1 /* 2 * linux/fs/jbd2/revoke.c 3 * 4 * Written by Stephen C. Tweedie <sct@redhat.com>, 2000 5 * 6 * Copyright 2000 Red Hat corp --- All Rights Reserved 7 * 8 * This file is part of the Linux kernel and is made available under 9 * the terms of the GNU General Public License, version 2, or at your 10 * option, any later version, incorporated herein by reference. 11 * 12 * Journal revoke routines for the generic filesystem journaling code; 13 * part of the ext2fs journaling system. 14 * 15 * Revoke is the mechanism used to prevent old log records for deleted 16 * metadata from being replayed on top of newer data using the same 17 * blocks. The revoke mechanism is used in two separate places: 18 * 19 * + Commit: during commit we write the entire list of the current 20 * transaction's revoked blocks to the journal 21 * 22 * + Recovery: during recovery we record the transaction ID of all 23 * revoked blocks. If there are multiple revoke records in the log 24 * for a single block, only the last one counts, and if there is a log 25 * entry for a block beyond the last revoke, then that log entry still 26 * gets replayed. 27 * 28 * We can get interactions between revokes and new log data within a 29 * single transaction: 30 * 31 * Block is revoked and then journaled: 32 * The desired end result is the journaling of the new block, so we 33 * cancel the revoke before the transaction commits. 34 * 35 * Block is journaled and then revoked: 36 * The revoke must take precedence over the write of the block, so we 37 * need either to cancel the journal entry or to write the revoke 38 * later in the log than the log block. In this case, we choose the 39 * latter: journaling a block cancels any revoke record for that block 40 * in the current transaction, so any revoke for that block in the 41 * transaction must have happened after the block was journaled and so 42 * the revoke must take precedence. 43 * 44 * Block is revoked and then written as data: 45 * The data write is allowed to succeed, but the revoke is _not_ 46 * cancelled. We still need to prevent old log records from 47 * overwriting the new data. We don't even need to clear the revoke 48 * bit here. 49 * 50 * Revoke information on buffers is a tri-state value: 51 * 52 * RevokeValid clear: no cached revoke status, need to look it up 53 * RevokeValid set, Revoked clear: 54 * buffer has not been revoked, and cancel_revoke 55 * need do nothing. 56 * RevokeValid set, Revoked set: 57 * buffer has been revoked. 58 */ 59 60 #ifndef __KERNEL__ 61 #include "jfs_user.h" 62 #else 63 #include <linux/time.h> 64 #include <linux/fs.h> 65 #include <linux/jbd2.h> 66 #include <linux/errno.h> 67 #include <linux/slab.h> 68 #include <linux/list.h> 69 #include <linux/init.h> 70 #endif 71 #include <linux/log2.h> 72 73 static struct kmem_cache *jbd2_revoke_record_cache; 74 static struct kmem_cache *jbd2_revoke_table_cache; 75 76 /* Each revoke record represents one single revoked block. During 77 journal replay, this involves recording the transaction ID of the 78 last transaction to revoke this block. */ 79 80 struct jbd2_revoke_record_s 81 { 82 struct list_head hash; 83 tid_t sequence; /* Used for recovery only */ 84 unsigned long long blocknr; 85 }; 86 87 88 /* The revoke table is just a simple hash table of revoke records. */ 89 struct jbd2_revoke_table_s 90 { 91 /* It is conceivable that we might want a larger hash table 92 * for recovery. Must be a power of two. */ 93 int hash_size; 94 int hash_shift; 95 struct list_head *hash_table; 96 }; 97 98 99 #ifdef __KERNEL__ 100 static void write_one_revoke_record(journal_t *, transaction_t *, 101 struct journal_head **, int *, 102 struct jbd2_revoke_record_s *); 103 static void flush_descriptor(journal_t *, struct journal_head *, int); 104 #endif 105 106 /* Utility functions to maintain the revoke table */ 107 108 /* Borrowed from buffer.c: this is a tried and tested block hash function */ 109 static inline int hash(journal_t *journal, unsigned long long block) 110 { 111 struct jbd2_revoke_table_s *table = journal->j_revoke; 112 int hash_shift = table->hash_shift; 113 int hash = (int)block ^ (int)((block >> 31) >> 1); 114 115 return ((hash << (hash_shift - 6)) ^ 116 (hash >> 13) ^ 117 (hash << (hash_shift - 12))) & (table->hash_size - 1); 118 } 119 120 static int insert_revoke_hash(journal_t *journal, unsigned long long blocknr, 121 tid_t seq) 122 { 123 struct list_head *hash_list; 124 struct jbd2_revoke_record_s *record; 125 126 repeat: 127 record = kmem_cache_alloc(jbd2_revoke_record_cache, GFP_NOFS); 128 if (!record) 129 goto oom; 130 131 record->sequence = seq; 132 record->blocknr = blocknr; 133 hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)]; 134 spin_lock(&journal->j_revoke_lock); 135 list_add(&record->hash, hash_list); 136 spin_unlock(&journal->j_revoke_lock); 137 return 0; 138 139 oom: 140 if (!journal_oom_retry) 141 return -ENOMEM; 142 jbd_debug(1, "ENOMEM in %s, retrying\n", __func__); 143 yield(); 144 goto repeat; 145 } 146 147 /* Find a revoke record in the journal's hash table. */ 148 149 static struct jbd2_revoke_record_s *find_revoke_record(journal_t *journal, 150 unsigned long long blocknr) 151 { 152 struct list_head *hash_list; 153 struct jbd2_revoke_record_s *record; 154 155 hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)]; 156 157 spin_lock(&journal->j_revoke_lock); 158 record = (struct jbd2_revoke_record_s *) hash_list->next; 159 while (&(record->hash) != hash_list) { 160 if (record->blocknr == blocknr) { 161 spin_unlock(&journal->j_revoke_lock); 162 return record; 163 } 164 record = (struct jbd2_revoke_record_s *) record->hash.next; 165 } 166 spin_unlock(&journal->j_revoke_lock); 167 return NULL; 168 } 169 170 void jbd2_journal_destroy_revoke_caches(void) 171 { 172 if (jbd2_revoke_record_cache) { 173 kmem_cache_destroy(jbd2_revoke_record_cache); 174 jbd2_revoke_record_cache = NULL; 175 } 176 if (jbd2_revoke_table_cache) { 177 kmem_cache_destroy(jbd2_revoke_table_cache); 178 jbd2_revoke_table_cache = NULL; 179 } 180 } 181 182 int __init jbd2_journal_init_revoke_caches(void) 183 { 184 J_ASSERT(!jbd2_revoke_record_cache); 185 J_ASSERT(!jbd2_revoke_table_cache); 186 187 jbd2_revoke_record_cache = kmem_cache_create("jbd2_revoke_record", 188 sizeof(struct jbd2_revoke_record_s), 189 0, 190 SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY, 191 NULL); 192 if (!jbd2_revoke_record_cache) 193 goto record_cache_failure; 194 195 jbd2_revoke_table_cache = kmem_cache_create("jbd2_revoke_table", 196 sizeof(struct jbd2_revoke_table_s), 197 0, SLAB_TEMPORARY, NULL); 198 if (!jbd2_revoke_table_cache) 199 goto table_cache_failure; 200 return 0; 201 table_cache_failure: 202 jbd2_journal_destroy_revoke_caches(); 203 record_cache_failure: 204 return -ENOMEM; 205 } 206 207 static struct jbd2_revoke_table_s *jbd2_journal_init_revoke_table(int hash_size) 208 { 209 int shift = 0; 210 int tmp = hash_size; 211 struct jbd2_revoke_table_s *table; 212 213 table = kmem_cache_alloc(jbd2_revoke_table_cache, GFP_KERNEL); 214 if (!table) 215 goto out; 216 217 while((tmp >>= 1UL) != 0UL) 218 shift++; 219 220 table->hash_size = hash_size; 221 table->hash_shift = shift; 222 table->hash_table = 223 kmalloc(hash_size * sizeof(struct list_head), GFP_KERNEL); 224 if (!table->hash_table) { 225 kmem_cache_free(jbd2_revoke_table_cache, table); 226 table = NULL; 227 goto out; 228 } 229 230 for (tmp = 0; tmp < hash_size; tmp++) 231 INIT_LIST_HEAD(&table->hash_table[tmp]); 232 233 out: 234 return table; 235 } 236 237 static void jbd2_journal_destroy_revoke_table(struct jbd2_revoke_table_s *table) 238 { 239 int i; 240 struct list_head *hash_list; 241 242 for (i = 0; i < table->hash_size; i++) { 243 hash_list = &table->hash_table[i]; 244 J_ASSERT(list_empty(hash_list)); 245 } 246 247 kfree(table->hash_table); 248 kmem_cache_free(jbd2_revoke_table_cache, table); 249 } 250 251 /* Initialise the revoke table for a given journal to a given size. */ 252 int jbd2_journal_init_revoke(journal_t *journal, int hash_size) 253 { 254 J_ASSERT(journal->j_revoke_table[0] == NULL); 255 J_ASSERT(is_power_of_2(hash_size)); 256 257 journal->j_revoke_table[0] = jbd2_journal_init_revoke_table(hash_size); 258 if (!journal->j_revoke_table[0]) 259 goto fail0; 260 261 journal->j_revoke_table[1] = jbd2_journal_init_revoke_table(hash_size); 262 if (!journal->j_revoke_table[1]) 263 goto fail1; 264 265 journal->j_revoke = journal->j_revoke_table[1]; 266 267 spin_lock_init(&journal->j_revoke_lock); 268 269 return 0; 270 271 fail1: 272 jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]); 273 fail0: 274 return -ENOMEM; 275 } 276 277 /* Destroy a journal's revoke table. The table must already be empty! */ 278 void jbd2_journal_destroy_revoke(journal_t *journal) 279 { 280 journal->j_revoke = NULL; 281 if (journal->j_revoke_table[0]) 282 jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]); 283 if (journal->j_revoke_table[1]) 284 jbd2_journal_destroy_revoke_table(journal->j_revoke_table[1]); 285 } 286 287 288 #ifdef __KERNEL__ 289 290 /* 291 * jbd2_journal_revoke: revoke a given buffer_head from the journal. This 292 * prevents the block from being replayed during recovery if we take a 293 * crash after this current transaction commits. Any subsequent 294 * metadata writes of the buffer in this transaction cancel the 295 * revoke. 296 * 297 * Note that this call may block --- it is up to the caller to make 298 * sure that there are no further calls to journal_write_metadata 299 * before the revoke is complete. In ext3, this implies calling the 300 * revoke before clearing the block bitmap when we are deleting 301 * metadata. 302 * 303 * Revoke performs a jbd2_journal_forget on any buffer_head passed in as a 304 * parameter, but does _not_ forget the buffer_head if the bh was only 305 * found implicitly. 306 * 307 * bh_in may not be a journalled buffer - it may have come off 308 * the hash tables without an attached journal_head. 309 * 310 * If bh_in is non-zero, jbd2_journal_revoke() will decrement its b_count 311 * by one. 312 */ 313 314 int jbd2_journal_revoke(handle_t *handle, unsigned long long blocknr, 315 struct buffer_head *bh_in) 316 { 317 struct buffer_head *bh = NULL; 318 journal_t *journal; 319 struct block_device *bdev; 320 int err; 321 322 might_sleep(); 323 if (bh_in) 324 BUFFER_TRACE(bh_in, "enter"); 325 326 journal = handle->h_transaction->t_journal; 327 if (!jbd2_journal_set_features(journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)){ 328 J_ASSERT (!"Cannot set revoke feature!"); 329 return -EINVAL; 330 } 331 332 bdev = journal->j_fs_dev; 333 bh = bh_in; 334 335 if (!bh) { 336 bh = __find_get_block(bdev, blocknr, journal->j_blocksize); 337 if (bh) 338 BUFFER_TRACE(bh, "found on hash"); 339 } 340 #ifdef JBD2_EXPENSIVE_CHECKING 341 else { 342 struct buffer_head *bh2; 343 344 /* If there is a different buffer_head lying around in 345 * memory anywhere... */ 346 bh2 = __find_get_block(bdev, blocknr, journal->j_blocksize); 347 if (bh2) { 348 /* ... and it has RevokeValid status... */ 349 if (bh2 != bh && buffer_revokevalid(bh2)) 350 /* ...then it better be revoked too, 351 * since it's illegal to create a revoke 352 * record against a buffer_head which is 353 * not marked revoked --- that would 354 * risk missing a subsequent revoke 355 * cancel. */ 356 J_ASSERT_BH(bh2, buffer_revoked(bh2)); 357 put_bh(bh2); 358 } 359 } 360 #endif 361 362 /* We really ought not ever to revoke twice in a row without 363 first having the revoke cancelled: it's illegal to free a 364 block twice without allocating it in between! */ 365 if (bh) { 366 if (!J_EXPECT_BH(bh, !buffer_revoked(bh), 367 "inconsistent data on disk")) { 368 if (!bh_in) 369 brelse(bh); 370 return -EIO; 371 } 372 set_buffer_revoked(bh); 373 set_buffer_revokevalid(bh); 374 if (bh_in) { 375 BUFFER_TRACE(bh_in, "call jbd2_journal_forget"); 376 jbd2_journal_forget(handle, bh_in); 377 } else { 378 BUFFER_TRACE(bh, "call brelse"); 379 __brelse(bh); 380 } 381 } 382 383 jbd_debug(2, "insert revoke for block %llu, bh_in=%p\n",blocknr, bh_in); 384 err = insert_revoke_hash(journal, blocknr, 385 handle->h_transaction->t_tid); 386 BUFFER_TRACE(bh_in, "exit"); 387 return err; 388 } 389 390 /* 391 * Cancel an outstanding revoke. For use only internally by the 392 * journaling code (called from jbd2_journal_get_write_access). 393 * 394 * We trust buffer_revoked() on the buffer if the buffer is already 395 * being journaled: if there is no revoke pending on the buffer, then we 396 * don't do anything here. 397 * 398 * This would break if it were possible for a buffer to be revoked and 399 * discarded, and then reallocated within the same transaction. In such 400 * a case we would have lost the revoked bit, but when we arrived here 401 * the second time we would still have a pending revoke to cancel. So, 402 * do not trust the Revoked bit on buffers unless RevokeValid is also 403 * set. 404 * 405 * The caller must have the journal locked. 406 */ 407 int jbd2_journal_cancel_revoke(handle_t *handle, struct journal_head *jh) 408 { 409 struct jbd2_revoke_record_s *record; 410 journal_t *journal = handle->h_transaction->t_journal; 411 int need_cancel; 412 int did_revoke = 0; /* akpm: debug */ 413 struct buffer_head *bh = jh2bh(jh); 414 415 jbd_debug(4, "journal_head %p, cancelling revoke\n", jh); 416 417 /* Is the existing Revoke bit valid? If so, we trust it, and 418 * only perform the full cancel if the revoke bit is set. If 419 * not, we can't trust the revoke bit, and we need to do the 420 * full search for a revoke record. */ 421 if (test_set_buffer_revokevalid(bh)) { 422 need_cancel = test_clear_buffer_revoked(bh); 423 } else { 424 need_cancel = 1; 425 clear_buffer_revoked(bh); 426 } 427 428 if (need_cancel) { 429 record = find_revoke_record(journal, bh->b_blocknr); 430 if (record) { 431 jbd_debug(4, "cancelled existing revoke on " 432 "blocknr %llu\n", (unsigned long long)bh->b_blocknr); 433 spin_lock(&journal->j_revoke_lock); 434 list_del(&record->hash); 435 spin_unlock(&journal->j_revoke_lock); 436 kmem_cache_free(jbd2_revoke_record_cache, record); 437 did_revoke = 1; 438 } 439 } 440 441 #ifdef JBD2_EXPENSIVE_CHECKING 442 /* There better not be one left behind by now! */ 443 record = find_revoke_record(journal, bh->b_blocknr); 444 J_ASSERT_JH(jh, record == NULL); 445 #endif 446 447 /* Finally, have we just cleared revoke on an unhashed 448 * buffer_head? If so, we'd better make sure we clear the 449 * revoked status on any hashed alias too, otherwise the revoke 450 * state machine will get very upset later on. */ 451 if (need_cancel) { 452 struct buffer_head *bh2; 453 bh2 = __find_get_block(bh->b_bdev, bh->b_blocknr, bh->b_size); 454 if (bh2) { 455 if (bh2 != bh) 456 clear_buffer_revoked(bh2); 457 __brelse(bh2); 458 } 459 } 460 return did_revoke; 461 } 462 463 /* journal_switch_revoke table select j_revoke for next transaction 464 * we do not want to suspend any processing until all revokes are 465 * written -bzzz 466 */ 467 void jbd2_journal_switch_revoke_table(journal_t *journal) 468 { 469 int i; 470 471 if (journal->j_revoke == journal->j_revoke_table[0]) 472 journal->j_revoke = journal->j_revoke_table[1]; 473 else 474 journal->j_revoke = journal->j_revoke_table[0]; 475 476 for (i = 0; i < journal->j_revoke->hash_size; i++) 477 INIT_LIST_HEAD(&journal->j_revoke->hash_table[i]); 478 } 479 480 /* 481 * Write revoke records to the journal for all entries in the current 482 * revoke hash, deleting the entries as we go. 483 * 484 * Called with the journal lock held. 485 */ 486 487 void jbd2_journal_write_revoke_records(journal_t *journal, 488 transaction_t *transaction) 489 { 490 struct journal_head *descriptor; 491 struct jbd2_revoke_record_s *record; 492 struct jbd2_revoke_table_s *revoke; 493 struct list_head *hash_list; 494 int i, offset, count; 495 496 descriptor = NULL; 497 offset = 0; 498 count = 0; 499 500 /* select revoke table for committing transaction */ 501 revoke = journal->j_revoke == journal->j_revoke_table[0] ? 502 journal->j_revoke_table[1] : journal->j_revoke_table[0]; 503 504 for (i = 0; i < revoke->hash_size; i++) { 505 hash_list = &revoke->hash_table[i]; 506 507 while (!list_empty(hash_list)) { 508 record = (struct jbd2_revoke_record_s *) 509 hash_list->next; 510 write_one_revoke_record(journal, transaction, 511 &descriptor, &offset, 512 record); 513 count++; 514 list_del(&record->hash); 515 kmem_cache_free(jbd2_revoke_record_cache, record); 516 } 517 } 518 if (descriptor) 519 flush_descriptor(journal, descriptor, offset); 520 jbd_debug(1, "Wrote %d revoke records\n", count); 521 } 522 523 /* 524 * Write out one revoke record. We need to create a new descriptor 525 * block if the old one is full or if we have not already created one. 526 */ 527 528 static void write_one_revoke_record(journal_t *journal, 529 transaction_t *transaction, 530 struct journal_head **descriptorp, 531 int *offsetp, 532 struct jbd2_revoke_record_s *record) 533 { 534 struct journal_head *descriptor; 535 int offset; 536 journal_header_t *header; 537 538 /* If we are already aborting, this all becomes a noop. We 539 still need to go round the loop in 540 jbd2_journal_write_revoke_records in order to free all of the 541 revoke records: only the IO to the journal is omitted. */ 542 if (is_journal_aborted(journal)) 543 return; 544 545 descriptor = *descriptorp; 546 offset = *offsetp; 547 548 /* Make sure we have a descriptor with space left for the record */ 549 if (descriptor) { 550 if (offset == journal->j_blocksize) { 551 flush_descriptor(journal, descriptor, offset); 552 descriptor = NULL; 553 } 554 } 555 556 if (!descriptor) { 557 descriptor = jbd2_journal_get_descriptor_buffer(journal); 558 if (!descriptor) 559 return; 560 header = (journal_header_t *) &jh2bh(descriptor)->b_data[0]; 561 header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER); 562 header->h_blocktype = cpu_to_be32(JBD2_REVOKE_BLOCK); 563 header->h_sequence = cpu_to_be32(transaction->t_tid); 564 565 /* Record it so that we can wait for IO completion later */ 566 JBUFFER_TRACE(descriptor, "file as BJ_LogCtl"); 567 jbd2_journal_file_buffer(descriptor, transaction, BJ_LogCtl); 568 569 offset = sizeof(jbd2_journal_revoke_header_t); 570 *descriptorp = descriptor; 571 } 572 573 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT)) { 574 * ((__be64 *)(&jh2bh(descriptor)->b_data[offset])) = 575 cpu_to_be64(record->blocknr); 576 offset += 8; 577 578 } else { 579 * ((__be32 *)(&jh2bh(descriptor)->b_data[offset])) = 580 cpu_to_be32(record->blocknr); 581 offset += 4; 582 } 583 584 *offsetp = offset; 585 } 586 587 /* 588 * Flush a revoke descriptor out to the journal. If we are aborting, 589 * this is a noop; otherwise we are generating a buffer which needs to 590 * be waited for during commit, so it has to go onto the appropriate 591 * journal buffer list. 592 */ 593 594 static void flush_descriptor(journal_t *journal, 595 struct journal_head *descriptor, 596 int offset) 597 { 598 jbd2_journal_revoke_header_t *header; 599 struct buffer_head *bh = jh2bh(descriptor); 600 601 if (is_journal_aborted(journal)) { 602 put_bh(bh); 603 return; 604 } 605 606 header = (jbd2_journal_revoke_header_t *) jh2bh(descriptor)->b_data; 607 header->r_count = cpu_to_be32(offset); 608 set_buffer_jwrite(bh); 609 BUFFER_TRACE(bh, "write"); 610 set_buffer_dirty(bh); 611 ll_rw_block(SWRITE, 1, &bh); 612 } 613 #endif 614 615 /* 616 * Revoke support for recovery. 617 * 618 * Recovery needs to be able to: 619 * 620 * record all revoke records, including the tid of the latest instance 621 * of each revoke in the journal 622 * 623 * check whether a given block in a given transaction should be replayed 624 * (ie. has not been revoked by a revoke record in that or a subsequent 625 * transaction) 626 * 627 * empty the revoke table after recovery. 628 */ 629 630 /* 631 * First, setting revoke records. We create a new revoke record for 632 * every block ever revoked in the log as we scan it for recovery, and 633 * we update the existing records if we find multiple revokes for a 634 * single block. 635 */ 636 637 int jbd2_journal_set_revoke(journal_t *journal, 638 unsigned long long blocknr, 639 tid_t sequence) 640 { 641 struct jbd2_revoke_record_s *record; 642 643 record = find_revoke_record(journal, blocknr); 644 if (record) { 645 /* If we have multiple occurrences, only record the 646 * latest sequence number in the hashed record */ 647 if (tid_gt(sequence, record->sequence)) 648 record->sequence = sequence; 649 return 0; 650 } 651 return insert_revoke_hash(journal, blocknr, sequence); 652 } 653 654 /* 655 * Test revoke records. For a given block referenced in the log, has 656 * that block been revoked? A revoke record with a given transaction 657 * sequence number revokes all blocks in that transaction and earlier 658 * ones, but later transactions still need replayed. 659 */ 660 661 int jbd2_journal_test_revoke(journal_t *journal, 662 unsigned long long blocknr, 663 tid_t sequence) 664 { 665 struct jbd2_revoke_record_s *record; 666 667 record = find_revoke_record(journal, blocknr); 668 if (!record) 669 return 0; 670 if (tid_gt(sequence, record->sequence)) 671 return 0; 672 return 1; 673 } 674 675 /* 676 * Finally, once recovery is over, we need to clear the revoke table so 677 * that it can be reused by the running filesystem. 678 */ 679 680 void jbd2_journal_clear_revoke(journal_t *journal) 681 { 682 int i; 683 struct list_head *hash_list; 684 struct jbd2_revoke_record_s *record; 685 struct jbd2_revoke_table_s *revoke; 686 687 revoke = journal->j_revoke; 688 689 for (i = 0; i < revoke->hash_size; i++) { 690 hash_list = &revoke->hash_table[i]; 691 while (!list_empty(hash_list)) { 692 record = (struct jbd2_revoke_record_s*) hash_list->next; 693 list_del(&record->hash); 694 kmem_cache_free(jbd2_revoke_record_cache, record); 695 } 696 } 697 } 698