1 /* 2 * linux/fs/jbd2/journal.c 3 * 4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 5 * 6 * Copyright 1998 Red Hat corp --- All Rights Reserved 7 * 8 * This file is part of the Linux kernel and is made available under 9 * the terms of the GNU General Public License, version 2, or at your 10 * option, any later version, incorporated herein by reference. 11 * 12 * Generic filesystem journal-writing code; part of the ext2fs 13 * journaling system. 14 * 15 * This file manages journals: areas of disk reserved for logging 16 * transactional updates. This includes the kernel journaling thread 17 * which is responsible for scheduling updates to the log. 18 * 19 * We do not actually manage the physical storage of the journal in this 20 * file: that is left to a per-journal policy function, which allows us 21 * to store the journal within a filesystem-specified area for ext2 22 * journaling (ext2 can use a reserved inode for storing the log). 23 */ 24 25 #include <linux/module.h> 26 #include <linux/time.h> 27 #include <linux/fs.h> 28 #include <linux/jbd2.h> 29 #include <linux/errno.h> 30 #include <linux/slab.h> 31 #include <linux/init.h> 32 #include <linux/mm.h> 33 #include <linux/freezer.h> 34 #include <linux/pagemap.h> 35 #include <linux/kthread.h> 36 #include <linux/poison.h> 37 #include <linux/proc_fs.h> 38 #include <linux/debugfs.h> 39 #include <linux/seq_file.h> 40 #include <linux/math64.h> 41 #include <linux/hash.h> 42 43 #define CREATE_TRACE_POINTS 44 #include <trace/events/jbd2.h> 45 46 #include <asm/uaccess.h> 47 #include <asm/page.h> 48 49 EXPORT_SYMBOL(jbd2_journal_start); 50 EXPORT_SYMBOL(jbd2_journal_restart); 51 EXPORT_SYMBOL(jbd2_journal_extend); 52 EXPORT_SYMBOL(jbd2_journal_stop); 53 EXPORT_SYMBOL(jbd2_journal_lock_updates); 54 EXPORT_SYMBOL(jbd2_journal_unlock_updates); 55 EXPORT_SYMBOL(jbd2_journal_get_write_access); 56 EXPORT_SYMBOL(jbd2_journal_get_create_access); 57 EXPORT_SYMBOL(jbd2_journal_get_undo_access); 58 EXPORT_SYMBOL(jbd2_journal_set_triggers); 59 EXPORT_SYMBOL(jbd2_journal_dirty_metadata); 60 EXPORT_SYMBOL(jbd2_journal_release_buffer); 61 EXPORT_SYMBOL(jbd2_journal_forget); 62 #if 0 63 EXPORT_SYMBOL(journal_sync_buffer); 64 #endif 65 EXPORT_SYMBOL(jbd2_journal_flush); 66 EXPORT_SYMBOL(jbd2_journal_revoke); 67 68 EXPORT_SYMBOL(jbd2_journal_init_dev); 69 EXPORT_SYMBOL(jbd2_journal_init_inode); 70 EXPORT_SYMBOL(jbd2_journal_update_format); 71 EXPORT_SYMBOL(jbd2_journal_check_used_features); 72 EXPORT_SYMBOL(jbd2_journal_check_available_features); 73 EXPORT_SYMBOL(jbd2_journal_set_features); 74 EXPORT_SYMBOL(jbd2_journal_load); 75 EXPORT_SYMBOL(jbd2_journal_destroy); 76 EXPORT_SYMBOL(jbd2_journal_abort); 77 EXPORT_SYMBOL(jbd2_journal_errno); 78 EXPORT_SYMBOL(jbd2_journal_ack_err); 79 EXPORT_SYMBOL(jbd2_journal_clear_err); 80 EXPORT_SYMBOL(jbd2_log_wait_commit); 81 EXPORT_SYMBOL(jbd2_journal_start_commit); 82 EXPORT_SYMBOL(jbd2_journal_force_commit_nested); 83 EXPORT_SYMBOL(jbd2_journal_wipe); 84 EXPORT_SYMBOL(jbd2_journal_blocks_per_page); 85 EXPORT_SYMBOL(jbd2_journal_invalidatepage); 86 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers); 87 EXPORT_SYMBOL(jbd2_journal_force_commit); 88 EXPORT_SYMBOL(jbd2_journal_file_inode); 89 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode); 90 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode); 91 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate); 92 93 static int journal_convert_superblock_v1(journal_t *, journal_superblock_t *); 94 static void __journal_abort_soft (journal_t *journal, int errno); 95 96 /* 97 * Helper function used to manage commit timeouts 98 */ 99 100 static void commit_timeout(unsigned long __data) 101 { 102 struct task_struct * p = (struct task_struct *) __data; 103 104 wake_up_process(p); 105 } 106 107 /* 108 * kjournald2: The main thread function used to manage a logging device 109 * journal. 110 * 111 * This kernel thread is responsible for two things: 112 * 113 * 1) COMMIT: Every so often we need to commit the current state of the 114 * filesystem to disk. The journal thread is responsible for writing 115 * all of the metadata buffers to disk. 116 * 117 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all 118 * of the data in that part of the log has been rewritten elsewhere on 119 * the disk. Flushing these old buffers to reclaim space in the log is 120 * known as checkpointing, and this thread is responsible for that job. 121 */ 122 123 static int kjournald2(void *arg) 124 { 125 journal_t *journal = arg; 126 transaction_t *transaction; 127 128 /* 129 * Set up an interval timer which can be used to trigger a commit wakeup 130 * after the commit interval expires 131 */ 132 setup_timer(&journal->j_commit_timer, commit_timeout, 133 (unsigned long)current); 134 135 /* Record that the journal thread is running */ 136 journal->j_task = current; 137 wake_up(&journal->j_wait_done_commit); 138 139 /* 140 * And now, wait forever for commit wakeup events. 141 */ 142 spin_lock(&journal->j_state_lock); 143 144 loop: 145 if (journal->j_flags & JBD2_UNMOUNT) 146 goto end_loop; 147 148 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n", 149 journal->j_commit_sequence, journal->j_commit_request); 150 151 if (journal->j_commit_sequence != journal->j_commit_request) { 152 jbd_debug(1, "OK, requests differ\n"); 153 spin_unlock(&journal->j_state_lock); 154 del_timer_sync(&journal->j_commit_timer); 155 jbd2_journal_commit_transaction(journal); 156 spin_lock(&journal->j_state_lock); 157 goto loop; 158 } 159 160 wake_up(&journal->j_wait_done_commit); 161 if (freezing(current)) { 162 /* 163 * The simpler the better. Flushing journal isn't a 164 * good idea, because that depends on threads that may 165 * be already stopped. 166 */ 167 jbd_debug(1, "Now suspending kjournald2\n"); 168 spin_unlock(&journal->j_state_lock); 169 refrigerator(); 170 spin_lock(&journal->j_state_lock); 171 } else { 172 /* 173 * We assume on resume that commits are already there, 174 * so we don't sleep 175 */ 176 DEFINE_WAIT(wait); 177 int should_sleep = 1; 178 179 prepare_to_wait(&journal->j_wait_commit, &wait, 180 TASK_INTERRUPTIBLE); 181 if (journal->j_commit_sequence != journal->j_commit_request) 182 should_sleep = 0; 183 transaction = journal->j_running_transaction; 184 if (transaction && time_after_eq(jiffies, 185 transaction->t_expires)) 186 should_sleep = 0; 187 if (journal->j_flags & JBD2_UNMOUNT) 188 should_sleep = 0; 189 if (should_sleep) { 190 spin_unlock(&journal->j_state_lock); 191 schedule(); 192 spin_lock(&journal->j_state_lock); 193 } 194 finish_wait(&journal->j_wait_commit, &wait); 195 } 196 197 jbd_debug(1, "kjournald2 wakes\n"); 198 199 /* 200 * Were we woken up by a commit wakeup event? 201 */ 202 transaction = journal->j_running_transaction; 203 if (transaction && time_after_eq(jiffies, transaction->t_expires)) { 204 journal->j_commit_request = transaction->t_tid; 205 jbd_debug(1, "woke because of timeout\n"); 206 } 207 goto loop; 208 209 end_loop: 210 spin_unlock(&journal->j_state_lock); 211 del_timer_sync(&journal->j_commit_timer); 212 journal->j_task = NULL; 213 wake_up(&journal->j_wait_done_commit); 214 jbd_debug(1, "Journal thread exiting.\n"); 215 return 0; 216 } 217 218 static int jbd2_journal_start_thread(journal_t *journal) 219 { 220 struct task_struct *t; 221 222 t = kthread_run(kjournald2, journal, "jbd2/%s", 223 journal->j_devname); 224 if (IS_ERR(t)) 225 return PTR_ERR(t); 226 227 wait_event(journal->j_wait_done_commit, journal->j_task != NULL); 228 return 0; 229 } 230 231 static void journal_kill_thread(journal_t *journal) 232 { 233 spin_lock(&journal->j_state_lock); 234 journal->j_flags |= JBD2_UNMOUNT; 235 236 while (journal->j_task) { 237 wake_up(&journal->j_wait_commit); 238 spin_unlock(&journal->j_state_lock); 239 wait_event(journal->j_wait_done_commit, journal->j_task == NULL); 240 spin_lock(&journal->j_state_lock); 241 } 242 spin_unlock(&journal->j_state_lock); 243 } 244 245 /* 246 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal. 247 * 248 * Writes a metadata buffer to a given disk block. The actual IO is not 249 * performed but a new buffer_head is constructed which labels the data 250 * to be written with the correct destination disk block. 251 * 252 * Any magic-number escaping which needs to be done will cause a 253 * copy-out here. If the buffer happens to start with the 254 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the 255 * magic number is only written to the log for descripter blocks. In 256 * this case, we copy the data and replace the first word with 0, and we 257 * return a result code which indicates that this buffer needs to be 258 * marked as an escaped buffer in the corresponding log descriptor 259 * block. The missing word can then be restored when the block is read 260 * during recovery. 261 * 262 * If the source buffer has already been modified by a new transaction 263 * since we took the last commit snapshot, we use the frozen copy of 264 * that data for IO. If we end up using the existing buffer_head's data 265 * for the write, then we *have* to lock the buffer to prevent anyone 266 * else from using and possibly modifying it while the IO is in 267 * progress. 268 * 269 * The function returns a pointer to the buffer_heads to be used for IO. 270 * 271 * We assume that the journal has already been locked in this function. 272 * 273 * Return value: 274 * <0: Error 275 * >=0: Finished OK 276 * 277 * On success: 278 * Bit 0 set == escape performed on the data 279 * Bit 1 set == buffer copy-out performed (kfree the data after IO) 280 */ 281 282 int jbd2_journal_write_metadata_buffer(transaction_t *transaction, 283 struct journal_head *jh_in, 284 struct journal_head **jh_out, 285 unsigned long long blocknr) 286 { 287 int need_copy_out = 0; 288 int done_copy_out = 0; 289 int do_escape = 0; 290 char *mapped_data; 291 struct buffer_head *new_bh; 292 struct journal_head *new_jh; 293 struct page *new_page; 294 unsigned int new_offset; 295 struct buffer_head *bh_in = jh2bh(jh_in); 296 struct jbd2_buffer_trigger_type *triggers; 297 journal_t *journal = transaction->t_journal; 298 299 /* 300 * The buffer really shouldn't be locked: only the current committing 301 * transaction is allowed to write it, so nobody else is allowed 302 * to do any IO. 303 * 304 * akpm: except if we're journalling data, and write() output is 305 * also part of a shared mapping, and another thread has 306 * decided to launch a writepage() against this buffer. 307 */ 308 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in)); 309 310 new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL); 311 /* keep subsequent assertions sane */ 312 new_bh->b_state = 0; 313 init_buffer(new_bh, NULL, NULL); 314 atomic_set(&new_bh->b_count, 1); 315 new_jh = jbd2_journal_add_journal_head(new_bh); /* This sleeps */ 316 317 /* 318 * If a new transaction has already done a buffer copy-out, then 319 * we use that version of the data for the commit. 320 */ 321 jbd_lock_bh_state(bh_in); 322 repeat: 323 if (jh_in->b_frozen_data) { 324 done_copy_out = 1; 325 new_page = virt_to_page(jh_in->b_frozen_data); 326 new_offset = offset_in_page(jh_in->b_frozen_data); 327 triggers = jh_in->b_frozen_triggers; 328 } else { 329 new_page = jh2bh(jh_in)->b_page; 330 new_offset = offset_in_page(jh2bh(jh_in)->b_data); 331 triggers = jh_in->b_triggers; 332 } 333 334 mapped_data = kmap_atomic(new_page, KM_USER0); 335 /* 336 * Fire any commit trigger. Do this before checking for escaping, 337 * as the trigger may modify the magic offset. If a copy-out 338 * happens afterwards, it will have the correct data in the buffer. 339 */ 340 jbd2_buffer_commit_trigger(jh_in, mapped_data + new_offset, 341 triggers); 342 343 /* 344 * Check for escaping 345 */ 346 if (*((__be32 *)(mapped_data + new_offset)) == 347 cpu_to_be32(JBD2_MAGIC_NUMBER)) { 348 need_copy_out = 1; 349 do_escape = 1; 350 } 351 kunmap_atomic(mapped_data, KM_USER0); 352 353 /* 354 * Do we need to do a data copy? 355 */ 356 if (need_copy_out && !done_copy_out) { 357 char *tmp; 358 359 jbd_unlock_bh_state(bh_in); 360 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS); 361 jbd_lock_bh_state(bh_in); 362 if (jh_in->b_frozen_data) { 363 jbd2_free(tmp, bh_in->b_size); 364 goto repeat; 365 } 366 367 jh_in->b_frozen_data = tmp; 368 mapped_data = kmap_atomic(new_page, KM_USER0); 369 memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size); 370 kunmap_atomic(mapped_data, KM_USER0); 371 372 new_page = virt_to_page(tmp); 373 new_offset = offset_in_page(tmp); 374 done_copy_out = 1; 375 376 /* 377 * This isn't strictly necessary, as we're using frozen 378 * data for the escaping, but it keeps consistency with 379 * b_frozen_data usage. 380 */ 381 jh_in->b_frozen_triggers = jh_in->b_triggers; 382 } 383 384 /* 385 * Did we need to do an escaping? Now we've done all the 386 * copying, we can finally do so. 387 */ 388 if (do_escape) { 389 mapped_data = kmap_atomic(new_page, KM_USER0); 390 *((unsigned int *)(mapped_data + new_offset)) = 0; 391 kunmap_atomic(mapped_data, KM_USER0); 392 } 393 394 set_bh_page(new_bh, new_page, new_offset); 395 new_jh->b_transaction = NULL; 396 new_bh->b_size = jh2bh(jh_in)->b_size; 397 new_bh->b_bdev = transaction->t_journal->j_dev; 398 new_bh->b_blocknr = blocknr; 399 set_buffer_mapped(new_bh); 400 set_buffer_dirty(new_bh); 401 402 *jh_out = new_jh; 403 404 /* 405 * The to-be-written buffer needs to get moved to the io queue, 406 * and the original buffer whose contents we are shadowing or 407 * copying is moved to the transaction's shadow queue. 408 */ 409 JBUFFER_TRACE(jh_in, "file as BJ_Shadow"); 410 spin_lock(&journal->j_list_lock); 411 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow); 412 spin_unlock(&journal->j_list_lock); 413 jbd_unlock_bh_state(bh_in); 414 415 JBUFFER_TRACE(new_jh, "file as BJ_IO"); 416 jbd2_journal_file_buffer(new_jh, transaction, BJ_IO); 417 418 return do_escape | (done_copy_out << 1); 419 } 420 421 /* 422 * Allocation code for the journal file. Manage the space left in the 423 * journal, so that we can begin checkpointing when appropriate. 424 */ 425 426 /* 427 * __jbd2_log_space_left: Return the number of free blocks left in the journal. 428 * 429 * Called with the journal already locked. 430 * 431 * Called under j_state_lock 432 */ 433 434 int __jbd2_log_space_left(journal_t *journal) 435 { 436 int left = journal->j_free; 437 438 assert_spin_locked(&journal->j_state_lock); 439 440 /* 441 * Be pessimistic here about the number of those free blocks which 442 * might be required for log descriptor control blocks. 443 */ 444 445 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */ 446 447 left -= MIN_LOG_RESERVED_BLOCKS; 448 449 if (left <= 0) 450 return 0; 451 left -= (left >> 3); 452 return left; 453 } 454 455 /* 456 * Called under j_state_lock. Returns true if a transaction commit was started. 457 */ 458 int __jbd2_log_start_commit(journal_t *journal, tid_t target) 459 { 460 /* 461 * Are we already doing a recent enough commit? 462 */ 463 if (!tid_geq(journal->j_commit_request, target)) { 464 /* 465 * We want a new commit: OK, mark the request and wakup the 466 * commit thread. We do _not_ do the commit ourselves. 467 */ 468 469 journal->j_commit_request = target; 470 jbd_debug(1, "JBD: requesting commit %d/%d\n", 471 journal->j_commit_request, 472 journal->j_commit_sequence); 473 wake_up(&journal->j_wait_commit); 474 return 1; 475 } 476 return 0; 477 } 478 479 int jbd2_log_start_commit(journal_t *journal, tid_t tid) 480 { 481 int ret; 482 483 spin_lock(&journal->j_state_lock); 484 ret = __jbd2_log_start_commit(journal, tid); 485 spin_unlock(&journal->j_state_lock); 486 return ret; 487 } 488 489 /* 490 * Force and wait upon a commit if the calling process is not within 491 * transaction. This is used for forcing out undo-protected data which contains 492 * bitmaps, when the fs is running out of space. 493 * 494 * We can only force the running transaction if we don't have an active handle; 495 * otherwise, we will deadlock. 496 * 497 * Returns true if a transaction was started. 498 */ 499 int jbd2_journal_force_commit_nested(journal_t *journal) 500 { 501 transaction_t *transaction = NULL; 502 tid_t tid; 503 504 spin_lock(&journal->j_state_lock); 505 if (journal->j_running_transaction && !current->journal_info) { 506 transaction = journal->j_running_transaction; 507 __jbd2_log_start_commit(journal, transaction->t_tid); 508 } else if (journal->j_committing_transaction) 509 transaction = journal->j_committing_transaction; 510 511 if (!transaction) { 512 spin_unlock(&journal->j_state_lock); 513 return 0; /* Nothing to retry */ 514 } 515 516 tid = transaction->t_tid; 517 spin_unlock(&journal->j_state_lock); 518 jbd2_log_wait_commit(journal, tid); 519 return 1; 520 } 521 522 /* 523 * Start a commit of the current running transaction (if any). Returns true 524 * if a transaction is going to be committed (or is currently already 525 * committing), and fills its tid in at *ptid 526 */ 527 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid) 528 { 529 int ret = 0; 530 531 spin_lock(&journal->j_state_lock); 532 if (journal->j_running_transaction) { 533 tid_t tid = journal->j_running_transaction->t_tid; 534 535 __jbd2_log_start_commit(journal, tid); 536 /* There's a running transaction and we've just made sure 537 * it's commit has been scheduled. */ 538 if (ptid) 539 *ptid = tid; 540 ret = 1; 541 } else if (journal->j_committing_transaction) { 542 /* 543 * If ext3_write_super() recently started a commit, then we 544 * have to wait for completion of that transaction 545 */ 546 if (ptid) 547 *ptid = journal->j_committing_transaction->t_tid; 548 ret = 1; 549 } 550 spin_unlock(&journal->j_state_lock); 551 return ret; 552 } 553 554 /* 555 * Wait for a specified commit to complete. 556 * The caller may not hold the journal lock. 557 */ 558 int jbd2_log_wait_commit(journal_t *journal, tid_t tid) 559 { 560 int err = 0; 561 562 #ifdef CONFIG_JBD2_DEBUG 563 spin_lock(&journal->j_state_lock); 564 if (!tid_geq(journal->j_commit_request, tid)) { 565 printk(KERN_EMERG 566 "%s: error: j_commit_request=%d, tid=%d\n", 567 __func__, journal->j_commit_request, tid); 568 } 569 spin_unlock(&journal->j_state_lock); 570 #endif 571 spin_lock(&journal->j_state_lock); 572 while (tid_gt(tid, journal->j_commit_sequence)) { 573 jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n", 574 tid, journal->j_commit_sequence); 575 wake_up(&journal->j_wait_commit); 576 spin_unlock(&journal->j_state_lock); 577 wait_event(journal->j_wait_done_commit, 578 !tid_gt(tid, journal->j_commit_sequence)); 579 spin_lock(&journal->j_state_lock); 580 } 581 spin_unlock(&journal->j_state_lock); 582 583 if (unlikely(is_journal_aborted(journal))) { 584 printk(KERN_EMERG "journal commit I/O error\n"); 585 err = -EIO; 586 } 587 return err; 588 } 589 590 /* 591 * Log buffer allocation routines: 592 */ 593 594 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp) 595 { 596 unsigned long blocknr; 597 598 spin_lock(&journal->j_state_lock); 599 J_ASSERT(journal->j_free > 1); 600 601 blocknr = journal->j_head; 602 journal->j_head++; 603 journal->j_free--; 604 if (journal->j_head == journal->j_last) 605 journal->j_head = journal->j_first; 606 spin_unlock(&journal->j_state_lock); 607 return jbd2_journal_bmap(journal, blocknr, retp); 608 } 609 610 /* 611 * Conversion of logical to physical block numbers for the journal 612 * 613 * On external journals the journal blocks are identity-mapped, so 614 * this is a no-op. If needed, we can use j_blk_offset - everything is 615 * ready. 616 */ 617 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr, 618 unsigned long long *retp) 619 { 620 int err = 0; 621 unsigned long long ret; 622 623 if (journal->j_inode) { 624 ret = bmap(journal->j_inode, blocknr); 625 if (ret) 626 *retp = ret; 627 else { 628 printk(KERN_ALERT "%s: journal block not found " 629 "at offset %lu on %s\n", 630 __func__, blocknr, journal->j_devname); 631 err = -EIO; 632 __journal_abort_soft(journal, err); 633 } 634 } else { 635 *retp = blocknr; /* +journal->j_blk_offset */ 636 } 637 return err; 638 } 639 640 /* 641 * We play buffer_head aliasing tricks to write data/metadata blocks to 642 * the journal without copying their contents, but for journal 643 * descriptor blocks we do need to generate bona fide buffers. 644 * 645 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying 646 * the buffer's contents they really should run flush_dcache_page(bh->b_page). 647 * But we don't bother doing that, so there will be coherency problems with 648 * mmaps of blockdevs which hold live JBD-controlled filesystems. 649 */ 650 struct journal_head *jbd2_journal_get_descriptor_buffer(journal_t *journal) 651 { 652 struct buffer_head *bh; 653 unsigned long long blocknr; 654 int err; 655 656 err = jbd2_journal_next_log_block(journal, &blocknr); 657 658 if (err) 659 return NULL; 660 661 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize); 662 if (!bh) 663 return NULL; 664 lock_buffer(bh); 665 memset(bh->b_data, 0, journal->j_blocksize); 666 set_buffer_uptodate(bh); 667 unlock_buffer(bh); 668 BUFFER_TRACE(bh, "return this buffer"); 669 return jbd2_journal_add_journal_head(bh); 670 } 671 672 struct jbd2_stats_proc_session { 673 journal_t *journal; 674 struct transaction_stats_s *stats; 675 int start; 676 int max; 677 }; 678 679 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos) 680 { 681 return *pos ? NULL : SEQ_START_TOKEN; 682 } 683 684 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos) 685 { 686 return NULL; 687 } 688 689 static int jbd2_seq_info_show(struct seq_file *seq, void *v) 690 { 691 struct jbd2_stats_proc_session *s = seq->private; 692 693 if (v != SEQ_START_TOKEN) 694 return 0; 695 seq_printf(seq, "%lu transaction, each up to %u blocks\n", 696 s->stats->ts_tid, 697 s->journal->j_max_transaction_buffers); 698 if (s->stats->ts_tid == 0) 699 return 0; 700 seq_printf(seq, "average: \n %ums waiting for transaction\n", 701 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid)); 702 seq_printf(seq, " %ums running transaction\n", 703 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid)); 704 seq_printf(seq, " %ums transaction was being locked\n", 705 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid)); 706 seq_printf(seq, " %ums flushing data (in ordered mode)\n", 707 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid)); 708 seq_printf(seq, " %ums logging transaction\n", 709 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid)); 710 seq_printf(seq, " %lluus average transaction commit time\n", 711 div_u64(s->journal->j_average_commit_time, 1000)); 712 seq_printf(seq, " %lu handles per transaction\n", 713 s->stats->run.rs_handle_count / s->stats->ts_tid); 714 seq_printf(seq, " %lu blocks per transaction\n", 715 s->stats->run.rs_blocks / s->stats->ts_tid); 716 seq_printf(seq, " %lu logged blocks per transaction\n", 717 s->stats->run.rs_blocks_logged / s->stats->ts_tid); 718 return 0; 719 } 720 721 static void jbd2_seq_info_stop(struct seq_file *seq, void *v) 722 { 723 } 724 725 static const struct seq_operations jbd2_seq_info_ops = { 726 .start = jbd2_seq_info_start, 727 .next = jbd2_seq_info_next, 728 .stop = jbd2_seq_info_stop, 729 .show = jbd2_seq_info_show, 730 }; 731 732 static int jbd2_seq_info_open(struct inode *inode, struct file *file) 733 { 734 journal_t *journal = PDE(inode)->data; 735 struct jbd2_stats_proc_session *s; 736 int rc, size; 737 738 s = kmalloc(sizeof(*s), GFP_KERNEL); 739 if (s == NULL) 740 return -ENOMEM; 741 size = sizeof(struct transaction_stats_s); 742 s->stats = kmalloc(size, GFP_KERNEL); 743 if (s->stats == NULL) { 744 kfree(s); 745 return -ENOMEM; 746 } 747 spin_lock(&journal->j_history_lock); 748 memcpy(s->stats, &journal->j_stats, size); 749 s->journal = journal; 750 spin_unlock(&journal->j_history_lock); 751 752 rc = seq_open(file, &jbd2_seq_info_ops); 753 if (rc == 0) { 754 struct seq_file *m = file->private_data; 755 m->private = s; 756 } else { 757 kfree(s->stats); 758 kfree(s); 759 } 760 return rc; 761 762 } 763 764 static int jbd2_seq_info_release(struct inode *inode, struct file *file) 765 { 766 struct seq_file *seq = file->private_data; 767 struct jbd2_stats_proc_session *s = seq->private; 768 kfree(s->stats); 769 kfree(s); 770 return seq_release(inode, file); 771 } 772 773 static const struct file_operations jbd2_seq_info_fops = { 774 .owner = THIS_MODULE, 775 .open = jbd2_seq_info_open, 776 .read = seq_read, 777 .llseek = seq_lseek, 778 .release = jbd2_seq_info_release, 779 }; 780 781 static struct proc_dir_entry *proc_jbd2_stats; 782 783 static void jbd2_stats_proc_init(journal_t *journal) 784 { 785 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats); 786 if (journal->j_proc_entry) { 787 proc_create_data("info", S_IRUGO, journal->j_proc_entry, 788 &jbd2_seq_info_fops, journal); 789 } 790 } 791 792 static void jbd2_stats_proc_exit(journal_t *journal) 793 { 794 remove_proc_entry("info", journal->j_proc_entry); 795 remove_proc_entry(journal->j_devname, proc_jbd2_stats); 796 } 797 798 /* 799 * Management for journal control blocks: functions to create and 800 * destroy journal_t structures, and to initialise and read existing 801 * journal blocks from disk. */ 802 803 /* First: create and setup a journal_t object in memory. We initialise 804 * very few fields yet: that has to wait until we have created the 805 * journal structures from from scratch, or loaded them from disk. */ 806 807 static journal_t * journal_init_common (void) 808 { 809 journal_t *journal; 810 int err; 811 812 journal = kzalloc(sizeof(*journal), GFP_KERNEL|__GFP_NOFAIL); 813 if (!journal) 814 goto fail; 815 816 init_waitqueue_head(&journal->j_wait_transaction_locked); 817 init_waitqueue_head(&journal->j_wait_logspace); 818 init_waitqueue_head(&journal->j_wait_done_commit); 819 init_waitqueue_head(&journal->j_wait_checkpoint); 820 init_waitqueue_head(&journal->j_wait_commit); 821 init_waitqueue_head(&journal->j_wait_updates); 822 mutex_init(&journal->j_barrier); 823 mutex_init(&journal->j_checkpoint_mutex); 824 spin_lock_init(&journal->j_revoke_lock); 825 spin_lock_init(&journal->j_list_lock); 826 spin_lock_init(&journal->j_state_lock); 827 828 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE); 829 journal->j_min_batch_time = 0; 830 journal->j_max_batch_time = 15000; /* 15ms */ 831 832 /* The journal is marked for error until we succeed with recovery! */ 833 journal->j_flags = JBD2_ABORT; 834 835 /* Set up a default-sized revoke table for the new mount. */ 836 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH); 837 if (err) { 838 kfree(journal); 839 goto fail; 840 } 841 842 spin_lock_init(&journal->j_history_lock); 843 844 return journal; 845 fail: 846 return NULL; 847 } 848 849 /* jbd2_journal_init_dev and jbd2_journal_init_inode: 850 * 851 * Create a journal structure assigned some fixed set of disk blocks to 852 * the journal. We don't actually touch those disk blocks yet, but we 853 * need to set up all of the mapping information to tell the journaling 854 * system where the journal blocks are. 855 * 856 */ 857 858 /** 859 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure 860 * @bdev: Block device on which to create the journal 861 * @fs_dev: Device which hold journalled filesystem for this journal. 862 * @start: Block nr Start of journal. 863 * @len: Length of the journal in blocks. 864 * @blocksize: blocksize of journalling device 865 * 866 * Returns: a newly created journal_t * 867 * 868 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous 869 * range of blocks on an arbitrary block device. 870 * 871 */ 872 journal_t * jbd2_journal_init_dev(struct block_device *bdev, 873 struct block_device *fs_dev, 874 unsigned long long start, int len, int blocksize) 875 { 876 journal_t *journal = journal_init_common(); 877 struct buffer_head *bh; 878 char *p; 879 int n; 880 881 if (!journal) 882 return NULL; 883 884 /* journal descriptor can store up to n blocks -bzzz */ 885 journal->j_blocksize = blocksize; 886 jbd2_stats_proc_init(journal); 887 n = journal->j_blocksize / sizeof(journal_block_tag_t); 888 journal->j_wbufsize = n; 889 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL); 890 if (!journal->j_wbuf) { 891 printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n", 892 __func__); 893 goto out_err; 894 } 895 journal->j_dev = bdev; 896 journal->j_fs_dev = fs_dev; 897 journal->j_blk_offset = start; 898 journal->j_maxlen = len; 899 bdevname(journal->j_dev, journal->j_devname); 900 p = journal->j_devname; 901 while ((p = strchr(p, '/'))) 902 *p = '!'; 903 904 bh = __getblk(journal->j_dev, start, journal->j_blocksize); 905 if (!bh) { 906 printk(KERN_ERR 907 "%s: Cannot get buffer for journal superblock\n", 908 __func__); 909 goto out_err; 910 } 911 journal->j_sb_buffer = bh; 912 journal->j_superblock = (journal_superblock_t *)bh->b_data; 913 914 return journal; 915 out_err: 916 kfree(journal->j_wbuf); 917 jbd2_stats_proc_exit(journal); 918 kfree(journal); 919 return NULL; 920 } 921 922 /** 923 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode. 924 * @inode: An inode to create the journal in 925 * 926 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as 927 * the journal. The inode must exist already, must support bmap() and 928 * must have all data blocks preallocated. 929 */ 930 journal_t * jbd2_journal_init_inode (struct inode *inode) 931 { 932 struct buffer_head *bh; 933 journal_t *journal = journal_init_common(); 934 char *p; 935 int err; 936 int n; 937 unsigned long long blocknr; 938 939 if (!journal) 940 return NULL; 941 942 journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev; 943 journal->j_inode = inode; 944 bdevname(journal->j_dev, journal->j_devname); 945 p = journal->j_devname; 946 while ((p = strchr(p, '/'))) 947 *p = '!'; 948 p = journal->j_devname + strlen(journal->j_devname); 949 sprintf(p, "-%lu", journal->j_inode->i_ino); 950 jbd_debug(1, 951 "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n", 952 journal, inode->i_sb->s_id, inode->i_ino, 953 (long long) inode->i_size, 954 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize); 955 956 journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits; 957 journal->j_blocksize = inode->i_sb->s_blocksize; 958 jbd2_stats_proc_init(journal); 959 960 /* journal descriptor can store up to n blocks -bzzz */ 961 n = journal->j_blocksize / sizeof(journal_block_tag_t); 962 journal->j_wbufsize = n; 963 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL); 964 if (!journal->j_wbuf) { 965 printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n", 966 __func__); 967 goto out_err; 968 } 969 970 err = jbd2_journal_bmap(journal, 0, &blocknr); 971 /* If that failed, give up */ 972 if (err) { 973 printk(KERN_ERR "%s: Cannnot locate journal superblock\n", 974 __func__); 975 goto out_err; 976 } 977 978 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize); 979 if (!bh) { 980 printk(KERN_ERR 981 "%s: Cannot get buffer for journal superblock\n", 982 __func__); 983 goto out_err; 984 } 985 journal->j_sb_buffer = bh; 986 journal->j_superblock = (journal_superblock_t *)bh->b_data; 987 988 return journal; 989 out_err: 990 kfree(journal->j_wbuf); 991 jbd2_stats_proc_exit(journal); 992 kfree(journal); 993 return NULL; 994 } 995 996 /* 997 * If the journal init or create aborts, we need to mark the journal 998 * superblock as being NULL to prevent the journal destroy from writing 999 * back a bogus superblock. 1000 */ 1001 static void journal_fail_superblock (journal_t *journal) 1002 { 1003 struct buffer_head *bh = journal->j_sb_buffer; 1004 brelse(bh); 1005 journal->j_sb_buffer = NULL; 1006 } 1007 1008 /* 1009 * Given a journal_t structure, initialise the various fields for 1010 * startup of a new journaling session. We use this both when creating 1011 * a journal, and after recovering an old journal to reset it for 1012 * subsequent use. 1013 */ 1014 1015 static int journal_reset(journal_t *journal) 1016 { 1017 journal_superblock_t *sb = journal->j_superblock; 1018 unsigned long long first, last; 1019 1020 first = be32_to_cpu(sb->s_first); 1021 last = be32_to_cpu(sb->s_maxlen); 1022 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) { 1023 printk(KERN_ERR "JBD: Journal too short (blocks %llu-%llu).\n", 1024 first, last); 1025 journal_fail_superblock(journal); 1026 return -EINVAL; 1027 } 1028 1029 journal->j_first = first; 1030 journal->j_last = last; 1031 1032 journal->j_head = first; 1033 journal->j_tail = first; 1034 journal->j_free = last - first; 1035 1036 journal->j_tail_sequence = journal->j_transaction_sequence; 1037 journal->j_commit_sequence = journal->j_transaction_sequence - 1; 1038 journal->j_commit_request = journal->j_commit_sequence; 1039 1040 journal->j_max_transaction_buffers = journal->j_maxlen / 4; 1041 1042 /* Add the dynamic fields and write it to disk. */ 1043 jbd2_journal_update_superblock(journal, 1); 1044 return jbd2_journal_start_thread(journal); 1045 } 1046 1047 /** 1048 * void jbd2_journal_update_superblock() - Update journal sb on disk. 1049 * @journal: The journal to update. 1050 * @wait: Set to '0' if you don't want to wait for IO completion. 1051 * 1052 * Update a journal's dynamic superblock fields and write it to disk, 1053 * optionally waiting for the IO to complete. 1054 */ 1055 void jbd2_journal_update_superblock(journal_t *journal, int wait) 1056 { 1057 journal_superblock_t *sb = journal->j_superblock; 1058 struct buffer_head *bh = journal->j_sb_buffer; 1059 1060 /* 1061 * As a special case, if the on-disk copy is already marked as needing 1062 * no recovery (s_start == 0) and there are no outstanding transactions 1063 * in the filesystem, then we can safely defer the superblock update 1064 * until the next commit by setting JBD2_FLUSHED. This avoids 1065 * attempting a write to a potential-readonly device. 1066 */ 1067 if (sb->s_start == 0 && journal->j_tail_sequence == 1068 journal->j_transaction_sequence) { 1069 jbd_debug(1,"JBD: Skipping superblock update on recovered sb " 1070 "(start %ld, seq %d, errno %d)\n", 1071 journal->j_tail, journal->j_tail_sequence, 1072 journal->j_errno); 1073 goto out; 1074 } 1075 1076 if (buffer_write_io_error(bh)) { 1077 /* 1078 * Oh, dear. A previous attempt to write the journal 1079 * superblock failed. This could happen because the 1080 * USB device was yanked out. Or it could happen to 1081 * be a transient write error and maybe the block will 1082 * be remapped. Nothing we can do but to retry the 1083 * write and hope for the best. 1084 */ 1085 printk(KERN_ERR "JBD2: previous I/O error detected " 1086 "for journal superblock update for %s.\n", 1087 journal->j_devname); 1088 clear_buffer_write_io_error(bh); 1089 set_buffer_uptodate(bh); 1090 } 1091 1092 spin_lock(&journal->j_state_lock); 1093 jbd_debug(1,"JBD: updating superblock (start %ld, seq %d, errno %d)\n", 1094 journal->j_tail, journal->j_tail_sequence, journal->j_errno); 1095 1096 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence); 1097 sb->s_start = cpu_to_be32(journal->j_tail); 1098 sb->s_errno = cpu_to_be32(journal->j_errno); 1099 spin_unlock(&journal->j_state_lock); 1100 1101 BUFFER_TRACE(bh, "marking dirty"); 1102 mark_buffer_dirty(bh); 1103 if (wait) { 1104 sync_dirty_buffer(bh); 1105 if (buffer_write_io_error(bh)) { 1106 printk(KERN_ERR "JBD2: I/O error detected " 1107 "when updating journal superblock for %s.\n", 1108 journal->j_devname); 1109 clear_buffer_write_io_error(bh); 1110 set_buffer_uptodate(bh); 1111 } 1112 } else 1113 ll_rw_block(SWRITE, 1, &bh); 1114 1115 out: 1116 /* If we have just flushed the log (by marking s_start==0), then 1117 * any future commit will have to be careful to update the 1118 * superblock again to re-record the true start of the log. */ 1119 1120 spin_lock(&journal->j_state_lock); 1121 if (sb->s_start) 1122 journal->j_flags &= ~JBD2_FLUSHED; 1123 else 1124 journal->j_flags |= JBD2_FLUSHED; 1125 spin_unlock(&journal->j_state_lock); 1126 } 1127 1128 /* 1129 * Read the superblock for a given journal, performing initial 1130 * validation of the format. 1131 */ 1132 1133 static int journal_get_superblock(journal_t *journal) 1134 { 1135 struct buffer_head *bh; 1136 journal_superblock_t *sb; 1137 int err = -EIO; 1138 1139 bh = journal->j_sb_buffer; 1140 1141 J_ASSERT(bh != NULL); 1142 if (!buffer_uptodate(bh)) { 1143 ll_rw_block(READ, 1, &bh); 1144 wait_on_buffer(bh); 1145 if (!buffer_uptodate(bh)) { 1146 printk (KERN_ERR 1147 "JBD: IO error reading journal superblock\n"); 1148 goto out; 1149 } 1150 } 1151 1152 sb = journal->j_superblock; 1153 1154 err = -EINVAL; 1155 1156 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) || 1157 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) { 1158 printk(KERN_WARNING "JBD: no valid journal superblock found\n"); 1159 goto out; 1160 } 1161 1162 switch(be32_to_cpu(sb->s_header.h_blocktype)) { 1163 case JBD2_SUPERBLOCK_V1: 1164 journal->j_format_version = 1; 1165 break; 1166 case JBD2_SUPERBLOCK_V2: 1167 journal->j_format_version = 2; 1168 break; 1169 default: 1170 printk(KERN_WARNING "JBD: unrecognised superblock format ID\n"); 1171 goto out; 1172 } 1173 1174 if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen) 1175 journal->j_maxlen = be32_to_cpu(sb->s_maxlen); 1176 else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) { 1177 printk (KERN_WARNING "JBD: journal file too short\n"); 1178 goto out; 1179 } 1180 1181 return 0; 1182 1183 out: 1184 journal_fail_superblock(journal); 1185 return err; 1186 } 1187 1188 /* 1189 * Load the on-disk journal superblock and read the key fields into the 1190 * journal_t. 1191 */ 1192 1193 static int load_superblock(journal_t *journal) 1194 { 1195 int err; 1196 journal_superblock_t *sb; 1197 1198 err = journal_get_superblock(journal); 1199 if (err) 1200 return err; 1201 1202 sb = journal->j_superblock; 1203 1204 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence); 1205 journal->j_tail = be32_to_cpu(sb->s_start); 1206 journal->j_first = be32_to_cpu(sb->s_first); 1207 journal->j_last = be32_to_cpu(sb->s_maxlen); 1208 journal->j_errno = be32_to_cpu(sb->s_errno); 1209 1210 return 0; 1211 } 1212 1213 1214 /** 1215 * int jbd2_journal_load() - Read journal from disk. 1216 * @journal: Journal to act on. 1217 * 1218 * Given a journal_t structure which tells us which disk blocks contain 1219 * a journal, read the journal from disk to initialise the in-memory 1220 * structures. 1221 */ 1222 int jbd2_journal_load(journal_t *journal) 1223 { 1224 int err; 1225 journal_superblock_t *sb; 1226 1227 err = load_superblock(journal); 1228 if (err) 1229 return err; 1230 1231 sb = journal->j_superblock; 1232 /* If this is a V2 superblock, then we have to check the 1233 * features flags on it. */ 1234 1235 if (journal->j_format_version >= 2) { 1236 if ((sb->s_feature_ro_compat & 1237 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) || 1238 (sb->s_feature_incompat & 1239 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) { 1240 printk (KERN_WARNING 1241 "JBD: Unrecognised features on journal\n"); 1242 return -EINVAL; 1243 } 1244 } 1245 1246 /* Let the recovery code check whether it needs to recover any 1247 * data from the journal. */ 1248 if (jbd2_journal_recover(journal)) 1249 goto recovery_error; 1250 1251 /* OK, we've finished with the dynamic journal bits: 1252 * reinitialise the dynamic contents of the superblock in memory 1253 * and reset them on disk. */ 1254 if (journal_reset(journal)) 1255 goto recovery_error; 1256 1257 journal->j_flags &= ~JBD2_ABORT; 1258 journal->j_flags |= JBD2_LOADED; 1259 return 0; 1260 1261 recovery_error: 1262 printk (KERN_WARNING "JBD: recovery failed\n"); 1263 return -EIO; 1264 } 1265 1266 /** 1267 * void jbd2_journal_destroy() - Release a journal_t structure. 1268 * @journal: Journal to act on. 1269 * 1270 * Release a journal_t structure once it is no longer in use by the 1271 * journaled object. 1272 * Return <0 if we couldn't clean up the journal. 1273 */ 1274 int jbd2_journal_destroy(journal_t *journal) 1275 { 1276 int err = 0; 1277 1278 /* Wait for the commit thread to wake up and die. */ 1279 journal_kill_thread(journal); 1280 1281 /* Force a final log commit */ 1282 if (journal->j_running_transaction) 1283 jbd2_journal_commit_transaction(journal); 1284 1285 /* Force any old transactions to disk */ 1286 1287 /* Totally anal locking here... */ 1288 spin_lock(&journal->j_list_lock); 1289 while (journal->j_checkpoint_transactions != NULL) { 1290 spin_unlock(&journal->j_list_lock); 1291 mutex_lock(&journal->j_checkpoint_mutex); 1292 jbd2_log_do_checkpoint(journal); 1293 mutex_unlock(&journal->j_checkpoint_mutex); 1294 spin_lock(&journal->j_list_lock); 1295 } 1296 1297 J_ASSERT(journal->j_running_transaction == NULL); 1298 J_ASSERT(journal->j_committing_transaction == NULL); 1299 J_ASSERT(journal->j_checkpoint_transactions == NULL); 1300 spin_unlock(&journal->j_list_lock); 1301 1302 if (journal->j_sb_buffer) { 1303 if (!is_journal_aborted(journal)) { 1304 /* We can now mark the journal as empty. */ 1305 journal->j_tail = 0; 1306 journal->j_tail_sequence = 1307 ++journal->j_transaction_sequence; 1308 jbd2_journal_update_superblock(journal, 1); 1309 } else { 1310 err = -EIO; 1311 } 1312 brelse(journal->j_sb_buffer); 1313 } 1314 1315 if (journal->j_proc_entry) 1316 jbd2_stats_proc_exit(journal); 1317 if (journal->j_inode) 1318 iput(journal->j_inode); 1319 if (journal->j_revoke) 1320 jbd2_journal_destroy_revoke(journal); 1321 kfree(journal->j_wbuf); 1322 kfree(journal); 1323 1324 return err; 1325 } 1326 1327 1328 /** 1329 *int jbd2_journal_check_used_features () - Check if features specified are used. 1330 * @journal: Journal to check. 1331 * @compat: bitmask of compatible features 1332 * @ro: bitmask of features that force read-only mount 1333 * @incompat: bitmask of incompatible features 1334 * 1335 * Check whether the journal uses all of a given set of 1336 * features. Return true (non-zero) if it does. 1337 **/ 1338 1339 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat, 1340 unsigned long ro, unsigned long incompat) 1341 { 1342 journal_superblock_t *sb; 1343 1344 if (!compat && !ro && !incompat) 1345 return 1; 1346 if (journal->j_format_version == 1) 1347 return 0; 1348 1349 sb = journal->j_superblock; 1350 1351 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) && 1352 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) && 1353 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat)) 1354 return 1; 1355 1356 return 0; 1357 } 1358 1359 /** 1360 * int jbd2_journal_check_available_features() - Check feature set in journalling layer 1361 * @journal: Journal to check. 1362 * @compat: bitmask of compatible features 1363 * @ro: bitmask of features that force read-only mount 1364 * @incompat: bitmask of incompatible features 1365 * 1366 * Check whether the journaling code supports the use of 1367 * all of a given set of features on this journal. Return true 1368 * (non-zero) if it can. */ 1369 1370 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat, 1371 unsigned long ro, unsigned long incompat) 1372 { 1373 journal_superblock_t *sb; 1374 1375 if (!compat && !ro && !incompat) 1376 return 1; 1377 1378 sb = journal->j_superblock; 1379 1380 /* We can support any known requested features iff the 1381 * superblock is in version 2. Otherwise we fail to support any 1382 * extended sb features. */ 1383 1384 if (journal->j_format_version != 2) 1385 return 0; 1386 1387 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat && 1388 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro && 1389 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat) 1390 return 1; 1391 1392 return 0; 1393 } 1394 1395 /** 1396 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock 1397 * @journal: Journal to act on. 1398 * @compat: bitmask of compatible features 1399 * @ro: bitmask of features that force read-only mount 1400 * @incompat: bitmask of incompatible features 1401 * 1402 * Mark a given journal feature as present on the 1403 * superblock. Returns true if the requested features could be set. 1404 * 1405 */ 1406 1407 int jbd2_journal_set_features (journal_t *journal, unsigned long compat, 1408 unsigned long ro, unsigned long incompat) 1409 { 1410 journal_superblock_t *sb; 1411 1412 if (jbd2_journal_check_used_features(journal, compat, ro, incompat)) 1413 return 1; 1414 1415 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat)) 1416 return 0; 1417 1418 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n", 1419 compat, ro, incompat); 1420 1421 sb = journal->j_superblock; 1422 1423 sb->s_feature_compat |= cpu_to_be32(compat); 1424 sb->s_feature_ro_compat |= cpu_to_be32(ro); 1425 sb->s_feature_incompat |= cpu_to_be32(incompat); 1426 1427 return 1; 1428 } 1429 1430 /* 1431 * jbd2_journal_clear_features () - Clear a given journal feature in the 1432 * superblock 1433 * @journal: Journal to act on. 1434 * @compat: bitmask of compatible features 1435 * @ro: bitmask of features that force read-only mount 1436 * @incompat: bitmask of incompatible features 1437 * 1438 * Clear a given journal feature as present on the 1439 * superblock. 1440 */ 1441 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat, 1442 unsigned long ro, unsigned long incompat) 1443 { 1444 journal_superblock_t *sb; 1445 1446 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n", 1447 compat, ro, incompat); 1448 1449 sb = journal->j_superblock; 1450 1451 sb->s_feature_compat &= ~cpu_to_be32(compat); 1452 sb->s_feature_ro_compat &= ~cpu_to_be32(ro); 1453 sb->s_feature_incompat &= ~cpu_to_be32(incompat); 1454 } 1455 EXPORT_SYMBOL(jbd2_journal_clear_features); 1456 1457 /** 1458 * int jbd2_journal_update_format () - Update on-disk journal structure. 1459 * @journal: Journal to act on. 1460 * 1461 * Given an initialised but unloaded journal struct, poke about in the 1462 * on-disk structure to update it to the most recent supported version. 1463 */ 1464 int jbd2_journal_update_format (journal_t *journal) 1465 { 1466 journal_superblock_t *sb; 1467 int err; 1468 1469 err = journal_get_superblock(journal); 1470 if (err) 1471 return err; 1472 1473 sb = journal->j_superblock; 1474 1475 switch (be32_to_cpu(sb->s_header.h_blocktype)) { 1476 case JBD2_SUPERBLOCK_V2: 1477 return 0; 1478 case JBD2_SUPERBLOCK_V1: 1479 return journal_convert_superblock_v1(journal, sb); 1480 default: 1481 break; 1482 } 1483 return -EINVAL; 1484 } 1485 1486 static int journal_convert_superblock_v1(journal_t *journal, 1487 journal_superblock_t *sb) 1488 { 1489 int offset, blocksize; 1490 struct buffer_head *bh; 1491 1492 printk(KERN_WARNING 1493 "JBD: Converting superblock from version 1 to 2.\n"); 1494 1495 /* Pre-initialise new fields to zero */ 1496 offset = ((char *) &(sb->s_feature_compat)) - ((char *) sb); 1497 blocksize = be32_to_cpu(sb->s_blocksize); 1498 memset(&sb->s_feature_compat, 0, blocksize-offset); 1499 1500 sb->s_nr_users = cpu_to_be32(1); 1501 sb->s_header.h_blocktype = cpu_to_be32(JBD2_SUPERBLOCK_V2); 1502 journal->j_format_version = 2; 1503 1504 bh = journal->j_sb_buffer; 1505 BUFFER_TRACE(bh, "marking dirty"); 1506 mark_buffer_dirty(bh); 1507 sync_dirty_buffer(bh); 1508 return 0; 1509 } 1510 1511 1512 /** 1513 * int jbd2_journal_flush () - Flush journal 1514 * @journal: Journal to act on. 1515 * 1516 * Flush all data for a given journal to disk and empty the journal. 1517 * Filesystems can use this when remounting readonly to ensure that 1518 * recovery does not need to happen on remount. 1519 */ 1520 1521 int jbd2_journal_flush(journal_t *journal) 1522 { 1523 int err = 0; 1524 transaction_t *transaction = NULL; 1525 unsigned long old_tail; 1526 1527 spin_lock(&journal->j_state_lock); 1528 1529 /* Force everything buffered to the log... */ 1530 if (journal->j_running_transaction) { 1531 transaction = journal->j_running_transaction; 1532 __jbd2_log_start_commit(journal, transaction->t_tid); 1533 } else if (journal->j_committing_transaction) 1534 transaction = journal->j_committing_transaction; 1535 1536 /* Wait for the log commit to complete... */ 1537 if (transaction) { 1538 tid_t tid = transaction->t_tid; 1539 1540 spin_unlock(&journal->j_state_lock); 1541 jbd2_log_wait_commit(journal, tid); 1542 } else { 1543 spin_unlock(&journal->j_state_lock); 1544 } 1545 1546 /* ...and flush everything in the log out to disk. */ 1547 spin_lock(&journal->j_list_lock); 1548 while (!err && journal->j_checkpoint_transactions != NULL) { 1549 spin_unlock(&journal->j_list_lock); 1550 mutex_lock(&journal->j_checkpoint_mutex); 1551 err = jbd2_log_do_checkpoint(journal); 1552 mutex_unlock(&journal->j_checkpoint_mutex); 1553 spin_lock(&journal->j_list_lock); 1554 } 1555 spin_unlock(&journal->j_list_lock); 1556 1557 if (is_journal_aborted(journal)) 1558 return -EIO; 1559 1560 jbd2_cleanup_journal_tail(journal); 1561 1562 /* Finally, mark the journal as really needing no recovery. 1563 * This sets s_start==0 in the underlying superblock, which is 1564 * the magic code for a fully-recovered superblock. Any future 1565 * commits of data to the journal will restore the current 1566 * s_start value. */ 1567 spin_lock(&journal->j_state_lock); 1568 old_tail = journal->j_tail; 1569 journal->j_tail = 0; 1570 spin_unlock(&journal->j_state_lock); 1571 jbd2_journal_update_superblock(journal, 1); 1572 spin_lock(&journal->j_state_lock); 1573 journal->j_tail = old_tail; 1574 1575 J_ASSERT(!journal->j_running_transaction); 1576 J_ASSERT(!journal->j_committing_transaction); 1577 J_ASSERT(!journal->j_checkpoint_transactions); 1578 J_ASSERT(journal->j_head == journal->j_tail); 1579 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence); 1580 spin_unlock(&journal->j_state_lock); 1581 return 0; 1582 } 1583 1584 /** 1585 * int jbd2_journal_wipe() - Wipe journal contents 1586 * @journal: Journal to act on. 1587 * @write: flag (see below) 1588 * 1589 * Wipe out all of the contents of a journal, safely. This will produce 1590 * a warning if the journal contains any valid recovery information. 1591 * Must be called between journal_init_*() and jbd2_journal_load(). 1592 * 1593 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise 1594 * we merely suppress recovery. 1595 */ 1596 1597 int jbd2_journal_wipe(journal_t *journal, int write) 1598 { 1599 journal_superblock_t *sb; 1600 int err = 0; 1601 1602 J_ASSERT (!(journal->j_flags & JBD2_LOADED)); 1603 1604 err = load_superblock(journal); 1605 if (err) 1606 return err; 1607 1608 sb = journal->j_superblock; 1609 1610 if (!journal->j_tail) 1611 goto no_recovery; 1612 1613 printk (KERN_WARNING "JBD: %s recovery information on journal\n", 1614 write ? "Clearing" : "Ignoring"); 1615 1616 err = jbd2_journal_skip_recovery(journal); 1617 if (write) 1618 jbd2_journal_update_superblock(journal, 1); 1619 1620 no_recovery: 1621 return err; 1622 } 1623 1624 /* 1625 * Journal abort has very specific semantics, which we describe 1626 * for journal abort. 1627 * 1628 * Two internal functions, which provide abort to the jbd layer 1629 * itself are here. 1630 */ 1631 1632 /* 1633 * Quick version for internal journal use (doesn't lock the journal). 1634 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else, 1635 * and don't attempt to make any other journal updates. 1636 */ 1637 void __jbd2_journal_abort_hard(journal_t *journal) 1638 { 1639 transaction_t *transaction; 1640 1641 if (journal->j_flags & JBD2_ABORT) 1642 return; 1643 1644 printk(KERN_ERR "Aborting journal on device %s.\n", 1645 journal->j_devname); 1646 1647 spin_lock(&journal->j_state_lock); 1648 journal->j_flags |= JBD2_ABORT; 1649 transaction = journal->j_running_transaction; 1650 if (transaction) 1651 __jbd2_log_start_commit(journal, transaction->t_tid); 1652 spin_unlock(&journal->j_state_lock); 1653 } 1654 1655 /* Soft abort: record the abort error status in the journal superblock, 1656 * but don't do any other IO. */ 1657 static void __journal_abort_soft (journal_t *journal, int errno) 1658 { 1659 if (journal->j_flags & JBD2_ABORT) 1660 return; 1661 1662 if (!journal->j_errno) 1663 journal->j_errno = errno; 1664 1665 __jbd2_journal_abort_hard(journal); 1666 1667 if (errno) 1668 jbd2_journal_update_superblock(journal, 1); 1669 } 1670 1671 /** 1672 * void jbd2_journal_abort () - Shutdown the journal immediately. 1673 * @journal: the journal to shutdown. 1674 * @errno: an error number to record in the journal indicating 1675 * the reason for the shutdown. 1676 * 1677 * Perform a complete, immediate shutdown of the ENTIRE 1678 * journal (not of a single transaction). This operation cannot be 1679 * undone without closing and reopening the journal. 1680 * 1681 * The jbd2_journal_abort function is intended to support higher level error 1682 * recovery mechanisms such as the ext2/ext3 remount-readonly error 1683 * mode. 1684 * 1685 * Journal abort has very specific semantics. Any existing dirty, 1686 * unjournaled buffers in the main filesystem will still be written to 1687 * disk by bdflush, but the journaling mechanism will be suspended 1688 * immediately and no further transaction commits will be honoured. 1689 * 1690 * Any dirty, journaled buffers will be written back to disk without 1691 * hitting the journal. Atomicity cannot be guaranteed on an aborted 1692 * filesystem, but we _do_ attempt to leave as much data as possible 1693 * behind for fsck to use for cleanup. 1694 * 1695 * Any attempt to get a new transaction handle on a journal which is in 1696 * ABORT state will just result in an -EROFS error return. A 1697 * jbd2_journal_stop on an existing handle will return -EIO if we have 1698 * entered abort state during the update. 1699 * 1700 * Recursive transactions are not disturbed by journal abort until the 1701 * final jbd2_journal_stop, which will receive the -EIO error. 1702 * 1703 * Finally, the jbd2_journal_abort call allows the caller to supply an errno 1704 * which will be recorded (if possible) in the journal superblock. This 1705 * allows a client to record failure conditions in the middle of a 1706 * transaction without having to complete the transaction to record the 1707 * failure to disk. ext3_error, for example, now uses this 1708 * functionality. 1709 * 1710 * Errors which originate from within the journaling layer will NOT 1711 * supply an errno; a null errno implies that absolutely no further 1712 * writes are done to the journal (unless there are any already in 1713 * progress). 1714 * 1715 */ 1716 1717 void jbd2_journal_abort(journal_t *journal, int errno) 1718 { 1719 __journal_abort_soft(journal, errno); 1720 } 1721 1722 /** 1723 * int jbd2_journal_errno () - returns the journal's error state. 1724 * @journal: journal to examine. 1725 * 1726 * This is the errno number set with jbd2_journal_abort(), the last 1727 * time the journal was mounted - if the journal was stopped 1728 * without calling abort this will be 0. 1729 * 1730 * If the journal has been aborted on this mount time -EROFS will 1731 * be returned. 1732 */ 1733 int jbd2_journal_errno(journal_t *journal) 1734 { 1735 int err; 1736 1737 spin_lock(&journal->j_state_lock); 1738 if (journal->j_flags & JBD2_ABORT) 1739 err = -EROFS; 1740 else 1741 err = journal->j_errno; 1742 spin_unlock(&journal->j_state_lock); 1743 return err; 1744 } 1745 1746 /** 1747 * int jbd2_journal_clear_err () - clears the journal's error state 1748 * @journal: journal to act on. 1749 * 1750 * An error must be cleared or acked to take a FS out of readonly 1751 * mode. 1752 */ 1753 int jbd2_journal_clear_err(journal_t *journal) 1754 { 1755 int err = 0; 1756 1757 spin_lock(&journal->j_state_lock); 1758 if (journal->j_flags & JBD2_ABORT) 1759 err = -EROFS; 1760 else 1761 journal->j_errno = 0; 1762 spin_unlock(&journal->j_state_lock); 1763 return err; 1764 } 1765 1766 /** 1767 * void jbd2_journal_ack_err() - Ack journal err. 1768 * @journal: journal to act on. 1769 * 1770 * An error must be cleared or acked to take a FS out of readonly 1771 * mode. 1772 */ 1773 void jbd2_journal_ack_err(journal_t *journal) 1774 { 1775 spin_lock(&journal->j_state_lock); 1776 if (journal->j_errno) 1777 journal->j_flags |= JBD2_ACK_ERR; 1778 spin_unlock(&journal->j_state_lock); 1779 } 1780 1781 int jbd2_journal_blocks_per_page(struct inode *inode) 1782 { 1783 return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 1784 } 1785 1786 /* 1787 * helper functions to deal with 32 or 64bit block numbers. 1788 */ 1789 size_t journal_tag_bytes(journal_t *journal) 1790 { 1791 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT)) 1792 return JBD2_TAG_SIZE64; 1793 else 1794 return JBD2_TAG_SIZE32; 1795 } 1796 1797 /* 1798 * Journal_head storage management 1799 */ 1800 static struct kmem_cache *jbd2_journal_head_cache; 1801 #ifdef CONFIG_JBD2_DEBUG 1802 static atomic_t nr_journal_heads = ATOMIC_INIT(0); 1803 #endif 1804 1805 static int journal_init_jbd2_journal_head_cache(void) 1806 { 1807 int retval; 1808 1809 J_ASSERT(jbd2_journal_head_cache == NULL); 1810 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head", 1811 sizeof(struct journal_head), 1812 0, /* offset */ 1813 SLAB_TEMPORARY, /* flags */ 1814 NULL); /* ctor */ 1815 retval = 0; 1816 if (!jbd2_journal_head_cache) { 1817 retval = -ENOMEM; 1818 printk(KERN_EMERG "JBD: no memory for journal_head cache\n"); 1819 } 1820 return retval; 1821 } 1822 1823 static void jbd2_journal_destroy_jbd2_journal_head_cache(void) 1824 { 1825 if (jbd2_journal_head_cache) { 1826 kmem_cache_destroy(jbd2_journal_head_cache); 1827 jbd2_journal_head_cache = NULL; 1828 } 1829 } 1830 1831 /* 1832 * journal_head splicing and dicing 1833 */ 1834 static struct journal_head *journal_alloc_journal_head(void) 1835 { 1836 struct journal_head *ret; 1837 static unsigned long last_warning; 1838 1839 #ifdef CONFIG_JBD2_DEBUG 1840 atomic_inc(&nr_journal_heads); 1841 #endif 1842 ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS); 1843 if (!ret) { 1844 jbd_debug(1, "out of memory for journal_head\n"); 1845 if (time_after(jiffies, last_warning + 5*HZ)) { 1846 printk(KERN_NOTICE "ENOMEM in %s, retrying.\n", 1847 __func__); 1848 last_warning = jiffies; 1849 } 1850 while (!ret) { 1851 yield(); 1852 ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS); 1853 } 1854 } 1855 return ret; 1856 } 1857 1858 static void journal_free_journal_head(struct journal_head *jh) 1859 { 1860 #ifdef CONFIG_JBD2_DEBUG 1861 atomic_dec(&nr_journal_heads); 1862 memset(jh, JBD2_POISON_FREE, sizeof(*jh)); 1863 #endif 1864 kmem_cache_free(jbd2_journal_head_cache, jh); 1865 } 1866 1867 /* 1868 * A journal_head is attached to a buffer_head whenever JBD has an 1869 * interest in the buffer. 1870 * 1871 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit 1872 * is set. This bit is tested in core kernel code where we need to take 1873 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable 1874 * there. 1875 * 1876 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one. 1877 * 1878 * When a buffer has its BH_JBD bit set it is immune from being released by 1879 * core kernel code, mainly via ->b_count. 1880 * 1881 * A journal_head may be detached from its buffer_head when the journal_head's 1882 * b_transaction, b_cp_transaction and b_next_transaction pointers are NULL. 1883 * Various places in JBD call jbd2_journal_remove_journal_head() to indicate that the 1884 * journal_head can be dropped if needed. 1885 * 1886 * Various places in the kernel want to attach a journal_head to a buffer_head 1887 * _before_ attaching the journal_head to a transaction. To protect the 1888 * journal_head in this situation, jbd2_journal_add_journal_head elevates the 1889 * journal_head's b_jcount refcount by one. The caller must call 1890 * jbd2_journal_put_journal_head() to undo this. 1891 * 1892 * So the typical usage would be: 1893 * 1894 * (Attach a journal_head if needed. Increments b_jcount) 1895 * struct journal_head *jh = jbd2_journal_add_journal_head(bh); 1896 * ... 1897 * jh->b_transaction = xxx; 1898 * jbd2_journal_put_journal_head(jh); 1899 * 1900 * Now, the journal_head's b_jcount is zero, but it is safe from being released 1901 * because it has a non-zero b_transaction. 1902 */ 1903 1904 /* 1905 * Give a buffer_head a journal_head. 1906 * 1907 * Doesn't need the journal lock. 1908 * May sleep. 1909 */ 1910 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh) 1911 { 1912 struct journal_head *jh; 1913 struct journal_head *new_jh = NULL; 1914 1915 repeat: 1916 if (!buffer_jbd(bh)) { 1917 new_jh = journal_alloc_journal_head(); 1918 memset(new_jh, 0, sizeof(*new_jh)); 1919 } 1920 1921 jbd_lock_bh_journal_head(bh); 1922 if (buffer_jbd(bh)) { 1923 jh = bh2jh(bh); 1924 } else { 1925 J_ASSERT_BH(bh, 1926 (atomic_read(&bh->b_count) > 0) || 1927 (bh->b_page && bh->b_page->mapping)); 1928 1929 if (!new_jh) { 1930 jbd_unlock_bh_journal_head(bh); 1931 goto repeat; 1932 } 1933 1934 jh = new_jh; 1935 new_jh = NULL; /* We consumed it */ 1936 set_buffer_jbd(bh); 1937 bh->b_private = jh; 1938 jh->b_bh = bh; 1939 get_bh(bh); 1940 BUFFER_TRACE(bh, "added journal_head"); 1941 } 1942 jh->b_jcount++; 1943 jbd_unlock_bh_journal_head(bh); 1944 if (new_jh) 1945 journal_free_journal_head(new_jh); 1946 return bh->b_private; 1947 } 1948 1949 /* 1950 * Grab a ref against this buffer_head's journal_head. If it ended up not 1951 * having a journal_head, return NULL 1952 */ 1953 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh) 1954 { 1955 struct journal_head *jh = NULL; 1956 1957 jbd_lock_bh_journal_head(bh); 1958 if (buffer_jbd(bh)) { 1959 jh = bh2jh(bh); 1960 jh->b_jcount++; 1961 } 1962 jbd_unlock_bh_journal_head(bh); 1963 return jh; 1964 } 1965 1966 static void __journal_remove_journal_head(struct buffer_head *bh) 1967 { 1968 struct journal_head *jh = bh2jh(bh); 1969 1970 J_ASSERT_JH(jh, jh->b_jcount >= 0); 1971 1972 get_bh(bh); 1973 if (jh->b_jcount == 0) { 1974 if (jh->b_transaction == NULL && 1975 jh->b_next_transaction == NULL && 1976 jh->b_cp_transaction == NULL) { 1977 J_ASSERT_JH(jh, jh->b_jlist == BJ_None); 1978 J_ASSERT_BH(bh, buffer_jbd(bh)); 1979 J_ASSERT_BH(bh, jh2bh(jh) == bh); 1980 BUFFER_TRACE(bh, "remove journal_head"); 1981 if (jh->b_frozen_data) { 1982 printk(KERN_WARNING "%s: freeing " 1983 "b_frozen_data\n", 1984 __func__); 1985 jbd2_free(jh->b_frozen_data, bh->b_size); 1986 } 1987 if (jh->b_committed_data) { 1988 printk(KERN_WARNING "%s: freeing " 1989 "b_committed_data\n", 1990 __func__); 1991 jbd2_free(jh->b_committed_data, bh->b_size); 1992 } 1993 bh->b_private = NULL; 1994 jh->b_bh = NULL; /* debug, really */ 1995 clear_buffer_jbd(bh); 1996 __brelse(bh); 1997 journal_free_journal_head(jh); 1998 } else { 1999 BUFFER_TRACE(bh, "journal_head was locked"); 2000 } 2001 } 2002 } 2003 2004 /* 2005 * jbd2_journal_remove_journal_head(): if the buffer isn't attached to a transaction 2006 * and has a zero b_jcount then remove and release its journal_head. If we did 2007 * see that the buffer is not used by any transaction we also "logically" 2008 * decrement ->b_count. 2009 * 2010 * We in fact take an additional increment on ->b_count as a convenience, 2011 * because the caller usually wants to do additional things with the bh 2012 * after calling here. 2013 * The caller of jbd2_journal_remove_journal_head() *must* run __brelse(bh) at some 2014 * time. Once the caller has run __brelse(), the buffer is eligible for 2015 * reaping by try_to_free_buffers(). 2016 */ 2017 void jbd2_journal_remove_journal_head(struct buffer_head *bh) 2018 { 2019 jbd_lock_bh_journal_head(bh); 2020 __journal_remove_journal_head(bh); 2021 jbd_unlock_bh_journal_head(bh); 2022 } 2023 2024 /* 2025 * Drop a reference on the passed journal_head. If it fell to zero then try to 2026 * release the journal_head from the buffer_head. 2027 */ 2028 void jbd2_journal_put_journal_head(struct journal_head *jh) 2029 { 2030 struct buffer_head *bh = jh2bh(jh); 2031 2032 jbd_lock_bh_journal_head(bh); 2033 J_ASSERT_JH(jh, jh->b_jcount > 0); 2034 --jh->b_jcount; 2035 if (!jh->b_jcount && !jh->b_transaction) { 2036 __journal_remove_journal_head(bh); 2037 __brelse(bh); 2038 } 2039 jbd_unlock_bh_journal_head(bh); 2040 } 2041 2042 /* 2043 * Initialize jbd inode head 2044 */ 2045 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode) 2046 { 2047 jinode->i_transaction = NULL; 2048 jinode->i_next_transaction = NULL; 2049 jinode->i_vfs_inode = inode; 2050 jinode->i_flags = 0; 2051 INIT_LIST_HEAD(&jinode->i_list); 2052 } 2053 2054 /* 2055 * Function to be called before we start removing inode from memory (i.e., 2056 * clear_inode() is a fine place to be called from). It removes inode from 2057 * transaction's lists. 2058 */ 2059 void jbd2_journal_release_jbd_inode(journal_t *journal, 2060 struct jbd2_inode *jinode) 2061 { 2062 int writeout = 0; 2063 2064 if (!journal) 2065 return; 2066 restart: 2067 spin_lock(&journal->j_list_lock); 2068 /* Is commit writing out inode - we have to wait */ 2069 if (jinode->i_flags & JI_COMMIT_RUNNING) { 2070 wait_queue_head_t *wq; 2071 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING); 2072 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING); 2073 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 2074 spin_unlock(&journal->j_list_lock); 2075 schedule(); 2076 finish_wait(wq, &wait.wait); 2077 goto restart; 2078 } 2079 2080 /* Do we need to wait for data writeback? */ 2081 if (journal->j_committing_transaction == jinode->i_transaction) 2082 writeout = 1; 2083 if (jinode->i_transaction) { 2084 list_del(&jinode->i_list); 2085 jinode->i_transaction = NULL; 2086 } 2087 spin_unlock(&journal->j_list_lock); 2088 } 2089 2090 /* 2091 * debugfs tunables 2092 */ 2093 #ifdef CONFIG_JBD2_DEBUG 2094 u8 jbd2_journal_enable_debug __read_mostly; 2095 EXPORT_SYMBOL(jbd2_journal_enable_debug); 2096 2097 #define JBD2_DEBUG_NAME "jbd2-debug" 2098 2099 static struct dentry *jbd2_debugfs_dir; 2100 static struct dentry *jbd2_debug; 2101 2102 static void __init jbd2_create_debugfs_entry(void) 2103 { 2104 jbd2_debugfs_dir = debugfs_create_dir("jbd2", NULL); 2105 if (jbd2_debugfs_dir) 2106 jbd2_debug = debugfs_create_u8(JBD2_DEBUG_NAME, S_IRUGO, 2107 jbd2_debugfs_dir, 2108 &jbd2_journal_enable_debug); 2109 } 2110 2111 static void __exit jbd2_remove_debugfs_entry(void) 2112 { 2113 debugfs_remove(jbd2_debug); 2114 debugfs_remove(jbd2_debugfs_dir); 2115 } 2116 2117 #else 2118 2119 static void __init jbd2_create_debugfs_entry(void) 2120 { 2121 } 2122 2123 static void __exit jbd2_remove_debugfs_entry(void) 2124 { 2125 } 2126 2127 #endif 2128 2129 #ifdef CONFIG_PROC_FS 2130 2131 #define JBD2_STATS_PROC_NAME "fs/jbd2" 2132 2133 static void __init jbd2_create_jbd_stats_proc_entry(void) 2134 { 2135 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL); 2136 } 2137 2138 static void __exit jbd2_remove_jbd_stats_proc_entry(void) 2139 { 2140 if (proc_jbd2_stats) 2141 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL); 2142 } 2143 2144 #else 2145 2146 #define jbd2_create_jbd_stats_proc_entry() do {} while (0) 2147 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0) 2148 2149 #endif 2150 2151 struct kmem_cache *jbd2_handle_cache; 2152 2153 static int __init journal_init_handle_cache(void) 2154 { 2155 jbd2_handle_cache = kmem_cache_create("jbd2_journal_handle", 2156 sizeof(handle_t), 2157 0, /* offset */ 2158 SLAB_TEMPORARY, /* flags */ 2159 NULL); /* ctor */ 2160 if (jbd2_handle_cache == NULL) { 2161 printk(KERN_EMERG "JBD: failed to create handle cache\n"); 2162 return -ENOMEM; 2163 } 2164 return 0; 2165 } 2166 2167 static void jbd2_journal_destroy_handle_cache(void) 2168 { 2169 if (jbd2_handle_cache) 2170 kmem_cache_destroy(jbd2_handle_cache); 2171 } 2172 2173 /* 2174 * Module startup and shutdown 2175 */ 2176 2177 static int __init journal_init_caches(void) 2178 { 2179 int ret; 2180 2181 ret = jbd2_journal_init_revoke_caches(); 2182 if (ret == 0) 2183 ret = journal_init_jbd2_journal_head_cache(); 2184 if (ret == 0) 2185 ret = journal_init_handle_cache(); 2186 return ret; 2187 } 2188 2189 static void jbd2_journal_destroy_caches(void) 2190 { 2191 jbd2_journal_destroy_revoke_caches(); 2192 jbd2_journal_destroy_jbd2_journal_head_cache(); 2193 jbd2_journal_destroy_handle_cache(); 2194 } 2195 2196 static int __init journal_init(void) 2197 { 2198 int ret; 2199 2200 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024); 2201 2202 ret = journal_init_caches(); 2203 if (ret == 0) { 2204 jbd2_create_debugfs_entry(); 2205 jbd2_create_jbd_stats_proc_entry(); 2206 } else { 2207 jbd2_journal_destroy_caches(); 2208 } 2209 return ret; 2210 } 2211 2212 static void __exit journal_exit(void) 2213 { 2214 #ifdef CONFIG_JBD2_DEBUG 2215 int n = atomic_read(&nr_journal_heads); 2216 if (n) 2217 printk(KERN_EMERG "JBD: leaked %d journal_heads!\n", n); 2218 #endif 2219 jbd2_remove_debugfs_entry(); 2220 jbd2_remove_jbd_stats_proc_entry(); 2221 jbd2_journal_destroy_caches(); 2222 } 2223 2224 /* 2225 * jbd2_dev_to_name is a utility function used by the jbd2 and ext4 2226 * tracing infrastructure to map a dev_t to a device name. 2227 * 2228 * The caller should use rcu_read_lock() in order to make sure the 2229 * device name stays valid until its done with it. We use 2230 * rcu_read_lock() as well to make sure we're safe in case the caller 2231 * gets sloppy, and because rcu_read_lock() is cheap and can be safely 2232 * nested. 2233 */ 2234 struct devname_cache { 2235 struct rcu_head rcu; 2236 dev_t device; 2237 char devname[BDEVNAME_SIZE]; 2238 }; 2239 #define CACHE_SIZE_BITS 6 2240 static struct devname_cache *devcache[1 << CACHE_SIZE_BITS]; 2241 static DEFINE_SPINLOCK(devname_cache_lock); 2242 2243 static void free_devcache(struct rcu_head *rcu) 2244 { 2245 kfree(rcu); 2246 } 2247 2248 const char *jbd2_dev_to_name(dev_t device) 2249 { 2250 int i = hash_32(device, CACHE_SIZE_BITS); 2251 char *ret; 2252 struct block_device *bd; 2253 static struct devname_cache *new_dev; 2254 2255 rcu_read_lock(); 2256 if (devcache[i] && devcache[i]->device == device) { 2257 ret = devcache[i]->devname; 2258 rcu_read_unlock(); 2259 return ret; 2260 } 2261 rcu_read_unlock(); 2262 2263 new_dev = kmalloc(sizeof(struct devname_cache), GFP_KERNEL); 2264 if (!new_dev) 2265 return "NODEV-ALLOCFAILURE"; /* Something non-NULL */ 2266 spin_lock(&devname_cache_lock); 2267 if (devcache[i]) { 2268 if (devcache[i]->device == device) { 2269 kfree(new_dev); 2270 ret = devcache[i]->devname; 2271 spin_unlock(&devname_cache_lock); 2272 return ret; 2273 } 2274 call_rcu(&devcache[i]->rcu, free_devcache); 2275 } 2276 devcache[i] = new_dev; 2277 devcache[i]->device = device; 2278 bd = bdget(device); 2279 if (bd) { 2280 bdevname(bd, devcache[i]->devname); 2281 bdput(bd); 2282 } else 2283 __bdevname(device, devcache[i]->devname); 2284 ret = devcache[i]->devname; 2285 spin_unlock(&devname_cache_lock); 2286 return ret; 2287 } 2288 EXPORT_SYMBOL(jbd2_dev_to_name); 2289 2290 MODULE_LICENSE("GPL"); 2291 module_init(journal_init); 2292 module_exit(journal_exit); 2293 2294