xref: /linux/fs/jbd2/journal.c (revision ff5599816711d2e67da2d7561fd36ac48debd433)
1 /*
2  * linux/fs/jbd2/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24 
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/math64.h>
40 #include <linux/hash.h>
41 #include <linux/log2.h>
42 #include <linux/vmalloc.h>
43 #include <linux/backing-dev.h>
44 #include <linux/bitops.h>
45 #include <linux/ratelimit.h>
46 
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/jbd2.h>
49 
50 #include <asm/uaccess.h>
51 #include <asm/page.h>
52 
53 #ifdef CONFIG_JBD2_DEBUG
54 ushort jbd2_journal_enable_debug __read_mostly;
55 EXPORT_SYMBOL(jbd2_journal_enable_debug);
56 
57 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
58 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
59 #endif
60 
61 EXPORT_SYMBOL(jbd2_journal_extend);
62 EXPORT_SYMBOL(jbd2_journal_stop);
63 EXPORT_SYMBOL(jbd2_journal_lock_updates);
64 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
65 EXPORT_SYMBOL(jbd2_journal_get_write_access);
66 EXPORT_SYMBOL(jbd2_journal_get_create_access);
67 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
68 EXPORT_SYMBOL(jbd2_journal_set_triggers);
69 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
70 EXPORT_SYMBOL(jbd2_journal_forget);
71 #if 0
72 EXPORT_SYMBOL(journal_sync_buffer);
73 #endif
74 EXPORT_SYMBOL(jbd2_journal_flush);
75 EXPORT_SYMBOL(jbd2_journal_revoke);
76 
77 EXPORT_SYMBOL(jbd2_journal_init_dev);
78 EXPORT_SYMBOL(jbd2_journal_init_inode);
79 EXPORT_SYMBOL(jbd2_journal_check_used_features);
80 EXPORT_SYMBOL(jbd2_journal_check_available_features);
81 EXPORT_SYMBOL(jbd2_journal_set_features);
82 EXPORT_SYMBOL(jbd2_journal_load);
83 EXPORT_SYMBOL(jbd2_journal_destroy);
84 EXPORT_SYMBOL(jbd2_journal_abort);
85 EXPORT_SYMBOL(jbd2_journal_errno);
86 EXPORT_SYMBOL(jbd2_journal_ack_err);
87 EXPORT_SYMBOL(jbd2_journal_clear_err);
88 EXPORT_SYMBOL(jbd2_log_wait_commit);
89 EXPORT_SYMBOL(jbd2_log_start_commit);
90 EXPORT_SYMBOL(jbd2_journal_start_commit);
91 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
92 EXPORT_SYMBOL(jbd2_journal_wipe);
93 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
94 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
95 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
96 EXPORT_SYMBOL(jbd2_journal_force_commit);
97 EXPORT_SYMBOL(jbd2_journal_file_inode);
98 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
99 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
100 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
101 EXPORT_SYMBOL(jbd2_inode_cache);
102 
103 static void __journal_abort_soft (journal_t *journal, int errno);
104 static int jbd2_journal_create_slab(size_t slab_size);
105 
106 #ifdef CONFIG_JBD2_DEBUG
107 void __jbd2_debug(int level, const char *file, const char *func,
108 		  unsigned int line, const char *fmt, ...)
109 {
110 	struct va_format vaf;
111 	va_list args;
112 
113 	if (level > jbd2_journal_enable_debug)
114 		return;
115 	va_start(args, fmt);
116 	vaf.fmt = fmt;
117 	vaf.va = &args;
118 	printk(KERN_DEBUG "%s: (%s, %u): %pV\n", file, func, line, &vaf);
119 	va_end(args);
120 }
121 EXPORT_SYMBOL(__jbd2_debug);
122 #endif
123 
124 /* Checksumming functions */
125 int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
126 {
127 	if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
128 		return 1;
129 
130 	return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
131 }
132 
133 static __u32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
134 {
135 	__u32 csum, old_csum;
136 
137 	old_csum = sb->s_checksum;
138 	sb->s_checksum = 0;
139 	csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
140 	sb->s_checksum = old_csum;
141 
142 	return cpu_to_be32(csum);
143 }
144 
145 int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb)
146 {
147 	if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
148 		return 1;
149 
150 	return sb->s_checksum == jbd2_superblock_csum(j, sb);
151 }
152 
153 void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb)
154 {
155 	if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
156 		return;
157 
158 	sb->s_checksum = jbd2_superblock_csum(j, sb);
159 }
160 
161 /*
162  * Helper function used to manage commit timeouts
163  */
164 
165 static void commit_timeout(unsigned long __data)
166 {
167 	struct task_struct * p = (struct task_struct *) __data;
168 
169 	wake_up_process(p);
170 }
171 
172 /*
173  * kjournald2: The main thread function used to manage a logging device
174  * journal.
175  *
176  * This kernel thread is responsible for two things:
177  *
178  * 1) COMMIT:  Every so often we need to commit the current state of the
179  *    filesystem to disk.  The journal thread is responsible for writing
180  *    all of the metadata buffers to disk.
181  *
182  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
183  *    of the data in that part of the log has been rewritten elsewhere on
184  *    the disk.  Flushing these old buffers to reclaim space in the log is
185  *    known as checkpointing, and this thread is responsible for that job.
186  */
187 
188 static int kjournald2(void *arg)
189 {
190 	journal_t *journal = arg;
191 	transaction_t *transaction;
192 
193 	/*
194 	 * Set up an interval timer which can be used to trigger a commit wakeup
195 	 * after the commit interval expires
196 	 */
197 	setup_timer(&journal->j_commit_timer, commit_timeout,
198 			(unsigned long)current);
199 
200 	set_freezable();
201 
202 	/* Record that the journal thread is running */
203 	journal->j_task = current;
204 	wake_up(&journal->j_wait_done_commit);
205 
206 	/*
207 	 * And now, wait forever for commit wakeup events.
208 	 */
209 	write_lock(&journal->j_state_lock);
210 
211 loop:
212 	if (journal->j_flags & JBD2_UNMOUNT)
213 		goto end_loop;
214 
215 	jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
216 		journal->j_commit_sequence, journal->j_commit_request);
217 
218 	if (journal->j_commit_sequence != journal->j_commit_request) {
219 		jbd_debug(1, "OK, requests differ\n");
220 		write_unlock(&journal->j_state_lock);
221 		del_timer_sync(&journal->j_commit_timer);
222 		jbd2_journal_commit_transaction(journal);
223 		write_lock(&journal->j_state_lock);
224 		goto loop;
225 	}
226 
227 	wake_up(&journal->j_wait_done_commit);
228 	if (freezing(current)) {
229 		/*
230 		 * The simpler the better. Flushing journal isn't a
231 		 * good idea, because that depends on threads that may
232 		 * be already stopped.
233 		 */
234 		jbd_debug(1, "Now suspending kjournald2\n");
235 		write_unlock(&journal->j_state_lock);
236 		try_to_freeze();
237 		write_lock(&journal->j_state_lock);
238 	} else {
239 		/*
240 		 * We assume on resume that commits are already there,
241 		 * so we don't sleep
242 		 */
243 		DEFINE_WAIT(wait);
244 		int should_sleep = 1;
245 
246 		prepare_to_wait(&journal->j_wait_commit, &wait,
247 				TASK_INTERRUPTIBLE);
248 		if (journal->j_commit_sequence != journal->j_commit_request)
249 			should_sleep = 0;
250 		transaction = journal->j_running_transaction;
251 		if (transaction && time_after_eq(jiffies,
252 						transaction->t_expires))
253 			should_sleep = 0;
254 		if (journal->j_flags & JBD2_UNMOUNT)
255 			should_sleep = 0;
256 		if (should_sleep) {
257 			write_unlock(&journal->j_state_lock);
258 			schedule();
259 			write_lock(&journal->j_state_lock);
260 		}
261 		finish_wait(&journal->j_wait_commit, &wait);
262 	}
263 
264 	jbd_debug(1, "kjournald2 wakes\n");
265 
266 	/*
267 	 * Were we woken up by a commit wakeup event?
268 	 */
269 	transaction = journal->j_running_transaction;
270 	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
271 		journal->j_commit_request = transaction->t_tid;
272 		jbd_debug(1, "woke because of timeout\n");
273 	}
274 	goto loop;
275 
276 end_loop:
277 	write_unlock(&journal->j_state_lock);
278 	del_timer_sync(&journal->j_commit_timer);
279 	journal->j_task = NULL;
280 	wake_up(&journal->j_wait_done_commit);
281 	jbd_debug(1, "Journal thread exiting.\n");
282 	return 0;
283 }
284 
285 static int jbd2_journal_start_thread(journal_t *journal)
286 {
287 	struct task_struct *t;
288 
289 	t = kthread_run(kjournald2, journal, "jbd2/%s",
290 			journal->j_devname);
291 	if (IS_ERR(t))
292 		return PTR_ERR(t);
293 
294 	wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
295 	return 0;
296 }
297 
298 static void journal_kill_thread(journal_t *journal)
299 {
300 	write_lock(&journal->j_state_lock);
301 	journal->j_flags |= JBD2_UNMOUNT;
302 
303 	while (journal->j_task) {
304 		wake_up(&journal->j_wait_commit);
305 		write_unlock(&journal->j_state_lock);
306 		wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
307 		write_lock(&journal->j_state_lock);
308 	}
309 	write_unlock(&journal->j_state_lock);
310 }
311 
312 /*
313  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
314  *
315  * Writes a metadata buffer to a given disk block.  The actual IO is not
316  * performed but a new buffer_head is constructed which labels the data
317  * to be written with the correct destination disk block.
318  *
319  * Any magic-number escaping which needs to be done will cause a
320  * copy-out here.  If the buffer happens to start with the
321  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
322  * magic number is only written to the log for descripter blocks.  In
323  * this case, we copy the data and replace the first word with 0, and we
324  * return a result code which indicates that this buffer needs to be
325  * marked as an escaped buffer in the corresponding log descriptor
326  * block.  The missing word can then be restored when the block is read
327  * during recovery.
328  *
329  * If the source buffer has already been modified by a new transaction
330  * since we took the last commit snapshot, we use the frozen copy of
331  * that data for IO. If we end up using the existing buffer_head's data
332  * for the write, then we have to make sure nobody modifies it while the
333  * IO is in progress. do_get_write_access() handles this.
334  *
335  * The function returns a pointer to the buffer_head to be used for IO.
336  *
337  *
338  * Return value:
339  *  <0: Error
340  * >=0: Finished OK
341  *
342  * On success:
343  * Bit 0 set == escape performed on the data
344  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
345  */
346 
347 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
348 				  struct journal_head  *jh_in,
349 				  struct buffer_head **bh_out,
350 				  sector_t blocknr)
351 {
352 	int need_copy_out = 0;
353 	int done_copy_out = 0;
354 	int do_escape = 0;
355 	char *mapped_data;
356 	struct buffer_head *new_bh;
357 	struct page *new_page;
358 	unsigned int new_offset;
359 	struct buffer_head *bh_in = jh2bh(jh_in);
360 	journal_t *journal = transaction->t_journal;
361 
362 	/*
363 	 * The buffer really shouldn't be locked: only the current committing
364 	 * transaction is allowed to write it, so nobody else is allowed
365 	 * to do any IO.
366 	 *
367 	 * akpm: except if we're journalling data, and write() output is
368 	 * also part of a shared mapping, and another thread has
369 	 * decided to launch a writepage() against this buffer.
370 	 */
371 	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
372 
373 retry_alloc:
374 	new_bh = alloc_buffer_head(GFP_NOFS);
375 	if (!new_bh) {
376 		/*
377 		 * Failure is not an option, but __GFP_NOFAIL is going
378 		 * away; so we retry ourselves here.
379 		 */
380 		congestion_wait(BLK_RW_ASYNC, HZ/50);
381 		goto retry_alloc;
382 	}
383 
384 	/* keep subsequent assertions sane */
385 	atomic_set(&new_bh->b_count, 1);
386 
387 	jbd_lock_bh_state(bh_in);
388 repeat:
389 	/*
390 	 * If a new transaction has already done a buffer copy-out, then
391 	 * we use that version of the data for the commit.
392 	 */
393 	if (jh_in->b_frozen_data) {
394 		done_copy_out = 1;
395 		new_page = virt_to_page(jh_in->b_frozen_data);
396 		new_offset = offset_in_page(jh_in->b_frozen_data);
397 	} else {
398 		new_page = jh2bh(jh_in)->b_page;
399 		new_offset = offset_in_page(jh2bh(jh_in)->b_data);
400 	}
401 
402 	mapped_data = kmap_atomic(new_page);
403 	/*
404 	 * Fire data frozen trigger if data already wasn't frozen.  Do this
405 	 * before checking for escaping, as the trigger may modify the magic
406 	 * offset.  If a copy-out happens afterwards, it will have the correct
407 	 * data in the buffer.
408 	 */
409 	if (!done_copy_out)
410 		jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
411 					   jh_in->b_triggers);
412 
413 	/*
414 	 * Check for escaping
415 	 */
416 	if (*((__be32 *)(mapped_data + new_offset)) ==
417 				cpu_to_be32(JBD2_MAGIC_NUMBER)) {
418 		need_copy_out = 1;
419 		do_escape = 1;
420 	}
421 	kunmap_atomic(mapped_data);
422 
423 	/*
424 	 * Do we need to do a data copy?
425 	 */
426 	if (need_copy_out && !done_copy_out) {
427 		char *tmp;
428 
429 		jbd_unlock_bh_state(bh_in);
430 		tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
431 		if (!tmp) {
432 			brelse(new_bh);
433 			return -ENOMEM;
434 		}
435 		jbd_lock_bh_state(bh_in);
436 		if (jh_in->b_frozen_data) {
437 			jbd2_free(tmp, bh_in->b_size);
438 			goto repeat;
439 		}
440 
441 		jh_in->b_frozen_data = tmp;
442 		mapped_data = kmap_atomic(new_page);
443 		memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
444 		kunmap_atomic(mapped_data);
445 
446 		new_page = virt_to_page(tmp);
447 		new_offset = offset_in_page(tmp);
448 		done_copy_out = 1;
449 
450 		/*
451 		 * This isn't strictly necessary, as we're using frozen
452 		 * data for the escaping, but it keeps consistency with
453 		 * b_frozen_data usage.
454 		 */
455 		jh_in->b_frozen_triggers = jh_in->b_triggers;
456 	}
457 
458 	/*
459 	 * Did we need to do an escaping?  Now we've done all the
460 	 * copying, we can finally do so.
461 	 */
462 	if (do_escape) {
463 		mapped_data = kmap_atomic(new_page);
464 		*((unsigned int *)(mapped_data + new_offset)) = 0;
465 		kunmap_atomic(mapped_data);
466 	}
467 
468 	set_bh_page(new_bh, new_page, new_offset);
469 	new_bh->b_size = bh_in->b_size;
470 	new_bh->b_bdev = journal->j_dev;
471 	new_bh->b_blocknr = blocknr;
472 	new_bh->b_private = bh_in;
473 	set_buffer_mapped(new_bh);
474 	set_buffer_dirty(new_bh);
475 
476 	*bh_out = new_bh;
477 
478 	/*
479 	 * The to-be-written buffer needs to get moved to the io queue,
480 	 * and the original buffer whose contents we are shadowing or
481 	 * copying is moved to the transaction's shadow queue.
482 	 */
483 	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
484 	spin_lock(&journal->j_list_lock);
485 	__jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
486 	spin_unlock(&journal->j_list_lock);
487 	set_buffer_shadow(bh_in);
488 	jbd_unlock_bh_state(bh_in);
489 
490 	return do_escape | (done_copy_out << 1);
491 }
492 
493 /*
494  * Allocation code for the journal file.  Manage the space left in the
495  * journal, so that we can begin checkpointing when appropriate.
496  */
497 
498 /*
499  * Called with j_state_lock locked for writing.
500  * Returns true if a transaction commit was started.
501  */
502 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
503 {
504 	/* Return if the txn has already requested to be committed */
505 	if (journal->j_commit_request == target)
506 		return 0;
507 
508 	/*
509 	 * The only transaction we can possibly wait upon is the
510 	 * currently running transaction (if it exists).  Otherwise,
511 	 * the target tid must be an old one.
512 	 */
513 	if (journal->j_running_transaction &&
514 	    journal->j_running_transaction->t_tid == target) {
515 		/*
516 		 * We want a new commit: OK, mark the request and wakeup the
517 		 * commit thread.  We do _not_ do the commit ourselves.
518 		 */
519 
520 		journal->j_commit_request = target;
521 		jbd_debug(1, "JBD2: requesting commit %d/%d\n",
522 			  journal->j_commit_request,
523 			  journal->j_commit_sequence);
524 		journal->j_running_transaction->t_requested = jiffies;
525 		wake_up(&journal->j_wait_commit);
526 		return 1;
527 	} else if (!tid_geq(journal->j_commit_request, target))
528 		/* This should never happen, but if it does, preserve
529 		   the evidence before kjournald goes into a loop and
530 		   increments j_commit_sequence beyond all recognition. */
531 		WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
532 			  journal->j_commit_request,
533 			  journal->j_commit_sequence,
534 			  target, journal->j_running_transaction ?
535 			  journal->j_running_transaction->t_tid : 0);
536 	return 0;
537 }
538 
539 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
540 {
541 	int ret;
542 
543 	write_lock(&journal->j_state_lock);
544 	ret = __jbd2_log_start_commit(journal, tid);
545 	write_unlock(&journal->j_state_lock);
546 	return ret;
547 }
548 
549 /*
550  * Force and wait any uncommitted transactions.  We can only force the running
551  * transaction if we don't have an active handle, otherwise, we will deadlock.
552  * Returns: <0 in case of error,
553  *           0 if nothing to commit,
554  *           1 if transaction was successfully committed.
555  */
556 static int __jbd2_journal_force_commit(journal_t *journal)
557 {
558 	transaction_t *transaction = NULL;
559 	tid_t tid;
560 	int need_to_start = 0, ret = 0;
561 
562 	read_lock(&journal->j_state_lock);
563 	if (journal->j_running_transaction && !current->journal_info) {
564 		transaction = journal->j_running_transaction;
565 		if (!tid_geq(journal->j_commit_request, transaction->t_tid))
566 			need_to_start = 1;
567 	} else if (journal->j_committing_transaction)
568 		transaction = journal->j_committing_transaction;
569 
570 	if (!transaction) {
571 		/* Nothing to commit */
572 		read_unlock(&journal->j_state_lock);
573 		return 0;
574 	}
575 	tid = transaction->t_tid;
576 	read_unlock(&journal->j_state_lock);
577 	if (need_to_start)
578 		jbd2_log_start_commit(journal, tid);
579 	ret = jbd2_log_wait_commit(journal, tid);
580 	if (!ret)
581 		ret = 1;
582 
583 	return ret;
584 }
585 
586 /**
587  * Force and wait upon a commit if the calling process is not within
588  * transaction.  This is used for forcing out undo-protected data which contains
589  * bitmaps, when the fs is running out of space.
590  *
591  * @journal: journal to force
592  * Returns true if progress was made.
593  */
594 int jbd2_journal_force_commit_nested(journal_t *journal)
595 {
596 	int ret;
597 
598 	ret = __jbd2_journal_force_commit(journal);
599 	return ret > 0;
600 }
601 
602 /**
603  * int journal_force_commit() - force any uncommitted transactions
604  * @journal: journal to force
605  *
606  * Caller want unconditional commit. We can only force the running transaction
607  * if we don't have an active handle, otherwise, we will deadlock.
608  */
609 int jbd2_journal_force_commit(journal_t *journal)
610 {
611 	int ret;
612 
613 	J_ASSERT(!current->journal_info);
614 	ret = __jbd2_journal_force_commit(journal);
615 	if (ret > 0)
616 		ret = 0;
617 	return ret;
618 }
619 
620 /*
621  * Start a commit of the current running transaction (if any).  Returns true
622  * if a transaction is going to be committed (or is currently already
623  * committing), and fills its tid in at *ptid
624  */
625 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
626 {
627 	int ret = 0;
628 
629 	write_lock(&journal->j_state_lock);
630 	if (journal->j_running_transaction) {
631 		tid_t tid = journal->j_running_transaction->t_tid;
632 
633 		__jbd2_log_start_commit(journal, tid);
634 		/* There's a running transaction and we've just made sure
635 		 * it's commit has been scheduled. */
636 		if (ptid)
637 			*ptid = tid;
638 		ret = 1;
639 	} else if (journal->j_committing_transaction) {
640 		/*
641 		 * If commit has been started, then we have to wait for
642 		 * completion of that transaction.
643 		 */
644 		if (ptid)
645 			*ptid = journal->j_committing_transaction->t_tid;
646 		ret = 1;
647 	}
648 	write_unlock(&journal->j_state_lock);
649 	return ret;
650 }
651 
652 /*
653  * Return 1 if a given transaction has not yet sent barrier request
654  * connected with a transaction commit. If 0 is returned, transaction
655  * may or may not have sent the barrier. Used to avoid sending barrier
656  * twice in common cases.
657  */
658 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
659 {
660 	int ret = 0;
661 	transaction_t *commit_trans;
662 
663 	if (!(journal->j_flags & JBD2_BARRIER))
664 		return 0;
665 	read_lock(&journal->j_state_lock);
666 	/* Transaction already committed? */
667 	if (tid_geq(journal->j_commit_sequence, tid))
668 		goto out;
669 	commit_trans = journal->j_committing_transaction;
670 	if (!commit_trans || commit_trans->t_tid != tid) {
671 		ret = 1;
672 		goto out;
673 	}
674 	/*
675 	 * Transaction is being committed and we already proceeded to
676 	 * submitting a flush to fs partition?
677 	 */
678 	if (journal->j_fs_dev != journal->j_dev) {
679 		if (!commit_trans->t_need_data_flush ||
680 		    commit_trans->t_state >= T_COMMIT_DFLUSH)
681 			goto out;
682 	} else {
683 		if (commit_trans->t_state >= T_COMMIT_JFLUSH)
684 			goto out;
685 	}
686 	ret = 1;
687 out:
688 	read_unlock(&journal->j_state_lock);
689 	return ret;
690 }
691 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
692 
693 /*
694  * Wait for a specified commit to complete.
695  * The caller may not hold the journal lock.
696  */
697 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
698 {
699 	int err = 0;
700 
701 	read_lock(&journal->j_state_lock);
702 #ifdef CONFIG_JBD2_DEBUG
703 	if (!tid_geq(journal->j_commit_request, tid)) {
704 		printk(KERN_EMERG
705 		       "%s: error: j_commit_request=%d, tid=%d\n",
706 		       __func__, journal->j_commit_request, tid);
707 	}
708 #endif
709 	while (tid_gt(tid, journal->j_commit_sequence)) {
710 		jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
711 				  tid, journal->j_commit_sequence);
712 		wake_up(&journal->j_wait_commit);
713 		read_unlock(&journal->j_state_lock);
714 		wait_event(journal->j_wait_done_commit,
715 				!tid_gt(tid, journal->j_commit_sequence));
716 		read_lock(&journal->j_state_lock);
717 	}
718 	read_unlock(&journal->j_state_lock);
719 
720 	if (unlikely(is_journal_aborted(journal))) {
721 		printk(KERN_EMERG "journal commit I/O error\n");
722 		err = -EIO;
723 	}
724 	return err;
725 }
726 
727 /*
728  * When this function returns the transaction corresponding to tid
729  * will be completed.  If the transaction has currently running, start
730  * committing that transaction before waiting for it to complete.  If
731  * the transaction id is stale, it is by definition already completed,
732  * so just return SUCCESS.
733  */
734 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
735 {
736 	int	need_to_wait = 1;
737 
738 	read_lock(&journal->j_state_lock);
739 	if (journal->j_running_transaction &&
740 	    journal->j_running_transaction->t_tid == tid) {
741 		if (journal->j_commit_request != tid) {
742 			/* transaction not yet started, so request it */
743 			read_unlock(&journal->j_state_lock);
744 			jbd2_log_start_commit(journal, tid);
745 			goto wait_commit;
746 		}
747 	} else if (!(journal->j_committing_transaction &&
748 		     journal->j_committing_transaction->t_tid == tid))
749 		need_to_wait = 0;
750 	read_unlock(&journal->j_state_lock);
751 	if (!need_to_wait)
752 		return 0;
753 wait_commit:
754 	return jbd2_log_wait_commit(journal, tid);
755 }
756 EXPORT_SYMBOL(jbd2_complete_transaction);
757 
758 /*
759  * Log buffer allocation routines:
760  */
761 
762 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
763 {
764 	unsigned long blocknr;
765 
766 	write_lock(&journal->j_state_lock);
767 	J_ASSERT(journal->j_free > 1);
768 
769 	blocknr = journal->j_head;
770 	journal->j_head++;
771 	journal->j_free--;
772 	if (journal->j_head == journal->j_last)
773 		journal->j_head = journal->j_first;
774 	write_unlock(&journal->j_state_lock);
775 	return jbd2_journal_bmap(journal, blocknr, retp);
776 }
777 
778 /*
779  * Conversion of logical to physical block numbers for the journal
780  *
781  * On external journals the journal blocks are identity-mapped, so
782  * this is a no-op.  If needed, we can use j_blk_offset - everything is
783  * ready.
784  */
785 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
786 		 unsigned long long *retp)
787 {
788 	int err = 0;
789 	unsigned long long ret;
790 
791 	if (journal->j_inode) {
792 		ret = bmap(journal->j_inode, blocknr);
793 		if (ret)
794 			*retp = ret;
795 		else {
796 			printk(KERN_ALERT "%s: journal block not found "
797 					"at offset %lu on %s\n",
798 			       __func__, blocknr, journal->j_devname);
799 			err = -EIO;
800 			__journal_abort_soft(journal, err);
801 		}
802 	} else {
803 		*retp = blocknr; /* +journal->j_blk_offset */
804 	}
805 	return err;
806 }
807 
808 /*
809  * We play buffer_head aliasing tricks to write data/metadata blocks to
810  * the journal without copying their contents, but for journal
811  * descriptor blocks we do need to generate bona fide buffers.
812  *
813  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
814  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
815  * But we don't bother doing that, so there will be coherency problems with
816  * mmaps of blockdevs which hold live JBD-controlled filesystems.
817  */
818 struct buffer_head *jbd2_journal_get_descriptor_buffer(journal_t *journal)
819 {
820 	struct buffer_head *bh;
821 	unsigned long long blocknr;
822 	int err;
823 
824 	err = jbd2_journal_next_log_block(journal, &blocknr);
825 
826 	if (err)
827 		return NULL;
828 
829 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
830 	if (!bh)
831 		return NULL;
832 	lock_buffer(bh);
833 	memset(bh->b_data, 0, journal->j_blocksize);
834 	set_buffer_uptodate(bh);
835 	unlock_buffer(bh);
836 	BUFFER_TRACE(bh, "return this buffer");
837 	return bh;
838 }
839 
840 /*
841  * Return tid of the oldest transaction in the journal and block in the journal
842  * where the transaction starts.
843  *
844  * If the journal is now empty, return which will be the next transaction ID
845  * we will write and where will that transaction start.
846  *
847  * The return value is 0 if journal tail cannot be pushed any further, 1 if
848  * it can.
849  */
850 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
851 			      unsigned long *block)
852 {
853 	transaction_t *transaction;
854 	int ret;
855 
856 	read_lock(&journal->j_state_lock);
857 	spin_lock(&journal->j_list_lock);
858 	transaction = journal->j_checkpoint_transactions;
859 	if (transaction) {
860 		*tid = transaction->t_tid;
861 		*block = transaction->t_log_start;
862 	} else if ((transaction = journal->j_committing_transaction) != NULL) {
863 		*tid = transaction->t_tid;
864 		*block = transaction->t_log_start;
865 	} else if ((transaction = journal->j_running_transaction) != NULL) {
866 		*tid = transaction->t_tid;
867 		*block = journal->j_head;
868 	} else {
869 		*tid = journal->j_transaction_sequence;
870 		*block = journal->j_head;
871 	}
872 	ret = tid_gt(*tid, journal->j_tail_sequence);
873 	spin_unlock(&journal->j_list_lock);
874 	read_unlock(&journal->j_state_lock);
875 
876 	return ret;
877 }
878 
879 /*
880  * Update information in journal structure and in on disk journal superblock
881  * about log tail. This function does not check whether information passed in
882  * really pushes log tail further. It's responsibility of the caller to make
883  * sure provided log tail information is valid (e.g. by holding
884  * j_checkpoint_mutex all the time between computing log tail and calling this
885  * function as is the case with jbd2_cleanup_journal_tail()).
886  *
887  * Requires j_checkpoint_mutex
888  */
889 void __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
890 {
891 	unsigned long freed;
892 
893 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
894 
895 	/*
896 	 * We cannot afford for write to remain in drive's caches since as
897 	 * soon as we update j_tail, next transaction can start reusing journal
898 	 * space and if we lose sb update during power failure we'd replay
899 	 * old transaction with possibly newly overwritten data.
900 	 */
901 	jbd2_journal_update_sb_log_tail(journal, tid, block, WRITE_FUA);
902 	write_lock(&journal->j_state_lock);
903 	freed = block - journal->j_tail;
904 	if (block < journal->j_tail)
905 		freed += journal->j_last - journal->j_first;
906 
907 	trace_jbd2_update_log_tail(journal, tid, block, freed);
908 	jbd_debug(1,
909 		  "Cleaning journal tail from %d to %d (offset %lu), "
910 		  "freeing %lu\n",
911 		  journal->j_tail_sequence, tid, block, freed);
912 
913 	journal->j_free += freed;
914 	journal->j_tail_sequence = tid;
915 	journal->j_tail = block;
916 	write_unlock(&journal->j_state_lock);
917 }
918 
919 /*
920  * This is a variaon of __jbd2_update_log_tail which checks for validity of
921  * provided log tail and locks j_checkpoint_mutex. So it is safe against races
922  * with other threads updating log tail.
923  */
924 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
925 {
926 	mutex_lock(&journal->j_checkpoint_mutex);
927 	if (tid_gt(tid, journal->j_tail_sequence))
928 		__jbd2_update_log_tail(journal, tid, block);
929 	mutex_unlock(&journal->j_checkpoint_mutex);
930 }
931 
932 struct jbd2_stats_proc_session {
933 	journal_t *journal;
934 	struct transaction_stats_s *stats;
935 	int start;
936 	int max;
937 };
938 
939 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
940 {
941 	return *pos ? NULL : SEQ_START_TOKEN;
942 }
943 
944 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
945 {
946 	return NULL;
947 }
948 
949 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
950 {
951 	struct jbd2_stats_proc_session *s = seq->private;
952 
953 	if (v != SEQ_START_TOKEN)
954 		return 0;
955 	seq_printf(seq, "%lu transactions (%lu requested), "
956 		   "each up to %u blocks\n",
957 		   s->stats->ts_tid, s->stats->ts_requested,
958 		   s->journal->j_max_transaction_buffers);
959 	if (s->stats->ts_tid == 0)
960 		return 0;
961 	seq_printf(seq, "average: \n  %ums waiting for transaction\n",
962 	    jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
963 	seq_printf(seq, "  %ums request delay\n",
964 	    (s->stats->ts_requested == 0) ? 0 :
965 	    jiffies_to_msecs(s->stats->run.rs_request_delay /
966 			     s->stats->ts_requested));
967 	seq_printf(seq, "  %ums running transaction\n",
968 	    jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
969 	seq_printf(seq, "  %ums transaction was being locked\n",
970 	    jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
971 	seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
972 	    jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
973 	seq_printf(seq, "  %ums logging transaction\n",
974 	    jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
975 	seq_printf(seq, "  %lluus average transaction commit time\n",
976 		   div_u64(s->journal->j_average_commit_time, 1000));
977 	seq_printf(seq, "  %lu handles per transaction\n",
978 	    s->stats->run.rs_handle_count / s->stats->ts_tid);
979 	seq_printf(seq, "  %lu blocks per transaction\n",
980 	    s->stats->run.rs_blocks / s->stats->ts_tid);
981 	seq_printf(seq, "  %lu logged blocks per transaction\n",
982 	    s->stats->run.rs_blocks_logged / s->stats->ts_tid);
983 	return 0;
984 }
985 
986 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
987 {
988 }
989 
990 static const struct seq_operations jbd2_seq_info_ops = {
991 	.start  = jbd2_seq_info_start,
992 	.next   = jbd2_seq_info_next,
993 	.stop   = jbd2_seq_info_stop,
994 	.show   = jbd2_seq_info_show,
995 };
996 
997 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
998 {
999 	journal_t *journal = PDE_DATA(inode);
1000 	struct jbd2_stats_proc_session *s;
1001 	int rc, size;
1002 
1003 	s = kmalloc(sizeof(*s), GFP_KERNEL);
1004 	if (s == NULL)
1005 		return -ENOMEM;
1006 	size = sizeof(struct transaction_stats_s);
1007 	s->stats = kmalloc(size, GFP_KERNEL);
1008 	if (s->stats == NULL) {
1009 		kfree(s);
1010 		return -ENOMEM;
1011 	}
1012 	spin_lock(&journal->j_history_lock);
1013 	memcpy(s->stats, &journal->j_stats, size);
1014 	s->journal = journal;
1015 	spin_unlock(&journal->j_history_lock);
1016 
1017 	rc = seq_open(file, &jbd2_seq_info_ops);
1018 	if (rc == 0) {
1019 		struct seq_file *m = file->private_data;
1020 		m->private = s;
1021 	} else {
1022 		kfree(s->stats);
1023 		kfree(s);
1024 	}
1025 	return rc;
1026 
1027 }
1028 
1029 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1030 {
1031 	struct seq_file *seq = file->private_data;
1032 	struct jbd2_stats_proc_session *s = seq->private;
1033 	kfree(s->stats);
1034 	kfree(s);
1035 	return seq_release(inode, file);
1036 }
1037 
1038 static const struct file_operations jbd2_seq_info_fops = {
1039 	.owner		= THIS_MODULE,
1040 	.open           = jbd2_seq_info_open,
1041 	.read           = seq_read,
1042 	.llseek         = seq_lseek,
1043 	.release        = jbd2_seq_info_release,
1044 };
1045 
1046 static struct proc_dir_entry *proc_jbd2_stats;
1047 
1048 static void jbd2_stats_proc_init(journal_t *journal)
1049 {
1050 	journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1051 	if (journal->j_proc_entry) {
1052 		proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1053 				 &jbd2_seq_info_fops, journal);
1054 	}
1055 }
1056 
1057 static void jbd2_stats_proc_exit(journal_t *journal)
1058 {
1059 	remove_proc_entry("info", journal->j_proc_entry);
1060 	remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1061 }
1062 
1063 /*
1064  * Management for journal control blocks: functions to create and
1065  * destroy journal_t structures, and to initialise and read existing
1066  * journal blocks from disk.  */
1067 
1068 /* First: create and setup a journal_t object in memory.  We initialise
1069  * very few fields yet: that has to wait until we have created the
1070  * journal structures from from scratch, or loaded them from disk. */
1071 
1072 static journal_t * journal_init_common (void)
1073 {
1074 	journal_t *journal;
1075 	int err;
1076 
1077 	journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1078 	if (!journal)
1079 		return NULL;
1080 
1081 	init_waitqueue_head(&journal->j_wait_transaction_locked);
1082 	init_waitqueue_head(&journal->j_wait_done_commit);
1083 	init_waitqueue_head(&journal->j_wait_commit);
1084 	init_waitqueue_head(&journal->j_wait_updates);
1085 	init_waitqueue_head(&journal->j_wait_reserved);
1086 	mutex_init(&journal->j_barrier);
1087 	mutex_init(&journal->j_checkpoint_mutex);
1088 	spin_lock_init(&journal->j_revoke_lock);
1089 	spin_lock_init(&journal->j_list_lock);
1090 	rwlock_init(&journal->j_state_lock);
1091 
1092 	journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1093 	journal->j_min_batch_time = 0;
1094 	journal->j_max_batch_time = 15000; /* 15ms */
1095 	atomic_set(&journal->j_reserved_credits, 0);
1096 
1097 	/* The journal is marked for error until we succeed with recovery! */
1098 	journal->j_flags = JBD2_ABORT;
1099 
1100 	/* Set up a default-sized revoke table for the new mount. */
1101 	err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1102 	if (err) {
1103 		kfree(journal);
1104 		return NULL;
1105 	}
1106 
1107 	spin_lock_init(&journal->j_history_lock);
1108 
1109 	return journal;
1110 }
1111 
1112 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1113  *
1114  * Create a journal structure assigned some fixed set of disk blocks to
1115  * the journal.  We don't actually touch those disk blocks yet, but we
1116  * need to set up all of the mapping information to tell the journaling
1117  * system where the journal blocks are.
1118  *
1119  */
1120 
1121 /**
1122  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1123  *  @bdev: Block device on which to create the journal
1124  *  @fs_dev: Device which hold journalled filesystem for this journal.
1125  *  @start: Block nr Start of journal.
1126  *  @len:  Length of the journal in blocks.
1127  *  @blocksize: blocksize of journalling device
1128  *
1129  *  Returns: a newly created journal_t *
1130  *
1131  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1132  *  range of blocks on an arbitrary block device.
1133  *
1134  */
1135 journal_t * jbd2_journal_init_dev(struct block_device *bdev,
1136 			struct block_device *fs_dev,
1137 			unsigned long long start, int len, int blocksize)
1138 {
1139 	journal_t *journal = journal_init_common();
1140 	struct buffer_head *bh;
1141 	char *p;
1142 	int n;
1143 
1144 	if (!journal)
1145 		return NULL;
1146 
1147 	/* journal descriptor can store up to n blocks -bzzz */
1148 	journal->j_blocksize = blocksize;
1149 	journal->j_dev = bdev;
1150 	journal->j_fs_dev = fs_dev;
1151 	journal->j_blk_offset = start;
1152 	journal->j_maxlen = len;
1153 	bdevname(journal->j_dev, journal->j_devname);
1154 	p = journal->j_devname;
1155 	while ((p = strchr(p, '/')))
1156 		*p = '!';
1157 	jbd2_stats_proc_init(journal);
1158 	n = journal->j_blocksize / sizeof(journal_block_tag_t);
1159 	journal->j_wbufsize = n;
1160 	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1161 	if (!journal->j_wbuf) {
1162 		printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1163 			__func__);
1164 		goto out_err;
1165 	}
1166 
1167 	bh = __getblk(journal->j_dev, start, journal->j_blocksize);
1168 	if (!bh) {
1169 		printk(KERN_ERR
1170 		       "%s: Cannot get buffer for journal superblock\n",
1171 		       __func__);
1172 		goto out_err;
1173 	}
1174 	journal->j_sb_buffer = bh;
1175 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
1176 
1177 	return journal;
1178 out_err:
1179 	kfree(journal->j_wbuf);
1180 	jbd2_stats_proc_exit(journal);
1181 	kfree(journal);
1182 	return NULL;
1183 }
1184 
1185 /**
1186  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1187  *  @inode: An inode to create the journal in
1188  *
1189  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1190  * the journal.  The inode must exist already, must support bmap() and
1191  * must have all data blocks preallocated.
1192  */
1193 journal_t * jbd2_journal_init_inode (struct inode *inode)
1194 {
1195 	struct buffer_head *bh;
1196 	journal_t *journal = journal_init_common();
1197 	char *p;
1198 	int err;
1199 	int n;
1200 	unsigned long long blocknr;
1201 
1202 	if (!journal)
1203 		return NULL;
1204 
1205 	journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
1206 	journal->j_inode = inode;
1207 	bdevname(journal->j_dev, journal->j_devname);
1208 	p = journal->j_devname;
1209 	while ((p = strchr(p, '/')))
1210 		*p = '!';
1211 	p = journal->j_devname + strlen(journal->j_devname);
1212 	sprintf(p, "-%lu", journal->j_inode->i_ino);
1213 	jbd_debug(1,
1214 		  "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
1215 		  journal, inode->i_sb->s_id, inode->i_ino,
1216 		  (long long) inode->i_size,
1217 		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1218 
1219 	journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
1220 	journal->j_blocksize = inode->i_sb->s_blocksize;
1221 	jbd2_stats_proc_init(journal);
1222 
1223 	/* journal descriptor can store up to n blocks -bzzz */
1224 	n = journal->j_blocksize / sizeof(journal_block_tag_t);
1225 	journal->j_wbufsize = n;
1226 	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1227 	if (!journal->j_wbuf) {
1228 		printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1229 			__func__);
1230 		goto out_err;
1231 	}
1232 
1233 	err = jbd2_journal_bmap(journal, 0, &blocknr);
1234 	/* If that failed, give up */
1235 	if (err) {
1236 		printk(KERN_ERR "%s: Cannot locate journal superblock\n",
1237 		       __func__);
1238 		goto out_err;
1239 	}
1240 
1241 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
1242 	if (!bh) {
1243 		printk(KERN_ERR
1244 		       "%s: Cannot get buffer for journal superblock\n",
1245 		       __func__);
1246 		goto out_err;
1247 	}
1248 	journal->j_sb_buffer = bh;
1249 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
1250 
1251 	return journal;
1252 out_err:
1253 	kfree(journal->j_wbuf);
1254 	jbd2_stats_proc_exit(journal);
1255 	kfree(journal);
1256 	return NULL;
1257 }
1258 
1259 /*
1260  * If the journal init or create aborts, we need to mark the journal
1261  * superblock as being NULL to prevent the journal destroy from writing
1262  * back a bogus superblock.
1263  */
1264 static void journal_fail_superblock (journal_t *journal)
1265 {
1266 	struct buffer_head *bh = journal->j_sb_buffer;
1267 	brelse(bh);
1268 	journal->j_sb_buffer = NULL;
1269 }
1270 
1271 /*
1272  * Given a journal_t structure, initialise the various fields for
1273  * startup of a new journaling session.  We use this both when creating
1274  * a journal, and after recovering an old journal to reset it for
1275  * subsequent use.
1276  */
1277 
1278 static int journal_reset(journal_t *journal)
1279 {
1280 	journal_superblock_t *sb = journal->j_superblock;
1281 	unsigned long long first, last;
1282 
1283 	first = be32_to_cpu(sb->s_first);
1284 	last = be32_to_cpu(sb->s_maxlen);
1285 	if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1286 		printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1287 		       first, last);
1288 		journal_fail_superblock(journal);
1289 		return -EINVAL;
1290 	}
1291 
1292 	journal->j_first = first;
1293 	journal->j_last = last;
1294 
1295 	journal->j_head = first;
1296 	journal->j_tail = first;
1297 	journal->j_free = last - first;
1298 
1299 	journal->j_tail_sequence = journal->j_transaction_sequence;
1300 	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1301 	journal->j_commit_request = journal->j_commit_sequence;
1302 
1303 	journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1304 
1305 	/*
1306 	 * As a special case, if the on-disk copy is already marked as needing
1307 	 * no recovery (s_start == 0), then we can safely defer the superblock
1308 	 * update until the next commit by setting JBD2_FLUSHED.  This avoids
1309 	 * attempting a write to a potential-readonly device.
1310 	 */
1311 	if (sb->s_start == 0) {
1312 		jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1313 			"(start %ld, seq %d, errno %d)\n",
1314 			journal->j_tail, journal->j_tail_sequence,
1315 			journal->j_errno);
1316 		journal->j_flags |= JBD2_FLUSHED;
1317 	} else {
1318 		/* Lock here to make assertions happy... */
1319 		mutex_lock(&journal->j_checkpoint_mutex);
1320 		/*
1321 		 * Update log tail information. We use WRITE_FUA since new
1322 		 * transaction will start reusing journal space and so we
1323 		 * must make sure information about current log tail is on
1324 		 * disk before that.
1325 		 */
1326 		jbd2_journal_update_sb_log_tail(journal,
1327 						journal->j_tail_sequence,
1328 						journal->j_tail,
1329 						WRITE_FUA);
1330 		mutex_unlock(&journal->j_checkpoint_mutex);
1331 	}
1332 	return jbd2_journal_start_thread(journal);
1333 }
1334 
1335 static void jbd2_write_superblock(journal_t *journal, int write_op)
1336 {
1337 	struct buffer_head *bh = journal->j_sb_buffer;
1338 	journal_superblock_t *sb = journal->j_superblock;
1339 	int ret;
1340 
1341 	trace_jbd2_write_superblock(journal, write_op);
1342 	if (!(journal->j_flags & JBD2_BARRIER))
1343 		write_op &= ~(REQ_FUA | REQ_FLUSH);
1344 	lock_buffer(bh);
1345 	if (buffer_write_io_error(bh)) {
1346 		/*
1347 		 * Oh, dear.  A previous attempt to write the journal
1348 		 * superblock failed.  This could happen because the
1349 		 * USB device was yanked out.  Or it could happen to
1350 		 * be a transient write error and maybe the block will
1351 		 * be remapped.  Nothing we can do but to retry the
1352 		 * write and hope for the best.
1353 		 */
1354 		printk(KERN_ERR "JBD2: previous I/O error detected "
1355 		       "for journal superblock update for %s.\n",
1356 		       journal->j_devname);
1357 		clear_buffer_write_io_error(bh);
1358 		set_buffer_uptodate(bh);
1359 	}
1360 	jbd2_superblock_csum_set(journal, sb);
1361 	get_bh(bh);
1362 	bh->b_end_io = end_buffer_write_sync;
1363 	ret = submit_bh(write_op, bh);
1364 	wait_on_buffer(bh);
1365 	if (buffer_write_io_error(bh)) {
1366 		clear_buffer_write_io_error(bh);
1367 		set_buffer_uptodate(bh);
1368 		ret = -EIO;
1369 	}
1370 	if (ret) {
1371 		printk(KERN_ERR "JBD2: Error %d detected when updating "
1372 		       "journal superblock for %s.\n", ret,
1373 		       journal->j_devname);
1374 	}
1375 }
1376 
1377 /**
1378  * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1379  * @journal: The journal to update.
1380  * @tail_tid: TID of the new transaction at the tail of the log
1381  * @tail_block: The first block of the transaction at the tail of the log
1382  * @write_op: With which operation should we write the journal sb
1383  *
1384  * Update a journal's superblock information about log tail and write it to
1385  * disk, waiting for the IO to complete.
1386  */
1387 void jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1388 				     unsigned long tail_block, int write_op)
1389 {
1390 	journal_superblock_t *sb = journal->j_superblock;
1391 
1392 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1393 	jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1394 		  tail_block, tail_tid);
1395 
1396 	sb->s_sequence = cpu_to_be32(tail_tid);
1397 	sb->s_start    = cpu_to_be32(tail_block);
1398 
1399 	jbd2_write_superblock(journal, write_op);
1400 
1401 	/* Log is no longer empty */
1402 	write_lock(&journal->j_state_lock);
1403 	WARN_ON(!sb->s_sequence);
1404 	journal->j_flags &= ~JBD2_FLUSHED;
1405 	write_unlock(&journal->j_state_lock);
1406 }
1407 
1408 /**
1409  * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1410  * @journal: The journal to update.
1411  *
1412  * Update a journal's dynamic superblock fields to show that journal is empty.
1413  * Write updated superblock to disk waiting for IO to complete.
1414  */
1415 static void jbd2_mark_journal_empty(journal_t *journal)
1416 {
1417 	journal_superblock_t *sb = journal->j_superblock;
1418 
1419 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1420 	read_lock(&journal->j_state_lock);
1421 	/* Is it already empty? */
1422 	if (sb->s_start == 0) {
1423 		read_unlock(&journal->j_state_lock);
1424 		return;
1425 	}
1426 	jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1427 		  journal->j_tail_sequence);
1428 
1429 	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1430 	sb->s_start    = cpu_to_be32(0);
1431 	read_unlock(&journal->j_state_lock);
1432 
1433 	jbd2_write_superblock(journal, WRITE_FUA);
1434 
1435 	/* Log is no longer empty */
1436 	write_lock(&journal->j_state_lock);
1437 	journal->j_flags |= JBD2_FLUSHED;
1438 	write_unlock(&journal->j_state_lock);
1439 }
1440 
1441 
1442 /**
1443  * jbd2_journal_update_sb_errno() - Update error in the journal.
1444  * @journal: The journal to update.
1445  *
1446  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1447  * to complete.
1448  */
1449 void jbd2_journal_update_sb_errno(journal_t *journal)
1450 {
1451 	journal_superblock_t *sb = journal->j_superblock;
1452 
1453 	read_lock(&journal->j_state_lock);
1454 	jbd_debug(1, "JBD2: updating superblock error (errno %d)\n",
1455 		  journal->j_errno);
1456 	sb->s_errno    = cpu_to_be32(journal->j_errno);
1457 	read_unlock(&journal->j_state_lock);
1458 
1459 	jbd2_write_superblock(journal, WRITE_SYNC);
1460 }
1461 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1462 
1463 /*
1464  * Read the superblock for a given journal, performing initial
1465  * validation of the format.
1466  */
1467 static int journal_get_superblock(journal_t *journal)
1468 {
1469 	struct buffer_head *bh;
1470 	journal_superblock_t *sb;
1471 	int err = -EIO;
1472 
1473 	bh = journal->j_sb_buffer;
1474 
1475 	J_ASSERT(bh != NULL);
1476 	if (!buffer_uptodate(bh)) {
1477 		ll_rw_block(READ, 1, &bh);
1478 		wait_on_buffer(bh);
1479 		if (!buffer_uptodate(bh)) {
1480 			printk(KERN_ERR
1481 				"JBD2: IO error reading journal superblock\n");
1482 			goto out;
1483 		}
1484 	}
1485 
1486 	if (buffer_verified(bh))
1487 		return 0;
1488 
1489 	sb = journal->j_superblock;
1490 
1491 	err = -EINVAL;
1492 
1493 	if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1494 	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1495 		printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1496 		goto out;
1497 	}
1498 
1499 	switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1500 	case JBD2_SUPERBLOCK_V1:
1501 		journal->j_format_version = 1;
1502 		break;
1503 	case JBD2_SUPERBLOCK_V2:
1504 		journal->j_format_version = 2;
1505 		break;
1506 	default:
1507 		printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1508 		goto out;
1509 	}
1510 
1511 	if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1512 		journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1513 	else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1514 		printk(KERN_WARNING "JBD2: journal file too short\n");
1515 		goto out;
1516 	}
1517 
1518 	if (be32_to_cpu(sb->s_first) == 0 ||
1519 	    be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1520 		printk(KERN_WARNING
1521 			"JBD2: Invalid start block of journal: %u\n",
1522 			be32_to_cpu(sb->s_first));
1523 		goto out;
1524 	}
1525 
1526 	if (JBD2_HAS_COMPAT_FEATURE(journal, JBD2_FEATURE_COMPAT_CHECKSUM) &&
1527 	    JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
1528 		/* Can't have checksum v1 and v2 on at the same time! */
1529 		printk(KERN_ERR "JBD: Can't enable checksumming v1 and v2 "
1530 		       "at the same time!\n");
1531 		goto out;
1532 	}
1533 
1534 	if (!jbd2_verify_csum_type(journal, sb)) {
1535 		printk(KERN_ERR "JBD: Unknown checksum type\n");
1536 		goto out;
1537 	}
1538 
1539 	/* Load the checksum driver */
1540 	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
1541 		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1542 		if (IS_ERR(journal->j_chksum_driver)) {
1543 			printk(KERN_ERR "JBD: Cannot load crc32c driver.\n");
1544 			err = PTR_ERR(journal->j_chksum_driver);
1545 			journal->j_chksum_driver = NULL;
1546 			goto out;
1547 		}
1548 	}
1549 
1550 	/* Check superblock checksum */
1551 	if (!jbd2_superblock_csum_verify(journal, sb)) {
1552 		printk(KERN_ERR "JBD: journal checksum error\n");
1553 		goto out;
1554 	}
1555 
1556 	/* Precompute checksum seed for all metadata */
1557 	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2))
1558 		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1559 						   sizeof(sb->s_uuid));
1560 
1561 	set_buffer_verified(bh);
1562 
1563 	return 0;
1564 
1565 out:
1566 	journal_fail_superblock(journal);
1567 	return err;
1568 }
1569 
1570 /*
1571  * Load the on-disk journal superblock and read the key fields into the
1572  * journal_t.
1573  */
1574 
1575 static int load_superblock(journal_t *journal)
1576 {
1577 	int err;
1578 	journal_superblock_t *sb;
1579 
1580 	err = journal_get_superblock(journal);
1581 	if (err)
1582 		return err;
1583 
1584 	sb = journal->j_superblock;
1585 
1586 	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1587 	journal->j_tail = be32_to_cpu(sb->s_start);
1588 	journal->j_first = be32_to_cpu(sb->s_first);
1589 	journal->j_last = be32_to_cpu(sb->s_maxlen);
1590 	journal->j_errno = be32_to_cpu(sb->s_errno);
1591 
1592 	return 0;
1593 }
1594 
1595 
1596 /**
1597  * int jbd2_journal_load() - Read journal from disk.
1598  * @journal: Journal to act on.
1599  *
1600  * Given a journal_t structure which tells us which disk blocks contain
1601  * a journal, read the journal from disk to initialise the in-memory
1602  * structures.
1603  */
1604 int jbd2_journal_load(journal_t *journal)
1605 {
1606 	int err;
1607 	journal_superblock_t *sb;
1608 
1609 	err = load_superblock(journal);
1610 	if (err)
1611 		return err;
1612 
1613 	sb = journal->j_superblock;
1614 	/* If this is a V2 superblock, then we have to check the
1615 	 * features flags on it. */
1616 
1617 	if (journal->j_format_version >= 2) {
1618 		if ((sb->s_feature_ro_compat &
1619 		     ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1620 		    (sb->s_feature_incompat &
1621 		     ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1622 			printk(KERN_WARNING
1623 				"JBD2: Unrecognised features on journal\n");
1624 			return -EINVAL;
1625 		}
1626 	}
1627 
1628 	/*
1629 	 * Create a slab for this blocksize
1630 	 */
1631 	err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1632 	if (err)
1633 		return err;
1634 
1635 	/* Let the recovery code check whether it needs to recover any
1636 	 * data from the journal. */
1637 	if (jbd2_journal_recover(journal))
1638 		goto recovery_error;
1639 
1640 	if (journal->j_failed_commit) {
1641 		printk(KERN_ERR "JBD2: journal transaction %u on %s "
1642 		       "is corrupt.\n", journal->j_failed_commit,
1643 		       journal->j_devname);
1644 		return -EIO;
1645 	}
1646 
1647 	/* OK, we've finished with the dynamic journal bits:
1648 	 * reinitialise the dynamic contents of the superblock in memory
1649 	 * and reset them on disk. */
1650 	if (journal_reset(journal))
1651 		goto recovery_error;
1652 
1653 	journal->j_flags &= ~JBD2_ABORT;
1654 	journal->j_flags |= JBD2_LOADED;
1655 	return 0;
1656 
1657 recovery_error:
1658 	printk(KERN_WARNING "JBD2: recovery failed\n");
1659 	return -EIO;
1660 }
1661 
1662 /**
1663  * void jbd2_journal_destroy() - Release a journal_t structure.
1664  * @journal: Journal to act on.
1665  *
1666  * Release a journal_t structure once it is no longer in use by the
1667  * journaled object.
1668  * Return <0 if we couldn't clean up the journal.
1669  */
1670 int jbd2_journal_destroy(journal_t *journal)
1671 {
1672 	int err = 0;
1673 
1674 	/* Wait for the commit thread to wake up and die. */
1675 	journal_kill_thread(journal);
1676 
1677 	/* Force a final log commit */
1678 	if (journal->j_running_transaction)
1679 		jbd2_journal_commit_transaction(journal);
1680 
1681 	/* Force any old transactions to disk */
1682 
1683 	/* Totally anal locking here... */
1684 	spin_lock(&journal->j_list_lock);
1685 	while (journal->j_checkpoint_transactions != NULL) {
1686 		spin_unlock(&journal->j_list_lock);
1687 		mutex_lock(&journal->j_checkpoint_mutex);
1688 		jbd2_log_do_checkpoint(journal);
1689 		mutex_unlock(&journal->j_checkpoint_mutex);
1690 		spin_lock(&journal->j_list_lock);
1691 	}
1692 
1693 	J_ASSERT(journal->j_running_transaction == NULL);
1694 	J_ASSERT(journal->j_committing_transaction == NULL);
1695 	J_ASSERT(journal->j_checkpoint_transactions == NULL);
1696 	spin_unlock(&journal->j_list_lock);
1697 
1698 	if (journal->j_sb_buffer) {
1699 		if (!is_journal_aborted(journal)) {
1700 			mutex_lock(&journal->j_checkpoint_mutex);
1701 			jbd2_mark_journal_empty(journal);
1702 			mutex_unlock(&journal->j_checkpoint_mutex);
1703 		} else
1704 			err = -EIO;
1705 		brelse(journal->j_sb_buffer);
1706 	}
1707 
1708 	if (journal->j_proc_entry)
1709 		jbd2_stats_proc_exit(journal);
1710 	if (journal->j_inode)
1711 		iput(journal->j_inode);
1712 	if (journal->j_revoke)
1713 		jbd2_journal_destroy_revoke(journal);
1714 	if (journal->j_chksum_driver)
1715 		crypto_free_shash(journal->j_chksum_driver);
1716 	kfree(journal->j_wbuf);
1717 	kfree(journal);
1718 
1719 	return err;
1720 }
1721 
1722 
1723 /**
1724  *int jbd2_journal_check_used_features () - Check if features specified are used.
1725  * @journal: Journal to check.
1726  * @compat: bitmask of compatible features
1727  * @ro: bitmask of features that force read-only mount
1728  * @incompat: bitmask of incompatible features
1729  *
1730  * Check whether the journal uses all of a given set of
1731  * features.  Return true (non-zero) if it does.
1732  **/
1733 
1734 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1735 				 unsigned long ro, unsigned long incompat)
1736 {
1737 	journal_superblock_t *sb;
1738 
1739 	if (!compat && !ro && !incompat)
1740 		return 1;
1741 	/* Load journal superblock if it is not loaded yet. */
1742 	if (journal->j_format_version == 0 &&
1743 	    journal_get_superblock(journal) != 0)
1744 		return 0;
1745 	if (journal->j_format_version == 1)
1746 		return 0;
1747 
1748 	sb = journal->j_superblock;
1749 
1750 	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1751 	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1752 	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1753 		return 1;
1754 
1755 	return 0;
1756 }
1757 
1758 /**
1759  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1760  * @journal: Journal to check.
1761  * @compat: bitmask of compatible features
1762  * @ro: bitmask of features that force read-only mount
1763  * @incompat: bitmask of incompatible features
1764  *
1765  * Check whether the journaling code supports the use of
1766  * all of a given set of features on this journal.  Return true
1767  * (non-zero) if it can. */
1768 
1769 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1770 				      unsigned long ro, unsigned long incompat)
1771 {
1772 	if (!compat && !ro && !incompat)
1773 		return 1;
1774 
1775 	/* We can support any known requested features iff the
1776 	 * superblock is in version 2.  Otherwise we fail to support any
1777 	 * extended sb features. */
1778 
1779 	if (journal->j_format_version != 2)
1780 		return 0;
1781 
1782 	if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1783 	    (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1784 	    (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1785 		return 1;
1786 
1787 	return 0;
1788 }
1789 
1790 /**
1791  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1792  * @journal: Journal to act on.
1793  * @compat: bitmask of compatible features
1794  * @ro: bitmask of features that force read-only mount
1795  * @incompat: bitmask of incompatible features
1796  *
1797  * Mark a given journal feature as present on the
1798  * superblock.  Returns true if the requested features could be set.
1799  *
1800  */
1801 
1802 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1803 			  unsigned long ro, unsigned long incompat)
1804 {
1805 #define INCOMPAT_FEATURE_ON(f) \
1806 		((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1807 #define COMPAT_FEATURE_ON(f) \
1808 		((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1809 	journal_superblock_t *sb;
1810 
1811 	if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1812 		return 1;
1813 
1814 	if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1815 		return 0;
1816 
1817 	/* Asking for checksumming v2 and v1?  Only give them v2. */
1818 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2 &&
1819 	    compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1820 		compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1821 
1822 	jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1823 		  compat, ro, incompat);
1824 
1825 	sb = journal->j_superblock;
1826 
1827 	/* If enabling v2 checksums, update superblock */
1828 	if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
1829 		sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1830 		sb->s_feature_compat &=
1831 			~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1832 
1833 		/* Load the checksum driver */
1834 		if (journal->j_chksum_driver == NULL) {
1835 			journal->j_chksum_driver = crypto_alloc_shash("crc32c",
1836 								      0, 0);
1837 			if (IS_ERR(journal->j_chksum_driver)) {
1838 				printk(KERN_ERR "JBD: Cannot load crc32c "
1839 				       "driver.\n");
1840 				journal->j_chksum_driver = NULL;
1841 				return 0;
1842 			}
1843 		}
1844 
1845 		/* Precompute checksum seed for all metadata */
1846 		if (JBD2_HAS_INCOMPAT_FEATURE(journal,
1847 					      JBD2_FEATURE_INCOMPAT_CSUM_V2))
1848 			journal->j_csum_seed = jbd2_chksum(journal, ~0,
1849 							   sb->s_uuid,
1850 							   sizeof(sb->s_uuid));
1851 	}
1852 
1853 	/* If enabling v1 checksums, downgrade superblock */
1854 	if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1855 		sb->s_feature_incompat &=
1856 			~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2);
1857 
1858 	sb->s_feature_compat    |= cpu_to_be32(compat);
1859 	sb->s_feature_ro_compat |= cpu_to_be32(ro);
1860 	sb->s_feature_incompat  |= cpu_to_be32(incompat);
1861 
1862 	return 1;
1863 #undef COMPAT_FEATURE_ON
1864 #undef INCOMPAT_FEATURE_ON
1865 }
1866 
1867 /*
1868  * jbd2_journal_clear_features () - Clear a given journal feature in the
1869  * 				    superblock
1870  * @journal: Journal to act on.
1871  * @compat: bitmask of compatible features
1872  * @ro: bitmask of features that force read-only mount
1873  * @incompat: bitmask of incompatible features
1874  *
1875  * Clear a given journal feature as present on the
1876  * superblock.
1877  */
1878 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1879 				unsigned long ro, unsigned long incompat)
1880 {
1881 	journal_superblock_t *sb;
1882 
1883 	jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1884 		  compat, ro, incompat);
1885 
1886 	sb = journal->j_superblock;
1887 
1888 	sb->s_feature_compat    &= ~cpu_to_be32(compat);
1889 	sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1890 	sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1891 }
1892 EXPORT_SYMBOL(jbd2_journal_clear_features);
1893 
1894 /**
1895  * int jbd2_journal_flush () - Flush journal
1896  * @journal: Journal to act on.
1897  *
1898  * Flush all data for a given journal to disk and empty the journal.
1899  * Filesystems can use this when remounting readonly to ensure that
1900  * recovery does not need to happen on remount.
1901  */
1902 
1903 int jbd2_journal_flush(journal_t *journal)
1904 {
1905 	int err = 0;
1906 	transaction_t *transaction = NULL;
1907 
1908 	write_lock(&journal->j_state_lock);
1909 
1910 	/* Force everything buffered to the log... */
1911 	if (journal->j_running_transaction) {
1912 		transaction = journal->j_running_transaction;
1913 		__jbd2_log_start_commit(journal, transaction->t_tid);
1914 	} else if (journal->j_committing_transaction)
1915 		transaction = journal->j_committing_transaction;
1916 
1917 	/* Wait for the log commit to complete... */
1918 	if (transaction) {
1919 		tid_t tid = transaction->t_tid;
1920 
1921 		write_unlock(&journal->j_state_lock);
1922 		jbd2_log_wait_commit(journal, tid);
1923 	} else {
1924 		write_unlock(&journal->j_state_lock);
1925 	}
1926 
1927 	/* ...and flush everything in the log out to disk. */
1928 	spin_lock(&journal->j_list_lock);
1929 	while (!err && journal->j_checkpoint_transactions != NULL) {
1930 		spin_unlock(&journal->j_list_lock);
1931 		mutex_lock(&journal->j_checkpoint_mutex);
1932 		err = jbd2_log_do_checkpoint(journal);
1933 		mutex_unlock(&journal->j_checkpoint_mutex);
1934 		spin_lock(&journal->j_list_lock);
1935 	}
1936 	spin_unlock(&journal->j_list_lock);
1937 
1938 	if (is_journal_aborted(journal))
1939 		return -EIO;
1940 
1941 	mutex_lock(&journal->j_checkpoint_mutex);
1942 	jbd2_cleanup_journal_tail(journal);
1943 
1944 	/* Finally, mark the journal as really needing no recovery.
1945 	 * This sets s_start==0 in the underlying superblock, which is
1946 	 * the magic code for a fully-recovered superblock.  Any future
1947 	 * commits of data to the journal will restore the current
1948 	 * s_start value. */
1949 	jbd2_mark_journal_empty(journal);
1950 	mutex_unlock(&journal->j_checkpoint_mutex);
1951 	write_lock(&journal->j_state_lock);
1952 	J_ASSERT(!journal->j_running_transaction);
1953 	J_ASSERT(!journal->j_committing_transaction);
1954 	J_ASSERT(!journal->j_checkpoint_transactions);
1955 	J_ASSERT(journal->j_head == journal->j_tail);
1956 	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1957 	write_unlock(&journal->j_state_lock);
1958 	return 0;
1959 }
1960 
1961 /**
1962  * int jbd2_journal_wipe() - Wipe journal contents
1963  * @journal: Journal to act on.
1964  * @write: flag (see below)
1965  *
1966  * Wipe out all of the contents of a journal, safely.  This will produce
1967  * a warning if the journal contains any valid recovery information.
1968  * Must be called between journal_init_*() and jbd2_journal_load().
1969  *
1970  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1971  * we merely suppress recovery.
1972  */
1973 
1974 int jbd2_journal_wipe(journal_t *journal, int write)
1975 {
1976 	int err = 0;
1977 
1978 	J_ASSERT (!(journal->j_flags & JBD2_LOADED));
1979 
1980 	err = load_superblock(journal);
1981 	if (err)
1982 		return err;
1983 
1984 	if (!journal->j_tail)
1985 		goto no_recovery;
1986 
1987 	printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
1988 		write ? "Clearing" : "Ignoring");
1989 
1990 	err = jbd2_journal_skip_recovery(journal);
1991 	if (write) {
1992 		/* Lock to make assertions happy... */
1993 		mutex_lock(&journal->j_checkpoint_mutex);
1994 		jbd2_mark_journal_empty(journal);
1995 		mutex_unlock(&journal->j_checkpoint_mutex);
1996 	}
1997 
1998  no_recovery:
1999 	return err;
2000 }
2001 
2002 /*
2003  * Journal abort has very specific semantics, which we describe
2004  * for journal abort.
2005  *
2006  * Two internal functions, which provide abort to the jbd layer
2007  * itself are here.
2008  */
2009 
2010 /*
2011  * Quick version for internal journal use (doesn't lock the journal).
2012  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
2013  * and don't attempt to make any other journal updates.
2014  */
2015 void __jbd2_journal_abort_hard(journal_t *journal)
2016 {
2017 	transaction_t *transaction;
2018 
2019 	if (journal->j_flags & JBD2_ABORT)
2020 		return;
2021 
2022 	printk(KERN_ERR "Aborting journal on device %s.\n",
2023 	       journal->j_devname);
2024 
2025 	write_lock(&journal->j_state_lock);
2026 	journal->j_flags |= JBD2_ABORT;
2027 	transaction = journal->j_running_transaction;
2028 	if (transaction)
2029 		__jbd2_log_start_commit(journal, transaction->t_tid);
2030 	write_unlock(&journal->j_state_lock);
2031 }
2032 
2033 /* Soft abort: record the abort error status in the journal superblock,
2034  * but don't do any other IO. */
2035 static void __journal_abort_soft (journal_t *journal, int errno)
2036 {
2037 	if (journal->j_flags & JBD2_ABORT)
2038 		return;
2039 
2040 	if (!journal->j_errno)
2041 		journal->j_errno = errno;
2042 
2043 	__jbd2_journal_abort_hard(journal);
2044 
2045 	if (errno)
2046 		jbd2_journal_update_sb_errno(journal);
2047 }
2048 
2049 /**
2050  * void jbd2_journal_abort () - Shutdown the journal immediately.
2051  * @journal: the journal to shutdown.
2052  * @errno:   an error number to record in the journal indicating
2053  *           the reason for the shutdown.
2054  *
2055  * Perform a complete, immediate shutdown of the ENTIRE
2056  * journal (not of a single transaction).  This operation cannot be
2057  * undone without closing and reopening the journal.
2058  *
2059  * The jbd2_journal_abort function is intended to support higher level error
2060  * recovery mechanisms such as the ext2/ext3 remount-readonly error
2061  * mode.
2062  *
2063  * Journal abort has very specific semantics.  Any existing dirty,
2064  * unjournaled buffers in the main filesystem will still be written to
2065  * disk by bdflush, but the journaling mechanism will be suspended
2066  * immediately and no further transaction commits will be honoured.
2067  *
2068  * Any dirty, journaled buffers will be written back to disk without
2069  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2070  * filesystem, but we _do_ attempt to leave as much data as possible
2071  * behind for fsck to use for cleanup.
2072  *
2073  * Any attempt to get a new transaction handle on a journal which is in
2074  * ABORT state will just result in an -EROFS error return.  A
2075  * jbd2_journal_stop on an existing handle will return -EIO if we have
2076  * entered abort state during the update.
2077  *
2078  * Recursive transactions are not disturbed by journal abort until the
2079  * final jbd2_journal_stop, which will receive the -EIO error.
2080  *
2081  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2082  * which will be recorded (if possible) in the journal superblock.  This
2083  * allows a client to record failure conditions in the middle of a
2084  * transaction without having to complete the transaction to record the
2085  * failure to disk.  ext3_error, for example, now uses this
2086  * functionality.
2087  *
2088  * Errors which originate from within the journaling layer will NOT
2089  * supply an errno; a null errno implies that absolutely no further
2090  * writes are done to the journal (unless there are any already in
2091  * progress).
2092  *
2093  */
2094 
2095 void jbd2_journal_abort(journal_t *journal, int errno)
2096 {
2097 	__journal_abort_soft(journal, errno);
2098 }
2099 
2100 /**
2101  * int jbd2_journal_errno () - returns the journal's error state.
2102  * @journal: journal to examine.
2103  *
2104  * This is the errno number set with jbd2_journal_abort(), the last
2105  * time the journal was mounted - if the journal was stopped
2106  * without calling abort this will be 0.
2107  *
2108  * If the journal has been aborted on this mount time -EROFS will
2109  * be returned.
2110  */
2111 int jbd2_journal_errno(journal_t *journal)
2112 {
2113 	int err;
2114 
2115 	read_lock(&journal->j_state_lock);
2116 	if (journal->j_flags & JBD2_ABORT)
2117 		err = -EROFS;
2118 	else
2119 		err = journal->j_errno;
2120 	read_unlock(&journal->j_state_lock);
2121 	return err;
2122 }
2123 
2124 /**
2125  * int jbd2_journal_clear_err () - clears the journal's error state
2126  * @journal: journal to act on.
2127  *
2128  * An error must be cleared or acked to take a FS out of readonly
2129  * mode.
2130  */
2131 int jbd2_journal_clear_err(journal_t *journal)
2132 {
2133 	int err = 0;
2134 
2135 	write_lock(&journal->j_state_lock);
2136 	if (journal->j_flags & JBD2_ABORT)
2137 		err = -EROFS;
2138 	else
2139 		journal->j_errno = 0;
2140 	write_unlock(&journal->j_state_lock);
2141 	return err;
2142 }
2143 
2144 /**
2145  * void jbd2_journal_ack_err() - Ack journal err.
2146  * @journal: journal to act on.
2147  *
2148  * An error must be cleared or acked to take a FS out of readonly
2149  * mode.
2150  */
2151 void jbd2_journal_ack_err(journal_t *journal)
2152 {
2153 	write_lock(&journal->j_state_lock);
2154 	if (journal->j_errno)
2155 		journal->j_flags |= JBD2_ACK_ERR;
2156 	write_unlock(&journal->j_state_lock);
2157 }
2158 
2159 int jbd2_journal_blocks_per_page(struct inode *inode)
2160 {
2161 	return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
2162 }
2163 
2164 /*
2165  * helper functions to deal with 32 or 64bit block numbers.
2166  */
2167 size_t journal_tag_bytes(journal_t *journal)
2168 {
2169 	journal_block_tag_t tag;
2170 	size_t x = 0;
2171 
2172 	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2))
2173 		x += sizeof(tag.t_checksum);
2174 
2175 	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT))
2176 		return x + JBD2_TAG_SIZE64;
2177 	else
2178 		return x + JBD2_TAG_SIZE32;
2179 }
2180 
2181 /*
2182  * JBD memory management
2183  *
2184  * These functions are used to allocate block-sized chunks of memory
2185  * used for making copies of buffer_head data.  Very often it will be
2186  * page-sized chunks of data, but sometimes it will be in
2187  * sub-page-size chunks.  (For example, 16k pages on Power systems
2188  * with a 4k block file system.)  For blocks smaller than a page, we
2189  * use a SLAB allocator.  There are slab caches for each block size,
2190  * which are allocated at mount time, if necessary, and we only free
2191  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2192  * this reason we don't need to a mutex to protect access to
2193  * jbd2_slab[] allocating or releasing memory; only in
2194  * jbd2_journal_create_slab().
2195  */
2196 #define JBD2_MAX_SLABS 8
2197 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2198 
2199 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2200 	"jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2201 	"jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2202 };
2203 
2204 
2205 static void jbd2_journal_destroy_slabs(void)
2206 {
2207 	int i;
2208 
2209 	for (i = 0; i < JBD2_MAX_SLABS; i++) {
2210 		if (jbd2_slab[i])
2211 			kmem_cache_destroy(jbd2_slab[i]);
2212 		jbd2_slab[i] = NULL;
2213 	}
2214 }
2215 
2216 static int jbd2_journal_create_slab(size_t size)
2217 {
2218 	static DEFINE_MUTEX(jbd2_slab_create_mutex);
2219 	int i = order_base_2(size) - 10;
2220 	size_t slab_size;
2221 
2222 	if (size == PAGE_SIZE)
2223 		return 0;
2224 
2225 	if (i >= JBD2_MAX_SLABS)
2226 		return -EINVAL;
2227 
2228 	if (unlikely(i < 0))
2229 		i = 0;
2230 	mutex_lock(&jbd2_slab_create_mutex);
2231 	if (jbd2_slab[i]) {
2232 		mutex_unlock(&jbd2_slab_create_mutex);
2233 		return 0;	/* Already created */
2234 	}
2235 
2236 	slab_size = 1 << (i+10);
2237 	jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2238 					 slab_size, 0, NULL);
2239 	mutex_unlock(&jbd2_slab_create_mutex);
2240 	if (!jbd2_slab[i]) {
2241 		printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2242 		return -ENOMEM;
2243 	}
2244 	return 0;
2245 }
2246 
2247 static struct kmem_cache *get_slab(size_t size)
2248 {
2249 	int i = order_base_2(size) - 10;
2250 
2251 	BUG_ON(i >= JBD2_MAX_SLABS);
2252 	if (unlikely(i < 0))
2253 		i = 0;
2254 	BUG_ON(jbd2_slab[i] == NULL);
2255 	return jbd2_slab[i];
2256 }
2257 
2258 void *jbd2_alloc(size_t size, gfp_t flags)
2259 {
2260 	void *ptr;
2261 
2262 	BUG_ON(size & (size-1)); /* Must be a power of 2 */
2263 
2264 	flags |= __GFP_REPEAT;
2265 	if (size == PAGE_SIZE)
2266 		ptr = (void *)__get_free_pages(flags, 0);
2267 	else if (size > PAGE_SIZE) {
2268 		int order = get_order(size);
2269 
2270 		if (order < 3)
2271 			ptr = (void *)__get_free_pages(flags, order);
2272 		else
2273 			ptr = vmalloc(size);
2274 	} else
2275 		ptr = kmem_cache_alloc(get_slab(size), flags);
2276 
2277 	/* Check alignment; SLUB has gotten this wrong in the past,
2278 	 * and this can lead to user data corruption! */
2279 	BUG_ON(((unsigned long) ptr) & (size-1));
2280 
2281 	return ptr;
2282 }
2283 
2284 void jbd2_free(void *ptr, size_t size)
2285 {
2286 	if (size == PAGE_SIZE) {
2287 		free_pages((unsigned long)ptr, 0);
2288 		return;
2289 	}
2290 	if (size > PAGE_SIZE) {
2291 		int order = get_order(size);
2292 
2293 		if (order < 3)
2294 			free_pages((unsigned long)ptr, order);
2295 		else
2296 			vfree(ptr);
2297 		return;
2298 	}
2299 	kmem_cache_free(get_slab(size), ptr);
2300 };
2301 
2302 /*
2303  * Journal_head storage management
2304  */
2305 static struct kmem_cache *jbd2_journal_head_cache;
2306 #ifdef CONFIG_JBD2_DEBUG
2307 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2308 #endif
2309 
2310 static int jbd2_journal_init_journal_head_cache(void)
2311 {
2312 	int retval;
2313 
2314 	J_ASSERT(jbd2_journal_head_cache == NULL);
2315 	jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2316 				sizeof(struct journal_head),
2317 				0,		/* offset */
2318 				SLAB_TEMPORARY,	/* flags */
2319 				NULL);		/* ctor */
2320 	retval = 0;
2321 	if (!jbd2_journal_head_cache) {
2322 		retval = -ENOMEM;
2323 		printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2324 	}
2325 	return retval;
2326 }
2327 
2328 static void jbd2_journal_destroy_journal_head_cache(void)
2329 {
2330 	if (jbd2_journal_head_cache) {
2331 		kmem_cache_destroy(jbd2_journal_head_cache);
2332 		jbd2_journal_head_cache = NULL;
2333 	}
2334 }
2335 
2336 /*
2337  * journal_head splicing and dicing
2338  */
2339 static struct journal_head *journal_alloc_journal_head(void)
2340 {
2341 	struct journal_head *ret;
2342 
2343 #ifdef CONFIG_JBD2_DEBUG
2344 	atomic_inc(&nr_journal_heads);
2345 #endif
2346 	ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2347 	if (!ret) {
2348 		jbd_debug(1, "out of memory for journal_head\n");
2349 		pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2350 		while (!ret) {
2351 			yield();
2352 			ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2353 		}
2354 	}
2355 	return ret;
2356 }
2357 
2358 static void journal_free_journal_head(struct journal_head *jh)
2359 {
2360 #ifdef CONFIG_JBD2_DEBUG
2361 	atomic_dec(&nr_journal_heads);
2362 	memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2363 #endif
2364 	kmem_cache_free(jbd2_journal_head_cache, jh);
2365 }
2366 
2367 /*
2368  * A journal_head is attached to a buffer_head whenever JBD has an
2369  * interest in the buffer.
2370  *
2371  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2372  * is set.  This bit is tested in core kernel code where we need to take
2373  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2374  * there.
2375  *
2376  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2377  *
2378  * When a buffer has its BH_JBD bit set it is immune from being released by
2379  * core kernel code, mainly via ->b_count.
2380  *
2381  * A journal_head is detached from its buffer_head when the journal_head's
2382  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2383  * transaction (b_cp_transaction) hold their references to b_jcount.
2384  *
2385  * Various places in the kernel want to attach a journal_head to a buffer_head
2386  * _before_ attaching the journal_head to a transaction.  To protect the
2387  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2388  * journal_head's b_jcount refcount by one.  The caller must call
2389  * jbd2_journal_put_journal_head() to undo this.
2390  *
2391  * So the typical usage would be:
2392  *
2393  *	(Attach a journal_head if needed.  Increments b_jcount)
2394  *	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2395  *	...
2396  *      (Get another reference for transaction)
2397  *	jbd2_journal_grab_journal_head(bh);
2398  *	jh->b_transaction = xxx;
2399  *	(Put original reference)
2400  *	jbd2_journal_put_journal_head(jh);
2401  */
2402 
2403 /*
2404  * Give a buffer_head a journal_head.
2405  *
2406  * May sleep.
2407  */
2408 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2409 {
2410 	struct journal_head *jh;
2411 	struct journal_head *new_jh = NULL;
2412 
2413 repeat:
2414 	if (!buffer_jbd(bh))
2415 		new_jh = journal_alloc_journal_head();
2416 
2417 	jbd_lock_bh_journal_head(bh);
2418 	if (buffer_jbd(bh)) {
2419 		jh = bh2jh(bh);
2420 	} else {
2421 		J_ASSERT_BH(bh,
2422 			(atomic_read(&bh->b_count) > 0) ||
2423 			(bh->b_page && bh->b_page->mapping));
2424 
2425 		if (!new_jh) {
2426 			jbd_unlock_bh_journal_head(bh);
2427 			goto repeat;
2428 		}
2429 
2430 		jh = new_jh;
2431 		new_jh = NULL;		/* We consumed it */
2432 		set_buffer_jbd(bh);
2433 		bh->b_private = jh;
2434 		jh->b_bh = bh;
2435 		get_bh(bh);
2436 		BUFFER_TRACE(bh, "added journal_head");
2437 	}
2438 	jh->b_jcount++;
2439 	jbd_unlock_bh_journal_head(bh);
2440 	if (new_jh)
2441 		journal_free_journal_head(new_jh);
2442 	return bh->b_private;
2443 }
2444 
2445 /*
2446  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2447  * having a journal_head, return NULL
2448  */
2449 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2450 {
2451 	struct journal_head *jh = NULL;
2452 
2453 	jbd_lock_bh_journal_head(bh);
2454 	if (buffer_jbd(bh)) {
2455 		jh = bh2jh(bh);
2456 		jh->b_jcount++;
2457 	}
2458 	jbd_unlock_bh_journal_head(bh);
2459 	return jh;
2460 }
2461 
2462 static void __journal_remove_journal_head(struct buffer_head *bh)
2463 {
2464 	struct journal_head *jh = bh2jh(bh);
2465 
2466 	J_ASSERT_JH(jh, jh->b_jcount >= 0);
2467 	J_ASSERT_JH(jh, jh->b_transaction == NULL);
2468 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2469 	J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2470 	J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2471 	J_ASSERT_BH(bh, buffer_jbd(bh));
2472 	J_ASSERT_BH(bh, jh2bh(jh) == bh);
2473 	BUFFER_TRACE(bh, "remove journal_head");
2474 	if (jh->b_frozen_data) {
2475 		printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2476 		jbd2_free(jh->b_frozen_data, bh->b_size);
2477 	}
2478 	if (jh->b_committed_data) {
2479 		printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2480 		jbd2_free(jh->b_committed_data, bh->b_size);
2481 	}
2482 	bh->b_private = NULL;
2483 	jh->b_bh = NULL;	/* debug, really */
2484 	clear_buffer_jbd(bh);
2485 	journal_free_journal_head(jh);
2486 }
2487 
2488 /*
2489  * Drop a reference on the passed journal_head.  If it fell to zero then
2490  * release the journal_head from the buffer_head.
2491  */
2492 void jbd2_journal_put_journal_head(struct journal_head *jh)
2493 {
2494 	struct buffer_head *bh = jh2bh(jh);
2495 
2496 	jbd_lock_bh_journal_head(bh);
2497 	J_ASSERT_JH(jh, jh->b_jcount > 0);
2498 	--jh->b_jcount;
2499 	if (!jh->b_jcount) {
2500 		__journal_remove_journal_head(bh);
2501 		jbd_unlock_bh_journal_head(bh);
2502 		__brelse(bh);
2503 	} else
2504 		jbd_unlock_bh_journal_head(bh);
2505 }
2506 
2507 /*
2508  * Initialize jbd inode head
2509  */
2510 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2511 {
2512 	jinode->i_transaction = NULL;
2513 	jinode->i_next_transaction = NULL;
2514 	jinode->i_vfs_inode = inode;
2515 	jinode->i_flags = 0;
2516 	INIT_LIST_HEAD(&jinode->i_list);
2517 }
2518 
2519 /*
2520  * Function to be called before we start removing inode from memory (i.e.,
2521  * clear_inode() is a fine place to be called from). It removes inode from
2522  * transaction's lists.
2523  */
2524 void jbd2_journal_release_jbd_inode(journal_t *journal,
2525 				    struct jbd2_inode *jinode)
2526 {
2527 	if (!journal)
2528 		return;
2529 restart:
2530 	spin_lock(&journal->j_list_lock);
2531 	/* Is commit writing out inode - we have to wait */
2532 	if (test_bit(__JI_COMMIT_RUNNING, &jinode->i_flags)) {
2533 		wait_queue_head_t *wq;
2534 		DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2535 		wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2536 		prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2537 		spin_unlock(&journal->j_list_lock);
2538 		schedule();
2539 		finish_wait(wq, &wait.wait);
2540 		goto restart;
2541 	}
2542 
2543 	if (jinode->i_transaction) {
2544 		list_del(&jinode->i_list);
2545 		jinode->i_transaction = NULL;
2546 	}
2547 	spin_unlock(&journal->j_list_lock);
2548 }
2549 
2550 
2551 #ifdef CONFIG_PROC_FS
2552 
2553 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2554 
2555 static void __init jbd2_create_jbd_stats_proc_entry(void)
2556 {
2557 	proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2558 }
2559 
2560 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2561 {
2562 	if (proc_jbd2_stats)
2563 		remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2564 }
2565 
2566 #else
2567 
2568 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2569 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2570 
2571 #endif
2572 
2573 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2574 
2575 static int __init jbd2_journal_init_handle_cache(void)
2576 {
2577 	jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2578 	if (jbd2_handle_cache == NULL) {
2579 		printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2580 		return -ENOMEM;
2581 	}
2582 	jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2583 	if (jbd2_inode_cache == NULL) {
2584 		printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2585 		kmem_cache_destroy(jbd2_handle_cache);
2586 		return -ENOMEM;
2587 	}
2588 	return 0;
2589 }
2590 
2591 static void jbd2_journal_destroy_handle_cache(void)
2592 {
2593 	if (jbd2_handle_cache)
2594 		kmem_cache_destroy(jbd2_handle_cache);
2595 	if (jbd2_inode_cache)
2596 		kmem_cache_destroy(jbd2_inode_cache);
2597 
2598 }
2599 
2600 /*
2601  * Module startup and shutdown
2602  */
2603 
2604 static int __init journal_init_caches(void)
2605 {
2606 	int ret;
2607 
2608 	ret = jbd2_journal_init_revoke_caches();
2609 	if (ret == 0)
2610 		ret = jbd2_journal_init_journal_head_cache();
2611 	if (ret == 0)
2612 		ret = jbd2_journal_init_handle_cache();
2613 	if (ret == 0)
2614 		ret = jbd2_journal_init_transaction_cache();
2615 	return ret;
2616 }
2617 
2618 static void jbd2_journal_destroy_caches(void)
2619 {
2620 	jbd2_journal_destroy_revoke_caches();
2621 	jbd2_journal_destroy_journal_head_cache();
2622 	jbd2_journal_destroy_handle_cache();
2623 	jbd2_journal_destroy_transaction_cache();
2624 	jbd2_journal_destroy_slabs();
2625 }
2626 
2627 static int __init journal_init(void)
2628 {
2629 	int ret;
2630 
2631 	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2632 
2633 	ret = journal_init_caches();
2634 	if (ret == 0) {
2635 		jbd2_create_jbd_stats_proc_entry();
2636 	} else {
2637 		jbd2_journal_destroy_caches();
2638 	}
2639 	return ret;
2640 }
2641 
2642 static void __exit journal_exit(void)
2643 {
2644 #ifdef CONFIG_JBD2_DEBUG
2645 	int n = atomic_read(&nr_journal_heads);
2646 	if (n)
2647 		printk(KERN_EMERG "JBD2: leaked %d journal_heads!\n", n);
2648 #endif
2649 	jbd2_remove_jbd_stats_proc_entry();
2650 	jbd2_journal_destroy_caches();
2651 }
2652 
2653 MODULE_LICENSE("GPL");
2654 module_init(journal_init);
2655 module_exit(journal_exit);
2656 
2657