xref: /linux/fs/jbd2/revoke.c (revision 827634added7f38b7d724cab1dccdb2b004c13c3)
1 /*
2  * linux/fs/jbd2/revoke.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 2000
5  *
6  * Copyright 2000 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Journal revoke routines for the generic filesystem journaling code;
13  * part of the ext2fs journaling system.
14  *
15  * Revoke is the mechanism used to prevent old log records for deleted
16  * metadata from being replayed on top of newer data using the same
17  * blocks.  The revoke mechanism is used in two separate places:
18  *
19  * + Commit: during commit we write the entire list of the current
20  *   transaction's revoked blocks to the journal
21  *
22  * + Recovery: during recovery we record the transaction ID of all
23  *   revoked blocks.  If there are multiple revoke records in the log
24  *   for a single block, only the last one counts, and if there is a log
25  *   entry for a block beyond the last revoke, then that log entry still
26  *   gets replayed.
27  *
28  * We can get interactions between revokes and new log data within a
29  * single transaction:
30  *
31  * Block is revoked and then journaled:
32  *   The desired end result is the journaling of the new block, so we
33  *   cancel the revoke before the transaction commits.
34  *
35  * Block is journaled and then revoked:
36  *   The revoke must take precedence over the write of the block, so we
37  *   need either to cancel the journal entry or to write the revoke
38  *   later in the log than the log block.  In this case, we choose the
39  *   latter: journaling a block cancels any revoke record for that block
40  *   in the current transaction, so any revoke for that block in the
41  *   transaction must have happened after the block was journaled and so
42  *   the revoke must take precedence.
43  *
44  * Block is revoked and then written as data:
45  *   The data write is allowed to succeed, but the revoke is _not_
46  *   cancelled.  We still need to prevent old log records from
47  *   overwriting the new data.  We don't even need to clear the revoke
48  *   bit here.
49  *
50  * We cache revoke status of a buffer in the current transaction in b_states
51  * bits.  As the name says, revokevalid flag indicates that the cached revoke
52  * status of a buffer is valid and we can rely on the cached status.
53  *
54  * Revoke information on buffers is a tri-state value:
55  *
56  * RevokeValid clear:	no cached revoke status, need to look it up
57  * RevokeValid set, Revoked clear:
58  *			buffer has not been revoked, and cancel_revoke
59  *			need do nothing.
60  * RevokeValid set, Revoked set:
61  *			buffer has been revoked.
62  *
63  * Locking rules:
64  * We keep two hash tables of revoke records. One hashtable belongs to the
65  * running transaction (is pointed to by journal->j_revoke), the other one
66  * belongs to the committing transaction. Accesses to the second hash table
67  * happen only from the kjournald and no other thread touches this table.  Also
68  * journal_switch_revoke_table() which switches which hashtable belongs to the
69  * running and which to the committing transaction is called only from
70  * kjournald. Therefore we need no locks when accessing the hashtable belonging
71  * to the committing transaction.
72  *
73  * All users operating on the hash table belonging to the running transaction
74  * have a handle to the transaction. Therefore they are safe from kjournald
75  * switching hash tables under them. For operations on the lists of entries in
76  * the hash table j_revoke_lock is used.
77  *
78  * Finally, also replay code uses the hash tables but at this moment no one else
79  * can touch them (filesystem isn't mounted yet) and hence no locking is
80  * needed.
81  */
82 
83 #ifndef __KERNEL__
84 #include "jfs_user.h"
85 #else
86 #include <linux/time.h>
87 #include <linux/fs.h>
88 #include <linux/jbd2.h>
89 #include <linux/errno.h>
90 #include <linux/slab.h>
91 #include <linux/list.h>
92 #include <linux/init.h>
93 #include <linux/bio.h>
94 #include <linux/log2.h>
95 #include <linux/hash.h>
96 #endif
97 
98 static struct kmem_cache *jbd2_revoke_record_cache;
99 static struct kmem_cache *jbd2_revoke_table_cache;
100 
101 /* Each revoke record represents one single revoked block.  During
102    journal replay, this involves recording the transaction ID of the
103    last transaction to revoke this block. */
104 
105 struct jbd2_revoke_record_s
106 {
107 	struct list_head  hash;
108 	tid_t		  sequence;	/* Used for recovery only */
109 	unsigned long long	  blocknr;
110 };
111 
112 
113 /* The revoke table is just a simple hash table of revoke records. */
114 struct jbd2_revoke_table_s
115 {
116 	/* It is conceivable that we might want a larger hash table
117 	 * for recovery.  Must be a power of two. */
118 	int		  hash_size;
119 	int		  hash_shift;
120 	struct list_head *hash_table;
121 };
122 
123 
124 #ifdef __KERNEL__
125 static void write_one_revoke_record(journal_t *, transaction_t *,
126 				    struct list_head *,
127 				    struct buffer_head **, int *,
128 				    struct jbd2_revoke_record_s *, int);
129 static void flush_descriptor(journal_t *, struct buffer_head *, int, int);
130 #endif
131 
132 /* Utility functions to maintain the revoke table */
133 
134 static inline int hash(journal_t *journal, unsigned long long block)
135 {
136 	return hash_64(block, journal->j_revoke->hash_shift);
137 }
138 
139 static int insert_revoke_hash(journal_t *journal, unsigned long long blocknr,
140 			      tid_t seq)
141 {
142 	struct list_head *hash_list;
143 	struct jbd2_revoke_record_s *record;
144 
145 repeat:
146 	record = kmem_cache_alloc(jbd2_revoke_record_cache, GFP_NOFS);
147 	if (!record)
148 		goto oom;
149 
150 	record->sequence = seq;
151 	record->blocknr = blocknr;
152 	hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
153 	spin_lock(&journal->j_revoke_lock);
154 	list_add(&record->hash, hash_list);
155 	spin_unlock(&journal->j_revoke_lock);
156 	return 0;
157 
158 oom:
159 	if (!journal_oom_retry)
160 		return -ENOMEM;
161 	jbd_debug(1, "ENOMEM in %s, retrying\n", __func__);
162 	yield();
163 	goto repeat;
164 }
165 
166 /* Find a revoke record in the journal's hash table. */
167 
168 static struct jbd2_revoke_record_s *find_revoke_record(journal_t *journal,
169 						      unsigned long long blocknr)
170 {
171 	struct list_head *hash_list;
172 	struct jbd2_revoke_record_s *record;
173 
174 	hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
175 
176 	spin_lock(&journal->j_revoke_lock);
177 	record = (struct jbd2_revoke_record_s *) hash_list->next;
178 	while (&(record->hash) != hash_list) {
179 		if (record->blocknr == blocknr) {
180 			spin_unlock(&journal->j_revoke_lock);
181 			return record;
182 		}
183 		record = (struct jbd2_revoke_record_s *) record->hash.next;
184 	}
185 	spin_unlock(&journal->j_revoke_lock);
186 	return NULL;
187 }
188 
189 void jbd2_journal_destroy_revoke_caches(void)
190 {
191 	if (jbd2_revoke_record_cache) {
192 		kmem_cache_destroy(jbd2_revoke_record_cache);
193 		jbd2_revoke_record_cache = NULL;
194 	}
195 	if (jbd2_revoke_table_cache) {
196 		kmem_cache_destroy(jbd2_revoke_table_cache);
197 		jbd2_revoke_table_cache = NULL;
198 	}
199 }
200 
201 int __init jbd2_journal_init_revoke_caches(void)
202 {
203 	J_ASSERT(!jbd2_revoke_record_cache);
204 	J_ASSERT(!jbd2_revoke_table_cache);
205 
206 	jbd2_revoke_record_cache = KMEM_CACHE(jbd2_revoke_record_s,
207 					SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY);
208 	if (!jbd2_revoke_record_cache)
209 		goto record_cache_failure;
210 
211 	jbd2_revoke_table_cache = KMEM_CACHE(jbd2_revoke_table_s,
212 					     SLAB_TEMPORARY);
213 	if (!jbd2_revoke_table_cache)
214 		goto table_cache_failure;
215 	return 0;
216 table_cache_failure:
217 	jbd2_journal_destroy_revoke_caches();
218 record_cache_failure:
219 		return -ENOMEM;
220 }
221 
222 static struct jbd2_revoke_table_s *jbd2_journal_init_revoke_table(int hash_size)
223 {
224 	int shift = 0;
225 	int tmp = hash_size;
226 	struct jbd2_revoke_table_s *table;
227 
228 	table = kmem_cache_alloc(jbd2_revoke_table_cache, GFP_KERNEL);
229 	if (!table)
230 		goto out;
231 
232 	while((tmp >>= 1UL) != 0UL)
233 		shift++;
234 
235 	table->hash_size = hash_size;
236 	table->hash_shift = shift;
237 	table->hash_table =
238 		kmalloc(hash_size * sizeof(struct list_head), GFP_KERNEL);
239 	if (!table->hash_table) {
240 		kmem_cache_free(jbd2_revoke_table_cache, table);
241 		table = NULL;
242 		goto out;
243 	}
244 
245 	for (tmp = 0; tmp < hash_size; tmp++)
246 		INIT_LIST_HEAD(&table->hash_table[tmp]);
247 
248 out:
249 	return table;
250 }
251 
252 static void jbd2_journal_destroy_revoke_table(struct jbd2_revoke_table_s *table)
253 {
254 	int i;
255 	struct list_head *hash_list;
256 
257 	for (i = 0; i < table->hash_size; i++) {
258 		hash_list = &table->hash_table[i];
259 		J_ASSERT(list_empty(hash_list));
260 	}
261 
262 	kfree(table->hash_table);
263 	kmem_cache_free(jbd2_revoke_table_cache, table);
264 }
265 
266 /* Initialise the revoke table for a given journal to a given size. */
267 int jbd2_journal_init_revoke(journal_t *journal, int hash_size)
268 {
269 	J_ASSERT(journal->j_revoke_table[0] == NULL);
270 	J_ASSERT(is_power_of_2(hash_size));
271 
272 	journal->j_revoke_table[0] = jbd2_journal_init_revoke_table(hash_size);
273 	if (!journal->j_revoke_table[0])
274 		goto fail0;
275 
276 	journal->j_revoke_table[1] = jbd2_journal_init_revoke_table(hash_size);
277 	if (!journal->j_revoke_table[1])
278 		goto fail1;
279 
280 	journal->j_revoke = journal->j_revoke_table[1];
281 
282 	spin_lock_init(&journal->j_revoke_lock);
283 
284 	return 0;
285 
286 fail1:
287 	jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]);
288 fail0:
289 	return -ENOMEM;
290 }
291 
292 /* Destroy a journal's revoke table.  The table must already be empty! */
293 void jbd2_journal_destroy_revoke(journal_t *journal)
294 {
295 	journal->j_revoke = NULL;
296 	if (journal->j_revoke_table[0])
297 		jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]);
298 	if (journal->j_revoke_table[1])
299 		jbd2_journal_destroy_revoke_table(journal->j_revoke_table[1]);
300 }
301 
302 
303 #ifdef __KERNEL__
304 
305 /*
306  * jbd2_journal_revoke: revoke a given buffer_head from the journal.  This
307  * prevents the block from being replayed during recovery if we take a
308  * crash after this current transaction commits.  Any subsequent
309  * metadata writes of the buffer in this transaction cancel the
310  * revoke.
311  *
312  * Note that this call may block --- it is up to the caller to make
313  * sure that there are no further calls to journal_write_metadata
314  * before the revoke is complete.  In ext3, this implies calling the
315  * revoke before clearing the block bitmap when we are deleting
316  * metadata.
317  *
318  * Revoke performs a jbd2_journal_forget on any buffer_head passed in as a
319  * parameter, but does _not_ forget the buffer_head if the bh was only
320  * found implicitly.
321  *
322  * bh_in may not be a journalled buffer - it may have come off
323  * the hash tables without an attached journal_head.
324  *
325  * If bh_in is non-zero, jbd2_journal_revoke() will decrement its b_count
326  * by one.
327  */
328 
329 int jbd2_journal_revoke(handle_t *handle, unsigned long long blocknr,
330 		   struct buffer_head *bh_in)
331 {
332 	struct buffer_head *bh = NULL;
333 	journal_t *journal;
334 	struct block_device *bdev;
335 	int err;
336 
337 	might_sleep();
338 	if (bh_in)
339 		BUFFER_TRACE(bh_in, "enter");
340 
341 	journal = handle->h_transaction->t_journal;
342 	if (!jbd2_journal_set_features(journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)){
343 		J_ASSERT (!"Cannot set revoke feature!");
344 		return -EINVAL;
345 	}
346 
347 	bdev = journal->j_fs_dev;
348 	bh = bh_in;
349 
350 	if (!bh) {
351 		bh = __find_get_block(bdev, blocknr, journal->j_blocksize);
352 		if (bh)
353 			BUFFER_TRACE(bh, "found on hash");
354 	}
355 #ifdef JBD2_EXPENSIVE_CHECKING
356 	else {
357 		struct buffer_head *bh2;
358 
359 		/* If there is a different buffer_head lying around in
360 		 * memory anywhere... */
361 		bh2 = __find_get_block(bdev, blocknr, journal->j_blocksize);
362 		if (bh2) {
363 			/* ... and it has RevokeValid status... */
364 			if (bh2 != bh && buffer_revokevalid(bh2))
365 				/* ...then it better be revoked too,
366 				 * since it's illegal to create a revoke
367 				 * record against a buffer_head which is
368 				 * not marked revoked --- that would
369 				 * risk missing a subsequent revoke
370 				 * cancel. */
371 				J_ASSERT_BH(bh2, buffer_revoked(bh2));
372 			put_bh(bh2);
373 		}
374 	}
375 #endif
376 
377 	/* We really ought not ever to revoke twice in a row without
378            first having the revoke cancelled: it's illegal to free a
379            block twice without allocating it in between! */
380 	if (bh) {
381 		if (!J_EXPECT_BH(bh, !buffer_revoked(bh),
382 				 "inconsistent data on disk")) {
383 			if (!bh_in)
384 				brelse(bh);
385 			return -EIO;
386 		}
387 		set_buffer_revoked(bh);
388 		set_buffer_revokevalid(bh);
389 		if (bh_in) {
390 			BUFFER_TRACE(bh_in, "call jbd2_journal_forget");
391 			jbd2_journal_forget(handle, bh_in);
392 		} else {
393 			BUFFER_TRACE(bh, "call brelse");
394 			__brelse(bh);
395 		}
396 	}
397 
398 	jbd_debug(2, "insert revoke for block %llu, bh_in=%p\n",blocknr, bh_in);
399 	err = insert_revoke_hash(journal, blocknr,
400 				handle->h_transaction->t_tid);
401 	BUFFER_TRACE(bh_in, "exit");
402 	return err;
403 }
404 
405 /*
406  * Cancel an outstanding revoke.  For use only internally by the
407  * journaling code (called from jbd2_journal_get_write_access).
408  *
409  * We trust buffer_revoked() on the buffer if the buffer is already
410  * being journaled: if there is no revoke pending on the buffer, then we
411  * don't do anything here.
412  *
413  * This would break if it were possible for a buffer to be revoked and
414  * discarded, and then reallocated within the same transaction.  In such
415  * a case we would have lost the revoked bit, but when we arrived here
416  * the second time we would still have a pending revoke to cancel.  So,
417  * do not trust the Revoked bit on buffers unless RevokeValid is also
418  * set.
419  */
420 int jbd2_journal_cancel_revoke(handle_t *handle, struct journal_head *jh)
421 {
422 	struct jbd2_revoke_record_s *record;
423 	journal_t *journal = handle->h_transaction->t_journal;
424 	int need_cancel;
425 	int did_revoke = 0;	/* akpm: debug */
426 	struct buffer_head *bh = jh2bh(jh);
427 
428 	jbd_debug(4, "journal_head %p, cancelling revoke\n", jh);
429 
430 	/* Is the existing Revoke bit valid?  If so, we trust it, and
431 	 * only perform the full cancel if the revoke bit is set.  If
432 	 * not, we can't trust the revoke bit, and we need to do the
433 	 * full search for a revoke record. */
434 	if (test_set_buffer_revokevalid(bh)) {
435 		need_cancel = test_clear_buffer_revoked(bh);
436 	} else {
437 		need_cancel = 1;
438 		clear_buffer_revoked(bh);
439 	}
440 
441 	if (need_cancel) {
442 		record = find_revoke_record(journal, bh->b_blocknr);
443 		if (record) {
444 			jbd_debug(4, "cancelled existing revoke on "
445 				  "blocknr %llu\n", (unsigned long long)bh->b_blocknr);
446 			spin_lock(&journal->j_revoke_lock);
447 			list_del(&record->hash);
448 			spin_unlock(&journal->j_revoke_lock);
449 			kmem_cache_free(jbd2_revoke_record_cache, record);
450 			did_revoke = 1;
451 		}
452 	}
453 
454 #ifdef JBD2_EXPENSIVE_CHECKING
455 	/* There better not be one left behind by now! */
456 	record = find_revoke_record(journal, bh->b_blocknr);
457 	J_ASSERT_JH(jh, record == NULL);
458 #endif
459 
460 	/* Finally, have we just cleared revoke on an unhashed
461 	 * buffer_head?  If so, we'd better make sure we clear the
462 	 * revoked status on any hashed alias too, otherwise the revoke
463 	 * state machine will get very upset later on. */
464 	if (need_cancel) {
465 		struct buffer_head *bh2;
466 		bh2 = __find_get_block(bh->b_bdev, bh->b_blocknr, bh->b_size);
467 		if (bh2) {
468 			if (bh2 != bh)
469 				clear_buffer_revoked(bh2);
470 			__brelse(bh2);
471 		}
472 	}
473 	return did_revoke;
474 }
475 
476 /*
477  * journal_clear_revoked_flag clears revoked flag of buffers in
478  * revoke table to reflect there is no revoked buffers in the next
479  * transaction which is going to be started.
480  */
481 void jbd2_clear_buffer_revoked_flags(journal_t *journal)
482 {
483 	struct jbd2_revoke_table_s *revoke = journal->j_revoke;
484 	int i = 0;
485 
486 	for (i = 0; i < revoke->hash_size; i++) {
487 		struct list_head *hash_list;
488 		struct list_head *list_entry;
489 		hash_list = &revoke->hash_table[i];
490 
491 		list_for_each(list_entry, hash_list) {
492 			struct jbd2_revoke_record_s *record;
493 			struct buffer_head *bh;
494 			record = (struct jbd2_revoke_record_s *)list_entry;
495 			bh = __find_get_block(journal->j_fs_dev,
496 					      record->blocknr,
497 					      journal->j_blocksize);
498 			if (bh) {
499 				clear_buffer_revoked(bh);
500 				__brelse(bh);
501 			}
502 		}
503 	}
504 }
505 
506 /* journal_switch_revoke table select j_revoke for next transaction
507  * we do not want to suspend any processing until all revokes are
508  * written -bzzz
509  */
510 void jbd2_journal_switch_revoke_table(journal_t *journal)
511 {
512 	int i;
513 
514 	if (journal->j_revoke == journal->j_revoke_table[0])
515 		journal->j_revoke = journal->j_revoke_table[1];
516 	else
517 		journal->j_revoke = journal->j_revoke_table[0];
518 
519 	for (i = 0; i < journal->j_revoke->hash_size; i++)
520 		INIT_LIST_HEAD(&journal->j_revoke->hash_table[i]);
521 }
522 
523 /*
524  * Write revoke records to the journal for all entries in the current
525  * revoke hash, deleting the entries as we go.
526  */
527 void jbd2_journal_write_revoke_records(journal_t *journal,
528 				       transaction_t *transaction,
529 				       struct list_head *log_bufs,
530 				       int write_op)
531 {
532 	struct buffer_head *descriptor;
533 	struct jbd2_revoke_record_s *record;
534 	struct jbd2_revoke_table_s *revoke;
535 	struct list_head *hash_list;
536 	int i, offset, count;
537 
538 	descriptor = NULL;
539 	offset = 0;
540 	count = 0;
541 
542 	/* select revoke table for committing transaction */
543 	revoke = journal->j_revoke == journal->j_revoke_table[0] ?
544 		journal->j_revoke_table[1] : journal->j_revoke_table[0];
545 
546 	for (i = 0; i < revoke->hash_size; i++) {
547 		hash_list = &revoke->hash_table[i];
548 
549 		while (!list_empty(hash_list)) {
550 			record = (struct jbd2_revoke_record_s *)
551 				hash_list->next;
552 			write_one_revoke_record(journal, transaction, log_bufs,
553 						&descriptor, &offset,
554 						record, write_op);
555 			count++;
556 			list_del(&record->hash);
557 			kmem_cache_free(jbd2_revoke_record_cache, record);
558 		}
559 	}
560 	if (descriptor)
561 		flush_descriptor(journal, descriptor, offset, write_op);
562 	jbd_debug(1, "Wrote %d revoke records\n", count);
563 }
564 
565 /*
566  * Write out one revoke record.  We need to create a new descriptor
567  * block if the old one is full or if we have not already created one.
568  */
569 
570 static void write_one_revoke_record(journal_t *journal,
571 				    transaction_t *transaction,
572 				    struct list_head *log_bufs,
573 				    struct buffer_head **descriptorp,
574 				    int *offsetp,
575 				    struct jbd2_revoke_record_s *record,
576 				    int write_op)
577 {
578 	int csum_size = 0;
579 	struct buffer_head *descriptor;
580 	int offset;
581 	journal_header_t *header;
582 
583 	/* If we are already aborting, this all becomes a noop.  We
584            still need to go round the loop in
585            jbd2_journal_write_revoke_records in order to free all of the
586            revoke records: only the IO to the journal is omitted. */
587 	if (is_journal_aborted(journal))
588 		return;
589 
590 	descriptor = *descriptorp;
591 	offset = *offsetp;
592 
593 	/* Do we need to leave space at the end for a checksum? */
594 	if (jbd2_journal_has_csum_v2or3(journal))
595 		csum_size = sizeof(struct jbd2_journal_revoke_tail);
596 
597 	/* Make sure we have a descriptor with space left for the record */
598 	if (descriptor) {
599 		if (offset >= journal->j_blocksize - csum_size) {
600 			flush_descriptor(journal, descriptor, offset, write_op);
601 			descriptor = NULL;
602 		}
603 	}
604 
605 	if (!descriptor) {
606 		descriptor = jbd2_journal_get_descriptor_buffer(journal);
607 		if (!descriptor)
608 			return;
609 		header = (journal_header_t *)descriptor->b_data;
610 		header->h_magic     = cpu_to_be32(JBD2_MAGIC_NUMBER);
611 		header->h_blocktype = cpu_to_be32(JBD2_REVOKE_BLOCK);
612 		header->h_sequence  = cpu_to_be32(transaction->t_tid);
613 
614 		/* Record it so that we can wait for IO completion later */
615 		BUFFER_TRACE(descriptor, "file in log_bufs");
616 		jbd2_file_log_bh(log_bufs, descriptor);
617 
618 		offset = sizeof(jbd2_journal_revoke_header_t);
619 		*descriptorp = descriptor;
620 	}
621 
622 	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT)) {
623 		* ((__be64 *)(&descriptor->b_data[offset])) =
624 			cpu_to_be64(record->blocknr);
625 		offset += 8;
626 
627 	} else {
628 		* ((__be32 *)(&descriptor->b_data[offset])) =
629 			cpu_to_be32(record->blocknr);
630 		offset += 4;
631 	}
632 
633 	*offsetp = offset;
634 }
635 
636 static void jbd2_revoke_csum_set(journal_t *j, struct buffer_head *bh)
637 {
638 	struct jbd2_journal_revoke_tail *tail;
639 	__u32 csum;
640 
641 	if (!jbd2_journal_has_csum_v2or3(j))
642 		return;
643 
644 	tail = (struct jbd2_journal_revoke_tail *)(bh->b_data + j->j_blocksize -
645 			sizeof(struct jbd2_journal_revoke_tail));
646 	tail->r_checksum = 0;
647 	csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
648 	tail->r_checksum = cpu_to_be32(csum);
649 }
650 
651 /*
652  * Flush a revoke descriptor out to the journal.  If we are aborting,
653  * this is a noop; otherwise we are generating a buffer which needs to
654  * be waited for during commit, so it has to go onto the appropriate
655  * journal buffer list.
656  */
657 
658 static void flush_descriptor(journal_t *journal,
659 			     struct buffer_head *descriptor,
660 			     int offset, int write_op)
661 {
662 	jbd2_journal_revoke_header_t *header;
663 
664 	if (is_journal_aborted(journal)) {
665 		put_bh(descriptor);
666 		return;
667 	}
668 
669 	header = (jbd2_journal_revoke_header_t *)descriptor->b_data;
670 	header->r_count = cpu_to_be32(offset);
671 	jbd2_revoke_csum_set(journal, descriptor);
672 
673 	set_buffer_jwrite(descriptor);
674 	BUFFER_TRACE(descriptor, "write");
675 	set_buffer_dirty(descriptor);
676 	write_dirty_buffer(descriptor, write_op);
677 }
678 #endif
679 
680 /*
681  * Revoke support for recovery.
682  *
683  * Recovery needs to be able to:
684  *
685  *  record all revoke records, including the tid of the latest instance
686  *  of each revoke in the journal
687  *
688  *  check whether a given block in a given transaction should be replayed
689  *  (ie. has not been revoked by a revoke record in that or a subsequent
690  *  transaction)
691  *
692  *  empty the revoke table after recovery.
693  */
694 
695 /*
696  * First, setting revoke records.  We create a new revoke record for
697  * every block ever revoked in the log as we scan it for recovery, and
698  * we update the existing records if we find multiple revokes for a
699  * single block.
700  */
701 
702 int jbd2_journal_set_revoke(journal_t *journal,
703 		       unsigned long long blocknr,
704 		       tid_t sequence)
705 {
706 	struct jbd2_revoke_record_s *record;
707 
708 	record = find_revoke_record(journal, blocknr);
709 	if (record) {
710 		/* If we have multiple occurrences, only record the
711 		 * latest sequence number in the hashed record */
712 		if (tid_gt(sequence, record->sequence))
713 			record->sequence = sequence;
714 		return 0;
715 	}
716 	return insert_revoke_hash(journal, blocknr, sequence);
717 }
718 
719 /*
720  * Test revoke records.  For a given block referenced in the log, has
721  * that block been revoked?  A revoke record with a given transaction
722  * sequence number revokes all blocks in that transaction and earlier
723  * ones, but later transactions still need replayed.
724  */
725 
726 int jbd2_journal_test_revoke(journal_t *journal,
727 			unsigned long long blocknr,
728 			tid_t sequence)
729 {
730 	struct jbd2_revoke_record_s *record;
731 
732 	record = find_revoke_record(journal, blocknr);
733 	if (!record)
734 		return 0;
735 	if (tid_gt(sequence, record->sequence))
736 		return 0;
737 	return 1;
738 }
739 
740 /*
741  * Finally, once recovery is over, we need to clear the revoke table so
742  * that it can be reused by the running filesystem.
743  */
744 
745 void jbd2_journal_clear_revoke(journal_t *journal)
746 {
747 	int i;
748 	struct list_head *hash_list;
749 	struct jbd2_revoke_record_s *record;
750 	struct jbd2_revoke_table_s *revoke;
751 
752 	revoke = journal->j_revoke;
753 
754 	for (i = 0; i < revoke->hash_size; i++) {
755 		hash_list = &revoke->hash_table[i];
756 		while (!list_empty(hash_list)) {
757 			record = (struct jbd2_revoke_record_s*) hash_list->next;
758 			list_del(&record->hash);
759 			kmem_cache_free(jbd2_revoke_record_cache, record);
760 		}
761 	}
762 }
763