1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * linux/fs/jbd2/journal.c 4 * 5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 6 * 7 * Copyright 1998 Red Hat corp --- All Rights Reserved 8 * 9 * Generic filesystem journal-writing code; part of the ext2fs 10 * journaling system. 11 * 12 * This file manages journals: areas of disk reserved for logging 13 * transactional updates. This includes the kernel journaling thread 14 * which is responsible for scheduling updates to the log. 15 * 16 * We do not actually manage the physical storage of the journal in this 17 * file: that is left to a per-journal policy function, which allows us 18 * to store the journal within a filesystem-specified area for ext2 19 * journaling (ext2 can use a reserved inode for storing the log). 20 */ 21 22 #include <linux/module.h> 23 #include <linux/time.h> 24 #include <linux/fs.h> 25 #include <linux/jbd2.h> 26 #include <linux/errno.h> 27 #include <linux/slab.h> 28 #include <linux/init.h> 29 #include <linux/mm.h> 30 #include <linux/freezer.h> 31 #include <linux/pagemap.h> 32 #include <linux/kthread.h> 33 #include <linux/poison.h> 34 #include <linux/proc_fs.h> 35 #include <linux/seq_file.h> 36 #include <linux/math64.h> 37 #include <linux/hash.h> 38 #include <linux/log2.h> 39 #include <linux/vmalloc.h> 40 #include <linux/backing-dev.h> 41 #include <linux/bitops.h> 42 #include <linux/ratelimit.h> 43 #include <linux/sched/mm.h> 44 45 #define CREATE_TRACE_POINTS 46 #include <trace/events/jbd2.h> 47 48 #include <linux/uaccess.h> 49 #include <asm/page.h> 50 51 #ifdef CONFIG_JBD2_DEBUG 52 static ushort jbd2_journal_enable_debug __read_mostly; 53 54 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644); 55 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2"); 56 #endif 57 58 EXPORT_SYMBOL(jbd2_journal_extend); 59 EXPORT_SYMBOL(jbd2_journal_stop); 60 EXPORT_SYMBOL(jbd2_journal_lock_updates); 61 EXPORT_SYMBOL(jbd2_journal_unlock_updates); 62 EXPORT_SYMBOL(jbd2_journal_get_write_access); 63 EXPORT_SYMBOL(jbd2_journal_get_create_access); 64 EXPORT_SYMBOL(jbd2_journal_get_undo_access); 65 EXPORT_SYMBOL(jbd2_journal_set_triggers); 66 EXPORT_SYMBOL(jbd2_journal_dirty_metadata); 67 EXPORT_SYMBOL(jbd2_journal_forget); 68 EXPORT_SYMBOL(jbd2_journal_flush); 69 EXPORT_SYMBOL(jbd2_journal_revoke); 70 71 EXPORT_SYMBOL(jbd2_journal_init_dev); 72 EXPORT_SYMBOL(jbd2_journal_init_inode); 73 EXPORT_SYMBOL(jbd2_journal_check_used_features); 74 EXPORT_SYMBOL(jbd2_journal_check_available_features); 75 EXPORT_SYMBOL(jbd2_journal_set_features); 76 EXPORT_SYMBOL(jbd2_journal_load); 77 EXPORT_SYMBOL(jbd2_journal_destroy); 78 EXPORT_SYMBOL(jbd2_journal_abort); 79 EXPORT_SYMBOL(jbd2_journal_errno); 80 EXPORT_SYMBOL(jbd2_journal_ack_err); 81 EXPORT_SYMBOL(jbd2_journal_clear_err); 82 EXPORT_SYMBOL(jbd2_log_wait_commit); 83 EXPORT_SYMBOL(jbd2_journal_start_commit); 84 EXPORT_SYMBOL(jbd2_journal_force_commit_nested); 85 EXPORT_SYMBOL(jbd2_journal_wipe); 86 EXPORT_SYMBOL(jbd2_journal_blocks_per_page); 87 EXPORT_SYMBOL(jbd2_journal_invalidate_folio); 88 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers); 89 EXPORT_SYMBOL(jbd2_journal_force_commit); 90 EXPORT_SYMBOL(jbd2_journal_inode_ranged_write); 91 EXPORT_SYMBOL(jbd2_journal_inode_ranged_wait); 92 EXPORT_SYMBOL(jbd2_journal_finish_inode_data_buffers); 93 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode); 94 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode); 95 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate); 96 EXPORT_SYMBOL(jbd2_inode_cache); 97 98 static int jbd2_journal_create_slab(size_t slab_size); 99 100 #ifdef CONFIG_JBD2_DEBUG 101 void __jbd2_debug(int level, const char *file, const char *func, 102 unsigned int line, const char *fmt, ...) 103 { 104 struct va_format vaf; 105 va_list args; 106 107 if (level > jbd2_journal_enable_debug) 108 return; 109 va_start(args, fmt); 110 vaf.fmt = fmt; 111 vaf.va = &args; 112 printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf); 113 va_end(args); 114 } 115 #endif 116 117 /* Checksumming functions */ 118 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb) 119 { 120 __u32 csum; 121 __be32 old_csum; 122 123 old_csum = sb->s_checksum; 124 sb->s_checksum = 0; 125 csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t)); 126 sb->s_checksum = old_csum; 127 128 return cpu_to_be32(csum); 129 } 130 131 /* 132 * Helper function used to manage commit timeouts 133 */ 134 135 static void commit_timeout(struct timer_list *t) 136 { 137 journal_t *journal = from_timer(journal, t, j_commit_timer); 138 139 wake_up_process(journal->j_task); 140 } 141 142 /* 143 * kjournald2: The main thread function used to manage a logging device 144 * journal. 145 * 146 * This kernel thread is responsible for two things: 147 * 148 * 1) COMMIT: Every so often we need to commit the current state of the 149 * filesystem to disk. The journal thread is responsible for writing 150 * all of the metadata buffers to disk. If a fast commit is ongoing 151 * journal thread waits until it's done and then continues from 152 * there on. 153 * 154 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all 155 * of the data in that part of the log has been rewritten elsewhere on 156 * the disk. Flushing these old buffers to reclaim space in the log is 157 * known as checkpointing, and this thread is responsible for that job. 158 */ 159 160 static int kjournald2(void *arg) 161 { 162 journal_t *journal = arg; 163 transaction_t *transaction; 164 165 /* 166 * Set up an interval timer which can be used to trigger a commit wakeup 167 * after the commit interval expires 168 */ 169 timer_setup(&journal->j_commit_timer, commit_timeout, 0); 170 171 set_freezable(); 172 173 /* Record that the journal thread is running */ 174 journal->j_task = current; 175 wake_up(&journal->j_wait_done_commit); 176 177 /* 178 * Make sure that no allocations from this kernel thread will ever 179 * recurse to the fs layer because we are responsible for the 180 * transaction commit and any fs involvement might get stuck waiting for 181 * the trasn. commit. 182 */ 183 memalloc_nofs_save(); 184 185 /* 186 * And now, wait forever for commit wakeup events. 187 */ 188 write_lock(&journal->j_state_lock); 189 190 loop: 191 if (journal->j_flags & JBD2_UNMOUNT) 192 goto end_loop; 193 194 jbd2_debug(1, "commit_sequence=%u, commit_request=%u\n", 195 journal->j_commit_sequence, journal->j_commit_request); 196 197 if (journal->j_commit_sequence != journal->j_commit_request) { 198 jbd2_debug(1, "OK, requests differ\n"); 199 write_unlock(&journal->j_state_lock); 200 del_timer_sync(&journal->j_commit_timer); 201 jbd2_journal_commit_transaction(journal); 202 write_lock(&journal->j_state_lock); 203 goto loop; 204 } 205 206 wake_up(&journal->j_wait_done_commit); 207 if (freezing(current)) { 208 /* 209 * The simpler the better. Flushing journal isn't a 210 * good idea, because that depends on threads that may 211 * be already stopped. 212 */ 213 jbd2_debug(1, "Now suspending kjournald2\n"); 214 write_unlock(&journal->j_state_lock); 215 try_to_freeze(); 216 write_lock(&journal->j_state_lock); 217 } else { 218 /* 219 * We assume on resume that commits are already there, 220 * so we don't sleep 221 */ 222 DEFINE_WAIT(wait); 223 224 prepare_to_wait(&journal->j_wait_commit, &wait, 225 TASK_INTERRUPTIBLE); 226 transaction = journal->j_running_transaction; 227 if (transaction == NULL || 228 time_before(jiffies, transaction->t_expires)) { 229 write_unlock(&journal->j_state_lock); 230 schedule(); 231 write_lock(&journal->j_state_lock); 232 } 233 finish_wait(&journal->j_wait_commit, &wait); 234 } 235 236 jbd2_debug(1, "kjournald2 wakes\n"); 237 238 /* 239 * Were we woken up by a commit wakeup event? 240 */ 241 transaction = journal->j_running_transaction; 242 if (transaction && time_after_eq(jiffies, transaction->t_expires)) { 243 journal->j_commit_request = transaction->t_tid; 244 jbd2_debug(1, "woke because of timeout\n"); 245 } 246 goto loop; 247 248 end_loop: 249 del_timer_sync(&journal->j_commit_timer); 250 journal->j_task = NULL; 251 wake_up(&journal->j_wait_done_commit); 252 jbd2_debug(1, "Journal thread exiting.\n"); 253 write_unlock(&journal->j_state_lock); 254 return 0; 255 } 256 257 static int jbd2_journal_start_thread(journal_t *journal) 258 { 259 struct task_struct *t; 260 261 t = kthread_run(kjournald2, journal, "jbd2/%s", 262 journal->j_devname); 263 if (IS_ERR(t)) 264 return PTR_ERR(t); 265 266 wait_event(journal->j_wait_done_commit, journal->j_task != NULL); 267 return 0; 268 } 269 270 static void journal_kill_thread(journal_t *journal) 271 { 272 write_lock(&journal->j_state_lock); 273 journal->j_flags |= JBD2_UNMOUNT; 274 275 while (journal->j_task) { 276 write_unlock(&journal->j_state_lock); 277 wake_up(&journal->j_wait_commit); 278 wait_event(journal->j_wait_done_commit, journal->j_task == NULL); 279 write_lock(&journal->j_state_lock); 280 } 281 write_unlock(&journal->j_state_lock); 282 } 283 284 static inline bool jbd2_data_needs_escaping(char *data) 285 { 286 return *((__be32 *)data) == cpu_to_be32(JBD2_MAGIC_NUMBER); 287 } 288 289 static inline void jbd2_data_do_escape(char *data) 290 { 291 *((unsigned int *)data) = 0; 292 } 293 294 /* 295 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal. 296 * 297 * Writes a metadata buffer to a given disk block. The actual IO is not 298 * performed but a new buffer_head is constructed which labels the data 299 * to be written with the correct destination disk block. 300 * 301 * Any magic-number escaping which needs to be done will cause a 302 * copy-out here. If the buffer happens to start with the 303 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the 304 * magic number is only written to the log for descripter blocks. In 305 * this case, we copy the data and replace the first word with 0, and we 306 * return a result code which indicates that this buffer needs to be 307 * marked as an escaped buffer in the corresponding log descriptor 308 * block. The missing word can then be restored when the block is read 309 * during recovery. 310 * 311 * If the source buffer has already been modified by a new transaction 312 * since we took the last commit snapshot, we use the frozen copy of 313 * that data for IO. If we end up using the existing buffer_head's data 314 * for the write, then we have to make sure nobody modifies it while the 315 * IO is in progress. do_get_write_access() handles this. 316 * 317 * The function returns a pointer to the buffer_head to be used for IO. 318 * 319 * 320 * Return value: 321 * =0: Finished OK without escape 322 * =1: Finished OK with escape 323 */ 324 325 int jbd2_journal_write_metadata_buffer(transaction_t *transaction, 326 struct journal_head *jh_in, 327 struct buffer_head **bh_out, 328 sector_t blocknr) 329 { 330 int do_escape = 0; 331 struct buffer_head *new_bh; 332 struct folio *new_folio; 333 unsigned int new_offset; 334 struct buffer_head *bh_in = jh2bh(jh_in); 335 journal_t *journal = transaction->t_journal; 336 337 /* 338 * The buffer really shouldn't be locked: only the current committing 339 * transaction is allowed to write it, so nobody else is allowed 340 * to do any IO. 341 * 342 * akpm: except if we're journalling data, and write() output is 343 * also part of a shared mapping, and another thread has 344 * decided to launch a writepage() against this buffer. 345 */ 346 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in)); 347 348 new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL); 349 350 /* keep subsequent assertions sane */ 351 atomic_set(&new_bh->b_count, 1); 352 353 spin_lock(&jh_in->b_state_lock); 354 /* 355 * If a new transaction has already done a buffer copy-out, then 356 * we use that version of the data for the commit. 357 */ 358 if (jh_in->b_frozen_data) { 359 new_folio = virt_to_folio(jh_in->b_frozen_data); 360 new_offset = offset_in_folio(new_folio, jh_in->b_frozen_data); 361 do_escape = jbd2_data_needs_escaping(jh_in->b_frozen_data); 362 if (do_escape) 363 jbd2_data_do_escape(jh_in->b_frozen_data); 364 } else { 365 char *tmp; 366 char *mapped_data; 367 368 new_folio = bh_in->b_folio; 369 new_offset = offset_in_folio(new_folio, bh_in->b_data); 370 mapped_data = kmap_local_folio(new_folio, new_offset); 371 /* 372 * Fire data frozen trigger if data already wasn't frozen. Do 373 * this before checking for escaping, as the trigger may modify 374 * the magic offset. If a copy-out happens afterwards, it will 375 * have the correct data in the buffer. 376 */ 377 jbd2_buffer_frozen_trigger(jh_in, mapped_data, 378 jh_in->b_triggers); 379 do_escape = jbd2_data_needs_escaping(mapped_data); 380 kunmap_local(mapped_data); 381 /* 382 * Do we need to do a data copy? 383 */ 384 if (!do_escape) 385 goto escape_done; 386 387 spin_unlock(&jh_in->b_state_lock); 388 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS | __GFP_NOFAIL); 389 spin_lock(&jh_in->b_state_lock); 390 if (jh_in->b_frozen_data) { 391 jbd2_free(tmp, bh_in->b_size); 392 goto copy_done; 393 } 394 395 jh_in->b_frozen_data = tmp; 396 memcpy_from_folio(tmp, new_folio, new_offset, bh_in->b_size); 397 /* 398 * This isn't strictly necessary, as we're using frozen 399 * data for the escaping, but it keeps consistency with 400 * b_frozen_data usage. 401 */ 402 jh_in->b_frozen_triggers = jh_in->b_triggers; 403 404 copy_done: 405 new_folio = virt_to_folio(jh_in->b_frozen_data); 406 new_offset = offset_in_folio(new_folio, jh_in->b_frozen_data); 407 jbd2_data_do_escape(jh_in->b_frozen_data); 408 } 409 410 escape_done: 411 folio_set_bh(new_bh, new_folio, new_offset); 412 new_bh->b_size = bh_in->b_size; 413 new_bh->b_bdev = journal->j_dev; 414 new_bh->b_blocknr = blocknr; 415 new_bh->b_private = bh_in; 416 set_buffer_mapped(new_bh); 417 set_buffer_dirty(new_bh); 418 419 *bh_out = new_bh; 420 421 /* 422 * The to-be-written buffer needs to get moved to the io queue, 423 * and the original buffer whose contents we are shadowing or 424 * copying is moved to the transaction's shadow queue. 425 */ 426 JBUFFER_TRACE(jh_in, "file as BJ_Shadow"); 427 spin_lock(&journal->j_list_lock); 428 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow); 429 spin_unlock(&journal->j_list_lock); 430 set_buffer_shadow(bh_in); 431 spin_unlock(&jh_in->b_state_lock); 432 433 return do_escape; 434 } 435 436 /* 437 * Allocation code for the journal file. Manage the space left in the 438 * journal, so that we can begin checkpointing when appropriate. 439 */ 440 441 /* 442 * Called with j_state_lock locked for writing. 443 * Returns true if a transaction commit was started. 444 */ 445 static int __jbd2_log_start_commit(journal_t *journal, tid_t target) 446 { 447 /* Return if the txn has already requested to be committed */ 448 if (journal->j_commit_request == target) 449 return 0; 450 451 /* 452 * The only transaction we can possibly wait upon is the 453 * currently running transaction (if it exists). Otherwise, 454 * the target tid must be an old one. 455 */ 456 if (journal->j_running_transaction && 457 journal->j_running_transaction->t_tid == target) { 458 /* 459 * We want a new commit: OK, mark the request and wakeup the 460 * commit thread. We do _not_ do the commit ourselves. 461 */ 462 463 journal->j_commit_request = target; 464 jbd2_debug(1, "JBD2: requesting commit %u/%u\n", 465 journal->j_commit_request, 466 journal->j_commit_sequence); 467 journal->j_running_transaction->t_requested = jiffies; 468 wake_up(&journal->j_wait_commit); 469 return 1; 470 } else if (!tid_geq(journal->j_commit_request, target)) 471 /* This should never happen, but if it does, preserve 472 the evidence before kjournald goes into a loop and 473 increments j_commit_sequence beyond all recognition. */ 474 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n", 475 journal->j_commit_request, 476 journal->j_commit_sequence, 477 target, journal->j_running_transaction ? 478 journal->j_running_transaction->t_tid : 0); 479 return 0; 480 } 481 482 int jbd2_log_start_commit(journal_t *journal, tid_t tid) 483 { 484 int ret; 485 486 write_lock(&journal->j_state_lock); 487 ret = __jbd2_log_start_commit(journal, tid); 488 write_unlock(&journal->j_state_lock); 489 return ret; 490 } 491 492 /* 493 * Force and wait any uncommitted transactions. We can only force the running 494 * transaction if we don't have an active handle, otherwise, we will deadlock. 495 * Returns: <0 in case of error, 496 * 0 if nothing to commit, 497 * 1 if transaction was successfully committed. 498 */ 499 static int __jbd2_journal_force_commit(journal_t *journal) 500 { 501 transaction_t *transaction = NULL; 502 tid_t tid; 503 int need_to_start = 0, ret = 0; 504 505 read_lock(&journal->j_state_lock); 506 if (journal->j_running_transaction && !current->journal_info) { 507 transaction = journal->j_running_transaction; 508 if (!tid_geq(journal->j_commit_request, transaction->t_tid)) 509 need_to_start = 1; 510 } else if (journal->j_committing_transaction) 511 transaction = journal->j_committing_transaction; 512 513 if (!transaction) { 514 /* Nothing to commit */ 515 read_unlock(&journal->j_state_lock); 516 return 0; 517 } 518 tid = transaction->t_tid; 519 read_unlock(&journal->j_state_lock); 520 if (need_to_start) 521 jbd2_log_start_commit(journal, tid); 522 ret = jbd2_log_wait_commit(journal, tid); 523 if (!ret) 524 ret = 1; 525 526 return ret; 527 } 528 529 /** 530 * jbd2_journal_force_commit_nested - Force and wait upon a commit if the 531 * calling process is not within transaction. 532 * 533 * @journal: journal to force 534 * Returns true if progress was made. 535 * 536 * This is used for forcing out undo-protected data which contains 537 * bitmaps, when the fs is running out of space. 538 */ 539 int jbd2_journal_force_commit_nested(journal_t *journal) 540 { 541 int ret; 542 543 ret = __jbd2_journal_force_commit(journal); 544 return ret > 0; 545 } 546 547 /** 548 * jbd2_journal_force_commit() - force any uncommitted transactions 549 * @journal: journal to force 550 * 551 * Caller want unconditional commit. We can only force the running transaction 552 * if we don't have an active handle, otherwise, we will deadlock. 553 */ 554 int jbd2_journal_force_commit(journal_t *journal) 555 { 556 int ret; 557 558 J_ASSERT(!current->journal_info); 559 ret = __jbd2_journal_force_commit(journal); 560 if (ret > 0) 561 ret = 0; 562 return ret; 563 } 564 565 /* 566 * Start a commit of the current running transaction (if any). Returns true 567 * if a transaction is going to be committed (or is currently already 568 * committing), and fills its tid in at *ptid 569 */ 570 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid) 571 { 572 int ret = 0; 573 574 write_lock(&journal->j_state_lock); 575 if (journal->j_running_transaction) { 576 tid_t tid = journal->j_running_transaction->t_tid; 577 578 __jbd2_log_start_commit(journal, tid); 579 /* There's a running transaction and we've just made sure 580 * it's commit has been scheduled. */ 581 if (ptid) 582 *ptid = tid; 583 ret = 1; 584 } else if (journal->j_committing_transaction) { 585 /* 586 * If commit has been started, then we have to wait for 587 * completion of that transaction. 588 */ 589 if (ptid) 590 *ptid = journal->j_committing_transaction->t_tid; 591 ret = 1; 592 } 593 write_unlock(&journal->j_state_lock); 594 return ret; 595 } 596 597 /* 598 * Return 1 if a given transaction has not yet sent barrier request 599 * connected with a transaction commit. If 0 is returned, transaction 600 * may or may not have sent the barrier. Used to avoid sending barrier 601 * twice in common cases. 602 */ 603 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid) 604 { 605 int ret = 0; 606 transaction_t *commit_trans; 607 608 if (!(journal->j_flags & JBD2_BARRIER)) 609 return 0; 610 read_lock(&journal->j_state_lock); 611 /* Transaction already committed? */ 612 if (tid_geq(journal->j_commit_sequence, tid)) 613 goto out; 614 commit_trans = journal->j_committing_transaction; 615 if (!commit_trans || commit_trans->t_tid != tid) { 616 ret = 1; 617 goto out; 618 } 619 /* 620 * Transaction is being committed and we already proceeded to 621 * submitting a flush to fs partition? 622 */ 623 if (journal->j_fs_dev != journal->j_dev) { 624 if (!commit_trans->t_need_data_flush || 625 commit_trans->t_state >= T_COMMIT_DFLUSH) 626 goto out; 627 } else { 628 if (commit_trans->t_state >= T_COMMIT_JFLUSH) 629 goto out; 630 } 631 ret = 1; 632 out: 633 read_unlock(&journal->j_state_lock); 634 return ret; 635 } 636 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier); 637 638 /* 639 * Wait for a specified commit to complete. 640 * The caller may not hold the journal lock. 641 */ 642 int jbd2_log_wait_commit(journal_t *journal, tid_t tid) 643 { 644 int err = 0; 645 646 read_lock(&journal->j_state_lock); 647 #ifdef CONFIG_PROVE_LOCKING 648 /* 649 * Some callers make sure transaction is already committing and in that 650 * case we cannot block on open handles anymore. So don't warn in that 651 * case. 652 */ 653 if (tid_gt(tid, journal->j_commit_sequence) && 654 (!journal->j_committing_transaction || 655 journal->j_committing_transaction->t_tid != tid)) { 656 read_unlock(&journal->j_state_lock); 657 jbd2_might_wait_for_commit(journal); 658 read_lock(&journal->j_state_lock); 659 } 660 #endif 661 #ifdef CONFIG_JBD2_DEBUG 662 if (!tid_geq(journal->j_commit_request, tid)) { 663 printk(KERN_ERR 664 "%s: error: j_commit_request=%u, tid=%u\n", 665 __func__, journal->j_commit_request, tid); 666 } 667 #endif 668 while (tid_gt(tid, journal->j_commit_sequence)) { 669 jbd2_debug(1, "JBD2: want %u, j_commit_sequence=%u\n", 670 tid, journal->j_commit_sequence); 671 read_unlock(&journal->j_state_lock); 672 wake_up(&journal->j_wait_commit); 673 wait_event(journal->j_wait_done_commit, 674 !tid_gt(tid, journal->j_commit_sequence)); 675 read_lock(&journal->j_state_lock); 676 } 677 read_unlock(&journal->j_state_lock); 678 679 if (unlikely(is_journal_aborted(journal))) 680 err = -EIO; 681 return err; 682 } 683 684 /* 685 * Start a fast commit. If there's an ongoing fast or full commit wait for 686 * it to complete. Returns 0 if a new fast commit was started. Returns -EALREADY 687 * if a fast commit is not needed, either because there's an already a commit 688 * going on or this tid has already been committed. Returns -EINVAL if no jbd2 689 * commit has yet been performed. 690 */ 691 int jbd2_fc_begin_commit(journal_t *journal, tid_t tid) 692 { 693 if (unlikely(is_journal_aborted(journal))) 694 return -EIO; 695 /* 696 * Fast commits only allowed if at least one full commit has 697 * been processed. 698 */ 699 if (!journal->j_stats.ts_tid) 700 return -EINVAL; 701 702 write_lock(&journal->j_state_lock); 703 if (tid_geq(journal->j_commit_sequence, tid)) { 704 write_unlock(&journal->j_state_lock); 705 return -EALREADY; 706 } 707 708 if (journal->j_flags & JBD2_FULL_COMMIT_ONGOING || 709 (journal->j_flags & JBD2_FAST_COMMIT_ONGOING)) { 710 DEFINE_WAIT(wait); 711 712 prepare_to_wait(&journal->j_fc_wait, &wait, 713 TASK_UNINTERRUPTIBLE); 714 write_unlock(&journal->j_state_lock); 715 schedule(); 716 finish_wait(&journal->j_fc_wait, &wait); 717 return -EALREADY; 718 } 719 journal->j_flags |= JBD2_FAST_COMMIT_ONGOING; 720 write_unlock(&journal->j_state_lock); 721 jbd2_journal_lock_updates(journal); 722 723 return 0; 724 } 725 EXPORT_SYMBOL(jbd2_fc_begin_commit); 726 727 /* 728 * Stop a fast commit. If fallback is set, this function starts commit of 729 * TID tid before any other fast commit can start. 730 */ 731 static int __jbd2_fc_end_commit(journal_t *journal, tid_t tid, bool fallback) 732 { 733 if (journal->j_fc_cleanup_callback) 734 journal->j_fc_cleanup_callback(journal, 0, tid); 735 jbd2_journal_unlock_updates(journal); 736 write_lock(&journal->j_state_lock); 737 journal->j_flags &= ~JBD2_FAST_COMMIT_ONGOING; 738 if (fallback) 739 journal->j_flags |= JBD2_FULL_COMMIT_ONGOING; 740 write_unlock(&journal->j_state_lock); 741 wake_up(&journal->j_fc_wait); 742 if (fallback) 743 return jbd2_complete_transaction(journal, tid); 744 return 0; 745 } 746 747 int jbd2_fc_end_commit(journal_t *journal) 748 { 749 return __jbd2_fc_end_commit(journal, 0, false); 750 } 751 EXPORT_SYMBOL(jbd2_fc_end_commit); 752 753 int jbd2_fc_end_commit_fallback(journal_t *journal) 754 { 755 tid_t tid; 756 757 read_lock(&journal->j_state_lock); 758 tid = journal->j_running_transaction ? 759 journal->j_running_transaction->t_tid : 0; 760 read_unlock(&journal->j_state_lock); 761 return __jbd2_fc_end_commit(journal, tid, true); 762 } 763 EXPORT_SYMBOL(jbd2_fc_end_commit_fallback); 764 765 /* Return 1 when transaction with given tid has already committed. */ 766 int jbd2_transaction_committed(journal_t *journal, tid_t tid) 767 { 768 return tid_geq(READ_ONCE(journal->j_commit_sequence), tid); 769 } 770 EXPORT_SYMBOL(jbd2_transaction_committed); 771 772 /* 773 * When this function returns the transaction corresponding to tid 774 * will be completed. If the transaction has currently running, start 775 * committing that transaction before waiting for it to complete. If 776 * the transaction id is stale, it is by definition already completed, 777 * so just return SUCCESS. 778 */ 779 int jbd2_complete_transaction(journal_t *journal, tid_t tid) 780 { 781 int need_to_wait = 1; 782 783 read_lock(&journal->j_state_lock); 784 if (journal->j_running_transaction && 785 journal->j_running_transaction->t_tid == tid) { 786 if (journal->j_commit_request != tid) { 787 /* transaction not yet started, so request it */ 788 read_unlock(&journal->j_state_lock); 789 jbd2_log_start_commit(journal, tid); 790 goto wait_commit; 791 } 792 } else if (!(journal->j_committing_transaction && 793 journal->j_committing_transaction->t_tid == tid)) 794 need_to_wait = 0; 795 read_unlock(&journal->j_state_lock); 796 if (!need_to_wait) 797 return 0; 798 wait_commit: 799 return jbd2_log_wait_commit(journal, tid); 800 } 801 EXPORT_SYMBOL(jbd2_complete_transaction); 802 803 /* 804 * Log buffer allocation routines: 805 */ 806 807 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp) 808 { 809 unsigned long blocknr; 810 811 write_lock(&journal->j_state_lock); 812 J_ASSERT(journal->j_free > 1); 813 814 blocknr = journal->j_head; 815 journal->j_head++; 816 journal->j_free--; 817 if (journal->j_head == journal->j_last) 818 journal->j_head = journal->j_first; 819 write_unlock(&journal->j_state_lock); 820 return jbd2_journal_bmap(journal, blocknr, retp); 821 } 822 823 /* Map one fast commit buffer for use by the file system */ 824 int jbd2_fc_get_buf(journal_t *journal, struct buffer_head **bh_out) 825 { 826 unsigned long long pblock; 827 unsigned long blocknr; 828 int ret = 0; 829 struct buffer_head *bh; 830 int fc_off; 831 832 *bh_out = NULL; 833 834 if (journal->j_fc_off + journal->j_fc_first >= journal->j_fc_last) 835 return -EINVAL; 836 837 fc_off = journal->j_fc_off; 838 blocknr = journal->j_fc_first + fc_off; 839 journal->j_fc_off++; 840 ret = jbd2_journal_bmap(journal, blocknr, &pblock); 841 if (ret) 842 return ret; 843 844 bh = __getblk(journal->j_dev, pblock, journal->j_blocksize); 845 if (!bh) 846 return -ENOMEM; 847 848 journal->j_fc_wbuf[fc_off] = bh; 849 850 *bh_out = bh; 851 852 return 0; 853 } 854 EXPORT_SYMBOL(jbd2_fc_get_buf); 855 856 /* 857 * Wait on fast commit buffers that were allocated by jbd2_fc_get_buf 858 * for completion. 859 */ 860 int jbd2_fc_wait_bufs(journal_t *journal, int num_blks) 861 { 862 struct buffer_head *bh; 863 int i, j_fc_off; 864 865 j_fc_off = journal->j_fc_off; 866 867 /* 868 * Wait in reverse order to minimize chances of us being woken up before 869 * all IOs have completed 870 */ 871 for (i = j_fc_off - 1; i >= j_fc_off - num_blks; i--) { 872 bh = journal->j_fc_wbuf[i]; 873 wait_on_buffer(bh); 874 /* 875 * Update j_fc_off so jbd2_fc_release_bufs can release remain 876 * buffer head. 877 */ 878 if (unlikely(!buffer_uptodate(bh))) { 879 journal->j_fc_off = i + 1; 880 return -EIO; 881 } 882 put_bh(bh); 883 journal->j_fc_wbuf[i] = NULL; 884 } 885 886 return 0; 887 } 888 EXPORT_SYMBOL(jbd2_fc_wait_bufs); 889 890 void jbd2_fc_release_bufs(journal_t *journal) 891 { 892 struct buffer_head *bh; 893 int i, j_fc_off; 894 895 j_fc_off = journal->j_fc_off; 896 897 for (i = j_fc_off - 1; i >= 0; i--) { 898 bh = journal->j_fc_wbuf[i]; 899 if (!bh) 900 break; 901 put_bh(bh); 902 journal->j_fc_wbuf[i] = NULL; 903 } 904 } 905 EXPORT_SYMBOL(jbd2_fc_release_bufs); 906 907 /* 908 * Conversion of logical to physical block numbers for the journal 909 * 910 * On external journals the journal blocks are identity-mapped, so 911 * this is a no-op. If needed, we can use j_blk_offset - everything is 912 * ready. 913 */ 914 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr, 915 unsigned long long *retp) 916 { 917 int err = 0; 918 unsigned long long ret; 919 sector_t block = blocknr; 920 921 if (journal->j_bmap) { 922 err = journal->j_bmap(journal, &block); 923 if (err == 0) 924 *retp = block; 925 } else if (journal->j_inode) { 926 ret = bmap(journal->j_inode, &block); 927 928 if (ret || !block) { 929 printk(KERN_ALERT "%s: journal block not found " 930 "at offset %lu on %s\n", 931 __func__, blocknr, journal->j_devname); 932 err = -EIO; 933 jbd2_journal_abort(journal, err); 934 } else { 935 *retp = block; 936 } 937 938 } else { 939 *retp = blocknr; /* +journal->j_blk_offset */ 940 } 941 return err; 942 } 943 944 /* 945 * We play buffer_head aliasing tricks to write data/metadata blocks to 946 * the journal without copying their contents, but for journal 947 * descriptor blocks we do need to generate bona fide buffers. 948 * 949 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying 950 * the buffer's contents they really should run flush_dcache_page(bh->b_page). 951 * But we don't bother doing that, so there will be coherency problems with 952 * mmaps of blockdevs which hold live JBD-controlled filesystems. 953 */ 954 struct buffer_head * 955 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type) 956 { 957 journal_t *journal = transaction->t_journal; 958 struct buffer_head *bh; 959 unsigned long long blocknr; 960 journal_header_t *header; 961 int err; 962 963 err = jbd2_journal_next_log_block(journal, &blocknr); 964 965 if (err) 966 return NULL; 967 968 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize); 969 if (!bh) 970 return NULL; 971 atomic_dec(&transaction->t_outstanding_credits); 972 lock_buffer(bh); 973 memset(bh->b_data, 0, journal->j_blocksize); 974 header = (journal_header_t *)bh->b_data; 975 header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER); 976 header->h_blocktype = cpu_to_be32(type); 977 header->h_sequence = cpu_to_be32(transaction->t_tid); 978 set_buffer_uptodate(bh); 979 unlock_buffer(bh); 980 BUFFER_TRACE(bh, "return this buffer"); 981 return bh; 982 } 983 984 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh) 985 { 986 struct jbd2_journal_block_tail *tail; 987 __u32 csum; 988 989 if (!jbd2_journal_has_csum_v2or3(j)) 990 return; 991 992 tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize - 993 sizeof(struct jbd2_journal_block_tail)); 994 tail->t_checksum = 0; 995 csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize); 996 tail->t_checksum = cpu_to_be32(csum); 997 } 998 999 /* 1000 * Return tid of the oldest transaction in the journal and block in the journal 1001 * where the transaction starts. 1002 * 1003 * If the journal is now empty, return which will be the next transaction ID 1004 * we will write and where will that transaction start. 1005 * 1006 * The return value is 0 if journal tail cannot be pushed any further, 1 if 1007 * it can. 1008 */ 1009 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid, 1010 unsigned long *block) 1011 { 1012 transaction_t *transaction; 1013 int ret; 1014 1015 read_lock(&journal->j_state_lock); 1016 spin_lock(&journal->j_list_lock); 1017 transaction = journal->j_checkpoint_transactions; 1018 if (transaction) { 1019 *tid = transaction->t_tid; 1020 *block = transaction->t_log_start; 1021 } else if ((transaction = journal->j_committing_transaction) != NULL) { 1022 *tid = transaction->t_tid; 1023 *block = transaction->t_log_start; 1024 } else if ((transaction = journal->j_running_transaction) != NULL) { 1025 *tid = transaction->t_tid; 1026 *block = journal->j_head; 1027 } else { 1028 *tid = journal->j_transaction_sequence; 1029 *block = journal->j_head; 1030 } 1031 ret = tid_gt(*tid, journal->j_tail_sequence); 1032 spin_unlock(&journal->j_list_lock); 1033 read_unlock(&journal->j_state_lock); 1034 1035 return ret; 1036 } 1037 1038 /* 1039 * Update information in journal structure and in on disk journal superblock 1040 * about log tail. This function does not check whether information passed in 1041 * really pushes log tail further. It's responsibility of the caller to make 1042 * sure provided log tail information is valid (e.g. by holding 1043 * j_checkpoint_mutex all the time between computing log tail and calling this 1044 * function as is the case with jbd2_cleanup_journal_tail()). 1045 * 1046 * Requires j_checkpoint_mutex 1047 */ 1048 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block) 1049 { 1050 unsigned long freed; 1051 int ret; 1052 1053 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1054 1055 /* 1056 * We cannot afford for write to remain in drive's caches since as 1057 * soon as we update j_tail, next transaction can start reusing journal 1058 * space and if we lose sb update during power failure we'd replay 1059 * old transaction with possibly newly overwritten data. 1060 */ 1061 ret = jbd2_journal_update_sb_log_tail(journal, tid, block, REQ_FUA); 1062 if (ret) 1063 goto out; 1064 1065 write_lock(&journal->j_state_lock); 1066 freed = block - journal->j_tail; 1067 if (block < journal->j_tail) 1068 freed += journal->j_last - journal->j_first; 1069 1070 trace_jbd2_update_log_tail(journal, tid, block, freed); 1071 jbd2_debug(1, 1072 "Cleaning journal tail from %u to %u (offset %lu), " 1073 "freeing %lu\n", 1074 journal->j_tail_sequence, tid, block, freed); 1075 1076 journal->j_free += freed; 1077 journal->j_tail_sequence = tid; 1078 journal->j_tail = block; 1079 write_unlock(&journal->j_state_lock); 1080 1081 out: 1082 return ret; 1083 } 1084 1085 /* 1086 * This is a variation of __jbd2_update_log_tail which checks for validity of 1087 * provided log tail and locks j_checkpoint_mutex. So it is safe against races 1088 * with other threads updating log tail. 1089 */ 1090 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block) 1091 { 1092 mutex_lock_io(&journal->j_checkpoint_mutex); 1093 if (tid_gt(tid, journal->j_tail_sequence)) 1094 __jbd2_update_log_tail(journal, tid, block); 1095 mutex_unlock(&journal->j_checkpoint_mutex); 1096 } 1097 1098 struct jbd2_stats_proc_session { 1099 journal_t *journal; 1100 struct transaction_stats_s *stats; 1101 int start; 1102 int max; 1103 }; 1104 1105 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos) 1106 { 1107 return *pos ? NULL : SEQ_START_TOKEN; 1108 } 1109 1110 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos) 1111 { 1112 (*pos)++; 1113 return NULL; 1114 } 1115 1116 static int jbd2_seq_info_show(struct seq_file *seq, void *v) 1117 { 1118 struct jbd2_stats_proc_session *s = seq->private; 1119 1120 if (v != SEQ_START_TOKEN) 1121 return 0; 1122 seq_printf(seq, "%lu transactions (%lu requested), " 1123 "each up to %u blocks\n", 1124 s->stats->ts_tid, s->stats->ts_requested, 1125 s->journal->j_max_transaction_buffers); 1126 if (s->stats->ts_tid == 0) 1127 return 0; 1128 seq_printf(seq, "average: \n %ums waiting for transaction\n", 1129 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid)); 1130 seq_printf(seq, " %ums request delay\n", 1131 (s->stats->ts_requested == 0) ? 0 : 1132 jiffies_to_msecs(s->stats->run.rs_request_delay / 1133 s->stats->ts_requested)); 1134 seq_printf(seq, " %ums running transaction\n", 1135 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid)); 1136 seq_printf(seq, " %ums transaction was being locked\n", 1137 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid)); 1138 seq_printf(seq, " %ums flushing data (in ordered mode)\n", 1139 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid)); 1140 seq_printf(seq, " %ums logging transaction\n", 1141 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid)); 1142 seq_printf(seq, " %lluus average transaction commit time\n", 1143 div_u64(s->journal->j_average_commit_time, 1000)); 1144 seq_printf(seq, " %lu handles per transaction\n", 1145 s->stats->run.rs_handle_count / s->stats->ts_tid); 1146 seq_printf(seq, " %lu blocks per transaction\n", 1147 s->stats->run.rs_blocks / s->stats->ts_tid); 1148 seq_printf(seq, " %lu logged blocks per transaction\n", 1149 s->stats->run.rs_blocks_logged / s->stats->ts_tid); 1150 return 0; 1151 } 1152 1153 static void jbd2_seq_info_stop(struct seq_file *seq, void *v) 1154 { 1155 } 1156 1157 static const struct seq_operations jbd2_seq_info_ops = { 1158 .start = jbd2_seq_info_start, 1159 .next = jbd2_seq_info_next, 1160 .stop = jbd2_seq_info_stop, 1161 .show = jbd2_seq_info_show, 1162 }; 1163 1164 static int jbd2_seq_info_open(struct inode *inode, struct file *file) 1165 { 1166 journal_t *journal = pde_data(inode); 1167 struct jbd2_stats_proc_session *s; 1168 int rc, size; 1169 1170 s = kmalloc(sizeof(*s), GFP_KERNEL); 1171 if (s == NULL) 1172 return -ENOMEM; 1173 size = sizeof(struct transaction_stats_s); 1174 s->stats = kmalloc(size, GFP_KERNEL); 1175 if (s->stats == NULL) { 1176 kfree(s); 1177 return -ENOMEM; 1178 } 1179 spin_lock(&journal->j_history_lock); 1180 memcpy(s->stats, &journal->j_stats, size); 1181 s->journal = journal; 1182 spin_unlock(&journal->j_history_lock); 1183 1184 rc = seq_open(file, &jbd2_seq_info_ops); 1185 if (rc == 0) { 1186 struct seq_file *m = file->private_data; 1187 m->private = s; 1188 } else { 1189 kfree(s->stats); 1190 kfree(s); 1191 } 1192 return rc; 1193 1194 } 1195 1196 static int jbd2_seq_info_release(struct inode *inode, struct file *file) 1197 { 1198 struct seq_file *seq = file->private_data; 1199 struct jbd2_stats_proc_session *s = seq->private; 1200 kfree(s->stats); 1201 kfree(s); 1202 return seq_release(inode, file); 1203 } 1204 1205 static const struct proc_ops jbd2_info_proc_ops = { 1206 .proc_open = jbd2_seq_info_open, 1207 .proc_read = seq_read, 1208 .proc_lseek = seq_lseek, 1209 .proc_release = jbd2_seq_info_release, 1210 }; 1211 1212 static struct proc_dir_entry *proc_jbd2_stats; 1213 1214 static void jbd2_stats_proc_init(journal_t *journal) 1215 { 1216 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats); 1217 if (journal->j_proc_entry) { 1218 proc_create_data("info", S_IRUGO, journal->j_proc_entry, 1219 &jbd2_info_proc_ops, journal); 1220 } 1221 } 1222 1223 static void jbd2_stats_proc_exit(journal_t *journal) 1224 { 1225 remove_proc_entry("info", journal->j_proc_entry); 1226 remove_proc_entry(journal->j_devname, proc_jbd2_stats); 1227 } 1228 1229 /* Minimum size of descriptor tag */ 1230 static int jbd2_min_tag_size(void) 1231 { 1232 /* 1233 * Tag with 32-bit block numbers does not use last four bytes of the 1234 * structure 1235 */ 1236 return sizeof(journal_block_tag_t) - 4; 1237 } 1238 1239 /** 1240 * jbd2_journal_shrink_scan() 1241 * @shrink: shrinker to work on 1242 * @sc: reclaim request to process 1243 * 1244 * Scan the checkpointed buffer on the checkpoint list and release the 1245 * journal_head. 1246 */ 1247 static unsigned long jbd2_journal_shrink_scan(struct shrinker *shrink, 1248 struct shrink_control *sc) 1249 { 1250 journal_t *journal = shrink->private_data; 1251 unsigned long nr_to_scan = sc->nr_to_scan; 1252 unsigned long nr_shrunk; 1253 unsigned long count; 1254 1255 count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count); 1256 trace_jbd2_shrink_scan_enter(journal, sc->nr_to_scan, count); 1257 1258 nr_shrunk = jbd2_journal_shrink_checkpoint_list(journal, &nr_to_scan); 1259 1260 count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count); 1261 trace_jbd2_shrink_scan_exit(journal, nr_to_scan, nr_shrunk, count); 1262 1263 return nr_shrunk; 1264 } 1265 1266 /** 1267 * jbd2_journal_shrink_count() 1268 * @shrink: shrinker to work on 1269 * @sc: reclaim request to process 1270 * 1271 * Count the number of checkpoint buffers on the checkpoint list. 1272 */ 1273 static unsigned long jbd2_journal_shrink_count(struct shrinker *shrink, 1274 struct shrink_control *sc) 1275 { 1276 journal_t *journal = shrink->private_data; 1277 unsigned long count; 1278 1279 count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count); 1280 trace_jbd2_shrink_count(journal, sc->nr_to_scan, count); 1281 1282 return count; 1283 } 1284 1285 /* 1286 * If the journal init or create aborts, we need to mark the journal 1287 * superblock as being NULL to prevent the journal destroy from writing 1288 * back a bogus superblock. 1289 */ 1290 static void journal_fail_superblock(journal_t *journal) 1291 { 1292 struct buffer_head *bh = journal->j_sb_buffer; 1293 brelse(bh); 1294 journal->j_sb_buffer = NULL; 1295 } 1296 1297 /* 1298 * Check the superblock for a given journal, performing initial 1299 * validation of the format. 1300 */ 1301 static int journal_check_superblock(journal_t *journal) 1302 { 1303 journal_superblock_t *sb = journal->j_superblock; 1304 int num_fc_blks; 1305 int err = -EINVAL; 1306 1307 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) || 1308 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) { 1309 printk(KERN_WARNING "JBD2: no valid journal superblock found\n"); 1310 return err; 1311 } 1312 1313 if (be32_to_cpu(sb->s_header.h_blocktype) != JBD2_SUPERBLOCK_V1 && 1314 be32_to_cpu(sb->s_header.h_blocktype) != JBD2_SUPERBLOCK_V2) { 1315 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n"); 1316 return err; 1317 } 1318 1319 if (be32_to_cpu(sb->s_maxlen) > journal->j_total_len) { 1320 printk(KERN_WARNING "JBD2: journal file too short\n"); 1321 return err; 1322 } 1323 1324 if (be32_to_cpu(sb->s_first) == 0 || 1325 be32_to_cpu(sb->s_first) >= journal->j_total_len) { 1326 printk(KERN_WARNING 1327 "JBD2: Invalid start block of journal: %u\n", 1328 be32_to_cpu(sb->s_first)); 1329 return err; 1330 } 1331 1332 /* 1333 * If this is a V2 superblock, then we have to check the 1334 * features flags on it. 1335 */ 1336 if (!jbd2_format_support_feature(journal)) 1337 return 0; 1338 1339 if ((sb->s_feature_ro_compat & 1340 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) || 1341 (sb->s_feature_incompat & 1342 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) { 1343 printk(KERN_WARNING "JBD2: Unrecognised features on journal\n"); 1344 return err; 1345 } 1346 1347 num_fc_blks = jbd2_has_feature_fast_commit(journal) ? 1348 jbd2_journal_get_num_fc_blks(sb) : 0; 1349 if (be32_to_cpu(sb->s_maxlen) < JBD2_MIN_JOURNAL_BLOCKS || 1350 be32_to_cpu(sb->s_maxlen) - JBD2_MIN_JOURNAL_BLOCKS < num_fc_blks) { 1351 printk(KERN_ERR "JBD2: journal file too short %u,%d\n", 1352 be32_to_cpu(sb->s_maxlen), num_fc_blks); 1353 return err; 1354 } 1355 1356 if (jbd2_has_feature_csum2(journal) && 1357 jbd2_has_feature_csum3(journal)) { 1358 /* Can't have checksum v2 and v3 at the same time! */ 1359 printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 " 1360 "at the same time!\n"); 1361 return err; 1362 } 1363 1364 if (jbd2_journal_has_csum_v2or3_feature(journal) && 1365 jbd2_has_feature_checksum(journal)) { 1366 /* Can't have checksum v1 and v2 on at the same time! */ 1367 printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 " 1368 "at the same time!\n"); 1369 return err; 1370 } 1371 1372 if (jbd2_journal_has_csum_v2or3_feature(journal)) { 1373 if (sb->s_checksum_type != JBD2_CRC32C_CHKSUM) { 1374 printk(KERN_ERR "JBD2: Unknown checksum type\n"); 1375 return err; 1376 } 1377 1378 /* Check superblock checksum */ 1379 if (sb->s_checksum != jbd2_superblock_csum(journal, sb)) { 1380 printk(KERN_ERR "JBD2: journal checksum error\n"); 1381 err = -EFSBADCRC; 1382 return err; 1383 } 1384 } 1385 1386 return 0; 1387 } 1388 1389 static int journal_revoke_records_per_block(journal_t *journal) 1390 { 1391 int record_size; 1392 int space = journal->j_blocksize - sizeof(jbd2_journal_revoke_header_t); 1393 1394 if (jbd2_has_feature_64bit(journal)) 1395 record_size = 8; 1396 else 1397 record_size = 4; 1398 1399 if (jbd2_journal_has_csum_v2or3(journal)) 1400 space -= sizeof(struct jbd2_journal_block_tail); 1401 return space / record_size; 1402 } 1403 1404 static int jbd2_journal_get_max_txn_bufs(journal_t *journal) 1405 { 1406 return (journal->j_total_len - journal->j_fc_wbufsize) / 3; 1407 } 1408 1409 /* 1410 * Base amount of descriptor blocks we reserve for each transaction. 1411 */ 1412 static int jbd2_descriptor_blocks_per_trans(journal_t *journal) 1413 { 1414 int tag_space = journal->j_blocksize - sizeof(journal_header_t); 1415 int tags_per_block; 1416 1417 /* Subtract UUID */ 1418 tag_space -= 16; 1419 if (jbd2_journal_has_csum_v2or3(journal)) 1420 tag_space -= sizeof(struct jbd2_journal_block_tail); 1421 /* Commit code leaves a slack space of 16 bytes at the end of block */ 1422 tags_per_block = (tag_space - 16) / journal_tag_bytes(journal); 1423 /* 1424 * Revoke descriptors are accounted separately so we need to reserve 1425 * space for commit block and normal transaction descriptor blocks. 1426 */ 1427 return 1 + DIV_ROUND_UP(jbd2_journal_get_max_txn_bufs(journal), 1428 tags_per_block); 1429 } 1430 1431 /* 1432 * Initialize number of blocks each transaction reserves for its bookkeeping 1433 * and maximum number of blocks a transaction can use. This needs to be called 1434 * after the journal size and the fastcommit area size are initialized. 1435 */ 1436 static void jbd2_journal_init_transaction_limits(journal_t *journal) 1437 { 1438 journal->j_revoke_records_per_block = 1439 journal_revoke_records_per_block(journal); 1440 journal->j_transaction_overhead_buffers = 1441 jbd2_descriptor_blocks_per_trans(journal); 1442 journal->j_max_transaction_buffers = 1443 jbd2_journal_get_max_txn_bufs(journal); 1444 } 1445 1446 /* 1447 * Load the on-disk journal superblock and read the key fields into the 1448 * journal_t. 1449 */ 1450 static int journal_load_superblock(journal_t *journal) 1451 { 1452 int err; 1453 struct buffer_head *bh; 1454 journal_superblock_t *sb; 1455 1456 bh = getblk_unmovable(journal->j_dev, journal->j_blk_offset, 1457 journal->j_blocksize); 1458 if (bh) 1459 err = bh_read(bh, 0); 1460 if (!bh || err < 0) { 1461 pr_err("%s: Cannot read journal superblock\n", __func__); 1462 brelse(bh); 1463 return -EIO; 1464 } 1465 1466 journal->j_sb_buffer = bh; 1467 sb = (journal_superblock_t *)bh->b_data; 1468 journal->j_superblock = sb; 1469 err = journal_check_superblock(journal); 1470 if (err) { 1471 journal_fail_superblock(journal); 1472 return err; 1473 } 1474 1475 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence); 1476 journal->j_tail = be32_to_cpu(sb->s_start); 1477 journal->j_first = be32_to_cpu(sb->s_first); 1478 journal->j_errno = be32_to_cpu(sb->s_errno); 1479 journal->j_last = be32_to_cpu(sb->s_maxlen); 1480 1481 if (be32_to_cpu(sb->s_maxlen) < journal->j_total_len) 1482 journal->j_total_len = be32_to_cpu(sb->s_maxlen); 1483 /* Precompute checksum seed for all metadata */ 1484 if (jbd2_journal_has_csum_v2or3(journal)) 1485 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid, 1486 sizeof(sb->s_uuid)); 1487 /* After journal features are set, we can compute transaction limits */ 1488 jbd2_journal_init_transaction_limits(journal); 1489 1490 if (jbd2_has_feature_fast_commit(journal)) { 1491 journal->j_fc_last = be32_to_cpu(sb->s_maxlen); 1492 journal->j_last = journal->j_fc_last - 1493 jbd2_journal_get_num_fc_blks(sb); 1494 journal->j_fc_first = journal->j_last + 1; 1495 journal->j_fc_off = 0; 1496 } 1497 1498 return 0; 1499 } 1500 1501 1502 /* 1503 * Management for journal control blocks: functions to create and 1504 * destroy journal_t structures, and to initialise and read existing 1505 * journal blocks from disk. */ 1506 1507 /* The journal_init_common() function creates and fills a journal_t object 1508 * in memory. It calls journal_load_superblock() to load the on-disk journal 1509 * superblock and initialize the journal_t object. 1510 */ 1511 1512 static journal_t *journal_init_common(struct block_device *bdev, 1513 struct block_device *fs_dev, 1514 unsigned long long start, int len, int blocksize) 1515 { 1516 static struct lock_class_key jbd2_trans_commit_key; 1517 journal_t *journal; 1518 int err; 1519 int n; 1520 1521 journal = kzalloc(sizeof(*journal), GFP_KERNEL); 1522 if (!journal) 1523 return ERR_PTR(-ENOMEM); 1524 1525 journal->j_blocksize = blocksize; 1526 journal->j_dev = bdev; 1527 journal->j_fs_dev = fs_dev; 1528 journal->j_blk_offset = start; 1529 journal->j_total_len = len; 1530 jbd2_init_fs_dev_write_error(journal); 1531 1532 err = journal_load_superblock(journal); 1533 if (err) 1534 goto err_cleanup; 1535 1536 init_waitqueue_head(&journal->j_wait_transaction_locked); 1537 init_waitqueue_head(&journal->j_wait_done_commit); 1538 init_waitqueue_head(&journal->j_wait_commit); 1539 init_waitqueue_head(&journal->j_wait_updates); 1540 init_waitqueue_head(&journal->j_wait_reserved); 1541 init_waitqueue_head(&journal->j_fc_wait); 1542 mutex_init(&journal->j_abort_mutex); 1543 mutex_init(&journal->j_barrier); 1544 mutex_init(&journal->j_checkpoint_mutex); 1545 spin_lock_init(&journal->j_revoke_lock); 1546 spin_lock_init(&journal->j_list_lock); 1547 spin_lock_init(&journal->j_history_lock); 1548 rwlock_init(&journal->j_state_lock); 1549 1550 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE); 1551 journal->j_min_batch_time = 0; 1552 journal->j_max_batch_time = 15000; /* 15ms */ 1553 atomic_set(&journal->j_reserved_credits, 0); 1554 lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle", 1555 &jbd2_trans_commit_key, 0); 1556 1557 /* The journal is marked for error until we succeed with recovery! */ 1558 journal->j_flags = JBD2_ABORT; 1559 1560 /* Set up a default-sized revoke table for the new mount. */ 1561 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH); 1562 if (err) 1563 goto err_cleanup; 1564 1565 /* 1566 * journal descriptor can store up to n blocks, we need enough 1567 * buffers to write out full descriptor block. 1568 */ 1569 err = -ENOMEM; 1570 n = journal->j_blocksize / jbd2_min_tag_size(); 1571 journal->j_wbufsize = n; 1572 journal->j_fc_wbuf = NULL; 1573 journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *), 1574 GFP_KERNEL); 1575 if (!journal->j_wbuf) 1576 goto err_cleanup; 1577 1578 err = percpu_counter_init(&journal->j_checkpoint_jh_count, 0, 1579 GFP_KERNEL); 1580 if (err) 1581 goto err_cleanup; 1582 1583 journal->j_shrink_transaction = NULL; 1584 1585 journal->j_shrinker = shrinker_alloc(0, "jbd2-journal:(%u:%u)", 1586 MAJOR(bdev->bd_dev), 1587 MINOR(bdev->bd_dev)); 1588 if (!journal->j_shrinker) { 1589 err = -ENOMEM; 1590 goto err_cleanup; 1591 } 1592 1593 journal->j_shrinker->scan_objects = jbd2_journal_shrink_scan; 1594 journal->j_shrinker->count_objects = jbd2_journal_shrink_count; 1595 journal->j_shrinker->private_data = journal; 1596 1597 shrinker_register(journal->j_shrinker); 1598 1599 return journal; 1600 1601 err_cleanup: 1602 percpu_counter_destroy(&journal->j_checkpoint_jh_count); 1603 kfree(journal->j_wbuf); 1604 jbd2_journal_destroy_revoke(journal); 1605 journal_fail_superblock(journal); 1606 kfree(journal); 1607 return ERR_PTR(err); 1608 } 1609 1610 /* jbd2_journal_init_dev and jbd2_journal_init_inode: 1611 * 1612 * Create a journal structure assigned some fixed set of disk blocks to 1613 * the journal. We don't actually touch those disk blocks yet, but we 1614 * need to set up all of the mapping information to tell the journaling 1615 * system where the journal blocks are. 1616 * 1617 */ 1618 1619 /** 1620 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure 1621 * @bdev: Block device on which to create the journal 1622 * @fs_dev: Device which hold journalled filesystem for this journal. 1623 * @start: Block nr Start of journal. 1624 * @len: Length of the journal in blocks. 1625 * @blocksize: blocksize of journalling device 1626 * 1627 * Returns: a newly created journal_t * 1628 * 1629 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous 1630 * range of blocks on an arbitrary block device. 1631 * 1632 */ 1633 journal_t *jbd2_journal_init_dev(struct block_device *bdev, 1634 struct block_device *fs_dev, 1635 unsigned long long start, int len, int blocksize) 1636 { 1637 journal_t *journal; 1638 1639 journal = journal_init_common(bdev, fs_dev, start, len, blocksize); 1640 if (IS_ERR(journal)) 1641 return ERR_CAST(journal); 1642 1643 snprintf(journal->j_devname, sizeof(journal->j_devname), 1644 "%pg", journal->j_dev); 1645 strreplace(journal->j_devname, '/', '!'); 1646 jbd2_stats_proc_init(journal); 1647 1648 return journal; 1649 } 1650 1651 /** 1652 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode. 1653 * @inode: An inode to create the journal in 1654 * 1655 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as 1656 * the journal. The inode must exist already, must support bmap() and 1657 * must have all data blocks preallocated. 1658 */ 1659 journal_t *jbd2_journal_init_inode(struct inode *inode) 1660 { 1661 journal_t *journal; 1662 sector_t blocknr; 1663 int err = 0; 1664 1665 blocknr = 0; 1666 err = bmap(inode, &blocknr); 1667 if (err || !blocknr) { 1668 pr_err("%s: Cannot locate journal superblock\n", __func__); 1669 return err ? ERR_PTR(err) : ERR_PTR(-EINVAL); 1670 } 1671 1672 jbd2_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n", 1673 inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size, 1674 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize); 1675 1676 journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev, 1677 blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits, 1678 inode->i_sb->s_blocksize); 1679 if (IS_ERR(journal)) 1680 return ERR_CAST(journal); 1681 1682 journal->j_inode = inode; 1683 snprintf(journal->j_devname, sizeof(journal->j_devname), 1684 "%pg-%lu", journal->j_dev, journal->j_inode->i_ino); 1685 strreplace(journal->j_devname, '/', '!'); 1686 jbd2_stats_proc_init(journal); 1687 1688 return journal; 1689 } 1690 1691 /* 1692 * Given a journal_t structure, initialise the various fields for 1693 * startup of a new journaling session. We use this both when creating 1694 * a journal, and after recovering an old journal to reset it for 1695 * subsequent use. 1696 */ 1697 1698 static int journal_reset(journal_t *journal) 1699 { 1700 journal_superblock_t *sb = journal->j_superblock; 1701 unsigned long long first, last; 1702 1703 first = be32_to_cpu(sb->s_first); 1704 last = be32_to_cpu(sb->s_maxlen); 1705 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) { 1706 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n", 1707 first, last); 1708 journal_fail_superblock(journal); 1709 return -EINVAL; 1710 } 1711 1712 journal->j_first = first; 1713 journal->j_last = last; 1714 1715 if (journal->j_head != 0 && journal->j_flags & JBD2_CYCLE_RECORD) { 1716 /* 1717 * Disable the cycled recording mode if the journal head block 1718 * number is not correct. 1719 */ 1720 if (journal->j_head < first || journal->j_head >= last) { 1721 printk(KERN_WARNING "JBD2: Incorrect Journal head block %lu, " 1722 "disable journal_cycle_record\n", 1723 journal->j_head); 1724 journal->j_head = journal->j_first; 1725 } 1726 } else { 1727 journal->j_head = journal->j_first; 1728 } 1729 journal->j_tail = journal->j_head; 1730 journal->j_free = journal->j_last - journal->j_first; 1731 1732 journal->j_tail_sequence = journal->j_transaction_sequence; 1733 journal->j_commit_sequence = journal->j_transaction_sequence - 1; 1734 journal->j_commit_request = journal->j_commit_sequence; 1735 1736 /* 1737 * Now that journal recovery is done, turn fast commits off here. This 1738 * way, if fast commit was enabled before the crash but if now FS has 1739 * disabled it, we don't enable fast commits. 1740 */ 1741 jbd2_clear_feature_fast_commit(journal); 1742 1743 /* 1744 * As a special case, if the on-disk copy is already marked as needing 1745 * no recovery (s_start == 0), then we can safely defer the superblock 1746 * update until the next commit by setting JBD2_FLUSHED. This avoids 1747 * attempting a write to a potential-readonly device. 1748 */ 1749 if (sb->s_start == 0) { 1750 jbd2_debug(1, "JBD2: Skipping superblock update on recovered sb " 1751 "(start %ld, seq %u, errno %d)\n", 1752 journal->j_tail, journal->j_tail_sequence, 1753 journal->j_errno); 1754 journal->j_flags |= JBD2_FLUSHED; 1755 } else { 1756 /* Lock here to make assertions happy... */ 1757 mutex_lock_io(&journal->j_checkpoint_mutex); 1758 /* 1759 * Update log tail information. We use REQ_FUA since new 1760 * transaction will start reusing journal space and so we 1761 * must make sure information about current log tail is on 1762 * disk before that. 1763 */ 1764 jbd2_journal_update_sb_log_tail(journal, 1765 journal->j_tail_sequence, 1766 journal->j_tail, REQ_FUA); 1767 mutex_unlock(&journal->j_checkpoint_mutex); 1768 } 1769 return jbd2_journal_start_thread(journal); 1770 } 1771 1772 /* 1773 * This function expects that the caller will have locked the journal 1774 * buffer head, and will return with it unlocked 1775 */ 1776 static int jbd2_write_superblock(journal_t *journal, blk_opf_t write_flags) 1777 { 1778 struct buffer_head *bh = journal->j_sb_buffer; 1779 journal_superblock_t *sb = journal->j_superblock; 1780 int ret = 0; 1781 1782 /* Buffer got discarded which means block device got invalidated */ 1783 if (!buffer_mapped(bh)) { 1784 unlock_buffer(bh); 1785 return -EIO; 1786 } 1787 1788 /* 1789 * Always set high priority flags to exempt from block layer's 1790 * QOS policies, e.g. writeback throttle. 1791 */ 1792 write_flags |= JBD2_JOURNAL_REQ_FLAGS; 1793 if (!(journal->j_flags & JBD2_BARRIER)) 1794 write_flags &= ~(REQ_FUA | REQ_PREFLUSH); 1795 1796 trace_jbd2_write_superblock(journal, write_flags); 1797 1798 if (buffer_write_io_error(bh)) { 1799 /* 1800 * Oh, dear. A previous attempt to write the journal 1801 * superblock failed. This could happen because the 1802 * USB device was yanked out. Or it could happen to 1803 * be a transient write error and maybe the block will 1804 * be remapped. Nothing we can do but to retry the 1805 * write and hope for the best. 1806 */ 1807 printk(KERN_ERR "JBD2: previous I/O error detected " 1808 "for journal superblock update for %s.\n", 1809 journal->j_devname); 1810 clear_buffer_write_io_error(bh); 1811 set_buffer_uptodate(bh); 1812 } 1813 if (jbd2_journal_has_csum_v2or3(journal)) 1814 sb->s_checksum = jbd2_superblock_csum(journal, sb); 1815 get_bh(bh); 1816 bh->b_end_io = end_buffer_write_sync; 1817 submit_bh(REQ_OP_WRITE | write_flags, bh); 1818 wait_on_buffer(bh); 1819 if (buffer_write_io_error(bh)) { 1820 clear_buffer_write_io_error(bh); 1821 set_buffer_uptodate(bh); 1822 ret = -EIO; 1823 } 1824 if (ret) { 1825 printk(KERN_ERR "JBD2: I/O error when updating journal superblock for %s.\n", 1826 journal->j_devname); 1827 if (!is_journal_aborted(journal)) 1828 jbd2_journal_abort(journal, ret); 1829 } 1830 1831 return ret; 1832 } 1833 1834 /** 1835 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk. 1836 * @journal: The journal to update. 1837 * @tail_tid: TID of the new transaction at the tail of the log 1838 * @tail_block: The first block of the transaction at the tail of the log 1839 * @write_flags: Flags for the journal sb write operation 1840 * 1841 * Update a journal's superblock information about log tail and write it to 1842 * disk, waiting for the IO to complete. 1843 */ 1844 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid, 1845 unsigned long tail_block, 1846 blk_opf_t write_flags) 1847 { 1848 journal_superblock_t *sb = journal->j_superblock; 1849 int ret; 1850 1851 if (is_journal_aborted(journal)) 1852 return -EIO; 1853 if (jbd2_check_fs_dev_write_error(journal)) { 1854 jbd2_journal_abort(journal, -EIO); 1855 return -EIO; 1856 } 1857 1858 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1859 jbd2_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n", 1860 tail_block, tail_tid); 1861 1862 lock_buffer(journal->j_sb_buffer); 1863 sb->s_sequence = cpu_to_be32(tail_tid); 1864 sb->s_start = cpu_to_be32(tail_block); 1865 1866 ret = jbd2_write_superblock(journal, write_flags); 1867 if (ret) 1868 goto out; 1869 1870 /* Log is no longer empty */ 1871 write_lock(&journal->j_state_lock); 1872 WARN_ON(!sb->s_sequence); 1873 journal->j_flags &= ~JBD2_FLUSHED; 1874 write_unlock(&journal->j_state_lock); 1875 1876 out: 1877 return ret; 1878 } 1879 1880 /** 1881 * jbd2_mark_journal_empty() - Mark on disk journal as empty. 1882 * @journal: The journal to update. 1883 * @write_flags: Flags for the journal sb write operation 1884 * 1885 * Update a journal's dynamic superblock fields to show that journal is empty. 1886 * Write updated superblock to disk waiting for IO to complete. 1887 */ 1888 static void jbd2_mark_journal_empty(journal_t *journal, blk_opf_t write_flags) 1889 { 1890 journal_superblock_t *sb = journal->j_superblock; 1891 bool had_fast_commit = false; 1892 1893 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1894 lock_buffer(journal->j_sb_buffer); 1895 if (sb->s_start == 0) { /* Is it already empty? */ 1896 unlock_buffer(journal->j_sb_buffer); 1897 return; 1898 } 1899 1900 jbd2_debug(1, "JBD2: Marking journal as empty (seq %u)\n", 1901 journal->j_tail_sequence); 1902 1903 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence); 1904 sb->s_start = cpu_to_be32(0); 1905 sb->s_head = cpu_to_be32(journal->j_head); 1906 if (jbd2_has_feature_fast_commit(journal)) { 1907 /* 1908 * When journal is clean, no need to commit fast commit flag and 1909 * make file system incompatible with older kernels. 1910 */ 1911 jbd2_clear_feature_fast_commit(journal); 1912 had_fast_commit = true; 1913 } 1914 1915 jbd2_write_superblock(journal, write_flags); 1916 1917 if (had_fast_commit) 1918 jbd2_set_feature_fast_commit(journal); 1919 1920 /* Log is empty */ 1921 write_lock(&journal->j_state_lock); 1922 journal->j_flags |= JBD2_FLUSHED; 1923 write_unlock(&journal->j_state_lock); 1924 } 1925 1926 /** 1927 * __jbd2_journal_erase() - Discard or zeroout journal blocks (excluding superblock) 1928 * @journal: The journal to erase. 1929 * @flags: A discard/zeroout request is sent for each physically contigous 1930 * region of the journal. Either JBD2_JOURNAL_FLUSH_DISCARD or 1931 * JBD2_JOURNAL_FLUSH_ZEROOUT must be set to determine which operation 1932 * to perform. 1933 * 1934 * Note: JBD2_JOURNAL_FLUSH_ZEROOUT attempts to use hardware offload. Zeroes 1935 * will be explicitly written if no hardware offload is available, see 1936 * blkdev_issue_zeroout for more details. 1937 */ 1938 static int __jbd2_journal_erase(journal_t *journal, unsigned int flags) 1939 { 1940 int err = 0; 1941 unsigned long block, log_offset; /* logical */ 1942 unsigned long long phys_block, block_start, block_stop; /* physical */ 1943 loff_t byte_start, byte_stop, byte_count; 1944 1945 /* flags must be set to either discard or zeroout */ 1946 if ((flags & ~JBD2_JOURNAL_FLUSH_VALID) || !flags || 1947 ((flags & JBD2_JOURNAL_FLUSH_DISCARD) && 1948 (flags & JBD2_JOURNAL_FLUSH_ZEROOUT))) 1949 return -EINVAL; 1950 1951 if ((flags & JBD2_JOURNAL_FLUSH_DISCARD) && 1952 !bdev_max_discard_sectors(journal->j_dev)) 1953 return -EOPNOTSUPP; 1954 1955 /* 1956 * lookup block mapping and issue discard/zeroout for each 1957 * contiguous region 1958 */ 1959 log_offset = be32_to_cpu(journal->j_superblock->s_first); 1960 block_start = ~0ULL; 1961 for (block = log_offset; block < journal->j_total_len; block++) { 1962 err = jbd2_journal_bmap(journal, block, &phys_block); 1963 if (err) { 1964 pr_err("JBD2: bad block at offset %lu", block); 1965 return err; 1966 } 1967 1968 if (block_start == ~0ULL) { 1969 block_start = phys_block; 1970 block_stop = block_start - 1; 1971 } 1972 1973 /* 1974 * last block not contiguous with current block, 1975 * process last contiguous region and return to this block on 1976 * next loop 1977 */ 1978 if (phys_block != block_stop + 1) { 1979 block--; 1980 } else { 1981 block_stop++; 1982 /* 1983 * if this isn't the last block of journal, 1984 * no need to process now because next block may also 1985 * be part of this contiguous region 1986 */ 1987 if (block != journal->j_total_len - 1) 1988 continue; 1989 } 1990 1991 /* 1992 * end of contiguous region or this is last block of journal, 1993 * take care of the region 1994 */ 1995 byte_start = block_start * journal->j_blocksize; 1996 byte_stop = block_stop * journal->j_blocksize; 1997 byte_count = (block_stop - block_start + 1) * 1998 journal->j_blocksize; 1999 2000 truncate_inode_pages_range(journal->j_dev->bd_mapping, 2001 byte_start, byte_stop); 2002 2003 if (flags & JBD2_JOURNAL_FLUSH_DISCARD) { 2004 err = blkdev_issue_discard(journal->j_dev, 2005 byte_start >> SECTOR_SHIFT, 2006 byte_count >> SECTOR_SHIFT, 2007 GFP_NOFS); 2008 } else if (flags & JBD2_JOURNAL_FLUSH_ZEROOUT) { 2009 err = blkdev_issue_zeroout(journal->j_dev, 2010 byte_start >> SECTOR_SHIFT, 2011 byte_count >> SECTOR_SHIFT, 2012 GFP_NOFS, 0); 2013 } 2014 2015 if (unlikely(err != 0)) { 2016 pr_err("JBD2: (error %d) unable to wipe journal at physical blocks %llu - %llu", 2017 err, block_start, block_stop); 2018 return err; 2019 } 2020 2021 /* reset start and stop after processing a region */ 2022 block_start = ~0ULL; 2023 } 2024 2025 return blkdev_issue_flush(journal->j_dev); 2026 } 2027 2028 /** 2029 * jbd2_journal_update_sb_errno() - Update error in the journal. 2030 * @journal: The journal to update. 2031 * 2032 * Update a journal's errno. Write updated superblock to disk waiting for IO 2033 * to complete. 2034 */ 2035 void jbd2_journal_update_sb_errno(journal_t *journal) 2036 { 2037 journal_superblock_t *sb = journal->j_superblock; 2038 int errcode; 2039 2040 lock_buffer(journal->j_sb_buffer); 2041 errcode = journal->j_errno; 2042 if (errcode == -ESHUTDOWN) 2043 errcode = 0; 2044 jbd2_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode); 2045 sb->s_errno = cpu_to_be32(errcode); 2046 2047 jbd2_write_superblock(journal, REQ_FUA); 2048 } 2049 EXPORT_SYMBOL(jbd2_journal_update_sb_errno); 2050 2051 /** 2052 * jbd2_journal_load() - Read journal from disk. 2053 * @journal: Journal to act on. 2054 * 2055 * Given a journal_t structure which tells us which disk blocks contain 2056 * a journal, read the journal from disk to initialise the in-memory 2057 * structures. 2058 */ 2059 int jbd2_journal_load(journal_t *journal) 2060 { 2061 int err; 2062 journal_superblock_t *sb = journal->j_superblock; 2063 2064 /* 2065 * Create a slab for this blocksize 2066 */ 2067 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize)); 2068 if (err) 2069 return err; 2070 2071 /* Let the recovery code check whether it needs to recover any 2072 * data from the journal. */ 2073 err = jbd2_journal_recover(journal); 2074 if (err) { 2075 pr_warn("JBD2: journal recovery failed\n"); 2076 return err; 2077 } 2078 2079 if (journal->j_failed_commit) { 2080 printk(KERN_ERR "JBD2: journal transaction %u on %s " 2081 "is corrupt.\n", journal->j_failed_commit, 2082 journal->j_devname); 2083 return -EFSCORRUPTED; 2084 } 2085 /* 2086 * clear JBD2_ABORT flag initialized in journal_init_common 2087 * here to update log tail information with the newest seq. 2088 */ 2089 journal->j_flags &= ~JBD2_ABORT; 2090 2091 /* OK, we've finished with the dynamic journal bits: 2092 * reinitialise the dynamic contents of the superblock in memory 2093 * and reset them on disk. */ 2094 err = journal_reset(journal); 2095 if (err) { 2096 pr_warn("JBD2: journal reset failed\n"); 2097 return err; 2098 } 2099 2100 journal->j_flags |= JBD2_LOADED; 2101 return 0; 2102 } 2103 2104 /** 2105 * jbd2_journal_destroy() - Release a journal_t structure. 2106 * @journal: Journal to act on. 2107 * 2108 * Release a journal_t structure once it is no longer in use by the 2109 * journaled object. 2110 * Return <0 if we couldn't clean up the journal. 2111 */ 2112 int jbd2_journal_destroy(journal_t *journal) 2113 { 2114 int err = 0; 2115 2116 /* Wait for the commit thread to wake up and die. */ 2117 journal_kill_thread(journal); 2118 2119 /* Force a final log commit */ 2120 if (journal->j_running_transaction) 2121 jbd2_journal_commit_transaction(journal); 2122 2123 /* Force any old transactions to disk */ 2124 2125 /* Totally anal locking here... */ 2126 spin_lock(&journal->j_list_lock); 2127 while (journal->j_checkpoint_transactions != NULL) { 2128 spin_unlock(&journal->j_list_lock); 2129 mutex_lock_io(&journal->j_checkpoint_mutex); 2130 err = jbd2_log_do_checkpoint(journal); 2131 mutex_unlock(&journal->j_checkpoint_mutex); 2132 /* 2133 * If checkpointing failed, just free the buffers to avoid 2134 * looping forever 2135 */ 2136 if (err) { 2137 jbd2_journal_destroy_checkpoint(journal); 2138 spin_lock(&journal->j_list_lock); 2139 break; 2140 } 2141 spin_lock(&journal->j_list_lock); 2142 } 2143 2144 J_ASSERT(journal->j_running_transaction == NULL); 2145 J_ASSERT(journal->j_committing_transaction == NULL); 2146 J_ASSERT(journal->j_checkpoint_transactions == NULL); 2147 spin_unlock(&journal->j_list_lock); 2148 2149 /* 2150 * OK, all checkpoint transactions have been checked, now check the 2151 * writeback errseq of fs dev and abort the journal if some buffer 2152 * failed to write back to the original location, otherwise the 2153 * filesystem may become inconsistent. 2154 */ 2155 if (!is_journal_aborted(journal) && 2156 jbd2_check_fs_dev_write_error(journal)) 2157 jbd2_journal_abort(journal, -EIO); 2158 2159 if (journal->j_sb_buffer) { 2160 if (!is_journal_aborted(journal)) { 2161 mutex_lock_io(&journal->j_checkpoint_mutex); 2162 2163 write_lock(&journal->j_state_lock); 2164 journal->j_tail_sequence = 2165 ++journal->j_transaction_sequence; 2166 write_unlock(&journal->j_state_lock); 2167 2168 jbd2_mark_journal_empty(journal, REQ_PREFLUSH | REQ_FUA); 2169 mutex_unlock(&journal->j_checkpoint_mutex); 2170 } else 2171 err = -EIO; 2172 brelse(journal->j_sb_buffer); 2173 } 2174 2175 if (journal->j_shrinker) { 2176 percpu_counter_destroy(&journal->j_checkpoint_jh_count); 2177 shrinker_free(journal->j_shrinker); 2178 } 2179 if (journal->j_proc_entry) 2180 jbd2_stats_proc_exit(journal); 2181 iput(journal->j_inode); 2182 if (journal->j_revoke) 2183 jbd2_journal_destroy_revoke(journal); 2184 kfree(journal->j_fc_wbuf); 2185 kfree(journal->j_wbuf); 2186 kfree(journal); 2187 2188 return err; 2189 } 2190 2191 2192 /** 2193 * jbd2_journal_check_used_features() - Check if features specified are used. 2194 * @journal: Journal to check. 2195 * @compat: bitmask of compatible features 2196 * @ro: bitmask of features that force read-only mount 2197 * @incompat: bitmask of incompatible features 2198 * 2199 * Check whether the journal uses all of a given set of 2200 * features. Return true (non-zero) if it does. 2201 **/ 2202 2203 int jbd2_journal_check_used_features(journal_t *journal, unsigned long compat, 2204 unsigned long ro, unsigned long incompat) 2205 { 2206 journal_superblock_t *sb; 2207 2208 if (!compat && !ro && !incompat) 2209 return 1; 2210 if (!jbd2_format_support_feature(journal)) 2211 return 0; 2212 2213 sb = journal->j_superblock; 2214 2215 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) && 2216 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) && 2217 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat)) 2218 return 1; 2219 2220 return 0; 2221 } 2222 2223 /** 2224 * jbd2_journal_check_available_features() - Check feature set in journalling layer 2225 * @journal: Journal to check. 2226 * @compat: bitmask of compatible features 2227 * @ro: bitmask of features that force read-only mount 2228 * @incompat: bitmask of incompatible features 2229 * 2230 * Check whether the journaling code supports the use of 2231 * all of a given set of features on this journal. Return true 2232 * (non-zero) if it can. */ 2233 2234 int jbd2_journal_check_available_features(journal_t *journal, unsigned long compat, 2235 unsigned long ro, unsigned long incompat) 2236 { 2237 if (!compat && !ro && !incompat) 2238 return 1; 2239 2240 if (!jbd2_format_support_feature(journal)) 2241 return 0; 2242 2243 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat && 2244 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro && 2245 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat) 2246 return 1; 2247 2248 return 0; 2249 } 2250 2251 static int 2252 jbd2_journal_initialize_fast_commit(journal_t *journal) 2253 { 2254 journal_superblock_t *sb = journal->j_superblock; 2255 unsigned long long num_fc_blks; 2256 2257 num_fc_blks = jbd2_journal_get_num_fc_blks(sb); 2258 if (journal->j_last - num_fc_blks < JBD2_MIN_JOURNAL_BLOCKS) 2259 return -ENOSPC; 2260 2261 /* Are we called twice? */ 2262 WARN_ON(journal->j_fc_wbuf != NULL); 2263 journal->j_fc_wbuf = kmalloc_array(num_fc_blks, 2264 sizeof(struct buffer_head *), GFP_KERNEL); 2265 if (!journal->j_fc_wbuf) 2266 return -ENOMEM; 2267 2268 journal->j_fc_wbufsize = num_fc_blks; 2269 journal->j_fc_last = journal->j_last; 2270 journal->j_last = journal->j_fc_last - num_fc_blks; 2271 journal->j_fc_first = journal->j_last + 1; 2272 journal->j_fc_off = 0; 2273 journal->j_free = journal->j_last - journal->j_first; 2274 2275 return 0; 2276 } 2277 2278 /** 2279 * jbd2_journal_set_features() - Mark a given journal feature in the superblock 2280 * @journal: Journal to act on. 2281 * @compat: bitmask of compatible features 2282 * @ro: bitmask of features that force read-only mount 2283 * @incompat: bitmask of incompatible features 2284 * 2285 * Mark a given journal feature as present on the 2286 * superblock. Returns true if the requested features could be set. 2287 * 2288 */ 2289 2290 int jbd2_journal_set_features(journal_t *journal, unsigned long compat, 2291 unsigned long ro, unsigned long incompat) 2292 { 2293 #define INCOMPAT_FEATURE_ON(f) \ 2294 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f))) 2295 #define COMPAT_FEATURE_ON(f) \ 2296 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f))) 2297 journal_superblock_t *sb; 2298 2299 if (jbd2_journal_check_used_features(journal, compat, ro, incompat)) 2300 return 1; 2301 2302 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat)) 2303 return 0; 2304 2305 /* If enabling v2 checksums, turn on v3 instead */ 2306 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) { 2307 incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2; 2308 incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3; 2309 } 2310 2311 /* Asking for checksumming v3 and v1? Only give them v3. */ 2312 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 && 2313 compat & JBD2_FEATURE_COMPAT_CHECKSUM) 2314 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM; 2315 2316 jbd2_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n", 2317 compat, ro, incompat); 2318 2319 sb = journal->j_superblock; 2320 2321 if (incompat & JBD2_FEATURE_INCOMPAT_FAST_COMMIT) { 2322 if (jbd2_journal_initialize_fast_commit(journal)) { 2323 pr_err("JBD2: Cannot enable fast commits.\n"); 2324 return 0; 2325 } 2326 } 2327 2328 lock_buffer(journal->j_sb_buffer); 2329 2330 /* If enabling v3 checksums, update superblock and precompute seed */ 2331 if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) { 2332 sb->s_checksum_type = JBD2_CRC32C_CHKSUM; 2333 sb->s_feature_compat &= 2334 ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM); 2335 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid, 2336 sizeof(sb->s_uuid)); 2337 } 2338 2339 /* If enabling v1 checksums, downgrade superblock */ 2340 if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM)) 2341 sb->s_feature_incompat &= 2342 ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 | 2343 JBD2_FEATURE_INCOMPAT_CSUM_V3); 2344 2345 sb->s_feature_compat |= cpu_to_be32(compat); 2346 sb->s_feature_ro_compat |= cpu_to_be32(ro); 2347 sb->s_feature_incompat |= cpu_to_be32(incompat); 2348 unlock_buffer(journal->j_sb_buffer); 2349 jbd2_journal_init_transaction_limits(journal); 2350 2351 return 1; 2352 #undef COMPAT_FEATURE_ON 2353 #undef INCOMPAT_FEATURE_ON 2354 } 2355 2356 /* 2357 * jbd2_journal_clear_features() - Clear a given journal feature in the 2358 * superblock 2359 * @journal: Journal to act on. 2360 * @compat: bitmask of compatible features 2361 * @ro: bitmask of features that force read-only mount 2362 * @incompat: bitmask of incompatible features 2363 * 2364 * Clear a given journal feature as present on the 2365 * superblock. 2366 */ 2367 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat, 2368 unsigned long ro, unsigned long incompat) 2369 { 2370 journal_superblock_t *sb; 2371 2372 jbd2_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n", 2373 compat, ro, incompat); 2374 2375 sb = journal->j_superblock; 2376 2377 sb->s_feature_compat &= ~cpu_to_be32(compat); 2378 sb->s_feature_ro_compat &= ~cpu_to_be32(ro); 2379 sb->s_feature_incompat &= ~cpu_to_be32(incompat); 2380 jbd2_journal_init_transaction_limits(journal); 2381 } 2382 EXPORT_SYMBOL(jbd2_journal_clear_features); 2383 2384 /** 2385 * jbd2_journal_flush() - Flush journal 2386 * @journal: Journal to act on. 2387 * @flags: optional operation on the journal blocks after the flush (see below) 2388 * 2389 * Flush all data for a given journal to disk and empty the journal. 2390 * Filesystems can use this when remounting readonly to ensure that 2391 * recovery does not need to happen on remount. Optionally, a discard or zeroout 2392 * can be issued on the journal blocks after flushing. 2393 * 2394 * flags: 2395 * JBD2_JOURNAL_FLUSH_DISCARD: issues discards for the journal blocks 2396 * JBD2_JOURNAL_FLUSH_ZEROOUT: issues zeroouts for the journal blocks 2397 */ 2398 int jbd2_journal_flush(journal_t *journal, unsigned int flags) 2399 { 2400 int err = 0; 2401 transaction_t *transaction = NULL; 2402 2403 write_lock(&journal->j_state_lock); 2404 2405 /* Force everything buffered to the log... */ 2406 if (journal->j_running_transaction) { 2407 transaction = journal->j_running_transaction; 2408 __jbd2_log_start_commit(journal, transaction->t_tid); 2409 } else if (journal->j_committing_transaction) 2410 transaction = journal->j_committing_transaction; 2411 2412 /* Wait for the log commit to complete... */ 2413 if (transaction) { 2414 tid_t tid = transaction->t_tid; 2415 2416 write_unlock(&journal->j_state_lock); 2417 jbd2_log_wait_commit(journal, tid); 2418 } else { 2419 write_unlock(&journal->j_state_lock); 2420 } 2421 2422 /* ...and flush everything in the log out to disk. */ 2423 spin_lock(&journal->j_list_lock); 2424 while (!err && journal->j_checkpoint_transactions != NULL) { 2425 spin_unlock(&journal->j_list_lock); 2426 mutex_lock_io(&journal->j_checkpoint_mutex); 2427 err = jbd2_log_do_checkpoint(journal); 2428 mutex_unlock(&journal->j_checkpoint_mutex); 2429 spin_lock(&journal->j_list_lock); 2430 } 2431 spin_unlock(&journal->j_list_lock); 2432 2433 if (is_journal_aborted(journal)) 2434 return -EIO; 2435 2436 mutex_lock_io(&journal->j_checkpoint_mutex); 2437 if (!err) { 2438 err = jbd2_cleanup_journal_tail(journal); 2439 if (err < 0) { 2440 mutex_unlock(&journal->j_checkpoint_mutex); 2441 goto out; 2442 } 2443 err = 0; 2444 } 2445 2446 /* Finally, mark the journal as really needing no recovery. 2447 * This sets s_start==0 in the underlying superblock, which is 2448 * the magic code for a fully-recovered superblock. Any future 2449 * commits of data to the journal will restore the current 2450 * s_start value. */ 2451 jbd2_mark_journal_empty(journal, REQ_FUA); 2452 2453 if (flags) 2454 err = __jbd2_journal_erase(journal, flags); 2455 2456 mutex_unlock(&journal->j_checkpoint_mutex); 2457 write_lock(&journal->j_state_lock); 2458 J_ASSERT(!journal->j_running_transaction); 2459 J_ASSERT(!journal->j_committing_transaction); 2460 J_ASSERT(!journal->j_checkpoint_transactions); 2461 J_ASSERT(journal->j_head == journal->j_tail); 2462 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence); 2463 write_unlock(&journal->j_state_lock); 2464 out: 2465 return err; 2466 } 2467 2468 /** 2469 * jbd2_journal_wipe() - Wipe journal contents 2470 * @journal: Journal to act on. 2471 * @write: flag (see below) 2472 * 2473 * Wipe out all of the contents of a journal, safely. This will produce 2474 * a warning if the journal contains any valid recovery information. 2475 * Must be called between journal_init_*() and jbd2_journal_load(). 2476 * 2477 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise 2478 * we merely suppress recovery. 2479 */ 2480 2481 int jbd2_journal_wipe(journal_t *journal, int write) 2482 { 2483 int err; 2484 2485 J_ASSERT (!(journal->j_flags & JBD2_LOADED)); 2486 2487 if (!journal->j_tail) 2488 return 0; 2489 2490 printk(KERN_WARNING "JBD2: %s recovery information on journal\n", 2491 write ? "Clearing" : "Ignoring"); 2492 2493 err = jbd2_journal_skip_recovery(journal); 2494 if (write) { 2495 /* Lock to make assertions happy... */ 2496 mutex_lock_io(&journal->j_checkpoint_mutex); 2497 jbd2_mark_journal_empty(journal, REQ_FUA); 2498 mutex_unlock(&journal->j_checkpoint_mutex); 2499 } 2500 2501 return err; 2502 } 2503 2504 /** 2505 * jbd2_journal_abort () - Shutdown the journal immediately. 2506 * @journal: the journal to shutdown. 2507 * @errno: an error number to record in the journal indicating 2508 * the reason for the shutdown. 2509 * 2510 * Perform a complete, immediate shutdown of the ENTIRE 2511 * journal (not of a single transaction). This operation cannot be 2512 * undone without closing and reopening the journal. 2513 * 2514 * The jbd2_journal_abort function is intended to support higher level error 2515 * recovery mechanisms such as the ext2/ext3 remount-readonly error 2516 * mode. 2517 * 2518 * Journal abort has very specific semantics. Any existing dirty, 2519 * unjournaled buffers in the main filesystem will still be written to 2520 * disk by bdflush, but the journaling mechanism will be suspended 2521 * immediately and no further transaction commits will be honoured. 2522 * 2523 * Any dirty, journaled buffers will be written back to disk without 2524 * hitting the journal. Atomicity cannot be guaranteed on an aborted 2525 * filesystem, but we _do_ attempt to leave as much data as possible 2526 * behind for fsck to use for cleanup. 2527 * 2528 * Any attempt to get a new transaction handle on a journal which is in 2529 * ABORT state will just result in an -EROFS error return. A 2530 * jbd2_journal_stop on an existing handle will return -EIO if we have 2531 * entered abort state during the update. 2532 * 2533 * Recursive transactions are not disturbed by journal abort until the 2534 * final jbd2_journal_stop, which will receive the -EIO error. 2535 * 2536 * Finally, the jbd2_journal_abort call allows the caller to supply an errno 2537 * which will be recorded (if possible) in the journal superblock. This 2538 * allows a client to record failure conditions in the middle of a 2539 * transaction without having to complete the transaction to record the 2540 * failure to disk. ext3_error, for example, now uses this 2541 * functionality. 2542 * 2543 */ 2544 2545 void jbd2_journal_abort(journal_t *journal, int errno) 2546 { 2547 transaction_t *transaction; 2548 2549 /* 2550 * Lock the aborting procedure until everything is done, this avoid 2551 * races between filesystem's error handling flow (e.g. ext4_abort()), 2552 * ensure panic after the error info is written into journal's 2553 * superblock. 2554 */ 2555 mutex_lock(&journal->j_abort_mutex); 2556 /* 2557 * ESHUTDOWN always takes precedence because a file system check 2558 * caused by any other journal abort error is not required after 2559 * a shutdown triggered. 2560 */ 2561 write_lock(&journal->j_state_lock); 2562 if (journal->j_flags & JBD2_ABORT) { 2563 int old_errno = journal->j_errno; 2564 2565 write_unlock(&journal->j_state_lock); 2566 if (old_errno != -ESHUTDOWN && errno == -ESHUTDOWN) { 2567 journal->j_errno = errno; 2568 jbd2_journal_update_sb_errno(journal); 2569 } 2570 mutex_unlock(&journal->j_abort_mutex); 2571 return; 2572 } 2573 2574 /* 2575 * Mark the abort as occurred and start current running transaction 2576 * to release all journaled buffer. 2577 */ 2578 pr_err("Aborting journal on device %s.\n", journal->j_devname); 2579 2580 journal->j_flags |= JBD2_ABORT; 2581 journal->j_errno = errno; 2582 transaction = journal->j_running_transaction; 2583 if (transaction) 2584 __jbd2_log_start_commit(journal, transaction->t_tid); 2585 write_unlock(&journal->j_state_lock); 2586 2587 /* 2588 * Record errno to the journal super block, so that fsck and jbd2 2589 * layer could realise that a filesystem check is needed. 2590 */ 2591 jbd2_journal_update_sb_errno(journal); 2592 mutex_unlock(&journal->j_abort_mutex); 2593 } 2594 2595 /** 2596 * jbd2_journal_errno() - returns the journal's error state. 2597 * @journal: journal to examine. 2598 * 2599 * This is the errno number set with jbd2_journal_abort(), the last 2600 * time the journal was mounted - if the journal was stopped 2601 * without calling abort this will be 0. 2602 * 2603 * If the journal has been aborted on this mount time -EROFS will 2604 * be returned. 2605 */ 2606 int jbd2_journal_errno(journal_t *journal) 2607 { 2608 int err; 2609 2610 read_lock(&journal->j_state_lock); 2611 if (journal->j_flags & JBD2_ABORT) 2612 err = -EROFS; 2613 else 2614 err = journal->j_errno; 2615 read_unlock(&journal->j_state_lock); 2616 return err; 2617 } 2618 2619 /** 2620 * jbd2_journal_clear_err() - clears the journal's error state 2621 * @journal: journal to act on. 2622 * 2623 * An error must be cleared or acked to take a FS out of readonly 2624 * mode. 2625 */ 2626 int jbd2_journal_clear_err(journal_t *journal) 2627 { 2628 int err = 0; 2629 2630 write_lock(&journal->j_state_lock); 2631 if (journal->j_flags & JBD2_ABORT) 2632 err = -EROFS; 2633 else 2634 journal->j_errno = 0; 2635 write_unlock(&journal->j_state_lock); 2636 return err; 2637 } 2638 2639 /** 2640 * jbd2_journal_ack_err() - Ack journal err. 2641 * @journal: journal to act on. 2642 * 2643 * An error must be cleared or acked to take a FS out of readonly 2644 * mode. 2645 */ 2646 void jbd2_journal_ack_err(journal_t *journal) 2647 { 2648 write_lock(&journal->j_state_lock); 2649 if (journal->j_errno) 2650 journal->j_flags |= JBD2_ACK_ERR; 2651 write_unlock(&journal->j_state_lock); 2652 } 2653 2654 int jbd2_journal_blocks_per_page(struct inode *inode) 2655 { 2656 return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 2657 } 2658 2659 /* 2660 * helper functions to deal with 32 or 64bit block numbers. 2661 */ 2662 size_t journal_tag_bytes(journal_t *journal) 2663 { 2664 size_t sz; 2665 2666 if (jbd2_has_feature_csum3(journal)) 2667 return sizeof(journal_block_tag3_t); 2668 2669 sz = sizeof(journal_block_tag_t); 2670 2671 if (jbd2_has_feature_csum2(journal)) 2672 sz += sizeof(__u16); 2673 2674 if (jbd2_has_feature_64bit(journal)) 2675 return sz; 2676 else 2677 return sz - sizeof(__u32); 2678 } 2679 2680 /* 2681 * JBD memory management 2682 * 2683 * These functions are used to allocate block-sized chunks of memory 2684 * used for making copies of buffer_head data. Very often it will be 2685 * page-sized chunks of data, but sometimes it will be in 2686 * sub-page-size chunks. (For example, 16k pages on Power systems 2687 * with a 4k block file system.) For blocks smaller than a page, we 2688 * use a SLAB allocator. There are slab caches for each block size, 2689 * which are allocated at mount time, if necessary, and we only free 2690 * (all of) the slab caches when/if the jbd2 module is unloaded. For 2691 * this reason we don't need to a mutex to protect access to 2692 * jbd2_slab[] allocating or releasing memory; only in 2693 * jbd2_journal_create_slab(). 2694 */ 2695 #define JBD2_MAX_SLABS 8 2696 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS]; 2697 2698 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = { 2699 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k", 2700 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k" 2701 }; 2702 2703 2704 static void jbd2_journal_destroy_slabs(void) 2705 { 2706 int i; 2707 2708 for (i = 0; i < JBD2_MAX_SLABS; i++) { 2709 kmem_cache_destroy(jbd2_slab[i]); 2710 jbd2_slab[i] = NULL; 2711 } 2712 } 2713 2714 static int jbd2_journal_create_slab(size_t size) 2715 { 2716 static DEFINE_MUTEX(jbd2_slab_create_mutex); 2717 int i = order_base_2(size) - 10; 2718 size_t slab_size; 2719 2720 if (size == PAGE_SIZE) 2721 return 0; 2722 2723 if (i >= JBD2_MAX_SLABS) 2724 return -EINVAL; 2725 2726 if (unlikely(i < 0)) 2727 i = 0; 2728 mutex_lock(&jbd2_slab_create_mutex); 2729 if (jbd2_slab[i]) { 2730 mutex_unlock(&jbd2_slab_create_mutex); 2731 return 0; /* Already created */ 2732 } 2733 2734 slab_size = 1 << (i+10); 2735 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size, 2736 slab_size, 0, NULL); 2737 mutex_unlock(&jbd2_slab_create_mutex); 2738 if (!jbd2_slab[i]) { 2739 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n"); 2740 return -ENOMEM; 2741 } 2742 return 0; 2743 } 2744 2745 static struct kmem_cache *get_slab(size_t size) 2746 { 2747 int i = order_base_2(size) - 10; 2748 2749 BUG_ON(i >= JBD2_MAX_SLABS); 2750 if (unlikely(i < 0)) 2751 i = 0; 2752 BUG_ON(jbd2_slab[i] == NULL); 2753 return jbd2_slab[i]; 2754 } 2755 2756 void *jbd2_alloc(size_t size, gfp_t flags) 2757 { 2758 void *ptr; 2759 2760 BUG_ON(size & (size-1)); /* Must be a power of 2 */ 2761 2762 if (size < PAGE_SIZE) 2763 ptr = kmem_cache_alloc(get_slab(size), flags); 2764 else 2765 ptr = (void *)__get_free_pages(flags, get_order(size)); 2766 2767 /* Check alignment; SLUB has gotten this wrong in the past, 2768 * and this can lead to user data corruption! */ 2769 BUG_ON(((unsigned long) ptr) & (size-1)); 2770 2771 return ptr; 2772 } 2773 2774 void jbd2_free(void *ptr, size_t size) 2775 { 2776 if (size < PAGE_SIZE) 2777 kmem_cache_free(get_slab(size), ptr); 2778 else 2779 free_pages((unsigned long)ptr, get_order(size)); 2780 }; 2781 2782 /* 2783 * Journal_head storage management 2784 */ 2785 static struct kmem_cache *jbd2_journal_head_cache; 2786 #ifdef CONFIG_JBD2_DEBUG 2787 static atomic_t nr_journal_heads = ATOMIC_INIT(0); 2788 #endif 2789 2790 static int __init jbd2_journal_init_journal_head_cache(void) 2791 { 2792 J_ASSERT(!jbd2_journal_head_cache); 2793 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head", 2794 sizeof(struct journal_head), 2795 0, /* offset */ 2796 SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU, 2797 NULL); /* ctor */ 2798 if (!jbd2_journal_head_cache) { 2799 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n"); 2800 return -ENOMEM; 2801 } 2802 return 0; 2803 } 2804 2805 static void jbd2_journal_destroy_journal_head_cache(void) 2806 { 2807 kmem_cache_destroy(jbd2_journal_head_cache); 2808 jbd2_journal_head_cache = NULL; 2809 } 2810 2811 /* 2812 * journal_head splicing and dicing 2813 */ 2814 static struct journal_head *journal_alloc_journal_head(void) 2815 { 2816 struct journal_head *ret; 2817 2818 #ifdef CONFIG_JBD2_DEBUG 2819 atomic_inc(&nr_journal_heads); 2820 #endif 2821 ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS); 2822 if (!ret) { 2823 jbd2_debug(1, "out of memory for journal_head\n"); 2824 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__); 2825 ret = kmem_cache_zalloc(jbd2_journal_head_cache, 2826 GFP_NOFS | __GFP_NOFAIL); 2827 } 2828 spin_lock_init(&ret->b_state_lock); 2829 return ret; 2830 } 2831 2832 static void journal_free_journal_head(struct journal_head *jh) 2833 { 2834 #ifdef CONFIG_JBD2_DEBUG 2835 atomic_dec(&nr_journal_heads); 2836 memset(jh, JBD2_POISON_FREE, sizeof(*jh)); 2837 #endif 2838 kmem_cache_free(jbd2_journal_head_cache, jh); 2839 } 2840 2841 /* 2842 * A journal_head is attached to a buffer_head whenever JBD has an 2843 * interest in the buffer. 2844 * 2845 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit 2846 * is set. This bit is tested in core kernel code where we need to take 2847 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable 2848 * there. 2849 * 2850 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one. 2851 * 2852 * When a buffer has its BH_JBD bit set it is immune from being released by 2853 * core kernel code, mainly via ->b_count. 2854 * 2855 * A journal_head is detached from its buffer_head when the journal_head's 2856 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint 2857 * transaction (b_cp_transaction) hold their references to b_jcount. 2858 * 2859 * Various places in the kernel want to attach a journal_head to a buffer_head 2860 * _before_ attaching the journal_head to a transaction. To protect the 2861 * journal_head in this situation, jbd2_journal_add_journal_head elevates the 2862 * journal_head's b_jcount refcount by one. The caller must call 2863 * jbd2_journal_put_journal_head() to undo this. 2864 * 2865 * So the typical usage would be: 2866 * 2867 * (Attach a journal_head if needed. Increments b_jcount) 2868 * struct journal_head *jh = jbd2_journal_add_journal_head(bh); 2869 * ... 2870 * (Get another reference for transaction) 2871 * jbd2_journal_grab_journal_head(bh); 2872 * jh->b_transaction = xxx; 2873 * (Put original reference) 2874 * jbd2_journal_put_journal_head(jh); 2875 */ 2876 2877 /* 2878 * Give a buffer_head a journal_head. 2879 * 2880 * May sleep. 2881 */ 2882 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh) 2883 { 2884 struct journal_head *jh; 2885 struct journal_head *new_jh = NULL; 2886 2887 repeat: 2888 if (!buffer_jbd(bh)) 2889 new_jh = journal_alloc_journal_head(); 2890 2891 jbd_lock_bh_journal_head(bh); 2892 if (buffer_jbd(bh)) { 2893 jh = bh2jh(bh); 2894 } else { 2895 J_ASSERT_BH(bh, 2896 (atomic_read(&bh->b_count) > 0) || 2897 (bh->b_folio && bh->b_folio->mapping)); 2898 2899 if (!new_jh) { 2900 jbd_unlock_bh_journal_head(bh); 2901 goto repeat; 2902 } 2903 2904 jh = new_jh; 2905 new_jh = NULL; /* We consumed it */ 2906 set_buffer_jbd(bh); 2907 bh->b_private = jh; 2908 jh->b_bh = bh; 2909 get_bh(bh); 2910 BUFFER_TRACE(bh, "added journal_head"); 2911 } 2912 jh->b_jcount++; 2913 jbd_unlock_bh_journal_head(bh); 2914 if (new_jh) 2915 journal_free_journal_head(new_jh); 2916 return bh->b_private; 2917 } 2918 2919 /* 2920 * Grab a ref against this buffer_head's journal_head. If it ended up not 2921 * having a journal_head, return NULL 2922 */ 2923 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh) 2924 { 2925 struct journal_head *jh = NULL; 2926 2927 jbd_lock_bh_journal_head(bh); 2928 if (buffer_jbd(bh)) { 2929 jh = bh2jh(bh); 2930 jh->b_jcount++; 2931 } 2932 jbd_unlock_bh_journal_head(bh); 2933 return jh; 2934 } 2935 EXPORT_SYMBOL(jbd2_journal_grab_journal_head); 2936 2937 static void __journal_remove_journal_head(struct buffer_head *bh) 2938 { 2939 struct journal_head *jh = bh2jh(bh); 2940 2941 J_ASSERT_JH(jh, jh->b_transaction == NULL); 2942 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 2943 J_ASSERT_JH(jh, jh->b_cp_transaction == NULL); 2944 J_ASSERT_JH(jh, jh->b_jlist == BJ_None); 2945 J_ASSERT_BH(bh, buffer_jbd(bh)); 2946 J_ASSERT_BH(bh, jh2bh(jh) == bh); 2947 BUFFER_TRACE(bh, "remove journal_head"); 2948 2949 /* Unlink before dropping the lock */ 2950 bh->b_private = NULL; 2951 jh->b_bh = NULL; /* debug, really */ 2952 clear_buffer_jbd(bh); 2953 } 2954 2955 static void journal_release_journal_head(struct journal_head *jh, size_t b_size) 2956 { 2957 if (jh->b_frozen_data) { 2958 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__); 2959 jbd2_free(jh->b_frozen_data, b_size); 2960 } 2961 if (jh->b_committed_data) { 2962 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__); 2963 jbd2_free(jh->b_committed_data, b_size); 2964 } 2965 journal_free_journal_head(jh); 2966 } 2967 2968 /* 2969 * Drop a reference on the passed journal_head. If it fell to zero then 2970 * release the journal_head from the buffer_head. 2971 */ 2972 void jbd2_journal_put_journal_head(struct journal_head *jh) 2973 { 2974 struct buffer_head *bh = jh2bh(jh); 2975 2976 jbd_lock_bh_journal_head(bh); 2977 J_ASSERT_JH(jh, jh->b_jcount > 0); 2978 --jh->b_jcount; 2979 if (!jh->b_jcount) { 2980 __journal_remove_journal_head(bh); 2981 jbd_unlock_bh_journal_head(bh); 2982 journal_release_journal_head(jh, bh->b_size); 2983 __brelse(bh); 2984 } else { 2985 jbd_unlock_bh_journal_head(bh); 2986 } 2987 } 2988 EXPORT_SYMBOL(jbd2_journal_put_journal_head); 2989 2990 /* 2991 * Initialize jbd inode head 2992 */ 2993 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode) 2994 { 2995 jinode->i_transaction = NULL; 2996 jinode->i_next_transaction = NULL; 2997 jinode->i_vfs_inode = inode; 2998 jinode->i_flags = 0; 2999 jinode->i_dirty_start = 0; 3000 jinode->i_dirty_end = 0; 3001 INIT_LIST_HEAD(&jinode->i_list); 3002 } 3003 3004 /* 3005 * Function to be called before we start removing inode from memory (i.e., 3006 * clear_inode() is a fine place to be called from). It removes inode from 3007 * transaction's lists. 3008 */ 3009 void jbd2_journal_release_jbd_inode(journal_t *journal, 3010 struct jbd2_inode *jinode) 3011 { 3012 if (!journal) 3013 return; 3014 restart: 3015 spin_lock(&journal->j_list_lock); 3016 /* Is commit writing out inode - we have to wait */ 3017 if (jinode->i_flags & JI_COMMIT_RUNNING) { 3018 wait_queue_head_t *wq; 3019 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING); 3020 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING); 3021 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 3022 spin_unlock(&journal->j_list_lock); 3023 schedule(); 3024 finish_wait(wq, &wait.wq_entry); 3025 goto restart; 3026 } 3027 3028 if (jinode->i_transaction) { 3029 list_del(&jinode->i_list); 3030 jinode->i_transaction = NULL; 3031 } 3032 spin_unlock(&journal->j_list_lock); 3033 } 3034 3035 3036 #ifdef CONFIG_PROC_FS 3037 3038 #define JBD2_STATS_PROC_NAME "fs/jbd2" 3039 3040 static void __init jbd2_create_jbd_stats_proc_entry(void) 3041 { 3042 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL); 3043 } 3044 3045 static void __exit jbd2_remove_jbd_stats_proc_entry(void) 3046 { 3047 if (proc_jbd2_stats) 3048 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL); 3049 } 3050 3051 #else 3052 3053 #define jbd2_create_jbd_stats_proc_entry() do {} while (0) 3054 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0) 3055 3056 #endif 3057 3058 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache; 3059 3060 static int __init jbd2_journal_init_inode_cache(void) 3061 { 3062 J_ASSERT(!jbd2_inode_cache); 3063 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0); 3064 if (!jbd2_inode_cache) { 3065 pr_emerg("JBD2: failed to create inode cache\n"); 3066 return -ENOMEM; 3067 } 3068 return 0; 3069 } 3070 3071 static int __init jbd2_journal_init_handle_cache(void) 3072 { 3073 J_ASSERT(!jbd2_handle_cache); 3074 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY); 3075 if (!jbd2_handle_cache) { 3076 printk(KERN_EMERG "JBD2: failed to create handle cache\n"); 3077 return -ENOMEM; 3078 } 3079 return 0; 3080 } 3081 3082 static void jbd2_journal_destroy_inode_cache(void) 3083 { 3084 kmem_cache_destroy(jbd2_inode_cache); 3085 jbd2_inode_cache = NULL; 3086 } 3087 3088 static void jbd2_journal_destroy_handle_cache(void) 3089 { 3090 kmem_cache_destroy(jbd2_handle_cache); 3091 jbd2_handle_cache = NULL; 3092 } 3093 3094 /* 3095 * Module startup and shutdown 3096 */ 3097 3098 static int __init journal_init_caches(void) 3099 { 3100 int ret; 3101 3102 ret = jbd2_journal_init_revoke_record_cache(); 3103 if (ret == 0) 3104 ret = jbd2_journal_init_revoke_table_cache(); 3105 if (ret == 0) 3106 ret = jbd2_journal_init_journal_head_cache(); 3107 if (ret == 0) 3108 ret = jbd2_journal_init_handle_cache(); 3109 if (ret == 0) 3110 ret = jbd2_journal_init_inode_cache(); 3111 if (ret == 0) 3112 ret = jbd2_journal_init_transaction_cache(); 3113 return ret; 3114 } 3115 3116 static void jbd2_journal_destroy_caches(void) 3117 { 3118 jbd2_journal_destroy_revoke_record_cache(); 3119 jbd2_journal_destroy_revoke_table_cache(); 3120 jbd2_journal_destroy_journal_head_cache(); 3121 jbd2_journal_destroy_handle_cache(); 3122 jbd2_journal_destroy_inode_cache(); 3123 jbd2_journal_destroy_transaction_cache(); 3124 jbd2_journal_destroy_slabs(); 3125 } 3126 3127 static int __init journal_init(void) 3128 { 3129 int ret; 3130 3131 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024); 3132 3133 ret = journal_init_caches(); 3134 if (ret == 0) { 3135 jbd2_create_jbd_stats_proc_entry(); 3136 } else { 3137 jbd2_journal_destroy_caches(); 3138 } 3139 return ret; 3140 } 3141 3142 static void __exit journal_exit(void) 3143 { 3144 #ifdef CONFIG_JBD2_DEBUG 3145 int n = atomic_read(&nr_journal_heads); 3146 if (n) 3147 printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n); 3148 #endif 3149 jbd2_remove_jbd_stats_proc_entry(); 3150 jbd2_journal_destroy_caches(); 3151 } 3152 3153 MODULE_DESCRIPTION("Generic filesystem journal-writing module"); 3154 MODULE_LICENSE("GPL"); 3155 module_init(journal_init); 3156 module_exit(journal_exit); 3157 3158