xref: /linux/fs/jbd2/revoke.c (revision 109d59b900e78834c66657dd4748fcedb9a1fe8d)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * linux/fs/jbd2/revoke.c
4  *
5  * Written by Stephen C. Tweedie <sct@redhat.com>, 2000
6  *
7  * Copyright 2000 Red Hat corp --- All Rights Reserved
8  *
9  * Journal revoke routines for the generic filesystem journaling code;
10  * part of the ext2fs journaling system.
11  *
12  * Revoke is the mechanism used to prevent old log records for deleted
13  * metadata from being replayed on top of newer data using the same
14  * blocks.  The revoke mechanism is used in two separate places:
15  *
16  * + Commit: during commit we write the entire list of the current
17  *   transaction's revoked blocks to the journal
18  *
19  * + Recovery: during recovery we record the transaction ID of all
20  *   revoked blocks.  If there are multiple revoke records in the log
21  *   for a single block, only the last one counts, and if there is a log
22  *   entry for a block beyond the last revoke, then that log entry still
23  *   gets replayed.
24  *
25  * We can get interactions between revokes and new log data within a
26  * single transaction:
27  *
28  * Block is revoked and then journaled:
29  *   The desired end result is the journaling of the new block, so we
30  *   cancel the revoke before the transaction commits.
31  *
32  * Block is journaled and then revoked:
33  *   The revoke must take precedence over the write of the block, so we
34  *   need either to cancel the journal entry or to write the revoke
35  *   later in the log than the log block.  In this case, we choose the
36  *   latter: journaling a block cancels any revoke record for that block
37  *   in the current transaction, so any revoke for that block in the
38  *   transaction must have happened after the block was journaled and so
39  *   the revoke must take precedence.
40  *
41  * Block is revoked and then written as data:
42  *   The data write is allowed to succeed, but the revoke is _not_
43  *   cancelled.  We still need to prevent old log records from
44  *   overwriting the new data.  We don't even need to clear the revoke
45  *   bit here.
46  *
47  * We cache revoke status of a buffer in the current transaction in b_states
48  * bits.  As the name says, revokevalid flag indicates that the cached revoke
49  * status of a buffer is valid and we can rely on the cached status.
50  *
51  * Revoke information on buffers is a tri-state value:
52  *
53  * RevokeValid clear:	no cached revoke status, need to look it up
54  * RevokeValid set, Revoked clear:
55  *			buffer has not been revoked, and cancel_revoke
56  *			need do nothing.
57  * RevokeValid set, Revoked set:
58  *			buffer has been revoked.
59  *
60  * Locking rules:
61  * We keep two hash tables of revoke records. One hashtable belongs to the
62  * running transaction (is pointed to by journal->j_revoke), the other one
63  * belongs to the committing transaction. Accesses to the second hash table
64  * happen only from the kjournald and no other thread touches this table.  Also
65  * journal_switch_revoke_table() which switches which hashtable belongs to the
66  * running and which to the committing transaction is called only from
67  * kjournald. Therefore we need no locks when accessing the hashtable belonging
68  * to the committing transaction.
69  *
70  * All users operating on the hash table belonging to the running transaction
71  * have a handle to the transaction. Therefore they are safe from kjournald
72  * switching hash tables under them. For operations on the lists of entries in
73  * the hash table j_revoke_lock is used.
74  *
75  * Finally, also replay code uses the hash tables but at this moment no one else
76  * can touch them (filesystem isn't mounted yet) and hence no locking is
77  * needed.
78  */
79 
80 #ifndef __KERNEL__
81 #include "jfs_user.h"
82 #else
83 #include <linux/time.h>
84 #include <linux/fs.h>
85 #include <linux/jbd2.h>
86 #include <linux/errno.h>
87 #include <linux/slab.h>
88 #include <linux/list.h>
89 #include <linux/init.h>
90 #include <linux/bio.h>
91 #include <linux/log2.h>
92 #include <linux/hash.h>
93 #endif
94 
95 static struct kmem_cache *jbd2_revoke_record_cache;
96 static struct kmem_cache *jbd2_revoke_table_cache;
97 
98 /* Each revoke record represents one single revoked block.  During
99    journal replay, this involves recording the transaction ID of the
100    last transaction to revoke this block. */
101 
102 struct jbd2_revoke_record_s
103 {
104 	struct list_head  hash;
105 	tid_t		  sequence;	/* Used for recovery only */
106 	unsigned long long	  blocknr;
107 };
108 
109 
110 /* The revoke table is just a simple hash table of revoke records. */
111 struct jbd2_revoke_table_s
112 {
113 	/* It is conceivable that we might want a larger hash table
114 	 * for recovery.  Must be a power of two. */
115 	int		  hash_size;
116 	int		  hash_shift;
117 	struct list_head *hash_table;
118 };
119 
120 
121 #ifdef __KERNEL__
122 static void write_one_revoke_record(transaction_t *,
123 				    struct list_head *,
124 				    struct buffer_head **, int *,
125 				    struct jbd2_revoke_record_s *);
126 static void flush_descriptor(journal_t *, struct buffer_head *, int);
127 #endif
128 
129 /* Utility functions to maintain the revoke table */
130 
131 static inline int hash(journal_t *journal, unsigned long long block)
132 {
133 	return hash_64(block, journal->j_revoke->hash_shift);
134 }
135 
136 static int insert_revoke_hash(journal_t *journal, unsigned long long blocknr,
137 			      tid_t seq)
138 {
139 	struct list_head *hash_list;
140 	struct jbd2_revoke_record_s *record;
141 	gfp_t gfp_mask = GFP_NOFS;
142 
143 	if (journal_oom_retry)
144 		gfp_mask |= __GFP_NOFAIL;
145 	record = kmem_cache_alloc(jbd2_revoke_record_cache, gfp_mask);
146 	if (!record)
147 		return -ENOMEM;
148 
149 	record->sequence = seq;
150 	record->blocknr = blocknr;
151 	hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
152 	spin_lock(&journal->j_revoke_lock);
153 	list_add(&record->hash, hash_list);
154 	spin_unlock(&journal->j_revoke_lock);
155 	return 0;
156 }
157 
158 /* Find a revoke record in the journal's hash table. */
159 
160 static struct jbd2_revoke_record_s *find_revoke_record(journal_t *journal,
161 						      unsigned long long blocknr)
162 {
163 	struct list_head *hash_list;
164 	struct jbd2_revoke_record_s *record;
165 
166 	hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
167 
168 	spin_lock(&journal->j_revoke_lock);
169 	record = (struct jbd2_revoke_record_s *) hash_list->next;
170 	while (&(record->hash) != hash_list) {
171 		if (record->blocknr == blocknr) {
172 			spin_unlock(&journal->j_revoke_lock);
173 			return record;
174 		}
175 		record = (struct jbd2_revoke_record_s *) record->hash.next;
176 	}
177 	spin_unlock(&journal->j_revoke_lock);
178 	return NULL;
179 }
180 
181 void jbd2_journal_destroy_revoke_caches(void)
182 {
183 	if (jbd2_revoke_record_cache) {
184 		kmem_cache_destroy(jbd2_revoke_record_cache);
185 		jbd2_revoke_record_cache = NULL;
186 	}
187 	if (jbd2_revoke_table_cache) {
188 		kmem_cache_destroy(jbd2_revoke_table_cache);
189 		jbd2_revoke_table_cache = NULL;
190 	}
191 }
192 
193 int __init jbd2_journal_init_revoke_caches(void)
194 {
195 	J_ASSERT(!jbd2_revoke_record_cache);
196 	J_ASSERT(!jbd2_revoke_table_cache);
197 
198 	jbd2_revoke_record_cache = KMEM_CACHE(jbd2_revoke_record_s,
199 					SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY);
200 	if (!jbd2_revoke_record_cache)
201 		goto record_cache_failure;
202 
203 	jbd2_revoke_table_cache = KMEM_CACHE(jbd2_revoke_table_s,
204 					     SLAB_TEMPORARY);
205 	if (!jbd2_revoke_table_cache)
206 		goto table_cache_failure;
207 	return 0;
208 table_cache_failure:
209 	jbd2_journal_destroy_revoke_caches();
210 record_cache_failure:
211 		return -ENOMEM;
212 }
213 
214 static struct jbd2_revoke_table_s *jbd2_journal_init_revoke_table(int hash_size)
215 {
216 	int shift = 0;
217 	int tmp = hash_size;
218 	struct jbd2_revoke_table_s *table;
219 
220 	table = kmem_cache_alloc(jbd2_revoke_table_cache, GFP_KERNEL);
221 	if (!table)
222 		goto out;
223 
224 	while((tmp >>= 1UL) != 0UL)
225 		shift++;
226 
227 	table->hash_size = hash_size;
228 	table->hash_shift = shift;
229 	table->hash_table =
230 		kmalloc(hash_size * sizeof(struct list_head), GFP_KERNEL);
231 	if (!table->hash_table) {
232 		kmem_cache_free(jbd2_revoke_table_cache, table);
233 		table = NULL;
234 		goto out;
235 	}
236 
237 	for (tmp = 0; tmp < hash_size; tmp++)
238 		INIT_LIST_HEAD(&table->hash_table[tmp]);
239 
240 out:
241 	return table;
242 }
243 
244 static void jbd2_journal_destroy_revoke_table(struct jbd2_revoke_table_s *table)
245 {
246 	int i;
247 	struct list_head *hash_list;
248 
249 	for (i = 0; i < table->hash_size; i++) {
250 		hash_list = &table->hash_table[i];
251 		J_ASSERT(list_empty(hash_list));
252 	}
253 
254 	kfree(table->hash_table);
255 	kmem_cache_free(jbd2_revoke_table_cache, table);
256 }
257 
258 /* Initialise the revoke table for a given journal to a given size. */
259 int jbd2_journal_init_revoke(journal_t *journal, int hash_size)
260 {
261 	J_ASSERT(journal->j_revoke_table[0] == NULL);
262 	J_ASSERT(is_power_of_2(hash_size));
263 
264 	journal->j_revoke_table[0] = jbd2_journal_init_revoke_table(hash_size);
265 	if (!journal->j_revoke_table[0])
266 		goto fail0;
267 
268 	journal->j_revoke_table[1] = jbd2_journal_init_revoke_table(hash_size);
269 	if (!journal->j_revoke_table[1])
270 		goto fail1;
271 
272 	journal->j_revoke = journal->j_revoke_table[1];
273 
274 	spin_lock_init(&journal->j_revoke_lock);
275 
276 	return 0;
277 
278 fail1:
279 	jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]);
280 	journal->j_revoke_table[0] = NULL;
281 fail0:
282 	return -ENOMEM;
283 }
284 
285 /* Destroy a journal's revoke table.  The table must already be empty! */
286 void jbd2_journal_destroy_revoke(journal_t *journal)
287 {
288 	journal->j_revoke = NULL;
289 	if (journal->j_revoke_table[0])
290 		jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]);
291 	if (journal->j_revoke_table[1])
292 		jbd2_journal_destroy_revoke_table(journal->j_revoke_table[1]);
293 }
294 
295 
296 #ifdef __KERNEL__
297 
298 /*
299  * jbd2_journal_revoke: revoke a given buffer_head from the journal.  This
300  * prevents the block from being replayed during recovery if we take a
301  * crash after this current transaction commits.  Any subsequent
302  * metadata writes of the buffer in this transaction cancel the
303  * revoke.
304  *
305  * Note that this call may block --- it is up to the caller to make
306  * sure that there are no further calls to journal_write_metadata
307  * before the revoke is complete.  In ext3, this implies calling the
308  * revoke before clearing the block bitmap when we are deleting
309  * metadata.
310  *
311  * Revoke performs a jbd2_journal_forget on any buffer_head passed in as a
312  * parameter, but does _not_ forget the buffer_head if the bh was only
313  * found implicitly.
314  *
315  * bh_in may not be a journalled buffer - it may have come off
316  * the hash tables without an attached journal_head.
317  *
318  * If bh_in is non-zero, jbd2_journal_revoke() will decrement its b_count
319  * by one.
320  */
321 
322 int jbd2_journal_revoke(handle_t *handle, unsigned long long blocknr,
323 		   struct buffer_head *bh_in)
324 {
325 	struct buffer_head *bh = NULL;
326 	journal_t *journal;
327 	struct block_device *bdev;
328 	int err;
329 
330 	might_sleep();
331 	if (bh_in)
332 		BUFFER_TRACE(bh_in, "enter");
333 
334 	journal = handle->h_transaction->t_journal;
335 	if (!jbd2_journal_set_features(journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)){
336 		J_ASSERT (!"Cannot set revoke feature!");
337 		return -EINVAL;
338 	}
339 
340 	bdev = journal->j_fs_dev;
341 	bh = bh_in;
342 
343 	if (!bh) {
344 		bh = __find_get_block(bdev, blocknr, journal->j_blocksize);
345 		if (bh)
346 			BUFFER_TRACE(bh, "found on hash");
347 	}
348 #ifdef JBD2_EXPENSIVE_CHECKING
349 	else {
350 		struct buffer_head *bh2;
351 
352 		/* If there is a different buffer_head lying around in
353 		 * memory anywhere... */
354 		bh2 = __find_get_block(bdev, blocknr, journal->j_blocksize);
355 		if (bh2) {
356 			/* ... and it has RevokeValid status... */
357 			if (bh2 != bh && buffer_revokevalid(bh2))
358 				/* ...then it better be revoked too,
359 				 * since it's illegal to create a revoke
360 				 * record against a buffer_head which is
361 				 * not marked revoked --- that would
362 				 * risk missing a subsequent revoke
363 				 * cancel. */
364 				J_ASSERT_BH(bh2, buffer_revoked(bh2));
365 			put_bh(bh2);
366 		}
367 	}
368 #endif
369 
370 	/* We really ought not ever to revoke twice in a row without
371            first having the revoke cancelled: it's illegal to free a
372            block twice without allocating it in between! */
373 	if (bh) {
374 		if (!J_EXPECT_BH(bh, !buffer_revoked(bh),
375 				 "inconsistent data on disk")) {
376 			if (!bh_in)
377 				brelse(bh);
378 			return -EIO;
379 		}
380 		set_buffer_revoked(bh);
381 		set_buffer_revokevalid(bh);
382 		if (bh_in) {
383 			BUFFER_TRACE(bh_in, "call jbd2_journal_forget");
384 			jbd2_journal_forget(handle, bh_in);
385 		} else {
386 			BUFFER_TRACE(bh, "call brelse");
387 			__brelse(bh);
388 		}
389 	}
390 
391 	jbd_debug(2, "insert revoke for block %llu, bh_in=%p\n",blocknr, bh_in);
392 	err = insert_revoke_hash(journal, blocknr,
393 				handle->h_transaction->t_tid);
394 	BUFFER_TRACE(bh_in, "exit");
395 	return err;
396 }
397 
398 /*
399  * Cancel an outstanding revoke.  For use only internally by the
400  * journaling code (called from jbd2_journal_get_write_access).
401  *
402  * We trust buffer_revoked() on the buffer if the buffer is already
403  * being journaled: if there is no revoke pending on the buffer, then we
404  * don't do anything here.
405  *
406  * This would break if it were possible for a buffer to be revoked and
407  * discarded, and then reallocated within the same transaction.  In such
408  * a case we would have lost the revoked bit, but when we arrived here
409  * the second time we would still have a pending revoke to cancel.  So,
410  * do not trust the Revoked bit on buffers unless RevokeValid is also
411  * set.
412  */
413 int jbd2_journal_cancel_revoke(handle_t *handle, struct journal_head *jh)
414 {
415 	struct jbd2_revoke_record_s *record;
416 	journal_t *journal = handle->h_transaction->t_journal;
417 	int need_cancel;
418 	int did_revoke = 0;	/* akpm: debug */
419 	struct buffer_head *bh = jh2bh(jh);
420 
421 	jbd_debug(4, "journal_head %p, cancelling revoke\n", jh);
422 
423 	/* Is the existing Revoke bit valid?  If so, we trust it, and
424 	 * only perform the full cancel if the revoke bit is set.  If
425 	 * not, we can't trust the revoke bit, and we need to do the
426 	 * full search for a revoke record. */
427 	if (test_set_buffer_revokevalid(bh)) {
428 		need_cancel = test_clear_buffer_revoked(bh);
429 	} else {
430 		need_cancel = 1;
431 		clear_buffer_revoked(bh);
432 	}
433 
434 	if (need_cancel) {
435 		record = find_revoke_record(journal, bh->b_blocknr);
436 		if (record) {
437 			jbd_debug(4, "cancelled existing revoke on "
438 				  "blocknr %llu\n", (unsigned long long)bh->b_blocknr);
439 			spin_lock(&journal->j_revoke_lock);
440 			list_del(&record->hash);
441 			spin_unlock(&journal->j_revoke_lock);
442 			kmem_cache_free(jbd2_revoke_record_cache, record);
443 			did_revoke = 1;
444 		}
445 	}
446 
447 #ifdef JBD2_EXPENSIVE_CHECKING
448 	/* There better not be one left behind by now! */
449 	record = find_revoke_record(journal, bh->b_blocknr);
450 	J_ASSERT_JH(jh, record == NULL);
451 #endif
452 
453 	/* Finally, have we just cleared revoke on an unhashed
454 	 * buffer_head?  If so, we'd better make sure we clear the
455 	 * revoked status on any hashed alias too, otherwise the revoke
456 	 * state machine will get very upset later on. */
457 	if (need_cancel) {
458 		struct buffer_head *bh2;
459 		bh2 = __find_get_block(bh->b_bdev, bh->b_blocknr, bh->b_size);
460 		if (bh2) {
461 			if (bh2 != bh)
462 				clear_buffer_revoked(bh2);
463 			__brelse(bh2);
464 		}
465 	}
466 	return did_revoke;
467 }
468 
469 /*
470  * journal_clear_revoked_flag clears revoked flag of buffers in
471  * revoke table to reflect there is no revoked buffers in the next
472  * transaction which is going to be started.
473  */
474 void jbd2_clear_buffer_revoked_flags(journal_t *journal)
475 {
476 	struct jbd2_revoke_table_s *revoke = journal->j_revoke;
477 	int i = 0;
478 
479 	for (i = 0; i < revoke->hash_size; i++) {
480 		struct list_head *hash_list;
481 		struct list_head *list_entry;
482 		hash_list = &revoke->hash_table[i];
483 
484 		list_for_each(list_entry, hash_list) {
485 			struct jbd2_revoke_record_s *record;
486 			struct buffer_head *bh;
487 			record = (struct jbd2_revoke_record_s *)list_entry;
488 			bh = __find_get_block(journal->j_fs_dev,
489 					      record->blocknr,
490 					      journal->j_blocksize);
491 			if (bh) {
492 				clear_buffer_revoked(bh);
493 				__brelse(bh);
494 			}
495 		}
496 	}
497 }
498 
499 /* journal_switch_revoke table select j_revoke for next transaction
500  * we do not want to suspend any processing until all revokes are
501  * written -bzzz
502  */
503 void jbd2_journal_switch_revoke_table(journal_t *journal)
504 {
505 	int i;
506 
507 	if (journal->j_revoke == journal->j_revoke_table[0])
508 		journal->j_revoke = journal->j_revoke_table[1];
509 	else
510 		journal->j_revoke = journal->j_revoke_table[0];
511 
512 	for (i = 0; i < journal->j_revoke->hash_size; i++)
513 		INIT_LIST_HEAD(&journal->j_revoke->hash_table[i]);
514 }
515 
516 /*
517  * Write revoke records to the journal for all entries in the current
518  * revoke hash, deleting the entries as we go.
519  */
520 void jbd2_journal_write_revoke_records(transaction_t *transaction,
521 				       struct list_head *log_bufs)
522 {
523 	journal_t *journal = transaction->t_journal;
524 	struct buffer_head *descriptor;
525 	struct jbd2_revoke_record_s *record;
526 	struct jbd2_revoke_table_s *revoke;
527 	struct list_head *hash_list;
528 	int i, offset, count;
529 
530 	descriptor = NULL;
531 	offset = 0;
532 	count = 0;
533 
534 	/* select revoke table for committing transaction */
535 	revoke = journal->j_revoke == journal->j_revoke_table[0] ?
536 		journal->j_revoke_table[1] : journal->j_revoke_table[0];
537 
538 	for (i = 0; i < revoke->hash_size; i++) {
539 		hash_list = &revoke->hash_table[i];
540 
541 		while (!list_empty(hash_list)) {
542 			record = (struct jbd2_revoke_record_s *)
543 				hash_list->next;
544 			write_one_revoke_record(transaction, log_bufs,
545 						&descriptor, &offset, record);
546 			count++;
547 			list_del(&record->hash);
548 			kmem_cache_free(jbd2_revoke_record_cache, record);
549 		}
550 	}
551 	if (descriptor)
552 		flush_descriptor(journal, descriptor, offset);
553 	jbd_debug(1, "Wrote %d revoke records\n", count);
554 }
555 
556 /*
557  * Write out one revoke record.  We need to create a new descriptor
558  * block if the old one is full or if we have not already created one.
559  */
560 
561 static void write_one_revoke_record(transaction_t *transaction,
562 				    struct list_head *log_bufs,
563 				    struct buffer_head **descriptorp,
564 				    int *offsetp,
565 				    struct jbd2_revoke_record_s *record)
566 {
567 	journal_t *journal = transaction->t_journal;
568 	int csum_size = 0;
569 	struct buffer_head *descriptor;
570 	int sz, offset;
571 
572 	/* If we are already aborting, this all becomes a noop.  We
573            still need to go round the loop in
574            jbd2_journal_write_revoke_records in order to free all of the
575            revoke records: only the IO to the journal is omitted. */
576 	if (is_journal_aborted(journal))
577 		return;
578 
579 	descriptor = *descriptorp;
580 	offset = *offsetp;
581 
582 	/* Do we need to leave space at the end for a checksum? */
583 	if (jbd2_journal_has_csum_v2or3(journal))
584 		csum_size = sizeof(struct jbd2_journal_block_tail);
585 
586 	if (jbd2_has_feature_64bit(journal))
587 		sz = 8;
588 	else
589 		sz = 4;
590 
591 	/* Make sure we have a descriptor with space left for the record */
592 	if (descriptor) {
593 		if (offset + sz > journal->j_blocksize - csum_size) {
594 			flush_descriptor(journal, descriptor, offset);
595 			descriptor = NULL;
596 		}
597 	}
598 
599 	if (!descriptor) {
600 		descriptor = jbd2_journal_get_descriptor_buffer(transaction,
601 							JBD2_REVOKE_BLOCK);
602 		if (!descriptor)
603 			return;
604 
605 		/* Record it so that we can wait for IO completion later */
606 		BUFFER_TRACE(descriptor, "file in log_bufs");
607 		jbd2_file_log_bh(log_bufs, descriptor);
608 
609 		offset = sizeof(jbd2_journal_revoke_header_t);
610 		*descriptorp = descriptor;
611 	}
612 
613 	if (jbd2_has_feature_64bit(journal))
614 		* ((__be64 *)(&descriptor->b_data[offset])) =
615 			cpu_to_be64(record->blocknr);
616 	else
617 		* ((__be32 *)(&descriptor->b_data[offset])) =
618 			cpu_to_be32(record->blocknr);
619 	offset += sz;
620 
621 	*offsetp = offset;
622 }
623 
624 /*
625  * Flush a revoke descriptor out to the journal.  If we are aborting,
626  * this is a noop; otherwise we are generating a buffer which needs to
627  * be waited for during commit, so it has to go onto the appropriate
628  * journal buffer list.
629  */
630 
631 static void flush_descriptor(journal_t *journal,
632 			     struct buffer_head *descriptor,
633 			     int offset)
634 {
635 	jbd2_journal_revoke_header_t *header;
636 
637 	if (is_journal_aborted(journal)) {
638 		put_bh(descriptor);
639 		return;
640 	}
641 
642 	header = (jbd2_journal_revoke_header_t *)descriptor->b_data;
643 	header->r_count = cpu_to_be32(offset);
644 	jbd2_descriptor_block_csum_set(journal, descriptor);
645 
646 	set_buffer_jwrite(descriptor);
647 	BUFFER_TRACE(descriptor, "write");
648 	set_buffer_dirty(descriptor);
649 	write_dirty_buffer(descriptor, REQ_SYNC);
650 }
651 #endif
652 
653 /*
654  * Revoke support for recovery.
655  *
656  * Recovery needs to be able to:
657  *
658  *  record all revoke records, including the tid of the latest instance
659  *  of each revoke in the journal
660  *
661  *  check whether a given block in a given transaction should be replayed
662  *  (ie. has not been revoked by a revoke record in that or a subsequent
663  *  transaction)
664  *
665  *  empty the revoke table after recovery.
666  */
667 
668 /*
669  * First, setting revoke records.  We create a new revoke record for
670  * every block ever revoked in the log as we scan it for recovery, and
671  * we update the existing records if we find multiple revokes for a
672  * single block.
673  */
674 
675 int jbd2_journal_set_revoke(journal_t *journal,
676 		       unsigned long long blocknr,
677 		       tid_t sequence)
678 {
679 	struct jbd2_revoke_record_s *record;
680 
681 	record = find_revoke_record(journal, blocknr);
682 	if (record) {
683 		/* If we have multiple occurrences, only record the
684 		 * latest sequence number in the hashed record */
685 		if (tid_gt(sequence, record->sequence))
686 			record->sequence = sequence;
687 		return 0;
688 	}
689 	return insert_revoke_hash(journal, blocknr, sequence);
690 }
691 
692 /*
693  * Test revoke records.  For a given block referenced in the log, has
694  * that block been revoked?  A revoke record with a given transaction
695  * sequence number revokes all blocks in that transaction and earlier
696  * ones, but later transactions still need replayed.
697  */
698 
699 int jbd2_journal_test_revoke(journal_t *journal,
700 			unsigned long long blocknr,
701 			tid_t sequence)
702 {
703 	struct jbd2_revoke_record_s *record;
704 
705 	record = find_revoke_record(journal, blocknr);
706 	if (!record)
707 		return 0;
708 	if (tid_gt(sequence, record->sequence))
709 		return 0;
710 	return 1;
711 }
712 
713 /*
714  * Finally, once recovery is over, we need to clear the revoke table so
715  * that it can be reused by the running filesystem.
716  */
717 
718 void jbd2_journal_clear_revoke(journal_t *journal)
719 {
720 	int i;
721 	struct list_head *hash_list;
722 	struct jbd2_revoke_record_s *record;
723 	struct jbd2_revoke_table_s *revoke;
724 
725 	revoke = journal->j_revoke;
726 
727 	for (i = 0; i < revoke->hash_size; i++) {
728 		hash_list = &revoke->hash_table[i];
729 		while (!list_empty(hash_list)) {
730 			record = (struct jbd2_revoke_record_s*) hash_list->next;
731 			list_del(&record->hash);
732 			kmem_cache_free(jbd2_revoke_record_cache, record);
733 		}
734 	}
735 }
736