1188 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1189 {
1190 	int err;
1191 	struct journal_head *jh;
1192 	char *committed_data = NULL;
1193 
1194 	JBUFFER_TRACE(jh, "entry");
1195 	if (jbd2_write_access_granted(handle, bh))
1196 		return 0;
1197 
1198 	jh = jbd2_journal_add_journal_head(bh);
1199 	/*
1200 	 * Do this first --- it can drop the journal lock, so we want to
1201 	 * make sure that obtaining the committed_data is done
1202 	 * atomically wrt. completion of any outstanding commits.
1203 	 */
1204 	err = do_get_write_access(handle, jh, 1);
1205 	if (err)
1206 		goto out;
1207 
1208 repeat:
1209 	if (!jh->b_committed_data) {
1210 		committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS);
1211 		if (!committed_data) {
1212 			printk(KERN_ERR "%s: No memory for committed data\n",
1213 				__func__);
1214 			err = -ENOMEM;
1215 			goto out;
1216 		}
1217 	}
1218 
1219 	jbd_lock_bh_state(bh);
1220 	if (!jh->b_committed_data) {
1221 		/* Copy out the current buffer contents into the
1222 		 * preserved, committed copy. */
1223 		JBUFFER_TRACE(jh, "generate b_committed data");
1224 		if (!committed_data) {
1225 			jbd_unlock_bh_state(bh);
1226 			goto repeat;
1227 		}
1228 
1229 		jh->b_committed_data = committed_data;
1230 		committed_data = NULL;
1231 		memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1232 	}
1233 	jbd_unlock_bh_state(bh);
1234 out:
1235 	jbd2_journal_put_journal_head(jh);
1236 	if (unlikely(committed_data))
1237 		jbd2_free(committed_data, bh->b_size);
1238 	return err;
1239 }
1240 
1241 /**
1242  * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1243  * @bh: buffer to trigger on
1244  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1245  *
1246  * Set any triggers on this journal_head.  This is always safe, because
1247  * triggers for a committing buffer will be saved off, and triggers for
1248  * a running transaction will match the buffer in that transaction.
1249  *
1250  * Call with NULL to clear the triggers.
1251  */
1252 void jbd2_journal_set_triggers(struct buffer_head *bh,
1253 			       struct jbd2_buffer_trigger_type *type)
1254 {
1255 	struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1256 
1257 	if (WARN_ON(!jh))
1258 		return;
1259 	jh->b_triggers = type;
1260 	jbd2_journal_put_journal_head(jh);
1261 }
1262 
1263 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1264 				struct jbd2_buffer_trigger_type *triggers)
1265 {
1266 	struct buffer_head *bh = jh2bh(jh);
1267 
1268 	if (!triggers || !triggers->t_frozen)
1269 		return;
1270 
1271 	triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1272 }
1273 
1274 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1275 			       struct jbd2_buffer_trigger_type *triggers)
1276 {
1277 	if (!triggers || !triggers->t_abort)
1278 		return;
1279 
1280 	triggers->t_abort(triggers, jh2bh(jh));
1281 }
1282 
1283 
1284 
1285 /**
1286  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1287  * @handle: transaction to add buffer to.
1288  * @bh: buffer to mark
1289  *
1290  * mark dirty metadata which needs to be journaled as part of the current
1291  * transaction.
1292  *
1293  * The buffer must have previously had jbd2_journal_get_write_access()
1294  * called so that it has a valid journal_head attached to the buffer
1295  * head.
1296  *
1297  * The buffer is placed on the transaction's metadata list and is marked
1298  * as belonging to the transaction.
1299  *
1300  * Returns error number or 0 on success.
1301  *
1302  * Special care needs to be taken if the buffer already belongs to the
1303  * current committing transaction (in which case we should have frozen
1304  * data present for that commit).  In that case, we don't relink the
1305  * buffer: that only gets done when the old transaction finally
1306  * completes its commit.
1307  */
1308 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1309 {
1310 	transaction_t *transaction = handle->h_transaction;
1311 	journal_t *journal;
1312 	struct journal_head *jh;
1313 	int ret = 0;
1314 
1315 	if (is_handle_aborted(handle))
1316 		return -EROFS;
1317 	journal = transaction->t_journal;
1318 	jh = jbd2_journal_grab_journal_head(bh);
1319 	if (!jh) {
1320 		ret = -EUCLEAN;
1321 		goto out;
1322 	}
1323 	jbd_debug(5, "journal_head %p\n", jh);
1324 	JBUFFER_TRACE(jh, "entry");
1325 
1326 	jbd_lock_bh_state(bh);
1327 
1328 	if (jh->b_modified == 0) {
1329 		/*
1330 		 * This buffer's got modified and becoming part
1331 		 * of the transaction. This needs to be done
1332 		 * once a transaction -bzzz
1333 		 */
1334 		jh->b_modified = 1;
1335 		if (handle->h_buffer_credits <= 0) {
1336 			ret = -ENOSPC;
1337 			goto out_unlock_bh;
1338 		}
1339 		handle->h_buffer_credits--;
1340 	}
1341 
1342 	/*
1343 	 * fastpath, to avoid expensive locking.  If this buffer is already
1344 	 * on the running transaction's metadata list there is nothing to do.
1345 	 * Nobody can take it off again because there is a handle open.
1346 	 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1347 	 * result in this test being false, so we go in and take the locks.
1348 	 */
1349 	if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1350 		JBUFFER_TRACE(jh, "fastpath");
1351 		if (unlikely(jh->b_transaction !=
1352 			     journal->j_running_transaction)) {
1353 			printk(KERN_ERR "JBD2: %s: "
1354 			       "jh->b_transaction (%llu, %p, %u) != "
1355 			       "journal->j_running_transaction (%p, %u)\n",
1356 			       journal->j_devname,
1357 			       (unsigned long long) bh->b_blocknr,
1358 			       jh->b_transaction,
1359 			       jh->b_transaction ? jh->b_transaction->t_tid : 0,
1360 			       journal->j_running_transaction,
1361 			       journal->j_running_transaction ?
1362 			       journal->j_running_transaction->t_tid : 0);
1363 			ret = -EINVAL;
1364 		}
1365 		goto out_unlock_bh;
1366 	}
1367 
1368 	set_buffer_jbddirty(bh);
1369 
1370 	/*
1371 	 * Metadata already on the current transaction list doesn't
1372 	 * need to be filed.  Metadata on another transaction's list must
1373 	 * be committing, and will be refiled once the commit completes:
1374 	 * leave it alone for now.
1375 	 */
1376 	if (jh->b_transaction != transaction) {
1377 		JBUFFER_TRACE(jh, "already on other transaction");
1378 		if (unlikely(((jh->b_transaction !=
1379 			       journal->j_committing_transaction)) ||
1380 			     (jh->b_next_transaction != transaction))) {
1381 			printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1382 			       "bad jh for block %llu: "
1383 			       "transaction (%p, %u), "
1384 			       "jh->b_transaction (%p, %u), "
1385 			       "jh->b_next_transaction (%p, %u), jlist %u\n",
1386 			       journal->j_devname,
1387 			       (unsigned long long) bh->b_blocknr,
1388 			       transaction, transaction->t_tid,
1389 			       jh->b_transaction,
1390 			       jh->b_transaction ?
1391 			       jh->b_transaction->t_tid : 0,
1392 			       jh->b_next_transaction,
1393 			       jh->b_next_transaction ?
1394 			       jh->b_next_transaction->t_tid : 0,
1395 			       jh->b_jlist);
1396 			WARN_ON(1);
1397 			ret = -EINVAL;
1398 		}
1399 		/* And this case is illegal: we can't reuse another
1400 		 * transaction's data buffer, ever. */
1401 		goto out_unlock_bh;
1402 	}
1403 
1404 	/* That test should have eliminated the following case: */
1405 	J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1406 
1407 	JBUFFER_TRACE(jh, "file as BJ_Metadata");
1408 	spin_lock(&journal->j_list_lock);
1409 	__jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1410 	spin_unlock(&journal->j_list_lock);
1411 out_unlock_bh:
1412 	jbd_unlock_bh_state(bh);
1413 	jbd2_journal_put_journal_head(jh);
1414 out:
1415 	JBUFFER_TRACE(jh, "exit");
1416 	return ret;
1417 }
1418 
1419 /**
1420  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1421  * @handle: transaction handle
1422  * @bh:     bh to 'forget'
1423  *
1424  * We can only do the bforget if there are no commits pending against the
1425  * buffer.  If the buffer is dirty in the current running transaction we
1426  * can safely unlink it.
1427  *
1428  * bh may not be a journalled buffer at all - it may be a non-JBD
1429  * buffer which came off the hashtable.  Check for this.
1430  *
1431  * Decrements bh->b_count by one.
1432  *
1433  * Allow this call even if the handle has aborted --- it may be part of
1434  * the caller's cleanup after an abort.
1435  */
1436 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1437 {
1438 	transaction_t *transaction = handle->h_transaction;
1439 	journal_t *journal;
1440 	struct journal_head *jh;
1441 	int drop_reserve = 0;
1442 	int err = 0;
1443 	int was_modified = 0;
1444 
1445 	if (is_handle_aborted(handle))
1446 		return -EROFS;
1447 	journal = transaction->t_journal;
1448 
1449 	BUFFER_TRACE(bh, "entry");
1450 
1451 	jbd_lock_bh_state(bh);
1452 
1453 	if (!buffer_jbd(bh))
1454 		goto not_jbd;
1455 	jh = bh2jh(bh);
1456 
1457 	/* Critical error: attempting to delete a bitmap buffer, maybe?
1458 	 * Don't do any jbd operations, and return an error. */
1459 	if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1460 			 "inconsistent data on disk")) {
1461 		err = -EIO;
1462 		goto not_jbd;
1463 	}
1464 
1465 	/* keep track of whether or not this transaction modified us */
1466 	was_modified = jh->b_modified;
1467 
1468 	/*
1469 	 * The buffer's going from the transaction, we must drop
1470 	 * all references -bzzz
1471 	 */
1472 	jh->b_modified = 0;
1473 
1474 	if (jh->b_transaction == transaction) {
1475 		J_ASSERT_JH(jh, !jh->b_frozen_data);
1476 
1477 		/* If we are forgetting a buffer which is already part
1478 		 * of this transaction, then we can just drop it from
1479 		 * the transaction immediately. */
1480 		clear_buffer_dirty(bh);
1481 		clear_buffer_jbddirty(bh);
1482 
1483 		JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1484 
1485 		/*
1486 		 * we only want to drop a reference if this transaction
1487 		 * modified the buffer
1488 		 */
1489 		if (was_modified)
1490 			drop_reserve = 1;
1491 
1492 		/*
1493 		 * We are no longer going to journal this buffer.
1494 		 * However, the commit of this transaction is still
1495 		 * important to the buffer: the delete that we are now
1496 		 * processing might obsolete an old log entry, so by
1497 		 * committing, we can satisfy the buffer's checkpoint.
1498 		 *
1499 		 * So, if we have a checkpoint on the buffer, we should
1500 		 * now refile the buffer on our BJ_Forget list so that
1501 		 * we know to remove the checkpoint after we commit.
1502 		 */
1503 
1504 		spin_lock(&journal->j_list_lock);
1505 		if (jh->b_cp_transaction) {
1506 			__jbd2_journal_temp_unlink_buffer(jh);
1507 			__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1508 		} else {
1509 			__jbd2_journal_unfile_buffer(jh);
1510 			if (!buffer_jbd(bh)) {
1511 				spin_unlock(&journal->j_list_lock);
1512 				jbd_unlock_bh_state(bh);
1513 				__bforget(bh);
1514 				goto drop;
1515 			}
1516 		}
1517 		spin_unlock(&journal->j_list_lock);
1518 	} else if (jh->b_transaction) {
1519 		J_ASSERT_JH(jh, (jh->b_transaction ==
1520 				 journal->j_committing_transaction));
1521 		/* However, if the buffer is still owned by a prior
1522 		 * (committing) transaction, we can't drop it yet... */
1523 		JBUFFER_TRACE(jh, "belongs to older transaction");
1524 		/* ... but we CAN drop it from the new transaction if we
1525 		 * have also modified it since the original commit. */
1526 
1527 		if (jh->b_next_transaction) {
1528 			J_ASSERT(jh->b_next_transaction == transaction);
1529 			spin_lock(&journal->j_list_lock);
1530 			jh->b_next_transaction = NULL;
1531 			spin_unlock(&journal->j_list_lock);
1532 
1533 			/*
1534 			 * only drop a reference if this transaction modified
1535 			 * the buffer
1536 			 */
1537 			if (was_modified)
1538 				drop_reserve = 1;
1539 		}
1540 	}
1541 
1542 not_jbd:
1543 	jbd_unlock_bh_state(bh);
1544 	__brelse(bh);
1545 drop:
1546 	if (drop_reserve) {
1547 		/* no need to reserve log space for this block -bzzz */
1548 		handle->h_buffer_credits++;
1549 	}
1550 	return err;
1551 }
1552 
1553 /**
1554  * int jbd2_journal_stop() - complete a transaction
1555  * @handle: tranaction to complete.
1556  *
1557  * All done for a particular handle.
1558  *
1559  * There is not much action needed here.  We just return any remaining
1560  * buffer credits to the transaction and remove the handle.  The only
1561  * complication is that we need to start a commit operation if the
1562  * filesystem is marked for synchronous update.
1563  *
1564  * jbd2_journal_stop itself will not usually return an error, but it may
1565  * do so in unusual circumstances.  In particular, expect it to
1566  * return -EIO if a jbd2_journal_abort has been executed since the
1567  * transaction began.
1568  */
1569 int jbd2_journal_stop(handle_t *handle)
1570 {
1571 	transaction_t *transaction = handle->h_transaction;
1572 	journal_t *journal;
1573 	int err = 0, wait_for_commit = 0;
1574 	tid_t tid;
1575 	pid_t pid;
1576 
1577 	if (!transaction) {
1578 		/*
1579 		 * Handle is already detached from the transaction so
1580 		 * there is nothing to do other than decrease a refcount,
1581 		 * or free the handle if refcount drops to zero
1582 		 */
1583 		if (--handle->h_ref > 0) {
1584 			jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1585 							 handle->h_ref);
1586 			return err;
1587 		} else {
1588 			if (handle->h_rsv_handle)
1589 				jbd2_free_handle(handle->h_rsv_handle);
1590 			goto free_and_exit;
1591 		}
1592 	}
1593 	journal = transaction->t_journal;
1594 
1595 	J_ASSERT(journal_current_handle() == handle);
1596 
1597 	if (is_handle_aborted(handle))
1598 		err = -EIO;
1599 	else
1600 		J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1601 
1602 	if (--handle->h_ref > 0) {
1603 		jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1604 			  handle->h_ref);
1605 		return err;
1606 	}
1607 
1608 	jbd_debug(4, "Handle %p going down\n", handle);
1609 	trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1610 				transaction->t_tid,
1611 				handle->h_type, handle->h_line_no,
1612 				jiffies - handle->h_start_jiffies,
1613 				handle->h_sync, handle->h_requested_credits,
1614 				(handle->h_requested_credits -
1615 				 handle->h_buffer_credits));
1616 
1617 	/*
1618 	 * Implement synchronous transaction batching.  If the handle
1619 	 * was synchronous, don't force a commit immediately.  Let's
1620 	 * yield and let another thread piggyback onto this
1621 	 * transaction.  Keep doing that while new threads continue to
1622 	 * arrive.  It doesn't cost much - we're about to run a commit
1623 	 * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1624 	 * operations by 30x or more...
1625 	 *
1626 	 * We try and optimize the sleep time against what the
1627 	 * underlying disk can do, instead of having a static sleep
1628 	 * time.  This is useful for the case where our storage is so
1629 	 * fast that it is more optimal to go ahead and force a flush
1630 	 * and wait for the transaction to be committed than it is to
1631 	 * wait for an arbitrary amount of time for new writers to
1632 	 * join the transaction.  We achieve this by measuring how
1633 	 * long it takes to commit a transaction, and compare it with
1634 	 * how long this transaction has been running, and if run time
1635 	 * < commit time then we sleep for the delta and commit.  This
1636 	 * greatly helps super fast disks that would see slowdowns as
1637 	 * more threads started doing fsyncs.
1638 	 *
1639 	 * But don't do this if this process was the most recent one
1640 	 * to perform a synchronous write.  We do this to detect the
1641 	 * case where a single process is doing a stream of sync
1642 	 * writes.  No point in waiting for joiners in that case.
1643 	 *
1644 	 * Setting max_batch_time to 0 disables this completely.
1645 	 */
1646 	pid = current->pid;
1647 	if (handle->h_sync && journal->j_last_sync_writer != pid &&
1648 	    journal->j_max_batch_time) {
1649 		u64 commit_time, trans_time;
1650 
1651 		journal->j_last_sync_writer = pid;
1652 
1653 		read_lock(&journal->j_state_lock);
1654 		commit_time = journal->j_average_commit_time;
1655 		read_unlock(&journal->j_state_lock);
1656 
1657 		trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1658 						   transaction->t_start_time));
1659 
1660 		commit_time = max_t(u64, commit_time,
1661 				    1000*journal->j_min_batch_time);
1662 		commit_time = min_t(u64, commit_time,
1663 				    1000*journal->j_max_batch_time);
1664 
1665 		if (trans_time < commit_time) {
1666 			ktime_t expires = ktime_add_ns(ktime_get(),
1667 						       commit_time);
1668 			set_current_state(TASK_UNINTERRUPTIBLE);
1669 			schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1670 		}
1671 	}
1672 
1673 	if (handle->h_sync)
1674 		transaction->t_synchronous_commit = 1;
1675 	current->journal_info = NULL;
1676 	atomic_sub(handle->h_buffer_credits,
1677 		   &transaction->t_outstanding_credits);
1678 
1679 	/*
1680 	 * If the handle is marked SYNC, we need to set another commit
1681 	 * going!  We also want to force a commit if the current
1682 	 * transaction is occupying too much of the log, or if the
1683 	 * transaction is too old now.
1684 	 */
1685 	if (handle->h_sync ||
1686 	    (atomic_read(&transaction->t_outstanding_credits) >
1687 	     journal->j_max_transaction_buffers) ||
1688 	    time_after_eq(jiffies, transaction->t_expires)) {
1689 		/* Do this even for aborted journals: an abort still
1690 		 * completes the commit thread, it just doesn't write
1691 		 * anything to disk. */
1692 
1693 		jbd_debug(2, "transaction too old, requesting commit for "
1694 					"handle %p\n", handle);
1695 		/* This is non-blocking */
1696 		jbd2_log_start_commit(journal, transaction->t_tid);
1697 
1698 		/*
1699 		 * Special case: JBD2_SYNC synchronous updates require us
1700 		 * to wait for the commit to complete.
1701 		 */
1702 		if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1703 			wait_for_commit = 1;
1704 	}
1705 
1706 	/*
1707 	 * Once we drop t_updates, if it goes to zero the transaction
1708 	 * could start committing on us and eventually disappear.  So
1709 	 * once we do this, we must not dereference transaction
1710 	 * pointer again.
1711 	 */
1712 	tid = transaction->t_tid;
1713 	if (atomic_dec_and_test(&transaction->t_updates)) {
1714 		wake_up(&journal->j_wait_updates);
1715 		if (journal->j_barrier_count)
1716 			wake_up(&journal->j_wait_transaction_locked);
1717 	}
1718 
1719 	if (wait_for_commit)
1720 		err = jbd2_log_wait_commit(journal, tid);
1721 
1722 	lock_map_release(&handle->h_lockdep_map);
1723 
1724 	if (handle->h_rsv_handle)
1725 		jbd2_journal_free_reserved(handle->h_rsv_handle);
1726 free_and_exit:
1727 	jbd2_free_handle(handle);
1728 	return err;
1729 }
1730 
1731 /*
1732  *
1733  * List management code snippets: various functions for manipulating the
1734  * transaction buffer lists.
1735  *
1736  */
1737 
1738 /*
1739  * Append a buffer to a transaction list, given the transaction's list head
1740  * pointer.
1741  *
1742  * j_list_lock is held.
1743  *
1744  * jbd_lock_bh_state(jh2bh(jh)) is held.
1745  */
1746 
1747 static inline void
1748 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1749 {
1750 	if (!*list) {
1751 		jh->b_tnext = jh->b_tprev = jh;
1752 		*list = jh;
1753 	} else {
1754 		/* Insert at the tail of the list to preserve order */
1755 		struct journal_head *first = *list, *last = first->b_tprev;
1756 		jh->b_tprev = last;
1757 		jh->b_tnext = first;
1758 		last->b_tnext = first->b_tprev = jh;
1759 	}
1760 }
1761 
1762 /*
1763  * Remove a buffer from a transaction list, given the transaction's list
1764  * head pointer.
1765  *
1766  * Called with j_list_lock held, and the journal may not be locked.
1767  *
1768  * jbd_lock_bh_state(jh2bh(jh)) is held.
1769  */
1770 
1771 static inline void
1772 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1773 {
1774 	if (*list == jh) {
1775 		*list = jh->b_tnext;
1776 		if (*list == jh)
1777 			*list = NULL;
1778 	}
1779 	jh->b_tprev->b_tnext = jh->b_tnext;
1780 	jh->b_tnext->b_tprev = jh->b_tprev;
1781 }
1782 
1783 /*
1784  * Remove a buffer from the appropriate transaction list.
1785  *
1786  * Note that this function can *change* the value of
1787  * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1788  * t_reserved_list.  If the caller is holding onto a copy of one of these
1789  * pointers, it could go bad.  Generally the caller needs to re-read the
1790  * pointer from the transaction_t.
1791  *
1792  * Called under j_list_lock.
1793  */
1794 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1795 {
1796 	struct journal_head **list = NULL;
1797 	transaction_t *transaction;
1798 	struct buffer_head *bh = jh2bh(jh);
1799 
1800 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1801 	transaction = jh->b_transaction;
1802 	if (transaction)
1803 		assert_spin_locked(&transaction->t_journal->j_list_lock);
1804 
1805 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1806 	if (jh->b_jlist != BJ_None)
1807 		J_ASSERT_JH(jh, transaction != NULL);
1808 
1809 	switch (jh->b_jlist) {
1810 	case BJ_None:
1811 		return;
1812 	case BJ_Metadata:
1813 		transaction->t_nr_buffers--;
1814 		J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1815 		list = &transaction->t_buffers;
1816 		break;
1817 	case BJ_Forget:
1818 		list = &transaction->t_forget;
1819 		break;
1820 	case BJ_Shadow:
1821 		list = &transaction->t_shadow_list;
1822 		break;
1823 	case BJ_Reserved:
1824 		list = &transaction->t_reserved_list;
1825 		break;
1826 	}
1827 
1828 	__blist_del_buffer(list, jh);
1829 	jh->b_jlist = BJ_None;
1830 	if (test_clear_buffer_jbddirty(bh))
1831 		mark_buffer_dirty(bh);	/* Expose it to the VM */
1832 }
1833 
1834 /*
1835  * Remove buffer from all transactions.
1836  *
1837  * Called with bh_state lock and j_list_lock
1838  *
1839  * jh and bh may be already freed when this function returns.
1840  */
1841 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1842 {
1843 	__jbd2_journal_temp_unlink_buffer(jh);
1844 	jh->b_transaction = NULL;
1845 	jbd2_journal_put_journal_head(jh);
1846 }
1847 
1848 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1849 {
1850 	struct buffer_head *bh = jh2bh(jh);
1851 
1852 	/* Get reference so that buffer cannot be freed before we unlock it */
1853 	get_bh(bh);
1854 	jbd_lock_bh_state(bh);
1855 	spin_lock(&journal->j_list_lock);
1856 	__jbd2_journal_unfile_buffer(jh);
1857 	spin_unlock(&journal->j_list_lock);
1858 	jbd_unlock_bh_state(bh);
1859 	__brelse(bh);
1860 }
1861 
1862 /*
1863  * Called from jbd2_journal_try_to_free_buffers().
1864  *
1865  * Called under jbd_lock_bh_state(bh)
1866  */
1867 static void
1868 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1869 {
1870 	struct journal_head *jh;
1871 
1872 	jh = bh2jh(bh);
1873 
1874 	if (buffer_locked(bh) || buffer_dirty(bh))
1875 		goto out;
1876 
1877 	if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
1878 		goto out;
1879 
1880 	spin_lock(&journal->j_list_lock);
1881 	if (jh->b_cp_transaction != NULL) {
1882 		/* written-back checkpointed metadata buffer */
1883 		JBUFFER_TRACE(jh, "remove from checkpoint list");
1884 		__jbd2_journal_remove_checkpoint(jh);
1885 	}
1886 	spin_unlock(&journal->j_list_lock);
1887 out:
1888 	return;
1889 }
1890 
1891 /**
1892  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1893  * @journal: journal for operation
1894  * @page: to try and free
1895  * @gfp_mask: we use the mask to detect how hard should we try to release
1896  * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to
1897  * release the buffers.
1898  *
1899  *
1900  * For all the buffers on this page,
1901  * if they are fully written out ordered data, move them onto BUF_CLEAN
1902  * so try_to_free_buffers() can reap them.
1903  *
1904  * This function returns non-zero if we wish try_to_free_buffers()
1905  * to be called. We do this if the page is releasable by try_to_free_buffers().
1906  * We also do it if the page has locked or dirty buffers and the caller wants
1907  * us to perform sync or async writeout.
1908  *
1909  * This complicates JBD locking somewhat.  We aren't protected by the
1910  * BKL here.  We wish to remove the buffer from its committing or
1911  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1912  *
1913  * This may *change* the value of transaction_t->t_datalist, so anyone
1914  * who looks at t_datalist needs to lock against this function.
1915  *
1916  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1917  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
1918  * will come out of the lock with the buffer dirty, which makes it
1919  * ineligible for release here.
1920  *
1921  * Who else is affected by this?  hmm...  Really the only contender
1922  * is do_get_write_access() - it could be looking at the buffer while
1923  * journal_try_to_free_buffer() is changing its state.  But that
1924  * cannot happen because we never reallocate freed data as metadata
1925  * while the data is part of a transaction.  Yes?
1926  *
1927  * Return 0 on failure, 1 on success
1928  */
1929 int jbd2_journal_try_to_free_buffers(journal_t *journal,
1930 				struct page *page, gfp_t gfp_mask)
1931 {
1932 	struct buffer_head *head;
1933 	struct buffer_head *bh;
1934 	int ret = 0;
1935 
1936 	J_ASSERT(PageLocked(page));
1937 
1938 	head = page_buffers(page);
1939 	bh = head;
1940 	do {
1941 		struct journal_head *jh;
1942 
1943 		/*
1944 		 * We take our own ref against the journal_head here to avoid
1945 		 * having to add tons of locking around each instance of
1946 		 * jbd2_journal_put_journal_head().
1947 		 */
1948 		jh = jbd2_journal_grab_journal_head(bh);
1949 		if (!jh)
1950 			continue;
1951 
1952 		jbd_lock_bh_state(bh);
1953 		__journal_try_to_free_buffer(journal, bh);
1954 		jbd2_journal_put_journal_head(jh);
1955 		jbd_unlock_bh_state(bh);
1956 		if (buffer_jbd(bh))
1957 			goto busy;
1958 	} while ((bh = bh->b_this_page) != head);
1959 
1960 	ret = try_to_free_buffers(page);
1961 
1962 busy:
1963 	return ret;
1964 }
1965 
1966 /*
1967  * This buffer is no longer needed.  If it is on an older transaction's
1968  * checkpoint list we need to record it on this transaction's forget list
1969  * to pin this buffer (and hence its checkpointing transaction) down until
1970  * this transaction commits.  If the buffer isn't on a checkpoint list, we
1971  * release it.
1972  * Returns non-zero if JBD no longer has an interest in the buffer.
1973  *
1974  * Called under j_list_lock.
1975  *
1976  * Called under jbd_lock_bh_state(bh).
1977  */
1978 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
1979 {
1980 	int may_free = 1;
1981 	struct buffer_head *bh = jh2bh(jh);
1982 
1983 	if (jh->b_cp_transaction) {
1984 		JBUFFER_TRACE(jh, "on running+cp transaction");
1985 		__jbd2_journal_temp_unlink_buffer(jh);
1986 		/*
1987 		 * We don't want to write the buffer anymore, clear the
1988 		 * bit so that we don't confuse checks in
1989 		 * __journal_file_buffer
1990 		 */
1991 		clear_buffer_dirty(bh);
1992 		__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1993 		may_free = 0;
1994 	} else {
1995 		JBUFFER_TRACE(jh, "on running transaction");
1996 		__jbd2_journal_unfile_buffer(jh);
1997 	}
1998 	return may_free;
1999 }
2000 
2001 /*
2002  * jbd2_journal_invalidatepage
2003  *
2004  * This code is tricky.  It has a number of cases to deal with.
2005  *
2006  * There are two invariants which this code relies on:
2007  *
2008  * i_size must be updated on disk before we start calling invalidatepage on the
2009  * data.
2010  *
2011  *  This is done in ext3 by defining an ext3_setattr method which
2012  *  updates i_size before truncate gets going.  By maintaining this
2013  *  invariant, we can be sure that it is safe to throw away any buffers
2014  *  attached to the current transaction: once the transaction commits,
2015  *  we know that the data will not be needed.
2016  *
2017  *  Note however that we can *not* throw away data belonging to the
2018  *  previous, committing transaction!
2019  *
2020  * Any disk blocks which *are* part of the previous, committing
2021  * transaction (and which therefore cannot be discarded immediately) are
2022  * not going to be reused in the new running transaction
2023  *
2024  *  The bitmap committed_data images guarantee this: any block which is
2025  *  allocated in one transaction and removed in the next will be marked
2026  *  as in-use in the committed_data bitmap, so cannot be reused until
2027  *  the next transaction to delete the block commits.  This means that
2028  *  leaving committing buffers dirty is quite safe: the disk blocks
2029  *  cannot be reallocated to a different file and so buffer aliasing is
2030  *  not possible.
2031  *
2032  *
2033  * The above applies mainly to ordered data mode.  In writeback mode we
2034  * don't make guarantees about the order in which data hits disk --- in
2035  * particular we don't guarantee that new dirty data is flushed before
2036  * transaction commit --- so it is always safe just to discard data
2037  * immediately in that mode.  --sct
2038  */
2039 
2040 /*
2041  * The journal_unmap_buffer helper function returns zero if the buffer
2042  * concerned remains pinned as an anonymous buffer belonging to an older
2043  * transaction.
2044  *
2045  * We're outside-transaction here.  Either or both of j_running_transaction
2046  * and j_committing_transaction may be NULL.
2047  */
2048 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2049 				int partial_page)
2050 {
2051 	transaction_t *transaction;
2052 	struct journal_head *jh;
2053 	int may_free = 1;
2054 
2055 	BUFFER_TRACE(bh, "entry");
2056 
2057 	/*
2058 	 * It is safe to proceed here without the j_list_lock because the
2059 	 * buffers cannot be stolen by try_to_free_buffers as long as we are
2060 	 * holding the page lock. --sct
2061 	 */
2062 
2063 	if (!buffer_jbd(bh))
2064 		goto zap_buffer_unlocked;
2065 
2066 	/* OK, we have data buffer in journaled mode */
2067 	write_lock(&journal->j_state_lock);
2068 	jbd_lock_bh_state(bh);
2069 	spin_lock(&journal->j_list_lock);
2070 
2071 	jh = jbd2_journal_grab_journal_head(bh);
2072 	if (!jh)
2073 		goto zap_buffer_no_jh;
2074 
2075 	/*
2076 	 * We cannot remove the buffer from checkpoint lists until the
2077 	 * transaction adding inode to orphan list (let's call it T)
2078 	 * is committed.  Otherwise if the transaction changing the
2079 	 * buffer would be cleaned from the journal before T is
2080 	 * committed, a crash will cause that the correct contents of
2081 	 * the buffer will be lost.  On the other hand we have to
2082 	 * clear the buffer dirty bit at latest at the moment when the
2083 	 * transaction marking the buffer as freed in the filesystem
2084 	 * structures is committed because from that moment on the
2085 	 * block can be reallocated and used by a different page.
2086 	 * Since the block hasn't been freed yet but the inode has
2087 	 * already been added to orphan list, it is safe for us to add
2088 	 * the buffer to BJ_Forget list of the newest transaction.
2089 	 *
2090 	 * Also we have to clear buffer_mapped flag of a truncated buffer
2091 	 * because the buffer_head may be attached to the page straddling
2092 	 * i_size (can happen only when blocksize < pagesize) and thus the
2093 	 * buffer_head can be reused when the file is extended again. So we end
2094 	 * up keeping around invalidated buffers attached to transactions'
2095 	 * BJ_Forget list just to stop checkpointing code from cleaning up
2096 	 * the transaction this buffer was modified in.
2097 	 */
2098 	transaction = jh->b_transaction;
2099 	if (transaction == NULL) {
2100 		/* First case: not on any transaction.  If it
2101 		 * has no checkpoint link, then we can zap it:
2102 		 * it's a writeback-mode buffer so we don't care
2103 		 * if it hits disk safely. */
2104 		if (!jh->b_cp_transaction) {
2105 			JBUFFER_TRACE(jh, "not on any transaction: zap");
2106 			goto zap_buffer;
2107 		}
2108 
2109 		if (!buffer_dirty(bh)) {
2110 			/* bdflush has written it.  We can drop it now */
2111 			goto zap_buffer;
2112 		}
2113 
2114 		/* OK, it must be in the journal but still not
2115 		 * written fully to disk: it's metadata or
2116 		 * journaled data... */
2117 
2118 		if (journal->j_running_transaction) {
2119 			/* ... and once the current transaction has
2120 			 * committed, the buffer won't be needed any
2121 			 * longer. */
2122 			JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2123 			may_free = __dispose_buffer(jh,
2124 					journal->j_running_transaction);
2125 			goto zap_buffer;
2126 		} else {
2127 			/* There is no currently-running transaction. So the
2128 			 * orphan record which we wrote for this file must have
2129 			 * passed into commit.  We must attach this buffer to
2130 			 * the committing transaction, if it exists. */
2131 			if (journal->j_committing_transaction) {
2132 				JBUFFER_TRACE(jh, "give to committing trans");
2133 				may_free = __dispose_buffer(jh,
2134 					journal->j_committing_transaction);
2135 				goto zap_buffer;
2136 			} else {
2137 				/* The orphan record's transaction has
2138 				 * committed.  We can cleanse this buffer */
2139 				clear_buffer_jbddirty(bh);
2140 				goto zap_buffer;
2141 			}
2142 		}
2143 	} else if (transaction == journal->j_committing_transaction) {
2144 		JBUFFER_TRACE(jh, "on committing transaction");
2145 		/*
2146 		 * The buffer is committing, we simply cannot touch
2147 		 * it. If the page is straddling i_size we have to wait
2148 		 * for commit and try again.
2149 		 */
2150 		if (partial_page) {
2151 			jbd2_journal_put_journal_head(jh);
2152 			spin_unlock(&journal->j_list_lock);
2153 			jbd_unlock_bh_state(bh);
2154 			write_unlock(&journal->j_state_lock);
2155 			return -EBUSY;
2156 		}
2157 		/*
2158 		 * OK, buffer won't be reachable after truncate. We just set
2159 		 * j_next_transaction to the running transaction (if there is
2160 		 * one) and mark buffer as freed so that commit code knows it
2161 		 * should clear dirty bits when it is done with the buffer.
2162 		 */
2163 		set_buffer_freed(bh);
2164 		if (journal->j_running_transaction && buffer_jbddirty(bh))
2165 			jh->b_next_transaction = journal->j_running_transaction;
2166 		jbd2_journal_put_journal_head(jh);
2167 		spin_unlock(&journal->j_list_lock);
2168 		jbd_unlock_bh_state(bh);
2169 		write_unlock(&journal->j_state_lock);
2170 		return 0;
2171 	} else {
2172 		/* Good, the buffer belongs to the running transaction.
2173 		 * We are writing our own transaction's data, not any
2174 		 * previous one's, so it is safe to throw it away
2175 		 * (remember that we expect the filesystem to have set
2176 		 * i_size already for this truncate so recovery will not
2177 		 * expose the disk blocks we are discarding here.) */
2178 		J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2179 		JBUFFER_TRACE(jh, "on running transaction");
2180 		may_free = __dispose_buffer(jh, transaction);
2181 	}
2182 
2183 zap_buffer:
2184 	/*
2185 	 * This is tricky. Although the buffer is truncated, it may be reused
2186 	 * if blocksize < pagesize and it is attached to the page straddling
2187 	 * EOF. Since the buffer might have been added to BJ_Forget list of the
2188 	 * running transaction, journal_get_write_access() won't clear
2189 	 * b_modified and credit accounting gets confused. So clear b_modified
2190 	 * here.
2191 	 */
2192 	jh->b_modified = 0;
2193 	jbd2_journal_put_journal_head(jh);
2194 zap_buffer_no_jh:
2195 	spin_unlock(&journal->j_list_lock);
2196 	jbd_unlock_bh_state(bh);
2197 	write_unlock(&journal->j_state_lock);
2198 zap_buffer_unlocked:
2199 	clear_buffer_dirty(bh);
2200 	J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2201 	clear_buffer_mapped(bh);
2202 	clear_buffer_req(bh);
2203 	clear_buffer_new(bh);
2204 	clear_buffer_delay(bh);
2205 	clear_buffer_unwritten(bh);
2206 	bh->b_bdev = NULL;
2207 	return may_free;
2208 }
2209 
2210 /**
2211  * void jbd2_journal_invalidatepage()
2212  * @journal: journal to use for flush...
2213  * @page:    page to flush
2214  * @offset:  start of the range to invalidate
2215  * @length:  length of the range to invalidate
2216  *
2217  * Reap page buffers containing data after in the specified range in page.
2218  * Can return -EBUSY if buffers are part of the committing transaction and
2219  * the page is straddling i_size. Caller then has to wait for current commit
2220  * and try again.
2221  */
2222 int jbd2_journal_invalidatepage(journal_t *journal,
2223 				struct page *page,
2224 				unsigned int offset,
2225 				unsigned int length)
2226 {
2227 	struct buffer_head *head, *bh, *next;
2228 	unsigned int stop = offset + length;
2229 	unsigned int curr_off = 0;
2230 	int partial_page = (offset || length < PAGE_CACHE_SIZE);
2231 	int may_free = 1;
2232 	int ret = 0;
2233 
2234 	if (!PageLocked(page))
2235 		BUG();
2236 	if (!page_has_buffers(page))
2237 		return 0;
2238 
2239 	BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
2240 
2241 	/* We will potentially be playing with lists other than just the
2242 	 * data lists (especially for journaled data mode), so be
2243 	 * cautious in our locking. */
2244 
2245 	head = bh = page_buffers(page);
2246 	do {
2247 		unsigned int next_off = curr_off + bh->b_size;
2248 		next = bh->b_this_page;
2249 
2250 		if (next_off > stop)
2251 			return 0;
2252 
2253 		if (offset <= curr_off) {
2254 			/* This block is wholly outside the truncation point */
2255 			lock_buffer(bh);
2256 			ret = journal_unmap_buffer(journal, bh, partial_page);
2257 			unlock_buffer(bh);
2258 			if (ret < 0)
2259 				return ret;
2260 			may_free &= ret;
2261 		}
2262 		curr_off = next_off;
2263 		bh = next;
2264 
2265 	} while (bh != head);
2266 
2267 	if (!partial_page) {
2268 		if (may_free && try_to_free_buffers(page))
2269 			J_ASSERT(!page_has_buffers(page));
2270 	}
2271 	return 0;
2272 }
2273 
2274 /*
2275  * File a buffer on the given transaction list.
2276  */
2277 void __jbd2_journal_file_buffer(struct journal_head *jh,
2278 			transaction_t *transaction, int jlist)
2279 {
2280 	struct journal_head **list = NULL;
2281 	int was_dirty = 0;
2282 	struct buffer_head *bh = jh2bh(jh);
2283 
2284 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2285 	assert_spin_locked(&transaction->t_journal->j_list_lock);
2286 
2287 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2288 	J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2289 				jh->b_transaction == NULL);
2290 
2291 	if (jh->b_transaction && jh->b_jlist == jlist)
2292 		return;
2293 
2294 	if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2295 	    jlist == BJ_Shadow || jlist == BJ_Forget) {
2296 		/*
2297 		 * For metadata buffers, we track dirty bit in buffer_jbddirty
2298 		 * instead of buffer_dirty. We should not see a dirty bit set
2299 		 * here because we clear it in do_get_write_access but e.g.
2300 		 * tune2fs can modify the sb and set the dirty bit at any time
2301 		 * so we try to gracefully handle that.
2302 		 */
2303 		if (buffer_dirty(bh))
2304 			warn_dirty_buffer(bh);
2305 		if (test_clear_buffer_dirty(bh) ||
2306 		    test_clear_buffer_jbddirty(bh))
2307 			was_dirty = 1;
2308 	}
2309 
2310 	if (jh->b_transaction)
2311 		__jbd2_journal_temp_unlink_buffer(jh);
2312 	else
2313 		jbd2_journal_grab_journal_head(bh);
2314 	jh->b_transaction = transaction;
2315 
2316 	switch (jlist) {
2317 	case BJ_None:
2318 		J_ASSERT_JH(jh, !jh->b_committed_data);
2319 		J_ASSERT_JH(jh, !jh->b_frozen_data);
2320 		return;
2321 	case BJ_Metadata:
2322 		transaction->t_nr_buffers++;
2323 		list = &transaction->t_buffers;
2324 		break;
2325 	case BJ_Forget:
2326 		list = &transaction->t_forget;
2327 		break;
2328 	case BJ_Shadow:
2329 		list = &transaction->t_shadow_list;
2330 		break;
2331 	case BJ_Reserved:
2332 		list = &transaction->t_reserved_list;
2333 		break;
2334 	}
2335 
2336 	__blist_add_buffer(list, jh);
2337 	jh->b_jlist = jlist;
2338 
2339 	if (was_dirty)
2340 		set_buffer_jbddirty(bh);
2341 }
2342 
2343 void jbd2_journal_file_buffer(struct journal_head *jh,
2344 				transaction_t *transaction, int jlist)
2345 {
2346 	jbd_lock_bh_state(jh2bh(jh));
2347 	spin_lock(&transaction->t_journal->j_list_lock);
2348 	__jbd2_journal_file_buffer(jh, transaction, jlist);
2349 	spin_unlock(&transaction->t_journal->j_list_lock);
2350 	jbd_unlock_bh_state(jh2bh(jh));
2351 }
2352 
2353 /*
2354  * Remove a buffer from its current buffer list in preparation for
2355  * dropping it from its current transaction entirely.  If the buffer has
2356  * already started to be used by a subsequent transaction, refile the
2357  * buffer on that transaction's metadata list.
2358  *
2359  * Called under j_list_lock
2360  * Called under jbd_lock_bh_state(jh2bh(jh))
2361  *
2362  * jh and bh may be already free when this function returns
2363  */
2364 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2365 {
2366 	int was_dirty, jlist;
2367 	struct buffer_head *bh = jh2bh(jh);
2368 
2369 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2370 	if (jh->b_transaction)
2371 		assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2372 
2373 	/* If the buffer is now unused, just drop it. */
2374 	if (jh->b_next_transaction == NULL) {
2375 		__jbd2_journal_unfile_buffer(jh);
2376 		return;
2377 	}
2378 
2379 	/*
2380 	 * It has been modified by a later transaction: add it to the new
2381 	 * transaction's metadata list.
2382 	 */
2383 
2384 	was_dirty = test_clear_buffer_jbddirty(bh);
2385 	__jbd2_journal_temp_unlink_buffer(jh);
2386 	/*
2387 	 * We set b_transaction here because b_next_transaction will inherit
2388 	 * our jh reference and thus __jbd2_journal_file_buffer() must not
2389 	 * take a new one.
2390 	 */
2391 	jh->b_transaction = jh->b_next_transaction;
2392 	jh->b_next_transaction = NULL;
2393 	if (buffer_freed(bh))
2394 		jlist = BJ_Forget;
2395 	else if (jh->b_modified)
2396 		jlist = BJ_Metadata;
2397 	else
2398 		jlist = BJ_Reserved;
2399 	__jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2400 	J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2401 
2402 	if (was_dirty)
2403 		set_buffer_jbddirty(bh);
2404 }
2405 
2406 /*
2407  * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2408  * bh reference so that we can safely unlock bh.
2409  *
2410  * The jh and bh may be freed by this call.
2411  */
2412 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2413 {
2414 	struct buffer_head *bh = jh2bh(jh);
2415 
2416 	/* Get reference so that buffer cannot be freed before we unlock it */
2417 	get_bh(bh);
2418 	jbd_lock_bh_state(bh);
2419 	spin_lock(&journal->j_list_lock);
2420 	__jbd2_journal_refile_buffer(jh);
2421 	jbd_unlock_bh_state(bh);
2422 	spin_unlock(&journal->j_list_lock);
2423 	__brelse(bh);
2424 }
2425 
2426 /*
2427  * File inode in the inode list of the handle's transaction
2428  */
2429 int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode)
2430 {
2431 	transaction_t *transaction = handle->h_transaction;
2432 	journal_t *journal;
2433 
2434 	if (is_handle_aborted(handle))
2435 		return -EROFS;
2436 	journal = transaction->t_journal;
2437 
2438 	jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2439 			transaction->t_tid);
2440 
2441 	/*
2442 	 * First check whether inode isn't already on the transaction's
2443 	 * lists without taking the lock. Note that this check is safe
2444 	 * without the lock as we cannot race with somebody removing inode
2445 	 * from the transaction. The reason is that we remove inode from the
2446 	 * transaction only in journal_release_jbd_inode() and when we commit
2447 	 * the transaction. We are guarded from the first case by holding
2448 	 * a reference to the inode. We are safe against the second case
2449 	 * because if jinode->i_transaction == transaction, commit code
2450 	 * cannot touch the transaction because we hold reference to it,
2451 	 * and if jinode->i_next_transaction == transaction, commit code
2452 	 * will only file the inode where we want it.
2453 	 */
2454 	if (jinode->i_transaction == transaction ||
2455 	    jinode->i_next_transaction == transaction)
2456 		return 0;
2457 
2458 	spin_lock(&journal->j_list_lock);
2459 
2460 	if (jinode->i_transaction == transaction ||
2461 	    jinode->i_next_transaction == transaction)
2462 		goto done;
2463 
2464 	/*
2465 	 * We only ever set this variable to 1 so the test is safe. Since
2466 	 * t_need_data_flush is likely to be set, we do the test to save some
2467 	 * cacheline bouncing
2468 	 */
2469 	if (!transaction->t_need_data_flush)
2470 		transaction->t_need_data_flush = 1;
2471 	/* On some different transaction's list - should be
2472 	 * the committing one */
2473 	if (jinode->i_transaction) {
2474 		J_ASSERT(jinode->i_next_transaction == NULL);
2475 		J_ASSERT(jinode->i_transaction ==
2476 					journal->j_committing_transaction);
2477 		jinode->i_next_transaction = transaction;
2478 		goto done;
2479 	}
2480 	/* Not on any transaction list... */
2481 	J_ASSERT(!jinode->i_next_transaction);
2482 	jinode->i_transaction = transaction;
2483 	list_add(&jinode->i_list, &transaction->t_inode_list);
2484 done:
2485 	spin_unlock(&journal->j_list_lock);
2486 
2487 	return 0;
2488 }
2489 
2490 /*
2491  * File truncate and transaction commit interact with each other in a
2492  * non-trivial way.  If a transaction writing data block A is
2493  * committing, we cannot discard the data by truncate until we have
2494  * written them.  Otherwise if we crashed after the transaction with
2495  * write has committed but before the transaction with truncate has
2496  * committed, we could see stale data in block A.  This function is a
2497  * helper to solve this problem.  It starts writeout of the truncated
2498  * part in case it is in the committing transaction.
2499  *
2500  * Filesystem code must call this function when inode is journaled in
2501  * ordered mode before truncation happens and after the inode has been
2502  * placed on orphan list with the new inode size. The second condition
2503  * avoids the race that someone writes new data and we start
2504  * committing the transaction after this function has been called but
2505  * before a transaction for truncate is started (and furthermore it
2506  * allows us to optimize the case where the addition to orphan list
2507  * happens in the same transaction as write --- we don't have to write
2508  * any data in such case).
2509  */
2510 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2511 					struct jbd2_inode *jinode,
2512 					loff_t new_size)
2513 {
2514 	transaction_t *inode_trans, *commit_trans;
2515 	int ret = 0;
2516 
2517 	/* This is a quick check to avoid locking if not necessary */
2518 	if (!jinode->i_transaction)
2519 		goto out;
2520 	/* Locks are here just to force reading of recent values, it is
2521 	 * enough that the transaction was not committing before we started
2522 	 * a transaction adding the inode to orphan list */
2523 	read_lock(&journal->j_state_lock);
2524 	commit_trans = journal->j_committing_transaction;
2525 	read_unlock(&journal->j_state_lock);
2526 	spin_lock(&journal->j_list_lock);
2527 	inode_trans = jinode->i_transaction;
2528 	spin_unlock(&journal->j_list_lock);
2529 	if (inode_trans == commit_trans) {
2530 		ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2531 			new_size, LLONG_MAX);
2532 		if (ret)
2533 			jbd2_journal_abort(journal, ret);
2534 	}
2535 out:
2536 	return ret;
2537 }
2538