1 /* 2 * linux/fs/jbd2/revoke.c 3 * 4 * Written by Stephen C. Tweedie <sct@redhat.com>, 2000 5 * 6 * Copyright 2000 Red Hat corp --- All Rights Reserved 7 * 8 * This file is part of the Linux kernel and is made available under 9 * the terms of the GNU General Public License, version 2, or at your 10 * option, any later version, incorporated herein by reference. 11 * 12 * Journal revoke routines for the generic filesystem journaling code; 13 * part of the ext2fs journaling system. 14 * 15 * Revoke is the mechanism used to prevent old log records for deleted 16 * metadata from being replayed on top of newer data using the same 17 * blocks. The revoke mechanism is used in two separate places: 18 * 19 * + Commit: during commit we write the entire list of the current 20 * transaction's revoked blocks to the journal 21 * 22 * + Recovery: during recovery we record the transaction ID of all 23 * revoked blocks. If there are multiple revoke records in the log 24 * for a single block, only the last one counts, and if there is a log 25 * entry for a block beyond the last revoke, then that log entry still 26 * gets replayed. 27 * 28 * We can get interactions between revokes and new log data within a 29 * single transaction: 30 * 31 * Block is revoked and then journaled: 32 * The desired end result is the journaling of the new block, so we 33 * cancel the revoke before the transaction commits. 34 * 35 * Block is journaled and then revoked: 36 * The revoke must take precedence over the write of the block, so we 37 * need either to cancel the journal entry or to write the revoke 38 * later in the log than the log block. In this case, we choose the 39 * latter: journaling a block cancels any revoke record for that block 40 * in the current transaction, so any revoke for that block in the 41 * transaction must have happened after the block was journaled and so 42 * the revoke must take precedence. 43 * 44 * Block is revoked and then written as data: 45 * The data write is allowed to succeed, but the revoke is _not_ 46 * cancelled. We still need to prevent old log records from 47 * overwriting the new data. We don't even need to clear the revoke 48 * bit here. 49 * 50 * We cache revoke status of a buffer in the current transaction in b_states 51 * bits. As the name says, revokevalid flag indicates that the cached revoke 52 * status of a buffer is valid and we can rely on the cached status. 53 * 54 * Revoke information on buffers is a tri-state value: 55 * 56 * RevokeValid clear: no cached revoke status, need to look it up 57 * RevokeValid set, Revoked clear: 58 * buffer has not been revoked, and cancel_revoke 59 * need do nothing. 60 * RevokeValid set, Revoked set: 61 * buffer has been revoked. 62 * 63 * Locking rules: 64 * We keep two hash tables of revoke records. One hashtable belongs to the 65 * running transaction (is pointed to by journal->j_revoke), the other one 66 * belongs to the committing transaction. Accesses to the second hash table 67 * happen only from the kjournald and no other thread touches this table. Also 68 * journal_switch_revoke_table() which switches which hashtable belongs to the 69 * running and which to the committing transaction is called only from 70 * kjournald. Therefore we need no locks when accessing the hashtable belonging 71 * to the committing transaction. 72 * 73 * All users operating on the hash table belonging to the running transaction 74 * have a handle to the transaction. Therefore they are safe from kjournald 75 * switching hash tables under them. For operations on the lists of entries in 76 * the hash table j_revoke_lock is used. 77 * 78 * Finally, also replay code uses the hash tables but at this moment no one else 79 * can touch them (filesystem isn't mounted yet) and hence no locking is 80 * needed. 81 */ 82 83 #ifndef __KERNEL__ 84 #include "jfs_user.h" 85 #else 86 #include <linux/time.h> 87 #include <linux/fs.h> 88 #include <linux/jbd2.h> 89 #include <linux/errno.h> 90 #include <linux/slab.h> 91 #include <linux/list.h> 92 #include <linux/init.h> 93 #include <linux/bio.h> 94 #endif 95 #include <linux/log2.h> 96 97 static struct kmem_cache *jbd2_revoke_record_cache; 98 static struct kmem_cache *jbd2_revoke_table_cache; 99 100 /* Each revoke record represents one single revoked block. During 101 journal replay, this involves recording the transaction ID of the 102 last transaction to revoke this block. */ 103 104 struct jbd2_revoke_record_s 105 { 106 struct list_head hash; 107 tid_t sequence; /* Used for recovery only */ 108 unsigned long long blocknr; 109 }; 110 111 112 /* The revoke table is just a simple hash table of revoke records. */ 113 struct jbd2_revoke_table_s 114 { 115 /* It is conceivable that we might want a larger hash table 116 * for recovery. Must be a power of two. */ 117 int hash_size; 118 int hash_shift; 119 struct list_head *hash_table; 120 }; 121 122 123 #ifdef __KERNEL__ 124 static void write_one_revoke_record(journal_t *, transaction_t *, 125 struct journal_head **, int *, 126 struct jbd2_revoke_record_s *, int); 127 static void flush_descriptor(journal_t *, struct journal_head *, int, int); 128 #endif 129 130 /* Utility functions to maintain the revoke table */ 131 132 /* Borrowed from buffer.c: this is a tried and tested block hash function */ 133 static inline int hash(journal_t *journal, unsigned long long block) 134 { 135 struct jbd2_revoke_table_s *table = journal->j_revoke; 136 int hash_shift = table->hash_shift; 137 int hash = (int)block ^ (int)((block >> 31) >> 1); 138 139 return ((hash << (hash_shift - 6)) ^ 140 (hash >> 13) ^ 141 (hash << (hash_shift - 12))) & (table->hash_size - 1); 142 } 143 144 static int insert_revoke_hash(journal_t *journal, unsigned long long blocknr, 145 tid_t seq) 146 { 147 struct list_head *hash_list; 148 struct jbd2_revoke_record_s *record; 149 150 repeat: 151 record = kmem_cache_alloc(jbd2_revoke_record_cache, GFP_NOFS); 152 if (!record) 153 goto oom; 154 155 record->sequence = seq; 156 record->blocknr = blocknr; 157 hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)]; 158 spin_lock(&journal->j_revoke_lock); 159 list_add(&record->hash, hash_list); 160 spin_unlock(&journal->j_revoke_lock); 161 return 0; 162 163 oom: 164 if (!journal_oom_retry) 165 return -ENOMEM; 166 jbd_debug(1, "ENOMEM in %s, retrying\n", __func__); 167 yield(); 168 goto repeat; 169 } 170 171 /* Find a revoke record in the journal's hash table. */ 172 173 static struct jbd2_revoke_record_s *find_revoke_record(journal_t *journal, 174 unsigned long long blocknr) 175 { 176 struct list_head *hash_list; 177 struct jbd2_revoke_record_s *record; 178 179 hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)]; 180 181 spin_lock(&journal->j_revoke_lock); 182 record = (struct jbd2_revoke_record_s *) hash_list->next; 183 while (&(record->hash) != hash_list) { 184 if (record->blocknr == blocknr) { 185 spin_unlock(&journal->j_revoke_lock); 186 return record; 187 } 188 record = (struct jbd2_revoke_record_s *) record->hash.next; 189 } 190 spin_unlock(&journal->j_revoke_lock); 191 return NULL; 192 } 193 194 void jbd2_journal_destroy_revoke_caches(void) 195 { 196 if (jbd2_revoke_record_cache) { 197 kmem_cache_destroy(jbd2_revoke_record_cache); 198 jbd2_revoke_record_cache = NULL; 199 } 200 if (jbd2_revoke_table_cache) { 201 kmem_cache_destroy(jbd2_revoke_table_cache); 202 jbd2_revoke_table_cache = NULL; 203 } 204 } 205 206 int __init jbd2_journal_init_revoke_caches(void) 207 { 208 J_ASSERT(!jbd2_revoke_record_cache); 209 J_ASSERT(!jbd2_revoke_table_cache); 210 211 jbd2_revoke_record_cache = kmem_cache_create("jbd2_revoke_record", 212 sizeof(struct jbd2_revoke_record_s), 213 0, 214 SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY, 215 NULL); 216 if (!jbd2_revoke_record_cache) 217 goto record_cache_failure; 218 219 jbd2_revoke_table_cache = kmem_cache_create("jbd2_revoke_table", 220 sizeof(struct jbd2_revoke_table_s), 221 0, SLAB_TEMPORARY, NULL); 222 if (!jbd2_revoke_table_cache) 223 goto table_cache_failure; 224 return 0; 225 table_cache_failure: 226 jbd2_journal_destroy_revoke_caches(); 227 record_cache_failure: 228 return -ENOMEM; 229 } 230 231 static struct jbd2_revoke_table_s *jbd2_journal_init_revoke_table(int hash_size) 232 { 233 int shift = 0; 234 int tmp = hash_size; 235 struct jbd2_revoke_table_s *table; 236 237 table = kmem_cache_alloc(jbd2_revoke_table_cache, GFP_KERNEL); 238 if (!table) 239 goto out; 240 241 while((tmp >>= 1UL) != 0UL) 242 shift++; 243 244 table->hash_size = hash_size; 245 table->hash_shift = shift; 246 table->hash_table = 247 kmalloc(hash_size * sizeof(struct list_head), GFP_KERNEL); 248 if (!table->hash_table) { 249 kmem_cache_free(jbd2_revoke_table_cache, table); 250 table = NULL; 251 goto out; 252 } 253 254 for (tmp = 0; tmp < hash_size; tmp++) 255 INIT_LIST_HEAD(&table->hash_table[tmp]); 256 257 out: 258 return table; 259 } 260 261 static void jbd2_journal_destroy_revoke_table(struct jbd2_revoke_table_s *table) 262 { 263 int i; 264 struct list_head *hash_list; 265 266 for (i = 0; i < table->hash_size; i++) { 267 hash_list = &table->hash_table[i]; 268 J_ASSERT(list_empty(hash_list)); 269 } 270 271 kfree(table->hash_table); 272 kmem_cache_free(jbd2_revoke_table_cache, table); 273 } 274 275 /* Initialise the revoke table for a given journal to a given size. */ 276 int jbd2_journal_init_revoke(journal_t *journal, int hash_size) 277 { 278 J_ASSERT(journal->j_revoke_table[0] == NULL); 279 J_ASSERT(is_power_of_2(hash_size)); 280 281 journal->j_revoke_table[0] = jbd2_journal_init_revoke_table(hash_size); 282 if (!journal->j_revoke_table[0]) 283 goto fail0; 284 285 journal->j_revoke_table[1] = jbd2_journal_init_revoke_table(hash_size); 286 if (!journal->j_revoke_table[1]) 287 goto fail1; 288 289 journal->j_revoke = journal->j_revoke_table[1]; 290 291 spin_lock_init(&journal->j_revoke_lock); 292 293 return 0; 294 295 fail1: 296 jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]); 297 fail0: 298 return -ENOMEM; 299 } 300 301 /* Destroy a journal's revoke table. The table must already be empty! */ 302 void jbd2_journal_destroy_revoke(journal_t *journal) 303 { 304 journal->j_revoke = NULL; 305 if (journal->j_revoke_table[0]) 306 jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]); 307 if (journal->j_revoke_table[1]) 308 jbd2_journal_destroy_revoke_table(journal->j_revoke_table[1]); 309 } 310 311 312 #ifdef __KERNEL__ 313 314 /* 315 * jbd2_journal_revoke: revoke a given buffer_head from the journal. This 316 * prevents the block from being replayed during recovery if we take a 317 * crash after this current transaction commits. Any subsequent 318 * metadata writes of the buffer in this transaction cancel the 319 * revoke. 320 * 321 * Note that this call may block --- it is up to the caller to make 322 * sure that there are no further calls to journal_write_metadata 323 * before the revoke is complete. In ext3, this implies calling the 324 * revoke before clearing the block bitmap when we are deleting 325 * metadata. 326 * 327 * Revoke performs a jbd2_journal_forget on any buffer_head passed in as a 328 * parameter, but does _not_ forget the buffer_head if the bh was only 329 * found implicitly. 330 * 331 * bh_in may not be a journalled buffer - it may have come off 332 * the hash tables without an attached journal_head. 333 * 334 * If bh_in is non-zero, jbd2_journal_revoke() will decrement its b_count 335 * by one. 336 */ 337 338 int jbd2_journal_revoke(handle_t *handle, unsigned long long blocknr, 339 struct buffer_head *bh_in) 340 { 341 struct buffer_head *bh = NULL; 342 journal_t *journal; 343 struct block_device *bdev; 344 int err; 345 346 might_sleep(); 347 if (bh_in) 348 BUFFER_TRACE(bh_in, "enter"); 349 350 journal = handle->h_transaction->t_journal; 351 if (!jbd2_journal_set_features(journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)){ 352 J_ASSERT (!"Cannot set revoke feature!"); 353 return -EINVAL; 354 } 355 356 bdev = journal->j_fs_dev; 357 bh = bh_in; 358 359 if (!bh) { 360 bh = __find_get_block(bdev, blocknr, journal->j_blocksize); 361 if (bh) 362 BUFFER_TRACE(bh, "found on hash"); 363 } 364 #ifdef JBD2_EXPENSIVE_CHECKING 365 else { 366 struct buffer_head *bh2; 367 368 /* If there is a different buffer_head lying around in 369 * memory anywhere... */ 370 bh2 = __find_get_block(bdev, blocknr, journal->j_blocksize); 371 if (bh2) { 372 /* ... and it has RevokeValid status... */ 373 if (bh2 != bh && buffer_revokevalid(bh2)) 374 /* ...then it better be revoked too, 375 * since it's illegal to create a revoke 376 * record against a buffer_head which is 377 * not marked revoked --- that would 378 * risk missing a subsequent revoke 379 * cancel. */ 380 J_ASSERT_BH(bh2, buffer_revoked(bh2)); 381 put_bh(bh2); 382 } 383 } 384 #endif 385 386 /* We really ought not ever to revoke twice in a row without 387 first having the revoke cancelled: it's illegal to free a 388 block twice without allocating it in between! */ 389 if (bh) { 390 if (!J_EXPECT_BH(bh, !buffer_revoked(bh), 391 "inconsistent data on disk")) { 392 if (!bh_in) 393 brelse(bh); 394 return -EIO; 395 } 396 set_buffer_revoked(bh); 397 set_buffer_revokevalid(bh); 398 if (bh_in) { 399 BUFFER_TRACE(bh_in, "call jbd2_journal_forget"); 400 jbd2_journal_forget(handle, bh_in); 401 } else { 402 BUFFER_TRACE(bh, "call brelse"); 403 __brelse(bh); 404 } 405 } 406 407 jbd_debug(2, "insert revoke for block %llu, bh_in=%p\n",blocknr, bh_in); 408 err = insert_revoke_hash(journal, blocknr, 409 handle->h_transaction->t_tid); 410 BUFFER_TRACE(bh_in, "exit"); 411 return err; 412 } 413 414 /* 415 * Cancel an outstanding revoke. For use only internally by the 416 * journaling code (called from jbd2_journal_get_write_access). 417 * 418 * We trust buffer_revoked() on the buffer if the buffer is already 419 * being journaled: if there is no revoke pending on the buffer, then we 420 * don't do anything here. 421 * 422 * This would break if it were possible for a buffer to be revoked and 423 * discarded, and then reallocated within the same transaction. In such 424 * a case we would have lost the revoked bit, but when we arrived here 425 * the second time we would still have a pending revoke to cancel. So, 426 * do not trust the Revoked bit on buffers unless RevokeValid is also 427 * set. 428 */ 429 int jbd2_journal_cancel_revoke(handle_t *handle, struct journal_head *jh) 430 { 431 struct jbd2_revoke_record_s *record; 432 journal_t *journal = handle->h_transaction->t_journal; 433 int need_cancel; 434 int did_revoke = 0; /* akpm: debug */ 435 struct buffer_head *bh = jh2bh(jh); 436 437 jbd_debug(4, "journal_head %p, cancelling revoke\n", jh); 438 439 /* Is the existing Revoke bit valid? If so, we trust it, and 440 * only perform the full cancel if the revoke bit is set. If 441 * not, we can't trust the revoke bit, and we need to do the 442 * full search for a revoke record. */ 443 if (test_set_buffer_revokevalid(bh)) { 444 need_cancel = test_clear_buffer_revoked(bh); 445 } else { 446 need_cancel = 1; 447 clear_buffer_revoked(bh); 448 } 449 450 if (need_cancel) { 451 record = find_revoke_record(journal, bh->b_blocknr); 452 if (record) { 453 jbd_debug(4, "cancelled existing revoke on " 454 "blocknr %llu\n", (unsigned long long)bh->b_blocknr); 455 spin_lock(&journal->j_revoke_lock); 456 list_del(&record->hash); 457 spin_unlock(&journal->j_revoke_lock); 458 kmem_cache_free(jbd2_revoke_record_cache, record); 459 did_revoke = 1; 460 } 461 } 462 463 #ifdef JBD2_EXPENSIVE_CHECKING 464 /* There better not be one left behind by now! */ 465 record = find_revoke_record(journal, bh->b_blocknr); 466 J_ASSERT_JH(jh, record == NULL); 467 #endif 468 469 /* Finally, have we just cleared revoke on an unhashed 470 * buffer_head? If so, we'd better make sure we clear the 471 * revoked status on any hashed alias too, otherwise the revoke 472 * state machine will get very upset later on. */ 473 if (need_cancel) { 474 struct buffer_head *bh2; 475 bh2 = __find_get_block(bh->b_bdev, bh->b_blocknr, bh->b_size); 476 if (bh2) { 477 if (bh2 != bh) 478 clear_buffer_revoked(bh2); 479 __brelse(bh2); 480 } 481 } 482 return did_revoke; 483 } 484 485 /* 486 * journal_clear_revoked_flag clears revoked flag of buffers in 487 * revoke table to reflect there is no revoked buffers in the next 488 * transaction which is going to be started. 489 */ 490 void jbd2_clear_buffer_revoked_flags(journal_t *journal) 491 { 492 struct jbd2_revoke_table_s *revoke = journal->j_revoke; 493 int i = 0; 494 495 for (i = 0; i < revoke->hash_size; i++) { 496 struct list_head *hash_list; 497 struct list_head *list_entry; 498 hash_list = &revoke->hash_table[i]; 499 500 list_for_each(list_entry, hash_list) { 501 struct jbd2_revoke_record_s *record; 502 struct buffer_head *bh; 503 record = (struct jbd2_revoke_record_s *)list_entry; 504 bh = __find_get_block(journal->j_fs_dev, 505 record->blocknr, 506 journal->j_blocksize); 507 if (bh) { 508 clear_buffer_revoked(bh); 509 __brelse(bh); 510 } 511 } 512 } 513 } 514 515 /* journal_switch_revoke table select j_revoke for next transaction 516 * we do not want to suspend any processing until all revokes are 517 * written -bzzz 518 */ 519 void jbd2_journal_switch_revoke_table(journal_t *journal) 520 { 521 int i; 522 523 if (journal->j_revoke == journal->j_revoke_table[0]) 524 journal->j_revoke = journal->j_revoke_table[1]; 525 else 526 journal->j_revoke = journal->j_revoke_table[0]; 527 528 for (i = 0; i < journal->j_revoke->hash_size; i++) 529 INIT_LIST_HEAD(&journal->j_revoke->hash_table[i]); 530 } 531 532 /* 533 * Write revoke records to the journal for all entries in the current 534 * revoke hash, deleting the entries as we go. 535 */ 536 void jbd2_journal_write_revoke_records(journal_t *journal, 537 transaction_t *transaction, 538 int write_op) 539 { 540 struct journal_head *descriptor; 541 struct jbd2_revoke_record_s *record; 542 struct jbd2_revoke_table_s *revoke; 543 struct list_head *hash_list; 544 int i, offset, count; 545 546 descriptor = NULL; 547 offset = 0; 548 count = 0; 549 550 /* select revoke table for committing transaction */ 551 revoke = journal->j_revoke == journal->j_revoke_table[0] ? 552 journal->j_revoke_table[1] : journal->j_revoke_table[0]; 553 554 for (i = 0; i < revoke->hash_size; i++) { 555 hash_list = &revoke->hash_table[i]; 556 557 while (!list_empty(hash_list)) { 558 record = (struct jbd2_revoke_record_s *) 559 hash_list->next; 560 write_one_revoke_record(journal, transaction, 561 &descriptor, &offset, 562 record, write_op); 563 count++; 564 list_del(&record->hash); 565 kmem_cache_free(jbd2_revoke_record_cache, record); 566 } 567 } 568 if (descriptor) 569 flush_descriptor(journal, descriptor, offset, write_op); 570 jbd_debug(1, "Wrote %d revoke records\n", count); 571 } 572 573 /* 574 * Write out one revoke record. We need to create a new descriptor 575 * block if the old one is full or if we have not already created one. 576 */ 577 578 static void write_one_revoke_record(journal_t *journal, 579 transaction_t *transaction, 580 struct journal_head **descriptorp, 581 int *offsetp, 582 struct jbd2_revoke_record_s *record, 583 int write_op) 584 { 585 struct journal_head *descriptor; 586 int offset; 587 journal_header_t *header; 588 589 /* If we are already aborting, this all becomes a noop. We 590 still need to go round the loop in 591 jbd2_journal_write_revoke_records in order to free all of the 592 revoke records: only the IO to the journal is omitted. */ 593 if (is_journal_aborted(journal)) 594 return; 595 596 descriptor = *descriptorp; 597 offset = *offsetp; 598 599 /* Make sure we have a descriptor with space left for the record */ 600 if (descriptor) { 601 if (offset == journal->j_blocksize) { 602 flush_descriptor(journal, descriptor, offset, write_op); 603 descriptor = NULL; 604 } 605 } 606 607 if (!descriptor) { 608 descriptor = jbd2_journal_get_descriptor_buffer(journal); 609 if (!descriptor) 610 return; 611 header = (journal_header_t *) &jh2bh(descriptor)->b_data[0]; 612 header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER); 613 header->h_blocktype = cpu_to_be32(JBD2_REVOKE_BLOCK); 614 header->h_sequence = cpu_to_be32(transaction->t_tid); 615 616 /* Record it so that we can wait for IO completion later */ 617 JBUFFER_TRACE(descriptor, "file as BJ_LogCtl"); 618 jbd2_journal_file_buffer(descriptor, transaction, BJ_LogCtl); 619 620 offset = sizeof(jbd2_journal_revoke_header_t); 621 *descriptorp = descriptor; 622 } 623 624 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT)) { 625 * ((__be64 *)(&jh2bh(descriptor)->b_data[offset])) = 626 cpu_to_be64(record->blocknr); 627 offset += 8; 628 629 } else { 630 * ((__be32 *)(&jh2bh(descriptor)->b_data[offset])) = 631 cpu_to_be32(record->blocknr); 632 offset += 4; 633 } 634 635 *offsetp = offset; 636 } 637 638 /* 639 * Flush a revoke descriptor out to the journal. If we are aborting, 640 * this is a noop; otherwise we are generating a buffer which needs to 641 * be waited for during commit, so it has to go onto the appropriate 642 * journal buffer list. 643 */ 644 645 static void flush_descriptor(journal_t *journal, 646 struct journal_head *descriptor, 647 int offset, int write_op) 648 { 649 jbd2_journal_revoke_header_t *header; 650 struct buffer_head *bh = jh2bh(descriptor); 651 652 if (is_journal_aborted(journal)) { 653 put_bh(bh); 654 return; 655 } 656 657 header = (jbd2_journal_revoke_header_t *) jh2bh(descriptor)->b_data; 658 header->r_count = cpu_to_be32(offset); 659 set_buffer_jwrite(bh); 660 BUFFER_TRACE(bh, "write"); 661 set_buffer_dirty(bh); 662 write_dirty_buffer(bh, write_op); 663 } 664 #endif 665 666 /* 667 * Revoke support for recovery. 668 * 669 * Recovery needs to be able to: 670 * 671 * record all revoke records, including the tid of the latest instance 672 * of each revoke in the journal 673 * 674 * check whether a given block in a given transaction should be replayed 675 * (ie. has not been revoked by a revoke record in that or a subsequent 676 * transaction) 677 * 678 * empty the revoke table after recovery. 679 */ 680 681 /* 682 * First, setting revoke records. We create a new revoke record for 683 * every block ever revoked in the log as we scan it for recovery, and 684 * we update the existing records if we find multiple revokes for a 685 * single block. 686 */ 687 688 int jbd2_journal_set_revoke(journal_t *journal, 689 unsigned long long blocknr, 690 tid_t sequence) 691 { 692 struct jbd2_revoke_record_s *record; 693 694 record = find_revoke_record(journal, blocknr); 695 if (record) { 696 /* If we have multiple occurrences, only record the 697 * latest sequence number in the hashed record */ 698 if (tid_gt(sequence, record->sequence)) 699 record->sequence = sequence; 700 return 0; 701 } 702 return insert_revoke_hash(journal, blocknr, sequence); 703 } 704 705 /* 706 * Test revoke records. For a given block referenced in the log, has 707 * that block been revoked? A revoke record with a given transaction 708 * sequence number revokes all blocks in that transaction and earlier 709 * ones, but later transactions still need replayed. 710 */ 711 712 int jbd2_journal_test_revoke(journal_t *journal, 713 unsigned long long blocknr, 714 tid_t sequence) 715 { 716 struct jbd2_revoke_record_s *record; 717 718 record = find_revoke_record(journal, blocknr); 719 if (!record) 720 return 0; 721 if (tid_gt(sequence, record->sequence)) 722 return 0; 723 return 1; 724 } 725 726 /* 727 * Finally, once recovery is over, we need to clear the revoke table so 728 * that it can be reused by the running filesystem. 729 */ 730 731 void jbd2_journal_clear_revoke(journal_t *journal) 732 { 733 int i; 734 struct list_head *hash_list; 735 struct jbd2_revoke_record_s *record; 736 struct jbd2_revoke_table_s *revoke; 737 738 revoke = journal->j_revoke; 739 740 for (i = 0; i < revoke->hash_size; i++) { 741 hash_list = &revoke->hash_table[i]; 742 while (!list_empty(hash_list)) { 743 record = (struct jbd2_revoke_record_s*) hash_list->next; 744 list_del(&record->hash); 745 kmem_cache_free(jbd2_revoke_record_cache, record); 746 } 747 } 748 } 749