1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * linux/fs/jbd2/revoke.c 4 * 5 * Written by Stephen C. Tweedie <sct@redhat.com>, 2000 6 * 7 * Copyright 2000 Red Hat corp --- All Rights Reserved 8 * 9 * Journal revoke routines for the generic filesystem journaling code; 10 * part of the ext2fs journaling system. 11 * 12 * Revoke is the mechanism used to prevent old log records for deleted 13 * metadata from being replayed on top of newer data using the same 14 * blocks. The revoke mechanism is used in two separate places: 15 * 16 * + Commit: during commit we write the entire list of the current 17 * transaction's revoked blocks to the journal 18 * 19 * + Recovery: during recovery we record the transaction ID of all 20 * revoked blocks. If there are multiple revoke records in the log 21 * for a single block, only the last one counts, and if there is a log 22 * entry for a block beyond the last revoke, then that log entry still 23 * gets replayed. 24 * 25 * We can get interactions between revokes and new log data within a 26 * single transaction: 27 * 28 * Block is revoked and then journaled: 29 * The desired end result is the journaling of the new block, so we 30 * cancel the revoke before the transaction commits. 31 * 32 * Block is journaled and then revoked: 33 * The revoke must take precedence over the write of the block, so we 34 * need either to cancel the journal entry or to write the revoke 35 * later in the log than the log block. In this case, we choose the 36 * latter: journaling a block cancels any revoke record for that block 37 * in the current transaction, so any revoke for that block in the 38 * transaction must have happened after the block was journaled and so 39 * the revoke must take precedence. 40 * 41 * Block is revoked and then written as data: 42 * The data write is allowed to succeed, but the revoke is _not_ 43 * cancelled. We still need to prevent old log records from 44 * overwriting the new data. We don't even need to clear the revoke 45 * bit here. 46 * 47 * We cache revoke status of a buffer in the current transaction in b_states 48 * bits. As the name says, revokevalid flag indicates that the cached revoke 49 * status of a buffer is valid and we can rely on the cached status. 50 * 51 * Revoke information on buffers is a tri-state value: 52 * 53 * RevokeValid clear: no cached revoke status, need to look it up 54 * RevokeValid set, Revoked clear: 55 * buffer has not been revoked, and cancel_revoke 56 * need do nothing. 57 * RevokeValid set, Revoked set: 58 * buffer has been revoked. 59 * 60 * Locking rules: 61 * We keep two hash tables of revoke records. One hashtable belongs to the 62 * running transaction (is pointed to by journal->j_revoke), the other one 63 * belongs to the committing transaction. Accesses to the second hash table 64 * happen only from the kjournald and no other thread touches this table. Also 65 * journal_switch_revoke_table() which switches which hashtable belongs to the 66 * running and which to the committing transaction is called only from 67 * kjournald. Therefore we need no locks when accessing the hashtable belonging 68 * to the committing transaction. 69 * 70 * All users operating on the hash table belonging to the running transaction 71 * have a handle to the transaction. Therefore they are safe from kjournald 72 * switching hash tables under them. For operations on the lists of entries in 73 * the hash table j_revoke_lock is used. 74 * 75 * Finally, also replay code uses the hash tables but at this moment no one else 76 * can touch them (filesystem isn't mounted yet) and hence no locking is 77 * needed. 78 */ 79 80 #ifndef __KERNEL__ 81 #include "jfs_user.h" 82 #else 83 #include <linux/time.h> 84 #include <linux/fs.h> 85 #include <linux/jbd2.h> 86 #include <linux/errno.h> 87 #include <linux/slab.h> 88 #include <linux/list.h> 89 #include <linux/init.h> 90 #include <linux/bio.h> 91 #include <linux/log2.h> 92 #include <linux/hash.h> 93 #endif 94 95 static struct kmem_cache *jbd2_revoke_record_cache; 96 static struct kmem_cache *jbd2_revoke_table_cache; 97 98 /* Each revoke record represents one single revoked block. During 99 journal replay, this involves recording the transaction ID of the 100 last transaction to revoke this block. */ 101 102 struct jbd2_revoke_record_s 103 { 104 struct list_head hash; 105 tid_t sequence; /* Used for recovery only */ 106 unsigned long long blocknr; 107 }; 108 109 110 /* The revoke table is just a simple hash table of revoke records. */ 111 struct jbd2_revoke_table_s 112 { 113 /* It is conceivable that we might want a larger hash table 114 * for recovery. Must be a power of two. */ 115 int hash_size; 116 int hash_shift; 117 struct list_head *hash_table; 118 }; 119 120 121 #ifdef __KERNEL__ 122 static void write_one_revoke_record(transaction_t *, 123 struct list_head *, 124 struct buffer_head **, int *, 125 struct jbd2_revoke_record_s *); 126 static void flush_descriptor(journal_t *, struct buffer_head *, int); 127 #endif 128 129 /* Utility functions to maintain the revoke table */ 130 131 static inline int hash(journal_t *journal, unsigned long long block) 132 { 133 return hash_64(block, journal->j_revoke->hash_shift); 134 } 135 136 static int insert_revoke_hash(journal_t *journal, unsigned long long blocknr, 137 tid_t seq) 138 { 139 struct list_head *hash_list; 140 struct jbd2_revoke_record_s *record; 141 gfp_t gfp_mask = GFP_NOFS; 142 143 if (journal_oom_retry) 144 gfp_mask |= __GFP_NOFAIL; 145 record = kmem_cache_alloc(jbd2_revoke_record_cache, gfp_mask); 146 if (!record) 147 return -ENOMEM; 148 149 record->sequence = seq; 150 record->blocknr = blocknr; 151 hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)]; 152 spin_lock(&journal->j_revoke_lock); 153 list_add(&record->hash, hash_list); 154 spin_unlock(&journal->j_revoke_lock); 155 return 0; 156 } 157 158 /* Find a revoke record in the journal's hash table. */ 159 160 static struct jbd2_revoke_record_s *find_revoke_record(journal_t *journal, 161 unsigned long long blocknr) 162 { 163 struct list_head *hash_list; 164 struct jbd2_revoke_record_s *record; 165 166 hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)]; 167 168 spin_lock(&journal->j_revoke_lock); 169 record = (struct jbd2_revoke_record_s *) hash_list->next; 170 while (&(record->hash) != hash_list) { 171 if (record->blocknr == blocknr) { 172 spin_unlock(&journal->j_revoke_lock); 173 return record; 174 } 175 record = (struct jbd2_revoke_record_s *) record->hash.next; 176 } 177 spin_unlock(&journal->j_revoke_lock); 178 return NULL; 179 } 180 181 void jbd2_journal_destroy_revoke_record_cache(void) 182 { 183 kmem_cache_destroy(jbd2_revoke_record_cache); 184 jbd2_revoke_record_cache = NULL; 185 } 186 187 void jbd2_journal_destroy_revoke_table_cache(void) 188 { 189 kmem_cache_destroy(jbd2_revoke_table_cache); 190 jbd2_revoke_table_cache = NULL; 191 } 192 193 int __init jbd2_journal_init_revoke_record_cache(void) 194 { 195 J_ASSERT(!jbd2_revoke_record_cache); 196 jbd2_revoke_record_cache = KMEM_CACHE(jbd2_revoke_record_s, 197 SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY); 198 199 if (!jbd2_revoke_record_cache) { 200 pr_emerg("JBD2: failed to create revoke_record cache\n"); 201 return -ENOMEM; 202 } 203 return 0; 204 } 205 206 int __init jbd2_journal_init_revoke_table_cache(void) 207 { 208 J_ASSERT(!jbd2_revoke_table_cache); 209 jbd2_revoke_table_cache = KMEM_CACHE(jbd2_revoke_table_s, 210 SLAB_TEMPORARY); 211 if (!jbd2_revoke_table_cache) { 212 pr_emerg("JBD2: failed to create revoke_table cache\n"); 213 return -ENOMEM; 214 } 215 return 0; 216 } 217 218 static struct jbd2_revoke_table_s *jbd2_journal_init_revoke_table(int hash_size) 219 { 220 int shift = 0; 221 int tmp = hash_size; 222 struct jbd2_revoke_table_s *table; 223 224 table = kmem_cache_alloc(jbd2_revoke_table_cache, GFP_KERNEL); 225 if (!table) 226 goto out; 227 228 while((tmp >>= 1UL) != 0UL) 229 shift++; 230 231 table->hash_size = hash_size; 232 table->hash_shift = shift; 233 table->hash_table = 234 kmalloc_array(hash_size, sizeof(struct list_head), GFP_KERNEL); 235 if (!table->hash_table) { 236 kmem_cache_free(jbd2_revoke_table_cache, table); 237 table = NULL; 238 goto out; 239 } 240 241 for (tmp = 0; tmp < hash_size; tmp++) 242 INIT_LIST_HEAD(&table->hash_table[tmp]); 243 244 out: 245 return table; 246 } 247 248 static void jbd2_journal_destroy_revoke_table(struct jbd2_revoke_table_s *table) 249 { 250 int i; 251 struct list_head *hash_list; 252 253 for (i = 0; i < table->hash_size; i++) { 254 hash_list = &table->hash_table[i]; 255 J_ASSERT(list_empty(hash_list)); 256 } 257 258 kfree(table->hash_table); 259 kmem_cache_free(jbd2_revoke_table_cache, table); 260 } 261 262 /* Initialise the revoke table for a given journal to a given size. */ 263 int jbd2_journal_init_revoke(journal_t *journal, int hash_size) 264 { 265 J_ASSERT(journal->j_revoke_table[0] == NULL); 266 J_ASSERT(is_power_of_2(hash_size)); 267 268 journal->j_revoke_table[0] = jbd2_journal_init_revoke_table(hash_size); 269 if (!journal->j_revoke_table[0]) 270 goto fail0; 271 272 journal->j_revoke_table[1] = jbd2_journal_init_revoke_table(hash_size); 273 if (!journal->j_revoke_table[1]) 274 goto fail1; 275 276 journal->j_revoke = journal->j_revoke_table[1]; 277 278 spin_lock_init(&journal->j_revoke_lock); 279 280 return 0; 281 282 fail1: 283 jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]); 284 journal->j_revoke_table[0] = NULL; 285 fail0: 286 return -ENOMEM; 287 } 288 289 /* Destroy a journal's revoke table. The table must already be empty! */ 290 void jbd2_journal_destroy_revoke(journal_t *journal) 291 { 292 journal->j_revoke = NULL; 293 if (journal->j_revoke_table[0]) 294 jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]); 295 if (journal->j_revoke_table[1]) 296 jbd2_journal_destroy_revoke_table(journal->j_revoke_table[1]); 297 } 298 299 300 #ifdef __KERNEL__ 301 302 /* 303 * jbd2_journal_revoke: revoke a given buffer_head from the journal. This 304 * prevents the block from being replayed during recovery if we take a 305 * crash after this current transaction commits. Any subsequent 306 * metadata writes of the buffer in this transaction cancel the 307 * revoke. 308 * 309 * Note that this call may block --- it is up to the caller to make 310 * sure that there are no further calls to journal_write_metadata 311 * before the revoke is complete. In ext3, this implies calling the 312 * revoke before clearing the block bitmap when we are deleting 313 * metadata. 314 * 315 * Revoke performs a jbd2_journal_forget on any buffer_head passed in as a 316 * parameter, but does _not_ forget the buffer_head if the bh was only 317 * found implicitly. 318 * 319 * bh_in may not be a journalled buffer - it may have come off 320 * the hash tables without an attached journal_head. 321 * 322 * If bh_in is non-zero, jbd2_journal_revoke() will decrement its b_count 323 * by one. 324 */ 325 326 int jbd2_journal_revoke(handle_t *handle, unsigned long long blocknr, 327 struct buffer_head *bh_in) 328 { 329 struct buffer_head *bh = NULL; 330 journal_t *journal; 331 struct block_device *bdev; 332 int err; 333 334 might_sleep(); 335 if (bh_in) 336 BUFFER_TRACE(bh_in, "enter"); 337 338 journal = handle->h_transaction->t_journal; 339 if (!jbd2_journal_set_features(journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)){ 340 J_ASSERT (!"Cannot set revoke feature!"); 341 return -EINVAL; 342 } 343 344 bdev = journal->j_fs_dev; 345 bh = bh_in; 346 347 if (!bh) { 348 bh = __find_get_block(bdev, blocknr, journal->j_blocksize); 349 if (bh) 350 BUFFER_TRACE(bh, "found on hash"); 351 } 352 #ifdef JBD2_EXPENSIVE_CHECKING 353 else { 354 struct buffer_head *bh2; 355 356 /* If there is a different buffer_head lying around in 357 * memory anywhere... */ 358 bh2 = __find_get_block(bdev, blocknr, journal->j_blocksize); 359 if (bh2) { 360 /* ... and it has RevokeValid status... */ 361 if (bh2 != bh && buffer_revokevalid(bh2)) 362 /* ...then it better be revoked too, 363 * since it's illegal to create a revoke 364 * record against a buffer_head which is 365 * not marked revoked --- that would 366 * risk missing a subsequent revoke 367 * cancel. */ 368 J_ASSERT_BH(bh2, buffer_revoked(bh2)); 369 put_bh(bh2); 370 } 371 } 372 #endif 373 374 /* We really ought not ever to revoke twice in a row without 375 first having the revoke cancelled: it's illegal to free a 376 block twice without allocating it in between! */ 377 if (bh) { 378 if (!J_EXPECT_BH(bh, !buffer_revoked(bh), 379 "inconsistent data on disk")) { 380 if (!bh_in) 381 brelse(bh); 382 return -EIO; 383 } 384 set_buffer_revoked(bh); 385 set_buffer_revokevalid(bh); 386 if (bh_in) { 387 BUFFER_TRACE(bh_in, "call jbd2_journal_forget"); 388 jbd2_journal_forget(handle, bh_in); 389 } else { 390 BUFFER_TRACE(bh, "call brelse"); 391 __brelse(bh); 392 } 393 } 394 395 jbd_debug(2, "insert revoke for block %llu, bh_in=%p\n",blocknr, bh_in); 396 err = insert_revoke_hash(journal, blocknr, 397 handle->h_transaction->t_tid); 398 BUFFER_TRACE(bh_in, "exit"); 399 return err; 400 } 401 402 /* 403 * Cancel an outstanding revoke. For use only internally by the 404 * journaling code (called from jbd2_journal_get_write_access). 405 * 406 * We trust buffer_revoked() on the buffer if the buffer is already 407 * being journaled: if there is no revoke pending on the buffer, then we 408 * don't do anything here. 409 * 410 * This would break if it were possible for a buffer to be revoked and 411 * discarded, and then reallocated within the same transaction. In such 412 * a case we would have lost the revoked bit, but when we arrived here 413 * the second time we would still have a pending revoke to cancel. So, 414 * do not trust the Revoked bit on buffers unless RevokeValid is also 415 * set. 416 */ 417 int jbd2_journal_cancel_revoke(handle_t *handle, struct journal_head *jh) 418 { 419 struct jbd2_revoke_record_s *record; 420 journal_t *journal = handle->h_transaction->t_journal; 421 int need_cancel; 422 int did_revoke = 0; /* akpm: debug */ 423 struct buffer_head *bh = jh2bh(jh); 424 425 jbd_debug(4, "journal_head %p, cancelling revoke\n", jh); 426 427 /* Is the existing Revoke bit valid? If so, we trust it, and 428 * only perform the full cancel if the revoke bit is set. If 429 * not, we can't trust the revoke bit, and we need to do the 430 * full search for a revoke record. */ 431 if (test_set_buffer_revokevalid(bh)) { 432 need_cancel = test_clear_buffer_revoked(bh); 433 } else { 434 need_cancel = 1; 435 clear_buffer_revoked(bh); 436 } 437 438 if (need_cancel) { 439 record = find_revoke_record(journal, bh->b_blocknr); 440 if (record) { 441 jbd_debug(4, "cancelled existing revoke on " 442 "blocknr %llu\n", (unsigned long long)bh->b_blocknr); 443 spin_lock(&journal->j_revoke_lock); 444 list_del(&record->hash); 445 spin_unlock(&journal->j_revoke_lock); 446 kmem_cache_free(jbd2_revoke_record_cache, record); 447 did_revoke = 1; 448 } 449 } 450 451 #ifdef JBD2_EXPENSIVE_CHECKING 452 /* There better not be one left behind by now! */ 453 record = find_revoke_record(journal, bh->b_blocknr); 454 J_ASSERT_JH(jh, record == NULL); 455 #endif 456 457 /* Finally, have we just cleared revoke on an unhashed 458 * buffer_head? If so, we'd better make sure we clear the 459 * revoked status on any hashed alias too, otherwise the revoke 460 * state machine will get very upset later on. */ 461 if (need_cancel) { 462 struct buffer_head *bh2; 463 bh2 = __find_get_block(bh->b_bdev, bh->b_blocknr, bh->b_size); 464 if (bh2) { 465 if (bh2 != bh) 466 clear_buffer_revoked(bh2); 467 __brelse(bh2); 468 } 469 } 470 return did_revoke; 471 } 472 473 /* 474 * journal_clear_revoked_flag clears revoked flag of buffers in 475 * revoke table to reflect there is no revoked buffers in the next 476 * transaction which is going to be started. 477 */ 478 void jbd2_clear_buffer_revoked_flags(journal_t *journal) 479 { 480 struct jbd2_revoke_table_s *revoke = journal->j_revoke; 481 int i = 0; 482 483 for (i = 0; i < revoke->hash_size; i++) { 484 struct list_head *hash_list; 485 struct list_head *list_entry; 486 hash_list = &revoke->hash_table[i]; 487 488 list_for_each(list_entry, hash_list) { 489 struct jbd2_revoke_record_s *record; 490 struct buffer_head *bh; 491 record = (struct jbd2_revoke_record_s *)list_entry; 492 bh = __find_get_block(journal->j_fs_dev, 493 record->blocknr, 494 journal->j_blocksize); 495 if (bh) { 496 clear_buffer_revoked(bh); 497 __brelse(bh); 498 } 499 } 500 } 501 } 502 503 /* journal_switch_revoke table select j_revoke for next transaction 504 * we do not want to suspend any processing until all revokes are 505 * written -bzzz 506 */ 507 void jbd2_journal_switch_revoke_table(journal_t *journal) 508 { 509 int i; 510 511 if (journal->j_revoke == journal->j_revoke_table[0]) 512 journal->j_revoke = journal->j_revoke_table[1]; 513 else 514 journal->j_revoke = journal->j_revoke_table[0]; 515 516 for (i = 0; i < journal->j_revoke->hash_size; i++) 517 INIT_LIST_HEAD(&journal->j_revoke->hash_table[i]); 518 } 519 520 /* 521 * Write revoke records to the journal for all entries in the current 522 * revoke hash, deleting the entries as we go. 523 */ 524 void jbd2_journal_write_revoke_records(transaction_t *transaction, 525 struct list_head *log_bufs) 526 { 527 journal_t *journal = transaction->t_journal; 528 struct buffer_head *descriptor; 529 struct jbd2_revoke_record_s *record; 530 struct jbd2_revoke_table_s *revoke; 531 struct list_head *hash_list; 532 int i, offset, count; 533 534 descriptor = NULL; 535 offset = 0; 536 count = 0; 537 538 /* select revoke table for committing transaction */ 539 revoke = journal->j_revoke == journal->j_revoke_table[0] ? 540 journal->j_revoke_table[1] : journal->j_revoke_table[0]; 541 542 for (i = 0; i < revoke->hash_size; i++) { 543 hash_list = &revoke->hash_table[i]; 544 545 while (!list_empty(hash_list)) { 546 record = (struct jbd2_revoke_record_s *) 547 hash_list->next; 548 write_one_revoke_record(transaction, log_bufs, 549 &descriptor, &offset, record); 550 count++; 551 list_del(&record->hash); 552 kmem_cache_free(jbd2_revoke_record_cache, record); 553 } 554 } 555 if (descriptor) 556 flush_descriptor(journal, descriptor, offset); 557 jbd_debug(1, "Wrote %d revoke records\n", count); 558 } 559 560 /* 561 * Write out one revoke record. We need to create a new descriptor 562 * block if the old one is full or if we have not already created one. 563 */ 564 565 static void write_one_revoke_record(transaction_t *transaction, 566 struct list_head *log_bufs, 567 struct buffer_head **descriptorp, 568 int *offsetp, 569 struct jbd2_revoke_record_s *record) 570 { 571 journal_t *journal = transaction->t_journal; 572 int csum_size = 0; 573 struct buffer_head *descriptor; 574 int sz, offset; 575 576 /* If we are already aborting, this all becomes a noop. We 577 still need to go round the loop in 578 jbd2_journal_write_revoke_records in order to free all of the 579 revoke records: only the IO to the journal is omitted. */ 580 if (is_journal_aborted(journal)) 581 return; 582 583 descriptor = *descriptorp; 584 offset = *offsetp; 585 586 /* Do we need to leave space at the end for a checksum? */ 587 if (jbd2_journal_has_csum_v2or3(journal)) 588 csum_size = sizeof(struct jbd2_journal_block_tail); 589 590 if (jbd2_has_feature_64bit(journal)) 591 sz = 8; 592 else 593 sz = 4; 594 595 /* Make sure we have a descriptor with space left for the record */ 596 if (descriptor) { 597 if (offset + sz > journal->j_blocksize - csum_size) { 598 flush_descriptor(journal, descriptor, offset); 599 descriptor = NULL; 600 } 601 } 602 603 if (!descriptor) { 604 descriptor = jbd2_journal_get_descriptor_buffer(transaction, 605 JBD2_REVOKE_BLOCK); 606 if (!descriptor) 607 return; 608 609 /* Record it so that we can wait for IO completion later */ 610 BUFFER_TRACE(descriptor, "file in log_bufs"); 611 jbd2_file_log_bh(log_bufs, descriptor); 612 613 offset = sizeof(jbd2_journal_revoke_header_t); 614 *descriptorp = descriptor; 615 } 616 617 if (jbd2_has_feature_64bit(journal)) 618 * ((__be64 *)(&descriptor->b_data[offset])) = 619 cpu_to_be64(record->blocknr); 620 else 621 * ((__be32 *)(&descriptor->b_data[offset])) = 622 cpu_to_be32(record->blocknr); 623 offset += sz; 624 625 *offsetp = offset; 626 } 627 628 /* 629 * Flush a revoke descriptor out to the journal. If we are aborting, 630 * this is a noop; otherwise we are generating a buffer which needs to 631 * be waited for during commit, so it has to go onto the appropriate 632 * journal buffer list. 633 */ 634 635 static void flush_descriptor(journal_t *journal, 636 struct buffer_head *descriptor, 637 int offset) 638 { 639 jbd2_journal_revoke_header_t *header; 640 641 if (is_journal_aborted(journal)) { 642 put_bh(descriptor); 643 return; 644 } 645 646 header = (jbd2_journal_revoke_header_t *)descriptor->b_data; 647 header->r_count = cpu_to_be32(offset); 648 jbd2_descriptor_block_csum_set(journal, descriptor); 649 650 set_buffer_jwrite(descriptor); 651 BUFFER_TRACE(descriptor, "write"); 652 set_buffer_dirty(descriptor); 653 write_dirty_buffer(descriptor, REQ_SYNC); 654 } 655 #endif 656 657 /* 658 * Revoke support for recovery. 659 * 660 * Recovery needs to be able to: 661 * 662 * record all revoke records, including the tid of the latest instance 663 * of each revoke in the journal 664 * 665 * check whether a given block in a given transaction should be replayed 666 * (ie. has not been revoked by a revoke record in that or a subsequent 667 * transaction) 668 * 669 * empty the revoke table after recovery. 670 */ 671 672 /* 673 * First, setting revoke records. We create a new revoke record for 674 * every block ever revoked in the log as we scan it for recovery, and 675 * we update the existing records if we find multiple revokes for a 676 * single block. 677 */ 678 679 int jbd2_journal_set_revoke(journal_t *journal, 680 unsigned long long blocknr, 681 tid_t sequence) 682 { 683 struct jbd2_revoke_record_s *record; 684 685 record = find_revoke_record(journal, blocknr); 686 if (record) { 687 /* If we have multiple occurrences, only record the 688 * latest sequence number in the hashed record */ 689 if (tid_gt(sequence, record->sequence)) 690 record->sequence = sequence; 691 return 0; 692 } 693 return insert_revoke_hash(journal, blocknr, sequence); 694 } 695 696 /* 697 * Test revoke records. For a given block referenced in the log, has 698 * that block been revoked? A revoke record with a given transaction 699 * sequence number revokes all blocks in that transaction and earlier 700 * ones, but later transactions still need replayed. 701 */ 702 703 int jbd2_journal_test_revoke(journal_t *journal, 704 unsigned long long blocknr, 705 tid_t sequence) 706 { 707 struct jbd2_revoke_record_s *record; 708 709 record = find_revoke_record(journal, blocknr); 710 if (!record) 711 return 0; 712 if (tid_gt(sequence, record->sequence)) 713 return 0; 714 return 1; 715 } 716 717 /* 718 * Finally, once recovery is over, we need to clear the revoke table so 719 * that it can be reused by the running filesystem. 720 */ 721 722 void jbd2_journal_clear_revoke(journal_t *journal) 723 { 724 int i; 725 struct list_head *hash_list; 726 struct jbd2_revoke_record_s *record; 727 struct jbd2_revoke_table_s *revoke; 728 729 revoke = journal->j_revoke; 730 731 for (i = 0; i < revoke->hash_size; i++) { 732 hash_list = &revoke->hash_table[i]; 733 while (!list_empty(hash_list)) { 734 record = (struct jbd2_revoke_record_s*) hash_list->next; 735 list_del(&record->hash); 736 kmem_cache_free(jbd2_revoke_record_cache, record); 737 } 738 } 739 } 740