1 /* 2 * linux/fs/jbd2/journal.c 3 * 4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 5 * 6 * Copyright 1998 Red Hat corp --- All Rights Reserved 7 * 8 * This file is part of the Linux kernel and is made available under 9 * the terms of the GNU General Public License, version 2, or at your 10 * option, any later version, incorporated herein by reference. 11 * 12 * Generic filesystem journal-writing code; part of the ext2fs 13 * journaling system. 14 * 15 * This file manages journals: areas of disk reserved for logging 16 * transactional updates. This includes the kernel journaling thread 17 * which is responsible for scheduling updates to the log. 18 * 19 * We do not actually manage the physical storage of the journal in this 20 * file: that is left to a per-journal policy function, which allows us 21 * to store the journal within a filesystem-specified area for ext2 22 * journaling (ext2 can use a reserved inode for storing the log). 23 */ 24 25 #include <linux/module.h> 26 #include <linux/time.h> 27 #include <linux/fs.h> 28 #include <linux/jbd2.h> 29 #include <linux/errno.h> 30 #include <linux/slab.h> 31 #include <linux/init.h> 32 #include <linux/mm.h> 33 #include <linux/freezer.h> 34 #include <linux/pagemap.h> 35 #include <linux/kthread.h> 36 #include <linux/poison.h> 37 #include <linux/proc_fs.h> 38 #include <linux/seq_file.h> 39 #include <linux/math64.h> 40 #include <linux/hash.h> 41 #include <linux/log2.h> 42 #include <linux/vmalloc.h> 43 #include <linux/backing-dev.h> 44 #include <linux/bitops.h> 45 #include <linux/ratelimit.h> 46 47 #define CREATE_TRACE_POINTS 48 #include <trace/events/jbd2.h> 49 50 #include <asm/uaccess.h> 51 #include <asm/page.h> 52 53 #ifdef CONFIG_JBD2_DEBUG 54 ushort jbd2_journal_enable_debug __read_mostly; 55 EXPORT_SYMBOL(jbd2_journal_enable_debug); 56 57 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644); 58 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2"); 59 #endif 60 61 EXPORT_SYMBOL(jbd2_journal_extend); 62 EXPORT_SYMBOL(jbd2_journal_stop); 63 EXPORT_SYMBOL(jbd2_journal_lock_updates); 64 EXPORT_SYMBOL(jbd2_journal_unlock_updates); 65 EXPORT_SYMBOL(jbd2_journal_get_write_access); 66 EXPORT_SYMBOL(jbd2_journal_get_create_access); 67 EXPORT_SYMBOL(jbd2_journal_get_undo_access); 68 EXPORT_SYMBOL(jbd2_journal_set_triggers); 69 EXPORT_SYMBOL(jbd2_journal_dirty_metadata); 70 EXPORT_SYMBOL(jbd2_journal_forget); 71 #if 0 72 EXPORT_SYMBOL(journal_sync_buffer); 73 #endif 74 EXPORT_SYMBOL(jbd2_journal_flush); 75 EXPORT_SYMBOL(jbd2_journal_revoke); 76 77 EXPORT_SYMBOL(jbd2_journal_init_dev); 78 EXPORT_SYMBOL(jbd2_journal_init_inode); 79 EXPORT_SYMBOL(jbd2_journal_check_used_features); 80 EXPORT_SYMBOL(jbd2_journal_check_available_features); 81 EXPORT_SYMBOL(jbd2_journal_set_features); 82 EXPORT_SYMBOL(jbd2_journal_load); 83 EXPORT_SYMBOL(jbd2_journal_destroy); 84 EXPORT_SYMBOL(jbd2_journal_abort); 85 EXPORT_SYMBOL(jbd2_journal_errno); 86 EXPORT_SYMBOL(jbd2_journal_ack_err); 87 EXPORT_SYMBOL(jbd2_journal_clear_err); 88 EXPORT_SYMBOL(jbd2_log_wait_commit); 89 EXPORT_SYMBOL(jbd2_log_start_commit); 90 EXPORT_SYMBOL(jbd2_journal_start_commit); 91 EXPORT_SYMBOL(jbd2_journal_force_commit_nested); 92 EXPORT_SYMBOL(jbd2_journal_wipe); 93 EXPORT_SYMBOL(jbd2_journal_blocks_per_page); 94 EXPORT_SYMBOL(jbd2_journal_invalidatepage); 95 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers); 96 EXPORT_SYMBOL(jbd2_journal_force_commit); 97 EXPORT_SYMBOL(jbd2_journal_file_inode); 98 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode); 99 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode); 100 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate); 101 EXPORT_SYMBOL(jbd2_inode_cache); 102 103 static void __journal_abort_soft (journal_t *journal, int errno); 104 static int jbd2_journal_create_slab(size_t slab_size); 105 106 #ifdef CONFIG_JBD2_DEBUG 107 void __jbd2_debug(int level, const char *file, const char *func, 108 unsigned int line, const char *fmt, ...) 109 { 110 struct va_format vaf; 111 va_list args; 112 113 if (level > jbd2_journal_enable_debug) 114 return; 115 va_start(args, fmt); 116 vaf.fmt = fmt; 117 vaf.va = &args; 118 printk(KERN_DEBUG "%s: (%s, %u): %pV\n", file, func, line, &vaf); 119 va_end(args); 120 } 121 EXPORT_SYMBOL(__jbd2_debug); 122 #endif 123 124 /* Checksumming functions */ 125 int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb) 126 { 127 if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2)) 128 return 1; 129 130 return sb->s_checksum_type == JBD2_CRC32C_CHKSUM; 131 } 132 133 static __u32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb) 134 { 135 __u32 csum, old_csum; 136 137 old_csum = sb->s_checksum; 138 sb->s_checksum = 0; 139 csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t)); 140 sb->s_checksum = old_csum; 141 142 return cpu_to_be32(csum); 143 } 144 145 int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb) 146 { 147 if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2)) 148 return 1; 149 150 return sb->s_checksum == jbd2_superblock_csum(j, sb); 151 } 152 153 void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb) 154 { 155 if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2)) 156 return; 157 158 sb->s_checksum = jbd2_superblock_csum(j, sb); 159 } 160 161 /* 162 * Helper function used to manage commit timeouts 163 */ 164 165 static void commit_timeout(unsigned long __data) 166 { 167 struct task_struct * p = (struct task_struct *) __data; 168 169 wake_up_process(p); 170 } 171 172 /* 173 * kjournald2: The main thread function used to manage a logging device 174 * journal. 175 * 176 * This kernel thread is responsible for two things: 177 * 178 * 1) COMMIT: Every so often we need to commit the current state of the 179 * filesystem to disk. The journal thread is responsible for writing 180 * all of the metadata buffers to disk. 181 * 182 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all 183 * of the data in that part of the log has been rewritten elsewhere on 184 * the disk. Flushing these old buffers to reclaim space in the log is 185 * known as checkpointing, and this thread is responsible for that job. 186 */ 187 188 static int kjournald2(void *arg) 189 { 190 journal_t *journal = arg; 191 transaction_t *transaction; 192 193 /* 194 * Set up an interval timer which can be used to trigger a commit wakeup 195 * after the commit interval expires 196 */ 197 setup_timer(&journal->j_commit_timer, commit_timeout, 198 (unsigned long)current); 199 200 set_freezable(); 201 202 /* Record that the journal thread is running */ 203 journal->j_task = current; 204 wake_up(&journal->j_wait_done_commit); 205 206 /* 207 * And now, wait forever for commit wakeup events. 208 */ 209 write_lock(&journal->j_state_lock); 210 211 loop: 212 if (journal->j_flags & JBD2_UNMOUNT) 213 goto end_loop; 214 215 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n", 216 journal->j_commit_sequence, journal->j_commit_request); 217 218 if (journal->j_commit_sequence != journal->j_commit_request) { 219 jbd_debug(1, "OK, requests differ\n"); 220 write_unlock(&journal->j_state_lock); 221 del_timer_sync(&journal->j_commit_timer); 222 jbd2_journal_commit_transaction(journal); 223 write_lock(&journal->j_state_lock); 224 goto loop; 225 } 226 227 wake_up(&journal->j_wait_done_commit); 228 if (freezing(current)) { 229 /* 230 * The simpler the better. Flushing journal isn't a 231 * good idea, because that depends on threads that may 232 * be already stopped. 233 */ 234 jbd_debug(1, "Now suspending kjournald2\n"); 235 write_unlock(&journal->j_state_lock); 236 try_to_freeze(); 237 write_lock(&journal->j_state_lock); 238 } else { 239 /* 240 * We assume on resume that commits are already there, 241 * so we don't sleep 242 */ 243 DEFINE_WAIT(wait); 244 int should_sleep = 1; 245 246 prepare_to_wait(&journal->j_wait_commit, &wait, 247 TASK_INTERRUPTIBLE); 248 if (journal->j_commit_sequence != journal->j_commit_request) 249 should_sleep = 0; 250 transaction = journal->j_running_transaction; 251 if (transaction && time_after_eq(jiffies, 252 transaction->t_expires)) 253 should_sleep = 0; 254 if (journal->j_flags & JBD2_UNMOUNT) 255 should_sleep = 0; 256 if (should_sleep) { 257 write_unlock(&journal->j_state_lock); 258 schedule(); 259 write_lock(&journal->j_state_lock); 260 } 261 finish_wait(&journal->j_wait_commit, &wait); 262 } 263 264 jbd_debug(1, "kjournald2 wakes\n"); 265 266 /* 267 * Were we woken up by a commit wakeup event? 268 */ 269 transaction = journal->j_running_transaction; 270 if (transaction && time_after_eq(jiffies, transaction->t_expires)) { 271 journal->j_commit_request = transaction->t_tid; 272 jbd_debug(1, "woke because of timeout\n"); 273 } 274 goto loop; 275 276 end_loop: 277 write_unlock(&journal->j_state_lock); 278 del_timer_sync(&journal->j_commit_timer); 279 journal->j_task = NULL; 280 wake_up(&journal->j_wait_done_commit); 281 jbd_debug(1, "Journal thread exiting.\n"); 282 return 0; 283 } 284 285 static int jbd2_journal_start_thread(journal_t *journal) 286 { 287 struct task_struct *t; 288 289 t = kthread_run(kjournald2, journal, "jbd2/%s", 290 journal->j_devname); 291 if (IS_ERR(t)) 292 return PTR_ERR(t); 293 294 wait_event(journal->j_wait_done_commit, journal->j_task != NULL); 295 return 0; 296 } 297 298 static void journal_kill_thread(journal_t *journal) 299 { 300 write_lock(&journal->j_state_lock); 301 journal->j_flags |= JBD2_UNMOUNT; 302 303 while (journal->j_task) { 304 wake_up(&journal->j_wait_commit); 305 write_unlock(&journal->j_state_lock); 306 wait_event(journal->j_wait_done_commit, journal->j_task == NULL); 307 write_lock(&journal->j_state_lock); 308 } 309 write_unlock(&journal->j_state_lock); 310 } 311 312 /* 313 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal. 314 * 315 * Writes a metadata buffer to a given disk block. The actual IO is not 316 * performed but a new buffer_head is constructed which labels the data 317 * to be written with the correct destination disk block. 318 * 319 * Any magic-number escaping which needs to be done will cause a 320 * copy-out here. If the buffer happens to start with the 321 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the 322 * magic number is only written to the log for descripter blocks. In 323 * this case, we copy the data and replace the first word with 0, and we 324 * return a result code which indicates that this buffer needs to be 325 * marked as an escaped buffer in the corresponding log descriptor 326 * block. The missing word can then be restored when the block is read 327 * during recovery. 328 * 329 * If the source buffer has already been modified by a new transaction 330 * since we took the last commit snapshot, we use the frozen copy of 331 * that data for IO. If we end up using the existing buffer_head's data 332 * for the write, then we have to make sure nobody modifies it while the 333 * IO is in progress. do_get_write_access() handles this. 334 * 335 * The function returns a pointer to the buffer_head to be used for IO. 336 * 337 * 338 * Return value: 339 * <0: Error 340 * >=0: Finished OK 341 * 342 * On success: 343 * Bit 0 set == escape performed on the data 344 * Bit 1 set == buffer copy-out performed (kfree the data after IO) 345 */ 346 347 int jbd2_journal_write_metadata_buffer(transaction_t *transaction, 348 struct journal_head *jh_in, 349 struct buffer_head **bh_out, 350 sector_t blocknr) 351 { 352 int need_copy_out = 0; 353 int done_copy_out = 0; 354 int do_escape = 0; 355 char *mapped_data; 356 struct buffer_head *new_bh; 357 struct page *new_page; 358 unsigned int new_offset; 359 struct buffer_head *bh_in = jh2bh(jh_in); 360 journal_t *journal = transaction->t_journal; 361 362 /* 363 * The buffer really shouldn't be locked: only the current committing 364 * transaction is allowed to write it, so nobody else is allowed 365 * to do any IO. 366 * 367 * akpm: except if we're journalling data, and write() output is 368 * also part of a shared mapping, and another thread has 369 * decided to launch a writepage() against this buffer. 370 */ 371 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in)); 372 373 retry_alloc: 374 new_bh = alloc_buffer_head(GFP_NOFS); 375 if (!new_bh) { 376 /* 377 * Failure is not an option, but __GFP_NOFAIL is going 378 * away; so we retry ourselves here. 379 */ 380 congestion_wait(BLK_RW_ASYNC, HZ/50); 381 goto retry_alloc; 382 } 383 384 /* keep subsequent assertions sane */ 385 atomic_set(&new_bh->b_count, 1); 386 387 jbd_lock_bh_state(bh_in); 388 repeat: 389 /* 390 * If a new transaction has already done a buffer copy-out, then 391 * we use that version of the data for the commit. 392 */ 393 if (jh_in->b_frozen_data) { 394 done_copy_out = 1; 395 new_page = virt_to_page(jh_in->b_frozen_data); 396 new_offset = offset_in_page(jh_in->b_frozen_data); 397 } else { 398 new_page = jh2bh(jh_in)->b_page; 399 new_offset = offset_in_page(jh2bh(jh_in)->b_data); 400 } 401 402 mapped_data = kmap_atomic(new_page); 403 /* 404 * Fire data frozen trigger if data already wasn't frozen. Do this 405 * before checking for escaping, as the trigger may modify the magic 406 * offset. If a copy-out happens afterwards, it will have the correct 407 * data in the buffer. 408 */ 409 if (!done_copy_out) 410 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset, 411 jh_in->b_triggers); 412 413 /* 414 * Check for escaping 415 */ 416 if (*((__be32 *)(mapped_data + new_offset)) == 417 cpu_to_be32(JBD2_MAGIC_NUMBER)) { 418 need_copy_out = 1; 419 do_escape = 1; 420 } 421 kunmap_atomic(mapped_data); 422 423 /* 424 * Do we need to do a data copy? 425 */ 426 if (need_copy_out && !done_copy_out) { 427 char *tmp; 428 429 jbd_unlock_bh_state(bh_in); 430 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS); 431 if (!tmp) { 432 brelse(new_bh); 433 return -ENOMEM; 434 } 435 jbd_lock_bh_state(bh_in); 436 if (jh_in->b_frozen_data) { 437 jbd2_free(tmp, bh_in->b_size); 438 goto repeat; 439 } 440 441 jh_in->b_frozen_data = tmp; 442 mapped_data = kmap_atomic(new_page); 443 memcpy(tmp, mapped_data + new_offset, bh_in->b_size); 444 kunmap_atomic(mapped_data); 445 446 new_page = virt_to_page(tmp); 447 new_offset = offset_in_page(tmp); 448 done_copy_out = 1; 449 450 /* 451 * This isn't strictly necessary, as we're using frozen 452 * data for the escaping, but it keeps consistency with 453 * b_frozen_data usage. 454 */ 455 jh_in->b_frozen_triggers = jh_in->b_triggers; 456 } 457 458 /* 459 * Did we need to do an escaping? Now we've done all the 460 * copying, we can finally do so. 461 */ 462 if (do_escape) { 463 mapped_data = kmap_atomic(new_page); 464 *((unsigned int *)(mapped_data + new_offset)) = 0; 465 kunmap_atomic(mapped_data); 466 } 467 468 set_bh_page(new_bh, new_page, new_offset); 469 new_bh->b_size = bh_in->b_size; 470 new_bh->b_bdev = journal->j_dev; 471 new_bh->b_blocknr = blocknr; 472 new_bh->b_private = bh_in; 473 set_buffer_mapped(new_bh); 474 set_buffer_dirty(new_bh); 475 476 *bh_out = new_bh; 477 478 /* 479 * The to-be-written buffer needs to get moved to the io queue, 480 * and the original buffer whose contents we are shadowing or 481 * copying is moved to the transaction's shadow queue. 482 */ 483 JBUFFER_TRACE(jh_in, "file as BJ_Shadow"); 484 spin_lock(&journal->j_list_lock); 485 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow); 486 spin_unlock(&journal->j_list_lock); 487 set_buffer_shadow(bh_in); 488 jbd_unlock_bh_state(bh_in); 489 490 return do_escape | (done_copy_out << 1); 491 } 492 493 /* 494 * Allocation code for the journal file. Manage the space left in the 495 * journal, so that we can begin checkpointing when appropriate. 496 */ 497 498 /* 499 * Called with j_state_lock locked for writing. 500 * Returns true if a transaction commit was started. 501 */ 502 int __jbd2_log_start_commit(journal_t *journal, tid_t target) 503 { 504 /* Return if the txn has already requested to be committed */ 505 if (journal->j_commit_request == target) 506 return 0; 507 508 /* 509 * The only transaction we can possibly wait upon is the 510 * currently running transaction (if it exists). Otherwise, 511 * the target tid must be an old one. 512 */ 513 if (journal->j_running_transaction && 514 journal->j_running_transaction->t_tid == target) { 515 /* 516 * We want a new commit: OK, mark the request and wakeup the 517 * commit thread. We do _not_ do the commit ourselves. 518 */ 519 520 journal->j_commit_request = target; 521 jbd_debug(1, "JBD2: requesting commit %d/%d\n", 522 journal->j_commit_request, 523 journal->j_commit_sequence); 524 journal->j_running_transaction->t_requested = jiffies; 525 wake_up(&journal->j_wait_commit); 526 return 1; 527 } else if (!tid_geq(journal->j_commit_request, target)) 528 /* This should never happen, but if it does, preserve 529 the evidence before kjournald goes into a loop and 530 increments j_commit_sequence beyond all recognition. */ 531 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n", 532 journal->j_commit_request, 533 journal->j_commit_sequence, 534 target, journal->j_running_transaction ? 535 journal->j_running_transaction->t_tid : 0); 536 return 0; 537 } 538 539 int jbd2_log_start_commit(journal_t *journal, tid_t tid) 540 { 541 int ret; 542 543 write_lock(&journal->j_state_lock); 544 ret = __jbd2_log_start_commit(journal, tid); 545 write_unlock(&journal->j_state_lock); 546 return ret; 547 } 548 549 /* 550 * Force and wait any uncommitted transactions. We can only force the running 551 * transaction if we don't have an active handle, otherwise, we will deadlock. 552 * Returns: <0 in case of error, 553 * 0 if nothing to commit, 554 * 1 if transaction was successfully committed. 555 */ 556 static int __jbd2_journal_force_commit(journal_t *journal) 557 { 558 transaction_t *transaction = NULL; 559 tid_t tid; 560 int need_to_start = 0, ret = 0; 561 562 read_lock(&journal->j_state_lock); 563 if (journal->j_running_transaction && !current->journal_info) { 564 transaction = journal->j_running_transaction; 565 if (!tid_geq(journal->j_commit_request, transaction->t_tid)) 566 need_to_start = 1; 567 } else if (journal->j_committing_transaction) 568 transaction = journal->j_committing_transaction; 569 570 if (!transaction) { 571 /* Nothing to commit */ 572 read_unlock(&journal->j_state_lock); 573 return 0; 574 } 575 tid = transaction->t_tid; 576 read_unlock(&journal->j_state_lock); 577 if (need_to_start) 578 jbd2_log_start_commit(journal, tid); 579 ret = jbd2_log_wait_commit(journal, tid); 580 if (!ret) 581 ret = 1; 582 583 return ret; 584 } 585 586 /** 587 * Force and wait upon a commit if the calling process is not within 588 * transaction. This is used for forcing out undo-protected data which contains 589 * bitmaps, when the fs is running out of space. 590 * 591 * @journal: journal to force 592 * Returns true if progress was made. 593 */ 594 int jbd2_journal_force_commit_nested(journal_t *journal) 595 { 596 int ret; 597 598 ret = __jbd2_journal_force_commit(journal); 599 return ret > 0; 600 } 601 602 /** 603 * int journal_force_commit() - force any uncommitted transactions 604 * @journal: journal to force 605 * 606 * Caller want unconditional commit. We can only force the running transaction 607 * if we don't have an active handle, otherwise, we will deadlock. 608 */ 609 int jbd2_journal_force_commit(journal_t *journal) 610 { 611 int ret; 612 613 J_ASSERT(!current->journal_info); 614 ret = __jbd2_journal_force_commit(journal); 615 if (ret > 0) 616 ret = 0; 617 return ret; 618 } 619 620 /* 621 * Start a commit of the current running transaction (if any). Returns true 622 * if a transaction is going to be committed (or is currently already 623 * committing), and fills its tid in at *ptid 624 */ 625 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid) 626 { 627 int ret = 0; 628 629 write_lock(&journal->j_state_lock); 630 if (journal->j_running_transaction) { 631 tid_t tid = journal->j_running_transaction->t_tid; 632 633 __jbd2_log_start_commit(journal, tid); 634 /* There's a running transaction and we've just made sure 635 * it's commit has been scheduled. */ 636 if (ptid) 637 *ptid = tid; 638 ret = 1; 639 } else if (journal->j_committing_transaction) { 640 /* 641 * If commit has been started, then we have to wait for 642 * completion of that transaction. 643 */ 644 if (ptid) 645 *ptid = journal->j_committing_transaction->t_tid; 646 ret = 1; 647 } 648 write_unlock(&journal->j_state_lock); 649 return ret; 650 } 651 652 /* 653 * Return 1 if a given transaction has not yet sent barrier request 654 * connected with a transaction commit. If 0 is returned, transaction 655 * may or may not have sent the barrier. Used to avoid sending barrier 656 * twice in common cases. 657 */ 658 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid) 659 { 660 int ret = 0; 661 transaction_t *commit_trans; 662 663 if (!(journal->j_flags & JBD2_BARRIER)) 664 return 0; 665 read_lock(&journal->j_state_lock); 666 /* Transaction already committed? */ 667 if (tid_geq(journal->j_commit_sequence, tid)) 668 goto out; 669 commit_trans = journal->j_committing_transaction; 670 if (!commit_trans || commit_trans->t_tid != tid) { 671 ret = 1; 672 goto out; 673 } 674 /* 675 * Transaction is being committed and we already proceeded to 676 * submitting a flush to fs partition? 677 */ 678 if (journal->j_fs_dev != journal->j_dev) { 679 if (!commit_trans->t_need_data_flush || 680 commit_trans->t_state >= T_COMMIT_DFLUSH) 681 goto out; 682 } else { 683 if (commit_trans->t_state >= T_COMMIT_JFLUSH) 684 goto out; 685 } 686 ret = 1; 687 out: 688 read_unlock(&journal->j_state_lock); 689 return ret; 690 } 691 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier); 692 693 /* 694 * Wait for a specified commit to complete. 695 * The caller may not hold the journal lock. 696 */ 697 int jbd2_log_wait_commit(journal_t *journal, tid_t tid) 698 { 699 int err = 0; 700 701 read_lock(&journal->j_state_lock); 702 #ifdef CONFIG_JBD2_DEBUG 703 if (!tid_geq(journal->j_commit_request, tid)) { 704 printk(KERN_EMERG 705 "%s: error: j_commit_request=%d, tid=%d\n", 706 __func__, journal->j_commit_request, tid); 707 } 708 #endif 709 while (tid_gt(tid, journal->j_commit_sequence)) { 710 jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n", 711 tid, journal->j_commit_sequence); 712 wake_up(&journal->j_wait_commit); 713 read_unlock(&journal->j_state_lock); 714 wait_event(journal->j_wait_done_commit, 715 !tid_gt(tid, journal->j_commit_sequence)); 716 read_lock(&journal->j_state_lock); 717 } 718 read_unlock(&journal->j_state_lock); 719 720 if (unlikely(is_journal_aborted(journal))) { 721 printk(KERN_EMERG "journal commit I/O error\n"); 722 err = -EIO; 723 } 724 return err; 725 } 726 727 /* 728 * When this function returns the transaction corresponding to tid 729 * will be completed. If the transaction has currently running, start 730 * committing that transaction before waiting for it to complete. If 731 * the transaction id is stale, it is by definition already completed, 732 * so just return SUCCESS. 733 */ 734 int jbd2_complete_transaction(journal_t *journal, tid_t tid) 735 { 736 int need_to_wait = 1; 737 738 read_lock(&journal->j_state_lock); 739 if (journal->j_running_transaction && 740 journal->j_running_transaction->t_tid == tid) { 741 if (journal->j_commit_request != tid) { 742 /* transaction not yet started, so request it */ 743 read_unlock(&journal->j_state_lock); 744 jbd2_log_start_commit(journal, tid); 745 goto wait_commit; 746 } 747 } else if (!(journal->j_committing_transaction && 748 journal->j_committing_transaction->t_tid == tid)) 749 need_to_wait = 0; 750 read_unlock(&journal->j_state_lock); 751 if (!need_to_wait) 752 return 0; 753 wait_commit: 754 return jbd2_log_wait_commit(journal, tid); 755 } 756 EXPORT_SYMBOL(jbd2_complete_transaction); 757 758 /* 759 * Log buffer allocation routines: 760 */ 761 762 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp) 763 { 764 unsigned long blocknr; 765 766 write_lock(&journal->j_state_lock); 767 J_ASSERT(journal->j_free > 1); 768 769 blocknr = journal->j_head; 770 journal->j_head++; 771 journal->j_free--; 772 if (journal->j_head == journal->j_last) 773 journal->j_head = journal->j_first; 774 write_unlock(&journal->j_state_lock); 775 return jbd2_journal_bmap(journal, blocknr, retp); 776 } 777 778 /* 779 * Conversion of logical to physical block numbers for the journal 780 * 781 * On external journals the journal blocks are identity-mapped, so 782 * this is a no-op. If needed, we can use j_blk_offset - everything is 783 * ready. 784 */ 785 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr, 786 unsigned long long *retp) 787 { 788 int err = 0; 789 unsigned long long ret; 790 791 if (journal->j_inode) { 792 ret = bmap(journal->j_inode, blocknr); 793 if (ret) 794 *retp = ret; 795 else { 796 printk(KERN_ALERT "%s: journal block not found " 797 "at offset %lu on %s\n", 798 __func__, blocknr, journal->j_devname); 799 err = -EIO; 800 __journal_abort_soft(journal, err); 801 } 802 } else { 803 *retp = blocknr; /* +journal->j_blk_offset */ 804 } 805 return err; 806 } 807 808 /* 809 * We play buffer_head aliasing tricks to write data/metadata blocks to 810 * the journal without copying their contents, but for journal 811 * descriptor blocks we do need to generate bona fide buffers. 812 * 813 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying 814 * the buffer's contents they really should run flush_dcache_page(bh->b_page). 815 * But we don't bother doing that, so there will be coherency problems with 816 * mmaps of blockdevs which hold live JBD-controlled filesystems. 817 */ 818 struct buffer_head *jbd2_journal_get_descriptor_buffer(journal_t *journal) 819 { 820 struct buffer_head *bh; 821 unsigned long long blocknr; 822 int err; 823 824 err = jbd2_journal_next_log_block(journal, &blocknr); 825 826 if (err) 827 return NULL; 828 829 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize); 830 if (!bh) 831 return NULL; 832 lock_buffer(bh); 833 memset(bh->b_data, 0, journal->j_blocksize); 834 set_buffer_uptodate(bh); 835 unlock_buffer(bh); 836 BUFFER_TRACE(bh, "return this buffer"); 837 return bh; 838 } 839 840 /* 841 * Return tid of the oldest transaction in the journal and block in the journal 842 * where the transaction starts. 843 * 844 * If the journal is now empty, return which will be the next transaction ID 845 * we will write and where will that transaction start. 846 * 847 * The return value is 0 if journal tail cannot be pushed any further, 1 if 848 * it can. 849 */ 850 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid, 851 unsigned long *block) 852 { 853 transaction_t *transaction; 854 int ret; 855 856 read_lock(&journal->j_state_lock); 857 spin_lock(&journal->j_list_lock); 858 transaction = journal->j_checkpoint_transactions; 859 if (transaction) { 860 *tid = transaction->t_tid; 861 *block = transaction->t_log_start; 862 } else if ((transaction = journal->j_committing_transaction) != NULL) { 863 *tid = transaction->t_tid; 864 *block = transaction->t_log_start; 865 } else if ((transaction = journal->j_running_transaction) != NULL) { 866 *tid = transaction->t_tid; 867 *block = journal->j_head; 868 } else { 869 *tid = journal->j_transaction_sequence; 870 *block = journal->j_head; 871 } 872 ret = tid_gt(*tid, journal->j_tail_sequence); 873 spin_unlock(&journal->j_list_lock); 874 read_unlock(&journal->j_state_lock); 875 876 return ret; 877 } 878 879 /* 880 * Update information in journal structure and in on disk journal superblock 881 * about log tail. This function does not check whether information passed in 882 * really pushes log tail further. It's responsibility of the caller to make 883 * sure provided log tail information is valid (e.g. by holding 884 * j_checkpoint_mutex all the time between computing log tail and calling this 885 * function as is the case with jbd2_cleanup_journal_tail()). 886 * 887 * Requires j_checkpoint_mutex 888 */ 889 void __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block) 890 { 891 unsigned long freed; 892 893 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 894 895 /* 896 * We cannot afford for write to remain in drive's caches since as 897 * soon as we update j_tail, next transaction can start reusing journal 898 * space and if we lose sb update during power failure we'd replay 899 * old transaction with possibly newly overwritten data. 900 */ 901 jbd2_journal_update_sb_log_tail(journal, tid, block, WRITE_FUA); 902 write_lock(&journal->j_state_lock); 903 freed = block - journal->j_tail; 904 if (block < journal->j_tail) 905 freed += journal->j_last - journal->j_first; 906 907 trace_jbd2_update_log_tail(journal, tid, block, freed); 908 jbd_debug(1, 909 "Cleaning journal tail from %d to %d (offset %lu), " 910 "freeing %lu\n", 911 journal->j_tail_sequence, tid, block, freed); 912 913 journal->j_free += freed; 914 journal->j_tail_sequence = tid; 915 journal->j_tail = block; 916 write_unlock(&journal->j_state_lock); 917 } 918 919 /* 920 * This is a variaon of __jbd2_update_log_tail which checks for validity of 921 * provided log tail and locks j_checkpoint_mutex. So it is safe against races 922 * with other threads updating log tail. 923 */ 924 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block) 925 { 926 mutex_lock(&journal->j_checkpoint_mutex); 927 if (tid_gt(tid, journal->j_tail_sequence)) 928 __jbd2_update_log_tail(journal, tid, block); 929 mutex_unlock(&journal->j_checkpoint_mutex); 930 } 931 932 struct jbd2_stats_proc_session { 933 journal_t *journal; 934 struct transaction_stats_s *stats; 935 int start; 936 int max; 937 }; 938 939 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos) 940 { 941 return *pos ? NULL : SEQ_START_TOKEN; 942 } 943 944 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos) 945 { 946 return NULL; 947 } 948 949 static int jbd2_seq_info_show(struct seq_file *seq, void *v) 950 { 951 struct jbd2_stats_proc_session *s = seq->private; 952 953 if (v != SEQ_START_TOKEN) 954 return 0; 955 seq_printf(seq, "%lu transactions (%lu requested), " 956 "each up to %u blocks\n", 957 s->stats->ts_tid, s->stats->ts_requested, 958 s->journal->j_max_transaction_buffers); 959 if (s->stats->ts_tid == 0) 960 return 0; 961 seq_printf(seq, "average: \n %ums waiting for transaction\n", 962 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid)); 963 seq_printf(seq, " %ums request delay\n", 964 (s->stats->ts_requested == 0) ? 0 : 965 jiffies_to_msecs(s->stats->run.rs_request_delay / 966 s->stats->ts_requested)); 967 seq_printf(seq, " %ums running transaction\n", 968 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid)); 969 seq_printf(seq, " %ums transaction was being locked\n", 970 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid)); 971 seq_printf(seq, " %ums flushing data (in ordered mode)\n", 972 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid)); 973 seq_printf(seq, " %ums logging transaction\n", 974 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid)); 975 seq_printf(seq, " %lluus average transaction commit time\n", 976 div_u64(s->journal->j_average_commit_time, 1000)); 977 seq_printf(seq, " %lu handles per transaction\n", 978 s->stats->run.rs_handle_count / s->stats->ts_tid); 979 seq_printf(seq, " %lu blocks per transaction\n", 980 s->stats->run.rs_blocks / s->stats->ts_tid); 981 seq_printf(seq, " %lu logged blocks per transaction\n", 982 s->stats->run.rs_blocks_logged / s->stats->ts_tid); 983 return 0; 984 } 985 986 static void jbd2_seq_info_stop(struct seq_file *seq, void *v) 987 { 988 } 989 990 static const struct seq_operations jbd2_seq_info_ops = { 991 .start = jbd2_seq_info_start, 992 .next = jbd2_seq_info_next, 993 .stop = jbd2_seq_info_stop, 994 .show = jbd2_seq_info_show, 995 }; 996 997 static int jbd2_seq_info_open(struct inode *inode, struct file *file) 998 { 999 journal_t *journal = PDE_DATA(inode); 1000 struct jbd2_stats_proc_session *s; 1001 int rc, size; 1002 1003 s = kmalloc(sizeof(*s), GFP_KERNEL); 1004 if (s == NULL) 1005 return -ENOMEM; 1006 size = sizeof(struct transaction_stats_s); 1007 s->stats = kmalloc(size, GFP_KERNEL); 1008 if (s->stats == NULL) { 1009 kfree(s); 1010 return -ENOMEM; 1011 } 1012 spin_lock(&journal->j_history_lock); 1013 memcpy(s->stats, &journal->j_stats, size); 1014 s->journal = journal; 1015 spin_unlock(&journal->j_history_lock); 1016 1017 rc = seq_open(file, &jbd2_seq_info_ops); 1018 if (rc == 0) { 1019 struct seq_file *m = file->private_data; 1020 m->private = s; 1021 } else { 1022 kfree(s->stats); 1023 kfree(s); 1024 } 1025 return rc; 1026 1027 } 1028 1029 static int jbd2_seq_info_release(struct inode *inode, struct file *file) 1030 { 1031 struct seq_file *seq = file->private_data; 1032 struct jbd2_stats_proc_session *s = seq->private; 1033 kfree(s->stats); 1034 kfree(s); 1035 return seq_release(inode, file); 1036 } 1037 1038 static const struct file_operations jbd2_seq_info_fops = { 1039 .owner = THIS_MODULE, 1040 .open = jbd2_seq_info_open, 1041 .read = seq_read, 1042 .llseek = seq_lseek, 1043 .release = jbd2_seq_info_release, 1044 }; 1045 1046 static struct proc_dir_entry *proc_jbd2_stats; 1047 1048 static void jbd2_stats_proc_init(journal_t *journal) 1049 { 1050 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats); 1051 if (journal->j_proc_entry) { 1052 proc_create_data("info", S_IRUGO, journal->j_proc_entry, 1053 &jbd2_seq_info_fops, journal); 1054 } 1055 } 1056 1057 static void jbd2_stats_proc_exit(journal_t *journal) 1058 { 1059 remove_proc_entry("info", journal->j_proc_entry); 1060 remove_proc_entry(journal->j_devname, proc_jbd2_stats); 1061 } 1062 1063 /* 1064 * Management for journal control blocks: functions to create and 1065 * destroy journal_t structures, and to initialise and read existing 1066 * journal blocks from disk. */ 1067 1068 /* First: create and setup a journal_t object in memory. We initialise 1069 * very few fields yet: that has to wait until we have created the 1070 * journal structures from from scratch, or loaded them from disk. */ 1071 1072 static journal_t * journal_init_common (void) 1073 { 1074 journal_t *journal; 1075 int err; 1076 1077 journal = kzalloc(sizeof(*journal), GFP_KERNEL); 1078 if (!journal) 1079 return NULL; 1080 1081 init_waitqueue_head(&journal->j_wait_transaction_locked); 1082 init_waitqueue_head(&journal->j_wait_done_commit); 1083 init_waitqueue_head(&journal->j_wait_commit); 1084 init_waitqueue_head(&journal->j_wait_updates); 1085 init_waitqueue_head(&journal->j_wait_reserved); 1086 mutex_init(&journal->j_barrier); 1087 mutex_init(&journal->j_checkpoint_mutex); 1088 spin_lock_init(&journal->j_revoke_lock); 1089 spin_lock_init(&journal->j_list_lock); 1090 rwlock_init(&journal->j_state_lock); 1091 1092 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE); 1093 journal->j_min_batch_time = 0; 1094 journal->j_max_batch_time = 15000; /* 15ms */ 1095 atomic_set(&journal->j_reserved_credits, 0); 1096 1097 /* The journal is marked for error until we succeed with recovery! */ 1098 journal->j_flags = JBD2_ABORT; 1099 1100 /* Set up a default-sized revoke table for the new mount. */ 1101 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH); 1102 if (err) { 1103 kfree(journal); 1104 return NULL; 1105 } 1106 1107 spin_lock_init(&journal->j_history_lock); 1108 1109 return journal; 1110 } 1111 1112 /* jbd2_journal_init_dev and jbd2_journal_init_inode: 1113 * 1114 * Create a journal structure assigned some fixed set of disk blocks to 1115 * the journal. We don't actually touch those disk blocks yet, but we 1116 * need to set up all of the mapping information to tell the journaling 1117 * system where the journal blocks are. 1118 * 1119 */ 1120 1121 /** 1122 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure 1123 * @bdev: Block device on which to create the journal 1124 * @fs_dev: Device which hold journalled filesystem for this journal. 1125 * @start: Block nr Start of journal. 1126 * @len: Length of the journal in blocks. 1127 * @blocksize: blocksize of journalling device 1128 * 1129 * Returns: a newly created journal_t * 1130 * 1131 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous 1132 * range of blocks on an arbitrary block device. 1133 * 1134 */ 1135 journal_t * jbd2_journal_init_dev(struct block_device *bdev, 1136 struct block_device *fs_dev, 1137 unsigned long long start, int len, int blocksize) 1138 { 1139 journal_t *journal = journal_init_common(); 1140 struct buffer_head *bh; 1141 char *p; 1142 int n; 1143 1144 if (!journal) 1145 return NULL; 1146 1147 /* journal descriptor can store up to n blocks -bzzz */ 1148 journal->j_blocksize = blocksize; 1149 journal->j_dev = bdev; 1150 journal->j_fs_dev = fs_dev; 1151 journal->j_blk_offset = start; 1152 journal->j_maxlen = len; 1153 bdevname(journal->j_dev, journal->j_devname); 1154 p = journal->j_devname; 1155 while ((p = strchr(p, '/'))) 1156 *p = '!'; 1157 jbd2_stats_proc_init(journal); 1158 n = journal->j_blocksize / sizeof(journal_block_tag_t); 1159 journal->j_wbufsize = n; 1160 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL); 1161 if (!journal->j_wbuf) { 1162 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n", 1163 __func__); 1164 goto out_err; 1165 } 1166 1167 bh = __getblk(journal->j_dev, start, journal->j_blocksize); 1168 if (!bh) { 1169 printk(KERN_ERR 1170 "%s: Cannot get buffer for journal superblock\n", 1171 __func__); 1172 goto out_err; 1173 } 1174 journal->j_sb_buffer = bh; 1175 journal->j_superblock = (journal_superblock_t *)bh->b_data; 1176 1177 return journal; 1178 out_err: 1179 kfree(journal->j_wbuf); 1180 jbd2_stats_proc_exit(journal); 1181 kfree(journal); 1182 return NULL; 1183 } 1184 1185 /** 1186 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode. 1187 * @inode: An inode to create the journal in 1188 * 1189 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as 1190 * the journal. The inode must exist already, must support bmap() and 1191 * must have all data blocks preallocated. 1192 */ 1193 journal_t * jbd2_journal_init_inode (struct inode *inode) 1194 { 1195 struct buffer_head *bh; 1196 journal_t *journal = journal_init_common(); 1197 char *p; 1198 int err; 1199 int n; 1200 unsigned long long blocknr; 1201 1202 if (!journal) 1203 return NULL; 1204 1205 journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev; 1206 journal->j_inode = inode; 1207 bdevname(journal->j_dev, journal->j_devname); 1208 p = journal->j_devname; 1209 while ((p = strchr(p, '/'))) 1210 *p = '!'; 1211 p = journal->j_devname + strlen(journal->j_devname); 1212 sprintf(p, "-%lu", journal->j_inode->i_ino); 1213 jbd_debug(1, 1214 "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n", 1215 journal, inode->i_sb->s_id, inode->i_ino, 1216 (long long) inode->i_size, 1217 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize); 1218 1219 journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits; 1220 journal->j_blocksize = inode->i_sb->s_blocksize; 1221 jbd2_stats_proc_init(journal); 1222 1223 /* journal descriptor can store up to n blocks -bzzz */ 1224 n = journal->j_blocksize / sizeof(journal_block_tag_t); 1225 journal->j_wbufsize = n; 1226 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL); 1227 if (!journal->j_wbuf) { 1228 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n", 1229 __func__); 1230 goto out_err; 1231 } 1232 1233 err = jbd2_journal_bmap(journal, 0, &blocknr); 1234 /* If that failed, give up */ 1235 if (err) { 1236 printk(KERN_ERR "%s: Cannot locate journal superblock\n", 1237 __func__); 1238 goto out_err; 1239 } 1240 1241 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize); 1242 if (!bh) { 1243 printk(KERN_ERR 1244 "%s: Cannot get buffer for journal superblock\n", 1245 __func__); 1246 goto out_err; 1247 } 1248 journal->j_sb_buffer = bh; 1249 journal->j_superblock = (journal_superblock_t *)bh->b_data; 1250 1251 return journal; 1252 out_err: 1253 kfree(journal->j_wbuf); 1254 jbd2_stats_proc_exit(journal); 1255 kfree(journal); 1256 return NULL; 1257 } 1258 1259 /* 1260 * If the journal init or create aborts, we need to mark the journal 1261 * superblock as being NULL to prevent the journal destroy from writing 1262 * back a bogus superblock. 1263 */ 1264 static void journal_fail_superblock (journal_t *journal) 1265 { 1266 struct buffer_head *bh = journal->j_sb_buffer; 1267 brelse(bh); 1268 journal->j_sb_buffer = NULL; 1269 } 1270 1271 /* 1272 * Given a journal_t structure, initialise the various fields for 1273 * startup of a new journaling session. We use this both when creating 1274 * a journal, and after recovering an old journal to reset it for 1275 * subsequent use. 1276 */ 1277 1278 static int journal_reset(journal_t *journal) 1279 { 1280 journal_superblock_t *sb = journal->j_superblock; 1281 unsigned long long first, last; 1282 1283 first = be32_to_cpu(sb->s_first); 1284 last = be32_to_cpu(sb->s_maxlen); 1285 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) { 1286 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n", 1287 first, last); 1288 journal_fail_superblock(journal); 1289 return -EINVAL; 1290 } 1291 1292 journal->j_first = first; 1293 journal->j_last = last; 1294 1295 journal->j_head = first; 1296 journal->j_tail = first; 1297 journal->j_free = last - first; 1298 1299 journal->j_tail_sequence = journal->j_transaction_sequence; 1300 journal->j_commit_sequence = journal->j_transaction_sequence - 1; 1301 journal->j_commit_request = journal->j_commit_sequence; 1302 1303 journal->j_max_transaction_buffers = journal->j_maxlen / 4; 1304 1305 /* 1306 * As a special case, if the on-disk copy is already marked as needing 1307 * no recovery (s_start == 0), then we can safely defer the superblock 1308 * update until the next commit by setting JBD2_FLUSHED. This avoids 1309 * attempting a write to a potential-readonly device. 1310 */ 1311 if (sb->s_start == 0) { 1312 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb " 1313 "(start %ld, seq %d, errno %d)\n", 1314 journal->j_tail, journal->j_tail_sequence, 1315 journal->j_errno); 1316 journal->j_flags |= JBD2_FLUSHED; 1317 } else { 1318 /* Lock here to make assertions happy... */ 1319 mutex_lock(&journal->j_checkpoint_mutex); 1320 /* 1321 * Update log tail information. We use WRITE_FUA since new 1322 * transaction will start reusing journal space and so we 1323 * must make sure information about current log tail is on 1324 * disk before that. 1325 */ 1326 jbd2_journal_update_sb_log_tail(journal, 1327 journal->j_tail_sequence, 1328 journal->j_tail, 1329 WRITE_FUA); 1330 mutex_unlock(&journal->j_checkpoint_mutex); 1331 } 1332 return jbd2_journal_start_thread(journal); 1333 } 1334 1335 static void jbd2_write_superblock(journal_t *journal, int write_op) 1336 { 1337 struct buffer_head *bh = journal->j_sb_buffer; 1338 journal_superblock_t *sb = journal->j_superblock; 1339 int ret; 1340 1341 trace_jbd2_write_superblock(journal, write_op); 1342 if (!(journal->j_flags & JBD2_BARRIER)) 1343 write_op &= ~(REQ_FUA | REQ_FLUSH); 1344 lock_buffer(bh); 1345 if (buffer_write_io_error(bh)) { 1346 /* 1347 * Oh, dear. A previous attempt to write the journal 1348 * superblock failed. This could happen because the 1349 * USB device was yanked out. Or it could happen to 1350 * be a transient write error and maybe the block will 1351 * be remapped. Nothing we can do but to retry the 1352 * write and hope for the best. 1353 */ 1354 printk(KERN_ERR "JBD2: previous I/O error detected " 1355 "for journal superblock update for %s.\n", 1356 journal->j_devname); 1357 clear_buffer_write_io_error(bh); 1358 set_buffer_uptodate(bh); 1359 } 1360 jbd2_superblock_csum_set(journal, sb); 1361 get_bh(bh); 1362 bh->b_end_io = end_buffer_write_sync; 1363 ret = submit_bh(write_op, bh); 1364 wait_on_buffer(bh); 1365 if (buffer_write_io_error(bh)) { 1366 clear_buffer_write_io_error(bh); 1367 set_buffer_uptodate(bh); 1368 ret = -EIO; 1369 } 1370 if (ret) { 1371 printk(KERN_ERR "JBD2: Error %d detected when updating " 1372 "journal superblock for %s.\n", ret, 1373 journal->j_devname); 1374 } 1375 } 1376 1377 /** 1378 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk. 1379 * @journal: The journal to update. 1380 * @tail_tid: TID of the new transaction at the tail of the log 1381 * @tail_block: The first block of the transaction at the tail of the log 1382 * @write_op: With which operation should we write the journal sb 1383 * 1384 * Update a journal's superblock information about log tail and write it to 1385 * disk, waiting for the IO to complete. 1386 */ 1387 void jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid, 1388 unsigned long tail_block, int write_op) 1389 { 1390 journal_superblock_t *sb = journal->j_superblock; 1391 1392 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1393 jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n", 1394 tail_block, tail_tid); 1395 1396 sb->s_sequence = cpu_to_be32(tail_tid); 1397 sb->s_start = cpu_to_be32(tail_block); 1398 1399 jbd2_write_superblock(journal, write_op); 1400 1401 /* Log is no longer empty */ 1402 write_lock(&journal->j_state_lock); 1403 WARN_ON(!sb->s_sequence); 1404 journal->j_flags &= ~JBD2_FLUSHED; 1405 write_unlock(&journal->j_state_lock); 1406 } 1407 1408 /** 1409 * jbd2_mark_journal_empty() - Mark on disk journal as empty. 1410 * @journal: The journal to update. 1411 * 1412 * Update a journal's dynamic superblock fields to show that journal is empty. 1413 * Write updated superblock to disk waiting for IO to complete. 1414 */ 1415 static void jbd2_mark_journal_empty(journal_t *journal) 1416 { 1417 journal_superblock_t *sb = journal->j_superblock; 1418 1419 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1420 read_lock(&journal->j_state_lock); 1421 /* Is it already empty? */ 1422 if (sb->s_start == 0) { 1423 read_unlock(&journal->j_state_lock); 1424 return; 1425 } 1426 jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n", 1427 journal->j_tail_sequence); 1428 1429 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence); 1430 sb->s_start = cpu_to_be32(0); 1431 read_unlock(&journal->j_state_lock); 1432 1433 jbd2_write_superblock(journal, WRITE_FUA); 1434 1435 /* Log is no longer empty */ 1436 write_lock(&journal->j_state_lock); 1437 journal->j_flags |= JBD2_FLUSHED; 1438 write_unlock(&journal->j_state_lock); 1439 } 1440 1441 1442 /** 1443 * jbd2_journal_update_sb_errno() - Update error in the journal. 1444 * @journal: The journal to update. 1445 * 1446 * Update a journal's errno. Write updated superblock to disk waiting for IO 1447 * to complete. 1448 */ 1449 void jbd2_journal_update_sb_errno(journal_t *journal) 1450 { 1451 journal_superblock_t *sb = journal->j_superblock; 1452 1453 read_lock(&journal->j_state_lock); 1454 jbd_debug(1, "JBD2: updating superblock error (errno %d)\n", 1455 journal->j_errno); 1456 sb->s_errno = cpu_to_be32(journal->j_errno); 1457 read_unlock(&journal->j_state_lock); 1458 1459 jbd2_write_superblock(journal, WRITE_SYNC); 1460 } 1461 EXPORT_SYMBOL(jbd2_journal_update_sb_errno); 1462 1463 /* 1464 * Read the superblock for a given journal, performing initial 1465 * validation of the format. 1466 */ 1467 static int journal_get_superblock(journal_t *journal) 1468 { 1469 struct buffer_head *bh; 1470 journal_superblock_t *sb; 1471 int err = -EIO; 1472 1473 bh = journal->j_sb_buffer; 1474 1475 J_ASSERT(bh != NULL); 1476 if (!buffer_uptodate(bh)) { 1477 ll_rw_block(READ, 1, &bh); 1478 wait_on_buffer(bh); 1479 if (!buffer_uptodate(bh)) { 1480 printk(KERN_ERR 1481 "JBD2: IO error reading journal superblock\n"); 1482 goto out; 1483 } 1484 } 1485 1486 if (buffer_verified(bh)) 1487 return 0; 1488 1489 sb = journal->j_superblock; 1490 1491 err = -EINVAL; 1492 1493 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) || 1494 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) { 1495 printk(KERN_WARNING "JBD2: no valid journal superblock found\n"); 1496 goto out; 1497 } 1498 1499 switch(be32_to_cpu(sb->s_header.h_blocktype)) { 1500 case JBD2_SUPERBLOCK_V1: 1501 journal->j_format_version = 1; 1502 break; 1503 case JBD2_SUPERBLOCK_V2: 1504 journal->j_format_version = 2; 1505 break; 1506 default: 1507 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n"); 1508 goto out; 1509 } 1510 1511 if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen) 1512 journal->j_maxlen = be32_to_cpu(sb->s_maxlen); 1513 else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) { 1514 printk(KERN_WARNING "JBD2: journal file too short\n"); 1515 goto out; 1516 } 1517 1518 if (be32_to_cpu(sb->s_first) == 0 || 1519 be32_to_cpu(sb->s_first) >= journal->j_maxlen) { 1520 printk(KERN_WARNING 1521 "JBD2: Invalid start block of journal: %u\n", 1522 be32_to_cpu(sb->s_first)); 1523 goto out; 1524 } 1525 1526 if (JBD2_HAS_COMPAT_FEATURE(journal, JBD2_FEATURE_COMPAT_CHECKSUM) && 1527 JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) { 1528 /* Can't have checksum v1 and v2 on at the same time! */ 1529 printk(KERN_ERR "JBD: Can't enable checksumming v1 and v2 " 1530 "at the same time!\n"); 1531 goto out; 1532 } 1533 1534 if (!jbd2_verify_csum_type(journal, sb)) { 1535 printk(KERN_ERR "JBD: Unknown checksum type\n"); 1536 goto out; 1537 } 1538 1539 /* Load the checksum driver */ 1540 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) { 1541 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 1542 if (IS_ERR(journal->j_chksum_driver)) { 1543 printk(KERN_ERR "JBD: Cannot load crc32c driver.\n"); 1544 err = PTR_ERR(journal->j_chksum_driver); 1545 journal->j_chksum_driver = NULL; 1546 goto out; 1547 } 1548 } 1549 1550 /* Check superblock checksum */ 1551 if (!jbd2_superblock_csum_verify(journal, sb)) { 1552 printk(KERN_ERR "JBD: journal checksum error\n"); 1553 goto out; 1554 } 1555 1556 /* Precompute checksum seed for all metadata */ 1557 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) 1558 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid, 1559 sizeof(sb->s_uuid)); 1560 1561 set_buffer_verified(bh); 1562 1563 return 0; 1564 1565 out: 1566 journal_fail_superblock(journal); 1567 return err; 1568 } 1569 1570 /* 1571 * Load the on-disk journal superblock and read the key fields into the 1572 * journal_t. 1573 */ 1574 1575 static int load_superblock(journal_t *journal) 1576 { 1577 int err; 1578 journal_superblock_t *sb; 1579 1580 err = journal_get_superblock(journal); 1581 if (err) 1582 return err; 1583 1584 sb = journal->j_superblock; 1585 1586 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence); 1587 journal->j_tail = be32_to_cpu(sb->s_start); 1588 journal->j_first = be32_to_cpu(sb->s_first); 1589 journal->j_last = be32_to_cpu(sb->s_maxlen); 1590 journal->j_errno = be32_to_cpu(sb->s_errno); 1591 1592 return 0; 1593 } 1594 1595 1596 /** 1597 * int jbd2_journal_load() - Read journal from disk. 1598 * @journal: Journal to act on. 1599 * 1600 * Given a journal_t structure which tells us which disk blocks contain 1601 * a journal, read the journal from disk to initialise the in-memory 1602 * structures. 1603 */ 1604 int jbd2_journal_load(journal_t *journal) 1605 { 1606 int err; 1607 journal_superblock_t *sb; 1608 1609 err = load_superblock(journal); 1610 if (err) 1611 return err; 1612 1613 sb = journal->j_superblock; 1614 /* If this is a V2 superblock, then we have to check the 1615 * features flags on it. */ 1616 1617 if (journal->j_format_version >= 2) { 1618 if ((sb->s_feature_ro_compat & 1619 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) || 1620 (sb->s_feature_incompat & 1621 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) { 1622 printk(KERN_WARNING 1623 "JBD2: Unrecognised features on journal\n"); 1624 return -EINVAL; 1625 } 1626 } 1627 1628 /* 1629 * Create a slab for this blocksize 1630 */ 1631 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize)); 1632 if (err) 1633 return err; 1634 1635 /* Let the recovery code check whether it needs to recover any 1636 * data from the journal. */ 1637 if (jbd2_journal_recover(journal)) 1638 goto recovery_error; 1639 1640 if (journal->j_failed_commit) { 1641 printk(KERN_ERR "JBD2: journal transaction %u on %s " 1642 "is corrupt.\n", journal->j_failed_commit, 1643 journal->j_devname); 1644 return -EIO; 1645 } 1646 1647 /* OK, we've finished with the dynamic journal bits: 1648 * reinitialise the dynamic contents of the superblock in memory 1649 * and reset them on disk. */ 1650 if (journal_reset(journal)) 1651 goto recovery_error; 1652 1653 journal->j_flags &= ~JBD2_ABORT; 1654 journal->j_flags |= JBD2_LOADED; 1655 return 0; 1656 1657 recovery_error: 1658 printk(KERN_WARNING "JBD2: recovery failed\n"); 1659 return -EIO; 1660 } 1661 1662 /** 1663 * void jbd2_journal_destroy() - Release a journal_t structure. 1664 * @journal: Journal to act on. 1665 * 1666 * Release a journal_t structure once it is no longer in use by the 1667 * journaled object. 1668 * Return <0 if we couldn't clean up the journal. 1669 */ 1670 int jbd2_journal_destroy(journal_t *journal) 1671 { 1672 int err = 0; 1673 1674 /* Wait for the commit thread to wake up and die. */ 1675 journal_kill_thread(journal); 1676 1677 /* Force a final log commit */ 1678 if (journal->j_running_transaction) 1679 jbd2_journal_commit_transaction(journal); 1680 1681 /* Force any old transactions to disk */ 1682 1683 /* Totally anal locking here... */ 1684 spin_lock(&journal->j_list_lock); 1685 while (journal->j_checkpoint_transactions != NULL) { 1686 spin_unlock(&journal->j_list_lock); 1687 mutex_lock(&journal->j_checkpoint_mutex); 1688 jbd2_log_do_checkpoint(journal); 1689 mutex_unlock(&journal->j_checkpoint_mutex); 1690 spin_lock(&journal->j_list_lock); 1691 } 1692 1693 J_ASSERT(journal->j_running_transaction == NULL); 1694 J_ASSERT(journal->j_committing_transaction == NULL); 1695 J_ASSERT(journal->j_checkpoint_transactions == NULL); 1696 spin_unlock(&journal->j_list_lock); 1697 1698 if (journal->j_sb_buffer) { 1699 if (!is_journal_aborted(journal)) { 1700 mutex_lock(&journal->j_checkpoint_mutex); 1701 jbd2_mark_journal_empty(journal); 1702 mutex_unlock(&journal->j_checkpoint_mutex); 1703 } else 1704 err = -EIO; 1705 brelse(journal->j_sb_buffer); 1706 } 1707 1708 if (journal->j_proc_entry) 1709 jbd2_stats_proc_exit(journal); 1710 if (journal->j_inode) 1711 iput(journal->j_inode); 1712 if (journal->j_revoke) 1713 jbd2_journal_destroy_revoke(journal); 1714 if (journal->j_chksum_driver) 1715 crypto_free_shash(journal->j_chksum_driver); 1716 kfree(journal->j_wbuf); 1717 kfree(journal); 1718 1719 return err; 1720 } 1721 1722 1723 /** 1724 *int jbd2_journal_check_used_features () - Check if features specified are used. 1725 * @journal: Journal to check. 1726 * @compat: bitmask of compatible features 1727 * @ro: bitmask of features that force read-only mount 1728 * @incompat: bitmask of incompatible features 1729 * 1730 * Check whether the journal uses all of a given set of 1731 * features. Return true (non-zero) if it does. 1732 **/ 1733 1734 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat, 1735 unsigned long ro, unsigned long incompat) 1736 { 1737 journal_superblock_t *sb; 1738 1739 if (!compat && !ro && !incompat) 1740 return 1; 1741 /* Load journal superblock if it is not loaded yet. */ 1742 if (journal->j_format_version == 0 && 1743 journal_get_superblock(journal) != 0) 1744 return 0; 1745 if (journal->j_format_version == 1) 1746 return 0; 1747 1748 sb = journal->j_superblock; 1749 1750 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) && 1751 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) && 1752 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat)) 1753 return 1; 1754 1755 return 0; 1756 } 1757 1758 /** 1759 * int jbd2_journal_check_available_features() - Check feature set in journalling layer 1760 * @journal: Journal to check. 1761 * @compat: bitmask of compatible features 1762 * @ro: bitmask of features that force read-only mount 1763 * @incompat: bitmask of incompatible features 1764 * 1765 * Check whether the journaling code supports the use of 1766 * all of a given set of features on this journal. Return true 1767 * (non-zero) if it can. */ 1768 1769 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat, 1770 unsigned long ro, unsigned long incompat) 1771 { 1772 if (!compat && !ro && !incompat) 1773 return 1; 1774 1775 /* We can support any known requested features iff the 1776 * superblock is in version 2. Otherwise we fail to support any 1777 * extended sb features. */ 1778 1779 if (journal->j_format_version != 2) 1780 return 0; 1781 1782 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat && 1783 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro && 1784 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat) 1785 return 1; 1786 1787 return 0; 1788 } 1789 1790 /** 1791 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock 1792 * @journal: Journal to act on. 1793 * @compat: bitmask of compatible features 1794 * @ro: bitmask of features that force read-only mount 1795 * @incompat: bitmask of incompatible features 1796 * 1797 * Mark a given journal feature as present on the 1798 * superblock. Returns true if the requested features could be set. 1799 * 1800 */ 1801 1802 int jbd2_journal_set_features (journal_t *journal, unsigned long compat, 1803 unsigned long ro, unsigned long incompat) 1804 { 1805 #define INCOMPAT_FEATURE_ON(f) \ 1806 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f))) 1807 #define COMPAT_FEATURE_ON(f) \ 1808 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f))) 1809 journal_superblock_t *sb; 1810 1811 if (jbd2_journal_check_used_features(journal, compat, ro, incompat)) 1812 return 1; 1813 1814 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat)) 1815 return 0; 1816 1817 /* Asking for checksumming v2 and v1? Only give them v2. */ 1818 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2 && 1819 compat & JBD2_FEATURE_COMPAT_CHECKSUM) 1820 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM; 1821 1822 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n", 1823 compat, ro, incompat); 1824 1825 sb = journal->j_superblock; 1826 1827 /* If enabling v2 checksums, update superblock */ 1828 if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V2)) { 1829 sb->s_checksum_type = JBD2_CRC32C_CHKSUM; 1830 sb->s_feature_compat &= 1831 ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM); 1832 1833 /* Load the checksum driver */ 1834 if (journal->j_chksum_driver == NULL) { 1835 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 1836 0, 0); 1837 if (IS_ERR(journal->j_chksum_driver)) { 1838 printk(KERN_ERR "JBD: Cannot load crc32c " 1839 "driver.\n"); 1840 journal->j_chksum_driver = NULL; 1841 return 0; 1842 } 1843 } 1844 1845 /* Precompute checksum seed for all metadata */ 1846 if (JBD2_HAS_INCOMPAT_FEATURE(journal, 1847 JBD2_FEATURE_INCOMPAT_CSUM_V2)) 1848 journal->j_csum_seed = jbd2_chksum(journal, ~0, 1849 sb->s_uuid, 1850 sizeof(sb->s_uuid)); 1851 } 1852 1853 /* If enabling v1 checksums, downgrade superblock */ 1854 if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM)) 1855 sb->s_feature_incompat &= 1856 ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2); 1857 1858 sb->s_feature_compat |= cpu_to_be32(compat); 1859 sb->s_feature_ro_compat |= cpu_to_be32(ro); 1860 sb->s_feature_incompat |= cpu_to_be32(incompat); 1861 1862 return 1; 1863 #undef COMPAT_FEATURE_ON 1864 #undef INCOMPAT_FEATURE_ON 1865 } 1866 1867 /* 1868 * jbd2_journal_clear_features () - Clear a given journal feature in the 1869 * superblock 1870 * @journal: Journal to act on. 1871 * @compat: bitmask of compatible features 1872 * @ro: bitmask of features that force read-only mount 1873 * @incompat: bitmask of incompatible features 1874 * 1875 * Clear a given journal feature as present on the 1876 * superblock. 1877 */ 1878 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat, 1879 unsigned long ro, unsigned long incompat) 1880 { 1881 journal_superblock_t *sb; 1882 1883 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n", 1884 compat, ro, incompat); 1885 1886 sb = journal->j_superblock; 1887 1888 sb->s_feature_compat &= ~cpu_to_be32(compat); 1889 sb->s_feature_ro_compat &= ~cpu_to_be32(ro); 1890 sb->s_feature_incompat &= ~cpu_to_be32(incompat); 1891 } 1892 EXPORT_SYMBOL(jbd2_journal_clear_features); 1893 1894 /** 1895 * int jbd2_journal_flush () - Flush journal 1896 * @journal: Journal to act on. 1897 * 1898 * Flush all data for a given journal to disk and empty the journal. 1899 * Filesystems can use this when remounting readonly to ensure that 1900 * recovery does not need to happen on remount. 1901 */ 1902 1903 int jbd2_journal_flush(journal_t *journal) 1904 { 1905 int err = 0; 1906 transaction_t *transaction = NULL; 1907 1908 write_lock(&journal->j_state_lock); 1909 1910 /* Force everything buffered to the log... */ 1911 if (journal->j_running_transaction) { 1912 transaction = journal->j_running_transaction; 1913 __jbd2_log_start_commit(journal, transaction->t_tid); 1914 } else if (journal->j_committing_transaction) 1915 transaction = journal->j_committing_transaction; 1916 1917 /* Wait for the log commit to complete... */ 1918 if (transaction) { 1919 tid_t tid = transaction->t_tid; 1920 1921 write_unlock(&journal->j_state_lock); 1922 jbd2_log_wait_commit(journal, tid); 1923 } else { 1924 write_unlock(&journal->j_state_lock); 1925 } 1926 1927 /* ...and flush everything in the log out to disk. */ 1928 spin_lock(&journal->j_list_lock); 1929 while (!err && journal->j_checkpoint_transactions != NULL) { 1930 spin_unlock(&journal->j_list_lock); 1931 mutex_lock(&journal->j_checkpoint_mutex); 1932 err = jbd2_log_do_checkpoint(journal); 1933 mutex_unlock(&journal->j_checkpoint_mutex); 1934 spin_lock(&journal->j_list_lock); 1935 } 1936 spin_unlock(&journal->j_list_lock); 1937 1938 if (is_journal_aborted(journal)) 1939 return -EIO; 1940 1941 mutex_lock(&journal->j_checkpoint_mutex); 1942 jbd2_cleanup_journal_tail(journal); 1943 1944 /* Finally, mark the journal as really needing no recovery. 1945 * This sets s_start==0 in the underlying superblock, which is 1946 * the magic code for a fully-recovered superblock. Any future 1947 * commits of data to the journal will restore the current 1948 * s_start value. */ 1949 jbd2_mark_journal_empty(journal); 1950 mutex_unlock(&journal->j_checkpoint_mutex); 1951 write_lock(&journal->j_state_lock); 1952 J_ASSERT(!journal->j_running_transaction); 1953 J_ASSERT(!journal->j_committing_transaction); 1954 J_ASSERT(!journal->j_checkpoint_transactions); 1955 J_ASSERT(journal->j_head == journal->j_tail); 1956 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence); 1957 write_unlock(&journal->j_state_lock); 1958 return 0; 1959 } 1960 1961 /** 1962 * int jbd2_journal_wipe() - Wipe journal contents 1963 * @journal: Journal to act on. 1964 * @write: flag (see below) 1965 * 1966 * Wipe out all of the contents of a journal, safely. This will produce 1967 * a warning if the journal contains any valid recovery information. 1968 * Must be called between journal_init_*() and jbd2_journal_load(). 1969 * 1970 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise 1971 * we merely suppress recovery. 1972 */ 1973 1974 int jbd2_journal_wipe(journal_t *journal, int write) 1975 { 1976 int err = 0; 1977 1978 J_ASSERT (!(journal->j_flags & JBD2_LOADED)); 1979 1980 err = load_superblock(journal); 1981 if (err) 1982 return err; 1983 1984 if (!journal->j_tail) 1985 goto no_recovery; 1986 1987 printk(KERN_WARNING "JBD2: %s recovery information on journal\n", 1988 write ? "Clearing" : "Ignoring"); 1989 1990 err = jbd2_journal_skip_recovery(journal); 1991 if (write) { 1992 /* Lock to make assertions happy... */ 1993 mutex_lock(&journal->j_checkpoint_mutex); 1994 jbd2_mark_journal_empty(journal); 1995 mutex_unlock(&journal->j_checkpoint_mutex); 1996 } 1997 1998 no_recovery: 1999 return err; 2000 } 2001 2002 /* 2003 * Journal abort has very specific semantics, which we describe 2004 * for journal abort. 2005 * 2006 * Two internal functions, which provide abort to the jbd layer 2007 * itself are here. 2008 */ 2009 2010 /* 2011 * Quick version for internal journal use (doesn't lock the journal). 2012 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else, 2013 * and don't attempt to make any other journal updates. 2014 */ 2015 void __jbd2_journal_abort_hard(journal_t *journal) 2016 { 2017 transaction_t *transaction; 2018 2019 if (journal->j_flags & JBD2_ABORT) 2020 return; 2021 2022 printk(KERN_ERR "Aborting journal on device %s.\n", 2023 journal->j_devname); 2024 2025 write_lock(&journal->j_state_lock); 2026 journal->j_flags |= JBD2_ABORT; 2027 transaction = journal->j_running_transaction; 2028 if (transaction) 2029 __jbd2_log_start_commit(journal, transaction->t_tid); 2030 write_unlock(&journal->j_state_lock); 2031 } 2032 2033 /* Soft abort: record the abort error status in the journal superblock, 2034 * but don't do any other IO. */ 2035 static void __journal_abort_soft (journal_t *journal, int errno) 2036 { 2037 if (journal->j_flags & JBD2_ABORT) 2038 return; 2039 2040 if (!journal->j_errno) 2041 journal->j_errno = errno; 2042 2043 __jbd2_journal_abort_hard(journal); 2044 2045 if (errno) 2046 jbd2_journal_update_sb_errno(journal); 2047 } 2048 2049 /** 2050 * void jbd2_journal_abort () - Shutdown the journal immediately. 2051 * @journal: the journal to shutdown. 2052 * @errno: an error number to record in the journal indicating 2053 * the reason for the shutdown. 2054 * 2055 * Perform a complete, immediate shutdown of the ENTIRE 2056 * journal (not of a single transaction). This operation cannot be 2057 * undone without closing and reopening the journal. 2058 * 2059 * The jbd2_journal_abort function is intended to support higher level error 2060 * recovery mechanisms such as the ext2/ext3 remount-readonly error 2061 * mode. 2062 * 2063 * Journal abort has very specific semantics. Any existing dirty, 2064 * unjournaled buffers in the main filesystem will still be written to 2065 * disk by bdflush, but the journaling mechanism will be suspended 2066 * immediately and no further transaction commits will be honoured. 2067 * 2068 * Any dirty, journaled buffers will be written back to disk without 2069 * hitting the journal. Atomicity cannot be guaranteed on an aborted 2070 * filesystem, but we _do_ attempt to leave as much data as possible 2071 * behind for fsck to use for cleanup. 2072 * 2073 * Any attempt to get a new transaction handle on a journal which is in 2074 * ABORT state will just result in an -EROFS error return. A 2075 * jbd2_journal_stop on an existing handle will return -EIO if we have 2076 * entered abort state during the update. 2077 * 2078 * Recursive transactions are not disturbed by journal abort until the 2079 * final jbd2_journal_stop, which will receive the -EIO error. 2080 * 2081 * Finally, the jbd2_journal_abort call allows the caller to supply an errno 2082 * which will be recorded (if possible) in the journal superblock. This 2083 * allows a client to record failure conditions in the middle of a 2084 * transaction without having to complete the transaction to record the 2085 * failure to disk. ext3_error, for example, now uses this 2086 * functionality. 2087 * 2088 * Errors which originate from within the journaling layer will NOT 2089 * supply an errno; a null errno implies that absolutely no further 2090 * writes are done to the journal (unless there are any already in 2091 * progress). 2092 * 2093 */ 2094 2095 void jbd2_journal_abort(journal_t *journal, int errno) 2096 { 2097 __journal_abort_soft(journal, errno); 2098 } 2099 2100 /** 2101 * int jbd2_journal_errno () - returns the journal's error state. 2102 * @journal: journal to examine. 2103 * 2104 * This is the errno number set with jbd2_journal_abort(), the last 2105 * time the journal was mounted - if the journal was stopped 2106 * without calling abort this will be 0. 2107 * 2108 * If the journal has been aborted on this mount time -EROFS will 2109 * be returned. 2110 */ 2111 int jbd2_journal_errno(journal_t *journal) 2112 { 2113 int err; 2114 2115 read_lock(&journal->j_state_lock); 2116 if (journal->j_flags & JBD2_ABORT) 2117 err = -EROFS; 2118 else 2119 err = journal->j_errno; 2120 read_unlock(&journal->j_state_lock); 2121 return err; 2122 } 2123 2124 /** 2125 * int jbd2_journal_clear_err () - clears the journal's error state 2126 * @journal: journal to act on. 2127 * 2128 * An error must be cleared or acked to take a FS out of readonly 2129 * mode. 2130 */ 2131 int jbd2_journal_clear_err(journal_t *journal) 2132 { 2133 int err = 0; 2134 2135 write_lock(&journal->j_state_lock); 2136 if (journal->j_flags & JBD2_ABORT) 2137 err = -EROFS; 2138 else 2139 journal->j_errno = 0; 2140 write_unlock(&journal->j_state_lock); 2141 return err; 2142 } 2143 2144 /** 2145 * void jbd2_journal_ack_err() - Ack journal err. 2146 * @journal: journal to act on. 2147 * 2148 * An error must be cleared or acked to take a FS out of readonly 2149 * mode. 2150 */ 2151 void jbd2_journal_ack_err(journal_t *journal) 2152 { 2153 write_lock(&journal->j_state_lock); 2154 if (journal->j_errno) 2155 journal->j_flags |= JBD2_ACK_ERR; 2156 write_unlock(&journal->j_state_lock); 2157 } 2158 2159 int jbd2_journal_blocks_per_page(struct inode *inode) 2160 { 2161 return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 2162 } 2163 2164 /* 2165 * helper functions to deal with 32 or 64bit block numbers. 2166 */ 2167 size_t journal_tag_bytes(journal_t *journal) 2168 { 2169 journal_block_tag_t tag; 2170 size_t x = 0; 2171 2172 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) 2173 x += sizeof(tag.t_checksum); 2174 2175 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT)) 2176 return x + JBD2_TAG_SIZE64; 2177 else 2178 return x + JBD2_TAG_SIZE32; 2179 } 2180 2181 /* 2182 * JBD memory management 2183 * 2184 * These functions are used to allocate block-sized chunks of memory 2185 * used for making copies of buffer_head data. Very often it will be 2186 * page-sized chunks of data, but sometimes it will be in 2187 * sub-page-size chunks. (For example, 16k pages on Power systems 2188 * with a 4k block file system.) For blocks smaller than a page, we 2189 * use a SLAB allocator. There are slab caches for each block size, 2190 * which are allocated at mount time, if necessary, and we only free 2191 * (all of) the slab caches when/if the jbd2 module is unloaded. For 2192 * this reason we don't need to a mutex to protect access to 2193 * jbd2_slab[] allocating or releasing memory; only in 2194 * jbd2_journal_create_slab(). 2195 */ 2196 #define JBD2_MAX_SLABS 8 2197 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS]; 2198 2199 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = { 2200 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k", 2201 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k" 2202 }; 2203 2204 2205 static void jbd2_journal_destroy_slabs(void) 2206 { 2207 int i; 2208 2209 for (i = 0; i < JBD2_MAX_SLABS; i++) { 2210 if (jbd2_slab[i]) 2211 kmem_cache_destroy(jbd2_slab[i]); 2212 jbd2_slab[i] = NULL; 2213 } 2214 } 2215 2216 static int jbd2_journal_create_slab(size_t size) 2217 { 2218 static DEFINE_MUTEX(jbd2_slab_create_mutex); 2219 int i = order_base_2(size) - 10; 2220 size_t slab_size; 2221 2222 if (size == PAGE_SIZE) 2223 return 0; 2224 2225 if (i >= JBD2_MAX_SLABS) 2226 return -EINVAL; 2227 2228 if (unlikely(i < 0)) 2229 i = 0; 2230 mutex_lock(&jbd2_slab_create_mutex); 2231 if (jbd2_slab[i]) { 2232 mutex_unlock(&jbd2_slab_create_mutex); 2233 return 0; /* Already created */ 2234 } 2235 2236 slab_size = 1 << (i+10); 2237 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size, 2238 slab_size, 0, NULL); 2239 mutex_unlock(&jbd2_slab_create_mutex); 2240 if (!jbd2_slab[i]) { 2241 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n"); 2242 return -ENOMEM; 2243 } 2244 return 0; 2245 } 2246 2247 static struct kmem_cache *get_slab(size_t size) 2248 { 2249 int i = order_base_2(size) - 10; 2250 2251 BUG_ON(i >= JBD2_MAX_SLABS); 2252 if (unlikely(i < 0)) 2253 i = 0; 2254 BUG_ON(jbd2_slab[i] == NULL); 2255 return jbd2_slab[i]; 2256 } 2257 2258 void *jbd2_alloc(size_t size, gfp_t flags) 2259 { 2260 void *ptr; 2261 2262 BUG_ON(size & (size-1)); /* Must be a power of 2 */ 2263 2264 flags |= __GFP_REPEAT; 2265 if (size == PAGE_SIZE) 2266 ptr = (void *)__get_free_pages(flags, 0); 2267 else if (size > PAGE_SIZE) { 2268 int order = get_order(size); 2269 2270 if (order < 3) 2271 ptr = (void *)__get_free_pages(flags, order); 2272 else 2273 ptr = vmalloc(size); 2274 } else 2275 ptr = kmem_cache_alloc(get_slab(size), flags); 2276 2277 /* Check alignment; SLUB has gotten this wrong in the past, 2278 * and this can lead to user data corruption! */ 2279 BUG_ON(((unsigned long) ptr) & (size-1)); 2280 2281 return ptr; 2282 } 2283 2284 void jbd2_free(void *ptr, size_t size) 2285 { 2286 if (size == PAGE_SIZE) { 2287 free_pages((unsigned long)ptr, 0); 2288 return; 2289 } 2290 if (size > PAGE_SIZE) { 2291 int order = get_order(size); 2292 2293 if (order < 3) 2294 free_pages((unsigned long)ptr, order); 2295 else 2296 vfree(ptr); 2297 return; 2298 } 2299 kmem_cache_free(get_slab(size), ptr); 2300 }; 2301 2302 /* 2303 * Journal_head storage management 2304 */ 2305 static struct kmem_cache *jbd2_journal_head_cache; 2306 #ifdef CONFIG_JBD2_DEBUG 2307 static atomic_t nr_journal_heads = ATOMIC_INIT(0); 2308 #endif 2309 2310 static int jbd2_journal_init_journal_head_cache(void) 2311 { 2312 int retval; 2313 2314 J_ASSERT(jbd2_journal_head_cache == NULL); 2315 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head", 2316 sizeof(struct journal_head), 2317 0, /* offset */ 2318 SLAB_TEMPORARY, /* flags */ 2319 NULL); /* ctor */ 2320 retval = 0; 2321 if (!jbd2_journal_head_cache) { 2322 retval = -ENOMEM; 2323 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n"); 2324 } 2325 return retval; 2326 } 2327 2328 static void jbd2_journal_destroy_journal_head_cache(void) 2329 { 2330 if (jbd2_journal_head_cache) { 2331 kmem_cache_destroy(jbd2_journal_head_cache); 2332 jbd2_journal_head_cache = NULL; 2333 } 2334 } 2335 2336 /* 2337 * journal_head splicing and dicing 2338 */ 2339 static struct journal_head *journal_alloc_journal_head(void) 2340 { 2341 struct journal_head *ret; 2342 2343 #ifdef CONFIG_JBD2_DEBUG 2344 atomic_inc(&nr_journal_heads); 2345 #endif 2346 ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS); 2347 if (!ret) { 2348 jbd_debug(1, "out of memory for journal_head\n"); 2349 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__); 2350 while (!ret) { 2351 yield(); 2352 ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS); 2353 } 2354 } 2355 return ret; 2356 } 2357 2358 static void journal_free_journal_head(struct journal_head *jh) 2359 { 2360 #ifdef CONFIG_JBD2_DEBUG 2361 atomic_dec(&nr_journal_heads); 2362 memset(jh, JBD2_POISON_FREE, sizeof(*jh)); 2363 #endif 2364 kmem_cache_free(jbd2_journal_head_cache, jh); 2365 } 2366 2367 /* 2368 * A journal_head is attached to a buffer_head whenever JBD has an 2369 * interest in the buffer. 2370 * 2371 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit 2372 * is set. This bit is tested in core kernel code where we need to take 2373 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable 2374 * there. 2375 * 2376 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one. 2377 * 2378 * When a buffer has its BH_JBD bit set it is immune from being released by 2379 * core kernel code, mainly via ->b_count. 2380 * 2381 * A journal_head is detached from its buffer_head when the journal_head's 2382 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint 2383 * transaction (b_cp_transaction) hold their references to b_jcount. 2384 * 2385 * Various places in the kernel want to attach a journal_head to a buffer_head 2386 * _before_ attaching the journal_head to a transaction. To protect the 2387 * journal_head in this situation, jbd2_journal_add_journal_head elevates the 2388 * journal_head's b_jcount refcount by one. The caller must call 2389 * jbd2_journal_put_journal_head() to undo this. 2390 * 2391 * So the typical usage would be: 2392 * 2393 * (Attach a journal_head if needed. Increments b_jcount) 2394 * struct journal_head *jh = jbd2_journal_add_journal_head(bh); 2395 * ... 2396 * (Get another reference for transaction) 2397 * jbd2_journal_grab_journal_head(bh); 2398 * jh->b_transaction = xxx; 2399 * (Put original reference) 2400 * jbd2_journal_put_journal_head(jh); 2401 */ 2402 2403 /* 2404 * Give a buffer_head a journal_head. 2405 * 2406 * May sleep. 2407 */ 2408 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh) 2409 { 2410 struct journal_head *jh; 2411 struct journal_head *new_jh = NULL; 2412 2413 repeat: 2414 if (!buffer_jbd(bh)) 2415 new_jh = journal_alloc_journal_head(); 2416 2417 jbd_lock_bh_journal_head(bh); 2418 if (buffer_jbd(bh)) { 2419 jh = bh2jh(bh); 2420 } else { 2421 J_ASSERT_BH(bh, 2422 (atomic_read(&bh->b_count) > 0) || 2423 (bh->b_page && bh->b_page->mapping)); 2424 2425 if (!new_jh) { 2426 jbd_unlock_bh_journal_head(bh); 2427 goto repeat; 2428 } 2429 2430 jh = new_jh; 2431 new_jh = NULL; /* We consumed it */ 2432 set_buffer_jbd(bh); 2433 bh->b_private = jh; 2434 jh->b_bh = bh; 2435 get_bh(bh); 2436 BUFFER_TRACE(bh, "added journal_head"); 2437 } 2438 jh->b_jcount++; 2439 jbd_unlock_bh_journal_head(bh); 2440 if (new_jh) 2441 journal_free_journal_head(new_jh); 2442 return bh->b_private; 2443 } 2444 2445 /* 2446 * Grab a ref against this buffer_head's journal_head. If it ended up not 2447 * having a journal_head, return NULL 2448 */ 2449 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh) 2450 { 2451 struct journal_head *jh = NULL; 2452 2453 jbd_lock_bh_journal_head(bh); 2454 if (buffer_jbd(bh)) { 2455 jh = bh2jh(bh); 2456 jh->b_jcount++; 2457 } 2458 jbd_unlock_bh_journal_head(bh); 2459 return jh; 2460 } 2461 2462 static void __journal_remove_journal_head(struct buffer_head *bh) 2463 { 2464 struct journal_head *jh = bh2jh(bh); 2465 2466 J_ASSERT_JH(jh, jh->b_jcount >= 0); 2467 J_ASSERT_JH(jh, jh->b_transaction == NULL); 2468 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 2469 J_ASSERT_JH(jh, jh->b_cp_transaction == NULL); 2470 J_ASSERT_JH(jh, jh->b_jlist == BJ_None); 2471 J_ASSERT_BH(bh, buffer_jbd(bh)); 2472 J_ASSERT_BH(bh, jh2bh(jh) == bh); 2473 BUFFER_TRACE(bh, "remove journal_head"); 2474 if (jh->b_frozen_data) { 2475 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__); 2476 jbd2_free(jh->b_frozen_data, bh->b_size); 2477 } 2478 if (jh->b_committed_data) { 2479 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__); 2480 jbd2_free(jh->b_committed_data, bh->b_size); 2481 } 2482 bh->b_private = NULL; 2483 jh->b_bh = NULL; /* debug, really */ 2484 clear_buffer_jbd(bh); 2485 journal_free_journal_head(jh); 2486 } 2487 2488 /* 2489 * Drop a reference on the passed journal_head. If it fell to zero then 2490 * release the journal_head from the buffer_head. 2491 */ 2492 void jbd2_journal_put_journal_head(struct journal_head *jh) 2493 { 2494 struct buffer_head *bh = jh2bh(jh); 2495 2496 jbd_lock_bh_journal_head(bh); 2497 J_ASSERT_JH(jh, jh->b_jcount > 0); 2498 --jh->b_jcount; 2499 if (!jh->b_jcount) { 2500 __journal_remove_journal_head(bh); 2501 jbd_unlock_bh_journal_head(bh); 2502 __brelse(bh); 2503 } else 2504 jbd_unlock_bh_journal_head(bh); 2505 } 2506 2507 /* 2508 * Initialize jbd inode head 2509 */ 2510 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode) 2511 { 2512 jinode->i_transaction = NULL; 2513 jinode->i_next_transaction = NULL; 2514 jinode->i_vfs_inode = inode; 2515 jinode->i_flags = 0; 2516 INIT_LIST_HEAD(&jinode->i_list); 2517 } 2518 2519 /* 2520 * Function to be called before we start removing inode from memory (i.e., 2521 * clear_inode() is a fine place to be called from). It removes inode from 2522 * transaction's lists. 2523 */ 2524 void jbd2_journal_release_jbd_inode(journal_t *journal, 2525 struct jbd2_inode *jinode) 2526 { 2527 if (!journal) 2528 return; 2529 restart: 2530 spin_lock(&journal->j_list_lock); 2531 /* Is commit writing out inode - we have to wait */ 2532 if (test_bit(__JI_COMMIT_RUNNING, &jinode->i_flags)) { 2533 wait_queue_head_t *wq; 2534 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING); 2535 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING); 2536 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 2537 spin_unlock(&journal->j_list_lock); 2538 schedule(); 2539 finish_wait(wq, &wait.wait); 2540 goto restart; 2541 } 2542 2543 if (jinode->i_transaction) { 2544 list_del(&jinode->i_list); 2545 jinode->i_transaction = NULL; 2546 } 2547 spin_unlock(&journal->j_list_lock); 2548 } 2549 2550 2551 #ifdef CONFIG_PROC_FS 2552 2553 #define JBD2_STATS_PROC_NAME "fs/jbd2" 2554 2555 static void __init jbd2_create_jbd_stats_proc_entry(void) 2556 { 2557 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL); 2558 } 2559 2560 static void __exit jbd2_remove_jbd_stats_proc_entry(void) 2561 { 2562 if (proc_jbd2_stats) 2563 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL); 2564 } 2565 2566 #else 2567 2568 #define jbd2_create_jbd_stats_proc_entry() do {} while (0) 2569 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0) 2570 2571 #endif 2572 2573 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache; 2574 2575 static int __init jbd2_journal_init_handle_cache(void) 2576 { 2577 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY); 2578 if (jbd2_handle_cache == NULL) { 2579 printk(KERN_EMERG "JBD2: failed to create handle cache\n"); 2580 return -ENOMEM; 2581 } 2582 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0); 2583 if (jbd2_inode_cache == NULL) { 2584 printk(KERN_EMERG "JBD2: failed to create inode cache\n"); 2585 kmem_cache_destroy(jbd2_handle_cache); 2586 return -ENOMEM; 2587 } 2588 return 0; 2589 } 2590 2591 static void jbd2_journal_destroy_handle_cache(void) 2592 { 2593 if (jbd2_handle_cache) 2594 kmem_cache_destroy(jbd2_handle_cache); 2595 if (jbd2_inode_cache) 2596 kmem_cache_destroy(jbd2_inode_cache); 2597 2598 } 2599 2600 /* 2601 * Module startup and shutdown 2602 */ 2603 2604 static int __init journal_init_caches(void) 2605 { 2606 int ret; 2607 2608 ret = jbd2_journal_init_revoke_caches(); 2609 if (ret == 0) 2610 ret = jbd2_journal_init_journal_head_cache(); 2611 if (ret == 0) 2612 ret = jbd2_journal_init_handle_cache(); 2613 if (ret == 0) 2614 ret = jbd2_journal_init_transaction_cache(); 2615 return ret; 2616 } 2617 2618 static void jbd2_journal_destroy_caches(void) 2619 { 2620 jbd2_journal_destroy_revoke_caches(); 2621 jbd2_journal_destroy_journal_head_cache(); 2622 jbd2_journal_destroy_handle_cache(); 2623 jbd2_journal_destroy_transaction_cache(); 2624 jbd2_journal_destroy_slabs(); 2625 } 2626 2627 static int __init journal_init(void) 2628 { 2629 int ret; 2630 2631 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024); 2632 2633 ret = journal_init_caches(); 2634 if (ret == 0) { 2635 jbd2_create_jbd_stats_proc_entry(); 2636 } else { 2637 jbd2_journal_destroy_caches(); 2638 } 2639 return ret; 2640 } 2641 2642 static void __exit journal_exit(void) 2643 { 2644 #ifdef CONFIG_JBD2_DEBUG 2645 int n = atomic_read(&nr_journal_heads); 2646 if (n) 2647 printk(KERN_EMERG "JBD2: leaked %d journal_heads!\n", n); 2648 #endif 2649 jbd2_remove_jbd_stats_proc_entry(); 2650 jbd2_journal_destroy_caches(); 2651 } 2652 2653 MODULE_LICENSE("GPL"); 2654 module_init(journal_init); 2655 module_exit(journal_exit); 2656 2657