1 /* 2 * linux/fs/jbd2/revoke.c 3 * 4 * Written by Stephen C. Tweedie <sct@redhat.com>, 2000 5 * 6 * Copyright 2000 Red Hat corp --- All Rights Reserved 7 * 8 * This file is part of the Linux kernel and is made available under 9 * the terms of the GNU General Public License, version 2, or at your 10 * option, any later version, incorporated herein by reference. 11 * 12 * Journal revoke routines for the generic filesystem journaling code; 13 * part of the ext2fs journaling system. 14 * 15 * Revoke is the mechanism used to prevent old log records for deleted 16 * metadata from being replayed on top of newer data using the same 17 * blocks. The revoke mechanism is used in two separate places: 18 * 19 * + Commit: during commit we write the entire list of the current 20 * transaction's revoked blocks to the journal 21 * 22 * + Recovery: during recovery we record the transaction ID of all 23 * revoked blocks. If there are multiple revoke records in the log 24 * for a single block, only the last one counts, and if there is a log 25 * entry for a block beyond the last revoke, then that log entry still 26 * gets replayed. 27 * 28 * We can get interactions between revokes and new log data within a 29 * single transaction: 30 * 31 * Block is revoked and then journaled: 32 * The desired end result is the journaling of the new block, so we 33 * cancel the revoke before the transaction commits. 34 * 35 * Block is journaled and then revoked: 36 * The revoke must take precedence over the write of the block, so we 37 * need either to cancel the journal entry or to write the revoke 38 * later in the log than the log block. In this case, we choose the 39 * latter: journaling a block cancels any revoke record for that block 40 * in the current transaction, so any revoke for that block in the 41 * transaction must have happened after the block was journaled and so 42 * the revoke must take precedence. 43 * 44 * Block is revoked and then written as data: 45 * The data write is allowed to succeed, but the revoke is _not_ 46 * cancelled. We still need to prevent old log records from 47 * overwriting the new data. We don't even need to clear the revoke 48 * bit here. 49 * 50 * We cache revoke status of a buffer in the current transaction in b_states 51 * bits. As the name says, revokevalid flag indicates that the cached revoke 52 * status of a buffer is valid and we can rely on the cached status. 53 * 54 * Revoke information on buffers is a tri-state value: 55 * 56 * RevokeValid clear: no cached revoke status, need to look it up 57 * RevokeValid set, Revoked clear: 58 * buffer has not been revoked, and cancel_revoke 59 * need do nothing. 60 * RevokeValid set, Revoked set: 61 * buffer has been revoked. 62 * 63 * Locking rules: 64 * We keep two hash tables of revoke records. One hashtable belongs to the 65 * running transaction (is pointed to by journal->j_revoke), the other one 66 * belongs to the committing transaction. Accesses to the second hash table 67 * happen only from the kjournald and no other thread touches this table. Also 68 * journal_switch_revoke_table() which switches which hashtable belongs to the 69 * running and which to the committing transaction is called only from 70 * kjournald. Therefore we need no locks when accessing the hashtable belonging 71 * to the committing transaction. 72 * 73 * All users operating on the hash table belonging to the running transaction 74 * have a handle to the transaction. Therefore they are safe from kjournald 75 * switching hash tables under them. For operations on the lists of entries in 76 * the hash table j_revoke_lock is used. 77 * 78 * Finally, also replay code uses the hash tables but at this moment no one else 79 * can touch them (filesystem isn't mounted yet) and hence no locking is 80 * needed. 81 */ 82 83 #ifndef __KERNEL__ 84 #include "jfs_user.h" 85 #else 86 #include <linux/time.h> 87 #include <linux/fs.h> 88 #include <linux/jbd2.h> 89 #include <linux/errno.h> 90 #include <linux/slab.h> 91 #include <linux/list.h> 92 #include <linux/init.h> 93 #include <linux/bio.h> 94 #include <linux/log2.h> 95 #include <linux/hash.h> 96 #endif 97 98 static struct kmem_cache *jbd2_revoke_record_cache; 99 static struct kmem_cache *jbd2_revoke_table_cache; 100 101 /* Each revoke record represents one single revoked block. During 102 journal replay, this involves recording the transaction ID of the 103 last transaction to revoke this block. */ 104 105 struct jbd2_revoke_record_s 106 { 107 struct list_head hash; 108 tid_t sequence; /* Used for recovery only */ 109 unsigned long long blocknr; 110 }; 111 112 113 /* The revoke table is just a simple hash table of revoke records. */ 114 struct jbd2_revoke_table_s 115 { 116 /* It is conceivable that we might want a larger hash table 117 * for recovery. Must be a power of two. */ 118 int hash_size; 119 int hash_shift; 120 struct list_head *hash_table; 121 }; 122 123 124 #ifdef __KERNEL__ 125 static void write_one_revoke_record(transaction_t *, 126 struct list_head *, 127 struct buffer_head **, int *, 128 struct jbd2_revoke_record_s *); 129 static void flush_descriptor(journal_t *, struct buffer_head *, int); 130 #endif 131 132 /* Utility functions to maintain the revoke table */ 133 134 static inline int hash(journal_t *journal, unsigned long long block) 135 { 136 return hash_64(block, journal->j_revoke->hash_shift); 137 } 138 139 static int insert_revoke_hash(journal_t *journal, unsigned long long blocknr, 140 tid_t seq) 141 { 142 struct list_head *hash_list; 143 struct jbd2_revoke_record_s *record; 144 gfp_t gfp_mask = GFP_NOFS; 145 146 if (journal_oom_retry) 147 gfp_mask |= __GFP_NOFAIL; 148 record = kmem_cache_alloc(jbd2_revoke_record_cache, gfp_mask); 149 if (!record) 150 return -ENOMEM; 151 152 record->sequence = seq; 153 record->blocknr = blocknr; 154 hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)]; 155 spin_lock(&journal->j_revoke_lock); 156 list_add(&record->hash, hash_list); 157 spin_unlock(&journal->j_revoke_lock); 158 return 0; 159 } 160 161 /* Find a revoke record in the journal's hash table. */ 162 163 static struct jbd2_revoke_record_s *find_revoke_record(journal_t *journal, 164 unsigned long long blocknr) 165 { 166 struct list_head *hash_list; 167 struct jbd2_revoke_record_s *record; 168 169 hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)]; 170 171 spin_lock(&journal->j_revoke_lock); 172 record = (struct jbd2_revoke_record_s *) hash_list->next; 173 while (&(record->hash) != hash_list) { 174 if (record->blocknr == blocknr) { 175 spin_unlock(&journal->j_revoke_lock); 176 return record; 177 } 178 record = (struct jbd2_revoke_record_s *) record->hash.next; 179 } 180 spin_unlock(&journal->j_revoke_lock); 181 return NULL; 182 } 183 184 void jbd2_journal_destroy_revoke_caches(void) 185 { 186 if (jbd2_revoke_record_cache) { 187 kmem_cache_destroy(jbd2_revoke_record_cache); 188 jbd2_revoke_record_cache = NULL; 189 } 190 if (jbd2_revoke_table_cache) { 191 kmem_cache_destroy(jbd2_revoke_table_cache); 192 jbd2_revoke_table_cache = NULL; 193 } 194 } 195 196 int __init jbd2_journal_init_revoke_caches(void) 197 { 198 J_ASSERT(!jbd2_revoke_record_cache); 199 J_ASSERT(!jbd2_revoke_table_cache); 200 201 jbd2_revoke_record_cache = KMEM_CACHE(jbd2_revoke_record_s, 202 SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY); 203 if (!jbd2_revoke_record_cache) 204 goto record_cache_failure; 205 206 jbd2_revoke_table_cache = KMEM_CACHE(jbd2_revoke_table_s, 207 SLAB_TEMPORARY); 208 if (!jbd2_revoke_table_cache) 209 goto table_cache_failure; 210 return 0; 211 table_cache_failure: 212 jbd2_journal_destroy_revoke_caches(); 213 record_cache_failure: 214 return -ENOMEM; 215 } 216 217 static struct jbd2_revoke_table_s *jbd2_journal_init_revoke_table(int hash_size) 218 { 219 int shift = 0; 220 int tmp = hash_size; 221 struct jbd2_revoke_table_s *table; 222 223 table = kmem_cache_alloc(jbd2_revoke_table_cache, GFP_KERNEL); 224 if (!table) 225 goto out; 226 227 while((tmp >>= 1UL) != 0UL) 228 shift++; 229 230 table->hash_size = hash_size; 231 table->hash_shift = shift; 232 table->hash_table = 233 kmalloc(hash_size * sizeof(struct list_head), GFP_KERNEL); 234 if (!table->hash_table) { 235 kmem_cache_free(jbd2_revoke_table_cache, table); 236 table = NULL; 237 goto out; 238 } 239 240 for (tmp = 0; tmp < hash_size; tmp++) 241 INIT_LIST_HEAD(&table->hash_table[tmp]); 242 243 out: 244 return table; 245 } 246 247 static void jbd2_journal_destroy_revoke_table(struct jbd2_revoke_table_s *table) 248 { 249 int i; 250 struct list_head *hash_list; 251 252 for (i = 0; i < table->hash_size; i++) { 253 hash_list = &table->hash_table[i]; 254 J_ASSERT(list_empty(hash_list)); 255 } 256 257 kfree(table->hash_table); 258 kmem_cache_free(jbd2_revoke_table_cache, table); 259 } 260 261 /* Initialise the revoke table for a given journal to a given size. */ 262 int jbd2_journal_init_revoke(journal_t *journal, int hash_size) 263 { 264 J_ASSERT(journal->j_revoke_table[0] == NULL); 265 J_ASSERT(is_power_of_2(hash_size)); 266 267 journal->j_revoke_table[0] = jbd2_journal_init_revoke_table(hash_size); 268 if (!journal->j_revoke_table[0]) 269 goto fail0; 270 271 journal->j_revoke_table[1] = jbd2_journal_init_revoke_table(hash_size); 272 if (!journal->j_revoke_table[1]) 273 goto fail1; 274 275 journal->j_revoke = journal->j_revoke_table[1]; 276 277 spin_lock_init(&journal->j_revoke_lock); 278 279 return 0; 280 281 fail1: 282 jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]); 283 journal->j_revoke_table[0] = NULL; 284 fail0: 285 return -ENOMEM; 286 } 287 288 /* Destroy a journal's revoke table. The table must already be empty! */ 289 void jbd2_journal_destroy_revoke(journal_t *journal) 290 { 291 journal->j_revoke = NULL; 292 if (journal->j_revoke_table[0]) 293 jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]); 294 if (journal->j_revoke_table[1]) 295 jbd2_journal_destroy_revoke_table(journal->j_revoke_table[1]); 296 } 297 298 299 #ifdef __KERNEL__ 300 301 /* 302 * jbd2_journal_revoke: revoke a given buffer_head from the journal. This 303 * prevents the block from being replayed during recovery if we take a 304 * crash after this current transaction commits. Any subsequent 305 * metadata writes of the buffer in this transaction cancel the 306 * revoke. 307 * 308 * Note that this call may block --- it is up to the caller to make 309 * sure that there are no further calls to journal_write_metadata 310 * before the revoke is complete. In ext3, this implies calling the 311 * revoke before clearing the block bitmap when we are deleting 312 * metadata. 313 * 314 * Revoke performs a jbd2_journal_forget on any buffer_head passed in as a 315 * parameter, but does _not_ forget the buffer_head if the bh was only 316 * found implicitly. 317 * 318 * bh_in may not be a journalled buffer - it may have come off 319 * the hash tables without an attached journal_head. 320 * 321 * If bh_in is non-zero, jbd2_journal_revoke() will decrement its b_count 322 * by one. 323 */ 324 325 int jbd2_journal_revoke(handle_t *handle, unsigned long long blocknr, 326 struct buffer_head *bh_in) 327 { 328 struct buffer_head *bh = NULL; 329 journal_t *journal; 330 struct block_device *bdev; 331 int err; 332 333 might_sleep(); 334 if (bh_in) 335 BUFFER_TRACE(bh_in, "enter"); 336 337 journal = handle->h_transaction->t_journal; 338 if (!jbd2_journal_set_features(journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)){ 339 J_ASSERT (!"Cannot set revoke feature!"); 340 return -EINVAL; 341 } 342 343 bdev = journal->j_fs_dev; 344 bh = bh_in; 345 346 if (!bh) { 347 bh = __find_get_block(bdev, blocknr, journal->j_blocksize); 348 if (bh) 349 BUFFER_TRACE(bh, "found on hash"); 350 } 351 #ifdef JBD2_EXPENSIVE_CHECKING 352 else { 353 struct buffer_head *bh2; 354 355 /* If there is a different buffer_head lying around in 356 * memory anywhere... */ 357 bh2 = __find_get_block(bdev, blocknr, journal->j_blocksize); 358 if (bh2) { 359 /* ... and it has RevokeValid status... */ 360 if (bh2 != bh && buffer_revokevalid(bh2)) 361 /* ...then it better be revoked too, 362 * since it's illegal to create a revoke 363 * record against a buffer_head which is 364 * not marked revoked --- that would 365 * risk missing a subsequent revoke 366 * cancel. */ 367 J_ASSERT_BH(bh2, buffer_revoked(bh2)); 368 put_bh(bh2); 369 } 370 } 371 #endif 372 373 /* We really ought not ever to revoke twice in a row without 374 first having the revoke cancelled: it's illegal to free a 375 block twice without allocating it in between! */ 376 if (bh) { 377 if (!J_EXPECT_BH(bh, !buffer_revoked(bh), 378 "inconsistent data on disk")) { 379 if (!bh_in) 380 brelse(bh); 381 return -EIO; 382 } 383 set_buffer_revoked(bh); 384 set_buffer_revokevalid(bh); 385 if (bh_in) { 386 BUFFER_TRACE(bh_in, "call jbd2_journal_forget"); 387 jbd2_journal_forget(handle, bh_in); 388 } else { 389 BUFFER_TRACE(bh, "call brelse"); 390 __brelse(bh); 391 } 392 } 393 394 jbd_debug(2, "insert revoke for block %llu, bh_in=%p\n",blocknr, bh_in); 395 err = insert_revoke_hash(journal, blocknr, 396 handle->h_transaction->t_tid); 397 BUFFER_TRACE(bh_in, "exit"); 398 return err; 399 } 400 401 /* 402 * Cancel an outstanding revoke. For use only internally by the 403 * journaling code (called from jbd2_journal_get_write_access). 404 * 405 * We trust buffer_revoked() on the buffer if the buffer is already 406 * being journaled: if there is no revoke pending on the buffer, then we 407 * don't do anything here. 408 * 409 * This would break if it were possible for a buffer to be revoked and 410 * discarded, and then reallocated within the same transaction. In such 411 * a case we would have lost the revoked bit, but when we arrived here 412 * the second time we would still have a pending revoke to cancel. So, 413 * do not trust the Revoked bit on buffers unless RevokeValid is also 414 * set. 415 */ 416 int jbd2_journal_cancel_revoke(handle_t *handle, struct journal_head *jh) 417 { 418 struct jbd2_revoke_record_s *record; 419 journal_t *journal = handle->h_transaction->t_journal; 420 int need_cancel; 421 int did_revoke = 0; /* akpm: debug */ 422 struct buffer_head *bh = jh2bh(jh); 423 424 jbd_debug(4, "journal_head %p, cancelling revoke\n", jh); 425 426 /* Is the existing Revoke bit valid? If so, we trust it, and 427 * only perform the full cancel if the revoke bit is set. If 428 * not, we can't trust the revoke bit, and we need to do the 429 * full search for a revoke record. */ 430 if (test_set_buffer_revokevalid(bh)) { 431 need_cancel = test_clear_buffer_revoked(bh); 432 } else { 433 need_cancel = 1; 434 clear_buffer_revoked(bh); 435 } 436 437 if (need_cancel) { 438 record = find_revoke_record(journal, bh->b_blocknr); 439 if (record) { 440 jbd_debug(4, "cancelled existing revoke on " 441 "blocknr %llu\n", (unsigned long long)bh->b_blocknr); 442 spin_lock(&journal->j_revoke_lock); 443 list_del(&record->hash); 444 spin_unlock(&journal->j_revoke_lock); 445 kmem_cache_free(jbd2_revoke_record_cache, record); 446 did_revoke = 1; 447 } 448 } 449 450 #ifdef JBD2_EXPENSIVE_CHECKING 451 /* There better not be one left behind by now! */ 452 record = find_revoke_record(journal, bh->b_blocknr); 453 J_ASSERT_JH(jh, record == NULL); 454 #endif 455 456 /* Finally, have we just cleared revoke on an unhashed 457 * buffer_head? If so, we'd better make sure we clear the 458 * revoked status on any hashed alias too, otherwise the revoke 459 * state machine will get very upset later on. */ 460 if (need_cancel) { 461 struct buffer_head *bh2; 462 bh2 = __find_get_block(bh->b_bdev, bh->b_blocknr, bh->b_size); 463 if (bh2) { 464 if (bh2 != bh) 465 clear_buffer_revoked(bh2); 466 __brelse(bh2); 467 } 468 } 469 return did_revoke; 470 } 471 472 /* 473 * journal_clear_revoked_flag clears revoked flag of buffers in 474 * revoke table to reflect there is no revoked buffers in the next 475 * transaction which is going to be started. 476 */ 477 void jbd2_clear_buffer_revoked_flags(journal_t *journal) 478 { 479 struct jbd2_revoke_table_s *revoke = journal->j_revoke; 480 int i = 0; 481 482 for (i = 0; i < revoke->hash_size; i++) { 483 struct list_head *hash_list; 484 struct list_head *list_entry; 485 hash_list = &revoke->hash_table[i]; 486 487 list_for_each(list_entry, hash_list) { 488 struct jbd2_revoke_record_s *record; 489 struct buffer_head *bh; 490 record = (struct jbd2_revoke_record_s *)list_entry; 491 bh = __find_get_block(journal->j_fs_dev, 492 record->blocknr, 493 journal->j_blocksize); 494 if (bh) { 495 clear_buffer_revoked(bh); 496 __brelse(bh); 497 } 498 } 499 } 500 } 501 502 /* journal_switch_revoke table select j_revoke for next transaction 503 * we do not want to suspend any processing until all revokes are 504 * written -bzzz 505 */ 506 void jbd2_journal_switch_revoke_table(journal_t *journal) 507 { 508 int i; 509 510 if (journal->j_revoke == journal->j_revoke_table[0]) 511 journal->j_revoke = journal->j_revoke_table[1]; 512 else 513 journal->j_revoke = journal->j_revoke_table[0]; 514 515 for (i = 0; i < journal->j_revoke->hash_size; i++) 516 INIT_LIST_HEAD(&journal->j_revoke->hash_table[i]); 517 } 518 519 /* 520 * Write revoke records to the journal for all entries in the current 521 * revoke hash, deleting the entries as we go. 522 */ 523 void jbd2_journal_write_revoke_records(transaction_t *transaction, 524 struct list_head *log_bufs) 525 { 526 journal_t *journal = transaction->t_journal; 527 struct buffer_head *descriptor; 528 struct jbd2_revoke_record_s *record; 529 struct jbd2_revoke_table_s *revoke; 530 struct list_head *hash_list; 531 int i, offset, count; 532 533 descriptor = NULL; 534 offset = 0; 535 count = 0; 536 537 /* select revoke table for committing transaction */ 538 revoke = journal->j_revoke == journal->j_revoke_table[0] ? 539 journal->j_revoke_table[1] : journal->j_revoke_table[0]; 540 541 for (i = 0; i < revoke->hash_size; i++) { 542 hash_list = &revoke->hash_table[i]; 543 544 while (!list_empty(hash_list)) { 545 record = (struct jbd2_revoke_record_s *) 546 hash_list->next; 547 write_one_revoke_record(transaction, log_bufs, 548 &descriptor, &offset, record); 549 count++; 550 list_del(&record->hash); 551 kmem_cache_free(jbd2_revoke_record_cache, record); 552 } 553 } 554 if (descriptor) 555 flush_descriptor(journal, descriptor, offset); 556 jbd_debug(1, "Wrote %d revoke records\n", count); 557 } 558 559 /* 560 * Write out one revoke record. We need to create a new descriptor 561 * block if the old one is full or if we have not already created one. 562 */ 563 564 static void write_one_revoke_record(transaction_t *transaction, 565 struct list_head *log_bufs, 566 struct buffer_head **descriptorp, 567 int *offsetp, 568 struct jbd2_revoke_record_s *record) 569 { 570 journal_t *journal = transaction->t_journal; 571 int csum_size = 0; 572 struct buffer_head *descriptor; 573 int sz, offset; 574 575 /* If we are already aborting, this all becomes a noop. We 576 still need to go round the loop in 577 jbd2_journal_write_revoke_records in order to free all of the 578 revoke records: only the IO to the journal is omitted. */ 579 if (is_journal_aborted(journal)) 580 return; 581 582 descriptor = *descriptorp; 583 offset = *offsetp; 584 585 /* Do we need to leave space at the end for a checksum? */ 586 if (jbd2_journal_has_csum_v2or3(journal)) 587 csum_size = sizeof(struct jbd2_journal_block_tail); 588 589 if (jbd2_has_feature_64bit(journal)) 590 sz = 8; 591 else 592 sz = 4; 593 594 /* Make sure we have a descriptor with space left for the record */ 595 if (descriptor) { 596 if (offset + sz > journal->j_blocksize - csum_size) { 597 flush_descriptor(journal, descriptor, offset); 598 descriptor = NULL; 599 } 600 } 601 602 if (!descriptor) { 603 descriptor = jbd2_journal_get_descriptor_buffer(transaction, 604 JBD2_REVOKE_BLOCK); 605 if (!descriptor) 606 return; 607 608 /* Record it so that we can wait for IO completion later */ 609 BUFFER_TRACE(descriptor, "file in log_bufs"); 610 jbd2_file_log_bh(log_bufs, descriptor); 611 612 offset = sizeof(jbd2_journal_revoke_header_t); 613 *descriptorp = descriptor; 614 } 615 616 if (jbd2_has_feature_64bit(journal)) 617 * ((__be64 *)(&descriptor->b_data[offset])) = 618 cpu_to_be64(record->blocknr); 619 else 620 * ((__be32 *)(&descriptor->b_data[offset])) = 621 cpu_to_be32(record->blocknr); 622 offset += sz; 623 624 *offsetp = offset; 625 } 626 627 /* 628 * Flush a revoke descriptor out to the journal. If we are aborting, 629 * this is a noop; otherwise we are generating a buffer which needs to 630 * be waited for during commit, so it has to go onto the appropriate 631 * journal buffer list. 632 */ 633 634 static void flush_descriptor(journal_t *journal, 635 struct buffer_head *descriptor, 636 int offset) 637 { 638 jbd2_journal_revoke_header_t *header; 639 640 if (is_journal_aborted(journal)) { 641 put_bh(descriptor); 642 return; 643 } 644 645 header = (jbd2_journal_revoke_header_t *)descriptor->b_data; 646 header->r_count = cpu_to_be32(offset); 647 jbd2_descriptor_block_csum_set(journal, descriptor); 648 649 set_buffer_jwrite(descriptor); 650 BUFFER_TRACE(descriptor, "write"); 651 set_buffer_dirty(descriptor); 652 write_dirty_buffer(descriptor, REQ_SYNC); 653 } 654 #endif 655 656 /* 657 * Revoke support for recovery. 658 * 659 * Recovery needs to be able to: 660 * 661 * record all revoke records, including the tid of the latest instance 662 * of each revoke in the journal 663 * 664 * check whether a given block in a given transaction should be replayed 665 * (ie. has not been revoked by a revoke record in that or a subsequent 666 * transaction) 667 * 668 * empty the revoke table after recovery. 669 */ 670 671 /* 672 * First, setting revoke records. We create a new revoke record for 673 * every block ever revoked in the log as we scan it for recovery, and 674 * we update the existing records if we find multiple revokes for a 675 * single block. 676 */ 677 678 int jbd2_journal_set_revoke(journal_t *journal, 679 unsigned long long blocknr, 680 tid_t sequence) 681 { 682 struct jbd2_revoke_record_s *record; 683 684 record = find_revoke_record(journal, blocknr); 685 if (record) { 686 /* If we have multiple occurrences, only record the 687 * latest sequence number in the hashed record */ 688 if (tid_gt(sequence, record->sequence)) 689 record->sequence = sequence; 690 return 0; 691 } 692 return insert_revoke_hash(journal, blocknr, sequence); 693 } 694 695 /* 696 * Test revoke records. For a given block referenced in the log, has 697 * that block been revoked? A revoke record with a given transaction 698 * sequence number revokes all blocks in that transaction and earlier 699 * ones, but later transactions still need replayed. 700 */ 701 702 int jbd2_journal_test_revoke(journal_t *journal, 703 unsigned long long blocknr, 704 tid_t sequence) 705 { 706 struct jbd2_revoke_record_s *record; 707 708 record = find_revoke_record(journal, blocknr); 709 if (!record) 710 return 0; 711 if (tid_gt(sequence, record->sequence)) 712 return 0; 713 return 1; 714 } 715 716 /* 717 * Finally, once recovery is over, we need to clear the revoke table so 718 * that it can be reused by the running filesystem. 719 */ 720 721 void jbd2_journal_clear_revoke(journal_t *journal) 722 { 723 int i; 724 struct list_head *hash_list; 725 struct jbd2_revoke_record_s *record; 726 struct jbd2_revoke_table_s *revoke; 727 728 revoke = journal->j_revoke; 729 730 for (i = 0; i < revoke->hash_size; i++) { 731 hash_list = &revoke->hash_table[i]; 732 while (!list_empty(hash_list)) { 733 record = (struct jbd2_revoke_record_s*) hash_list->next; 734 list_del(&record->hash); 735 kmem_cache_free(jbd2_revoke_record_cache, record); 736 } 737 } 738 } 739