1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * linux/fs/jbd2/transaction.c 4 * 5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 6 * 7 * Copyright 1998 Red Hat corp --- All Rights Reserved 8 * 9 * Generic filesystem transaction handling code; part of the ext2fs 10 * journaling system. 11 * 12 * This file manages transactions (compound commits managed by the 13 * journaling code) and handles (individual atomic operations by the 14 * filesystem). 15 */ 16 17 #include <linux/time.h> 18 #include <linux/fs.h> 19 #include <linux/jbd2.h> 20 #include <linux/errno.h> 21 #include <linux/slab.h> 22 #include <linux/timer.h> 23 #include <linux/mm.h> 24 #include <linux/highmem.h> 25 #include <linux/hrtimer.h> 26 #include <linux/backing-dev.h> 27 #include <linux/bug.h> 28 #include <linux/module.h> 29 #include <linux/sched/mm.h> 30 31 #include <trace/events/jbd2.h> 32 33 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh); 34 static void __jbd2_journal_unfile_buffer(struct journal_head *jh); 35 36 static struct kmem_cache *transaction_cache; 37 int __init jbd2_journal_init_transaction_cache(void) 38 { 39 J_ASSERT(!transaction_cache); 40 transaction_cache = kmem_cache_create("jbd2_transaction_s", 41 sizeof(transaction_t), 42 0, 43 SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY, 44 NULL); 45 if (!transaction_cache) { 46 pr_emerg("JBD2: failed to create transaction cache\n"); 47 return -ENOMEM; 48 } 49 return 0; 50 } 51 52 void jbd2_journal_destroy_transaction_cache(void) 53 { 54 kmem_cache_destroy(transaction_cache); 55 transaction_cache = NULL; 56 } 57 58 void jbd2_journal_free_transaction(transaction_t *transaction) 59 { 60 if (unlikely(ZERO_OR_NULL_PTR(transaction))) 61 return; 62 kmem_cache_free(transaction_cache, transaction); 63 } 64 65 /* 66 * jbd2_get_transaction: obtain a new transaction_t object. 67 * 68 * Simply initialise a new transaction. Initialize it in 69 * RUNNING state and add it to the current journal (which should not 70 * have an existing running transaction: we only make a new transaction 71 * once we have started to commit the old one). 72 * 73 * Preconditions: 74 * The journal MUST be locked. We don't perform atomic mallocs on the 75 * new transaction and we can't block without protecting against other 76 * processes trying to touch the journal while it is in transition. 77 * 78 */ 79 80 static void jbd2_get_transaction(journal_t *journal, 81 transaction_t *transaction) 82 { 83 transaction->t_journal = journal; 84 transaction->t_state = T_RUNNING; 85 transaction->t_start_time = ktime_get(); 86 transaction->t_tid = journal->j_transaction_sequence++; 87 transaction->t_expires = jiffies + journal->j_commit_interval; 88 atomic_set(&transaction->t_updates, 0); 89 atomic_set(&transaction->t_outstanding_credits, 90 journal->j_transaction_overhead_buffers + 91 atomic_read(&journal->j_reserved_credits)); 92 atomic_set(&transaction->t_outstanding_revokes, 0); 93 atomic_set(&transaction->t_handle_count, 0); 94 INIT_LIST_HEAD(&transaction->t_inode_list); 95 96 /* Set up the commit timer for the new transaction. */ 97 journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires); 98 add_timer(&journal->j_commit_timer); 99 100 J_ASSERT(journal->j_running_transaction == NULL); 101 journal->j_running_transaction = transaction; 102 transaction->t_max_wait = 0; 103 transaction->t_start = jiffies; 104 transaction->t_requested = 0; 105 } 106 107 /* 108 * Handle management. 109 * 110 * A handle_t is an object which represents a single atomic update to a 111 * filesystem, and which tracks all of the modifications which form part 112 * of that one update. 113 */ 114 115 /* 116 * t_max_wait is carefully updated here with use of atomic compare exchange. 117 * Note that there could be multiplre threads trying to do this simultaneously 118 * hence using cmpxchg to avoid any use of locks in this case. 119 */ 120 static inline void update_t_max_wait(transaction_t *transaction, 121 unsigned long ts) 122 { 123 unsigned long oldts, newts; 124 125 if (time_after(transaction->t_start, ts)) { 126 newts = jbd2_time_diff(ts, transaction->t_start); 127 oldts = READ_ONCE(transaction->t_max_wait); 128 while (oldts < newts) 129 oldts = cmpxchg(&transaction->t_max_wait, oldts, newts); 130 } 131 } 132 133 /* 134 * Wait until running transaction passes to T_FLUSH state and new transaction 135 * can thus be started. Also starts the commit if needed. The function expects 136 * running transaction to exist and releases j_state_lock. 137 */ 138 static void wait_transaction_locked(journal_t *journal) 139 __releases(journal->j_state_lock) 140 { 141 DEFINE_WAIT(wait); 142 int need_to_start; 143 tid_t tid = journal->j_running_transaction->t_tid; 144 145 prepare_to_wait_exclusive(&journal->j_wait_transaction_locked, &wait, 146 TASK_UNINTERRUPTIBLE); 147 need_to_start = !tid_geq(journal->j_commit_request, tid); 148 read_unlock(&journal->j_state_lock); 149 if (need_to_start) 150 jbd2_log_start_commit(journal, tid); 151 jbd2_might_wait_for_commit(journal); 152 schedule(); 153 finish_wait(&journal->j_wait_transaction_locked, &wait); 154 } 155 156 /* 157 * Wait until running transaction transitions from T_SWITCH to T_FLUSH 158 * state and new transaction can thus be started. The function releases 159 * j_state_lock. 160 */ 161 static void wait_transaction_switching(journal_t *journal) 162 __releases(journal->j_state_lock) 163 { 164 DEFINE_WAIT(wait); 165 166 if (WARN_ON(!journal->j_running_transaction || 167 journal->j_running_transaction->t_state != T_SWITCH)) { 168 read_unlock(&journal->j_state_lock); 169 return; 170 } 171 prepare_to_wait_exclusive(&journal->j_wait_transaction_locked, &wait, 172 TASK_UNINTERRUPTIBLE); 173 read_unlock(&journal->j_state_lock); 174 /* 175 * We don't call jbd2_might_wait_for_commit() here as there's no 176 * waiting for outstanding handles happening anymore in T_SWITCH state 177 * and handling of reserved handles actually relies on that for 178 * correctness. 179 */ 180 schedule(); 181 finish_wait(&journal->j_wait_transaction_locked, &wait); 182 } 183 184 static void sub_reserved_credits(journal_t *journal, int blocks) 185 { 186 atomic_sub(blocks, &journal->j_reserved_credits); 187 wake_up(&journal->j_wait_reserved); 188 } 189 190 /* Maximum number of blocks for user transaction payload */ 191 static int jbd2_max_user_trans_buffers(journal_t *journal) 192 { 193 return journal->j_max_transaction_buffers - 194 journal->j_transaction_overhead_buffers; 195 } 196 197 /* 198 * Wait until we can add credits for handle to the running transaction. Called 199 * with j_state_lock held for reading. Returns 0 if handle joined the running 200 * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and 201 * caller must retry. 202 * 203 * Note: because j_state_lock may be dropped depending on the return 204 * value, we need to fake out sparse so ti doesn't complain about a 205 * locking imbalance. Callers of add_transaction_credits will need to 206 * make a similar accomodation. 207 */ 208 static int add_transaction_credits(journal_t *journal, int blocks, 209 int rsv_blocks) 210 __must_hold(&journal->j_state_lock) 211 { 212 transaction_t *t = journal->j_running_transaction; 213 int needed; 214 int total = blocks + rsv_blocks; 215 216 /* 217 * If the current transaction is locked down for commit, wait 218 * for the lock to be released. 219 */ 220 if (t->t_state != T_RUNNING) { 221 WARN_ON_ONCE(t->t_state >= T_FLUSH); 222 wait_transaction_locked(journal); 223 __acquire(&journal->j_state_lock); /* fake out sparse */ 224 return 1; 225 } 226 227 /* 228 * If there is not enough space left in the log to write all 229 * potential buffers requested by this operation, we need to 230 * stall pending a log checkpoint to free some more log space. 231 */ 232 needed = atomic_add_return(total, &t->t_outstanding_credits); 233 if (needed > journal->j_max_transaction_buffers) { 234 /* 235 * If the current transaction is already too large, 236 * then start to commit it: we can then go back and 237 * attach this handle to a new transaction. 238 */ 239 atomic_sub(total, &t->t_outstanding_credits); 240 241 /* 242 * Is the number of reserved credits in the current transaction too 243 * big to fit this handle? Wait until reserved credits are freed. 244 */ 245 if (atomic_read(&journal->j_reserved_credits) + total > 246 jbd2_max_user_trans_buffers(journal)) { 247 read_unlock(&journal->j_state_lock); 248 jbd2_might_wait_for_commit(journal); 249 wait_event(journal->j_wait_reserved, 250 atomic_read(&journal->j_reserved_credits) + total <= 251 jbd2_max_user_trans_buffers(journal)); 252 __acquire(&journal->j_state_lock); /* fake out sparse */ 253 return 1; 254 } 255 256 wait_transaction_locked(journal); 257 __acquire(&journal->j_state_lock); /* fake out sparse */ 258 return 1; 259 } 260 261 /* 262 * The commit code assumes that it can get enough log space 263 * without forcing a checkpoint. This is *critical* for 264 * correctness: a checkpoint of a buffer which is also 265 * associated with a committing transaction creates a deadlock, 266 * so commit simply cannot force through checkpoints. 267 * 268 * We must therefore ensure the necessary space in the journal 269 * *before* starting to dirty potentially checkpointed buffers 270 * in the new transaction. 271 */ 272 if (jbd2_log_space_left(journal) < journal->j_max_transaction_buffers) { 273 atomic_sub(total, &t->t_outstanding_credits); 274 read_unlock(&journal->j_state_lock); 275 jbd2_might_wait_for_commit(journal); 276 write_lock(&journal->j_state_lock); 277 if (jbd2_log_space_left(journal) < 278 journal->j_max_transaction_buffers) 279 __jbd2_log_wait_for_space(journal); 280 write_unlock(&journal->j_state_lock); 281 __acquire(&journal->j_state_lock); /* fake out sparse */ 282 return 1; 283 } 284 285 /* No reservation? We are done... */ 286 if (!rsv_blocks) 287 return 0; 288 289 needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits); 290 /* We allow at most half of a transaction to be reserved */ 291 if (needed > jbd2_max_user_trans_buffers(journal) / 2) { 292 sub_reserved_credits(journal, rsv_blocks); 293 atomic_sub(total, &t->t_outstanding_credits); 294 read_unlock(&journal->j_state_lock); 295 jbd2_might_wait_for_commit(journal); 296 wait_event(journal->j_wait_reserved, 297 atomic_read(&journal->j_reserved_credits) + rsv_blocks 298 <= jbd2_max_user_trans_buffers(journal) / 2); 299 __acquire(&journal->j_state_lock); /* fake out sparse */ 300 return 1; 301 } 302 return 0; 303 } 304 305 /* 306 * start_this_handle: Given a handle, deal with any locking or stalling 307 * needed to make sure that there is enough journal space for the handle 308 * to begin. Attach the handle to a transaction and set up the 309 * transaction's buffer credits. 310 */ 311 312 static int start_this_handle(journal_t *journal, handle_t *handle, 313 gfp_t gfp_mask) 314 { 315 transaction_t *transaction, *new_transaction = NULL; 316 int blocks = handle->h_total_credits; 317 int rsv_blocks = 0; 318 unsigned long ts = jiffies; 319 320 if (handle->h_rsv_handle) 321 rsv_blocks = handle->h_rsv_handle->h_total_credits; 322 323 /* 324 * Limit the number of reserved credits to 1/2 of maximum transaction 325 * size and limit the number of total credits to not exceed maximum 326 * transaction size per operation. 327 */ 328 if (rsv_blocks > jbd2_max_user_trans_buffers(journal) / 2 || 329 rsv_blocks + blocks > jbd2_max_user_trans_buffers(journal)) { 330 printk(KERN_ERR "JBD2: %s wants too many credits " 331 "credits:%d rsv_credits:%d max:%d\n", 332 current->comm, blocks, rsv_blocks, 333 jbd2_max_user_trans_buffers(journal)); 334 WARN_ON(1); 335 return -ENOSPC; 336 } 337 338 alloc_transaction: 339 /* 340 * This check is racy but it is just an optimization of allocating new 341 * transaction early if there are high chances we'll need it. If we 342 * guess wrong, we'll retry or free unused transaction. 343 */ 344 if (!data_race(journal->j_running_transaction)) { 345 /* 346 * If __GFP_FS is not present, then we may be being called from 347 * inside the fs writeback layer, so we MUST NOT fail. 348 */ 349 if ((gfp_mask & __GFP_FS) == 0) 350 gfp_mask |= __GFP_NOFAIL; 351 new_transaction = kmem_cache_zalloc(transaction_cache, 352 gfp_mask); 353 if (!new_transaction) 354 return -ENOMEM; 355 } 356 357 jbd2_debug(3, "New handle %p going live.\n", handle); 358 359 /* 360 * We need to hold j_state_lock until t_updates has been incremented, 361 * for proper journal barrier handling 362 */ 363 repeat: 364 read_lock(&journal->j_state_lock); 365 BUG_ON(journal->j_flags & JBD2_UNMOUNT); 366 if (is_journal_aborted(journal) || 367 (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) { 368 read_unlock(&journal->j_state_lock); 369 jbd2_journal_free_transaction(new_transaction); 370 return -EROFS; 371 } 372 373 /* 374 * Wait on the journal's transaction barrier if necessary. Specifically 375 * we allow reserved handles to proceed because otherwise commit could 376 * deadlock on page writeback not being able to complete. 377 */ 378 if (!handle->h_reserved && journal->j_barrier_count) { 379 read_unlock(&journal->j_state_lock); 380 wait_event(journal->j_wait_transaction_locked, 381 journal->j_barrier_count == 0); 382 goto repeat; 383 } 384 385 if (!journal->j_running_transaction) { 386 read_unlock(&journal->j_state_lock); 387 if (!new_transaction) 388 goto alloc_transaction; 389 write_lock(&journal->j_state_lock); 390 if (!journal->j_running_transaction && 391 (handle->h_reserved || !journal->j_barrier_count)) { 392 jbd2_get_transaction(journal, new_transaction); 393 new_transaction = NULL; 394 } 395 write_unlock(&journal->j_state_lock); 396 goto repeat; 397 } 398 399 transaction = journal->j_running_transaction; 400 401 if (!handle->h_reserved) { 402 /* We may have dropped j_state_lock - restart in that case */ 403 if (add_transaction_credits(journal, blocks, rsv_blocks)) { 404 /* 405 * add_transaction_credits releases 406 * j_state_lock on a non-zero return 407 */ 408 __release(&journal->j_state_lock); 409 goto repeat; 410 } 411 } else { 412 /* 413 * We have handle reserved so we are allowed to join T_LOCKED 414 * transaction and we don't have to check for transaction size 415 * and journal space. But we still have to wait while running 416 * transaction is being switched to a committing one as it 417 * won't wait for any handles anymore. 418 */ 419 if (transaction->t_state == T_SWITCH) { 420 wait_transaction_switching(journal); 421 goto repeat; 422 } 423 sub_reserved_credits(journal, blocks); 424 handle->h_reserved = 0; 425 } 426 427 /* OK, account for the buffers that this operation expects to 428 * use and add the handle to the running transaction. 429 */ 430 update_t_max_wait(transaction, ts); 431 handle->h_transaction = transaction; 432 handle->h_requested_credits = blocks; 433 handle->h_revoke_credits_requested = handle->h_revoke_credits; 434 handle->h_start_jiffies = jiffies; 435 atomic_inc(&transaction->t_updates); 436 atomic_inc(&transaction->t_handle_count); 437 jbd2_debug(4, "Handle %p given %d credits (total %d, free %lu)\n", 438 handle, blocks, 439 atomic_read(&transaction->t_outstanding_credits), 440 jbd2_log_space_left(journal)); 441 read_unlock(&journal->j_state_lock); 442 current->journal_info = handle; 443 444 rwsem_acquire_read(&journal->j_trans_commit_map, 0, 1, _THIS_IP_); 445 jbd2_journal_free_transaction(new_transaction); 446 /* 447 * Ensure that no allocations done while the transaction is open are 448 * going to recurse back to the fs layer. 449 */ 450 handle->saved_alloc_context = memalloc_nofs_save(); 451 return 0; 452 } 453 454 /* Allocate a new handle. This should probably be in a slab... */ 455 static handle_t *new_handle(int nblocks) 456 { 457 handle_t *handle = jbd2_alloc_handle(GFP_NOFS); 458 if (!handle) 459 return NULL; 460 handle->h_total_credits = nblocks; 461 handle->h_ref = 1; 462 463 return handle; 464 } 465 466 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks, 467 int revoke_records, gfp_t gfp_mask, 468 unsigned int type, unsigned int line_no) 469 { 470 handle_t *handle = journal_current_handle(); 471 int err; 472 473 if (!journal) 474 return ERR_PTR(-EROFS); 475 476 if (handle) { 477 J_ASSERT(handle->h_transaction->t_journal == journal); 478 handle->h_ref++; 479 return handle; 480 } 481 482 nblocks += DIV_ROUND_UP(revoke_records, 483 journal->j_revoke_records_per_block); 484 handle = new_handle(nblocks); 485 if (!handle) 486 return ERR_PTR(-ENOMEM); 487 if (rsv_blocks) { 488 handle_t *rsv_handle; 489 490 rsv_handle = new_handle(rsv_blocks); 491 if (!rsv_handle) { 492 jbd2_free_handle(handle); 493 return ERR_PTR(-ENOMEM); 494 } 495 rsv_handle->h_reserved = 1; 496 rsv_handle->h_journal = journal; 497 handle->h_rsv_handle = rsv_handle; 498 } 499 handle->h_revoke_credits = revoke_records; 500 501 err = start_this_handle(journal, handle, gfp_mask); 502 if (err < 0) { 503 if (handle->h_rsv_handle) 504 jbd2_free_handle(handle->h_rsv_handle); 505 jbd2_free_handle(handle); 506 return ERR_PTR(err); 507 } 508 handle->h_type = type; 509 handle->h_line_no = line_no; 510 trace_jbd2_handle_start(journal->j_fs_dev->bd_dev, 511 handle->h_transaction->t_tid, type, 512 line_no, nblocks); 513 514 return handle; 515 } 516 EXPORT_SYMBOL(jbd2__journal_start); 517 518 519 /** 520 * jbd2_journal_start() - Obtain a new handle. 521 * @journal: Journal to start transaction on. 522 * @nblocks: number of block buffer we might modify 523 * 524 * We make sure that the transaction can guarantee at least nblocks of 525 * modified buffers in the log. We block until the log can guarantee 526 * that much space. Additionally, if rsv_blocks > 0, we also create another 527 * handle with rsv_blocks reserved blocks in the journal. This handle is 528 * stored in h_rsv_handle. It is not attached to any particular transaction 529 * and thus doesn't block transaction commit. If the caller uses this reserved 530 * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop() 531 * on the parent handle will dispose the reserved one. Reserved handle has to 532 * be converted to a normal handle using jbd2_journal_start_reserved() before 533 * it can be used. 534 * 535 * Return a pointer to a newly allocated handle, or an ERR_PTR() value 536 * on failure. 537 */ 538 handle_t *jbd2_journal_start(journal_t *journal, int nblocks) 539 { 540 return jbd2__journal_start(journal, nblocks, 0, 0, GFP_NOFS, 0, 0); 541 } 542 EXPORT_SYMBOL(jbd2_journal_start); 543 544 static void __jbd2_journal_unreserve_handle(handle_t *handle, transaction_t *t) 545 { 546 journal_t *journal = handle->h_journal; 547 548 WARN_ON(!handle->h_reserved); 549 sub_reserved_credits(journal, handle->h_total_credits); 550 if (t) 551 atomic_sub(handle->h_total_credits, &t->t_outstanding_credits); 552 } 553 554 void jbd2_journal_free_reserved(handle_t *handle) 555 { 556 journal_t *journal = handle->h_journal; 557 558 /* Get j_state_lock to pin running transaction if it exists */ 559 read_lock(&journal->j_state_lock); 560 __jbd2_journal_unreserve_handle(handle, journal->j_running_transaction); 561 read_unlock(&journal->j_state_lock); 562 jbd2_free_handle(handle); 563 } 564 EXPORT_SYMBOL(jbd2_journal_free_reserved); 565 566 /** 567 * jbd2_journal_start_reserved() - start reserved handle 568 * @handle: handle to start 569 * @type: for handle statistics 570 * @line_no: for handle statistics 571 * 572 * Start handle that has been previously reserved with jbd2_journal_reserve(). 573 * This attaches @handle to the running transaction (or creates one if there's 574 * not transaction running). Unlike jbd2_journal_start() this function cannot 575 * block on journal commit, checkpointing, or similar stuff. It can block on 576 * memory allocation or frozen journal though. 577 * 578 * Return 0 on success, non-zero on error - handle is freed in that case. 579 */ 580 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type, 581 unsigned int line_no) 582 { 583 journal_t *journal = handle->h_journal; 584 int ret = -EIO; 585 586 if (WARN_ON(!handle->h_reserved)) { 587 /* Someone passed in normal handle? Just stop it. */ 588 jbd2_journal_stop(handle); 589 return ret; 590 } 591 /* 592 * Usefulness of mixing of reserved and unreserved handles is 593 * questionable. So far nobody seems to need it so just error out. 594 */ 595 if (WARN_ON(current->journal_info)) { 596 jbd2_journal_free_reserved(handle); 597 return ret; 598 } 599 600 handle->h_journal = NULL; 601 /* 602 * GFP_NOFS is here because callers are likely from writeback or 603 * similarly constrained call sites 604 */ 605 ret = start_this_handle(journal, handle, GFP_NOFS); 606 if (ret < 0) { 607 handle->h_journal = journal; 608 jbd2_journal_free_reserved(handle); 609 return ret; 610 } 611 handle->h_type = type; 612 handle->h_line_no = line_no; 613 trace_jbd2_handle_start(journal->j_fs_dev->bd_dev, 614 handle->h_transaction->t_tid, type, 615 line_no, handle->h_total_credits); 616 return 0; 617 } 618 EXPORT_SYMBOL(jbd2_journal_start_reserved); 619 620 /** 621 * jbd2_journal_extend() - extend buffer credits. 622 * @handle: handle to 'extend' 623 * @nblocks: nr blocks to try to extend by. 624 * @revoke_records: number of revoke records to try to extend by. 625 * 626 * Some transactions, such as large extends and truncates, can be done 627 * atomically all at once or in several stages. The operation requests 628 * a credit for a number of buffer modifications in advance, but can 629 * extend its credit if it needs more. 630 * 631 * jbd2_journal_extend tries to give the running handle more buffer credits. 632 * It does not guarantee that allocation - this is a best-effort only. 633 * The calling process MUST be able to deal cleanly with a failure to 634 * extend here. 635 * 636 * Return 0 on success, non-zero on failure. 637 * 638 * return code < 0 implies an error 639 * return code > 0 implies normal transaction-full status. 640 */ 641 int jbd2_journal_extend(handle_t *handle, int nblocks, int revoke_records) 642 { 643 transaction_t *transaction = handle->h_transaction; 644 journal_t *journal; 645 int result; 646 int wanted; 647 648 if (is_handle_aborted(handle)) 649 return -EROFS; 650 journal = transaction->t_journal; 651 652 result = 1; 653 654 read_lock(&journal->j_state_lock); 655 656 /* Don't extend a locked-down transaction! */ 657 if (transaction->t_state != T_RUNNING) { 658 jbd2_debug(3, "denied handle %p %d blocks: " 659 "transaction not running\n", handle, nblocks); 660 goto error_out; 661 } 662 663 nblocks += DIV_ROUND_UP( 664 handle->h_revoke_credits_requested + revoke_records, 665 journal->j_revoke_records_per_block) - 666 DIV_ROUND_UP( 667 handle->h_revoke_credits_requested, 668 journal->j_revoke_records_per_block); 669 wanted = atomic_add_return(nblocks, 670 &transaction->t_outstanding_credits); 671 672 if (wanted > journal->j_max_transaction_buffers) { 673 jbd2_debug(3, "denied handle %p %d blocks: " 674 "transaction too large\n", handle, nblocks); 675 atomic_sub(nblocks, &transaction->t_outstanding_credits); 676 goto error_out; 677 } 678 679 trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev, 680 transaction->t_tid, 681 handle->h_type, handle->h_line_no, 682 handle->h_total_credits, 683 nblocks); 684 685 handle->h_total_credits += nblocks; 686 handle->h_requested_credits += nblocks; 687 handle->h_revoke_credits += revoke_records; 688 handle->h_revoke_credits_requested += revoke_records; 689 result = 0; 690 691 jbd2_debug(3, "extended handle %p by %d\n", handle, nblocks); 692 error_out: 693 read_unlock(&journal->j_state_lock); 694 return result; 695 } 696 697 static void stop_this_handle(handle_t *handle) 698 { 699 transaction_t *transaction = handle->h_transaction; 700 journal_t *journal = transaction->t_journal; 701 int revokes; 702 703 J_ASSERT(journal_current_handle() == handle); 704 J_ASSERT(atomic_read(&transaction->t_updates) > 0); 705 current->journal_info = NULL; 706 /* 707 * Subtract necessary revoke descriptor blocks from handle credits. We 708 * take care to account only for revoke descriptor blocks the 709 * transaction will really need as large sequences of transactions with 710 * small numbers of revokes are relatively common. 711 */ 712 revokes = handle->h_revoke_credits_requested - handle->h_revoke_credits; 713 if (revokes) { 714 int t_revokes, revoke_descriptors; 715 int rr_per_blk = journal->j_revoke_records_per_block; 716 717 WARN_ON_ONCE(DIV_ROUND_UP(revokes, rr_per_blk) 718 > handle->h_total_credits); 719 t_revokes = atomic_add_return(revokes, 720 &transaction->t_outstanding_revokes); 721 revoke_descriptors = 722 DIV_ROUND_UP(t_revokes, rr_per_blk) - 723 DIV_ROUND_UP(t_revokes - revokes, rr_per_blk); 724 handle->h_total_credits -= revoke_descriptors; 725 } 726 atomic_sub(handle->h_total_credits, 727 &transaction->t_outstanding_credits); 728 if (handle->h_rsv_handle) 729 __jbd2_journal_unreserve_handle(handle->h_rsv_handle, 730 transaction); 731 if (atomic_dec_and_test(&transaction->t_updates)) 732 wake_up(&journal->j_wait_updates); 733 734 rwsem_release(&journal->j_trans_commit_map, _THIS_IP_); 735 /* 736 * Scope of the GFP_NOFS context is over here and so we can restore the 737 * original alloc context. 738 */ 739 memalloc_nofs_restore(handle->saved_alloc_context); 740 } 741 742 /** 743 * jbd2__journal_restart() - restart a handle . 744 * @handle: handle to restart 745 * @nblocks: nr credits requested 746 * @revoke_records: number of revoke record credits requested 747 * @gfp_mask: memory allocation flags (for start_this_handle) 748 * 749 * Restart a handle for a multi-transaction filesystem 750 * operation. 751 * 752 * If the jbd2_journal_extend() call above fails to grant new buffer credits 753 * to a running handle, a call to jbd2_journal_restart will commit the 754 * handle's transaction so far and reattach the handle to a new 755 * transaction capable of guaranteeing the requested number of 756 * credits. We preserve reserved handle if there's any attached to the 757 * passed in handle. 758 */ 759 int jbd2__journal_restart(handle_t *handle, int nblocks, int revoke_records, 760 gfp_t gfp_mask) 761 { 762 transaction_t *transaction = handle->h_transaction; 763 journal_t *journal; 764 tid_t tid; 765 int need_to_start; 766 int ret; 767 768 /* If we've had an abort of any type, don't even think about 769 * actually doing the restart! */ 770 if (is_handle_aborted(handle)) 771 return 0; 772 journal = transaction->t_journal; 773 tid = transaction->t_tid; 774 775 /* 776 * First unlink the handle from its current transaction, and start the 777 * commit on that. 778 */ 779 jbd2_debug(2, "restarting handle %p\n", handle); 780 stop_this_handle(handle); 781 handle->h_transaction = NULL; 782 783 /* 784 * TODO: If we use READ_ONCE / WRITE_ONCE for j_commit_request we can 785 * get rid of pointless j_state_lock traffic like this. 786 */ 787 read_lock(&journal->j_state_lock); 788 need_to_start = !tid_geq(journal->j_commit_request, tid); 789 read_unlock(&journal->j_state_lock); 790 if (need_to_start) 791 jbd2_log_start_commit(journal, tid); 792 handle->h_total_credits = nblocks + 793 DIV_ROUND_UP(revoke_records, 794 journal->j_revoke_records_per_block); 795 handle->h_revoke_credits = revoke_records; 796 ret = start_this_handle(journal, handle, gfp_mask); 797 trace_jbd2_handle_restart(journal->j_fs_dev->bd_dev, 798 ret ? 0 : handle->h_transaction->t_tid, 799 handle->h_type, handle->h_line_no, 800 handle->h_total_credits); 801 return ret; 802 } 803 EXPORT_SYMBOL(jbd2__journal_restart); 804 805 806 int jbd2_journal_restart(handle_t *handle, int nblocks) 807 { 808 return jbd2__journal_restart(handle, nblocks, 0, GFP_NOFS); 809 } 810 EXPORT_SYMBOL(jbd2_journal_restart); 811 812 /* 813 * Waits for any outstanding t_updates to finish. 814 * This is called with write j_state_lock held. 815 */ 816 void jbd2_journal_wait_updates(journal_t *journal) 817 { 818 DEFINE_WAIT(wait); 819 820 while (1) { 821 /* 822 * Note that the running transaction can get freed under us if 823 * this transaction is getting committed in 824 * jbd2_journal_commit_transaction() -> 825 * jbd2_journal_free_transaction(). This can only happen when we 826 * release j_state_lock -> schedule() -> acquire j_state_lock. 827 * Hence we should everytime retrieve new j_running_transaction 828 * value (after j_state_lock release acquire cycle), else it may 829 * lead to use-after-free of old freed transaction. 830 */ 831 transaction_t *transaction = journal->j_running_transaction; 832 833 if (!transaction) 834 break; 835 836 prepare_to_wait(&journal->j_wait_updates, &wait, 837 TASK_UNINTERRUPTIBLE); 838 if (!atomic_read(&transaction->t_updates)) { 839 finish_wait(&journal->j_wait_updates, &wait); 840 break; 841 } 842 write_unlock(&journal->j_state_lock); 843 schedule(); 844 finish_wait(&journal->j_wait_updates, &wait); 845 write_lock(&journal->j_state_lock); 846 } 847 } 848 849 /** 850 * jbd2_journal_lock_updates () - establish a transaction barrier. 851 * @journal: Journal to establish a barrier on. 852 * 853 * This locks out any further updates from being started, and blocks 854 * until all existing updates have completed, returning only once the 855 * journal is in a quiescent state with no updates running. 856 * 857 * The journal lock should not be held on entry. 858 */ 859 void jbd2_journal_lock_updates(journal_t *journal) 860 { 861 jbd2_might_wait_for_commit(journal); 862 863 write_lock(&journal->j_state_lock); 864 ++journal->j_barrier_count; 865 866 /* Wait until there are no reserved handles */ 867 if (atomic_read(&journal->j_reserved_credits)) { 868 write_unlock(&journal->j_state_lock); 869 wait_event(journal->j_wait_reserved, 870 atomic_read(&journal->j_reserved_credits) == 0); 871 write_lock(&journal->j_state_lock); 872 } 873 874 /* Wait until there are no running t_updates */ 875 jbd2_journal_wait_updates(journal); 876 877 write_unlock(&journal->j_state_lock); 878 879 /* 880 * We have now established a barrier against other normal updates, but 881 * we also need to barrier against other jbd2_journal_lock_updates() calls 882 * to make sure that we serialise special journal-locked operations 883 * too. 884 */ 885 mutex_lock(&journal->j_barrier); 886 } 887 888 /** 889 * jbd2_journal_unlock_updates () - release barrier 890 * @journal: Journal to release the barrier on. 891 * 892 * Release a transaction barrier obtained with jbd2_journal_lock_updates(). 893 * 894 * Should be called without the journal lock held. 895 */ 896 void jbd2_journal_unlock_updates (journal_t *journal) 897 { 898 J_ASSERT(journal->j_barrier_count != 0); 899 900 mutex_unlock(&journal->j_barrier); 901 write_lock(&journal->j_state_lock); 902 --journal->j_barrier_count; 903 write_unlock(&journal->j_state_lock); 904 wake_up_all(&journal->j_wait_transaction_locked); 905 } 906 907 static void warn_dirty_buffer(struct buffer_head *bh) 908 { 909 printk(KERN_WARNING 910 "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). " 911 "There's a risk of filesystem corruption in case of system " 912 "crash.\n", 913 bh->b_bdev, (unsigned long long)bh->b_blocknr); 914 } 915 916 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */ 917 static void jbd2_freeze_jh_data(struct journal_head *jh) 918 { 919 char *source; 920 struct buffer_head *bh = jh2bh(jh); 921 922 J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n"); 923 source = kmap_local_folio(bh->b_folio, bh_offset(bh)); 924 /* Fire data frozen trigger just before we copy the data */ 925 jbd2_buffer_frozen_trigger(jh, source, jh->b_triggers); 926 memcpy(jh->b_frozen_data, source, bh->b_size); 927 kunmap_local(source); 928 929 /* 930 * Now that the frozen data is saved off, we need to store any matching 931 * triggers. 932 */ 933 jh->b_frozen_triggers = jh->b_triggers; 934 } 935 936 /* 937 * If the buffer is already part of the current transaction, then there 938 * is nothing we need to do. If it is already part of a prior 939 * transaction which we are still committing to disk, then we need to 940 * make sure that we do not overwrite the old copy: we do copy-out to 941 * preserve the copy going to disk. We also account the buffer against 942 * the handle's metadata buffer credits (unless the buffer is already 943 * part of the transaction, that is). 944 * 945 */ 946 static int 947 do_get_write_access(handle_t *handle, struct journal_head *jh, 948 int force_copy) 949 { 950 struct buffer_head *bh; 951 transaction_t *transaction = handle->h_transaction; 952 journal_t *journal; 953 int error; 954 char *frozen_buffer = NULL; 955 unsigned long start_lock, time_lock; 956 957 journal = transaction->t_journal; 958 959 jbd2_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy); 960 961 JBUFFER_TRACE(jh, "entry"); 962 repeat: 963 bh = jh2bh(jh); 964 965 /* @@@ Need to check for errors here at some point. */ 966 967 start_lock = jiffies; 968 lock_buffer(bh); 969 spin_lock(&jh->b_state_lock); 970 971 /* If it takes too long to lock the buffer, trace it */ 972 time_lock = jbd2_time_diff(start_lock, jiffies); 973 if (time_lock > HZ/10) 974 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev, 975 jiffies_to_msecs(time_lock)); 976 977 /* We now hold the buffer lock so it is safe to query the buffer 978 * state. Is the buffer dirty? 979 * 980 * If so, there are two possibilities. The buffer may be 981 * non-journaled, and undergoing a quite legitimate writeback. 982 * Otherwise, it is journaled, and we don't expect dirty buffers 983 * in that state (the buffers should be marked JBD_Dirty 984 * instead.) So either the IO is being done under our own 985 * control and this is a bug, or it's a third party IO such as 986 * dump(8) (which may leave the buffer scheduled for read --- 987 * ie. locked but not dirty) or tune2fs (which may actually have 988 * the buffer dirtied, ugh.) */ 989 990 if (buffer_dirty(bh) && jh->b_transaction) { 991 warn_dirty_buffer(bh); 992 /* 993 * We need to clean the dirty flag and we must do it under the 994 * buffer lock to be sure we don't race with running write-out. 995 */ 996 JBUFFER_TRACE(jh, "Journalling dirty buffer"); 997 clear_buffer_dirty(bh); 998 /* 999 * The buffer is going to be added to BJ_Reserved list now and 1000 * nothing guarantees jbd2_journal_dirty_metadata() will be 1001 * ever called for it. So we need to set jbddirty bit here to 1002 * make sure the buffer is dirtied and written out when the 1003 * journaling machinery is done with it. 1004 */ 1005 set_buffer_jbddirty(bh); 1006 } 1007 1008 error = -EROFS; 1009 if (is_handle_aborted(handle)) { 1010 spin_unlock(&jh->b_state_lock); 1011 unlock_buffer(bh); 1012 goto out; 1013 } 1014 error = 0; 1015 1016 /* 1017 * The buffer is already part of this transaction if b_transaction or 1018 * b_next_transaction points to it 1019 */ 1020 if (jh->b_transaction == transaction || 1021 jh->b_next_transaction == transaction) { 1022 unlock_buffer(bh); 1023 goto done; 1024 } 1025 1026 /* 1027 * this is the first time this transaction is touching this buffer, 1028 * reset the modified flag 1029 */ 1030 jh->b_modified = 0; 1031 1032 /* 1033 * If the buffer is not journaled right now, we need to make sure it 1034 * doesn't get written to disk before the caller actually commits the 1035 * new data 1036 */ 1037 if (!jh->b_transaction) { 1038 JBUFFER_TRACE(jh, "no transaction"); 1039 J_ASSERT_JH(jh, !jh->b_next_transaction); 1040 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 1041 /* 1042 * Make sure all stores to jh (b_modified, b_frozen_data) are 1043 * visible before attaching it to the running transaction. 1044 * Paired with barrier in jbd2_write_access_granted() 1045 */ 1046 smp_wmb(); 1047 spin_lock(&journal->j_list_lock); 1048 if (test_clear_buffer_dirty(bh)) { 1049 /* 1050 * Execute buffer dirty clearing and jh->b_transaction 1051 * assignment under journal->j_list_lock locked to 1052 * prevent bh being removed from checkpoint list if 1053 * the buffer is in an intermediate state (not dirty 1054 * and jh->b_transaction is NULL). 1055 */ 1056 JBUFFER_TRACE(jh, "Journalling dirty buffer"); 1057 set_buffer_jbddirty(bh); 1058 } 1059 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 1060 spin_unlock(&journal->j_list_lock); 1061 unlock_buffer(bh); 1062 goto done; 1063 } 1064 unlock_buffer(bh); 1065 1066 /* 1067 * If there is already a copy-out version of this buffer, then we don't 1068 * need to make another one 1069 */ 1070 if (jh->b_frozen_data) { 1071 JBUFFER_TRACE(jh, "has frozen data"); 1072 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 1073 goto attach_next; 1074 } 1075 1076 JBUFFER_TRACE(jh, "owned by older transaction"); 1077 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 1078 J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction); 1079 1080 /* 1081 * There is one case we have to be very careful about. If the 1082 * committing transaction is currently writing this buffer out to disk 1083 * and has NOT made a copy-out, then we cannot modify the buffer 1084 * contents at all right now. The essence of copy-out is that it is 1085 * the extra copy, not the primary copy, which gets journaled. If the 1086 * primary copy is already going to disk then we cannot do copy-out 1087 * here. 1088 */ 1089 if (buffer_shadow(bh)) { 1090 JBUFFER_TRACE(jh, "on shadow: sleep"); 1091 spin_unlock(&jh->b_state_lock); 1092 wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE); 1093 goto repeat; 1094 } 1095 1096 /* 1097 * Only do the copy if the currently-owning transaction still needs it. 1098 * If buffer isn't on BJ_Metadata list, the committing transaction is 1099 * past that stage (here we use the fact that BH_Shadow is set under 1100 * bh_state lock together with refiling to BJ_Shadow list and at this 1101 * point we know the buffer doesn't have BH_Shadow set). 1102 * 1103 * Subtle point, though: if this is a get_undo_access, then we will be 1104 * relying on the frozen_data to contain the new value of the 1105 * committed_data record after the transaction, so we HAVE to force the 1106 * frozen_data copy in that case. 1107 */ 1108 if (jh->b_jlist == BJ_Metadata || force_copy) { 1109 JBUFFER_TRACE(jh, "generate frozen data"); 1110 if (!frozen_buffer) { 1111 JBUFFER_TRACE(jh, "allocate memory for buffer"); 1112 spin_unlock(&jh->b_state_lock); 1113 frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size, 1114 GFP_NOFS | __GFP_NOFAIL); 1115 goto repeat; 1116 } 1117 jh->b_frozen_data = frozen_buffer; 1118 frozen_buffer = NULL; 1119 jbd2_freeze_jh_data(jh); 1120 } 1121 attach_next: 1122 /* 1123 * Make sure all stores to jh (b_modified, b_frozen_data) are visible 1124 * before attaching it to the running transaction. Paired with barrier 1125 * in jbd2_write_access_granted() 1126 */ 1127 smp_wmb(); 1128 jh->b_next_transaction = transaction; 1129 1130 done: 1131 spin_unlock(&jh->b_state_lock); 1132 1133 /* 1134 * If we are about to journal a buffer, then any revoke pending on it is 1135 * no longer valid 1136 */ 1137 jbd2_journal_cancel_revoke(handle, jh); 1138 1139 out: 1140 if (unlikely(frozen_buffer)) /* It's usually NULL */ 1141 jbd2_free(frozen_buffer, bh->b_size); 1142 1143 JBUFFER_TRACE(jh, "exit"); 1144 return error; 1145 } 1146 1147 /* Fast check whether buffer is already attached to the required transaction */ 1148 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh, 1149 bool undo) 1150 { 1151 struct journal_head *jh; 1152 bool ret = false; 1153 1154 /* Dirty buffers require special handling... */ 1155 if (buffer_dirty(bh)) 1156 return false; 1157 1158 /* 1159 * RCU protects us from dereferencing freed pages. So the checks we do 1160 * are guaranteed not to oops. However the jh slab object can get freed 1161 * & reallocated while we work with it. So we have to be careful. When 1162 * we see jh attached to the running transaction, we know it must stay 1163 * so until the transaction is committed. Thus jh won't be freed and 1164 * will be attached to the same bh while we run. However it can 1165 * happen jh gets freed, reallocated, and attached to the transaction 1166 * just after we get pointer to it from bh. So we have to be careful 1167 * and recheck jh still belongs to our bh before we return success. 1168 */ 1169 rcu_read_lock(); 1170 if (!buffer_jbd(bh)) 1171 goto out; 1172 /* This should be bh2jh() but that doesn't work with inline functions */ 1173 jh = READ_ONCE(bh->b_private); 1174 if (!jh) 1175 goto out; 1176 /* For undo access buffer must have data copied */ 1177 if (undo && !jh->b_committed_data) 1178 goto out; 1179 if (READ_ONCE(jh->b_transaction) != handle->h_transaction && 1180 READ_ONCE(jh->b_next_transaction) != handle->h_transaction) 1181 goto out; 1182 /* 1183 * There are two reasons for the barrier here: 1184 * 1) Make sure to fetch b_bh after we did previous checks so that we 1185 * detect when jh went through free, realloc, attach to transaction 1186 * while we were checking. Paired with implicit barrier in that path. 1187 * 2) So that access to bh done after jbd2_write_access_granted() 1188 * doesn't get reordered and see inconsistent state of concurrent 1189 * do_get_write_access(). 1190 */ 1191 smp_mb(); 1192 if (unlikely(jh->b_bh != bh)) 1193 goto out; 1194 ret = true; 1195 out: 1196 rcu_read_unlock(); 1197 return ret; 1198 } 1199 1200 /** 1201 * jbd2_journal_get_write_access() - notify intent to modify a buffer 1202 * for metadata (not data) update. 1203 * @handle: transaction to add buffer modifications to 1204 * @bh: bh to be used for metadata writes 1205 * 1206 * Returns: error code or 0 on success. 1207 * 1208 * In full data journalling mode the buffer may be of type BJ_AsyncData, 1209 * because we're ``write()ing`` a buffer which is also part of a shared mapping. 1210 */ 1211 1212 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh) 1213 { 1214 struct journal_head *jh; 1215 journal_t *journal; 1216 int rc; 1217 1218 if (is_handle_aborted(handle)) 1219 return -EROFS; 1220 1221 journal = handle->h_transaction->t_journal; 1222 rc = jbd2_check_fs_dev_write_error(journal); 1223 if (rc) { 1224 /* 1225 * If the fs dev has writeback errors, it may have failed 1226 * to async write out metadata buffers in the background. 1227 * In this case, we could read old data from disk and write 1228 * it out again, which may lead to on-disk filesystem 1229 * inconsistency. Aborting journal can avoid it happen. 1230 */ 1231 jbd2_journal_abort(journal, rc); 1232 return -EIO; 1233 } 1234 1235 if (jbd2_write_access_granted(handle, bh, false)) 1236 return 0; 1237 1238 jh = jbd2_journal_add_journal_head(bh); 1239 /* We do not want to get caught playing with fields which the 1240 * log thread also manipulates. Make sure that the buffer 1241 * completes any outstanding IO before proceeding. */ 1242 rc = do_get_write_access(handle, jh, 0); 1243 jbd2_journal_put_journal_head(jh); 1244 return rc; 1245 } 1246 1247 1248 /* 1249 * When the user wants to journal a newly created buffer_head 1250 * (ie. getblk() returned a new buffer and we are going to populate it 1251 * manually rather than reading off disk), then we need to keep the 1252 * buffer_head locked until it has been completely filled with new 1253 * data. In this case, we should be able to make the assertion that 1254 * the bh is not already part of an existing transaction. 1255 * 1256 * The buffer should already be locked by the caller by this point. 1257 * There is no lock ranking violation: it was a newly created, 1258 * unlocked buffer beforehand. */ 1259 1260 /** 1261 * jbd2_journal_get_create_access () - notify intent to use newly created bh 1262 * @handle: transaction to new buffer to 1263 * @bh: new buffer. 1264 * 1265 * Call this if you create a new bh. 1266 */ 1267 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh) 1268 { 1269 transaction_t *transaction = handle->h_transaction; 1270 journal_t *journal; 1271 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 1272 int err; 1273 1274 jbd2_debug(5, "journal_head %p\n", jh); 1275 err = -EROFS; 1276 if (is_handle_aborted(handle)) 1277 goto out; 1278 journal = transaction->t_journal; 1279 err = 0; 1280 1281 JBUFFER_TRACE(jh, "entry"); 1282 /* 1283 * The buffer may already belong to this transaction due to pre-zeroing 1284 * in the filesystem's new_block code. It may also be on the previous, 1285 * committing transaction's lists, but it HAS to be in Forget state in 1286 * that case: the transaction must have deleted the buffer for it to be 1287 * reused here. 1288 * In the case of file system data inconsistency, for example, if the 1289 * block bitmap of a referenced block is not set, it can lead to the 1290 * situation where a block being committed is allocated and used again. 1291 * As a result, the following condition will not be satisfied, so here 1292 * we directly trigger a JBD abort instead of immediately invoking 1293 * bugon. 1294 */ 1295 spin_lock(&jh->b_state_lock); 1296 if (!(jh->b_transaction == transaction || jh->b_transaction == NULL || 1297 (jh->b_transaction == journal->j_committing_transaction && 1298 jh->b_jlist == BJ_Forget)) || jh->b_next_transaction != NULL) { 1299 err = -EROFS; 1300 spin_unlock(&jh->b_state_lock); 1301 jbd2_journal_abort(journal, err); 1302 goto out; 1303 } 1304 1305 J_ASSERT_JH(jh, buffer_locked(jh2bh(jh))); 1306 1307 if (jh->b_transaction == NULL) { 1308 /* 1309 * Previous jbd2_journal_forget() could have left the buffer 1310 * with jbddirty bit set because it was being committed. When 1311 * the commit finished, we've filed the buffer for 1312 * checkpointing and marked it dirty. Now we are reallocating 1313 * the buffer so the transaction freeing it must have 1314 * committed and so it's safe to clear the dirty bit. 1315 */ 1316 clear_buffer_dirty(jh2bh(jh)); 1317 /* first access by this transaction */ 1318 jh->b_modified = 0; 1319 1320 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 1321 spin_lock(&journal->j_list_lock); 1322 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 1323 spin_unlock(&journal->j_list_lock); 1324 } else if (jh->b_transaction == journal->j_committing_transaction) { 1325 /* first access by this transaction */ 1326 jh->b_modified = 0; 1327 1328 JBUFFER_TRACE(jh, "set next transaction"); 1329 spin_lock(&journal->j_list_lock); 1330 jh->b_next_transaction = transaction; 1331 spin_unlock(&journal->j_list_lock); 1332 } 1333 spin_unlock(&jh->b_state_lock); 1334 1335 /* 1336 * akpm: I added this. ext3_alloc_branch can pick up new indirect 1337 * blocks which contain freed but then revoked metadata. We need 1338 * to cancel the revoke in case we end up freeing it yet again 1339 * and the reallocating as data - this would cause a second revoke, 1340 * which hits an assertion error. 1341 */ 1342 JBUFFER_TRACE(jh, "cancelling revoke"); 1343 jbd2_journal_cancel_revoke(handle, jh); 1344 out: 1345 jbd2_journal_put_journal_head(jh); 1346 return err; 1347 } 1348 1349 /** 1350 * jbd2_journal_get_undo_access() - Notify intent to modify metadata with 1351 * non-rewindable consequences 1352 * @handle: transaction 1353 * @bh: buffer to undo 1354 * 1355 * Sometimes there is a need to distinguish between metadata which has 1356 * been committed to disk and that which has not. The ext3fs code uses 1357 * this for freeing and allocating space, we have to make sure that we 1358 * do not reuse freed space until the deallocation has been committed, 1359 * since if we overwrote that space we would make the delete 1360 * un-rewindable in case of a crash. 1361 * 1362 * To deal with that, jbd2_journal_get_undo_access requests write access to a 1363 * buffer for parts of non-rewindable operations such as delete 1364 * operations on the bitmaps. The journaling code must keep a copy of 1365 * the buffer's contents prior to the undo_access call until such time 1366 * as we know that the buffer has definitely been committed to disk. 1367 * 1368 * We never need to know which transaction the committed data is part 1369 * of, buffers touched here are guaranteed to be dirtied later and so 1370 * will be committed to a new transaction in due course, at which point 1371 * we can discard the old committed data pointer. 1372 * 1373 * Returns error number or 0 on success. 1374 */ 1375 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh) 1376 { 1377 int err; 1378 struct journal_head *jh; 1379 char *committed_data = NULL; 1380 1381 if (is_handle_aborted(handle)) 1382 return -EROFS; 1383 1384 if (jbd2_write_access_granted(handle, bh, true)) 1385 return 0; 1386 1387 jh = jbd2_journal_add_journal_head(bh); 1388 JBUFFER_TRACE(jh, "entry"); 1389 1390 /* 1391 * Do this first --- it can drop the journal lock, so we want to 1392 * make sure that obtaining the committed_data is done 1393 * atomically wrt. completion of any outstanding commits. 1394 */ 1395 err = do_get_write_access(handle, jh, 1); 1396 if (err) 1397 goto out; 1398 1399 repeat: 1400 if (!jh->b_committed_data) 1401 committed_data = jbd2_alloc(jh2bh(jh)->b_size, 1402 GFP_NOFS|__GFP_NOFAIL); 1403 1404 spin_lock(&jh->b_state_lock); 1405 if (!jh->b_committed_data) { 1406 /* Copy out the current buffer contents into the 1407 * preserved, committed copy. */ 1408 JBUFFER_TRACE(jh, "generate b_committed data"); 1409 if (!committed_data) { 1410 spin_unlock(&jh->b_state_lock); 1411 goto repeat; 1412 } 1413 1414 jh->b_committed_data = committed_data; 1415 committed_data = NULL; 1416 memcpy(jh->b_committed_data, bh->b_data, bh->b_size); 1417 } 1418 spin_unlock(&jh->b_state_lock); 1419 out: 1420 jbd2_journal_put_journal_head(jh); 1421 if (unlikely(committed_data)) 1422 jbd2_free(committed_data, bh->b_size); 1423 return err; 1424 } 1425 1426 /** 1427 * jbd2_journal_set_triggers() - Add triggers for commit writeout 1428 * @bh: buffer to trigger on 1429 * @type: struct jbd2_buffer_trigger_type containing the trigger(s). 1430 * 1431 * Set any triggers on this journal_head. This is always safe, because 1432 * triggers for a committing buffer will be saved off, and triggers for 1433 * a running transaction will match the buffer in that transaction. 1434 * 1435 * Call with NULL to clear the triggers. 1436 */ 1437 void jbd2_journal_set_triggers(struct buffer_head *bh, 1438 struct jbd2_buffer_trigger_type *type) 1439 { 1440 struct journal_head *jh = jbd2_journal_grab_journal_head(bh); 1441 1442 if (WARN_ON_ONCE(!jh)) 1443 return; 1444 jh->b_triggers = type; 1445 jbd2_journal_put_journal_head(jh); 1446 } 1447 1448 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data, 1449 struct jbd2_buffer_trigger_type *triggers) 1450 { 1451 struct buffer_head *bh = jh2bh(jh); 1452 1453 if (!triggers || !triggers->t_frozen) 1454 return; 1455 1456 triggers->t_frozen(triggers, bh, mapped_data, bh->b_size); 1457 } 1458 1459 void jbd2_buffer_abort_trigger(struct journal_head *jh, 1460 struct jbd2_buffer_trigger_type *triggers) 1461 { 1462 if (!triggers || !triggers->t_abort) 1463 return; 1464 1465 triggers->t_abort(triggers, jh2bh(jh)); 1466 } 1467 1468 /** 1469 * jbd2_journal_dirty_metadata() - mark a buffer as containing dirty metadata 1470 * @handle: transaction to add buffer to. 1471 * @bh: buffer to mark 1472 * 1473 * mark dirty metadata which needs to be journaled as part of the current 1474 * transaction. 1475 * 1476 * The buffer must have previously had jbd2_journal_get_write_access() 1477 * called so that it has a valid journal_head attached to the buffer 1478 * head. 1479 * 1480 * The buffer is placed on the transaction's metadata list and is marked 1481 * as belonging to the transaction. 1482 * 1483 * Returns error number or 0 on success. 1484 * 1485 * Special care needs to be taken if the buffer already belongs to the 1486 * current committing transaction (in which case we should have frozen 1487 * data present for that commit). In that case, we don't relink the 1488 * buffer: that only gets done when the old transaction finally 1489 * completes its commit. 1490 */ 1491 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh) 1492 { 1493 transaction_t *transaction = handle->h_transaction; 1494 journal_t *journal; 1495 struct journal_head *jh; 1496 int ret = 0; 1497 1498 if (!buffer_jbd(bh)) 1499 return -EUCLEAN; 1500 1501 /* 1502 * We don't grab jh reference here since the buffer must be part 1503 * of the running transaction. 1504 */ 1505 jh = bh2jh(bh); 1506 jbd2_debug(5, "journal_head %p\n", jh); 1507 JBUFFER_TRACE(jh, "entry"); 1508 1509 /* 1510 * This and the following assertions are unreliable since we may see jh 1511 * in inconsistent state unless we grab bh_state lock. But this is 1512 * crucial to catch bugs so let's do a reliable check until the 1513 * lockless handling is fully proven. 1514 */ 1515 if (data_race(jh->b_transaction != transaction && 1516 jh->b_next_transaction != transaction)) { 1517 spin_lock(&jh->b_state_lock); 1518 J_ASSERT_JH(jh, jh->b_transaction == transaction || 1519 jh->b_next_transaction == transaction); 1520 spin_unlock(&jh->b_state_lock); 1521 } 1522 if (data_race(jh->b_modified == 1)) { 1523 /* If it's in our transaction it must be in BJ_Metadata list. */ 1524 if (data_race(jh->b_transaction == transaction && 1525 jh->b_jlist != BJ_Metadata)) { 1526 spin_lock(&jh->b_state_lock); 1527 if (jh->b_transaction == transaction && 1528 jh->b_jlist != BJ_Metadata) 1529 pr_err("JBD2: assertion failure: h_type=%u " 1530 "h_line_no=%u block_no=%llu jlist=%u\n", 1531 handle->h_type, handle->h_line_no, 1532 (unsigned long long) bh->b_blocknr, 1533 jh->b_jlist); 1534 J_ASSERT_JH(jh, jh->b_transaction != transaction || 1535 jh->b_jlist == BJ_Metadata); 1536 spin_unlock(&jh->b_state_lock); 1537 } 1538 goto out; 1539 } 1540 1541 spin_lock(&jh->b_state_lock); 1542 1543 if (is_handle_aborted(handle)) { 1544 /* 1545 * Check journal aborting with @jh->b_state_lock locked, 1546 * since 'jh->b_transaction' could be replaced with 1547 * 'jh->b_next_transaction' during old transaction 1548 * committing if journal aborted, which may fail 1549 * assertion on 'jh->b_frozen_data == NULL'. 1550 */ 1551 ret = -EROFS; 1552 goto out_unlock_bh; 1553 } 1554 1555 journal = transaction->t_journal; 1556 1557 if (jh->b_modified == 0) { 1558 /* 1559 * This buffer's got modified and becoming part 1560 * of the transaction. This needs to be done 1561 * once a transaction -bzzz 1562 */ 1563 if (WARN_ON_ONCE(jbd2_handle_buffer_credits(handle) <= 0)) { 1564 ret = -ENOSPC; 1565 goto out_unlock_bh; 1566 } 1567 jh->b_modified = 1; 1568 handle->h_total_credits--; 1569 } 1570 1571 /* 1572 * fastpath, to avoid expensive locking. If this buffer is already 1573 * on the running transaction's metadata list there is nothing to do. 1574 * Nobody can take it off again because there is a handle open. 1575 * I _think_ we're OK here with SMP barriers - a mistaken decision will 1576 * result in this test being false, so we go in and take the locks. 1577 */ 1578 if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) { 1579 JBUFFER_TRACE(jh, "fastpath"); 1580 if (unlikely(jh->b_transaction != 1581 journal->j_running_transaction)) { 1582 printk(KERN_ERR "JBD2: %s: " 1583 "jh->b_transaction (%llu, %p, %u) != " 1584 "journal->j_running_transaction (%p, %u)\n", 1585 journal->j_devname, 1586 (unsigned long long) bh->b_blocknr, 1587 jh->b_transaction, 1588 jh->b_transaction ? jh->b_transaction->t_tid : 0, 1589 journal->j_running_transaction, 1590 journal->j_running_transaction ? 1591 journal->j_running_transaction->t_tid : 0); 1592 ret = -EINVAL; 1593 } 1594 goto out_unlock_bh; 1595 } 1596 1597 set_buffer_jbddirty(bh); 1598 1599 /* 1600 * Metadata already on the current transaction list doesn't 1601 * need to be filed. Metadata on another transaction's list must 1602 * be committing, and will be refiled once the commit completes: 1603 * leave it alone for now. 1604 */ 1605 if (jh->b_transaction != transaction) { 1606 JBUFFER_TRACE(jh, "already on other transaction"); 1607 if (unlikely(((jh->b_transaction != 1608 journal->j_committing_transaction)) || 1609 (jh->b_next_transaction != transaction))) { 1610 printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: " 1611 "bad jh for block %llu: " 1612 "transaction (%p, %u), " 1613 "jh->b_transaction (%p, %u), " 1614 "jh->b_next_transaction (%p, %u), jlist %u\n", 1615 journal->j_devname, 1616 (unsigned long long) bh->b_blocknr, 1617 transaction, transaction->t_tid, 1618 jh->b_transaction, 1619 jh->b_transaction ? 1620 jh->b_transaction->t_tid : 0, 1621 jh->b_next_transaction, 1622 jh->b_next_transaction ? 1623 jh->b_next_transaction->t_tid : 0, 1624 jh->b_jlist); 1625 WARN_ON(1); 1626 ret = -EINVAL; 1627 } 1628 /* And this case is illegal: we can't reuse another 1629 * transaction's data buffer, ever. */ 1630 goto out_unlock_bh; 1631 } 1632 1633 /* That test should have eliminated the following case: */ 1634 J_ASSERT_JH(jh, jh->b_frozen_data == NULL); 1635 1636 JBUFFER_TRACE(jh, "file as BJ_Metadata"); 1637 spin_lock(&journal->j_list_lock); 1638 __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata); 1639 spin_unlock(&journal->j_list_lock); 1640 out_unlock_bh: 1641 spin_unlock(&jh->b_state_lock); 1642 out: 1643 JBUFFER_TRACE(jh, "exit"); 1644 return ret; 1645 } 1646 1647 /** 1648 * jbd2_journal_forget() - bforget() for potentially-journaled buffers. 1649 * @handle: transaction handle 1650 * @bh: bh to 'forget' 1651 * 1652 * We can only do the bforget if there are no commits pending against the 1653 * buffer. If the buffer is dirty in the current running transaction we 1654 * can safely unlink it. 1655 * 1656 * bh may not be a journalled buffer at all - it may be a non-JBD 1657 * buffer which came off the hashtable. Check for this. 1658 * 1659 * Decrements bh->b_count by one. 1660 * 1661 * Allow this call even if the handle has aborted --- it may be part of 1662 * the caller's cleanup after an abort. 1663 */ 1664 int jbd2_journal_forget(handle_t *handle, struct buffer_head *bh) 1665 { 1666 transaction_t *transaction = handle->h_transaction; 1667 journal_t *journal; 1668 struct journal_head *jh; 1669 int drop_reserve = 0; 1670 int err = 0; 1671 int was_modified = 0; 1672 int wait_for_writeback = 0; 1673 1674 if (is_handle_aborted(handle)) 1675 return -EROFS; 1676 journal = transaction->t_journal; 1677 1678 BUFFER_TRACE(bh, "entry"); 1679 1680 jh = jbd2_journal_grab_journal_head(bh); 1681 if (!jh) { 1682 __bforget(bh); 1683 return 0; 1684 } 1685 1686 spin_lock(&jh->b_state_lock); 1687 1688 /* Critical error: attempting to delete a bitmap buffer, maybe? 1689 * Don't do any jbd operations, and return an error. */ 1690 if (!J_EXPECT_JH(jh, !jh->b_committed_data, 1691 "inconsistent data on disk")) { 1692 err = -EIO; 1693 goto drop; 1694 } 1695 1696 /* keep track of whether or not this transaction modified us */ 1697 was_modified = jh->b_modified; 1698 1699 /* 1700 * The buffer's going from the transaction, we must drop 1701 * all references -bzzz 1702 */ 1703 jh->b_modified = 0; 1704 1705 if (jh->b_transaction == transaction) { 1706 J_ASSERT_JH(jh, !jh->b_frozen_data); 1707 1708 /* If we are forgetting a buffer which is already part 1709 * of this transaction, then we can just drop it from 1710 * the transaction immediately. */ 1711 clear_buffer_dirty(bh); 1712 clear_buffer_jbddirty(bh); 1713 1714 JBUFFER_TRACE(jh, "belongs to current transaction: unfile"); 1715 1716 /* 1717 * we only want to drop a reference if this transaction 1718 * modified the buffer 1719 */ 1720 if (was_modified) 1721 drop_reserve = 1; 1722 1723 /* 1724 * We are no longer going to journal this buffer. 1725 * However, the commit of this transaction is still 1726 * important to the buffer: the delete that we are now 1727 * processing might obsolete an old log entry, so by 1728 * committing, we can satisfy the buffer's checkpoint. 1729 * 1730 * So, if we have a checkpoint on the buffer, we should 1731 * now refile the buffer on our BJ_Forget list so that 1732 * we know to remove the checkpoint after we commit. 1733 */ 1734 1735 spin_lock(&journal->j_list_lock); 1736 if (jh->b_cp_transaction) { 1737 __jbd2_journal_temp_unlink_buffer(jh); 1738 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1739 } else { 1740 __jbd2_journal_unfile_buffer(jh); 1741 jbd2_journal_put_journal_head(jh); 1742 } 1743 spin_unlock(&journal->j_list_lock); 1744 } else if (jh->b_transaction) { 1745 J_ASSERT_JH(jh, (jh->b_transaction == 1746 journal->j_committing_transaction)); 1747 /* However, if the buffer is still owned by a prior 1748 * (committing) transaction, we can't drop it yet... */ 1749 JBUFFER_TRACE(jh, "belongs to older transaction"); 1750 /* ... but we CAN drop it from the new transaction through 1751 * marking the buffer as freed and set j_next_transaction to 1752 * the new transaction, so that not only the commit code 1753 * knows it should clear dirty bits when it is done with the 1754 * buffer, but also the buffer can be checkpointed only 1755 * after the new transaction commits. */ 1756 1757 set_buffer_freed(bh); 1758 1759 if (!jh->b_next_transaction) { 1760 spin_lock(&journal->j_list_lock); 1761 jh->b_next_transaction = transaction; 1762 spin_unlock(&journal->j_list_lock); 1763 } else { 1764 J_ASSERT(jh->b_next_transaction == transaction); 1765 1766 /* 1767 * only drop a reference if this transaction modified 1768 * the buffer 1769 */ 1770 if (was_modified) 1771 drop_reserve = 1; 1772 } 1773 } else { 1774 /* 1775 * Finally, if the buffer is not belongs to any 1776 * transaction, we can just drop it now if it has no 1777 * checkpoint. 1778 */ 1779 spin_lock(&journal->j_list_lock); 1780 if (!jh->b_cp_transaction) { 1781 JBUFFER_TRACE(jh, "belongs to none transaction"); 1782 spin_unlock(&journal->j_list_lock); 1783 goto drop; 1784 } 1785 1786 /* 1787 * Otherwise, if the buffer has been written to disk, 1788 * it is safe to remove the checkpoint and drop it. 1789 */ 1790 if (jbd2_journal_try_remove_checkpoint(jh) >= 0) { 1791 spin_unlock(&journal->j_list_lock); 1792 goto drop; 1793 } 1794 1795 /* 1796 * The buffer has not yet been written to disk. We should 1797 * either clear the buffer or ensure that the ongoing I/O 1798 * is completed, and attach this buffer to current 1799 * transaction so that the buffer can be checkpointed only 1800 * after the current transaction commits. 1801 */ 1802 clear_buffer_dirty(bh); 1803 wait_for_writeback = 1; 1804 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1805 spin_unlock(&journal->j_list_lock); 1806 } 1807 drop: 1808 __brelse(bh); 1809 spin_unlock(&jh->b_state_lock); 1810 if (wait_for_writeback) 1811 wait_on_buffer(bh); 1812 jbd2_journal_put_journal_head(jh); 1813 if (drop_reserve) { 1814 /* no need to reserve log space for this block -bzzz */ 1815 handle->h_total_credits++; 1816 } 1817 return err; 1818 } 1819 1820 /** 1821 * jbd2_journal_stop() - complete a transaction 1822 * @handle: transaction to complete. 1823 * 1824 * All done for a particular handle. 1825 * 1826 * There is not much action needed here. We just return any remaining 1827 * buffer credits to the transaction and remove the handle. The only 1828 * complication is that we need to start a commit operation if the 1829 * filesystem is marked for synchronous update. 1830 * 1831 * jbd2_journal_stop itself will not usually return an error, but it may 1832 * do so in unusual circumstances. In particular, expect it to 1833 * return -EIO if a jbd2_journal_abort has been executed since the 1834 * transaction began. 1835 */ 1836 int jbd2_journal_stop(handle_t *handle) 1837 { 1838 transaction_t *transaction = handle->h_transaction; 1839 journal_t *journal; 1840 int err = 0, wait_for_commit = 0; 1841 tid_t tid; 1842 pid_t pid; 1843 1844 if (--handle->h_ref > 0) { 1845 jbd2_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1, 1846 handle->h_ref); 1847 if (is_handle_aborted(handle)) 1848 return -EIO; 1849 return 0; 1850 } 1851 if (!transaction) { 1852 /* 1853 * Handle is already detached from the transaction so there is 1854 * nothing to do other than free the handle. 1855 */ 1856 memalloc_nofs_restore(handle->saved_alloc_context); 1857 goto free_and_exit; 1858 } 1859 journal = transaction->t_journal; 1860 tid = transaction->t_tid; 1861 1862 if (is_handle_aborted(handle)) 1863 err = -EIO; 1864 1865 jbd2_debug(4, "Handle %p going down\n", handle); 1866 trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev, 1867 tid, handle->h_type, handle->h_line_no, 1868 jiffies - handle->h_start_jiffies, 1869 handle->h_sync, handle->h_requested_credits, 1870 (handle->h_requested_credits - 1871 handle->h_total_credits)); 1872 1873 /* 1874 * Implement synchronous transaction batching. If the handle 1875 * was synchronous, don't force a commit immediately. Let's 1876 * yield and let another thread piggyback onto this 1877 * transaction. Keep doing that while new threads continue to 1878 * arrive. It doesn't cost much - we're about to run a commit 1879 * and sleep on IO anyway. Speeds up many-threaded, many-dir 1880 * operations by 30x or more... 1881 * 1882 * We try and optimize the sleep time against what the 1883 * underlying disk can do, instead of having a static sleep 1884 * time. This is useful for the case where our storage is so 1885 * fast that it is more optimal to go ahead and force a flush 1886 * and wait for the transaction to be committed than it is to 1887 * wait for an arbitrary amount of time for new writers to 1888 * join the transaction. We achieve this by measuring how 1889 * long it takes to commit a transaction, and compare it with 1890 * how long this transaction has been running, and if run time 1891 * < commit time then we sleep for the delta and commit. This 1892 * greatly helps super fast disks that would see slowdowns as 1893 * more threads started doing fsyncs. 1894 * 1895 * But don't do this if this process was the most recent one 1896 * to perform a synchronous write. We do this to detect the 1897 * case where a single process is doing a stream of sync 1898 * writes. No point in waiting for joiners in that case. 1899 * 1900 * Setting max_batch_time to 0 disables this completely. 1901 */ 1902 pid = current->pid; 1903 if (handle->h_sync && journal->j_last_sync_writer != pid && 1904 journal->j_max_batch_time) { 1905 u64 commit_time, trans_time; 1906 1907 journal->j_last_sync_writer = pid; 1908 1909 read_lock(&journal->j_state_lock); 1910 commit_time = journal->j_average_commit_time; 1911 read_unlock(&journal->j_state_lock); 1912 1913 trans_time = ktime_to_ns(ktime_sub(ktime_get(), 1914 transaction->t_start_time)); 1915 1916 commit_time = max_t(u64, commit_time, 1917 1000*journal->j_min_batch_time); 1918 commit_time = min_t(u64, commit_time, 1919 1000*journal->j_max_batch_time); 1920 1921 if (trans_time < commit_time) { 1922 ktime_t expires = ktime_add_ns(ktime_get(), 1923 commit_time); 1924 set_current_state(TASK_UNINTERRUPTIBLE); 1925 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS); 1926 } 1927 } 1928 1929 if (handle->h_sync) 1930 transaction->t_synchronous_commit = 1; 1931 1932 /* 1933 * If the handle is marked SYNC, we need to set another commit 1934 * going! We also want to force a commit if the transaction is too 1935 * old now. 1936 */ 1937 if (handle->h_sync || 1938 time_after_eq(jiffies, transaction->t_expires)) { 1939 /* Do this even for aborted journals: an abort still 1940 * completes the commit thread, it just doesn't write 1941 * anything to disk. */ 1942 1943 jbd2_debug(2, "transaction too old, requesting commit for " 1944 "handle %p\n", handle); 1945 /* This is non-blocking */ 1946 jbd2_log_start_commit(journal, tid); 1947 1948 /* 1949 * Special case: JBD2_SYNC synchronous updates require us 1950 * to wait for the commit to complete. 1951 */ 1952 if (handle->h_sync && !(current->flags & PF_MEMALLOC)) 1953 wait_for_commit = 1; 1954 } 1955 1956 /* 1957 * Once stop_this_handle() drops t_updates, the transaction could start 1958 * committing on us and eventually disappear. So we must not 1959 * dereference transaction pointer again after calling 1960 * stop_this_handle(). 1961 */ 1962 stop_this_handle(handle); 1963 1964 if (wait_for_commit) 1965 err = jbd2_log_wait_commit(journal, tid); 1966 1967 free_and_exit: 1968 if (handle->h_rsv_handle) 1969 jbd2_free_handle(handle->h_rsv_handle); 1970 jbd2_free_handle(handle); 1971 return err; 1972 } 1973 1974 /* 1975 * 1976 * List management code snippets: various functions for manipulating the 1977 * transaction buffer lists. 1978 * 1979 */ 1980 1981 /* 1982 * Append a buffer to a transaction list, given the transaction's list head 1983 * pointer. 1984 * 1985 * j_list_lock is held. 1986 * 1987 * jh->b_state_lock is held. 1988 */ 1989 1990 static inline void 1991 __blist_add_buffer(struct journal_head **list, struct journal_head *jh) 1992 { 1993 if (!*list) { 1994 jh->b_tnext = jh->b_tprev = jh; 1995 *list = jh; 1996 } else { 1997 /* Insert at the tail of the list to preserve order */ 1998 struct journal_head *first = *list, *last = first->b_tprev; 1999 jh->b_tprev = last; 2000 jh->b_tnext = first; 2001 last->b_tnext = first->b_tprev = jh; 2002 } 2003 } 2004 2005 /* 2006 * Remove a buffer from a transaction list, given the transaction's list 2007 * head pointer. 2008 * 2009 * Called with j_list_lock held, and the journal may not be locked. 2010 * 2011 * jh->b_state_lock is held. 2012 */ 2013 2014 static inline void 2015 __blist_del_buffer(struct journal_head **list, struct journal_head *jh) 2016 { 2017 if (*list == jh) { 2018 *list = jh->b_tnext; 2019 if (*list == jh) 2020 *list = NULL; 2021 } 2022 jh->b_tprev->b_tnext = jh->b_tnext; 2023 jh->b_tnext->b_tprev = jh->b_tprev; 2024 } 2025 2026 /* 2027 * Remove a buffer from the appropriate transaction list. 2028 * 2029 * Note that this function can *change* the value of 2030 * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or 2031 * t_reserved_list. If the caller is holding onto a copy of one of these 2032 * pointers, it could go bad. Generally the caller needs to re-read the 2033 * pointer from the transaction_t. 2034 * 2035 * Called under j_list_lock. 2036 */ 2037 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh) 2038 { 2039 struct journal_head **list = NULL; 2040 transaction_t *transaction; 2041 struct buffer_head *bh = jh2bh(jh); 2042 2043 lockdep_assert_held(&jh->b_state_lock); 2044 transaction = jh->b_transaction; 2045 if (transaction) 2046 assert_spin_locked(&transaction->t_journal->j_list_lock); 2047 2048 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 2049 if (jh->b_jlist != BJ_None) 2050 J_ASSERT_JH(jh, transaction != NULL); 2051 2052 switch (jh->b_jlist) { 2053 case BJ_None: 2054 return; 2055 case BJ_Metadata: 2056 transaction->t_nr_buffers--; 2057 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0); 2058 list = &transaction->t_buffers; 2059 break; 2060 case BJ_Forget: 2061 list = &transaction->t_forget; 2062 break; 2063 case BJ_Shadow: 2064 list = &transaction->t_shadow_list; 2065 break; 2066 case BJ_Reserved: 2067 list = &transaction->t_reserved_list; 2068 break; 2069 } 2070 2071 __blist_del_buffer(list, jh); 2072 jh->b_jlist = BJ_None; 2073 if (transaction && is_journal_aborted(transaction->t_journal)) 2074 clear_buffer_jbddirty(bh); 2075 else if (test_clear_buffer_jbddirty(bh)) 2076 mark_buffer_dirty(bh); /* Expose it to the VM */ 2077 } 2078 2079 /* 2080 * Remove buffer from all transactions. The caller is responsible for dropping 2081 * the jh reference that belonged to the transaction. 2082 * 2083 * Called with bh_state lock and j_list_lock 2084 */ 2085 static void __jbd2_journal_unfile_buffer(struct journal_head *jh) 2086 { 2087 J_ASSERT_JH(jh, jh->b_transaction != NULL); 2088 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 2089 2090 __jbd2_journal_temp_unlink_buffer(jh); 2091 jh->b_transaction = NULL; 2092 } 2093 2094 /** 2095 * jbd2_journal_try_to_free_buffers() - try to free page buffers. 2096 * @journal: journal for operation 2097 * @folio: Folio to detach data from. 2098 * 2099 * For all the buffers on this page, 2100 * if they are fully written out ordered data, move them onto BUF_CLEAN 2101 * so try_to_free_buffers() can reap them. 2102 * 2103 * This function returns non-zero if we wish try_to_free_buffers() 2104 * to be called. We do this if the page is releasable by try_to_free_buffers(). 2105 * We also do it if the page has locked or dirty buffers and the caller wants 2106 * us to perform sync or async writeout. 2107 * 2108 * This complicates JBD locking somewhat. We aren't protected by the 2109 * BKL here. We wish to remove the buffer from its committing or 2110 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer. 2111 * 2112 * This may *change* the value of transaction_t->t_datalist, so anyone 2113 * who looks at t_datalist needs to lock against this function. 2114 * 2115 * Even worse, someone may be doing a jbd2_journal_dirty_data on this 2116 * buffer. So we need to lock against that. jbd2_journal_dirty_data() 2117 * will come out of the lock with the buffer dirty, which makes it 2118 * ineligible for release here. 2119 * 2120 * Who else is affected by this? hmm... Really the only contender 2121 * is do_get_write_access() - it could be looking at the buffer while 2122 * journal_try_to_free_buffer() is changing its state. But that 2123 * cannot happen because we never reallocate freed data as metadata 2124 * while the data is part of a transaction. Yes? 2125 * 2126 * Return false on failure, true on success 2127 */ 2128 bool jbd2_journal_try_to_free_buffers(journal_t *journal, struct folio *folio) 2129 { 2130 struct buffer_head *head; 2131 struct buffer_head *bh; 2132 bool ret = false; 2133 2134 J_ASSERT(folio_test_locked(folio)); 2135 2136 head = folio_buffers(folio); 2137 bh = head; 2138 do { 2139 struct journal_head *jh; 2140 2141 /* 2142 * We take our own ref against the journal_head here to avoid 2143 * having to add tons of locking around each instance of 2144 * jbd2_journal_put_journal_head(). 2145 */ 2146 jh = jbd2_journal_grab_journal_head(bh); 2147 if (!jh) 2148 continue; 2149 2150 spin_lock(&jh->b_state_lock); 2151 if (!jh->b_transaction && !jh->b_next_transaction) { 2152 spin_lock(&journal->j_list_lock); 2153 /* Remove written-back checkpointed metadata buffer */ 2154 if (jh->b_cp_transaction != NULL) 2155 jbd2_journal_try_remove_checkpoint(jh); 2156 spin_unlock(&journal->j_list_lock); 2157 } 2158 spin_unlock(&jh->b_state_lock); 2159 jbd2_journal_put_journal_head(jh); 2160 if (buffer_jbd(bh)) 2161 goto busy; 2162 } while ((bh = bh->b_this_page) != head); 2163 2164 ret = try_to_free_buffers(folio); 2165 busy: 2166 return ret; 2167 } 2168 2169 /* 2170 * This buffer is no longer needed. If it is on an older transaction's 2171 * checkpoint list we need to record it on this transaction's forget list 2172 * to pin this buffer (and hence its checkpointing transaction) down until 2173 * this transaction commits. If the buffer isn't on a checkpoint list, we 2174 * release it. 2175 * Returns non-zero if JBD no longer has an interest in the buffer. 2176 * 2177 * Called under j_list_lock. 2178 * 2179 * Called under jh->b_state_lock. 2180 */ 2181 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction) 2182 { 2183 int may_free = 1; 2184 struct buffer_head *bh = jh2bh(jh); 2185 2186 if (jh->b_cp_transaction) { 2187 JBUFFER_TRACE(jh, "on running+cp transaction"); 2188 __jbd2_journal_temp_unlink_buffer(jh); 2189 /* 2190 * We don't want to write the buffer anymore, clear the 2191 * bit so that we don't confuse checks in 2192 * __jbd2_journal_file_buffer 2193 */ 2194 clear_buffer_dirty(bh); 2195 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 2196 may_free = 0; 2197 } else { 2198 JBUFFER_TRACE(jh, "on running transaction"); 2199 __jbd2_journal_unfile_buffer(jh); 2200 jbd2_journal_put_journal_head(jh); 2201 } 2202 return may_free; 2203 } 2204 2205 /* 2206 * jbd2_journal_invalidate_folio 2207 * 2208 * This code is tricky. It has a number of cases to deal with. 2209 * 2210 * There are two invariants which this code relies on: 2211 * 2212 * i_size must be updated on disk before we start calling invalidate_folio 2213 * on the data. 2214 * 2215 * This is done in ext3 by defining an ext3_setattr method which 2216 * updates i_size before truncate gets going. By maintaining this 2217 * invariant, we can be sure that it is safe to throw away any buffers 2218 * attached to the current transaction: once the transaction commits, 2219 * we know that the data will not be needed. 2220 * 2221 * Note however that we can *not* throw away data belonging to the 2222 * previous, committing transaction! 2223 * 2224 * Any disk blocks which *are* part of the previous, committing 2225 * transaction (and which therefore cannot be discarded immediately) are 2226 * not going to be reused in the new running transaction 2227 * 2228 * The bitmap committed_data images guarantee this: any block which is 2229 * allocated in one transaction and removed in the next will be marked 2230 * as in-use in the committed_data bitmap, so cannot be reused until 2231 * the next transaction to delete the block commits. This means that 2232 * leaving committing buffers dirty is quite safe: the disk blocks 2233 * cannot be reallocated to a different file and so buffer aliasing is 2234 * not possible. 2235 * 2236 * 2237 * The above applies mainly to ordered data mode. In writeback mode we 2238 * don't make guarantees about the order in which data hits disk --- in 2239 * particular we don't guarantee that new dirty data is flushed before 2240 * transaction commit --- so it is always safe just to discard data 2241 * immediately in that mode. --sct 2242 */ 2243 2244 /* 2245 * The journal_unmap_buffer helper function returns zero if the buffer 2246 * concerned remains pinned as an anonymous buffer belonging to an older 2247 * transaction. 2248 * 2249 * We're outside-transaction here. Either or both of j_running_transaction 2250 * and j_committing_transaction may be NULL. 2251 */ 2252 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh, 2253 int partial_page) 2254 { 2255 transaction_t *transaction; 2256 struct journal_head *jh; 2257 int may_free = 1; 2258 2259 BUFFER_TRACE(bh, "entry"); 2260 2261 /* 2262 * It is safe to proceed here without the j_list_lock because the 2263 * buffers cannot be stolen by try_to_free_buffers as long as we are 2264 * holding the page lock. --sct 2265 */ 2266 2267 jh = jbd2_journal_grab_journal_head(bh); 2268 if (!jh) 2269 goto zap_buffer_unlocked; 2270 2271 /* OK, we have data buffer in journaled mode */ 2272 write_lock(&journal->j_state_lock); 2273 spin_lock(&jh->b_state_lock); 2274 spin_lock(&journal->j_list_lock); 2275 2276 /* 2277 * We cannot remove the buffer from checkpoint lists until the 2278 * transaction adding inode to orphan list (let's call it T) 2279 * is committed. Otherwise if the transaction changing the 2280 * buffer would be cleaned from the journal before T is 2281 * committed, a crash will cause that the correct contents of 2282 * the buffer will be lost. On the other hand we have to 2283 * clear the buffer dirty bit at latest at the moment when the 2284 * transaction marking the buffer as freed in the filesystem 2285 * structures is committed because from that moment on the 2286 * block can be reallocated and used by a different page. 2287 * Since the block hasn't been freed yet but the inode has 2288 * already been added to orphan list, it is safe for us to add 2289 * the buffer to BJ_Forget list of the newest transaction. 2290 * 2291 * Also we have to clear buffer_mapped flag of a truncated buffer 2292 * because the buffer_head may be attached to the page straddling 2293 * i_size (can happen only when blocksize < pagesize) and thus the 2294 * buffer_head can be reused when the file is extended again. So we end 2295 * up keeping around invalidated buffers attached to transactions' 2296 * BJ_Forget list just to stop checkpointing code from cleaning up 2297 * the transaction this buffer was modified in. 2298 */ 2299 transaction = jh->b_transaction; 2300 if (transaction == NULL) { 2301 /* First case: not on any transaction. If it 2302 * has no checkpoint link, then we can zap it: 2303 * it's a writeback-mode buffer so we don't care 2304 * if it hits disk safely. */ 2305 if (!jh->b_cp_transaction) { 2306 JBUFFER_TRACE(jh, "not on any transaction: zap"); 2307 goto zap_buffer; 2308 } 2309 2310 if (!buffer_dirty(bh)) { 2311 /* bdflush has written it. We can drop it now */ 2312 __jbd2_journal_remove_checkpoint(jh); 2313 goto zap_buffer; 2314 } 2315 2316 /* OK, it must be in the journal but still not 2317 * written fully to disk: it's metadata or 2318 * journaled data... */ 2319 2320 if (journal->j_running_transaction) { 2321 /* ... and once the current transaction has 2322 * committed, the buffer won't be needed any 2323 * longer. */ 2324 JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget"); 2325 may_free = __dispose_buffer(jh, 2326 journal->j_running_transaction); 2327 goto zap_buffer; 2328 } else { 2329 /* There is no currently-running transaction. So the 2330 * orphan record which we wrote for this file must have 2331 * passed into commit. We must attach this buffer to 2332 * the committing transaction, if it exists. */ 2333 if (journal->j_committing_transaction) { 2334 JBUFFER_TRACE(jh, "give to committing trans"); 2335 may_free = __dispose_buffer(jh, 2336 journal->j_committing_transaction); 2337 goto zap_buffer; 2338 } else { 2339 /* The orphan record's transaction has 2340 * committed. We can cleanse this buffer */ 2341 clear_buffer_jbddirty(bh); 2342 __jbd2_journal_remove_checkpoint(jh); 2343 goto zap_buffer; 2344 } 2345 } 2346 } else if (transaction == journal->j_committing_transaction) { 2347 JBUFFER_TRACE(jh, "on committing transaction"); 2348 /* 2349 * The buffer is committing, we simply cannot touch 2350 * it. If the page is straddling i_size we have to wait 2351 * for commit and try again. 2352 */ 2353 if (partial_page) { 2354 spin_unlock(&journal->j_list_lock); 2355 spin_unlock(&jh->b_state_lock); 2356 write_unlock(&journal->j_state_lock); 2357 jbd2_journal_put_journal_head(jh); 2358 /* Already zapped buffer? Nothing to do... */ 2359 if (!bh->b_bdev) 2360 return 0; 2361 return -EBUSY; 2362 } 2363 /* 2364 * OK, buffer won't be reachable after truncate. We just clear 2365 * b_modified to not confuse transaction credit accounting, and 2366 * set j_next_transaction to the running transaction (if there 2367 * is one) and mark buffer as freed so that commit code knows 2368 * it should clear dirty bits when it is done with the buffer. 2369 */ 2370 set_buffer_freed(bh); 2371 if (journal->j_running_transaction && buffer_jbddirty(bh)) 2372 jh->b_next_transaction = journal->j_running_transaction; 2373 jh->b_modified = 0; 2374 spin_unlock(&journal->j_list_lock); 2375 spin_unlock(&jh->b_state_lock); 2376 write_unlock(&journal->j_state_lock); 2377 jbd2_journal_put_journal_head(jh); 2378 return 0; 2379 } else { 2380 /* Good, the buffer belongs to the running transaction. 2381 * We are writing our own transaction's data, not any 2382 * previous one's, so it is safe to throw it away 2383 * (remember that we expect the filesystem to have set 2384 * i_size already for this truncate so recovery will not 2385 * expose the disk blocks we are discarding here.) */ 2386 J_ASSERT_JH(jh, transaction == journal->j_running_transaction); 2387 JBUFFER_TRACE(jh, "on running transaction"); 2388 may_free = __dispose_buffer(jh, transaction); 2389 } 2390 2391 zap_buffer: 2392 /* 2393 * This is tricky. Although the buffer is truncated, it may be reused 2394 * if blocksize < pagesize and it is attached to the page straddling 2395 * EOF. Since the buffer might have been added to BJ_Forget list of the 2396 * running transaction, journal_get_write_access() won't clear 2397 * b_modified and credit accounting gets confused. So clear b_modified 2398 * here. 2399 */ 2400 jh->b_modified = 0; 2401 spin_unlock(&journal->j_list_lock); 2402 spin_unlock(&jh->b_state_lock); 2403 write_unlock(&journal->j_state_lock); 2404 jbd2_journal_put_journal_head(jh); 2405 zap_buffer_unlocked: 2406 clear_buffer_dirty(bh); 2407 J_ASSERT_BH(bh, !buffer_jbddirty(bh)); 2408 clear_buffer_mapped(bh); 2409 clear_buffer_req(bh); 2410 clear_buffer_new(bh); 2411 clear_buffer_delay(bh); 2412 clear_buffer_unwritten(bh); 2413 bh->b_bdev = NULL; 2414 return may_free; 2415 } 2416 2417 /** 2418 * jbd2_journal_invalidate_folio() 2419 * @journal: journal to use for flush... 2420 * @folio: folio to flush 2421 * @offset: start of the range to invalidate 2422 * @length: length of the range to invalidate 2423 * 2424 * Reap page buffers containing data after in the specified range in page. 2425 * Can return -EBUSY if buffers are part of the committing transaction and 2426 * the page is straddling i_size. Caller then has to wait for current commit 2427 * and try again. 2428 */ 2429 int jbd2_journal_invalidate_folio(journal_t *journal, struct folio *folio, 2430 size_t offset, size_t length) 2431 { 2432 struct buffer_head *head, *bh, *next; 2433 unsigned int stop = offset + length; 2434 unsigned int curr_off = 0; 2435 int partial_page = (offset || length < folio_size(folio)); 2436 int may_free = 1; 2437 int ret = 0; 2438 2439 if (!folio_test_locked(folio)) 2440 BUG(); 2441 head = folio_buffers(folio); 2442 if (!head) 2443 return 0; 2444 2445 BUG_ON(stop > folio_size(folio) || stop < length); 2446 2447 /* We will potentially be playing with lists other than just the 2448 * data lists (especially for journaled data mode), so be 2449 * cautious in our locking. */ 2450 2451 bh = head; 2452 do { 2453 unsigned int next_off = curr_off + bh->b_size; 2454 next = bh->b_this_page; 2455 2456 if (next_off > stop) 2457 return 0; 2458 2459 if (offset <= curr_off) { 2460 /* This block is wholly outside the truncation point */ 2461 lock_buffer(bh); 2462 ret = journal_unmap_buffer(journal, bh, partial_page); 2463 unlock_buffer(bh); 2464 if (ret < 0) 2465 return ret; 2466 may_free &= ret; 2467 } 2468 curr_off = next_off; 2469 bh = next; 2470 2471 } while (bh != head); 2472 2473 if (!partial_page) { 2474 if (may_free && try_to_free_buffers(folio)) 2475 J_ASSERT(!folio_buffers(folio)); 2476 } 2477 return 0; 2478 } 2479 2480 /* 2481 * File a buffer on the given transaction list. 2482 */ 2483 void __jbd2_journal_file_buffer(struct journal_head *jh, 2484 transaction_t *transaction, int jlist) 2485 { 2486 struct journal_head **list = NULL; 2487 int was_dirty = 0; 2488 struct buffer_head *bh = jh2bh(jh); 2489 2490 lockdep_assert_held(&jh->b_state_lock); 2491 assert_spin_locked(&transaction->t_journal->j_list_lock); 2492 2493 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 2494 J_ASSERT_JH(jh, jh->b_transaction == transaction || 2495 jh->b_transaction == NULL); 2496 2497 if (jh->b_transaction && jh->b_jlist == jlist) 2498 return; 2499 2500 if (jlist == BJ_Metadata || jlist == BJ_Reserved || 2501 jlist == BJ_Shadow || jlist == BJ_Forget) { 2502 /* 2503 * For metadata buffers, we track dirty bit in buffer_jbddirty 2504 * instead of buffer_dirty. We should not see a dirty bit set 2505 * here because we clear it in do_get_write_access but e.g. 2506 * tune2fs can modify the sb and set the dirty bit at any time 2507 * so we try to gracefully handle that. 2508 */ 2509 if (buffer_dirty(bh)) 2510 warn_dirty_buffer(bh); 2511 if (test_clear_buffer_dirty(bh) || 2512 test_clear_buffer_jbddirty(bh)) 2513 was_dirty = 1; 2514 } 2515 2516 if (jh->b_transaction) 2517 __jbd2_journal_temp_unlink_buffer(jh); 2518 else 2519 jbd2_journal_grab_journal_head(bh); 2520 jh->b_transaction = transaction; 2521 2522 switch (jlist) { 2523 case BJ_None: 2524 J_ASSERT_JH(jh, !jh->b_committed_data); 2525 J_ASSERT_JH(jh, !jh->b_frozen_data); 2526 return; 2527 case BJ_Metadata: 2528 transaction->t_nr_buffers++; 2529 list = &transaction->t_buffers; 2530 break; 2531 case BJ_Forget: 2532 list = &transaction->t_forget; 2533 break; 2534 case BJ_Shadow: 2535 list = &transaction->t_shadow_list; 2536 break; 2537 case BJ_Reserved: 2538 list = &transaction->t_reserved_list; 2539 break; 2540 } 2541 2542 __blist_add_buffer(list, jh); 2543 jh->b_jlist = jlist; 2544 2545 if (was_dirty) 2546 set_buffer_jbddirty(bh); 2547 } 2548 2549 void jbd2_journal_file_buffer(struct journal_head *jh, 2550 transaction_t *transaction, int jlist) 2551 { 2552 spin_lock(&jh->b_state_lock); 2553 spin_lock(&transaction->t_journal->j_list_lock); 2554 __jbd2_journal_file_buffer(jh, transaction, jlist); 2555 spin_unlock(&transaction->t_journal->j_list_lock); 2556 spin_unlock(&jh->b_state_lock); 2557 } 2558 2559 /* 2560 * Remove a buffer from its current buffer list in preparation for 2561 * dropping it from its current transaction entirely. If the buffer has 2562 * already started to be used by a subsequent transaction, refile the 2563 * buffer on that transaction's metadata list. 2564 * 2565 * Called under j_list_lock 2566 * Called under jh->b_state_lock 2567 * 2568 * When this function returns true, there's no next transaction to refile to 2569 * and the caller has to drop jh reference through 2570 * jbd2_journal_put_journal_head(). 2571 */ 2572 bool __jbd2_journal_refile_buffer(struct journal_head *jh) 2573 { 2574 int was_dirty, jlist; 2575 struct buffer_head *bh = jh2bh(jh); 2576 2577 lockdep_assert_held(&jh->b_state_lock); 2578 if (jh->b_transaction) 2579 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock); 2580 2581 /* If the buffer is now unused, just drop it. */ 2582 if (jh->b_next_transaction == NULL) { 2583 __jbd2_journal_unfile_buffer(jh); 2584 return true; 2585 } 2586 2587 /* 2588 * It has been modified by a later transaction: add it to the new 2589 * transaction's metadata list. 2590 */ 2591 2592 was_dirty = test_clear_buffer_jbddirty(bh); 2593 __jbd2_journal_temp_unlink_buffer(jh); 2594 2595 /* 2596 * b_transaction must be set, otherwise the new b_transaction won't 2597 * be holding jh reference 2598 */ 2599 J_ASSERT_JH(jh, jh->b_transaction != NULL); 2600 2601 /* 2602 * We set b_transaction here because b_next_transaction will inherit 2603 * our jh reference and thus __jbd2_journal_file_buffer() must not 2604 * take a new one. 2605 */ 2606 WRITE_ONCE(jh->b_transaction, jh->b_next_transaction); 2607 WRITE_ONCE(jh->b_next_transaction, NULL); 2608 if (buffer_freed(bh)) 2609 jlist = BJ_Forget; 2610 else if (jh->b_modified) 2611 jlist = BJ_Metadata; 2612 else 2613 jlist = BJ_Reserved; 2614 __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist); 2615 J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING); 2616 2617 if (was_dirty) 2618 set_buffer_jbddirty(bh); 2619 return false; 2620 } 2621 2622 /* 2623 * __jbd2_journal_refile_buffer() with necessary locking added. We take our 2624 * bh reference so that we can safely unlock bh. 2625 * 2626 * The jh and bh may be freed by this call. 2627 */ 2628 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh) 2629 { 2630 bool drop; 2631 2632 spin_lock(&jh->b_state_lock); 2633 spin_lock(&journal->j_list_lock); 2634 drop = __jbd2_journal_refile_buffer(jh); 2635 spin_unlock(&jh->b_state_lock); 2636 spin_unlock(&journal->j_list_lock); 2637 if (drop) 2638 jbd2_journal_put_journal_head(jh); 2639 } 2640 2641 /* 2642 * File inode in the inode list of the handle's transaction 2643 */ 2644 static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode, 2645 unsigned long flags, loff_t start_byte, loff_t end_byte) 2646 { 2647 transaction_t *transaction = handle->h_transaction; 2648 journal_t *journal; 2649 2650 if (is_handle_aborted(handle)) 2651 return -EROFS; 2652 journal = transaction->t_journal; 2653 2654 jbd2_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino, 2655 transaction->t_tid); 2656 2657 spin_lock(&journal->j_list_lock); 2658 jinode->i_flags |= flags; 2659 2660 if (jinode->i_dirty_end) { 2661 jinode->i_dirty_start = min(jinode->i_dirty_start, start_byte); 2662 jinode->i_dirty_end = max(jinode->i_dirty_end, end_byte); 2663 } else { 2664 jinode->i_dirty_start = start_byte; 2665 jinode->i_dirty_end = end_byte; 2666 } 2667 2668 /* Is inode already attached where we need it? */ 2669 if (jinode->i_transaction == transaction || 2670 jinode->i_next_transaction == transaction) 2671 goto done; 2672 2673 /* 2674 * We only ever set this variable to 1 so the test is safe. Since 2675 * t_need_data_flush is likely to be set, we do the test to save some 2676 * cacheline bouncing 2677 */ 2678 if (!transaction->t_need_data_flush) 2679 transaction->t_need_data_flush = 1; 2680 /* On some different transaction's list - should be 2681 * the committing one */ 2682 if (jinode->i_transaction) { 2683 J_ASSERT(jinode->i_next_transaction == NULL); 2684 J_ASSERT(jinode->i_transaction == 2685 journal->j_committing_transaction); 2686 jinode->i_next_transaction = transaction; 2687 goto done; 2688 } 2689 /* Not on any transaction list... */ 2690 J_ASSERT(!jinode->i_next_transaction); 2691 jinode->i_transaction = transaction; 2692 list_add(&jinode->i_list, &transaction->t_inode_list); 2693 done: 2694 spin_unlock(&journal->j_list_lock); 2695 2696 return 0; 2697 } 2698 2699 int jbd2_journal_inode_ranged_write(handle_t *handle, 2700 struct jbd2_inode *jinode, loff_t start_byte, loff_t length) 2701 { 2702 return jbd2_journal_file_inode(handle, jinode, 2703 JI_WRITE_DATA | JI_WAIT_DATA, start_byte, 2704 start_byte + length - 1); 2705 } 2706 2707 int jbd2_journal_inode_ranged_wait(handle_t *handle, struct jbd2_inode *jinode, 2708 loff_t start_byte, loff_t length) 2709 { 2710 return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA, 2711 start_byte, start_byte + length - 1); 2712 } 2713 2714 /* 2715 * File truncate and transaction commit interact with each other in a 2716 * non-trivial way. If a transaction writing data block A is 2717 * committing, we cannot discard the data by truncate until we have 2718 * written them. Otherwise if we crashed after the transaction with 2719 * write has committed but before the transaction with truncate has 2720 * committed, we could see stale data in block A. This function is a 2721 * helper to solve this problem. It starts writeout of the truncated 2722 * part in case it is in the committing transaction. 2723 * 2724 * Filesystem code must call this function when inode is journaled in 2725 * ordered mode before truncation happens and after the inode has been 2726 * placed on orphan list with the new inode size. The second condition 2727 * avoids the race that someone writes new data and we start 2728 * committing the transaction after this function has been called but 2729 * before a transaction for truncate is started (and furthermore it 2730 * allows us to optimize the case where the addition to orphan list 2731 * happens in the same transaction as write --- we don't have to write 2732 * any data in such case). 2733 */ 2734 int jbd2_journal_begin_ordered_truncate(journal_t *journal, 2735 struct jbd2_inode *jinode, 2736 loff_t new_size) 2737 { 2738 transaction_t *inode_trans, *commit_trans; 2739 int ret = 0; 2740 2741 /* This is a quick check to avoid locking if not necessary */ 2742 if (!jinode->i_transaction) 2743 goto out; 2744 /* Locks are here just to force reading of recent values, it is 2745 * enough that the transaction was not committing before we started 2746 * a transaction adding the inode to orphan list */ 2747 read_lock(&journal->j_state_lock); 2748 commit_trans = journal->j_committing_transaction; 2749 read_unlock(&journal->j_state_lock); 2750 spin_lock(&journal->j_list_lock); 2751 inode_trans = jinode->i_transaction; 2752 spin_unlock(&journal->j_list_lock); 2753 if (inode_trans == commit_trans) { 2754 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping, 2755 new_size, LLONG_MAX); 2756 if (ret) 2757 jbd2_journal_abort(journal, ret); 2758 } 2759 out: 2760 return ret; 2761 } 2762