1 /* 2 * linux/fs/jbd2/journal.c 3 * 4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 5 * 6 * Copyright 1998 Red Hat corp --- All Rights Reserved 7 * 8 * This file is part of the Linux kernel and is made available under 9 * the terms of the GNU General Public License, version 2, or at your 10 * option, any later version, incorporated herein by reference. 11 * 12 * Generic filesystem journal-writing code; part of the ext2fs 13 * journaling system. 14 * 15 * This file manages journals: areas of disk reserved for logging 16 * transactional updates. This includes the kernel journaling thread 17 * which is responsible for scheduling updates to the log. 18 * 19 * We do not actually manage the physical storage of the journal in this 20 * file: that is left to a per-journal policy function, which allows us 21 * to store the journal within a filesystem-specified area for ext2 22 * journaling (ext2 can use a reserved inode for storing the log). 23 */ 24 25 #include <linux/module.h> 26 #include <linux/time.h> 27 #include <linux/fs.h> 28 #include <linux/jbd2.h> 29 #include <linux/errno.h> 30 #include <linux/slab.h> 31 #include <linux/init.h> 32 #include <linux/mm.h> 33 #include <linux/freezer.h> 34 #include <linux/pagemap.h> 35 #include <linux/kthread.h> 36 #include <linux/poison.h> 37 #include <linux/proc_fs.h> 38 #include <linux/debugfs.h> 39 #include <linux/seq_file.h> 40 #include <linux/math64.h> 41 #include <linux/hash.h> 42 #include <linux/log2.h> 43 #include <linux/vmalloc.h> 44 45 #define CREATE_TRACE_POINTS 46 #include <trace/events/jbd2.h> 47 48 #include <asm/uaccess.h> 49 #include <asm/page.h> 50 51 EXPORT_SYMBOL(jbd2_journal_start); 52 EXPORT_SYMBOL(jbd2_journal_restart); 53 EXPORT_SYMBOL(jbd2_journal_extend); 54 EXPORT_SYMBOL(jbd2_journal_stop); 55 EXPORT_SYMBOL(jbd2_journal_lock_updates); 56 EXPORT_SYMBOL(jbd2_journal_unlock_updates); 57 EXPORT_SYMBOL(jbd2_journal_get_write_access); 58 EXPORT_SYMBOL(jbd2_journal_get_create_access); 59 EXPORT_SYMBOL(jbd2_journal_get_undo_access); 60 EXPORT_SYMBOL(jbd2_journal_set_triggers); 61 EXPORT_SYMBOL(jbd2_journal_dirty_metadata); 62 EXPORT_SYMBOL(jbd2_journal_release_buffer); 63 EXPORT_SYMBOL(jbd2_journal_forget); 64 #if 0 65 EXPORT_SYMBOL(journal_sync_buffer); 66 #endif 67 EXPORT_SYMBOL(jbd2_journal_flush); 68 EXPORT_SYMBOL(jbd2_journal_revoke); 69 70 EXPORT_SYMBOL(jbd2_journal_init_dev); 71 EXPORT_SYMBOL(jbd2_journal_init_inode); 72 EXPORT_SYMBOL(jbd2_journal_update_format); 73 EXPORT_SYMBOL(jbd2_journal_check_used_features); 74 EXPORT_SYMBOL(jbd2_journal_check_available_features); 75 EXPORT_SYMBOL(jbd2_journal_set_features); 76 EXPORT_SYMBOL(jbd2_journal_load); 77 EXPORT_SYMBOL(jbd2_journal_destroy); 78 EXPORT_SYMBOL(jbd2_journal_abort); 79 EXPORT_SYMBOL(jbd2_journal_errno); 80 EXPORT_SYMBOL(jbd2_journal_ack_err); 81 EXPORT_SYMBOL(jbd2_journal_clear_err); 82 EXPORT_SYMBOL(jbd2_log_wait_commit); 83 EXPORT_SYMBOL(jbd2_log_start_commit); 84 EXPORT_SYMBOL(jbd2_journal_start_commit); 85 EXPORT_SYMBOL(jbd2_journal_force_commit_nested); 86 EXPORT_SYMBOL(jbd2_journal_wipe); 87 EXPORT_SYMBOL(jbd2_journal_blocks_per_page); 88 EXPORT_SYMBOL(jbd2_journal_invalidatepage); 89 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers); 90 EXPORT_SYMBOL(jbd2_journal_force_commit); 91 EXPORT_SYMBOL(jbd2_journal_file_inode); 92 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode); 93 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode); 94 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate); 95 96 static int journal_convert_superblock_v1(journal_t *, journal_superblock_t *); 97 static void __journal_abort_soft (journal_t *journal, int errno); 98 static int jbd2_journal_create_slab(size_t slab_size); 99 100 /* 101 * Helper function used to manage commit timeouts 102 */ 103 104 static void commit_timeout(unsigned long __data) 105 { 106 struct task_struct * p = (struct task_struct *) __data; 107 108 wake_up_process(p); 109 } 110 111 /* 112 * kjournald2: The main thread function used to manage a logging device 113 * journal. 114 * 115 * This kernel thread is responsible for two things: 116 * 117 * 1) COMMIT: Every so often we need to commit the current state of the 118 * filesystem to disk. The journal thread is responsible for writing 119 * all of the metadata buffers to disk. 120 * 121 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all 122 * of the data in that part of the log has been rewritten elsewhere on 123 * the disk. Flushing these old buffers to reclaim space in the log is 124 * known as checkpointing, and this thread is responsible for that job. 125 */ 126 127 static int kjournald2(void *arg) 128 { 129 journal_t *journal = arg; 130 transaction_t *transaction; 131 132 /* 133 * Set up an interval timer which can be used to trigger a commit wakeup 134 * after the commit interval expires 135 */ 136 setup_timer(&journal->j_commit_timer, commit_timeout, 137 (unsigned long)current); 138 139 /* Record that the journal thread is running */ 140 journal->j_task = current; 141 wake_up(&journal->j_wait_done_commit); 142 143 /* 144 * And now, wait forever for commit wakeup events. 145 */ 146 spin_lock(&journal->j_state_lock); 147 148 loop: 149 if (journal->j_flags & JBD2_UNMOUNT) 150 goto end_loop; 151 152 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n", 153 journal->j_commit_sequence, journal->j_commit_request); 154 155 if (journal->j_commit_sequence != journal->j_commit_request) { 156 jbd_debug(1, "OK, requests differ\n"); 157 spin_unlock(&journal->j_state_lock); 158 del_timer_sync(&journal->j_commit_timer); 159 jbd2_journal_commit_transaction(journal); 160 spin_lock(&journal->j_state_lock); 161 goto loop; 162 } 163 164 wake_up(&journal->j_wait_done_commit); 165 if (freezing(current)) { 166 /* 167 * The simpler the better. Flushing journal isn't a 168 * good idea, because that depends on threads that may 169 * be already stopped. 170 */ 171 jbd_debug(1, "Now suspending kjournald2\n"); 172 spin_unlock(&journal->j_state_lock); 173 refrigerator(); 174 spin_lock(&journal->j_state_lock); 175 } else { 176 /* 177 * We assume on resume that commits are already there, 178 * so we don't sleep 179 */ 180 DEFINE_WAIT(wait); 181 int should_sleep = 1; 182 183 prepare_to_wait(&journal->j_wait_commit, &wait, 184 TASK_INTERRUPTIBLE); 185 if (journal->j_commit_sequence != journal->j_commit_request) 186 should_sleep = 0; 187 transaction = journal->j_running_transaction; 188 if (transaction && time_after_eq(jiffies, 189 transaction->t_expires)) 190 should_sleep = 0; 191 if (journal->j_flags & JBD2_UNMOUNT) 192 should_sleep = 0; 193 if (should_sleep) { 194 spin_unlock(&journal->j_state_lock); 195 schedule(); 196 spin_lock(&journal->j_state_lock); 197 } 198 finish_wait(&journal->j_wait_commit, &wait); 199 } 200 201 jbd_debug(1, "kjournald2 wakes\n"); 202 203 /* 204 * Were we woken up by a commit wakeup event? 205 */ 206 transaction = journal->j_running_transaction; 207 if (transaction && time_after_eq(jiffies, transaction->t_expires)) { 208 journal->j_commit_request = transaction->t_tid; 209 jbd_debug(1, "woke because of timeout\n"); 210 } 211 goto loop; 212 213 end_loop: 214 spin_unlock(&journal->j_state_lock); 215 del_timer_sync(&journal->j_commit_timer); 216 journal->j_task = NULL; 217 wake_up(&journal->j_wait_done_commit); 218 jbd_debug(1, "Journal thread exiting.\n"); 219 return 0; 220 } 221 222 static int jbd2_journal_start_thread(journal_t *journal) 223 { 224 struct task_struct *t; 225 226 t = kthread_run(kjournald2, journal, "jbd2/%s", 227 journal->j_devname); 228 if (IS_ERR(t)) 229 return PTR_ERR(t); 230 231 wait_event(journal->j_wait_done_commit, journal->j_task != NULL); 232 return 0; 233 } 234 235 static void journal_kill_thread(journal_t *journal) 236 { 237 spin_lock(&journal->j_state_lock); 238 journal->j_flags |= JBD2_UNMOUNT; 239 240 while (journal->j_task) { 241 wake_up(&journal->j_wait_commit); 242 spin_unlock(&journal->j_state_lock); 243 wait_event(journal->j_wait_done_commit, journal->j_task == NULL); 244 spin_lock(&journal->j_state_lock); 245 } 246 spin_unlock(&journal->j_state_lock); 247 } 248 249 /* 250 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal. 251 * 252 * Writes a metadata buffer to a given disk block. The actual IO is not 253 * performed but a new buffer_head is constructed which labels the data 254 * to be written with the correct destination disk block. 255 * 256 * Any magic-number escaping which needs to be done will cause a 257 * copy-out here. If the buffer happens to start with the 258 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the 259 * magic number is only written to the log for descripter blocks. In 260 * this case, we copy the data and replace the first word with 0, and we 261 * return a result code which indicates that this buffer needs to be 262 * marked as an escaped buffer in the corresponding log descriptor 263 * block. The missing word can then be restored when the block is read 264 * during recovery. 265 * 266 * If the source buffer has already been modified by a new transaction 267 * since we took the last commit snapshot, we use the frozen copy of 268 * that data for IO. If we end up using the existing buffer_head's data 269 * for the write, then we *have* to lock the buffer to prevent anyone 270 * else from using and possibly modifying it while the IO is in 271 * progress. 272 * 273 * The function returns a pointer to the buffer_heads to be used for IO. 274 * 275 * We assume that the journal has already been locked in this function. 276 * 277 * Return value: 278 * <0: Error 279 * >=0: Finished OK 280 * 281 * On success: 282 * Bit 0 set == escape performed on the data 283 * Bit 1 set == buffer copy-out performed (kfree the data after IO) 284 */ 285 286 int jbd2_journal_write_metadata_buffer(transaction_t *transaction, 287 struct journal_head *jh_in, 288 struct journal_head **jh_out, 289 unsigned long long blocknr) 290 { 291 int need_copy_out = 0; 292 int done_copy_out = 0; 293 int do_escape = 0; 294 char *mapped_data; 295 struct buffer_head *new_bh; 296 struct journal_head *new_jh; 297 struct page *new_page; 298 unsigned int new_offset; 299 struct buffer_head *bh_in = jh2bh(jh_in); 300 struct jbd2_buffer_trigger_type *triggers; 301 journal_t *journal = transaction->t_journal; 302 303 /* 304 * The buffer really shouldn't be locked: only the current committing 305 * transaction is allowed to write it, so nobody else is allowed 306 * to do any IO. 307 * 308 * akpm: except if we're journalling data, and write() output is 309 * also part of a shared mapping, and another thread has 310 * decided to launch a writepage() against this buffer. 311 */ 312 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in)); 313 314 new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL); 315 /* keep subsequent assertions sane */ 316 new_bh->b_state = 0; 317 init_buffer(new_bh, NULL, NULL); 318 atomic_set(&new_bh->b_count, 1); 319 new_jh = jbd2_journal_add_journal_head(new_bh); /* This sleeps */ 320 321 /* 322 * If a new transaction has already done a buffer copy-out, then 323 * we use that version of the data for the commit. 324 */ 325 jbd_lock_bh_state(bh_in); 326 repeat: 327 if (jh_in->b_frozen_data) { 328 done_copy_out = 1; 329 new_page = virt_to_page(jh_in->b_frozen_data); 330 new_offset = offset_in_page(jh_in->b_frozen_data); 331 triggers = jh_in->b_frozen_triggers; 332 } else { 333 new_page = jh2bh(jh_in)->b_page; 334 new_offset = offset_in_page(jh2bh(jh_in)->b_data); 335 triggers = jh_in->b_triggers; 336 } 337 338 mapped_data = kmap_atomic(new_page, KM_USER0); 339 /* 340 * Fire any commit trigger. Do this before checking for escaping, 341 * as the trigger may modify the magic offset. If a copy-out 342 * happens afterwards, it will have the correct data in the buffer. 343 */ 344 jbd2_buffer_commit_trigger(jh_in, mapped_data + new_offset, 345 triggers); 346 347 /* 348 * Check for escaping 349 */ 350 if (*((__be32 *)(mapped_data + new_offset)) == 351 cpu_to_be32(JBD2_MAGIC_NUMBER)) { 352 need_copy_out = 1; 353 do_escape = 1; 354 } 355 kunmap_atomic(mapped_data, KM_USER0); 356 357 /* 358 * Do we need to do a data copy? 359 */ 360 if (need_copy_out && !done_copy_out) { 361 char *tmp; 362 363 jbd_unlock_bh_state(bh_in); 364 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS); 365 if (!tmp) { 366 jbd2_journal_put_journal_head(new_jh); 367 return -ENOMEM; 368 } 369 jbd_lock_bh_state(bh_in); 370 if (jh_in->b_frozen_data) { 371 jbd2_free(tmp, bh_in->b_size); 372 goto repeat; 373 } 374 375 jh_in->b_frozen_data = tmp; 376 mapped_data = kmap_atomic(new_page, KM_USER0); 377 memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size); 378 kunmap_atomic(mapped_data, KM_USER0); 379 380 new_page = virt_to_page(tmp); 381 new_offset = offset_in_page(tmp); 382 done_copy_out = 1; 383 384 /* 385 * This isn't strictly necessary, as we're using frozen 386 * data for the escaping, but it keeps consistency with 387 * b_frozen_data usage. 388 */ 389 jh_in->b_frozen_triggers = jh_in->b_triggers; 390 } 391 392 /* 393 * Did we need to do an escaping? Now we've done all the 394 * copying, we can finally do so. 395 */ 396 if (do_escape) { 397 mapped_data = kmap_atomic(new_page, KM_USER0); 398 *((unsigned int *)(mapped_data + new_offset)) = 0; 399 kunmap_atomic(mapped_data, KM_USER0); 400 } 401 402 set_bh_page(new_bh, new_page, new_offset); 403 new_jh->b_transaction = NULL; 404 new_bh->b_size = jh2bh(jh_in)->b_size; 405 new_bh->b_bdev = transaction->t_journal->j_dev; 406 new_bh->b_blocknr = blocknr; 407 set_buffer_mapped(new_bh); 408 set_buffer_dirty(new_bh); 409 410 *jh_out = new_jh; 411 412 /* 413 * The to-be-written buffer needs to get moved to the io queue, 414 * and the original buffer whose contents we are shadowing or 415 * copying is moved to the transaction's shadow queue. 416 */ 417 JBUFFER_TRACE(jh_in, "file as BJ_Shadow"); 418 spin_lock(&journal->j_list_lock); 419 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow); 420 spin_unlock(&journal->j_list_lock); 421 jbd_unlock_bh_state(bh_in); 422 423 JBUFFER_TRACE(new_jh, "file as BJ_IO"); 424 jbd2_journal_file_buffer(new_jh, transaction, BJ_IO); 425 426 return do_escape | (done_copy_out << 1); 427 } 428 429 /* 430 * Allocation code for the journal file. Manage the space left in the 431 * journal, so that we can begin checkpointing when appropriate. 432 */ 433 434 /* 435 * __jbd2_log_space_left: Return the number of free blocks left in the journal. 436 * 437 * Called with the journal already locked. 438 * 439 * Called under j_state_lock 440 */ 441 442 int __jbd2_log_space_left(journal_t *journal) 443 { 444 int left = journal->j_free; 445 446 assert_spin_locked(&journal->j_state_lock); 447 448 /* 449 * Be pessimistic here about the number of those free blocks which 450 * might be required for log descriptor control blocks. 451 */ 452 453 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */ 454 455 left -= MIN_LOG_RESERVED_BLOCKS; 456 457 if (left <= 0) 458 return 0; 459 left -= (left >> 3); 460 return left; 461 } 462 463 /* 464 * Called under j_state_lock. Returns true if a transaction commit was started. 465 */ 466 int __jbd2_log_start_commit(journal_t *journal, tid_t target) 467 { 468 /* 469 * Are we already doing a recent enough commit? 470 */ 471 if (!tid_geq(journal->j_commit_request, target)) { 472 /* 473 * We want a new commit: OK, mark the request and wakup the 474 * commit thread. We do _not_ do the commit ourselves. 475 */ 476 477 journal->j_commit_request = target; 478 jbd_debug(1, "JBD: requesting commit %d/%d\n", 479 journal->j_commit_request, 480 journal->j_commit_sequence); 481 wake_up(&journal->j_wait_commit); 482 return 1; 483 } 484 return 0; 485 } 486 487 int jbd2_log_start_commit(journal_t *journal, tid_t tid) 488 { 489 int ret; 490 491 spin_lock(&journal->j_state_lock); 492 ret = __jbd2_log_start_commit(journal, tid); 493 spin_unlock(&journal->j_state_lock); 494 return ret; 495 } 496 497 /* 498 * Force and wait upon a commit if the calling process is not within 499 * transaction. This is used for forcing out undo-protected data which contains 500 * bitmaps, when the fs is running out of space. 501 * 502 * We can only force the running transaction if we don't have an active handle; 503 * otherwise, we will deadlock. 504 * 505 * Returns true if a transaction was started. 506 */ 507 int jbd2_journal_force_commit_nested(journal_t *journal) 508 { 509 transaction_t *transaction = NULL; 510 tid_t tid; 511 512 spin_lock(&journal->j_state_lock); 513 if (journal->j_running_transaction && !current->journal_info) { 514 transaction = journal->j_running_transaction; 515 __jbd2_log_start_commit(journal, transaction->t_tid); 516 } else if (journal->j_committing_transaction) 517 transaction = journal->j_committing_transaction; 518 519 if (!transaction) { 520 spin_unlock(&journal->j_state_lock); 521 return 0; /* Nothing to retry */ 522 } 523 524 tid = transaction->t_tid; 525 spin_unlock(&journal->j_state_lock); 526 jbd2_log_wait_commit(journal, tid); 527 return 1; 528 } 529 530 /* 531 * Start a commit of the current running transaction (if any). Returns true 532 * if a transaction is going to be committed (or is currently already 533 * committing), and fills its tid in at *ptid 534 */ 535 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid) 536 { 537 int ret = 0; 538 539 spin_lock(&journal->j_state_lock); 540 if (journal->j_running_transaction) { 541 tid_t tid = journal->j_running_transaction->t_tid; 542 543 __jbd2_log_start_commit(journal, tid); 544 /* There's a running transaction and we've just made sure 545 * it's commit has been scheduled. */ 546 if (ptid) 547 *ptid = tid; 548 ret = 1; 549 } else if (journal->j_committing_transaction) { 550 /* 551 * If ext3_write_super() recently started a commit, then we 552 * have to wait for completion of that transaction 553 */ 554 if (ptid) 555 *ptid = journal->j_committing_transaction->t_tid; 556 ret = 1; 557 } 558 spin_unlock(&journal->j_state_lock); 559 return ret; 560 } 561 562 /* 563 * Wait for a specified commit to complete. 564 * The caller may not hold the journal lock. 565 */ 566 int jbd2_log_wait_commit(journal_t *journal, tid_t tid) 567 { 568 int err = 0; 569 570 #ifdef CONFIG_JBD2_DEBUG 571 spin_lock(&journal->j_state_lock); 572 if (!tid_geq(journal->j_commit_request, tid)) { 573 printk(KERN_EMERG 574 "%s: error: j_commit_request=%d, tid=%d\n", 575 __func__, journal->j_commit_request, tid); 576 } 577 spin_unlock(&journal->j_state_lock); 578 #endif 579 spin_lock(&journal->j_state_lock); 580 while (tid_gt(tid, journal->j_commit_sequence)) { 581 jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n", 582 tid, journal->j_commit_sequence); 583 wake_up(&journal->j_wait_commit); 584 spin_unlock(&journal->j_state_lock); 585 wait_event(journal->j_wait_done_commit, 586 !tid_gt(tid, journal->j_commit_sequence)); 587 spin_lock(&journal->j_state_lock); 588 } 589 spin_unlock(&journal->j_state_lock); 590 591 if (unlikely(is_journal_aborted(journal))) { 592 printk(KERN_EMERG "journal commit I/O error\n"); 593 err = -EIO; 594 } 595 return err; 596 } 597 598 /* 599 * Log buffer allocation routines: 600 */ 601 602 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp) 603 { 604 unsigned long blocknr; 605 606 spin_lock(&journal->j_state_lock); 607 J_ASSERT(journal->j_free > 1); 608 609 blocknr = journal->j_head; 610 journal->j_head++; 611 journal->j_free--; 612 if (journal->j_head == journal->j_last) 613 journal->j_head = journal->j_first; 614 spin_unlock(&journal->j_state_lock); 615 return jbd2_journal_bmap(journal, blocknr, retp); 616 } 617 618 /* 619 * Conversion of logical to physical block numbers for the journal 620 * 621 * On external journals the journal blocks are identity-mapped, so 622 * this is a no-op. If needed, we can use j_blk_offset - everything is 623 * ready. 624 */ 625 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr, 626 unsigned long long *retp) 627 { 628 int err = 0; 629 unsigned long long ret; 630 631 if (journal->j_inode) { 632 ret = bmap(journal->j_inode, blocknr); 633 if (ret) 634 *retp = ret; 635 else { 636 printk(KERN_ALERT "%s: journal block not found " 637 "at offset %lu on %s\n", 638 __func__, blocknr, journal->j_devname); 639 err = -EIO; 640 __journal_abort_soft(journal, err); 641 } 642 } else { 643 *retp = blocknr; /* +journal->j_blk_offset */ 644 } 645 return err; 646 } 647 648 /* 649 * We play buffer_head aliasing tricks to write data/metadata blocks to 650 * the journal without copying their contents, but for journal 651 * descriptor blocks we do need to generate bona fide buffers. 652 * 653 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying 654 * the buffer's contents they really should run flush_dcache_page(bh->b_page). 655 * But we don't bother doing that, so there will be coherency problems with 656 * mmaps of blockdevs which hold live JBD-controlled filesystems. 657 */ 658 struct journal_head *jbd2_journal_get_descriptor_buffer(journal_t *journal) 659 { 660 struct buffer_head *bh; 661 unsigned long long blocknr; 662 int err; 663 664 err = jbd2_journal_next_log_block(journal, &blocknr); 665 666 if (err) 667 return NULL; 668 669 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize); 670 if (!bh) 671 return NULL; 672 lock_buffer(bh); 673 memset(bh->b_data, 0, journal->j_blocksize); 674 set_buffer_uptodate(bh); 675 unlock_buffer(bh); 676 BUFFER_TRACE(bh, "return this buffer"); 677 return jbd2_journal_add_journal_head(bh); 678 } 679 680 struct jbd2_stats_proc_session { 681 journal_t *journal; 682 struct transaction_stats_s *stats; 683 int start; 684 int max; 685 }; 686 687 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos) 688 { 689 return *pos ? NULL : SEQ_START_TOKEN; 690 } 691 692 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos) 693 { 694 return NULL; 695 } 696 697 static int jbd2_seq_info_show(struct seq_file *seq, void *v) 698 { 699 struct jbd2_stats_proc_session *s = seq->private; 700 701 if (v != SEQ_START_TOKEN) 702 return 0; 703 seq_printf(seq, "%lu transaction, each up to %u blocks\n", 704 s->stats->ts_tid, 705 s->journal->j_max_transaction_buffers); 706 if (s->stats->ts_tid == 0) 707 return 0; 708 seq_printf(seq, "average: \n %ums waiting for transaction\n", 709 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid)); 710 seq_printf(seq, " %ums running transaction\n", 711 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid)); 712 seq_printf(seq, " %ums transaction was being locked\n", 713 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid)); 714 seq_printf(seq, " %ums flushing data (in ordered mode)\n", 715 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid)); 716 seq_printf(seq, " %ums logging transaction\n", 717 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid)); 718 seq_printf(seq, " %lluus average transaction commit time\n", 719 div_u64(s->journal->j_average_commit_time, 1000)); 720 seq_printf(seq, " %lu handles per transaction\n", 721 s->stats->run.rs_handle_count / s->stats->ts_tid); 722 seq_printf(seq, " %lu blocks per transaction\n", 723 s->stats->run.rs_blocks / s->stats->ts_tid); 724 seq_printf(seq, " %lu logged blocks per transaction\n", 725 s->stats->run.rs_blocks_logged / s->stats->ts_tid); 726 return 0; 727 } 728 729 static void jbd2_seq_info_stop(struct seq_file *seq, void *v) 730 { 731 } 732 733 static const struct seq_operations jbd2_seq_info_ops = { 734 .start = jbd2_seq_info_start, 735 .next = jbd2_seq_info_next, 736 .stop = jbd2_seq_info_stop, 737 .show = jbd2_seq_info_show, 738 }; 739 740 static int jbd2_seq_info_open(struct inode *inode, struct file *file) 741 { 742 journal_t *journal = PDE(inode)->data; 743 struct jbd2_stats_proc_session *s; 744 int rc, size; 745 746 s = kmalloc(sizeof(*s), GFP_KERNEL); 747 if (s == NULL) 748 return -ENOMEM; 749 size = sizeof(struct transaction_stats_s); 750 s->stats = kmalloc(size, GFP_KERNEL); 751 if (s->stats == NULL) { 752 kfree(s); 753 return -ENOMEM; 754 } 755 spin_lock(&journal->j_history_lock); 756 memcpy(s->stats, &journal->j_stats, size); 757 s->journal = journal; 758 spin_unlock(&journal->j_history_lock); 759 760 rc = seq_open(file, &jbd2_seq_info_ops); 761 if (rc == 0) { 762 struct seq_file *m = file->private_data; 763 m->private = s; 764 } else { 765 kfree(s->stats); 766 kfree(s); 767 } 768 return rc; 769 770 } 771 772 static int jbd2_seq_info_release(struct inode *inode, struct file *file) 773 { 774 struct seq_file *seq = file->private_data; 775 struct jbd2_stats_proc_session *s = seq->private; 776 kfree(s->stats); 777 kfree(s); 778 return seq_release(inode, file); 779 } 780 781 static const struct file_operations jbd2_seq_info_fops = { 782 .owner = THIS_MODULE, 783 .open = jbd2_seq_info_open, 784 .read = seq_read, 785 .llseek = seq_lseek, 786 .release = jbd2_seq_info_release, 787 }; 788 789 static struct proc_dir_entry *proc_jbd2_stats; 790 791 static void jbd2_stats_proc_init(journal_t *journal) 792 { 793 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats); 794 if (journal->j_proc_entry) { 795 proc_create_data("info", S_IRUGO, journal->j_proc_entry, 796 &jbd2_seq_info_fops, journal); 797 } 798 } 799 800 static void jbd2_stats_proc_exit(journal_t *journal) 801 { 802 remove_proc_entry("info", journal->j_proc_entry); 803 remove_proc_entry(journal->j_devname, proc_jbd2_stats); 804 } 805 806 /* 807 * Management for journal control blocks: functions to create and 808 * destroy journal_t structures, and to initialise and read existing 809 * journal blocks from disk. */ 810 811 /* First: create and setup a journal_t object in memory. We initialise 812 * very few fields yet: that has to wait until we have created the 813 * journal structures from from scratch, or loaded them from disk. */ 814 815 static journal_t * journal_init_common (void) 816 { 817 journal_t *journal; 818 int err; 819 820 journal = kzalloc(sizeof(*journal), GFP_KERNEL); 821 if (!journal) 822 goto fail; 823 824 init_waitqueue_head(&journal->j_wait_transaction_locked); 825 init_waitqueue_head(&journal->j_wait_logspace); 826 init_waitqueue_head(&journal->j_wait_done_commit); 827 init_waitqueue_head(&journal->j_wait_checkpoint); 828 init_waitqueue_head(&journal->j_wait_commit); 829 init_waitqueue_head(&journal->j_wait_updates); 830 mutex_init(&journal->j_barrier); 831 mutex_init(&journal->j_checkpoint_mutex); 832 spin_lock_init(&journal->j_revoke_lock); 833 spin_lock_init(&journal->j_list_lock); 834 spin_lock_init(&journal->j_state_lock); 835 836 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE); 837 journal->j_min_batch_time = 0; 838 journal->j_max_batch_time = 15000; /* 15ms */ 839 840 /* The journal is marked for error until we succeed with recovery! */ 841 journal->j_flags = JBD2_ABORT; 842 843 /* Set up a default-sized revoke table for the new mount. */ 844 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH); 845 if (err) { 846 kfree(journal); 847 goto fail; 848 } 849 850 spin_lock_init(&journal->j_history_lock); 851 852 return journal; 853 fail: 854 return NULL; 855 } 856 857 /* jbd2_journal_init_dev and jbd2_journal_init_inode: 858 * 859 * Create a journal structure assigned some fixed set of disk blocks to 860 * the journal. We don't actually touch those disk blocks yet, but we 861 * need to set up all of the mapping information to tell the journaling 862 * system where the journal blocks are. 863 * 864 */ 865 866 /** 867 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure 868 * @bdev: Block device on which to create the journal 869 * @fs_dev: Device which hold journalled filesystem for this journal. 870 * @start: Block nr Start of journal. 871 * @len: Length of the journal in blocks. 872 * @blocksize: blocksize of journalling device 873 * 874 * Returns: a newly created journal_t * 875 * 876 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous 877 * range of blocks on an arbitrary block device. 878 * 879 */ 880 journal_t * jbd2_journal_init_dev(struct block_device *bdev, 881 struct block_device *fs_dev, 882 unsigned long long start, int len, int blocksize) 883 { 884 journal_t *journal = journal_init_common(); 885 struct buffer_head *bh; 886 char *p; 887 int n; 888 889 if (!journal) 890 return NULL; 891 892 /* journal descriptor can store up to n blocks -bzzz */ 893 journal->j_blocksize = blocksize; 894 jbd2_stats_proc_init(journal); 895 n = journal->j_blocksize / sizeof(journal_block_tag_t); 896 journal->j_wbufsize = n; 897 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL); 898 if (!journal->j_wbuf) { 899 printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n", 900 __func__); 901 goto out_err; 902 } 903 journal->j_dev = bdev; 904 journal->j_fs_dev = fs_dev; 905 journal->j_blk_offset = start; 906 journal->j_maxlen = len; 907 bdevname(journal->j_dev, journal->j_devname); 908 p = journal->j_devname; 909 while ((p = strchr(p, '/'))) 910 *p = '!'; 911 912 bh = __getblk(journal->j_dev, start, journal->j_blocksize); 913 if (!bh) { 914 printk(KERN_ERR 915 "%s: Cannot get buffer for journal superblock\n", 916 __func__); 917 goto out_err; 918 } 919 journal->j_sb_buffer = bh; 920 journal->j_superblock = (journal_superblock_t *)bh->b_data; 921 922 return journal; 923 out_err: 924 kfree(journal->j_wbuf); 925 jbd2_stats_proc_exit(journal); 926 kfree(journal); 927 return NULL; 928 } 929 930 /** 931 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode. 932 * @inode: An inode to create the journal in 933 * 934 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as 935 * the journal. The inode must exist already, must support bmap() and 936 * must have all data blocks preallocated. 937 */ 938 journal_t * jbd2_journal_init_inode (struct inode *inode) 939 { 940 struct buffer_head *bh; 941 journal_t *journal = journal_init_common(); 942 char *p; 943 int err; 944 int n; 945 unsigned long long blocknr; 946 947 if (!journal) 948 return NULL; 949 950 journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev; 951 journal->j_inode = inode; 952 bdevname(journal->j_dev, journal->j_devname); 953 p = journal->j_devname; 954 while ((p = strchr(p, '/'))) 955 *p = '!'; 956 p = journal->j_devname + strlen(journal->j_devname); 957 sprintf(p, "-%lu", journal->j_inode->i_ino); 958 jbd_debug(1, 959 "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n", 960 journal, inode->i_sb->s_id, inode->i_ino, 961 (long long) inode->i_size, 962 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize); 963 964 journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits; 965 journal->j_blocksize = inode->i_sb->s_blocksize; 966 jbd2_stats_proc_init(journal); 967 968 /* journal descriptor can store up to n blocks -bzzz */ 969 n = journal->j_blocksize / sizeof(journal_block_tag_t); 970 journal->j_wbufsize = n; 971 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL); 972 if (!journal->j_wbuf) { 973 printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n", 974 __func__); 975 goto out_err; 976 } 977 978 err = jbd2_journal_bmap(journal, 0, &blocknr); 979 /* If that failed, give up */ 980 if (err) { 981 printk(KERN_ERR "%s: Cannnot locate journal superblock\n", 982 __func__); 983 goto out_err; 984 } 985 986 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize); 987 if (!bh) { 988 printk(KERN_ERR 989 "%s: Cannot get buffer for journal superblock\n", 990 __func__); 991 goto out_err; 992 } 993 journal->j_sb_buffer = bh; 994 journal->j_superblock = (journal_superblock_t *)bh->b_data; 995 996 return journal; 997 out_err: 998 kfree(journal->j_wbuf); 999 jbd2_stats_proc_exit(journal); 1000 kfree(journal); 1001 return NULL; 1002 } 1003 1004 /* 1005 * If the journal init or create aborts, we need to mark the journal 1006 * superblock as being NULL to prevent the journal destroy from writing 1007 * back a bogus superblock. 1008 */ 1009 static void journal_fail_superblock (journal_t *journal) 1010 { 1011 struct buffer_head *bh = journal->j_sb_buffer; 1012 brelse(bh); 1013 journal->j_sb_buffer = NULL; 1014 } 1015 1016 /* 1017 * Given a journal_t structure, initialise the various fields for 1018 * startup of a new journaling session. We use this both when creating 1019 * a journal, and after recovering an old journal to reset it for 1020 * subsequent use. 1021 */ 1022 1023 static int journal_reset(journal_t *journal) 1024 { 1025 journal_superblock_t *sb = journal->j_superblock; 1026 unsigned long long first, last; 1027 1028 first = be32_to_cpu(sb->s_first); 1029 last = be32_to_cpu(sb->s_maxlen); 1030 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) { 1031 printk(KERN_ERR "JBD: Journal too short (blocks %llu-%llu).\n", 1032 first, last); 1033 journal_fail_superblock(journal); 1034 return -EINVAL; 1035 } 1036 1037 journal->j_first = first; 1038 journal->j_last = last; 1039 1040 journal->j_head = first; 1041 journal->j_tail = first; 1042 journal->j_free = last - first; 1043 1044 journal->j_tail_sequence = journal->j_transaction_sequence; 1045 journal->j_commit_sequence = journal->j_transaction_sequence - 1; 1046 journal->j_commit_request = journal->j_commit_sequence; 1047 1048 journal->j_max_transaction_buffers = journal->j_maxlen / 4; 1049 1050 /* Add the dynamic fields and write it to disk. */ 1051 jbd2_journal_update_superblock(journal, 1); 1052 return jbd2_journal_start_thread(journal); 1053 } 1054 1055 /** 1056 * void jbd2_journal_update_superblock() - Update journal sb on disk. 1057 * @journal: The journal to update. 1058 * @wait: Set to '0' if you don't want to wait for IO completion. 1059 * 1060 * Update a journal's dynamic superblock fields and write it to disk, 1061 * optionally waiting for the IO to complete. 1062 */ 1063 void jbd2_journal_update_superblock(journal_t *journal, int wait) 1064 { 1065 journal_superblock_t *sb = journal->j_superblock; 1066 struct buffer_head *bh = journal->j_sb_buffer; 1067 1068 /* 1069 * As a special case, if the on-disk copy is already marked as needing 1070 * no recovery (s_start == 0) and there are no outstanding transactions 1071 * in the filesystem, then we can safely defer the superblock update 1072 * until the next commit by setting JBD2_FLUSHED. This avoids 1073 * attempting a write to a potential-readonly device. 1074 */ 1075 if (sb->s_start == 0 && journal->j_tail_sequence == 1076 journal->j_transaction_sequence) { 1077 jbd_debug(1,"JBD: Skipping superblock update on recovered sb " 1078 "(start %ld, seq %d, errno %d)\n", 1079 journal->j_tail, journal->j_tail_sequence, 1080 journal->j_errno); 1081 goto out; 1082 } 1083 1084 if (buffer_write_io_error(bh)) { 1085 /* 1086 * Oh, dear. A previous attempt to write the journal 1087 * superblock failed. This could happen because the 1088 * USB device was yanked out. Or it could happen to 1089 * be a transient write error and maybe the block will 1090 * be remapped. Nothing we can do but to retry the 1091 * write and hope for the best. 1092 */ 1093 printk(KERN_ERR "JBD2: previous I/O error detected " 1094 "for journal superblock update for %s.\n", 1095 journal->j_devname); 1096 clear_buffer_write_io_error(bh); 1097 set_buffer_uptodate(bh); 1098 } 1099 1100 spin_lock(&journal->j_state_lock); 1101 jbd_debug(1,"JBD: updating superblock (start %ld, seq %d, errno %d)\n", 1102 journal->j_tail, journal->j_tail_sequence, journal->j_errno); 1103 1104 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence); 1105 sb->s_start = cpu_to_be32(journal->j_tail); 1106 sb->s_errno = cpu_to_be32(journal->j_errno); 1107 spin_unlock(&journal->j_state_lock); 1108 1109 BUFFER_TRACE(bh, "marking dirty"); 1110 mark_buffer_dirty(bh); 1111 if (wait) { 1112 sync_dirty_buffer(bh); 1113 if (buffer_write_io_error(bh)) { 1114 printk(KERN_ERR "JBD2: I/O error detected " 1115 "when updating journal superblock for %s.\n", 1116 journal->j_devname); 1117 clear_buffer_write_io_error(bh); 1118 set_buffer_uptodate(bh); 1119 } 1120 } else 1121 ll_rw_block(SWRITE, 1, &bh); 1122 1123 out: 1124 /* If we have just flushed the log (by marking s_start==0), then 1125 * any future commit will have to be careful to update the 1126 * superblock again to re-record the true start of the log. */ 1127 1128 spin_lock(&journal->j_state_lock); 1129 if (sb->s_start) 1130 journal->j_flags &= ~JBD2_FLUSHED; 1131 else 1132 journal->j_flags |= JBD2_FLUSHED; 1133 spin_unlock(&journal->j_state_lock); 1134 } 1135 1136 /* 1137 * Read the superblock for a given journal, performing initial 1138 * validation of the format. 1139 */ 1140 1141 static int journal_get_superblock(journal_t *journal) 1142 { 1143 struct buffer_head *bh; 1144 journal_superblock_t *sb; 1145 int err = -EIO; 1146 1147 bh = journal->j_sb_buffer; 1148 1149 J_ASSERT(bh != NULL); 1150 if (!buffer_uptodate(bh)) { 1151 ll_rw_block(READ, 1, &bh); 1152 wait_on_buffer(bh); 1153 if (!buffer_uptodate(bh)) { 1154 printk (KERN_ERR 1155 "JBD: IO error reading journal superblock\n"); 1156 goto out; 1157 } 1158 } 1159 1160 sb = journal->j_superblock; 1161 1162 err = -EINVAL; 1163 1164 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) || 1165 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) { 1166 printk(KERN_WARNING "JBD: no valid journal superblock found\n"); 1167 goto out; 1168 } 1169 1170 switch(be32_to_cpu(sb->s_header.h_blocktype)) { 1171 case JBD2_SUPERBLOCK_V1: 1172 journal->j_format_version = 1; 1173 break; 1174 case JBD2_SUPERBLOCK_V2: 1175 journal->j_format_version = 2; 1176 break; 1177 default: 1178 printk(KERN_WARNING "JBD: unrecognised superblock format ID\n"); 1179 goto out; 1180 } 1181 1182 if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen) 1183 journal->j_maxlen = be32_to_cpu(sb->s_maxlen); 1184 else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) { 1185 printk (KERN_WARNING "JBD: journal file too short\n"); 1186 goto out; 1187 } 1188 1189 return 0; 1190 1191 out: 1192 journal_fail_superblock(journal); 1193 return err; 1194 } 1195 1196 /* 1197 * Load the on-disk journal superblock and read the key fields into the 1198 * journal_t. 1199 */ 1200 1201 static int load_superblock(journal_t *journal) 1202 { 1203 int err; 1204 journal_superblock_t *sb; 1205 1206 err = journal_get_superblock(journal); 1207 if (err) 1208 return err; 1209 1210 sb = journal->j_superblock; 1211 1212 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence); 1213 journal->j_tail = be32_to_cpu(sb->s_start); 1214 journal->j_first = be32_to_cpu(sb->s_first); 1215 journal->j_last = be32_to_cpu(sb->s_maxlen); 1216 journal->j_errno = be32_to_cpu(sb->s_errno); 1217 1218 return 0; 1219 } 1220 1221 1222 /** 1223 * int jbd2_journal_load() - Read journal from disk. 1224 * @journal: Journal to act on. 1225 * 1226 * Given a journal_t structure which tells us which disk blocks contain 1227 * a journal, read the journal from disk to initialise the in-memory 1228 * structures. 1229 */ 1230 int jbd2_journal_load(journal_t *journal) 1231 { 1232 int err; 1233 journal_superblock_t *sb; 1234 1235 err = load_superblock(journal); 1236 if (err) 1237 return err; 1238 1239 sb = journal->j_superblock; 1240 /* If this is a V2 superblock, then we have to check the 1241 * features flags on it. */ 1242 1243 if (journal->j_format_version >= 2) { 1244 if ((sb->s_feature_ro_compat & 1245 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) || 1246 (sb->s_feature_incompat & 1247 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) { 1248 printk (KERN_WARNING 1249 "JBD: Unrecognised features on journal\n"); 1250 return -EINVAL; 1251 } 1252 } 1253 1254 /* 1255 * Create a slab for this blocksize 1256 */ 1257 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize)); 1258 if (err) 1259 return err; 1260 1261 /* Let the recovery code check whether it needs to recover any 1262 * data from the journal. */ 1263 if (jbd2_journal_recover(journal)) 1264 goto recovery_error; 1265 1266 if (journal->j_failed_commit) { 1267 printk(KERN_ERR "JBD2: journal transaction %u on %s " 1268 "is corrupt.\n", journal->j_failed_commit, 1269 journal->j_devname); 1270 return -EIO; 1271 } 1272 1273 /* OK, we've finished with the dynamic journal bits: 1274 * reinitialise the dynamic contents of the superblock in memory 1275 * and reset them on disk. */ 1276 if (journal_reset(journal)) 1277 goto recovery_error; 1278 1279 journal->j_flags &= ~JBD2_ABORT; 1280 journal->j_flags |= JBD2_LOADED; 1281 return 0; 1282 1283 recovery_error: 1284 printk (KERN_WARNING "JBD: recovery failed\n"); 1285 return -EIO; 1286 } 1287 1288 /** 1289 * void jbd2_journal_destroy() - Release a journal_t structure. 1290 * @journal: Journal to act on. 1291 * 1292 * Release a journal_t structure once it is no longer in use by the 1293 * journaled object. 1294 * Return <0 if we couldn't clean up the journal. 1295 */ 1296 int jbd2_journal_destroy(journal_t *journal) 1297 { 1298 int err = 0; 1299 1300 /* Wait for the commit thread to wake up and die. */ 1301 journal_kill_thread(journal); 1302 1303 /* Force a final log commit */ 1304 if (journal->j_running_transaction) 1305 jbd2_journal_commit_transaction(journal); 1306 1307 /* Force any old transactions to disk */ 1308 1309 /* Totally anal locking here... */ 1310 spin_lock(&journal->j_list_lock); 1311 while (journal->j_checkpoint_transactions != NULL) { 1312 spin_unlock(&journal->j_list_lock); 1313 mutex_lock(&journal->j_checkpoint_mutex); 1314 jbd2_log_do_checkpoint(journal); 1315 mutex_unlock(&journal->j_checkpoint_mutex); 1316 spin_lock(&journal->j_list_lock); 1317 } 1318 1319 J_ASSERT(journal->j_running_transaction == NULL); 1320 J_ASSERT(journal->j_committing_transaction == NULL); 1321 J_ASSERT(journal->j_checkpoint_transactions == NULL); 1322 spin_unlock(&journal->j_list_lock); 1323 1324 if (journal->j_sb_buffer) { 1325 if (!is_journal_aborted(journal)) { 1326 /* We can now mark the journal as empty. */ 1327 journal->j_tail = 0; 1328 journal->j_tail_sequence = 1329 ++journal->j_transaction_sequence; 1330 jbd2_journal_update_superblock(journal, 1); 1331 } else { 1332 err = -EIO; 1333 } 1334 brelse(journal->j_sb_buffer); 1335 } 1336 1337 if (journal->j_proc_entry) 1338 jbd2_stats_proc_exit(journal); 1339 if (journal->j_inode) 1340 iput(journal->j_inode); 1341 if (journal->j_revoke) 1342 jbd2_journal_destroy_revoke(journal); 1343 kfree(journal->j_wbuf); 1344 kfree(journal); 1345 1346 return err; 1347 } 1348 1349 1350 /** 1351 *int jbd2_journal_check_used_features () - Check if features specified are used. 1352 * @journal: Journal to check. 1353 * @compat: bitmask of compatible features 1354 * @ro: bitmask of features that force read-only mount 1355 * @incompat: bitmask of incompatible features 1356 * 1357 * Check whether the journal uses all of a given set of 1358 * features. Return true (non-zero) if it does. 1359 **/ 1360 1361 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat, 1362 unsigned long ro, unsigned long incompat) 1363 { 1364 journal_superblock_t *sb; 1365 1366 if (!compat && !ro && !incompat) 1367 return 1; 1368 if (journal->j_format_version == 1) 1369 return 0; 1370 1371 sb = journal->j_superblock; 1372 1373 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) && 1374 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) && 1375 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat)) 1376 return 1; 1377 1378 return 0; 1379 } 1380 1381 /** 1382 * int jbd2_journal_check_available_features() - Check feature set in journalling layer 1383 * @journal: Journal to check. 1384 * @compat: bitmask of compatible features 1385 * @ro: bitmask of features that force read-only mount 1386 * @incompat: bitmask of incompatible features 1387 * 1388 * Check whether the journaling code supports the use of 1389 * all of a given set of features on this journal. Return true 1390 * (non-zero) if it can. */ 1391 1392 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat, 1393 unsigned long ro, unsigned long incompat) 1394 { 1395 journal_superblock_t *sb; 1396 1397 if (!compat && !ro && !incompat) 1398 return 1; 1399 1400 sb = journal->j_superblock; 1401 1402 /* We can support any known requested features iff the 1403 * superblock is in version 2. Otherwise we fail to support any 1404 * extended sb features. */ 1405 1406 if (journal->j_format_version != 2) 1407 return 0; 1408 1409 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat && 1410 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro && 1411 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat) 1412 return 1; 1413 1414 return 0; 1415 } 1416 1417 /** 1418 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock 1419 * @journal: Journal to act on. 1420 * @compat: bitmask of compatible features 1421 * @ro: bitmask of features that force read-only mount 1422 * @incompat: bitmask of incompatible features 1423 * 1424 * Mark a given journal feature as present on the 1425 * superblock. Returns true if the requested features could be set. 1426 * 1427 */ 1428 1429 int jbd2_journal_set_features (journal_t *journal, unsigned long compat, 1430 unsigned long ro, unsigned long incompat) 1431 { 1432 journal_superblock_t *sb; 1433 1434 if (jbd2_journal_check_used_features(journal, compat, ro, incompat)) 1435 return 1; 1436 1437 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat)) 1438 return 0; 1439 1440 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n", 1441 compat, ro, incompat); 1442 1443 sb = journal->j_superblock; 1444 1445 sb->s_feature_compat |= cpu_to_be32(compat); 1446 sb->s_feature_ro_compat |= cpu_to_be32(ro); 1447 sb->s_feature_incompat |= cpu_to_be32(incompat); 1448 1449 return 1; 1450 } 1451 1452 /* 1453 * jbd2_journal_clear_features () - Clear a given journal feature in the 1454 * superblock 1455 * @journal: Journal to act on. 1456 * @compat: bitmask of compatible features 1457 * @ro: bitmask of features that force read-only mount 1458 * @incompat: bitmask of incompatible features 1459 * 1460 * Clear a given journal feature as present on the 1461 * superblock. 1462 */ 1463 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat, 1464 unsigned long ro, unsigned long incompat) 1465 { 1466 journal_superblock_t *sb; 1467 1468 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n", 1469 compat, ro, incompat); 1470 1471 sb = journal->j_superblock; 1472 1473 sb->s_feature_compat &= ~cpu_to_be32(compat); 1474 sb->s_feature_ro_compat &= ~cpu_to_be32(ro); 1475 sb->s_feature_incompat &= ~cpu_to_be32(incompat); 1476 } 1477 EXPORT_SYMBOL(jbd2_journal_clear_features); 1478 1479 /** 1480 * int jbd2_journal_update_format () - Update on-disk journal structure. 1481 * @journal: Journal to act on. 1482 * 1483 * Given an initialised but unloaded journal struct, poke about in the 1484 * on-disk structure to update it to the most recent supported version. 1485 */ 1486 int jbd2_journal_update_format (journal_t *journal) 1487 { 1488 journal_superblock_t *sb; 1489 int err; 1490 1491 err = journal_get_superblock(journal); 1492 if (err) 1493 return err; 1494 1495 sb = journal->j_superblock; 1496 1497 switch (be32_to_cpu(sb->s_header.h_blocktype)) { 1498 case JBD2_SUPERBLOCK_V2: 1499 return 0; 1500 case JBD2_SUPERBLOCK_V1: 1501 return journal_convert_superblock_v1(journal, sb); 1502 default: 1503 break; 1504 } 1505 return -EINVAL; 1506 } 1507 1508 static int journal_convert_superblock_v1(journal_t *journal, 1509 journal_superblock_t *sb) 1510 { 1511 int offset, blocksize; 1512 struct buffer_head *bh; 1513 1514 printk(KERN_WARNING 1515 "JBD: Converting superblock from version 1 to 2.\n"); 1516 1517 /* Pre-initialise new fields to zero */ 1518 offset = ((char *) &(sb->s_feature_compat)) - ((char *) sb); 1519 blocksize = be32_to_cpu(sb->s_blocksize); 1520 memset(&sb->s_feature_compat, 0, blocksize-offset); 1521 1522 sb->s_nr_users = cpu_to_be32(1); 1523 sb->s_header.h_blocktype = cpu_to_be32(JBD2_SUPERBLOCK_V2); 1524 journal->j_format_version = 2; 1525 1526 bh = journal->j_sb_buffer; 1527 BUFFER_TRACE(bh, "marking dirty"); 1528 mark_buffer_dirty(bh); 1529 sync_dirty_buffer(bh); 1530 return 0; 1531 } 1532 1533 1534 /** 1535 * int jbd2_journal_flush () - Flush journal 1536 * @journal: Journal to act on. 1537 * 1538 * Flush all data for a given journal to disk and empty the journal. 1539 * Filesystems can use this when remounting readonly to ensure that 1540 * recovery does not need to happen on remount. 1541 */ 1542 1543 int jbd2_journal_flush(journal_t *journal) 1544 { 1545 int err = 0; 1546 transaction_t *transaction = NULL; 1547 unsigned long old_tail; 1548 1549 spin_lock(&journal->j_state_lock); 1550 1551 /* Force everything buffered to the log... */ 1552 if (journal->j_running_transaction) { 1553 transaction = journal->j_running_transaction; 1554 __jbd2_log_start_commit(journal, transaction->t_tid); 1555 } else if (journal->j_committing_transaction) 1556 transaction = journal->j_committing_transaction; 1557 1558 /* Wait for the log commit to complete... */ 1559 if (transaction) { 1560 tid_t tid = transaction->t_tid; 1561 1562 spin_unlock(&journal->j_state_lock); 1563 jbd2_log_wait_commit(journal, tid); 1564 } else { 1565 spin_unlock(&journal->j_state_lock); 1566 } 1567 1568 /* ...and flush everything in the log out to disk. */ 1569 spin_lock(&journal->j_list_lock); 1570 while (!err && journal->j_checkpoint_transactions != NULL) { 1571 spin_unlock(&journal->j_list_lock); 1572 mutex_lock(&journal->j_checkpoint_mutex); 1573 err = jbd2_log_do_checkpoint(journal); 1574 mutex_unlock(&journal->j_checkpoint_mutex); 1575 spin_lock(&journal->j_list_lock); 1576 } 1577 spin_unlock(&journal->j_list_lock); 1578 1579 if (is_journal_aborted(journal)) 1580 return -EIO; 1581 1582 jbd2_cleanup_journal_tail(journal); 1583 1584 /* Finally, mark the journal as really needing no recovery. 1585 * This sets s_start==0 in the underlying superblock, which is 1586 * the magic code for a fully-recovered superblock. Any future 1587 * commits of data to the journal will restore the current 1588 * s_start value. */ 1589 spin_lock(&journal->j_state_lock); 1590 old_tail = journal->j_tail; 1591 journal->j_tail = 0; 1592 spin_unlock(&journal->j_state_lock); 1593 jbd2_journal_update_superblock(journal, 1); 1594 spin_lock(&journal->j_state_lock); 1595 journal->j_tail = old_tail; 1596 1597 J_ASSERT(!journal->j_running_transaction); 1598 J_ASSERT(!journal->j_committing_transaction); 1599 J_ASSERT(!journal->j_checkpoint_transactions); 1600 J_ASSERT(journal->j_head == journal->j_tail); 1601 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence); 1602 spin_unlock(&journal->j_state_lock); 1603 return 0; 1604 } 1605 1606 /** 1607 * int jbd2_journal_wipe() - Wipe journal contents 1608 * @journal: Journal to act on. 1609 * @write: flag (see below) 1610 * 1611 * Wipe out all of the contents of a journal, safely. This will produce 1612 * a warning if the journal contains any valid recovery information. 1613 * Must be called between journal_init_*() and jbd2_journal_load(). 1614 * 1615 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise 1616 * we merely suppress recovery. 1617 */ 1618 1619 int jbd2_journal_wipe(journal_t *journal, int write) 1620 { 1621 journal_superblock_t *sb; 1622 int err = 0; 1623 1624 J_ASSERT (!(journal->j_flags & JBD2_LOADED)); 1625 1626 err = load_superblock(journal); 1627 if (err) 1628 return err; 1629 1630 sb = journal->j_superblock; 1631 1632 if (!journal->j_tail) 1633 goto no_recovery; 1634 1635 printk (KERN_WARNING "JBD: %s recovery information on journal\n", 1636 write ? "Clearing" : "Ignoring"); 1637 1638 err = jbd2_journal_skip_recovery(journal); 1639 if (write) 1640 jbd2_journal_update_superblock(journal, 1); 1641 1642 no_recovery: 1643 return err; 1644 } 1645 1646 /* 1647 * Journal abort has very specific semantics, which we describe 1648 * for journal abort. 1649 * 1650 * Two internal functions, which provide abort to the jbd layer 1651 * itself are here. 1652 */ 1653 1654 /* 1655 * Quick version for internal journal use (doesn't lock the journal). 1656 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else, 1657 * and don't attempt to make any other journal updates. 1658 */ 1659 void __jbd2_journal_abort_hard(journal_t *journal) 1660 { 1661 transaction_t *transaction; 1662 1663 if (journal->j_flags & JBD2_ABORT) 1664 return; 1665 1666 printk(KERN_ERR "Aborting journal on device %s.\n", 1667 journal->j_devname); 1668 1669 spin_lock(&journal->j_state_lock); 1670 journal->j_flags |= JBD2_ABORT; 1671 transaction = journal->j_running_transaction; 1672 if (transaction) 1673 __jbd2_log_start_commit(journal, transaction->t_tid); 1674 spin_unlock(&journal->j_state_lock); 1675 } 1676 1677 /* Soft abort: record the abort error status in the journal superblock, 1678 * but don't do any other IO. */ 1679 static void __journal_abort_soft (journal_t *journal, int errno) 1680 { 1681 if (journal->j_flags & JBD2_ABORT) 1682 return; 1683 1684 if (!journal->j_errno) 1685 journal->j_errno = errno; 1686 1687 __jbd2_journal_abort_hard(journal); 1688 1689 if (errno) 1690 jbd2_journal_update_superblock(journal, 1); 1691 } 1692 1693 /** 1694 * void jbd2_journal_abort () - Shutdown the journal immediately. 1695 * @journal: the journal to shutdown. 1696 * @errno: an error number to record in the journal indicating 1697 * the reason for the shutdown. 1698 * 1699 * Perform a complete, immediate shutdown of the ENTIRE 1700 * journal (not of a single transaction). This operation cannot be 1701 * undone without closing and reopening the journal. 1702 * 1703 * The jbd2_journal_abort function is intended to support higher level error 1704 * recovery mechanisms such as the ext2/ext3 remount-readonly error 1705 * mode. 1706 * 1707 * Journal abort has very specific semantics. Any existing dirty, 1708 * unjournaled buffers in the main filesystem will still be written to 1709 * disk by bdflush, but the journaling mechanism will be suspended 1710 * immediately and no further transaction commits will be honoured. 1711 * 1712 * Any dirty, journaled buffers will be written back to disk without 1713 * hitting the journal. Atomicity cannot be guaranteed on an aborted 1714 * filesystem, but we _do_ attempt to leave as much data as possible 1715 * behind for fsck to use for cleanup. 1716 * 1717 * Any attempt to get a new transaction handle on a journal which is in 1718 * ABORT state will just result in an -EROFS error return. A 1719 * jbd2_journal_stop on an existing handle will return -EIO if we have 1720 * entered abort state during the update. 1721 * 1722 * Recursive transactions are not disturbed by journal abort until the 1723 * final jbd2_journal_stop, which will receive the -EIO error. 1724 * 1725 * Finally, the jbd2_journal_abort call allows the caller to supply an errno 1726 * which will be recorded (if possible) in the journal superblock. This 1727 * allows a client to record failure conditions in the middle of a 1728 * transaction without having to complete the transaction to record the 1729 * failure to disk. ext3_error, for example, now uses this 1730 * functionality. 1731 * 1732 * Errors which originate from within the journaling layer will NOT 1733 * supply an errno; a null errno implies that absolutely no further 1734 * writes are done to the journal (unless there are any already in 1735 * progress). 1736 * 1737 */ 1738 1739 void jbd2_journal_abort(journal_t *journal, int errno) 1740 { 1741 __journal_abort_soft(journal, errno); 1742 } 1743 1744 /** 1745 * int jbd2_journal_errno () - returns the journal's error state. 1746 * @journal: journal to examine. 1747 * 1748 * This is the errno number set with jbd2_journal_abort(), the last 1749 * time the journal was mounted - if the journal was stopped 1750 * without calling abort this will be 0. 1751 * 1752 * If the journal has been aborted on this mount time -EROFS will 1753 * be returned. 1754 */ 1755 int jbd2_journal_errno(journal_t *journal) 1756 { 1757 int err; 1758 1759 spin_lock(&journal->j_state_lock); 1760 if (journal->j_flags & JBD2_ABORT) 1761 err = -EROFS; 1762 else 1763 err = journal->j_errno; 1764 spin_unlock(&journal->j_state_lock); 1765 return err; 1766 } 1767 1768 /** 1769 * int jbd2_journal_clear_err () - clears the journal's error state 1770 * @journal: journal to act on. 1771 * 1772 * An error must be cleared or acked to take a FS out of readonly 1773 * mode. 1774 */ 1775 int jbd2_journal_clear_err(journal_t *journal) 1776 { 1777 int err = 0; 1778 1779 spin_lock(&journal->j_state_lock); 1780 if (journal->j_flags & JBD2_ABORT) 1781 err = -EROFS; 1782 else 1783 journal->j_errno = 0; 1784 spin_unlock(&journal->j_state_lock); 1785 return err; 1786 } 1787 1788 /** 1789 * void jbd2_journal_ack_err() - Ack journal err. 1790 * @journal: journal to act on. 1791 * 1792 * An error must be cleared or acked to take a FS out of readonly 1793 * mode. 1794 */ 1795 void jbd2_journal_ack_err(journal_t *journal) 1796 { 1797 spin_lock(&journal->j_state_lock); 1798 if (journal->j_errno) 1799 journal->j_flags |= JBD2_ACK_ERR; 1800 spin_unlock(&journal->j_state_lock); 1801 } 1802 1803 int jbd2_journal_blocks_per_page(struct inode *inode) 1804 { 1805 return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 1806 } 1807 1808 /* 1809 * helper functions to deal with 32 or 64bit block numbers. 1810 */ 1811 size_t journal_tag_bytes(journal_t *journal) 1812 { 1813 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT)) 1814 return JBD2_TAG_SIZE64; 1815 else 1816 return JBD2_TAG_SIZE32; 1817 } 1818 1819 /* 1820 * JBD memory management 1821 * 1822 * These functions are used to allocate block-sized chunks of memory 1823 * used for making copies of buffer_head data. Very often it will be 1824 * page-sized chunks of data, but sometimes it will be in 1825 * sub-page-size chunks. (For example, 16k pages on Power systems 1826 * with a 4k block file system.) For blocks smaller than a page, we 1827 * use a SLAB allocator. There are slab caches for each block size, 1828 * which are allocated at mount time, if necessary, and we only free 1829 * (all of) the slab caches when/if the jbd2 module is unloaded. For 1830 * this reason we don't need to a mutex to protect access to 1831 * jbd2_slab[] allocating or releasing memory; only in 1832 * jbd2_journal_create_slab(). 1833 */ 1834 #define JBD2_MAX_SLABS 8 1835 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS]; 1836 static DECLARE_MUTEX(jbd2_slab_create_sem); 1837 1838 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = { 1839 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k", 1840 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k" 1841 }; 1842 1843 1844 static void jbd2_journal_destroy_slabs(void) 1845 { 1846 int i; 1847 1848 for (i = 0; i < JBD2_MAX_SLABS; i++) { 1849 if (jbd2_slab[i]) 1850 kmem_cache_destroy(jbd2_slab[i]); 1851 jbd2_slab[i] = NULL; 1852 } 1853 } 1854 1855 static int jbd2_journal_create_slab(size_t size) 1856 { 1857 int i = order_base_2(size) - 10; 1858 size_t slab_size; 1859 1860 if (size == PAGE_SIZE) 1861 return 0; 1862 1863 if (i >= JBD2_MAX_SLABS) 1864 return -EINVAL; 1865 1866 if (unlikely(i < 0)) 1867 i = 0; 1868 down(&jbd2_slab_create_sem); 1869 if (jbd2_slab[i]) { 1870 up(&jbd2_slab_create_sem); 1871 return 0; /* Already created */ 1872 } 1873 1874 slab_size = 1 << (i+10); 1875 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size, 1876 slab_size, 0, NULL); 1877 up(&jbd2_slab_create_sem); 1878 if (!jbd2_slab[i]) { 1879 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n"); 1880 return -ENOMEM; 1881 } 1882 return 0; 1883 } 1884 1885 static struct kmem_cache *get_slab(size_t size) 1886 { 1887 int i = order_base_2(size) - 10; 1888 1889 BUG_ON(i >= JBD2_MAX_SLABS); 1890 if (unlikely(i < 0)) 1891 i = 0; 1892 BUG_ON(jbd2_slab[i] == NULL); 1893 return jbd2_slab[i]; 1894 } 1895 1896 void *jbd2_alloc(size_t size, gfp_t flags) 1897 { 1898 void *ptr; 1899 1900 BUG_ON(size & (size-1)); /* Must be a power of 2 */ 1901 1902 flags |= __GFP_REPEAT; 1903 if (size == PAGE_SIZE) 1904 ptr = (void *)__get_free_pages(flags, 0); 1905 else if (size > PAGE_SIZE) { 1906 int order = get_order(size); 1907 1908 if (order < 3) 1909 ptr = (void *)__get_free_pages(flags, order); 1910 else 1911 ptr = vmalloc(size); 1912 } else 1913 ptr = kmem_cache_alloc(get_slab(size), flags); 1914 1915 /* Check alignment; SLUB has gotten this wrong in the past, 1916 * and this can lead to user data corruption! */ 1917 BUG_ON(((unsigned long) ptr) & (size-1)); 1918 1919 return ptr; 1920 } 1921 1922 void jbd2_free(void *ptr, size_t size) 1923 { 1924 if (size == PAGE_SIZE) { 1925 free_pages((unsigned long)ptr, 0); 1926 return; 1927 } 1928 if (size > PAGE_SIZE) { 1929 int order = get_order(size); 1930 1931 if (order < 3) 1932 free_pages((unsigned long)ptr, order); 1933 else 1934 vfree(ptr); 1935 return; 1936 } 1937 kmem_cache_free(get_slab(size), ptr); 1938 }; 1939 1940 /* 1941 * Journal_head storage management 1942 */ 1943 static struct kmem_cache *jbd2_journal_head_cache; 1944 #ifdef CONFIG_JBD2_DEBUG 1945 static atomic_t nr_journal_heads = ATOMIC_INIT(0); 1946 #endif 1947 1948 static int journal_init_jbd2_journal_head_cache(void) 1949 { 1950 int retval; 1951 1952 J_ASSERT(jbd2_journal_head_cache == NULL); 1953 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head", 1954 sizeof(struct journal_head), 1955 0, /* offset */ 1956 SLAB_TEMPORARY, /* flags */ 1957 NULL); /* ctor */ 1958 retval = 0; 1959 if (!jbd2_journal_head_cache) { 1960 retval = -ENOMEM; 1961 printk(KERN_EMERG "JBD: no memory for journal_head cache\n"); 1962 } 1963 return retval; 1964 } 1965 1966 static void jbd2_journal_destroy_jbd2_journal_head_cache(void) 1967 { 1968 if (jbd2_journal_head_cache) { 1969 kmem_cache_destroy(jbd2_journal_head_cache); 1970 jbd2_journal_head_cache = NULL; 1971 } 1972 } 1973 1974 /* 1975 * journal_head splicing and dicing 1976 */ 1977 static struct journal_head *journal_alloc_journal_head(void) 1978 { 1979 struct journal_head *ret; 1980 static unsigned long last_warning; 1981 1982 #ifdef CONFIG_JBD2_DEBUG 1983 atomic_inc(&nr_journal_heads); 1984 #endif 1985 ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS); 1986 if (!ret) { 1987 jbd_debug(1, "out of memory for journal_head\n"); 1988 if (time_after(jiffies, last_warning + 5*HZ)) { 1989 printk(KERN_NOTICE "ENOMEM in %s, retrying.\n", 1990 __func__); 1991 last_warning = jiffies; 1992 } 1993 while (!ret) { 1994 yield(); 1995 ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS); 1996 } 1997 } 1998 return ret; 1999 } 2000 2001 static void journal_free_journal_head(struct journal_head *jh) 2002 { 2003 #ifdef CONFIG_JBD2_DEBUG 2004 atomic_dec(&nr_journal_heads); 2005 memset(jh, JBD2_POISON_FREE, sizeof(*jh)); 2006 #endif 2007 kmem_cache_free(jbd2_journal_head_cache, jh); 2008 } 2009 2010 /* 2011 * A journal_head is attached to a buffer_head whenever JBD has an 2012 * interest in the buffer. 2013 * 2014 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit 2015 * is set. This bit is tested in core kernel code where we need to take 2016 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable 2017 * there. 2018 * 2019 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one. 2020 * 2021 * When a buffer has its BH_JBD bit set it is immune from being released by 2022 * core kernel code, mainly via ->b_count. 2023 * 2024 * A journal_head may be detached from its buffer_head when the journal_head's 2025 * b_transaction, b_cp_transaction and b_next_transaction pointers are NULL. 2026 * Various places in JBD call jbd2_journal_remove_journal_head() to indicate that the 2027 * journal_head can be dropped if needed. 2028 * 2029 * Various places in the kernel want to attach a journal_head to a buffer_head 2030 * _before_ attaching the journal_head to a transaction. To protect the 2031 * journal_head in this situation, jbd2_journal_add_journal_head elevates the 2032 * journal_head's b_jcount refcount by one. The caller must call 2033 * jbd2_journal_put_journal_head() to undo this. 2034 * 2035 * So the typical usage would be: 2036 * 2037 * (Attach a journal_head if needed. Increments b_jcount) 2038 * struct journal_head *jh = jbd2_journal_add_journal_head(bh); 2039 * ... 2040 * jh->b_transaction = xxx; 2041 * jbd2_journal_put_journal_head(jh); 2042 * 2043 * Now, the journal_head's b_jcount is zero, but it is safe from being released 2044 * because it has a non-zero b_transaction. 2045 */ 2046 2047 /* 2048 * Give a buffer_head a journal_head. 2049 * 2050 * Doesn't need the journal lock. 2051 * May sleep. 2052 */ 2053 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh) 2054 { 2055 struct journal_head *jh; 2056 struct journal_head *new_jh = NULL; 2057 2058 repeat: 2059 if (!buffer_jbd(bh)) { 2060 new_jh = journal_alloc_journal_head(); 2061 memset(new_jh, 0, sizeof(*new_jh)); 2062 } 2063 2064 jbd_lock_bh_journal_head(bh); 2065 if (buffer_jbd(bh)) { 2066 jh = bh2jh(bh); 2067 } else { 2068 J_ASSERT_BH(bh, 2069 (atomic_read(&bh->b_count) > 0) || 2070 (bh->b_page && bh->b_page->mapping)); 2071 2072 if (!new_jh) { 2073 jbd_unlock_bh_journal_head(bh); 2074 goto repeat; 2075 } 2076 2077 jh = new_jh; 2078 new_jh = NULL; /* We consumed it */ 2079 set_buffer_jbd(bh); 2080 bh->b_private = jh; 2081 jh->b_bh = bh; 2082 get_bh(bh); 2083 BUFFER_TRACE(bh, "added journal_head"); 2084 } 2085 jh->b_jcount++; 2086 jbd_unlock_bh_journal_head(bh); 2087 if (new_jh) 2088 journal_free_journal_head(new_jh); 2089 return bh->b_private; 2090 } 2091 2092 /* 2093 * Grab a ref against this buffer_head's journal_head. If it ended up not 2094 * having a journal_head, return NULL 2095 */ 2096 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh) 2097 { 2098 struct journal_head *jh = NULL; 2099 2100 jbd_lock_bh_journal_head(bh); 2101 if (buffer_jbd(bh)) { 2102 jh = bh2jh(bh); 2103 jh->b_jcount++; 2104 } 2105 jbd_unlock_bh_journal_head(bh); 2106 return jh; 2107 } 2108 2109 static void __journal_remove_journal_head(struct buffer_head *bh) 2110 { 2111 struct journal_head *jh = bh2jh(bh); 2112 2113 J_ASSERT_JH(jh, jh->b_jcount >= 0); 2114 2115 get_bh(bh); 2116 if (jh->b_jcount == 0) { 2117 if (jh->b_transaction == NULL && 2118 jh->b_next_transaction == NULL && 2119 jh->b_cp_transaction == NULL) { 2120 J_ASSERT_JH(jh, jh->b_jlist == BJ_None); 2121 J_ASSERT_BH(bh, buffer_jbd(bh)); 2122 J_ASSERT_BH(bh, jh2bh(jh) == bh); 2123 BUFFER_TRACE(bh, "remove journal_head"); 2124 if (jh->b_frozen_data) { 2125 printk(KERN_WARNING "%s: freeing " 2126 "b_frozen_data\n", 2127 __func__); 2128 jbd2_free(jh->b_frozen_data, bh->b_size); 2129 } 2130 if (jh->b_committed_data) { 2131 printk(KERN_WARNING "%s: freeing " 2132 "b_committed_data\n", 2133 __func__); 2134 jbd2_free(jh->b_committed_data, bh->b_size); 2135 } 2136 bh->b_private = NULL; 2137 jh->b_bh = NULL; /* debug, really */ 2138 clear_buffer_jbd(bh); 2139 __brelse(bh); 2140 journal_free_journal_head(jh); 2141 } else { 2142 BUFFER_TRACE(bh, "journal_head was locked"); 2143 } 2144 } 2145 } 2146 2147 /* 2148 * jbd2_journal_remove_journal_head(): if the buffer isn't attached to a transaction 2149 * and has a zero b_jcount then remove and release its journal_head. If we did 2150 * see that the buffer is not used by any transaction we also "logically" 2151 * decrement ->b_count. 2152 * 2153 * We in fact take an additional increment on ->b_count as a convenience, 2154 * because the caller usually wants to do additional things with the bh 2155 * after calling here. 2156 * The caller of jbd2_journal_remove_journal_head() *must* run __brelse(bh) at some 2157 * time. Once the caller has run __brelse(), the buffer is eligible for 2158 * reaping by try_to_free_buffers(). 2159 */ 2160 void jbd2_journal_remove_journal_head(struct buffer_head *bh) 2161 { 2162 jbd_lock_bh_journal_head(bh); 2163 __journal_remove_journal_head(bh); 2164 jbd_unlock_bh_journal_head(bh); 2165 } 2166 2167 /* 2168 * Drop a reference on the passed journal_head. If it fell to zero then try to 2169 * release the journal_head from the buffer_head. 2170 */ 2171 void jbd2_journal_put_journal_head(struct journal_head *jh) 2172 { 2173 struct buffer_head *bh = jh2bh(jh); 2174 2175 jbd_lock_bh_journal_head(bh); 2176 J_ASSERT_JH(jh, jh->b_jcount > 0); 2177 --jh->b_jcount; 2178 if (!jh->b_jcount && !jh->b_transaction) { 2179 __journal_remove_journal_head(bh); 2180 __brelse(bh); 2181 } 2182 jbd_unlock_bh_journal_head(bh); 2183 } 2184 2185 /* 2186 * Initialize jbd inode head 2187 */ 2188 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode) 2189 { 2190 jinode->i_transaction = NULL; 2191 jinode->i_next_transaction = NULL; 2192 jinode->i_vfs_inode = inode; 2193 jinode->i_flags = 0; 2194 INIT_LIST_HEAD(&jinode->i_list); 2195 } 2196 2197 /* 2198 * Function to be called before we start removing inode from memory (i.e., 2199 * clear_inode() is a fine place to be called from). It removes inode from 2200 * transaction's lists. 2201 */ 2202 void jbd2_journal_release_jbd_inode(journal_t *journal, 2203 struct jbd2_inode *jinode) 2204 { 2205 int writeout = 0; 2206 2207 if (!journal) 2208 return; 2209 restart: 2210 spin_lock(&journal->j_list_lock); 2211 /* Is commit writing out inode - we have to wait */ 2212 if (jinode->i_flags & JI_COMMIT_RUNNING) { 2213 wait_queue_head_t *wq; 2214 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING); 2215 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING); 2216 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 2217 spin_unlock(&journal->j_list_lock); 2218 schedule(); 2219 finish_wait(wq, &wait.wait); 2220 goto restart; 2221 } 2222 2223 /* Do we need to wait for data writeback? */ 2224 if (journal->j_committing_transaction == jinode->i_transaction) 2225 writeout = 1; 2226 if (jinode->i_transaction) { 2227 list_del(&jinode->i_list); 2228 jinode->i_transaction = NULL; 2229 } 2230 spin_unlock(&journal->j_list_lock); 2231 } 2232 2233 /* 2234 * debugfs tunables 2235 */ 2236 #ifdef CONFIG_JBD2_DEBUG 2237 u8 jbd2_journal_enable_debug __read_mostly; 2238 EXPORT_SYMBOL(jbd2_journal_enable_debug); 2239 2240 #define JBD2_DEBUG_NAME "jbd2-debug" 2241 2242 static struct dentry *jbd2_debugfs_dir; 2243 static struct dentry *jbd2_debug; 2244 2245 static void __init jbd2_create_debugfs_entry(void) 2246 { 2247 jbd2_debugfs_dir = debugfs_create_dir("jbd2", NULL); 2248 if (jbd2_debugfs_dir) 2249 jbd2_debug = debugfs_create_u8(JBD2_DEBUG_NAME, 2250 S_IRUGO | S_IWUSR, 2251 jbd2_debugfs_dir, 2252 &jbd2_journal_enable_debug); 2253 } 2254 2255 static void __exit jbd2_remove_debugfs_entry(void) 2256 { 2257 debugfs_remove(jbd2_debug); 2258 debugfs_remove(jbd2_debugfs_dir); 2259 } 2260 2261 #else 2262 2263 static void __init jbd2_create_debugfs_entry(void) 2264 { 2265 } 2266 2267 static void __exit jbd2_remove_debugfs_entry(void) 2268 { 2269 } 2270 2271 #endif 2272 2273 #ifdef CONFIG_PROC_FS 2274 2275 #define JBD2_STATS_PROC_NAME "fs/jbd2" 2276 2277 static void __init jbd2_create_jbd_stats_proc_entry(void) 2278 { 2279 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL); 2280 } 2281 2282 static void __exit jbd2_remove_jbd_stats_proc_entry(void) 2283 { 2284 if (proc_jbd2_stats) 2285 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL); 2286 } 2287 2288 #else 2289 2290 #define jbd2_create_jbd_stats_proc_entry() do {} while (0) 2291 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0) 2292 2293 #endif 2294 2295 struct kmem_cache *jbd2_handle_cache; 2296 2297 static int __init journal_init_handle_cache(void) 2298 { 2299 jbd2_handle_cache = kmem_cache_create("jbd2_journal_handle", 2300 sizeof(handle_t), 2301 0, /* offset */ 2302 SLAB_TEMPORARY, /* flags */ 2303 NULL); /* ctor */ 2304 if (jbd2_handle_cache == NULL) { 2305 printk(KERN_EMERG "JBD: failed to create handle cache\n"); 2306 return -ENOMEM; 2307 } 2308 return 0; 2309 } 2310 2311 static void jbd2_journal_destroy_handle_cache(void) 2312 { 2313 if (jbd2_handle_cache) 2314 kmem_cache_destroy(jbd2_handle_cache); 2315 } 2316 2317 /* 2318 * Module startup and shutdown 2319 */ 2320 2321 static int __init journal_init_caches(void) 2322 { 2323 int ret; 2324 2325 ret = jbd2_journal_init_revoke_caches(); 2326 if (ret == 0) 2327 ret = journal_init_jbd2_journal_head_cache(); 2328 if (ret == 0) 2329 ret = journal_init_handle_cache(); 2330 return ret; 2331 } 2332 2333 static void jbd2_journal_destroy_caches(void) 2334 { 2335 jbd2_journal_destroy_revoke_caches(); 2336 jbd2_journal_destroy_jbd2_journal_head_cache(); 2337 jbd2_journal_destroy_handle_cache(); 2338 jbd2_journal_destroy_slabs(); 2339 } 2340 2341 static int __init journal_init(void) 2342 { 2343 int ret; 2344 2345 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024); 2346 2347 ret = journal_init_caches(); 2348 if (ret == 0) { 2349 jbd2_create_debugfs_entry(); 2350 jbd2_create_jbd_stats_proc_entry(); 2351 } else { 2352 jbd2_journal_destroy_caches(); 2353 } 2354 return ret; 2355 } 2356 2357 static void __exit journal_exit(void) 2358 { 2359 #ifdef CONFIG_JBD2_DEBUG 2360 int n = atomic_read(&nr_journal_heads); 2361 if (n) 2362 printk(KERN_EMERG "JBD: leaked %d journal_heads!\n", n); 2363 #endif 2364 jbd2_remove_debugfs_entry(); 2365 jbd2_remove_jbd_stats_proc_entry(); 2366 jbd2_journal_destroy_caches(); 2367 } 2368 2369 /* 2370 * jbd2_dev_to_name is a utility function used by the jbd2 and ext4 2371 * tracing infrastructure to map a dev_t to a device name. 2372 * 2373 * The caller should use rcu_read_lock() in order to make sure the 2374 * device name stays valid until its done with it. We use 2375 * rcu_read_lock() as well to make sure we're safe in case the caller 2376 * gets sloppy, and because rcu_read_lock() is cheap and can be safely 2377 * nested. 2378 */ 2379 struct devname_cache { 2380 struct rcu_head rcu; 2381 dev_t device; 2382 char devname[BDEVNAME_SIZE]; 2383 }; 2384 #define CACHE_SIZE_BITS 6 2385 static struct devname_cache *devcache[1 << CACHE_SIZE_BITS]; 2386 static DEFINE_SPINLOCK(devname_cache_lock); 2387 2388 static void free_devcache(struct rcu_head *rcu) 2389 { 2390 kfree(rcu); 2391 } 2392 2393 const char *jbd2_dev_to_name(dev_t device) 2394 { 2395 int i = hash_32(device, CACHE_SIZE_BITS); 2396 char *ret; 2397 struct block_device *bd; 2398 static struct devname_cache *new_dev; 2399 2400 rcu_read_lock(); 2401 if (devcache[i] && devcache[i]->device == device) { 2402 ret = devcache[i]->devname; 2403 rcu_read_unlock(); 2404 return ret; 2405 } 2406 rcu_read_unlock(); 2407 2408 new_dev = kmalloc(sizeof(struct devname_cache), GFP_KERNEL); 2409 if (!new_dev) 2410 return "NODEV-ALLOCFAILURE"; /* Something non-NULL */ 2411 spin_lock(&devname_cache_lock); 2412 if (devcache[i]) { 2413 if (devcache[i]->device == device) { 2414 kfree(new_dev); 2415 ret = devcache[i]->devname; 2416 spin_unlock(&devname_cache_lock); 2417 return ret; 2418 } 2419 call_rcu(&devcache[i]->rcu, free_devcache); 2420 } 2421 devcache[i] = new_dev; 2422 devcache[i]->device = device; 2423 bd = bdget(device); 2424 if (bd) { 2425 bdevname(bd, devcache[i]->devname); 2426 bdput(bd); 2427 } else 2428 __bdevname(device, devcache[i]->devname); 2429 ret = devcache[i]->devname; 2430 spin_unlock(&devname_cache_lock); 2431 return ret; 2432 } 2433 EXPORT_SYMBOL(jbd2_dev_to_name); 2434 2435 MODULE_LICENSE("GPL"); 2436 module_init(journal_init); 2437 module_exit(journal_exit); 2438 2439