1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * linux/fs/jbd2/revoke.c 4 * 5 * Written by Stephen C. Tweedie <sct@redhat.com>, 2000 6 * 7 * Copyright 2000 Red Hat corp --- All Rights Reserved 8 * 9 * Journal revoke routines for the generic filesystem journaling code; 10 * part of the ext2fs journaling system. 11 * 12 * Revoke is the mechanism used to prevent old log records for deleted 13 * metadata from being replayed on top of newer data using the same 14 * blocks. The revoke mechanism is used in two separate places: 15 * 16 * + Commit: during commit we write the entire list of the current 17 * transaction's revoked blocks to the journal 18 * 19 * + Recovery: during recovery we record the transaction ID of all 20 * revoked blocks. If there are multiple revoke records in the log 21 * for a single block, only the last one counts, and if there is a log 22 * entry for a block beyond the last revoke, then that log entry still 23 * gets replayed. 24 * 25 * We can get interactions between revokes and new log data within a 26 * single transaction: 27 * 28 * Block is revoked and then journaled: 29 * The desired end result is the journaling of the new block, so we 30 * cancel the revoke before the transaction commits. 31 * 32 * Block is journaled and then revoked: 33 * The revoke must take precedence over the write of the block, so we 34 * need either to cancel the journal entry or to write the revoke 35 * later in the log than the log block. In this case, we choose the 36 * latter: journaling a block cancels any revoke record for that block 37 * in the current transaction, so any revoke for that block in the 38 * transaction must have happened after the block was journaled and so 39 * the revoke must take precedence. 40 * 41 * Block is revoked and then written as data: 42 * The data write is allowed to succeed, but the revoke is _not_ 43 * cancelled. We still need to prevent old log records from 44 * overwriting the new data. We don't even need to clear the revoke 45 * bit here. 46 * 47 * We cache revoke status of a buffer in the current transaction in b_states 48 * bits. As the name says, revokevalid flag indicates that the cached revoke 49 * status of a buffer is valid and we can rely on the cached status. 50 * 51 * Revoke information on buffers is a tri-state value: 52 * 53 * RevokeValid clear: no cached revoke status, need to look it up 54 * RevokeValid set, Revoked clear: 55 * buffer has not been revoked, and cancel_revoke 56 * need do nothing. 57 * RevokeValid set, Revoked set: 58 * buffer has been revoked. 59 * 60 * Locking rules: 61 * We keep two hash tables of revoke records. One hashtable belongs to the 62 * running transaction (is pointed to by journal->j_revoke), the other one 63 * belongs to the committing transaction. Accesses to the second hash table 64 * happen only from the kjournald and no other thread touches this table. Also 65 * journal_switch_revoke_table() which switches which hashtable belongs to the 66 * running and which to the committing transaction is called only from 67 * kjournald. Therefore we need no locks when accessing the hashtable belonging 68 * to the committing transaction. 69 * 70 * All users operating on the hash table belonging to the running transaction 71 * have a handle to the transaction. Therefore they are safe from kjournald 72 * switching hash tables under them. For operations on the lists of entries in 73 * the hash table j_revoke_lock is used. 74 * 75 * Finally, also replay code uses the hash tables but at this moment no one else 76 * can touch them (filesystem isn't mounted yet) and hence no locking is 77 * needed. 78 */ 79 80 #ifndef __KERNEL__ 81 #include "jfs_user.h" 82 #else 83 #include <linux/time.h> 84 #include <linux/fs.h> 85 #include <linux/jbd2.h> 86 #include <linux/errno.h> 87 #include <linux/slab.h> 88 #include <linux/list.h> 89 #include <linux/init.h> 90 #include <linux/bio.h> 91 #include <linux/log2.h> 92 #include <linux/hash.h> 93 #endif 94 95 static struct kmem_cache *jbd2_revoke_record_cache; 96 static struct kmem_cache *jbd2_revoke_table_cache; 97 98 /* Each revoke record represents one single revoked block. During 99 journal replay, this involves recording the transaction ID of the 100 last transaction to revoke this block. */ 101 102 struct jbd2_revoke_record_s 103 { 104 struct list_head hash; 105 tid_t sequence; /* Used for recovery only */ 106 unsigned long long blocknr; 107 }; 108 109 110 /* The revoke table is just a simple hash table of revoke records. */ 111 struct jbd2_revoke_table_s 112 { 113 /* It is conceivable that we might want a larger hash table 114 * for recovery. Must be a power of two. */ 115 int hash_size; 116 int hash_shift; 117 struct list_head *hash_table; 118 }; 119 120 121 #ifdef __KERNEL__ 122 static void write_one_revoke_record(transaction_t *, 123 struct list_head *, 124 struct buffer_head **, int *, 125 struct jbd2_revoke_record_s *); 126 static void flush_descriptor(journal_t *, struct buffer_head *, int); 127 #endif 128 129 /* Utility functions to maintain the revoke table */ 130 131 static inline int hash(journal_t *journal, unsigned long long block) 132 { 133 return hash_64(block, journal->j_revoke->hash_shift); 134 } 135 136 static int insert_revoke_hash(journal_t *journal, unsigned long long blocknr, 137 tid_t seq) 138 { 139 struct list_head *hash_list; 140 struct jbd2_revoke_record_s *record; 141 gfp_t gfp_mask = GFP_NOFS; 142 143 if (journal_oom_retry) 144 gfp_mask |= __GFP_NOFAIL; 145 record = kmem_cache_alloc(jbd2_revoke_record_cache, gfp_mask); 146 if (!record) 147 return -ENOMEM; 148 149 record->sequence = seq; 150 record->blocknr = blocknr; 151 hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)]; 152 spin_lock(&journal->j_revoke_lock); 153 list_add(&record->hash, hash_list); 154 spin_unlock(&journal->j_revoke_lock); 155 return 0; 156 } 157 158 /* Find a revoke record in the journal's hash table. */ 159 160 static struct jbd2_revoke_record_s *find_revoke_record(journal_t *journal, 161 unsigned long long blocknr) 162 { 163 struct list_head *hash_list; 164 struct jbd2_revoke_record_s *record; 165 166 hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)]; 167 168 spin_lock(&journal->j_revoke_lock); 169 record = (struct jbd2_revoke_record_s *) hash_list->next; 170 while (&(record->hash) != hash_list) { 171 if (record->blocknr == blocknr) { 172 spin_unlock(&journal->j_revoke_lock); 173 return record; 174 } 175 record = (struct jbd2_revoke_record_s *) record->hash.next; 176 } 177 spin_unlock(&journal->j_revoke_lock); 178 return NULL; 179 } 180 181 void jbd2_journal_destroy_revoke_record_cache(void) 182 { 183 kmem_cache_destroy(jbd2_revoke_record_cache); 184 jbd2_revoke_record_cache = NULL; 185 } 186 187 void jbd2_journal_destroy_revoke_table_cache(void) 188 { 189 kmem_cache_destroy(jbd2_revoke_table_cache); 190 jbd2_revoke_table_cache = NULL; 191 } 192 193 int __init jbd2_journal_init_revoke_record_cache(void) 194 { 195 J_ASSERT(!jbd2_revoke_record_cache); 196 jbd2_revoke_record_cache = KMEM_CACHE(jbd2_revoke_record_s, 197 SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY); 198 199 if (!jbd2_revoke_record_cache) { 200 pr_emerg("JBD2: failed to create revoke_record cache\n"); 201 return -ENOMEM; 202 } 203 return 0; 204 } 205 206 int __init jbd2_journal_init_revoke_table_cache(void) 207 { 208 J_ASSERT(!jbd2_revoke_table_cache); 209 jbd2_revoke_table_cache = KMEM_CACHE(jbd2_revoke_table_s, 210 SLAB_TEMPORARY); 211 if (!jbd2_revoke_table_cache) { 212 pr_emerg("JBD2: failed to create revoke_table cache\n"); 213 return -ENOMEM; 214 } 215 return 0; 216 } 217 218 struct jbd2_revoke_table_s *jbd2_journal_init_revoke_table(int hash_size) 219 { 220 int shift = 0; 221 int tmp = hash_size; 222 struct jbd2_revoke_table_s *table; 223 224 table = kmem_cache_alloc(jbd2_revoke_table_cache, GFP_KERNEL); 225 if (!table) 226 goto out; 227 228 while((tmp >>= 1UL) != 0UL) 229 shift++; 230 231 table->hash_size = hash_size; 232 table->hash_shift = shift; 233 table->hash_table = 234 kvmalloc_array(hash_size, sizeof(struct list_head), GFP_KERNEL); 235 if (!table->hash_table) { 236 kmem_cache_free(jbd2_revoke_table_cache, table); 237 table = NULL; 238 goto out; 239 } 240 241 for (tmp = 0; tmp < hash_size; tmp++) 242 INIT_LIST_HEAD(&table->hash_table[tmp]); 243 244 out: 245 return table; 246 } 247 248 void jbd2_journal_destroy_revoke_table(struct jbd2_revoke_table_s *table) 249 { 250 int i; 251 struct list_head *hash_list; 252 253 for (i = 0; i < table->hash_size; i++) { 254 hash_list = &table->hash_table[i]; 255 J_ASSERT(list_empty(hash_list)); 256 } 257 258 kvfree(table->hash_table); 259 kmem_cache_free(jbd2_revoke_table_cache, table); 260 } 261 262 /* Initialise the revoke table for a given journal to a given size. */ 263 int jbd2_journal_init_revoke(journal_t *journal, int hash_size) 264 { 265 J_ASSERT(journal->j_revoke_table[0] == NULL); 266 J_ASSERT(is_power_of_2(hash_size)); 267 268 journal->j_revoke_table[0] = jbd2_journal_init_revoke_table(hash_size); 269 if (!journal->j_revoke_table[0]) 270 goto fail0; 271 272 journal->j_revoke_table[1] = jbd2_journal_init_revoke_table(hash_size); 273 if (!journal->j_revoke_table[1]) 274 goto fail1; 275 276 journal->j_revoke = journal->j_revoke_table[1]; 277 278 spin_lock_init(&journal->j_revoke_lock); 279 280 return 0; 281 282 fail1: 283 jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]); 284 journal->j_revoke_table[0] = NULL; 285 fail0: 286 return -ENOMEM; 287 } 288 289 /* Destroy a journal's revoke table. The table must already be empty! */ 290 void jbd2_journal_destroy_revoke(journal_t *journal) 291 { 292 journal->j_revoke = NULL; 293 if (journal->j_revoke_table[0]) 294 jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]); 295 if (journal->j_revoke_table[1]) 296 jbd2_journal_destroy_revoke_table(journal->j_revoke_table[1]); 297 } 298 299 300 #ifdef __KERNEL__ 301 302 /* 303 * jbd2_journal_revoke: revoke a given buffer_head from the journal. This 304 * prevents the block from being replayed during recovery if we take a 305 * crash after this current transaction commits. Any subsequent 306 * metadata writes of the buffer in this transaction cancel the 307 * revoke. 308 * 309 * Note that this call may block --- it is up to the caller to make 310 * sure that there are no further calls to journal_write_metadata 311 * before the revoke is complete. In ext3, this implies calling the 312 * revoke before clearing the block bitmap when we are deleting 313 * metadata. 314 * 315 * Revoke performs a jbd2_journal_forget on any buffer_head passed in as a 316 * parameter, but does _not_ forget the buffer_head if the bh was only 317 * found implicitly. 318 * 319 * bh_in may not be a journalled buffer - it may have come off 320 * the hash tables without an attached journal_head. 321 * 322 * If bh_in is non-zero, jbd2_journal_revoke() will decrement its b_count 323 * by one. 324 */ 325 326 int jbd2_journal_revoke(handle_t *handle, unsigned long long blocknr, 327 struct buffer_head *bh_in) 328 { 329 struct buffer_head *bh = NULL; 330 journal_t *journal; 331 struct block_device *bdev; 332 int err; 333 334 might_sleep(); 335 if (bh_in) 336 BUFFER_TRACE(bh_in, "enter"); 337 338 journal = handle->h_transaction->t_journal; 339 if (!jbd2_journal_set_features(journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)){ 340 J_ASSERT (!"Cannot set revoke feature!"); 341 return -EINVAL; 342 } 343 344 bdev = journal->j_fs_dev; 345 bh = bh_in; 346 347 if (!bh) { 348 bh = __find_get_block(bdev, blocknr, journal->j_blocksize); 349 if (bh) 350 BUFFER_TRACE(bh, "found on hash"); 351 } 352 #ifdef JBD2_EXPENSIVE_CHECKING 353 else { 354 struct buffer_head *bh2; 355 356 /* If there is a different buffer_head lying around in 357 * memory anywhere... */ 358 bh2 = __find_get_block(bdev, blocknr, journal->j_blocksize); 359 if (bh2) { 360 /* ... and it has RevokeValid status... */ 361 if (bh2 != bh && buffer_revokevalid(bh2)) 362 /* ...then it better be revoked too, 363 * since it's illegal to create a revoke 364 * record against a buffer_head which is 365 * not marked revoked --- that would 366 * risk missing a subsequent revoke 367 * cancel. */ 368 J_ASSERT_BH(bh2, buffer_revoked(bh2)); 369 put_bh(bh2); 370 } 371 } 372 #endif 373 374 if (WARN_ON_ONCE(handle->h_revoke_credits <= 0)) { 375 if (!bh_in) 376 brelse(bh); 377 return -EIO; 378 } 379 /* We really ought not ever to revoke twice in a row without 380 first having the revoke cancelled: it's illegal to free a 381 block twice without allocating it in between! */ 382 if (bh) { 383 if (!J_EXPECT_BH(bh, !buffer_revoked(bh), 384 "inconsistent data on disk")) { 385 if (!bh_in) 386 brelse(bh); 387 return -EIO; 388 } 389 set_buffer_revoked(bh); 390 set_buffer_revokevalid(bh); 391 if (bh_in) { 392 BUFFER_TRACE(bh_in, "call jbd2_journal_forget"); 393 jbd2_journal_forget(handle, bh_in); 394 } else { 395 BUFFER_TRACE(bh, "call brelse"); 396 __brelse(bh); 397 } 398 } 399 handle->h_revoke_credits--; 400 401 jbd2_debug(2, "insert revoke for block %llu, bh_in=%p\n",blocknr, bh_in); 402 err = insert_revoke_hash(journal, blocknr, 403 handle->h_transaction->t_tid); 404 BUFFER_TRACE(bh_in, "exit"); 405 return err; 406 } 407 408 /* 409 * Cancel an outstanding revoke. For use only internally by the 410 * journaling code (called from jbd2_journal_get_write_access). 411 * 412 * We trust buffer_revoked() on the buffer if the buffer is already 413 * being journaled: if there is no revoke pending on the buffer, then we 414 * don't do anything here. 415 * 416 * This would break if it were possible for a buffer to be revoked and 417 * discarded, and then reallocated within the same transaction. In such 418 * a case we would have lost the revoked bit, but when we arrived here 419 * the second time we would still have a pending revoke to cancel. So, 420 * do not trust the Revoked bit on buffers unless RevokeValid is also 421 * set. 422 */ 423 void jbd2_journal_cancel_revoke(handle_t *handle, struct journal_head *jh) 424 { 425 struct jbd2_revoke_record_s *record; 426 journal_t *journal = handle->h_transaction->t_journal; 427 int need_cancel; 428 struct buffer_head *bh = jh2bh(jh); 429 430 jbd2_debug(4, "journal_head %p, cancelling revoke\n", jh); 431 432 /* Is the existing Revoke bit valid? If so, we trust it, and 433 * only perform the full cancel if the revoke bit is set. If 434 * not, we can't trust the revoke bit, and we need to do the 435 * full search for a revoke record. */ 436 if (test_set_buffer_revokevalid(bh)) { 437 need_cancel = test_clear_buffer_revoked(bh); 438 } else { 439 need_cancel = 1; 440 clear_buffer_revoked(bh); 441 } 442 443 if (need_cancel) { 444 record = find_revoke_record(journal, bh->b_blocknr); 445 if (record) { 446 jbd2_debug(4, "cancelled existing revoke on " 447 "blocknr %llu\n", (unsigned long long)bh->b_blocknr); 448 spin_lock(&journal->j_revoke_lock); 449 list_del(&record->hash); 450 spin_unlock(&journal->j_revoke_lock); 451 kmem_cache_free(jbd2_revoke_record_cache, record); 452 } 453 } 454 455 #ifdef JBD2_EXPENSIVE_CHECKING 456 /* There better not be one left behind by now! */ 457 record = find_revoke_record(journal, bh->b_blocknr); 458 J_ASSERT_JH(jh, record == NULL); 459 #endif 460 461 /* Finally, have we just cleared revoke on an unhashed 462 * buffer_head? If so, we'd better make sure we clear the 463 * revoked status on any hashed alias too, otherwise the revoke 464 * state machine will get very upset later on. */ 465 if (need_cancel) { 466 struct buffer_head *bh2; 467 bh2 = __find_get_block(bh->b_bdev, bh->b_blocknr, bh->b_size); 468 if (bh2) { 469 if (bh2 != bh) 470 clear_buffer_revoked(bh2); 471 __brelse(bh2); 472 } 473 } 474 } 475 476 /* 477 * jbd2_clear_buffer_revoked_flags clears revoked flag of buffers in 478 * revoke table to reflect there is no revoked buffers in the next 479 * transaction which is going to be started. 480 */ 481 void jbd2_clear_buffer_revoked_flags(journal_t *journal) 482 { 483 struct jbd2_revoke_table_s *revoke = journal->j_revoke; 484 int i = 0; 485 486 for (i = 0; i < revoke->hash_size; i++) { 487 struct list_head *hash_list; 488 struct list_head *list_entry; 489 hash_list = &revoke->hash_table[i]; 490 491 list_for_each(list_entry, hash_list) { 492 struct jbd2_revoke_record_s *record; 493 struct buffer_head *bh; 494 record = (struct jbd2_revoke_record_s *)list_entry; 495 bh = __find_get_block(journal->j_fs_dev, 496 record->blocknr, 497 journal->j_blocksize); 498 if (bh) { 499 clear_buffer_revoked(bh); 500 __brelse(bh); 501 } 502 } 503 } 504 } 505 506 /* jbd2_journal_switch_revoke_table table select j_revoke for next 507 * transaction we do not want to suspend any processing until all 508 * revokes are written -bzzz 509 */ 510 void jbd2_journal_switch_revoke_table(journal_t *journal) 511 { 512 int i; 513 514 if (journal->j_revoke == journal->j_revoke_table[0]) 515 journal->j_revoke = journal->j_revoke_table[1]; 516 else 517 journal->j_revoke = journal->j_revoke_table[0]; 518 519 for (i = 0; i < journal->j_revoke->hash_size; i++) 520 INIT_LIST_HEAD(&journal->j_revoke->hash_table[i]); 521 } 522 523 /* 524 * Write revoke records to the journal for all entries in the current 525 * revoke hash, deleting the entries as we go. 526 */ 527 void jbd2_journal_write_revoke_records(transaction_t *transaction, 528 struct list_head *log_bufs) 529 { 530 journal_t *journal = transaction->t_journal; 531 struct buffer_head *descriptor; 532 struct jbd2_revoke_record_s *record; 533 struct jbd2_revoke_table_s *revoke; 534 struct list_head *hash_list; 535 int i, offset, count; 536 537 descriptor = NULL; 538 offset = 0; 539 count = 0; 540 541 /* select revoke table for committing transaction */ 542 revoke = journal->j_revoke == journal->j_revoke_table[0] ? 543 journal->j_revoke_table[1] : journal->j_revoke_table[0]; 544 545 for (i = 0; i < revoke->hash_size; i++) { 546 hash_list = &revoke->hash_table[i]; 547 548 while (!list_empty(hash_list)) { 549 record = (struct jbd2_revoke_record_s *) 550 hash_list->next; 551 write_one_revoke_record(transaction, log_bufs, 552 &descriptor, &offset, record); 553 count++; 554 list_del(&record->hash); 555 kmem_cache_free(jbd2_revoke_record_cache, record); 556 } 557 } 558 if (descriptor) 559 flush_descriptor(journal, descriptor, offset); 560 jbd2_debug(1, "Wrote %d revoke records\n", count); 561 } 562 563 /* 564 * Write out one revoke record. We need to create a new descriptor 565 * block if the old one is full or if we have not already created one. 566 */ 567 568 static void write_one_revoke_record(transaction_t *transaction, 569 struct list_head *log_bufs, 570 struct buffer_head **descriptorp, 571 int *offsetp, 572 struct jbd2_revoke_record_s *record) 573 { 574 journal_t *journal = transaction->t_journal; 575 int csum_size = 0; 576 struct buffer_head *descriptor; 577 int sz, offset; 578 579 /* If we are already aborting, this all becomes a noop. We 580 still need to go round the loop in 581 jbd2_journal_write_revoke_records in order to free all of the 582 revoke records: only the IO to the journal is omitted. */ 583 if (is_journal_aborted(journal)) 584 return; 585 586 descriptor = *descriptorp; 587 offset = *offsetp; 588 589 /* Do we need to leave space at the end for a checksum? */ 590 if (jbd2_journal_has_csum_v2or3(journal)) 591 csum_size = sizeof(struct jbd2_journal_block_tail); 592 593 if (jbd2_has_feature_64bit(journal)) 594 sz = 8; 595 else 596 sz = 4; 597 598 /* Make sure we have a descriptor with space left for the record */ 599 if (descriptor) { 600 if (offset + sz > journal->j_blocksize - csum_size) { 601 flush_descriptor(journal, descriptor, offset); 602 descriptor = NULL; 603 } 604 } 605 606 if (!descriptor) { 607 descriptor = jbd2_journal_get_descriptor_buffer(transaction, 608 JBD2_REVOKE_BLOCK); 609 if (!descriptor) 610 return; 611 612 /* Record it so that we can wait for IO completion later */ 613 BUFFER_TRACE(descriptor, "file in log_bufs"); 614 jbd2_file_log_bh(log_bufs, descriptor); 615 616 offset = sizeof(jbd2_journal_revoke_header_t); 617 *descriptorp = descriptor; 618 } 619 620 if (jbd2_has_feature_64bit(journal)) 621 * ((__be64 *)(&descriptor->b_data[offset])) = 622 cpu_to_be64(record->blocknr); 623 else 624 * ((__be32 *)(&descriptor->b_data[offset])) = 625 cpu_to_be32(record->blocknr); 626 offset += sz; 627 628 *offsetp = offset; 629 } 630 631 /* 632 * Flush a revoke descriptor out to the journal. If we are aborting, 633 * this is a noop; otherwise we are generating a buffer which needs to 634 * be waited for during commit, so it has to go onto the appropriate 635 * journal buffer list. 636 */ 637 638 static void flush_descriptor(journal_t *journal, 639 struct buffer_head *descriptor, 640 int offset) 641 { 642 jbd2_journal_revoke_header_t *header; 643 644 if (is_journal_aborted(journal)) 645 return; 646 647 header = (jbd2_journal_revoke_header_t *)descriptor->b_data; 648 header->r_count = cpu_to_be32(offset); 649 jbd2_descriptor_block_csum_set(journal, descriptor); 650 651 set_buffer_jwrite(descriptor); 652 BUFFER_TRACE(descriptor, "write"); 653 set_buffer_dirty(descriptor); 654 write_dirty_buffer(descriptor, JBD2_JOURNAL_REQ_FLAGS); 655 } 656 #endif 657 658 /* 659 * Revoke support for recovery. 660 * 661 * Recovery needs to be able to: 662 * 663 * record all revoke records, including the tid of the latest instance 664 * of each revoke in the journal 665 * 666 * check whether a given block in a given transaction should be replayed 667 * (ie. has not been revoked by a revoke record in that or a subsequent 668 * transaction) 669 * 670 * empty the revoke table after recovery. 671 */ 672 673 /* 674 * First, setting revoke records. We create a new revoke record for 675 * every block ever revoked in the log as we scan it for recovery, and 676 * we update the existing records if we find multiple revokes for a 677 * single block. 678 */ 679 680 int jbd2_journal_set_revoke(journal_t *journal, 681 unsigned long long blocknr, 682 tid_t sequence) 683 { 684 struct jbd2_revoke_record_s *record; 685 686 record = find_revoke_record(journal, blocknr); 687 if (record) { 688 /* If we have multiple occurrences, only record the 689 * latest sequence number in the hashed record */ 690 if (tid_gt(sequence, record->sequence)) 691 record->sequence = sequence; 692 return 0; 693 } 694 return insert_revoke_hash(journal, blocknr, sequence); 695 } 696 697 /* 698 * Test revoke records. For a given block referenced in the log, has 699 * that block been revoked? A revoke record with a given transaction 700 * sequence number revokes all blocks in that transaction and earlier 701 * ones, but later transactions still need replayed. 702 */ 703 704 int jbd2_journal_test_revoke(journal_t *journal, 705 unsigned long long blocknr, 706 tid_t sequence) 707 { 708 struct jbd2_revoke_record_s *record; 709 710 record = find_revoke_record(journal, blocknr); 711 if (!record) 712 return 0; 713 if (tid_gt(sequence, record->sequence)) 714 return 0; 715 return 1; 716 } 717 718 /* 719 * Finally, once recovery is over, we need to clear the revoke table so 720 * that it can be reused by the running filesystem. 721 */ 722 723 void jbd2_journal_clear_revoke(journal_t *journal) 724 { 725 int i; 726 struct list_head *hash_list; 727 struct jbd2_revoke_record_s *record; 728 struct jbd2_revoke_table_s *revoke; 729 730 revoke = journal->j_revoke; 731 732 for (i = 0; i < revoke->hash_size; i++) { 733 hash_list = &revoke->hash_table[i]; 734 while (!list_empty(hash_list)) { 735 record = (struct jbd2_revoke_record_s*) hash_list->next; 736 list_del(&record->hash); 737 kmem_cache_free(jbd2_revoke_record_cache, record); 738 } 739 } 740 } 741