1 /* 2 * linux/fs/jbd2/journal.c 3 * 4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 5 * 6 * Copyright 1998 Red Hat corp --- All Rights Reserved 7 * 8 * This file is part of the Linux kernel and is made available under 9 * the terms of the GNU General Public License, version 2, or at your 10 * option, any later version, incorporated herein by reference. 11 * 12 * Generic filesystem journal-writing code; part of the ext2fs 13 * journaling system. 14 * 15 * This file manages journals: areas of disk reserved for logging 16 * transactional updates. This includes the kernel journaling thread 17 * which is responsible for scheduling updates to the log. 18 * 19 * We do not actually manage the physical storage of the journal in this 20 * file: that is left to a per-journal policy function, which allows us 21 * to store the journal within a filesystem-specified area for ext2 22 * journaling (ext2 can use a reserved inode for storing the log). 23 */ 24 25 #include <linux/module.h> 26 #include <linux/time.h> 27 #include <linux/fs.h> 28 #include <linux/jbd2.h> 29 #include <linux/errno.h> 30 #include <linux/slab.h> 31 #include <linux/init.h> 32 #include <linux/mm.h> 33 #include <linux/freezer.h> 34 #include <linux/pagemap.h> 35 #include <linux/kthread.h> 36 #include <linux/poison.h> 37 #include <linux/proc_fs.h> 38 #include <linux/debugfs.h> 39 #include <linux/seq_file.h> 40 #include <linux/math64.h> 41 #include <linux/hash.h> 42 #include <linux/log2.h> 43 #include <linux/vmalloc.h> 44 #include <linux/backing-dev.h> 45 46 #define CREATE_TRACE_POINTS 47 #include <trace/events/jbd2.h> 48 49 #include <asm/uaccess.h> 50 #include <asm/page.h> 51 52 EXPORT_SYMBOL(jbd2_journal_extend); 53 EXPORT_SYMBOL(jbd2_journal_stop); 54 EXPORT_SYMBOL(jbd2_journal_lock_updates); 55 EXPORT_SYMBOL(jbd2_journal_unlock_updates); 56 EXPORT_SYMBOL(jbd2_journal_get_write_access); 57 EXPORT_SYMBOL(jbd2_journal_get_create_access); 58 EXPORT_SYMBOL(jbd2_journal_get_undo_access); 59 EXPORT_SYMBOL(jbd2_journal_set_triggers); 60 EXPORT_SYMBOL(jbd2_journal_dirty_metadata); 61 EXPORT_SYMBOL(jbd2_journal_release_buffer); 62 EXPORT_SYMBOL(jbd2_journal_forget); 63 #if 0 64 EXPORT_SYMBOL(journal_sync_buffer); 65 #endif 66 EXPORT_SYMBOL(jbd2_journal_flush); 67 EXPORT_SYMBOL(jbd2_journal_revoke); 68 69 EXPORT_SYMBOL(jbd2_journal_init_dev); 70 EXPORT_SYMBOL(jbd2_journal_init_inode); 71 EXPORT_SYMBOL(jbd2_journal_update_format); 72 EXPORT_SYMBOL(jbd2_journal_check_used_features); 73 EXPORT_SYMBOL(jbd2_journal_check_available_features); 74 EXPORT_SYMBOL(jbd2_journal_set_features); 75 EXPORT_SYMBOL(jbd2_journal_load); 76 EXPORT_SYMBOL(jbd2_journal_destroy); 77 EXPORT_SYMBOL(jbd2_journal_abort); 78 EXPORT_SYMBOL(jbd2_journal_errno); 79 EXPORT_SYMBOL(jbd2_journal_ack_err); 80 EXPORT_SYMBOL(jbd2_journal_clear_err); 81 EXPORT_SYMBOL(jbd2_log_wait_commit); 82 EXPORT_SYMBOL(jbd2_log_start_commit); 83 EXPORT_SYMBOL(jbd2_journal_start_commit); 84 EXPORT_SYMBOL(jbd2_journal_force_commit_nested); 85 EXPORT_SYMBOL(jbd2_journal_wipe); 86 EXPORT_SYMBOL(jbd2_journal_blocks_per_page); 87 EXPORT_SYMBOL(jbd2_journal_invalidatepage); 88 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers); 89 EXPORT_SYMBOL(jbd2_journal_force_commit); 90 EXPORT_SYMBOL(jbd2_journal_file_inode); 91 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode); 92 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode); 93 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate); 94 95 static int journal_convert_superblock_v1(journal_t *, journal_superblock_t *); 96 static void __journal_abort_soft (journal_t *journal, int errno); 97 static int jbd2_journal_create_slab(size_t slab_size); 98 99 /* 100 * Helper function used to manage commit timeouts 101 */ 102 103 static void commit_timeout(unsigned long __data) 104 { 105 struct task_struct * p = (struct task_struct *) __data; 106 107 wake_up_process(p); 108 } 109 110 /* 111 * kjournald2: The main thread function used to manage a logging device 112 * journal. 113 * 114 * This kernel thread is responsible for two things: 115 * 116 * 1) COMMIT: Every so often we need to commit the current state of the 117 * filesystem to disk. The journal thread is responsible for writing 118 * all of the metadata buffers to disk. 119 * 120 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all 121 * of the data in that part of the log has been rewritten elsewhere on 122 * the disk. Flushing these old buffers to reclaim space in the log is 123 * known as checkpointing, and this thread is responsible for that job. 124 */ 125 126 static int kjournald2(void *arg) 127 { 128 journal_t *journal = arg; 129 transaction_t *transaction; 130 131 /* 132 * Set up an interval timer which can be used to trigger a commit wakeup 133 * after the commit interval expires 134 */ 135 setup_timer(&journal->j_commit_timer, commit_timeout, 136 (unsigned long)current); 137 138 /* Record that the journal thread is running */ 139 journal->j_task = current; 140 wake_up(&journal->j_wait_done_commit); 141 142 /* 143 * And now, wait forever for commit wakeup events. 144 */ 145 write_lock(&journal->j_state_lock); 146 147 loop: 148 if (journal->j_flags & JBD2_UNMOUNT) 149 goto end_loop; 150 151 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n", 152 journal->j_commit_sequence, journal->j_commit_request); 153 154 if (journal->j_commit_sequence != journal->j_commit_request) { 155 jbd_debug(1, "OK, requests differ\n"); 156 write_unlock(&journal->j_state_lock); 157 del_timer_sync(&journal->j_commit_timer); 158 jbd2_journal_commit_transaction(journal); 159 write_lock(&journal->j_state_lock); 160 goto loop; 161 } 162 163 wake_up(&journal->j_wait_done_commit); 164 if (freezing(current)) { 165 /* 166 * The simpler the better. Flushing journal isn't a 167 * good idea, because that depends on threads that may 168 * be already stopped. 169 */ 170 jbd_debug(1, "Now suspending kjournald2\n"); 171 write_unlock(&journal->j_state_lock); 172 refrigerator(); 173 write_lock(&journal->j_state_lock); 174 } else { 175 /* 176 * We assume on resume that commits are already there, 177 * so we don't sleep 178 */ 179 DEFINE_WAIT(wait); 180 int should_sleep = 1; 181 182 prepare_to_wait(&journal->j_wait_commit, &wait, 183 TASK_INTERRUPTIBLE); 184 if (journal->j_commit_sequence != journal->j_commit_request) 185 should_sleep = 0; 186 transaction = journal->j_running_transaction; 187 if (transaction && time_after_eq(jiffies, 188 transaction->t_expires)) 189 should_sleep = 0; 190 if (journal->j_flags & JBD2_UNMOUNT) 191 should_sleep = 0; 192 if (should_sleep) { 193 write_unlock(&journal->j_state_lock); 194 schedule(); 195 write_lock(&journal->j_state_lock); 196 } 197 finish_wait(&journal->j_wait_commit, &wait); 198 } 199 200 jbd_debug(1, "kjournald2 wakes\n"); 201 202 /* 203 * Were we woken up by a commit wakeup event? 204 */ 205 transaction = journal->j_running_transaction; 206 if (transaction && time_after_eq(jiffies, transaction->t_expires)) { 207 journal->j_commit_request = transaction->t_tid; 208 jbd_debug(1, "woke because of timeout\n"); 209 } 210 goto loop; 211 212 end_loop: 213 write_unlock(&journal->j_state_lock); 214 del_timer_sync(&journal->j_commit_timer); 215 journal->j_task = NULL; 216 wake_up(&journal->j_wait_done_commit); 217 jbd_debug(1, "Journal thread exiting.\n"); 218 return 0; 219 } 220 221 static int jbd2_journal_start_thread(journal_t *journal) 222 { 223 struct task_struct *t; 224 225 t = kthread_run(kjournald2, journal, "jbd2/%s", 226 journal->j_devname); 227 if (IS_ERR(t)) 228 return PTR_ERR(t); 229 230 wait_event(journal->j_wait_done_commit, journal->j_task != NULL); 231 return 0; 232 } 233 234 static void journal_kill_thread(journal_t *journal) 235 { 236 write_lock(&journal->j_state_lock); 237 journal->j_flags |= JBD2_UNMOUNT; 238 239 while (journal->j_task) { 240 wake_up(&journal->j_wait_commit); 241 write_unlock(&journal->j_state_lock); 242 wait_event(journal->j_wait_done_commit, journal->j_task == NULL); 243 write_lock(&journal->j_state_lock); 244 } 245 write_unlock(&journal->j_state_lock); 246 } 247 248 /* 249 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal. 250 * 251 * Writes a metadata buffer to a given disk block. The actual IO is not 252 * performed but a new buffer_head is constructed which labels the data 253 * to be written with the correct destination disk block. 254 * 255 * Any magic-number escaping which needs to be done will cause a 256 * copy-out here. If the buffer happens to start with the 257 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the 258 * magic number is only written to the log for descripter blocks. In 259 * this case, we copy the data and replace the first word with 0, and we 260 * return a result code which indicates that this buffer needs to be 261 * marked as an escaped buffer in the corresponding log descriptor 262 * block. The missing word can then be restored when the block is read 263 * during recovery. 264 * 265 * If the source buffer has already been modified by a new transaction 266 * since we took the last commit snapshot, we use the frozen copy of 267 * that data for IO. If we end up using the existing buffer_head's data 268 * for the write, then we *have* to lock the buffer to prevent anyone 269 * else from using and possibly modifying it while the IO is in 270 * progress. 271 * 272 * The function returns a pointer to the buffer_heads to be used for IO. 273 * 274 * We assume that the journal has already been locked in this function. 275 * 276 * Return value: 277 * <0: Error 278 * >=0: Finished OK 279 * 280 * On success: 281 * Bit 0 set == escape performed on the data 282 * Bit 1 set == buffer copy-out performed (kfree the data after IO) 283 */ 284 285 int jbd2_journal_write_metadata_buffer(transaction_t *transaction, 286 struct journal_head *jh_in, 287 struct journal_head **jh_out, 288 unsigned long long blocknr) 289 { 290 int need_copy_out = 0; 291 int done_copy_out = 0; 292 int do_escape = 0; 293 char *mapped_data; 294 struct buffer_head *new_bh; 295 struct journal_head *new_jh; 296 struct page *new_page; 297 unsigned int new_offset; 298 struct buffer_head *bh_in = jh2bh(jh_in); 299 journal_t *journal = transaction->t_journal; 300 301 /* 302 * The buffer really shouldn't be locked: only the current committing 303 * transaction is allowed to write it, so nobody else is allowed 304 * to do any IO. 305 * 306 * akpm: except if we're journalling data, and write() output is 307 * also part of a shared mapping, and another thread has 308 * decided to launch a writepage() against this buffer. 309 */ 310 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in)); 311 312 retry_alloc: 313 new_bh = alloc_buffer_head(GFP_NOFS); 314 if (!new_bh) { 315 /* 316 * Failure is not an option, but __GFP_NOFAIL is going 317 * away; so we retry ourselves here. 318 */ 319 congestion_wait(BLK_RW_ASYNC, HZ/50); 320 goto retry_alloc; 321 } 322 323 /* keep subsequent assertions sane */ 324 new_bh->b_state = 0; 325 init_buffer(new_bh, NULL, NULL); 326 atomic_set(&new_bh->b_count, 1); 327 new_jh = jbd2_journal_add_journal_head(new_bh); /* This sleeps */ 328 329 /* 330 * If a new transaction has already done a buffer copy-out, then 331 * we use that version of the data for the commit. 332 */ 333 jbd_lock_bh_state(bh_in); 334 repeat: 335 if (jh_in->b_frozen_data) { 336 done_copy_out = 1; 337 new_page = virt_to_page(jh_in->b_frozen_data); 338 new_offset = offset_in_page(jh_in->b_frozen_data); 339 } else { 340 new_page = jh2bh(jh_in)->b_page; 341 new_offset = offset_in_page(jh2bh(jh_in)->b_data); 342 } 343 344 mapped_data = kmap_atomic(new_page, KM_USER0); 345 /* 346 * Fire data frozen trigger if data already wasn't frozen. Do this 347 * before checking for escaping, as the trigger may modify the magic 348 * offset. If a copy-out happens afterwards, it will have the correct 349 * data in the buffer. 350 */ 351 if (!done_copy_out) 352 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset, 353 jh_in->b_triggers); 354 355 /* 356 * Check for escaping 357 */ 358 if (*((__be32 *)(mapped_data + new_offset)) == 359 cpu_to_be32(JBD2_MAGIC_NUMBER)) { 360 need_copy_out = 1; 361 do_escape = 1; 362 } 363 kunmap_atomic(mapped_data, KM_USER0); 364 365 /* 366 * Do we need to do a data copy? 367 */ 368 if (need_copy_out && !done_copy_out) { 369 char *tmp; 370 371 jbd_unlock_bh_state(bh_in); 372 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS); 373 if (!tmp) { 374 jbd2_journal_put_journal_head(new_jh); 375 return -ENOMEM; 376 } 377 jbd_lock_bh_state(bh_in); 378 if (jh_in->b_frozen_data) { 379 jbd2_free(tmp, bh_in->b_size); 380 goto repeat; 381 } 382 383 jh_in->b_frozen_data = tmp; 384 mapped_data = kmap_atomic(new_page, KM_USER0); 385 memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size); 386 kunmap_atomic(mapped_data, KM_USER0); 387 388 new_page = virt_to_page(tmp); 389 new_offset = offset_in_page(tmp); 390 done_copy_out = 1; 391 392 /* 393 * This isn't strictly necessary, as we're using frozen 394 * data for the escaping, but it keeps consistency with 395 * b_frozen_data usage. 396 */ 397 jh_in->b_frozen_triggers = jh_in->b_triggers; 398 } 399 400 /* 401 * Did we need to do an escaping? Now we've done all the 402 * copying, we can finally do so. 403 */ 404 if (do_escape) { 405 mapped_data = kmap_atomic(new_page, KM_USER0); 406 *((unsigned int *)(mapped_data + new_offset)) = 0; 407 kunmap_atomic(mapped_data, KM_USER0); 408 } 409 410 set_bh_page(new_bh, new_page, new_offset); 411 new_jh->b_transaction = NULL; 412 new_bh->b_size = jh2bh(jh_in)->b_size; 413 new_bh->b_bdev = transaction->t_journal->j_dev; 414 new_bh->b_blocknr = blocknr; 415 set_buffer_mapped(new_bh); 416 set_buffer_dirty(new_bh); 417 418 *jh_out = new_jh; 419 420 /* 421 * The to-be-written buffer needs to get moved to the io queue, 422 * and the original buffer whose contents we are shadowing or 423 * copying is moved to the transaction's shadow queue. 424 */ 425 JBUFFER_TRACE(jh_in, "file as BJ_Shadow"); 426 spin_lock(&journal->j_list_lock); 427 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow); 428 spin_unlock(&journal->j_list_lock); 429 jbd_unlock_bh_state(bh_in); 430 431 JBUFFER_TRACE(new_jh, "file as BJ_IO"); 432 jbd2_journal_file_buffer(new_jh, transaction, BJ_IO); 433 434 return do_escape | (done_copy_out << 1); 435 } 436 437 /* 438 * Allocation code for the journal file. Manage the space left in the 439 * journal, so that we can begin checkpointing when appropriate. 440 */ 441 442 /* 443 * __jbd2_log_space_left: Return the number of free blocks left in the journal. 444 * 445 * Called with the journal already locked. 446 * 447 * Called under j_state_lock 448 */ 449 450 int __jbd2_log_space_left(journal_t *journal) 451 { 452 int left = journal->j_free; 453 454 /* assert_spin_locked(&journal->j_state_lock); */ 455 456 /* 457 * Be pessimistic here about the number of those free blocks which 458 * might be required for log descriptor control blocks. 459 */ 460 461 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */ 462 463 left -= MIN_LOG_RESERVED_BLOCKS; 464 465 if (left <= 0) 466 return 0; 467 left -= (left >> 3); 468 return left; 469 } 470 471 /* 472 * Called under j_state_lock. Returns true if a transaction commit was started. 473 */ 474 int __jbd2_log_start_commit(journal_t *journal, tid_t target) 475 { 476 /* 477 * Are we already doing a recent enough commit? 478 */ 479 if (!tid_geq(journal->j_commit_request, target)) { 480 /* 481 * We want a new commit: OK, mark the request and wakup the 482 * commit thread. We do _not_ do the commit ourselves. 483 */ 484 485 journal->j_commit_request = target; 486 jbd_debug(1, "JBD: requesting commit %d/%d\n", 487 journal->j_commit_request, 488 journal->j_commit_sequence); 489 wake_up(&journal->j_wait_commit); 490 return 1; 491 } 492 return 0; 493 } 494 495 int jbd2_log_start_commit(journal_t *journal, tid_t tid) 496 { 497 int ret; 498 499 write_lock(&journal->j_state_lock); 500 ret = __jbd2_log_start_commit(journal, tid); 501 write_unlock(&journal->j_state_lock); 502 return ret; 503 } 504 505 /* 506 * Force and wait upon a commit if the calling process is not within 507 * transaction. This is used for forcing out undo-protected data which contains 508 * bitmaps, when the fs is running out of space. 509 * 510 * We can only force the running transaction if we don't have an active handle; 511 * otherwise, we will deadlock. 512 * 513 * Returns true if a transaction was started. 514 */ 515 int jbd2_journal_force_commit_nested(journal_t *journal) 516 { 517 transaction_t *transaction = NULL; 518 tid_t tid; 519 520 read_lock(&journal->j_state_lock); 521 if (journal->j_running_transaction && !current->journal_info) { 522 transaction = journal->j_running_transaction; 523 __jbd2_log_start_commit(journal, transaction->t_tid); 524 } else if (journal->j_committing_transaction) 525 transaction = journal->j_committing_transaction; 526 527 if (!transaction) { 528 read_unlock(&journal->j_state_lock); 529 return 0; /* Nothing to retry */ 530 } 531 532 tid = transaction->t_tid; 533 read_unlock(&journal->j_state_lock); 534 jbd2_log_wait_commit(journal, tid); 535 return 1; 536 } 537 538 /* 539 * Start a commit of the current running transaction (if any). Returns true 540 * if a transaction is going to be committed (or is currently already 541 * committing), and fills its tid in at *ptid 542 */ 543 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid) 544 { 545 int ret = 0; 546 547 write_lock(&journal->j_state_lock); 548 if (journal->j_running_transaction) { 549 tid_t tid = journal->j_running_transaction->t_tid; 550 551 __jbd2_log_start_commit(journal, tid); 552 /* There's a running transaction and we've just made sure 553 * it's commit has been scheduled. */ 554 if (ptid) 555 *ptid = tid; 556 ret = 1; 557 } else if (journal->j_committing_transaction) { 558 /* 559 * If ext3_write_super() recently started a commit, then we 560 * have to wait for completion of that transaction 561 */ 562 if (ptid) 563 *ptid = journal->j_committing_transaction->t_tid; 564 ret = 1; 565 } 566 write_unlock(&journal->j_state_lock); 567 return ret; 568 } 569 570 /* 571 * Wait for a specified commit to complete. 572 * The caller may not hold the journal lock. 573 */ 574 int jbd2_log_wait_commit(journal_t *journal, tid_t tid) 575 { 576 int err = 0; 577 578 read_lock(&journal->j_state_lock); 579 #ifdef CONFIG_JBD2_DEBUG 580 if (!tid_geq(journal->j_commit_request, tid)) { 581 printk(KERN_EMERG 582 "%s: error: j_commit_request=%d, tid=%d\n", 583 __func__, journal->j_commit_request, tid); 584 } 585 #endif 586 while (tid_gt(tid, journal->j_commit_sequence)) { 587 jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n", 588 tid, journal->j_commit_sequence); 589 wake_up(&journal->j_wait_commit); 590 read_unlock(&journal->j_state_lock); 591 wait_event(journal->j_wait_done_commit, 592 !tid_gt(tid, journal->j_commit_sequence)); 593 read_lock(&journal->j_state_lock); 594 } 595 read_unlock(&journal->j_state_lock); 596 597 if (unlikely(is_journal_aborted(journal))) { 598 printk(KERN_EMERG "journal commit I/O error\n"); 599 err = -EIO; 600 } 601 return err; 602 } 603 604 /* 605 * Log buffer allocation routines: 606 */ 607 608 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp) 609 { 610 unsigned long blocknr; 611 612 write_lock(&journal->j_state_lock); 613 J_ASSERT(journal->j_free > 1); 614 615 blocknr = journal->j_head; 616 journal->j_head++; 617 journal->j_free--; 618 if (journal->j_head == journal->j_last) 619 journal->j_head = journal->j_first; 620 write_unlock(&journal->j_state_lock); 621 return jbd2_journal_bmap(journal, blocknr, retp); 622 } 623 624 /* 625 * Conversion of logical to physical block numbers for the journal 626 * 627 * On external journals the journal blocks are identity-mapped, so 628 * this is a no-op. If needed, we can use j_blk_offset - everything is 629 * ready. 630 */ 631 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr, 632 unsigned long long *retp) 633 { 634 int err = 0; 635 unsigned long long ret; 636 637 if (journal->j_inode) { 638 ret = bmap(journal->j_inode, blocknr); 639 if (ret) 640 *retp = ret; 641 else { 642 printk(KERN_ALERT "%s: journal block not found " 643 "at offset %lu on %s\n", 644 __func__, blocknr, journal->j_devname); 645 err = -EIO; 646 __journal_abort_soft(journal, err); 647 } 648 } else { 649 *retp = blocknr; /* +journal->j_blk_offset */ 650 } 651 return err; 652 } 653 654 /* 655 * We play buffer_head aliasing tricks to write data/metadata blocks to 656 * the journal without copying their contents, but for journal 657 * descriptor blocks we do need to generate bona fide buffers. 658 * 659 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying 660 * the buffer's contents they really should run flush_dcache_page(bh->b_page). 661 * But we don't bother doing that, so there will be coherency problems with 662 * mmaps of blockdevs which hold live JBD-controlled filesystems. 663 */ 664 struct journal_head *jbd2_journal_get_descriptor_buffer(journal_t *journal) 665 { 666 struct buffer_head *bh; 667 unsigned long long blocknr; 668 int err; 669 670 err = jbd2_journal_next_log_block(journal, &blocknr); 671 672 if (err) 673 return NULL; 674 675 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize); 676 if (!bh) 677 return NULL; 678 lock_buffer(bh); 679 memset(bh->b_data, 0, journal->j_blocksize); 680 set_buffer_uptodate(bh); 681 unlock_buffer(bh); 682 BUFFER_TRACE(bh, "return this buffer"); 683 return jbd2_journal_add_journal_head(bh); 684 } 685 686 struct jbd2_stats_proc_session { 687 journal_t *journal; 688 struct transaction_stats_s *stats; 689 int start; 690 int max; 691 }; 692 693 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos) 694 { 695 return *pos ? NULL : SEQ_START_TOKEN; 696 } 697 698 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos) 699 { 700 return NULL; 701 } 702 703 static int jbd2_seq_info_show(struct seq_file *seq, void *v) 704 { 705 struct jbd2_stats_proc_session *s = seq->private; 706 707 if (v != SEQ_START_TOKEN) 708 return 0; 709 seq_printf(seq, "%lu transaction, each up to %u blocks\n", 710 s->stats->ts_tid, 711 s->journal->j_max_transaction_buffers); 712 if (s->stats->ts_tid == 0) 713 return 0; 714 seq_printf(seq, "average: \n %ums waiting for transaction\n", 715 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid)); 716 seq_printf(seq, " %ums running transaction\n", 717 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid)); 718 seq_printf(seq, " %ums transaction was being locked\n", 719 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid)); 720 seq_printf(seq, " %ums flushing data (in ordered mode)\n", 721 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid)); 722 seq_printf(seq, " %ums logging transaction\n", 723 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid)); 724 seq_printf(seq, " %lluus average transaction commit time\n", 725 div_u64(s->journal->j_average_commit_time, 1000)); 726 seq_printf(seq, " %lu handles per transaction\n", 727 s->stats->run.rs_handle_count / s->stats->ts_tid); 728 seq_printf(seq, " %lu blocks per transaction\n", 729 s->stats->run.rs_blocks / s->stats->ts_tid); 730 seq_printf(seq, " %lu logged blocks per transaction\n", 731 s->stats->run.rs_blocks_logged / s->stats->ts_tid); 732 return 0; 733 } 734 735 static void jbd2_seq_info_stop(struct seq_file *seq, void *v) 736 { 737 } 738 739 static const struct seq_operations jbd2_seq_info_ops = { 740 .start = jbd2_seq_info_start, 741 .next = jbd2_seq_info_next, 742 .stop = jbd2_seq_info_stop, 743 .show = jbd2_seq_info_show, 744 }; 745 746 static int jbd2_seq_info_open(struct inode *inode, struct file *file) 747 { 748 journal_t *journal = PDE(inode)->data; 749 struct jbd2_stats_proc_session *s; 750 int rc, size; 751 752 s = kmalloc(sizeof(*s), GFP_KERNEL); 753 if (s == NULL) 754 return -ENOMEM; 755 size = sizeof(struct transaction_stats_s); 756 s->stats = kmalloc(size, GFP_KERNEL); 757 if (s->stats == NULL) { 758 kfree(s); 759 return -ENOMEM; 760 } 761 spin_lock(&journal->j_history_lock); 762 memcpy(s->stats, &journal->j_stats, size); 763 s->journal = journal; 764 spin_unlock(&journal->j_history_lock); 765 766 rc = seq_open(file, &jbd2_seq_info_ops); 767 if (rc == 0) { 768 struct seq_file *m = file->private_data; 769 m->private = s; 770 } else { 771 kfree(s->stats); 772 kfree(s); 773 } 774 return rc; 775 776 } 777 778 static int jbd2_seq_info_release(struct inode *inode, struct file *file) 779 { 780 struct seq_file *seq = file->private_data; 781 struct jbd2_stats_proc_session *s = seq->private; 782 kfree(s->stats); 783 kfree(s); 784 return seq_release(inode, file); 785 } 786 787 static const struct file_operations jbd2_seq_info_fops = { 788 .owner = THIS_MODULE, 789 .open = jbd2_seq_info_open, 790 .read = seq_read, 791 .llseek = seq_lseek, 792 .release = jbd2_seq_info_release, 793 }; 794 795 static struct proc_dir_entry *proc_jbd2_stats; 796 797 static void jbd2_stats_proc_init(journal_t *journal) 798 { 799 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats); 800 if (journal->j_proc_entry) { 801 proc_create_data("info", S_IRUGO, journal->j_proc_entry, 802 &jbd2_seq_info_fops, journal); 803 } 804 } 805 806 static void jbd2_stats_proc_exit(journal_t *journal) 807 { 808 remove_proc_entry("info", journal->j_proc_entry); 809 remove_proc_entry(journal->j_devname, proc_jbd2_stats); 810 } 811 812 /* 813 * Management for journal control blocks: functions to create and 814 * destroy journal_t structures, and to initialise and read existing 815 * journal blocks from disk. */ 816 817 /* First: create and setup a journal_t object in memory. We initialise 818 * very few fields yet: that has to wait until we have created the 819 * journal structures from from scratch, or loaded them from disk. */ 820 821 static journal_t * journal_init_common (void) 822 { 823 journal_t *journal; 824 int err; 825 826 journal = kzalloc(sizeof(*journal), GFP_KERNEL); 827 if (!journal) 828 goto fail; 829 830 init_waitqueue_head(&journal->j_wait_transaction_locked); 831 init_waitqueue_head(&journal->j_wait_logspace); 832 init_waitqueue_head(&journal->j_wait_done_commit); 833 init_waitqueue_head(&journal->j_wait_checkpoint); 834 init_waitqueue_head(&journal->j_wait_commit); 835 init_waitqueue_head(&journal->j_wait_updates); 836 mutex_init(&journal->j_barrier); 837 mutex_init(&journal->j_checkpoint_mutex); 838 spin_lock_init(&journal->j_revoke_lock); 839 spin_lock_init(&journal->j_list_lock); 840 rwlock_init(&journal->j_state_lock); 841 842 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE); 843 journal->j_min_batch_time = 0; 844 journal->j_max_batch_time = 15000; /* 15ms */ 845 846 /* The journal is marked for error until we succeed with recovery! */ 847 journal->j_flags = JBD2_ABORT; 848 849 /* Set up a default-sized revoke table for the new mount. */ 850 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH); 851 if (err) { 852 kfree(journal); 853 goto fail; 854 } 855 856 spin_lock_init(&journal->j_history_lock); 857 858 return journal; 859 fail: 860 return NULL; 861 } 862 863 /* jbd2_journal_init_dev and jbd2_journal_init_inode: 864 * 865 * Create a journal structure assigned some fixed set of disk blocks to 866 * the journal. We don't actually touch those disk blocks yet, but we 867 * need to set up all of the mapping information to tell the journaling 868 * system where the journal blocks are. 869 * 870 */ 871 872 /** 873 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure 874 * @bdev: Block device on which to create the journal 875 * @fs_dev: Device which hold journalled filesystem for this journal. 876 * @start: Block nr Start of journal. 877 * @len: Length of the journal in blocks. 878 * @blocksize: blocksize of journalling device 879 * 880 * Returns: a newly created journal_t * 881 * 882 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous 883 * range of blocks on an arbitrary block device. 884 * 885 */ 886 journal_t * jbd2_journal_init_dev(struct block_device *bdev, 887 struct block_device *fs_dev, 888 unsigned long long start, int len, int blocksize) 889 { 890 journal_t *journal = journal_init_common(); 891 struct buffer_head *bh; 892 char *p; 893 int n; 894 895 if (!journal) 896 return NULL; 897 898 /* journal descriptor can store up to n blocks -bzzz */ 899 journal->j_blocksize = blocksize; 900 jbd2_stats_proc_init(journal); 901 n = journal->j_blocksize / sizeof(journal_block_tag_t); 902 journal->j_wbufsize = n; 903 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL); 904 if (!journal->j_wbuf) { 905 printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n", 906 __func__); 907 goto out_err; 908 } 909 journal->j_dev = bdev; 910 journal->j_fs_dev = fs_dev; 911 journal->j_blk_offset = start; 912 journal->j_maxlen = len; 913 bdevname(journal->j_dev, journal->j_devname); 914 p = journal->j_devname; 915 while ((p = strchr(p, '/'))) 916 *p = '!'; 917 918 bh = __getblk(journal->j_dev, start, journal->j_blocksize); 919 if (!bh) { 920 printk(KERN_ERR 921 "%s: Cannot get buffer for journal superblock\n", 922 __func__); 923 goto out_err; 924 } 925 journal->j_sb_buffer = bh; 926 journal->j_superblock = (journal_superblock_t *)bh->b_data; 927 928 return journal; 929 out_err: 930 kfree(journal->j_wbuf); 931 jbd2_stats_proc_exit(journal); 932 kfree(journal); 933 return NULL; 934 } 935 936 /** 937 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode. 938 * @inode: An inode to create the journal in 939 * 940 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as 941 * the journal. The inode must exist already, must support bmap() and 942 * must have all data blocks preallocated. 943 */ 944 journal_t * jbd2_journal_init_inode (struct inode *inode) 945 { 946 struct buffer_head *bh; 947 journal_t *journal = journal_init_common(); 948 char *p; 949 int err; 950 int n; 951 unsigned long long blocknr; 952 953 if (!journal) 954 return NULL; 955 956 journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev; 957 journal->j_inode = inode; 958 bdevname(journal->j_dev, journal->j_devname); 959 p = journal->j_devname; 960 while ((p = strchr(p, '/'))) 961 *p = '!'; 962 p = journal->j_devname + strlen(journal->j_devname); 963 sprintf(p, "-%lu", journal->j_inode->i_ino); 964 jbd_debug(1, 965 "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n", 966 journal, inode->i_sb->s_id, inode->i_ino, 967 (long long) inode->i_size, 968 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize); 969 970 journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits; 971 journal->j_blocksize = inode->i_sb->s_blocksize; 972 jbd2_stats_proc_init(journal); 973 974 /* journal descriptor can store up to n blocks -bzzz */ 975 n = journal->j_blocksize / sizeof(journal_block_tag_t); 976 journal->j_wbufsize = n; 977 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL); 978 if (!journal->j_wbuf) { 979 printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n", 980 __func__); 981 goto out_err; 982 } 983 984 err = jbd2_journal_bmap(journal, 0, &blocknr); 985 /* If that failed, give up */ 986 if (err) { 987 printk(KERN_ERR "%s: Cannnot locate journal superblock\n", 988 __func__); 989 goto out_err; 990 } 991 992 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize); 993 if (!bh) { 994 printk(KERN_ERR 995 "%s: Cannot get buffer for journal superblock\n", 996 __func__); 997 goto out_err; 998 } 999 journal->j_sb_buffer = bh; 1000 journal->j_superblock = (journal_superblock_t *)bh->b_data; 1001 1002 return journal; 1003 out_err: 1004 kfree(journal->j_wbuf); 1005 jbd2_stats_proc_exit(journal); 1006 kfree(journal); 1007 return NULL; 1008 } 1009 1010 /* 1011 * If the journal init or create aborts, we need to mark the journal 1012 * superblock as being NULL to prevent the journal destroy from writing 1013 * back a bogus superblock. 1014 */ 1015 static void journal_fail_superblock (journal_t *journal) 1016 { 1017 struct buffer_head *bh = journal->j_sb_buffer; 1018 brelse(bh); 1019 journal->j_sb_buffer = NULL; 1020 } 1021 1022 /* 1023 * Given a journal_t structure, initialise the various fields for 1024 * startup of a new journaling session. We use this both when creating 1025 * a journal, and after recovering an old journal to reset it for 1026 * subsequent use. 1027 */ 1028 1029 static int journal_reset(journal_t *journal) 1030 { 1031 journal_superblock_t *sb = journal->j_superblock; 1032 unsigned long long first, last; 1033 1034 first = be32_to_cpu(sb->s_first); 1035 last = be32_to_cpu(sb->s_maxlen); 1036 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) { 1037 printk(KERN_ERR "JBD: Journal too short (blocks %llu-%llu).\n", 1038 first, last); 1039 journal_fail_superblock(journal); 1040 return -EINVAL; 1041 } 1042 1043 journal->j_first = first; 1044 journal->j_last = last; 1045 1046 journal->j_head = first; 1047 journal->j_tail = first; 1048 journal->j_free = last - first; 1049 1050 journal->j_tail_sequence = journal->j_transaction_sequence; 1051 journal->j_commit_sequence = journal->j_transaction_sequence - 1; 1052 journal->j_commit_request = journal->j_commit_sequence; 1053 1054 journal->j_max_transaction_buffers = journal->j_maxlen / 4; 1055 1056 /* Add the dynamic fields and write it to disk. */ 1057 jbd2_journal_update_superblock(journal, 1); 1058 return jbd2_journal_start_thread(journal); 1059 } 1060 1061 /** 1062 * void jbd2_journal_update_superblock() - Update journal sb on disk. 1063 * @journal: The journal to update. 1064 * @wait: Set to '0' if you don't want to wait for IO completion. 1065 * 1066 * Update a journal's dynamic superblock fields and write it to disk, 1067 * optionally waiting for the IO to complete. 1068 */ 1069 void jbd2_journal_update_superblock(journal_t *journal, int wait) 1070 { 1071 journal_superblock_t *sb = journal->j_superblock; 1072 struct buffer_head *bh = journal->j_sb_buffer; 1073 1074 /* 1075 * As a special case, if the on-disk copy is already marked as needing 1076 * no recovery (s_start == 0) and there are no outstanding transactions 1077 * in the filesystem, then we can safely defer the superblock update 1078 * until the next commit by setting JBD2_FLUSHED. This avoids 1079 * attempting a write to a potential-readonly device. 1080 */ 1081 if (sb->s_start == 0 && journal->j_tail_sequence == 1082 journal->j_transaction_sequence) { 1083 jbd_debug(1,"JBD: Skipping superblock update on recovered sb " 1084 "(start %ld, seq %d, errno %d)\n", 1085 journal->j_tail, journal->j_tail_sequence, 1086 journal->j_errno); 1087 goto out; 1088 } 1089 1090 if (buffer_write_io_error(bh)) { 1091 /* 1092 * Oh, dear. A previous attempt to write the journal 1093 * superblock failed. This could happen because the 1094 * USB device was yanked out. Or it could happen to 1095 * be a transient write error and maybe the block will 1096 * be remapped. Nothing we can do but to retry the 1097 * write and hope for the best. 1098 */ 1099 printk(KERN_ERR "JBD2: previous I/O error detected " 1100 "for journal superblock update for %s.\n", 1101 journal->j_devname); 1102 clear_buffer_write_io_error(bh); 1103 set_buffer_uptodate(bh); 1104 } 1105 1106 read_lock(&journal->j_state_lock); 1107 jbd_debug(1,"JBD: updating superblock (start %ld, seq %d, errno %d)\n", 1108 journal->j_tail, journal->j_tail_sequence, journal->j_errno); 1109 1110 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence); 1111 sb->s_start = cpu_to_be32(journal->j_tail); 1112 sb->s_errno = cpu_to_be32(journal->j_errno); 1113 read_unlock(&journal->j_state_lock); 1114 1115 BUFFER_TRACE(bh, "marking dirty"); 1116 mark_buffer_dirty(bh); 1117 if (wait) { 1118 sync_dirty_buffer(bh); 1119 if (buffer_write_io_error(bh)) { 1120 printk(KERN_ERR "JBD2: I/O error detected " 1121 "when updating journal superblock for %s.\n", 1122 journal->j_devname); 1123 clear_buffer_write_io_error(bh); 1124 set_buffer_uptodate(bh); 1125 } 1126 } else 1127 write_dirty_buffer(bh, WRITE); 1128 1129 out: 1130 /* If we have just flushed the log (by marking s_start==0), then 1131 * any future commit will have to be careful to update the 1132 * superblock again to re-record the true start of the log. */ 1133 1134 write_lock(&journal->j_state_lock); 1135 if (sb->s_start) 1136 journal->j_flags &= ~JBD2_FLUSHED; 1137 else 1138 journal->j_flags |= JBD2_FLUSHED; 1139 write_unlock(&journal->j_state_lock); 1140 } 1141 1142 /* 1143 * Read the superblock for a given journal, performing initial 1144 * validation of the format. 1145 */ 1146 1147 static int journal_get_superblock(journal_t *journal) 1148 { 1149 struct buffer_head *bh; 1150 journal_superblock_t *sb; 1151 int err = -EIO; 1152 1153 bh = journal->j_sb_buffer; 1154 1155 J_ASSERT(bh != NULL); 1156 if (!buffer_uptodate(bh)) { 1157 ll_rw_block(READ, 1, &bh); 1158 wait_on_buffer(bh); 1159 if (!buffer_uptodate(bh)) { 1160 printk (KERN_ERR 1161 "JBD: IO error reading journal superblock\n"); 1162 goto out; 1163 } 1164 } 1165 1166 sb = journal->j_superblock; 1167 1168 err = -EINVAL; 1169 1170 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) || 1171 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) { 1172 printk(KERN_WARNING "JBD: no valid journal superblock found\n"); 1173 goto out; 1174 } 1175 1176 switch(be32_to_cpu(sb->s_header.h_blocktype)) { 1177 case JBD2_SUPERBLOCK_V1: 1178 journal->j_format_version = 1; 1179 break; 1180 case JBD2_SUPERBLOCK_V2: 1181 journal->j_format_version = 2; 1182 break; 1183 default: 1184 printk(KERN_WARNING "JBD: unrecognised superblock format ID\n"); 1185 goto out; 1186 } 1187 1188 if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen) 1189 journal->j_maxlen = be32_to_cpu(sb->s_maxlen); 1190 else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) { 1191 printk (KERN_WARNING "JBD: journal file too short\n"); 1192 goto out; 1193 } 1194 1195 return 0; 1196 1197 out: 1198 journal_fail_superblock(journal); 1199 return err; 1200 } 1201 1202 /* 1203 * Load the on-disk journal superblock and read the key fields into the 1204 * journal_t. 1205 */ 1206 1207 static int load_superblock(journal_t *journal) 1208 { 1209 int err; 1210 journal_superblock_t *sb; 1211 1212 err = journal_get_superblock(journal); 1213 if (err) 1214 return err; 1215 1216 sb = journal->j_superblock; 1217 1218 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence); 1219 journal->j_tail = be32_to_cpu(sb->s_start); 1220 journal->j_first = be32_to_cpu(sb->s_first); 1221 journal->j_last = be32_to_cpu(sb->s_maxlen); 1222 journal->j_errno = be32_to_cpu(sb->s_errno); 1223 1224 return 0; 1225 } 1226 1227 1228 /** 1229 * int jbd2_journal_load() - Read journal from disk. 1230 * @journal: Journal to act on. 1231 * 1232 * Given a journal_t structure which tells us which disk blocks contain 1233 * a journal, read the journal from disk to initialise the in-memory 1234 * structures. 1235 */ 1236 int jbd2_journal_load(journal_t *journal) 1237 { 1238 int err; 1239 journal_superblock_t *sb; 1240 1241 err = load_superblock(journal); 1242 if (err) 1243 return err; 1244 1245 sb = journal->j_superblock; 1246 /* If this is a V2 superblock, then we have to check the 1247 * features flags on it. */ 1248 1249 if (journal->j_format_version >= 2) { 1250 if ((sb->s_feature_ro_compat & 1251 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) || 1252 (sb->s_feature_incompat & 1253 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) { 1254 printk (KERN_WARNING 1255 "JBD: Unrecognised features on journal\n"); 1256 return -EINVAL; 1257 } 1258 } 1259 1260 /* 1261 * Create a slab for this blocksize 1262 */ 1263 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize)); 1264 if (err) 1265 return err; 1266 1267 /* Let the recovery code check whether it needs to recover any 1268 * data from the journal. */ 1269 if (jbd2_journal_recover(journal)) 1270 goto recovery_error; 1271 1272 if (journal->j_failed_commit) { 1273 printk(KERN_ERR "JBD2: journal transaction %u on %s " 1274 "is corrupt.\n", journal->j_failed_commit, 1275 journal->j_devname); 1276 return -EIO; 1277 } 1278 1279 /* OK, we've finished with the dynamic journal bits: 1280 * reinitialise the dynamic contents of the superblock in memory 1281 * and reset them on disk. */ 1282 if (journal_reset(journal)) 1283 goto recovery_error; 1284 1285 journal->j_flags &= ~JBD2_ABORT; 1286 journal->j_flags |= JBD2_LOADED; 1287 return 0; 1288 1289 recovery_error: 1290 printk (KERN_WARNING "JBD: recovery failed\n"); 1291 return -EIO; 1292 } 1293 1294 /** 1295 * void jbd2_journal_destroy() - Release a journal_t structure. 1296 * @journal: Journal to act on. 1297 * 1298 * Release a journal_t structure once it is no longer in use by the 1299 * journaled object. 1300 * Return <0 if we couldn't clean up the journal. 1301 */ 1302 int jbd2_journal_destroy(journal_t *journal) 1303 { 1304 int err = 0; 1305 1306 /* Wait for the commit thread to wake up and die. */ 1307 journal_kill_thread(journal); 1308 1309 /* Force a final log commit */ 1310 if (journal->j_running_transaction) 1311 jbd2_journal_commit_transaction(journal); 1312 1313 /* Force any old transactions to disk */ 1314 1315 /* Totally anal locking here... */ 1316 spin_lock(&journal->j_list_lock); 1317 while (journal->j_checkpoint_transactions != NULL) { 1318 spin_unlock(&journal->j_list_lock); 1319 mutex_lock(&journal->j_checkpoint_mutex); 1320 jbd2_log_do_checkpoint(journal); 1321 mutex_unlock(&journal->j_checkpoint_mutex); 1322 spin_lock(&journal->j_list_lock); 1323 } 1324 1325 J_ASSERT(journal->j_running_transaction == NULL); 1326 J_ASSERT(journal->j_committing_transaction == NULL); 1327 J_ASSERT(journal->j_checkpoint_transactions == NULL); 1328 spin_unlock(&journal->j_list_lock); 1329 1330 if (journal->j_sb_buffer) { 1331 if (!is_journal_aborted(journal)) { 1332 /* We can now mark the journal as empty. */ 1333 journal->j_tail = 0; 1334 journal->j_tail_sequence = 1335 ++journal->j_transaction_sequence; 1336 jbd2_journal_update_superblock(journal, 1); 1337 } else { 1338 err = -EIO; 1339 } 1340 brelse(journal->j_sb_buffer); 1341 } 1342 1343 if (journal->j_proc_entry) 1344 jbd2_stats_proc_exit(journal); 1345 if (journal->j_inode) 1346 iput(journal->j_inode); 1347 if (journal->j_revoke) 1348 jbd2_journal_destroy_revoke(journal); 1349 kfree(journal->j_wbuf); 1350 kfree(journal); 1351 1352 return err; 1353 } 1354 1355 1356 /** 1357 *int jbd2_journal_check_used_features () - Check if features specified are used. 1358 * @journal: Journal to check. 1359 * @compat: bitmask of compatible features 1360 * @ro: bitmask of features that force read-only mount 1361 * @incompat: bitmask of incompatible features 1362 * 1363 * Check whether the journal uses all of a given set of 1364 * features. Return true (non-zero) if it does. 1365 **/ 1366 1367 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat, 1368 unsigned long ro, unsigned long incompat) 1369 { 1370 journal_superblock_t *sb; 1371 1372 if (!compat && !ro && !incompat) 1373 return 1; 1374 if (journal->j_format_version == 1) 1375 return 0; 1376 1377 sb = journal->j_superblock; 1378 1379 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) && 1380 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) && 1381 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat)) 1382 return 1; 1383 1384 return 0; 1385 } 1386 1387 /** 1388 * int jbd2_journal_check_available_features() - Check feature set in journalling layer 1389 * @journal: Journal to check. 1390 * @compat: bitmask of compatible features 1391 * @ro: bitmask of features that force read-only mount 1392 * @incompat: bitmask of incompatible features 1393 * 1394 * Check whether the journaling code supports the use of 1395 * all of a given set of features on this journal. Return true 1396 * (non-zero) if it can. */ 1397 1398 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat, 1399 unsigned long ro, unsigned long incompat) 1400 { 1401 if (!compat && !ro && !incompat) 1402 return 1; 1403 1404 /* We can support any known requested features iff the 1405 * superblock is in version 2. Otherwise we fail to support any 1406 * extended sb features. */ 1407 1408 if (journal->j_format_version != 2) 1409 return 0; 1410 1411 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat && 1412 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro && 1413 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat) 1414 return 1; 1415 1416 return 0; 1417 } 1418 1419 /** 1420 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock 1421 * @journal: Journal to act on. 1422 * @compat: bitmask of compatible features 1423 * @ro: bitmask of features that force read-only mount 1424 * @incompat: bitmask of incompatible features 1425 * 1426 * Mark a given journal feature as present on the 1427 * superblock. Returns true if the requested features could be set. 1428 * 1429 */ 1430 1431 int jbd2_journal_set_features (journal_t *journal, unsigned long compat, 1432 unsigned long ro, unsigned long incompat) 1433 { 1434 journal_superblock_t *sb; 1435 1436 if (jbd2_journal_check_used_features(journal, compat, ro, incompat)) 1437 return 1; 1438 1439 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat)) 1440 return 0; 1441 1442 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n", 1443 compat, ro, incompat); 1444 1445 sb = journal->j_superblock; 1446 1447 sb->s_feature_compat |= cpu_to_be32(compat); 1448 sb->s_feature_ro_compat |= cpu_to_be32(ro); 1449 sb->s_feature_incompat |= cpu_to_be32(incompat); 1450 1451 return 1; 1452 } 1453 1454 /* 1455 * jbd2_journal_clear_features () - Clear a given journal feature in the 1456 * superblock 1457 * @journal: Journal to act on. 1458 * @compat: bitmask of compatible features 1459 * @ro: bitmask of features that force read-only mount 1460 * @incompat: bitmask of incompatible features 1461 * 1462 * Clear a given journal feature as present on the 1463 * superblock. 1464 */ 1465 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat, 1466 unsigned long ro, unsigned long incompat) 1467 { 1468 journal_superblock_t *sb; 1469 1470 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n", 1471 compat, ro, incompat); 1472 1473 sb = journal->j_superblock; 1474 1475 sb->s_feature_compat &= ~cpu_to_be32(compat); 1476 sb->s_feature_ro_compat &= ~cpu_to_be32(ro); 1477 sb->s_feature_incompat &= ~cpu_to_be32(incompat); 1478 } 1479 EXPORT_SYMBOL(jbd2_journal_clear_features); 1480 1481 /** 1482 * int jbd2_journal_update_format () - Update on-disk journal structure. 1483 * @journal: Journal to act on. 1484 * 1485 * Given an initialised but unloaded journal struct, poke about in the 1486 * on-disk structure to update it to the most recent supported version. 1487 */ 1488 int jbd2_journal_update_format (journal_t *journal) 1489 { 1490 journal_superblock_t *sb; 1491 int err; 1492 1493 err = journal_get_superblock(journal); 1494 if (err) 1495 return err; 1496 1497 sb = journal->j_superblock; 1498 1499 switch (be32_to_cpu(sb->s_header.h_blocktype)) { 1500 case JBD2_SUPERBLOCK_V2: 1501 return 0; 1502 case JBD2_SUPERBLOCK_V1: 1503 return journal_convert_superblock_v1(journal, sb); 1504 default: 1505 break; 1506 } 1507 return -EINVAL; 1508 } 1509 1510 static int journal_convert_superblock_v1(journal_t *journal, 1511 journal_superblock_t *sb) 1512 { 1513 int offset, blocksize; 1514 struct buffer_head *bh; 1515 1516 printk(KERN_WARNING 1517 "JBD: Converting superblock from version 1 to 2.\n"); 1518 1519 /* Pre-initialise new fields to zero */ 1520 offset = ((char *) &(sb->s_feature_compat)) - ((char *) sb); 1521 blocksize = be32_to_cpu(sb->s_blocksize); 1522 memset(&sb->s_feature_compat, 0, blocksize-offset); 1523 1524 sb->s_nr_users = cpu_to_be32(1); 1525 sb->s_header.h_blocktype = cpu_to_be32(JBD2_SUPERBLOCK_V2); 1526 journal->j_format_version = 2; 1527 1528 bh = journal->j_sb_buffer; 1529 BUFFER_TRACE(bh, "marking dirty"); 1530 mark_buffer_dirty(bh); 1531 sync_dirty_buffer(bh); 1532 return 0; 1533 } 1534 1535 1536 /** 1537 * int jbd2_journal_flush () - Flush journal 1538 * @journal: Journal to act on. 1539 * 1540 * Flush all data for a given journal to disk and empty the journal. 1541 * Filesystems can use this when remounting readonly to ensure that 1542 * recovery does not need to happen on remount. 1543 */ 1544 1545 int jbd2_journal_flush(journal_t *journal) 1546 { 1547 int err = 0; 1548 transaction_t *transaction = NULL; 1549 unsigned long old_tail; 1550 1551 write_lock(&journal->j_state_lock); 1552 1553 /* Force everything buffered to the log... */ 1554 if (journal->j_running_transaction) { 1555 transaction = journal->j_running_transaction; 1556 __jbd2_log_start_commit(journal, transaction->t_tid); 1557 } else if (journal->j_committing_transaction) 1558 transaction = journal->j_committing_transaction; 1559 1560 /* Wait for the log commit to complete... */ 1561 if (transaction) { 1562 tid_t tid = transaction->t_tid; 1563 1564 write_unlock(&journal->j_state_lock); 1565 jbd2_log_wait_commit(journal, tid); 1566 } else { 1567 write_unlock(&journal->j_state_lock); 1568 } 1569 1570 /* ...and flush everything in the log out to disk. */ 1571 spin_lock(&journal->j_list_lock); 1572 while (!err && journal->j_checkpoint_transactions != NULL) { 1573 spin_unlock(&journal->j_list_lock); 1574 mutex_lock(&journal->j_checkpoint_mutex); 1575 err = jbd2_log_do_checkpoint(journal); 1576 mutex_unlock(&journal->j_checkpoint_mutex); 1577 spin_lock(&journal->j_list_lock); 1578 } 1579 spin_unlock(&journal->j_list_lock); 1580 1581 if (is_journal_aborted(journal)) 1582 return -EIO; 1583 1584 jbd2_cleanup_journal_tail(journal); 1585 1586 /* Finally, mark the journal as really needing no recovery. 1587 * This sets s_start==0 in the underlying superblock, which is 1588 * the magic code for a fully-recovered superblock. Any future 1589 * commits of data to the journal will restore the current 1590 * s_start value. */ 1591 write_lock(&journal->j_state_lock); 1592 old_tail = journal->j_tail; 1593 journal->j_tail = 0; 1594 write_unlock(&journal->j_state_lock); 1595 jbd2_journal_update_superblock(journal, 1); 1596 write_lock(&journal->j_state_lock); 1597 journal->j_tail = old_tail; 1598 1599 J_ASSERT(!journal->j_running_transaction); 1600 J_ASSERT(!journal->j_committing_transaction); 1601 J_ASSERT(!journal->j_checkpoint_transactions); 1602 J_ASSERT(journal->j_head == journal->j_tail); 1603 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence); 1604 write_unlock(&journal->j_state_lock); 1605 return 0; 1606 } 1607 1608 /** 1609 * int jbd2_journal_wipe() - Wipe journal contents 1610 * @journal: Journal to act on. 1611 * @write: flag (see below) 1612 * 1613 * Wipe out all of the contents of a journal, safely. This will produce 1614 * a warning if the journal contains any valid recovery information. 1615 * Must be called between journal_init_*() and jbd2_journal_load(). 1616 * 1617 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise 1618 * we merely suppress recovery. 1619 */ 1620 1621 int jbd2_journal_wipe(journal_t *journal, int write) 1622 { 1623 int err = 0; 1624 1625 J_ASSERT (!(journal->j_flags & JBD2_LOADED)); 1626 1627 err = load_superblock(journal); 1628 if (err) 1629 return err; 1630 1631 if (!journal->j_tail) 1632 goto no_recovery; 1633 1634 printk (KERN_WARNING "JBD: %s recovery information on journal\n", 1635 write ? "Clearing" : "Ignoring"); 1636 1637 err = jbd2_journal_skip_recovery(journal); 1638 if (write) 1639 jbd2_journal_update_superblock(journal, 1); 1640 1641 no_recovery: 1642 return err; 1643 } 1644 1645 /* 1646 * Journal abort has very specific semantics, which we describe 1647 * for journal abort. 1648 * 1649 * Two internal functions, which provide abort to the jbd layer 1650 * itself are here. 1651 */ 1652 1653 /* 1654 * Quick version for internal journal use (doesn't lock the journal). 1655 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else, 1656 * and don't attempt to make any other journal updates. 1657 */ 1658 void __jbd2_journal_abort_hard(journal_t *journal) 1659 { 1660 transaction_t *transaction; 1661 1662 if (journal->j_flags & JBD2_ABORT) 1663 return; 1664 1665 printk(KERN_ERR "Aborting journal on device %s.\n", 1666 journal->j_devname); 1667 1668 write_lock(&journal->j_state_lock); 1669 journal->j_flags |= JBD2_ABORT; 1670 transaction = journal->j_running_transaction; 1671 if (transaction) 1672 __jbd2_log_start_commit(journal, transaction->t_tid); 1673 write_unlock(&journal->j_state_lock); 1674 } 1675 1676 /* Soft abort: record the abort error status in the journal superblock, 1677 * but don't do any other IO. */ 1678 static void __journal_abort_soft (journal_t *journal, int errno) 1679 { 1680 if (journal->j_flags & JBD2_ABORT) 1681 return; 1682 1683 if (!journal->j_errno) 1684 journal->j_errno = errno; 1685 1686 __jbd2_journal_abort_hard(journal); 1687 1688 if (errno) 1689 jbd2_journal_update_superblock(journal, 1); 1690 } 1691 1692 /** 1693 * void jbd2_journal_abort () - Shutdown the journal immediately. 1694 * @journal: the journal to shutdown. 1695 * @errno: an error number to record in the journal indicating 1696 * the reason for the shutdown. 1697 * 1698 * Perform a complete, immediate shutdown of the ENTIRE 1699 * journal (not of a single transaction). This operation cannot be 1700 * undone without closing and reopening the journal. 1701 * 1702 * The jbd2_journal_abort function is intended to support higher level error 1703 * recovery mechanisms such as the ext2/ext3 remount-readonly error 1704 * mode. 1705 * 1706 * Journal abort has very specific semantics. Any existing dirty, 1707 * unjournaled buffers in the main filesystem will still be written to 1708 * disk by bdflush, but the journaling mechanism will be suspended 1709 * immediately and no further transaction commits will be honoured. 1710 * 1711 * Any dirty, journaled buffers will be written back to disk without 1712 * hitting the journal. Atomicity cannot be guaranteed on an aborted 1713 * filesystem, but we _do_ attempt to leave as much data as possible 1714 * behind for fsck to use for cleanup. 1715 * 1716 * Any attempt to get a new transaction handle on a journal which is in 1717 * ABORT state will just result in an -EROFS error return. A 1718 * jbd2_journal_stop on an existing handle will return -EIO if we have 1719 * entered abort state during the update. 1720 * 1721 * Recursive transactions are not disturbed by journal abort until the 1722 * final jbd2_journal_stop, which will receive the -EIO error. 1723 * 1724 * Finally, the jbd2_journal_abort call allows the caller to supply an errno 1725 * which will be recorded (if possible) in the journal superblock. This 1726 * allows a client to record failure conditions in the middle of a 1727 * transaction without having to complete the transaction to record the 1728 * failure to disk. ext3_error, for example, now uses this 1729 * functionality. 1730 * 1731 * Errors which originate from within the journaling layer will NOT 1732 * supply an errno; a null errno implies that absolutely no further 1733 * writes are done to the journal (unless there are any already in 1734 * progress). 1735 * 1736 */ 1737 1738 void jbd2_journal_abort(journal_t *journal, int errno) 1739 { 1740 __journal_abort_soft(journal, errno); 1741 } 1742 1743 /** 1744 * int jbd2_journal_errno () - returns the journal's error state. 1745 * @journal: journal to examine. 1746 * 1747 * This is the errno number set with jbd2_journal_abort(), the last 1748 * time the journal was mounted - if the journal was stopped 1749 * without calling abort this will be 0. 1750 * 1751 * If the journal has been aborted on this mount time -EROFS will 1752 * be returned. 1753 */ 1754 int jbd2_journal_errno(journal_t *journal) 1755 { 1756 int err; 1757 1758 read_lock(&journal->j_state_lock); 1759 if (journal->j_flags & JBD2_ABORT) 1760 err = -EROFS; 1761 else 1762 err = journal->j_errno; 1763 read_unlock(&journal->j_state_lock); 1764 return err; 1765 } 1766 1767 /** 1768 * int jbd2_journal_clear_err () - clears the journal's error state 1769 * @journal: journal to act on. 1770 * 1771 * An error must be cleared or acked to take a FS out of readonly 1772 * mode. 1773 */ 1774 int jbd2_journal_clear_err(journal_t *journal) 1775 { 1776 int err = 0; 1777 1778 write_lock(&journal->j_state_lock); 1779 if (journal->j_flags & JBD2_ABORT) 1780 err = -EROFS; 1781 else 1782 journal->j_errno = 0; 1783 write_unlock(&journal->j_state_lock); 1784 return err; 1785 } 1786 1787 /** 1788 * void jbd2_journal_ack_err() - Ack journal err. 1789 * @journal: journal to act on. 1790 * 1791 * An error must be cleared or acked to take a FS out of readonly 1792 * mode. 1793 */ 1794 void jbd2_journal_ack_err(journal_t *journal) 1795 { 1796 write_lock(&journal->j_state_lock); 1797 if (journal->j_errno) 1798 journal->j_flags |= JBD2_ACK_ERR; 1799 write_unlock(&journal->j_state_lock); 1800 } 1801 1802 int jbd2_journal_blocks_per_page(struct inode *inode) 1803 { 1804 return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 1805 } 1806 1807 /* 1808 * helper functions to deal with 32 or 64bit block numbers. 1809 */ 1810 size_t journal_tag_bytes(journal_t *journal) 1811 { 1812 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT)) 1813 return JBD2_TAG_SIZE64; 1814 else 1815 return JBD2_TAG_SIZE32; 1816 } 1817 1818 /* 1819 * JBD memory management 1820 * 1821 * These functions are used to allocate block-sized chunks of memory 1822 * used for making copies of buffer_head data. Very often it will be 1823 * page-sized chunks of data, but sometimes it will be in 1824 * sub-page-size chunks. (For example, 16k pages on Power systems 1825 * with a 4k block file system.) For blocks smaller than a page, we 1826 * use a SLAB allocator. There are slab caches for each block size, 1827 * which are allocated at mount time, if necessary, and we only free 1828 * (all of) the slab caches when/if the jbd2 module is unloaded. For 1829 * this reason we don't need to a mutex to protect access to 1830 * jbd2_slab[] allocating or releasing memory; only in 1831 * jbd2_journal_create_slab(). 1832 */ 1833 #define JBD2_MAX_SLABS 8 1834 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS]; 1835 static DECLARE_MUTEX(jbd2_slab_create_sem); 1836 1837 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = { 1838 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k", 1839 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k" 1840 }; 1841 1842 1843 static void jbd2_journal_destroy_slabs(void) 1844 { 1845 int i; 1846 1847 for (i = 0; i < JBD2_MAX_SLABS; i++) { 1848 if (jbd2_slab[i]) 1849 kmem_cache_destroy(jbd2_slab[i]); 1850 jbd2_slab[i] = NULL; 1851 } 1852 } 1853 1854 static int jbd2_journal_create_slab(size_t size) 1855 { 1856 int i = order_base_2(size) - 10; 1857 size_t slab_size; 1858 1859 if (size == PAGE_SIZE) 1860 return 0; 1861 1862 if (i >= JBD2_MAX_SLABS) 1863 return -EINVAL; 1864 1865 if (unlikely(i < 0)) 1866 i = 0; 1867 down(&jbd2_slab_create_sem); 1868 if (jbd2_slab[i]) { 1869 up(&jbd2_slab_create_sem); 1870 return 0; /* Already created */ 1871 } 1872 1873 slab_size = 1 << (i+10); 1874 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size, 1875 slab_size, 0, NULL); 1876 up(&jbd2_slab_create_sem); 1877 if (!jbd2_slab[i]) { 1878 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n"); 1879 return -ENOMEM; 1880 } 1881 return 0; 1882 } 1883 1884 static struct kmem_cache *get_slab(size_t size) 1885 { 1886 int i = order_base_2(size) - 10; 1887 1888 BUG_ON(i >= JBD2_MAX_SLABS); 1889 if (unlikely(i < 0)) 1890 i = 0; 1891 BUG_ON(jbd2_slab[i] == NULL); 1892 return jbd2_slab[i]; 1893 } 1894 1895 void *jbd2_alloc(size_t size, gfp_t flags) 1896 { 1897 void *ptr; 1898 1899 BUG_ON(size & (size-1)); /* Must be a power of 2 */ 1900 1901 flags |= __GFP_REPEAT; 1902 if (size == PAGE_SIZE) 1903 ptr = (void *)__get_free_pages(flags, 0); 1904 else if (size > PAGE_SIZE) { 1905 int order = get_order(size); 1906 1907 if (order < 3) 1908 ptr = (void *)__get_free_pages(flags, order); 1909 else 1910 ptr = vmalloc(size); 1911 } else 1912 ptr = kmem_cache_alloc(get_slab(size), flags); 1913 1914 /* Check alignment; SLUB has gotten this wrong in the past, 1915 * and this can lead to user data corruption! */ 1916 BUG_ON(((unsigned long) ptr) & (size-1)); 1917 1918 return ptr; 1919 } 1920 1921 void jbd2_free(void *ptr, size_t size) 1922 { 1923 if (size == PAGE_SIZE) { 1924 free_pages((unsigned long)ptr, 0); 1925 return; 1926 } 1927 if (size > PAGE_SIZE) { 1928 int order = get_order(size); 1929 1930 if (order < 3) 1931 free_pages((unsigned long)ptr, order); 1932 else 1933 vfree(ptr); 1934 return; 1935 } 1936 kmem_cache_free(get_slab(size), ptr); 1937 }; 1938 1939 /* 1940 * Journal_head storage management 1941 */ 1942 static struct kmem_cache *jbd2_journal_head_cache; 1943 #ifdef CONFIG_JBD2_DEBUG 1944 static atomic_t nr_journal_heads = ATOMIC_INIT(0); 1945 #endif 1946 1947 static int journal_init_jbd2_journal_head_cache(void) 1948 { 1949 int retval; 1950 1951 J_ASSERT(jbd2_journal_head_cache == NULL); 1952 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head", 1953 sizeof(struct journal_head), 1954 0, /* offset */ 1955 SLAB_TEMPORARY, /* flags */ 1956 NULL); /* ctor */ 1957 retval = 0; 1958 if (!jbd2_journal_head_cache) { 1959 retval = -ENOMEM; 1960 printk(KERN_EMERG "JBD: no memory for journal_head cache\n"); 1961 } 1962 return retval; 1963 } 1964 1965 static void jbd2_journal_destroy_jbd2_journal_head_cache(void) 1966 { 1967 if (jbd2_journal_head_cache) { 1968 kmem_cache_destroy(jbd2_journal_head_cache); 1969 jbd2_journal_head_cache = NULL; 1970 } 1971 } 1972 1973 /* 1974 * journal_head splicing and dicing 1975 */ 1976 static struct journal_head *journal_alloc_journal_head(void) 1977 { 1978 struct journal_head *ret; 1979 static unsigned long last_warning; 1980 1981 #ifdef CONFIG_JBD2_DEBUG 1982 atomic_inc(&nr_journal_heads); 1983 #endif 1984 ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS); 1985 if (!ret) { 1986 jbd_debug(1, "out of memory for journal_head\n"); 1987 if (time_after(jiffies, last_warning + 5*HZ)) { 1988 printk(KERN_NOTICE "ENOMEM in %s, retrying.\n", 1989 __func__); 1990 last_warning = jiffies; 1991 } 1992 while (!ret) { 1993 yield(); 1994 ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS); 1995 } 1996 } 1997 return ret; 1998 } 1999 2000 static void journal_free_journal_head(struct journal_head *jh) 2001 { 2002 #ifdef CONFIG_JBD2_DEBUG 2003 atomic_dec(&nr_journal_heads); 2004 memset(jh, JBD2_POISON_FREE, sizeof(*jh)); 2005 #endif 2006 kmem_cache_free(jbd2_journal_head_cache, jh); 2007 } 2008 2009 /* 2010 * A journal_head is attached to a buffer_head whenever JBD has an 2011 * interest in the buffer. 2012 * 2013 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit 2014 * is set. This bit is tested in core kernel code where we need to take 2015 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable 2016 * there. 2017 * 2018 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one. 2019 * 2020 * When a buffer has its BH_JBD bit set it is immune from being released by 2021 * core kernel code, mainly via ->b_count. 2022 * 2023 * A journal_head may be detached from its buffer_head when the journal_head's 2024 * b_transaction, b_cp_transaction and b_next_transaction pointers are NULL. 2025 * Various places in JBD call jbd2_journal_remove_journal_head() to indicate that the 2026 * journal_head can be dropped if needed. 2027 * 2028 * Various places in the kernel want to attach a journal_head to a buffer_head 2029 * _before_ attaching the journal_head to a transaction. To protect the 2030 * journal_head in this situation, jbd2_journal_add_journal_head elevates the 2031 * journal_head's b_jcount refcount by one. The caller must call 2032 * jbd2_journal_put_journal_head() to undo this. 2033 * 2034 * So the typical usage would be: 2035 * 2036 * (Attach a journal_head if needed. Increments b_jcount) 2037 * struct journal_head *jh = jbd2_journal_add_journal_head(bh); 2038 * ... 2039 * jh->b_transaction = xxx; 2040 * jbd2_journal_put_journal_head(jh); 2041 * 2042 * Now, the journal_head's b_jcount is zero, but it is safe from being released 2043 * because it has a non-zero b_transaction. 2044 */ 2045 2046 /* 2047 * Give a buffer_head a journal_head. 2048 * 2049 * Doesn't need the journal lock. 2050 * May sleep. 2051 */ 2052 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh) 2053 { 2054 struct journal_head *jh; 2055 struct journal_head *new_jh = NULL; 2056 2057 repeat: 2058 if (!buffer_jbd(bh)) { 2059 new_jh = journal_alloc_journal_head(); 2060 memset(new_jh, 0, sizeof(*new_jh)); 2061 } 2062 2063 jbd_lock_bh_journal_head(bh); 2064 if (buffer_jbd(bh)) { 2065 jh = bh2jh(bh); 2066 } else { 2067 J_ASSERT_BH(bh, 2068 (atomic_read(&bh->b_count) > 0) || 2069 (bh->b_page && bh->b_page->mapping)); 2070 2071 if (!new_jh) { 2072 jbd_unlock_bh_journal_head(bh); 2073 goto repeat; 2074 } 2075 2076 jh = new_jh; 2077 new_jh = NULL; /* We consumed it */ 2078 set_buffer_jbd(bh); 2079 bh->b_private = jh; 2080 jh->b_bh = bh; 2081 get_bh(bh); 2082 BUFFER_TRACE(bh, "added journal_head"); 2083 } 2084 jh->b_jcount++; 2085 jbd_unlock_bh_journal_head(bh); 2086 if (new_jh) 2087 journal_free_journal_head(new_jh); 2088 return bh->b_private; 2089 } 2090 2091 /* 2092 * Grab a ref against this buffer_head's journal_head. If it ended up not 2093 * having a journal_head, return NULL 2094 */ 2095 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh) 2096 { 2097 struct journal_head *jh = NULL; 2098 2099 jbd_lock_bh_journal_head(bh); 2100 if (buffer_jbd(bh)) { 2101 jh = bh2jh(bh); 2102 jh->b_jcount++; 2103 } 2104 jbd_unlock_bh_journal_head(bh); 2105 return jh; 2106 } 2107 2108 static void __journal_remove_journal_head(struct buffer_head *bh) 2109 { 2110 struct journal_head *jh = bh2jh(bh); 2111 2112 J_ASSERT_JH(jh, jh->b_jcount >= 0); 2113 2114 get_bh(bh); 2115 if (jh->b_jcount == 0) { 2116 if (jh->b_transaction == NULL && 2117 jh->b_next_transaction == NULL && 2118 jh->b_cp_transaction == NULL) { 2119 J_ASSERT_JH(jh, jh->b_jlist == BJ_None); 2120 J_ASSERT_BH(bh, buffer_jbd(bh)); 2121 J_ASSERT_BH(bh, jh2bh(jh) == bh); 2122 BUFFER_TRACE(bh, "remove journal_head"); 2123 if (jh->b_frozen_data) { 2124 printk(KERN_WARNING "%s: freeing " 2125 "b_frozen_data\n", 2126 __func__); 2127 jbd2_free(jh->b_frozen_data, bh->b_size); 2128 } 2129 if (jh->b_committed_data) { 2130 printk(KERN_WARNING "%s: freeing " 2131 "b_committed_data\n", 2132 __func__); 2133 jbd2_free(jh->b_committed_data, bh->b_size); 2134 } 2135 bh->b_private = NULL; 2136 jh->b_bh = NULL; /* debug, really */ 2137 clear_buffer_jbd(bh); 2138 __brelse(bh); 2139 journal_free_journal_head(jh); 2140 } else { 2141 BUFFER_TRACE(bh, "journal_head was locked"); 2142 } 2143 } 2144 } 2145 2146 /* 2147 * jbd2_journal_remove_journal_head(): if the buffer isn't attached to a transaction 2148 * and has a zero b_jcount then remove and release its journal_head. If we did 2149 * see that the buffer is not used by any transaction we also "logically" 2150 * decrement ->b_count. 2151 * 2152 * We in fact take an additional increment on ->b_count as a convenience, 2153 * because the caller usually wants to do additional things with the bh 2154 * after calling here. 2155 * The caller of jbd2_journal_remove_journal_head() *must* run __brelse(bh) at some 2156 * time. Once the caller has run __brelse(), the buffer is eligible for 2157 * reaping by try_to_free_buffers(). 2158 */ 2159 void jbd2_journal_remove_journal_head(struct buffer_head *bh) 2160 { 2161 jbd_lock_bh_journal_head(bh); 2162 __journal_remove_journal_head(bh); 2163 jbd_unlock_bh_journal_head(bh); 2164 } 2165 2166 /* 2167 * Drop a reference on the passed journal_head. If it fell to zero then try to 2168 * release the journal_head from the buffer_head. 2169 */ 2170 void jbd2_journal_put_journal_head(struct journal_head *jh) 2171 { 2172 struct buffer_head *bh = jh2bh(jh); 2173 2174 jbd_lock_bh_journal_head(bh); 2175 J_ASSERT_JH(jh, jh->b_jcount > 0); 2176 --jh->b_jcount; 2177 if (!jh->b_jcount && !jh->b_transaction) { 2178 __journal_remove_journal_head(bh); 2179 __brelse(bh); 2180 } 2181 jbd_unlock_bh_journal_head(bh); 2182 } 2183 2184 /* 2185 * Initialize jbd inode head 2186 */ 2187 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode) 2188 { 2189 jinode->i_transaction = NULL; 2190 jinode->i_next_transaction = NULL; 2191 jinode->i_vfs_inode = inode; 2192 jinode->i_flags = 0; 2193 INIT_LIST_HEAD(&jinode->i_list); 2194 } 2195 2196 /* 2197 * Function to be called before we start removing inode from memory (i.e., 2198 * clear_inode() is a fine place to be called from). It removes inode from 2199 * transaction's lists. 2200 */ 2201 void jbd2_journal_release_jbd_inode(journal_t *journal, 2202 struct jbd2_inode *jinode) 2203 { 2204 if (!journal) 2205 return; 2206 restart: 2207 spin_lock(&journal->j_list_lock); 2208 /* Is commit writing out inode - we have to wait */ 2209 if (jinode->i_flags & JI_COMMIT_RUNNING) { 2210 wait_queue_head_t *wq; 2211 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING); 2212 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING); 2213 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 2214 spin_unlock(&journal->j_list_lock); 2215 schedule(); 2216 finish_wait(wq, &wait.wait); 2217 goto restart; 2218 } 2219 2220 if (jinode->i_transaction) { 2221 list_del(&jinode->i_list); 2222 jinode->i_transaction = NULL; 2223 } 2224 spin_unlock(&journal->j_list_lock); 2225 } 2226 2227 /* 2228 * debugfs tunables 2229 */ 2230 #ifdef CONFIG_JBD2_DEBUG 2231 u8 jbd2_journal_enable_debug __read_mostly; 2232 EXPORT_SYMBOL(jbd2_journal_enable_debug); 2233 2234 #define JBD2_DEBUG_NAME "jbd2-debug" 2235 2236 static struct dentry *jbd2_debugfs_dir; 2237 static struct dentry *jbd2_debug; 2238 2239 static void __init jbd2_create_debugfs_entry(void) 2240 { 2241 jbd2_debugfs_dir = debugfs_create_dir("jbd2", NULL); 2242 if (jbd2_debugfs_dir) 2243 jbd2_debug = debugfs_create_u8(JBD2_DEBUG_NAME, 2244 S_IRUGO | S_IWUSR, 2245 jbd2_debugfs_dir, 2246 &jbd2_journal_enable_debug); 2247 } 2248 2249 static void __exit jbd2_remove_debugfs_entry(void) 2250 { 2251 debugfs_remove(jbd2_debug); 2252 debugfs_remove(jbd2_debugfs_dir); 2253 } 2254 2255 #else 2256 2257 static void __init jbd2_create_debugfs_entry(void) 2258 { 2259 } 2260 2261 static void __exit jbd2_remove_debugfs_entry(void) 2262 { 2263 } 2264 2265 #endif 2266 2267 #ifdef CONFIG_PROC_FS 2268 2269 #define JBD2_STATS_PROC_NAME "fs/jbd2" 2270 2271 static void __init jbd2_create_jbd_stats_proc_entry(void) 2272 { 2273 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL); 2274 } 2275 2276 static void __exit jbd2_remove_jbd_stats_proc_entry(void) 2277 { 2278 if (proc_jbd2_stats) 2279 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL); 2280 } 2281 2282 #else 2283 2284 #define jbd2_create_jbd_stats_proc_entry() do {} while (0) 2285 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0) 2286 2287 #endif 2288 2289 struct kmem_cache *jbd2_handle_cache; 2290 2291 static int __init journal_init_handle_cache(void) 2292 { 2293 jbd2_handle_cache = kmem_cache_create("jbd2_journal_handle", 2294 sizeof(handle_t), 2295 0, /* offset */ 2296 SLAB_TEMPORARY, /* flags */ 2297 NULL); /* ctor */ 2298 if (jbd2_handle_cache == NULL) { 2299 printk(KERN_EMERG "JBD: failed to create handle cache\n"); 2300 return -ENOMEM; 2301 } 2302 return 0; 2303 } 2304 2305 static void jbd2_journal_destroy_handle_cache(void) 2306 { 2307 if (jbd2_handle_cache) 2308 kmem_cache_destroy(jbd2_handle_cache); 2309 } 2310 2311 /* 2312 * Module startup and shutdown 2313 */ 2314 2315 static int __init journal_init_caches(void) 2316 { 2317 int ret; 2318 2319 ret = jbd2_journal_init_revoke_caches(); 2320 if (ret == 0) 2321 ret = journal_init_jbd2_journal_head_cache(); 2322 if (ret == 0) 2323 ret = journal_init_handle_cache(); 2324 return ret; 2325 } 2326 2327 static void jbd2_journal_destroy_caches(void) 2328 { 2329 jbd2_journal_destroy_revoke_caches(); 2330 jbd2_journal_destroy_jbd2_journal_head_cache(); 2331 jbd2_journal_destroy_handle_cache(); 2332 jbd2_journal_destroy_slabs(); 2333 } 2334 2335 static int __init journal_init(void) 2336 { 2337 int ret; 2338 2339 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024); 2340 2341 ret = journal_init_caches(); 2342 if (ret == 0) { 2343 jbd2_create_debugfs_entry(); 2344 jbd2_create_jbd_stats_proc_entry(); 2345 } else { 2346 jbd2_journal_destroy_caches(); 2347 } 2348 return ret; 2349 } 2350 2351 static void __exit journal_exit(void) 2352 { 2353 #ifdef CONFIG_JBD2_DEBUG 2354 int n = atomic_read(&nr_journal_heads); 2355 if (n) 2356 printk(KERN_EMERG "JBD: leaked %d journal_heads!\n", n); 2357 #endif 2358 jbd2_remove_debugfs_entry(); 2359 jbd2_remove_jbd_stats_proc_entry(); 2360 jbd2_journal_destroy_caches(); 2361 } 2362 2363 /* 2364 * jbd2_dev_to_name is a utility function used by the jbd2 and ext4 2365 * tracing infrastructure to map a dev_t to a device name. 2366 * 2367 * The caller should use rcu_read_lock() in order to make sure the 2368 * device name stays valid until its done with it. We use 2369 * rcu_read_lock() as well to make sure we're safe in case the caller 2370 * gets sloppy, and because rcu_read_lock() is cheap and can be safely 2371 * nested. 2372 */ 2373 struct devname_cache { 2374 struct rcu_head rcu; 2375 dev_t device; 2376 char devname[BDEVNAME_SIZE]; 2377 }; 2378 #define CACHE_SIZE_BITS 6 2379 static struct devname_cache *devcache[1 << CACHE_SIZE_BITS]; 2380 static DEFINE_SPINLOCK(devname_cache_lock); 2381 2382 static void free_devcache(struct rcu_head *rcu) 2383 { 2384 kfree(rcu); 2385 } 2386 2387 const char *jbd2_dev_to_name(dev_t device) 2388 { 2389 int i = hash_32(device, CACHE_SIZE_BITS); 2390 char *ret; 2391 struct block_device *bd; 2392 static struct devname_cache *new_dev; 2393 2394 rcu_read_lock(); 2395 if (devcache[i] && devcache[i]->device == device) { 2396 ret = devcache[i]->devname; 2397 rcu_read_unlock(); 2398 return ret; 2399 } 2400 rcu_read_unlock(); 2401 2402 new_dev = kmalloc(sizeof(struct devname_cache), GFP_KERNEL); 2403 if (!new_dev) 2404 return "NODEV-ALLOCFAILURE"; /* Something non-NULL */ 2405 spin_lock(&devname_cache_lock); 2406 if (devcache[i]) { 2407 if (devcache[i]->device == device) { 2408 kfree(new_dev); 2409 ret = devcache[i]->devname; 2410 spin_unlock(&devname_cache_lock); 2411 return ret; 2412 } 2413 call_rcu(&devcache[i]->rcu, free_devcache); 2414 } 2415 devcache[i] = new_dev; 2416 devcache[i]->device = device; 2417 bd = bdget(device); 2418 if (bd) { 2419 bdevname(bd, devcache[i]->devname); 2420 bdput(bd); 2421 } else 2422 __bdevname(device, devcache[i]->devname); 2423 ret = devcache[i]->devname; 2424 spin_unlock(&devname_cache_lock); 2425 return ret; 2426 } 2427 EXPORT_SYMBOL(jbd2_dev_to_name); 2428 2429 MODULE_LICENSE("GPL"); 2430 module_init(journal_init); 2431 module_exit(journal_exit); 2432 2433