xref: /linux/fs/jbd2/journal.c (revision d39d0ed196aa1685bb24771e92f78633c66ac9cb)
1 /*
2  * linux/fs/jbd2/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24 
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/debugfs.h>
39 #include <linux/seq_file.h>
40 #include <linux/math64.h>
41 #include <linux/hash.h>
42 #include <linux/log2.h>
43 #include <linux/vmalloc.h>
44 #include <linux/backing-dev.h>
45 
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/jbd2.h>
48 
49 #include <asm/uaccess.h>
50 #include <asm/page.h>
51 
52 EXPORT_SYMBOL(jbd2_journal_extend);
53 EXPORT_SYMBOL(jbd2_journal_stop);
54 EXPORT_SYMBOL(jbd2_journal_lock_updates);
55 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
56 EXPORT_SYMBOL(jbd2_journal_get_write_access);
57 EXPORT_SYMBOL(jbd2_journal_get_create_access);
58 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
59 EXPORT_SYMBOL(jbd2_journal_set_triggers);
60 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
61 EXPORT_SYMBOL(jbd2_journal_release_buffer);
62 EXPORT_SYMBOL(jbd2_journal_forget);
63 #if 0
64 EXPORT_SYMBOL(journal_sync_buffer);
65 #endif
66 EXPORT_SYMBOL(jbd2_journal_flush);
67 EXPORT_SYMBOL(jbd2_journal_revoke);
68 
69 EXPORT_SYMBOL(jbd2_journal_init_dev);
70 EXPORT_SYMBOL(jbd2_journal_init_inode);
71 EXPORT_SYMBOL(jbd2_journal_update_format);
72 EXPORT_SYMBOL(jbd2_journal_check_used_features);
73 EXPORT_SYMBOL(jbd2_journal_check_available_features);
74 EXPORT_SYMBOL(jbd2_journal_set_features);
75 EXPORT_SYMBOL(jbd2_journal_load);
76 EXPORT_SYMBOL(jbd2_journal_destroy);
77 EXPORT_SYMBOL(jbd2_journal_abort);
78 EXPORT_SYMBOL(jbd2_journal_errno);
79 EXPORT_SYMBOL(jbd2_journal_ack_err);
80 EXPORT_SYMBOL(jbd2_journal_clear_err);
81 EXPORT_SYMBOL(jbd2_log_wait_commit);
82 EXPORT_SYMBOL(jbd2_log_start_commit);
83 EXPORT_SYMBOL(jbd2_journal_start_commit);
84 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
85 EXPORT_SYMBOL(jbd2_journal_wipe);
86 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
87 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
88 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
89 EXPORT_SYMBOL(jbd2_journal_force_commit);
90 EXPORT_SYMBOL(jbd2_journal_file_inode);
91 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
92 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
93 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
94 
95 static int journal_convert_superblock_v1(journal_t *, journal_superblock_t *);
96 static void __journal_abort_soft (journal_t *journal, int errno);
97 static int jbd2_journal_create_slab(size_t slab_size);
98 
99 /*
100  * Helper function used to manage commit timeouts
101  */
102 
103 static void commit_timeout(unsigned long __data)
104 {
105 	struct task_struct * p = (struct task_struct *) __data;
106 
107 	wake_up_process(p);
108 }
109 
110 /*
111  * kjournald2: The main thread function used to manage a logging device
112  * journal.
113  *
114  * This kernel thread is responsible for two things:
115  *
116  * 1) COMMIT:  Every so often we need to commit the current state of the
117  *    filesystem to disk.  The journal thread is responsible for writing
118  *    all of the metadata buffers to disk.
119  *
120  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
121  *    of the data in that part of the log has been rewritten elsewhere on
122  *    the disk.  Flushing these old buffers to reclaim space in the log is
123  *    known as checkpointing, and this thread is responsible for that job.
124  */
125 
126 static int kjournald2(void *arg)
127 {
128 	journal_t *journal = arg;
129 	transaction_t *transaction;
130 
131 	/*
132 	 * Set up an interval timer which can be used to trigger a commit wakeup
133 	 * after the commit interval expires
134 	 */
135 	setup_timer(&journal->j_commit_timer, commit_timeout,
136 			(unsigned long)current);
137 
138 	/* Record that the journal thread is running */
139 	journal->j_task = current;
140 	wake_up(&journal->j_wait_done_commit);
141 
142 	/*
143 	 * And now, wait forever for commit wakeup events.
144 	 */
145 	write_lock(&journal->j_state_lock);
146 
147 loop:
148 	if (journal->j_flags & JBD2_UNMOUNT)
149 		goto end_loop;
150 
151 	jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
152 		journal->j_commit_sequence, journal->j_commit_request);
153 
154 	if (journal->j_commit_sequence != journal->j_commit_request) {
155 		jbd_debug(1, "OK, requests differ\n");
156 		write_unlock(&journal->j_state_lock);
157 		del_timer_sync(&journal->j_commit_timer);
158 		jbd2_journal_commit_transaction(journal);
159 		write_lock(&journal->j_state_lock);
160 		goto loop;
161 	}
162 
163 	wake_up(&journal->j_wait_done_commit);
164 	if (freezing(current)) {
165 		/*
166 		 * The simpler the better. Flushing journal isn't a
167 		 * good idea, because that depends on threads that may
168 		 * be already stopped.
169 		 */
170 		jbd_debug(1, "Now suspending kjournald2\n");
171 		write_unlock(&journal->j_state_lock);
172 		refrigerator();
173 		write_lock(&journal->j_state_lock);
174 	} else {
175 		/*
176 		 * We assume on resume that commits are already there,
177 		 * so we don't sleep
178 		 */
179 		DEFINE_WAIT(wait);
180 		int should_sleep = 1;
181 
182 		prepare_to_wait(&journal->j_wait_commit, &wait,
183 				TASK_INTERRUPTIBLE);
184 		if (journal->j_commit_sequence != journal->j_commit_request)
185 			should_sleep = 0;
186 		transaction = journal->j_running_transaction;
187 		if (transaction && time_after_eq(jiffies,
188 						transaction->t_expires))
189 			should_sleep = 0;
190 		if (journal->j_flags & JBD2_UNMOUNT)
191 			should_sleep = 0;
192 		if (should_sleep) {
193 			write_unlock(&journal->j_state_lock);
194 			schedule();
195 			write_lock(&journal->j_state_lock);
196 		}
197 		finish_wait(&journal->j_wait_commit, &wait);
198 	}
199 
200 	jbd_debug(1, "kjournald2 wakes\n");
201 
202 	/*
203 	 * Were we woken up by a commit wakeup event?
204 	 */
205 	transaction = journal->j_running_transaction;
206 	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
207 		journal->j_commit_request = transaction->t_tid;
208 		jbd_debug(1, "woke because of timeout\n");
209 	}
210 	goto loop;
211 
212 end_loop:
213 	write_unlock(&journal->j_state_lock);
214 	del_timer_sync(&journal->j_commit_timer);
215 	journal->j_task = NULL;
216 	wake_up(&journal->j_wait_done_commit);
217 	jbd_debug(1, "Journal thread exiting.\n");
218 	return 0;
219 }
220 
221 static int jbd2_journal_start_thread(journal_t *journal)
222 {
223 	struct task_struct *t;
224 
225 	t = kthread_run(kjournald2, journal, "jbd2/%s",
226 			journal->j_devname);
227 	if (IS_ERR(t))
228 		return PTR_ERR(t);
229 
230 	wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
231 	return 0;
232 }
233 
234 static void journal_kill_thread(journal_t *journal)
235 {
236 	write_lock(&journal->j_state_lock);
237 	journal->j_flags |= JBD2_UNMOUNT;
238 
239 	while (journal->j_task) {
240 		wake_up(&journal->j_wait_commit);
241 		write_unlock(&journal->j_state_lock);
242 		wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
243 		write_lock(&journal->j_state_lock);
244 	}
245 	write_unlock(&journal->j_state_lock);
246 }
247 
248 /*
249  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
250  *
251  * Writes a metadata buffer to a given disk block.  The actual IO is not
252  * performed but a new buffer_head is constructed which labels the data
253  * to be written with the correct destination disk block.
254  *
255  * Any magic-number escaping which needs to be done will cause a
256  * copy-out here.  If the buffer happens to start with the
257  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
258  * magic number is only written to the log for descripter blocks.  In
259  * this case, we copy the data and replace the first word with 0, and we
260  * return a result code which indicates that this buffer needs to be
261  * marked as an escaped buffer in the corresponding log descriptor
262  * block.  The missing word can then be restored when the block is read
263  * during recovery.
264  *
265  * If the source buffer has already been modified by a new transaction
266  * since we took the last commit snapshot, we use the frozen copy of
267  * that data for IO.  If we end up using the existing buffer_head's data
268  * for the write, then we *have* to lock the buffer to prevent anyone
269  * else from using and possibly modifying it while the IO is in
270  * progress.
271  *
272  * The function returns a pointer to the buffer_heads to be used for IO.
273  *
274  * We assume that the journal has already been locked in this function.
275  *
276  * Return value:
277  *  <0: Error
278  * >=0: Finished OK
279  *
280  * On success:
281  * Bit 0 set == escape performed on the data
282  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
283  */
284 
285 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
286 				  struct journal_head  *jh_in,
287 				  struct journal_head **jh_out,
288 				  unsigned long long blocknr)
289 {
290 	int need_copy_out = 0;
291 	int done_copy_out = 0;
292 	int do_escape = 0;
293 	char *mapped_data;
294 	struct buffer_head *new_bh;
295 	struct journal_head *new_jh;
296 	struct page *new_page;
297 	unsigned int new_offset;
298 	struct buffer_head *bh_in = jh2bh(jh_in);
299 	journal_t *journal = transaction->t_journal;
300 
301 	/*
302 	 * The buffer really shouldn't be locked: only the current committing
303 	 * transaction is allowed to write it, so nobody else is allowed
304 	 * to do any IO.
305 	 *
306 	 * akpm: except if we're journalling data, and write() output is
307 	 * also part of a shared mapping, and another thread has
308 	 * decided to launch a writepage() against this buffer.
309 	 */
310 	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
311 
312 retry_alloc:
313 	new_bh = alloc_buffer_head(GFP_NOFS);
314 	if (!new_bh) {
315 		/*
316 		 * Failure is not an option, but __GFP_NOFAIL is going
317 		 * away; so we retry ourselves here.
318 		 */
319 		congestion_wait(BLK_RW_ASYNC, HZ/50);
320 		goto retry_alloc;
321 	}
322 
323 	/* keep subsequent assertions sane */
324 	new_bh->b_state = 0;
325 	init_buffer(new_bh, NULL, NULL);
326 	atomic_set(&new_bh->b_count, 1);
327 	new_jh = jbd2_journal_add_journal_head(new_bh);	/* This sleeps */
328 
329 	/*
330 	 * If a new transaction has already done a buffer copy-out, then
331 	 * we use that version of the data for the commit.
332 	 */
333 	jbd_lock_bh_state(bh_in);
334 repeat:
335 	if (jh_in->b_frozen_data) {
336 		done_copy_out = 1;
337 		new_page = virt_to_page(jh_in->b_frozen_data);
338 		new_offset = offset_in_page(jh_in->b_frozen_data);
339 	} else {
340 		new_page = jh2bh(jh_in)->b_page;
341 		new_offset = offset_in_page(jh2bh(jh_in)->b_data);
342 	}
343 
344 	mapped_data = kmap_atomic(new_page, KM_USER0);
345 	/*
346 	 * Fire data frozen trigger if data already wasn't frozen.  Do this
347 	 * before checking for escaping, as the trigger may modify the magic
348 	 * offset.  If a copy-out happens afterwards, it will have the correct
349 	 * data in the buffer.
350 	 */
351 	if (!done_copy_out)
352 		jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
353 					   jh_in->b_triggers);
354 
355 	/*
356 	 * Check for escaping
357 	 */
358 	if (*((__be32 *)(mapped_data + new_offset)) ==
359 				cpu_to_be32(JBD2_MAGIC_NUMBER)) {
360 		need_copy_out = 1;
361 		do_escape = 1;
362 	}
363 	kunmap_atomic(mapped_data, KM_USER0);
364 
365 	/*
366 	 * Do we need to do a data copy?
367 	 */
368 	if (need_copy_out && !done_copy_out) {
369 		char *tmp;
370 
371 		jbd_unlock_bh_state(bh_in);
372 		tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
373 		if (!tmp) {
374 			jbd2_journal_put_journal_head(new_jh);
375 			return -ENOMEM;
376 		}
377 		jbd_lock_bh_state(bh_in);
378 		if (jh_in->b_frozen_data) {
379 			jbd2_free(tmp, bh_in->b_size);
380 			goto repeat;
381 		}
382 
383 		jh_in->b_frozen_data = tmp;
384 		mapped_data = kmap_atomic(new_page, KM_USER0);
385 		memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
386 		kunmap_atomic(mapped_data, KM_USER0);
387 
388 		new_page = virt_to_page(tmp);
389 		new_offset = offset_in_page(tmp);
390 		done_copy_out = 1;
391 
392 		/*
393 		 * This isn't strictly necessary, as we're using frozen
394 		 * data for the escaping, but it keeps consistency with
395 		 * b_frozen_data usage.
396 		 */
397 		jh_in->b_frozen_triggers = jh_in->b_triggers;
398 	}
399 
400 	/*
401 	 * Did we need to do an escaping?  Now we've done all the
402 	 * copying, we can finally do so.
403 	 */
404 	if (do_escape) {
405 		mapped_data = kmap_atomic(new_page, KM_USER0);
406 		*((unsigned int *)(mapped_data + new_offset)) = 0;
407 		kunmap_atomic(mapped_data, KM_USER0);
408 	}
409 
410 	set_bh_page(new_bh, new_page, new_offset);
411 	new_jh->b_transaction = NULL;
412 	new_bh->b_size = jh2bh(jh_in)->b_size;
413 	new_bh->b_bdev = transaction->t_journal->j_dev;
414 	new_bh->b_blocknr = blocknr;
415 	set_buffer_mapped(new_bh);
416 	set_buffer_dirty(new_bh);
417 
418 	*jh_out = new_jh;
419 
420 	/*
421 	 * The to-be-written buffer needs to get moved to the io queue,
422 	 * and the original buffer whose contents we are shadowing or
423 	 * copying is moved to the transaction's shadow queue.
424 	 */
425 	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
426 	spin_lock(&journal->j_list_lock);
427 	__jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
428 	spin_unlock(&journal->j_list_lock);
429 	jbd_unlock_bh_state(bh_in);
430 
431 	JBUFFER_TRACE(new_jh, "file as BJ_IO");
432 	jbd2_journal_file_buffer(new_jh, transaction, BJ_IO);
433 
434 	return do_escape | (done_copy_out << 1);
435 }
436 
437 /*
438  * Allocation code for the journal file.  Manage the space left in the
439  * journal, so that we can begin checkpointing when appropriate.
440  */
441 
442 /*
443  * __jbd2_log_space_left: Return the number of free blocks left in the journal.
444  *
445  * Called with the journal already locked.
446  *
447  * Called under j_state_lock
448  */
449 
450 int __jbd2_log_space_left(journal_t *journal)
451 {
452 	int left = journal->j_free;
453 
454 	/* assert_spin_locked(&journal->j_state_lock); */
455 
456 	/*
457 	 * Be pessimistic here about the number of those free blocks which
458 	 * might be required for log descriptor control blocks.
459 	 */
460 
461 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
462 
463 	left -= MIN_LOG_RESERVED_BLOCKS;
464 
465 	if (left <= 0)
466 		return 0;
467 	left -= (left >> 3);
468 	return left;
469 }
470 
471 /*
472  * Called under j_state_lock.  Returns true if a transaction commit was started.
473  */
474 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
475 {
476 	/*
477 	 * Are we already doing a recent enough commit?
478 	 */
479 	if (!tid_geq(journal->j_commit_request, target)) {
480 		/*
481 		 * We want a new commit: OK, mark the request and wakup the
482 		 * commit thread.  We do _not_ do the commit ourselves.
483 		 */
484 
485 		journal->j_commit_request = target;
486 		jbd_debug(1, "JBD: requesting commit %d/%d\n",
487 			  journal->j_commit_request,
488 			  journal->j_commit_sequence);
489 		wake_up(&journal->j_wait_commit);
490 		return 1;
491 	}
492 	return 0;
493 }
494 
495 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
496 {
497 	int ret;
498 
499 	write_lock(&journal->j_state_lock);
500 	ret = __jbd2_log_start_commit(journal, tid);
501 	write_unlock(&journal->j_state_lock);
502 	return ret;
503 }
504 
505 /*
506  * Force and wait upon a commit if the calling process is not within
507  * transaction.  This is used for forcing out undo-protected data which contains
508  * bitmaps, when the fs is running out of space.
509  *
510  * We can only force the running transaction if we don't have an active handle;
511  * otherwise, we will deadlock.
512  *
513  * Returns true if a transaction was started.
514  */
515 int jbd2_journal_force_commit_nested(journal_t *journal)
516 {
517 	transaction_t *transaction = NULL;
518 	tid_t tid;
519 
520 	read_lock(&journal->j_state_lock);
521 	if (journal->j_running_transaction && !current->journal_info) {
522 		transaction = journal->j_running_transaction;
523 		__jbd2_log_start_commit(journal, transaction->t_tid);
524 	} else if (journal->j_committing_transaction)
525 		transaction = journal->j_committing_transaction;
526 
527 	if (!transaction) {
528 		read_unlock(&journal->j_state_lock);
529 		return 0;	/* Nothing to retry */
530 	}
531 
532 	tid = transaction->t_tid;
533 	read_unlock(&journal->j_state_lock);
534 	jbd2_log_wait_commit(journal, tid);
535 	return 1;
536 }
537 
538 /*
539  * Start a commit of the current running transaction (if any).  Returns true
540  * if a transaction is going to be committed (or is currently already
541  * committing), and fills its tid in at *ptid
542  */
543 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
544 {
545 	int ret = 0;
546 
547 	write_lock(&journal->j_state_lock);
548 	if (journal->j_running_transaction) {
549 		tid_t tid = journal->j_running_transaction->t_tid;
550 
551 		__jbd2_log_start_commit(journal, tid);
552 		/* There's a running transaction and we've just made sure
553 		 * it's commit has been scheduled. */
554 		if (ptid)
555 			*ptid = tid;
556 		ret = 1;
557 	} else if (journal->j_committing_transaction) {
558 		/*
559 		 * If ext3_write_super() recently started a commit, then we
560 		 * have to wait for completion of that transaction
561 		 */
562 		if (ptid)
563 			*ptid = journal->j_committing_transaction->t_tid;
564 		ret = 1;
565 	}
566 	write_unlock(&journal->j_state_lock);
567 	return ret;
568 }
569 
570 /*
571  * Wait for a specified commit to complete.
572  * The caller may not hold the journal lock.
573  */
574 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
575 {
576 	int err = 0;
577 
578 	read_lock(&journal->j_state_lock);
579 #ifdef CONFIG_JBD2_DEBUG
580 	if (!tid_geq(journal->j_commit_request, tid)) {
581 		printk(KERN_EMERG
582 		       "%s: error: j_commit_request=%d, tid=%d\n",
583 		       __func__, journal->j_commit_request, tid);
584 	}
585 #endif
586 	while (tid_gt(tid, journal->j_commit_sequence)) {
587 		jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n",
588 				  tid, journal->j_commit_sequence);
589 		wake_up(&journal->j_wait_commit);
590 		read_unlock(&journal->j_state_lock);
591 		wait_event(journal->j_wait_done_commit,
592 				!tid_gt(tid, journal->j_commit_sequence));
593 		read_lock(&journal->j_state_lock);
594 	}
595 	read_unlock(&journal->j_state_lock);
596 
597 	if (unlikely(is_journal_aborted(journal))) {
598 		printk(KERN_EMERG "journal commit I/O error\n");
599 		err = -EIO;
600 	}
601 	return err;
602 }
603 
604 /*
605  * Log buffer allocation routines:
606  */
607 
608 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
609 {
610 	unsigned long blocknr;
611 
612 	write_lock(&journal->j_state_lock);
613 	J_ASSERT(journal->j_free > 1);
614 
615 	blocknr = journal->j_head;
616 	journal->j_head++;
617 	journal->j_free--;
618 	if (journal->j_head == journal->j_last)
619 		journal->j_head = journal->j_first;
620 	write_unlock(&journal->j_state_lock);
621 	return jbd2_journal_bmap(journal, blocknr, retp);
622 }
623 
624 /*
625  * Conversion of logical to physical block numbers for the journal
626  *
627  * On external journals the journal blocks are identity-mapped, so
628  * this is a no-op.  If needed, we can use j_blk_offset - everything is
629  * ready.
630  */
631 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
632 		 unsigned long long *retp)
633 {
634 	int err = 0;
635 	unsigned long long ret;
636 
637 	if (journal->j_inode) {
638 		ret = bmap(journal->j_inode, blocknr);
639 		if (ret)
640 			*retp = ret;
641 		else {
642 			printk(KERN_ALERT "%s: journal block not found "
643 					"at offset %lu on %s\n",
644 			       __func__, blocknr, journal->j_devname);
645 			err = -EIO;
646 			__journal_abort_soft(journal, err);
647 		}
648 	} else {
649 		*retp = blocknr; /* +journal->j_blk_offset */
650 	}
651 	return err;
652 }
653 
654 /*
655  * We play buffer_head aliasing tricks to write data/metadata blocks to
656  * the journal without copying their contents, but for journal
657  * descriptor blocks we do need to generate bona fide buffers.
658  *
659  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
660  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
661  * But we don't bother doing that, so there will be coherency problems with
662  * mmaps of blockdevs which hold live JBD-controlled filesystems.
663  */
664 struct journal_head *jbd2_journal_get_descriptor_buffer(journal_t *journal)
665 {
666 	struct buffer_head *bh;
667 	unsigned long long blocknr;
668 	int err;
669 
670 	err = jbd2_journal_next_log_block(journal, &blocknr);
671 
672 	if (err)
673 		return NULL;
674 
675 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
676 	if (!bh)
677 		return NULL;
678 	lock_buffer(bh);
679 	memset(bh->b_data, 0, journal->j_blocksize);
680 	set_buffer_uptodate(bh);
681 	unlock_buffer(bh);
682 	BUFFER_TRACE(bh, "return this buffer");
683 	return jbd2_journal_add_journal_head(bh);
684 }
685 
686 struct jbd2_stats_proc_session {
687 	journal_t *journal;
688 	struct transaction_stats_s *stats;
689 	int start;
690 	int max;
691 };
692 
693 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
694 {
695 	return *pos ? NULL : SEQ_START_TOKEN;
696 }
697 
698 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
699 {
700 	return NULL;
701 }
702 
703 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
704 {
705 	struct jbd2_stats_proc_session *s = seq->private;
706 
707 	if (v != SEQ_START_TOKEN)
708 		return 0;
709 	seq_printf(seq, "%lu transaction, each up to %u blocks\n",
710 			s->stats->ts_tid,
711 			s->journal->j_max_transaction_buffers);
712 	if (s->stats->ts_tid == 0)
713 		return 0;
714 	seq_printf(seq, "average: \n  %ums waiting for transaction\n",
715 	    jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
716 	seq_printf(seq, "  %ums running transaction\n",
717 	    jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
718 	seq_printf(seq, "  %ums transaction was being locked\n",
719 	    jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
720 	seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
721 	    jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
722 	seq_printf(seq, "  %ums logging transaction\n",
723 	    jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
724 	seq_printf(seq, "  %lluus average transaction commit time\n",
725 		   div_u64(s->journal->j_average_commit_time, 1000));
726 	seq_printf(seq, "  %lu handles per transaction\n",
727 	    s->stats->run.rs_handle_count / s->stats->ts_tid);
728 	seq_printf(seq, "  %lu blocks per transaction\n",
729 	    s->stats->run.rs_blocks / s->stats->ts_tid);
730 	seq_printf(seq, "  %lu logged blocks per transaction\n",
731 	    s->stats->run.rs_blocks_logged / s->stats->ts_tid);
732 	return 0;
733 }
734 
735 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
736 {
737 }
738 
739 static const struct seq_operations jbd2_seq_info_ops = {
740 	.start  = jbd2_seq_info_start,
741 	.next   = jbd2_seq_info_next,
742 	.stop   = jbd2_seq_info_stop,
743 	.show   = jbd2_seq_info_show,
744 };
745 
746 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
747 {
748 	journal_t *journal = PDE(inode)->data;
749 	struct jbd2_stats_proc_session *s;
750 	int rc, size;
751 
752 	s = kmalloc(sizeof(*s), GFP_KERNEL);
753 	if (s == NULL)
754 		return -ENOMEM;
755 	size = sizeof(struct transaction_stats_s);
756 	s->stats = kmalloc(size, GFP_KERNEL);
757 	if (s->stats == NULL) {
758 		kfree(s);
759 		return -ENOMEM;
760 	}
761 	spin_lock(&journal->j_history_lock);
762 	memcpy(s->stats, &journal->j_stats, size);
763 	s->journal = journal;
764 	spin_unlock(&journal->j_history_lock);
765 
766 	rc = seq_open(file, &jbd2_seq_info_ops);
767 	if (rc == 0) {
768 		struct seq_file *m = file->private_data;
769 		m->private = s;
770 	} else {
771 		kfree(s->stats);
772 		kfree(s);
773 	}
774 	return rc;
775 
776 }
777 
778 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
779 {
780 	struct seq_file *seq = file->private_data;
781 	struct jbd2_stats_proc_session *s = seq->private;
782 	kfree(s->stats);
783 	kfree(s);
784 	return seq_release(inode, file);
785 }
786 
787 static const struct file_operations jbd2_seq_info_fops = {
788 	.owner		= THIS_MODULE,
789 	.open           = jbd2_seq_info_open,
790 	.read           = seq_read,
791 	.llseek         = seq_lseek,
792 	.release        = jbd2_seq_info_release,
793 };
794 
795 static struct proc_dir_entry *proc_jbd2_stats;
796 
797 static void jbd2_stats_proc_init(journal_t *journal)
798 {
799 	journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
800 	if (journal->j_proc_entry) {
801 		proc_create_data("info", S_IRUGO, journal->j_proc_entry,
802 				 &jbd2_seq_info_fops, journal);
803 	}
804 }
805 
806 static void jbd2_stats_proc_exit(journal_t *journal)
807 {
808 	remove_proc_entry("info", journal->j_proc_entry);
809 	remove_proc_entry(journal->j_devname, proc_jbd2_stats);
810 }
811 
812 /*
813  * Management for journal control blocks: functions to create and
814  * destroy journal_t structures, and to initialise and read existing
815  * journal blocks from disk.  */
816 
817 /* First: create and setup a journal_t object in memory.  We initialise
818  * very few fields yet: that has to wait until we have created the
819  * journal structures from from scratch, or loaded them from disk. */
820 
821 static journal_t * journal_init_common (void)
822 {
823 	journal_t *journal;
824 	int err;
825 
826 	journal = kzalloc(sizeof(*journal), GFP_KERNEL);
827 	if (!journal)
828 		goto fail;
829 
830 	init_waitqueue_head(&journal->j_wait_transaction_locked);
831 	init_waitqueue_head(&journal->j_wait_logspace);
832 	init_waitqueue_head(&journal->j_wait_done_commit);
833 	init_waitqueue_head(&journal->j_wait_checkpoint);
834 	init_waitqueue_head(&journal->j_wait_commit);
835 	init_waitqueue_head(&journal->j_wait_updates);
836 	mutex_init(&journal->j_barrier);
837 	mutex_init(&journal->j_checkpoint_mutex);
838 	spin_lock_init(&journal->j_revoke_lock);
839 	spin_lock_init(&journal->j_list_lock);
840 	rwlock_init(&journal->j_state_lock);
841 
842 	journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
843 	journal->j_min_batch_time = 0;
844 	journal->j_max_batch_time = 15000; /* 15ms */
845 
846 	/* The journal is marked for error until we succeed with recovery! */
847 	journal->j_flags = JBD2_ABORT;
848 
849 	/* Set up a default-sized revoke table for the new mount. */
850 	err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
851 	if (err) {
852 		kfree(journal);
853 		goto fail;
854 	}
855 
856 	spin_lock_init(&journal->j_history_lock);
857 
858 	return journal;
859 fail:
860 	return NULL;
861 }
862 
863 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
864  *
865  * Create a journal structure assigned some fixed set of disk blocks to
866  * the journal.  We don't actually touch those disk blocks yet, but we
867  * need to set up all of the mapping information to tell the journaling
868  * system where the journal blocks are.
869  *
870  */
871 
872 /**
873  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
874  *  @bdev: Block device on which to create the journal
875  *  @fs_dev: Device which hold journalled filesystem for this journal.
876  *  @start: Block nr Start of journal.
877  *  @len:  Length of the journal in blocks.
878  *  @blocksize: blocksize of journalling device
879  *
880  *  Returns: a newly created journal_t *
881  *
882  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
883  *  range of blocks on an arbitrary block device.
884  *
885  */
886 journal_t * jbd2_journal_init_dev(struct block_device *bdev,
887 			struct block_device *fs_dev,
888 			unsigned long long start, int len, int blocksize)
889 {
890 	journal_t *journal = journal_init_common();
891 	struct buffer_head *bh;
892 	char *p;
893 	int n;
894 
895 	if (!journal)
896 		return NULL;
897 
898 	/* journal descriptor can store up to n blocks -bzzz */
899 	journal->j_blocksize = blocksize;
900 	jbd2_stats_proc_init(journal);
901 	n = journal->j_blocksize / sizeof(journal_block_tag_t);
902 	journal->j_wbufsize = n;
903 	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
904 	if (!journal->j_wbuf) {
905 		printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n",
906 			__func__);
907 		goto out_err;
908 	}
909 	journal->j_dev = bdev;
910 	journal->j_fs_dev = fs_dev;
911 	journal->j_blk_offset = start;
912 	journal->j_maxlen = len;
913 	bdevname(journal->j_dev, journal->j_devname);
914 	p = journal->j_devname;
915 	while ((p = strchr(p, '/')))
916 		*p = '!';
917 
918 	bh = __getblk(journal->j_dev, start, journal->j_blocksize);
919 	if (!bh) {
920 		printk(KERN_ERR
921 		       "%s: Cannot get buffer for journal superblock\n",
922 		       __func__);
923 		goto out_err;
924 	}
925 	journal->j_sb_buffer = bh;
926 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
927 
928 	return journal;
929 out_err:
930 	kfree(journal->j_wbuf);
931 	jbd2_stats_proc_exit(journal);
932 	kfree(journal);
933 	return NULL;
934 }
935 
936 /**
937  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
938  *  @inode: An inode to create the journal in
939  *
940  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
941  * the journal.  The inode must exist already, must support bmap() and
942  * must have all data blocks preallocated.
943  */
944 journal_t * jbd2_journal_init_inode (struct inode *inode)
945 {
946 	struct buffer_head *bh;
947 	journal_t *journal = journal_init_common();
948 	char *p;
949 	int err;
950 	int n;
951 	unsigned long long blocknr;
952 
953 	if (!journal)
954 		return NULL;
955 
956 	journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
957 	journal->j_inode = inode;
958 	bdevname(journal->j_dev, journal->j_devname);
959 	p = journal->j_devname;
960 	while ((p = strchr(p, '/')))
961 		*p = '!';
962 	p = journal->j_devname + strlen(journal->j_devname);
963 	sprintf(p, "-%lu", journal->j_inode->i_ino);
964 	jbd_debug(1,
965 		  "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
966 		  journal, inode->i_sb->s_id, inode->i_ino,
967 		  (long long) inode->i_size,
968 		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
969 
970 	journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
971 	journal->j_blocksize = inode->i_sb->s_blocksize;
972 	jbd2_stats_proc_init(journal);
973 
974 	/* journal descriptor can store up to n blocks -bzzz */
975 	n = journal->j_blocksize / sizeof(journal_block_tag_t);
976 	journal->j_wbufsize = n;
977 	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
978 	if (!journal->j_wbuf) {
979 		printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n",
980 			__func__);
981 		goto out_err;
982 	}
983 
984 	err = jbd2_journal_bmap(journal, 0, &blocknr);
985 	/* If that failed, give up */
986 	if (err) {
987 		printk(KERN_ERR "%s: Cannnot locate journal superblock\n",
988 		       __func__);
989 		goto out_err;
990 	}
991 
992 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
993 	if (!bh) {
994 		printk(KERN_ERR
995 		       "%s: Cannot get buffer for journal superblock\n",
996 		       __func__);
997 		goto out_err;
998 	}
999 	journal->j_sb_buffer = bh;
1000 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
1001 
1002 	return journal;
1003 out_err:
1004 	kfree(journal->j_wbuf);
1005 	jbd2_stats_proc_exit(journal);
1006 	kfree(journal);
1007 	return NULL;
1008 }
1009 
1010 /*
1011  * If the journal init or create aborts, we need to mark the journal
1012  * superblock as being NULL to prevent the journal destroy from writing
1013  * back a bogus superblock.
1014  */
1015 static void journal_fail_superblock (journal_t *journal)
1016 {
1017 	struct buffer_head *bh = journal->j_sb_buffer;
1018 	brelse(bh);
1019 	journal->j_sb_buffer = NULL;
1020 }
1021 
1022 /*
1023  * Given a journal_t structure, initialise the various fields for
1024  * startup of a new journaling session.  We use this both when creating
1025  * a journal, and after recovering an old journal to reset it for
1026  * subsequent use.
1027  */
1028 
1029 static int journal_reset(journal_t *journal)
1030 {
1031 	journal_superblock_t *sb = journal->j_superblock;
1032 	unsigned long long first, last;
1033 
1034 	first = be32_to_cpu(sb->s_first);
1035 	last = be32_to_cpu(sb->s_maxlen);
1036 	if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1037 		printk(KERN_ERR "JBD: Journal too short (blocks %llu-%llu).\n",
1038 		       first, last);
1039 		journal_fail_superblock(journal);
1040 		return -EINVAL;
1041 	}
1042 
1043 	journal->j_first = first;
1044 	journal->j_last = last;
1045 
1046 	journal->j_head = first;
1047 	journal->j_tail = first;
1048 	journal->j_free = last - first;
1049 
1050 	journal->j_tail_sequence = journal->j_transaction_sequence;
1051 	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1052 	journal->j_commit_request = journal->j_commit_sequence;
1053 
1054 	journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1055 
1056 	/* Add the dynamic fields and write it to disk. */
1057 	jbd2_journal_update_superblock(journal, 1);
1058 	return jbd2_journal_start_thread(journal);
1059 }
1060 
1061 /**
1062  * void jbd2_journal_update_superblock() - Update journal sb on disk.
1063  * @journal: The journal to update.
1064  * @wait: Set to '0' if you don't want to wait for IO completion.
1065  *
1066  * Update a journal's dynamic superblock fields and write it to disk,
1067  * optionally waiting for the IO to complete.
1068  */
1069 void jbd2_journal_update_superblock(journal_t *journal, int wait)
1070 {
1071 	journal_superblock_t *sb = journal->j_superblock;
1072 	struct buffer_head *bh = journal->j_sb_buffer;
1073 
1074 	/*
1075 	 * As a special case, if the on-disk copy is already marked as needing
1076 	 * no recovery (s_start == 0) and there are no outstanding transactions
1077 	 * in the filesystem, then we can safely defer the superblock update
1078 	 * until the next commit by setting JBD2_FLUSHED.  This avoids
1079 	 * attempting a write to a potential-readonly device.
1080 	 */
1081 	if (sb->s_start == 0 && journal->j_tail_sequence ==
1082 				journal->j_transaction_sequence) {
1083 		jbd_debug(1,"JBD: Skipping superblock update on recovered sb "
1084 			"(start %ld, seq %d, errno %d)\n",
1085 			journal->j_tail, journal->j_tail_sequence,
1086 			journal->j_errno);
1087 		goto out;
1088 	}
1089 
1090 	if (buffer_write_io_error(bh)) {
1091 		/*
1092 		 * Oh, dear.  A previous attempt to write the journal
1093 		 * superblock failed.  This could happen because the
1094 		 * USB device was yanked out.  Or it could happen to
1095 		 * be a transient write error and maybe the block will
1096 		 * be remapped.  Nothing we can do but to retry the
1097 		 * write and hope for the best.
1098 		 */
1099 		printk(KERN_ERR "JBD2: previous I/O error detected "
1100 		       "for journal superblock update for %s.\n",
1101 		       journal->j_devname);
1102 		clear_buffer_write_io_error(bh);
1103 		set_buffer_uptodate(bh);
1104 	}
1105 
1106 	read_lock(&journal->j_state_lock);
1107 	jbd_debug(1,"JBD: updating superblock (start %ld, seq %d, errno %d)\n",
1108 		  journal->j_tail, journal->j_tail_sequence, journal->j_errno);
1109 
1110 	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1111 	sb->s_start    = cpu_to_be32(journal->j_tail);
1112 	sb->s_errno    = cpu_to_be32(journal->j_errno);
1113 	read_unlock(&journal->j_state_lock);
1114 
1115 	BUFFER_TRACE(bh, "marking dirty");
1116 	mark_buffer_dirty(bh);
1117 	if (wait) {
1118 		sync_dirty_buffer(bh);
1119 		if (buffer_write_io_error(bh)) {
1120 			printk(KERN_ERR "JBD2: I/O error detected "
1121 			       "when updating journal superblock for %s.\n",
1122 			       journal->j_devname);
1123 			clear_buffer_write_io_error(bh);
1124 			set_buffer_uptodate(bh);
1125 		}
1126 	} else
1127 		write_dirty_buffer(bh, WRITE);
1128 
1129 out:
1130 	/* If we have just flushed the log (by marking s_start==0), then
1131 	 * any future commit will have to be careful to update the
1132 	 * superblock again to re-record the true start of the log. */
1133 
1134 	write_lock(&journal->j_state_lock);
1135 	if (sb->s_start)
1136 		journal->j_flags &= ~JBD2_FLUSHED;
1137 	else
1138 		journal->j_flags |= JBD2_FLUSHED;
1139 	write_unlock(&journal->j_state_lock);
1140 }
1141 
1142 /*
1143  * Read the superblock for a given journal, performing initial
1144  * validation of the format.
1145  */
1146 
1147 static int journal_get_superblock(journal_t *journal)
1148 {
1149 	struct buffer_head *bh;
1150 	journal_superblock_t *sb;
1151 	int err = -EIO;
1152 
1153 	bh = journal->j_sb_buffer;
1154 
1155 	J_ASSERT(bh != NULL);
1156 	if (!buffer_uptodate(bh)) {
1157 		ll_rw_block(READ, 1, &bh);
1158 		wait_on_buffer(bh);
1159 		if (!buffer_uptodate(bh)) {
1160 			printk (KERN_ERR
1161 				"JBD: IO error reading journal superblock\n");
1162 			goto out;
1163 		}
1164 	}
1165 
1166 	sb = journal->j_superblock;
1167 
1168 	err = -EINVAL;
1169 
1170 	if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1171 	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1172 		printk(KERN_WARNING "JBD: no valid journal superblock found\n");
1173 		goto out;
1174 	}
1175 
1176 	switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1177 	case JBD2_SUPERBLOCK_V1:
1178 		journal->j_format_version = 1;
1179 		break;
1180 	case JBD2_SUPERBLOCK_V2:
1181 		journal->j_format_version = 2;
1182 		break;
1183 	default:
1184 		printk(KERN_WARNING "JBD: unrecognised superblock format ID\n");
1185 		goto out;
1186 	}
1187 
1188 	if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1189 		journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1190 	else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1191 		printk (KERN_WARNING "JBD: journal file too short\n");
1192 		goto out;
1193 	}
1194 
1195 	return 0;
1196 
1197 out:
1198 	journal_fail_superblock(journal);
1199 	return err;
1200 }
1201 
1202 /*
1203  * Load the on-disk journal superblock and read the key fields into the
1204  * journal_t.
1205  */
1206 
1207 static int load_superblock(journal_t *journal)
1208 {
1209 	int err;
1210 	journal_superblock_t *sb;
1211 
1212 	err = journal_get_superblock(journal);
1213 	if (err)
1214 		return err;
1215 
1216 	sb = journal->j_superblock;
1217 
1218 	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1219 	journal->j_tail = be32_to_cpu(sb->s_start);
1220 	journal->j_first = be32_to_cpu(sb->s_first);
1221 	journal->j_last = be32_to_cpu(sb->s_maxlen);
1222 	journal->j_errno = be32_to_cpu(sb->s_errno);
1223 
1224 	return 0;
1225 }
1226 
1227 
1228 /**
1229  * int jbd2_journal_load() - Read journal from disk.
1230  * @journal: Journal to act on.
1231  *
1232  * Given a journal_t structure which tells us which disk blocks contain
1233  * a journal, read the journal from disk to initialise the in-memory
1234  * structures.
1235  */
1236 int jbd2_journal_load(journal_t *journal)
1237 {
1238 	int err;
1239 	journal_superblock_t *sb;
1240 
1241 	err = load_superblock(journal);
1242 	if (err)
1243 		return err;
1244 
1245 	sb = journal->j_superblock;
1246 	/* If this is a V2 superblock, then we have to check the
1247 	 * features flags on it. */
1248 
1249 	if (journal->j_format_version >= 2) {
1250 		if ((sb->s_feature_ro_compat &
1251 		     ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1252 		    (sb->s_feature_incompat &
1253 		     ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1254 			printk (KERN_WARNING
1255 				"JBD: Unrecognised features on journal\n");
1256 			return -EINVAL;
1257 		}
1258 	}
1259 
1260 	/*
1261 	 * Create a slab for this blocksize
1262 	 */
1263 	err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1264 	if (err)
1265 		return err;
1266 
1267 	/* Let the recovery code check whether it needs to recover any
1268 	 * data from the journal. */
1269 	if (jbd2_journal_recover(journal))
1270 		goto recovery_error;
1271 
1272 	if (journal->j_failed_commit) {
1273 		printk(KERN_ERR "JBD2: journal transaction %u on %s "
1274 		       "is corrupt.\n", journal->j_failed_commit,
1275 		       journal->j_devname);
1276 		return -EIO;
1277 	}
1278 
1279 	/* OK, we've finished with the dynamic journal bits:
1280 	 * reinitialise the dynamic contents of the superblock in memory
1281 	 * and reset them on disk. */
1282 	if (journal_reset(journal))
1283 		goto recovery_error;
1284 
1285 	journal->j_flags &= ~JBD2_ABORT;
1286 	journal->j_flags |= JBD2_LOADED;
1287 	return 0;
1288 
1289 recovery_error:
1290 	printk (KERN_WARNING "JBD: recovery failed\n");
1291 	return -EIO;
1292 }
1293 
1294 /**
1295  * void jbd2_journal_destroy() - Release a journal_t structure.
1296  * @journal: Journal to act on.
1297  *
1298  * Release a journal_t structure once it is no longer in use by the
1299  * journaled object.
1300  * Return <0 if we couldn't clean up the journal.
1301  */
1302 int jbd2_journal_destroy(journal_t *journal)
1303 {
1304 	int err = 0;
1305 
1306 	/* Wait for the commit thread to wake up and die. */
1307 	journal_kill_thread(journal);
1308 
1309 	/* Force a final log commit */
1310 	if (journal->j_running_transaction)
1311 		jbd2_journal_commit_transaction(journal);
1312 
1313 	/* Force any old transactions to disk */
1314 
1315 	/* Totally anal locking here... */
1316 	spin_lock(&journal->j_list_lock);
1317 	while (journal->j_checkpoint_transactions != NULL) {
1318 		spin_unlock(&journal->j_list_lock);
1319 		mutex_lock(&journal->j_checkpoint_mutex);
1320 		jbd2_log_do_checkpoint(journal);
1321 		mutex_unlock(&journal->j_checkpoint_mutex);
1322 		spin_lock(&journal->j_list_lock);
1323 	}
1324 
1325 	J_ASSERT(journal->j_running_transaction == NULL);
1326 	J_ASSERT(journal->j_committing_transaction == NULL);
1327 	J_ASSERT(journal->j_checkpoint_transactions == NULL);
1328 	spin_unlock(&journal->j_list_lock);
1329 
1330 	if (journal->j_sb_buffer) {
1331 		if (!is_journal_aborted(journal)) {
1332 			/* We can now mark the journal as empty. */
1333 			journal->j_tail = 0;
1334 			journal->j_tail_sequence =
1335 				++journal->j_transaction_sequence;
1336 			jbd2_journal_update_superblock(journal, 1);
1337 		} else {
1338 			err = -EIO;
1339 		}
1340 		brelse(journal->j_sb_buffer);
1341 	}
1342 
1343 	if (journal->j_proc_entry)
1344 		jbd2_stats_proc_exit(journal);
1345 	if (journal->j_inode)
1346 		iput(journal->j_inode);
1347 	if (journal->j_revoke)
1348 		jbd2_journal_destroy_revoke(journal);
1349 	kfree(journal->j_wbuf);
1350 	kfree(journal);
1351 
1352 	return err;
1353 }
1354 
1355 
1356 /**
1357  *int jbd2_journal_check_used_features () - Check if features specified are used.
1358  * @journal: Journal to check.
1359  * @compat: bitmask of compatible features
1360  * @ro: bitmask of features that force read-only mount
1361  * @incompat: bitmask of incompatible features
1362  *
1363  * Check whether the journal uses all of a given set of
1364  * features.  Return true (non-zero) if it does.
1365  **/
1366 
1367 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1368 				 unsigned long ro, unsigned long incompat)
1369 {
1370 	journal_superblock_t *sb;
1371 
1372 	if (!compat && !ro && !incompat)
1373 		return 1;
1374 	if (journal->j_format_version == 1)
1375 		return 0;
1376 
1377 	sb = journal->j_superblock;
1378 
1379 	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1380 	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1381 	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1382 		return 1;
1383 
1384 	return 0;
1385 }
1386 
1387 /**
1388  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1389  * @journal: Journal to check.
1390  * @compat: bitmask of compatible features
1391  * @ro: bitmask of features that force read-only mount
1392  * @incompat: bitmask of incompatible features
1393  *
1394  * Check whether the journaling code supports the use of
1395  * all of a given set of features on this journal.  Return true
1396  * (non-zero) if it can. */
1397 
1398 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1399 				      unsigned long ro, unsigned long incompat)
1400 {
1401 	if (!compat && !ro && !incompat)
1402 		return 1;
1403 
1404 	/* We can support any known requested features iff the
1405 	 * superblock is in version 2.  Otherwise we fail to support any
1406 	 * extended sb features. */
1407 
1408 	if (journal->j_format_version != 2)
1409 		return 0;
1410 
1411 	if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1412 	    (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1413 	    (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1414 		return 1;
1415 
1416 	return 0;
1417 }
1418 
1419 /**
1420  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1421  * @journal: Journal to act on.
1422  * @compat: bitmask of compatible features
1423  * @ro: bitmask of features that force read-only mount
1424  * @incompat: bitmask of incompatible features
1425  *
1426  * Mark a given journal feature as present on the
1427  * superblock.  Returns true if the requested features could be set.
1428  *
1429  */
1430 
1431 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1432 			  unsigned long ro, unsigned long incompat)
1433 {
1434 	journal_superblock_t *sb;
1435 
1436 	if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1437 		return 1;
1438 
1439 	if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1440 		return 0;
1441 
1442 	jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1443 		  compat, ro, incompat);
1444 
1445 	sb = journal->j_superblock;
1446 
1447 	sb->s_feature_compat    |= cpu_to_be32(compat);
1448 	sb->s_feature_ro_compat |= cpu_to_be32(ro);
1449 	sb->s_feature_incompat  |= cpu_to_be32(incompat);
1450 
1451 	return 1;
1452 }
1453 
1454 /*
1455  * jbd2_journal_clear_features () - Clear a given journal feature in the
1456  * 				    superblock
1457  * @journal: Journal to act on.
1458  * @compat: bitmask of compatible features
1459  * @ro: bitmask of features that force read-only mount
1460  * @incompat: bitmask of incompatible features
1461  *
1462  * Clear a given journal feature as present on the
1463  * superblock.
1464  */
1465 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1466 				unsigned long ro, unsigned long incompat)
1467 {
1468 	journal_superblock_t *sb;
1469 
1470 	jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1471 		  compat, ro, incompat);
1472 
1473 	sb = journal->j_superblock;
1474 
1475 	sb->s_feature_compat    &= ~cpu_to_be32(compat);
1476 	sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1477 	sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1478 }
1479 EXPORT_SYMBOL(jbd2_journal_clear_features);
1480 
1481 /**
1482  * int jbd2_journal_update_format () - Update on-disk journal structure.
1483  * @journal: Journal to act on.
1484  *
1485  * Given an initialised but unloaded journal struct, poke about in the
1486  * on-disk structure to update it to the most recent supported version.
1487  */
1488 int jbd2_journal_update_format (journal_t *journal)
1489 {
1490 	journal_superblock_t *sb;
1491 	int err;
1492 
1493 	err = journal_get_superblock(journal);
1494 	if (err)
1495 		return err;
1496 
1497 	sb = journal->j_superblock;
1498 
1499 	switch (be32_to_cpu(sb->s_header.h_blocktype)) {
1500 	case JBD2_SUPERBLOCK_V2:
1501 		return 0;
1502 	case JBD2_SUPERBLOCK_V1:
1503 		return journal_convert_superblock_v1(journal, sb);
1504 	default:
1505 		break;
1506 	}
1507 	return -EINVAL;
1508 }
1509 
1510 static int journal_convert_superblock_v1(journal_t *journal,
1511 					 journal_superblock_t *sb)
1512 {
1513 	int offset, blocksize;
1514 	struct buffer_head *bh;
1515 
1516 	printk(KERN_WARNING
1517 		"JBD: Converting superblock from version 1 to 2.\n");
1518 
1519 	/* Pre-initialise new fields to zero */
1520 	offset = ((char *) &(sb->s_feature_compat)) - ((char *) sb);
1521 	blocksize = be32_to_cpu(sb->s_blocksize);
1522 	memset(&sb->s_feature_compat, 0, blocksize-offset);
1523 
1524 	sb->s_nr_users = cpu_to_be32(1);
1525 	sb->s_header.h_blocktype = cpu_to_be32(JBD2_SUPERBLOCK_V2);
1526 	journal->j_format_version = 2;
1527 
1528 	bh = journal->j_sb_buffer;
1529 	BUFFER_TRACE(bh, "marking dirty");
1530 	mark_buffer_dirty(bh);
1531 	sync_dirty_buffer(bh);
1532 	return 0;
1533 }
1534 
1535 
1536 /**
1537  * int jbd2_journal_flush () - Flush journal
1538  * @journal: Journal to act on.
1539  *
1540  * Flush all data for a given journal to disk and empty the journal.
1541  * Filesystems can use this when remounting readonly to ensure that
1542  * recovery does not need to happen on remount.
1543  */
1544 
1545 int jbd2_journal_flush(journal_t *journal)
1546 {
1547 	int err = 0;
1548 	transaction_t *transaction = NULL;
1549 	unsigned long old_tail;
1550 
1551 	write_lock(&journal->j_state_lock);
1552 
1553 	/* Force everything buffered to the log... */
1554 	if (journal->j_running_transaction) {
1555 		transaction = journal->j_running_transaction;
1556 		__jbd2_log_start_commit(journal, transaction->t_tid);
1557 	} else if (journal->j_committing_transaction)
1558 		transaction = journal->j_committing_transaction;
1559 
1560 	/* Wait for the log commit to complete... */
1561 	if (transaction) {
1562 		tid_t tid = transaction->t_tid;
1563 
1564 		write_unlock(&journal->j_state_lock);
1565 		jbd2_log_wait_commit(journal, tid);
1566 	} else {
1567 		write_unlock(&journal->j_state_lock);
1568 	}
1569 
1570 	/* ...and flush everything in the log out to disk. */
1571 	spin_lock(&journal->j_list_lock);
1572 	while (!err && journal->j_checkpoint_transactions != NULL) {
1573 		spin_unlock(&journal->j_list_lock);
1574 		mutex_lock(&journal->j_checkpoint_mutex);
1575 		err = jbd2_log_do_checkpoint(journal);
1576 		mutex_unlock(&journal->j_checkpoint_mutex);
1577 		spin_lock(&journal->j_list_lock);
1578 	}
1579 	spin_unlock(&journal->j_list_lock);
1580 
1581 	if (is_journal_aborted(journal))
1582 		return -EIO;
1583 
1584 	jbd2_cleanup_journal_tail(journal);
1585 
1586 	/* Finally, mark the journal as really needing no recovery.
1587 	 * This sets s_start==0 in the underlying superblock, which is
1588 	 * the magic code for a fully-recovered superblock.  Any future
1589 	 * commits of data to the journal will restore the current
1590 	 * s_start value. */
1591 	write_lock(&journal->j_state_lock);
1592 	old_tail = journal->j_tail;
1593 	journal->j_tail = 0;
1594 	write_unlock(&journal->j_state_lock);
1595 	jbd2_journal_update_superblock(journal, 1);
1596 	write_lock(&journal->j_state_lock);
1597 	journal->j_tail = old_tail;
1598 
1599 	J_ASSERT(!journal->j_running_transaction);
1600 	J_ASSERT(!journal->j_committing_transaction);
1601 	J_ASSERT(!journal->j_checkpoint_transactions);
1602 	J_ASSERT(journal->j_head == journal->j_tail);
1603 	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1604 	write_unlock(&journal->j_state_lock);
1605 	return 0;
1606 }
1607 
1608 /**
1609  * int jbd2_journal_wipe() - Wipe journal contents
1610  * @journal: Journal to act on.
1611  * @write: flag (see below)
1612  *
1613  * Wipe out all of the contents of a journal, safely.  This will produce
1614  * a warning if the journal contains any valid recovery information.
1615  * Must be called between journal_init_*() and jbd2_journal_load().
1616  *
1617  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1618  * we merely suppress recovery.
1619  */
1620 
1621 int jbd2_journal_wipe(journal_t *journal, int write)
1622 {
1623 	int err = 0;
1624 
1625 	J_ASSERT (!(journal->j_flags & JBD2_LOADED));
1626 
1627 	err = load_superblock(journal);
1628 	if (err)
1629 		return err;
1630 
1631 	if (!journal->j_tail)
1632 		goto no_recovery;
1633 
1634 	printk (KERN_WARNING "JBD: %s recovery information on journal\n",
1635 		write ? "Clearing" : "Ignoring");
1636 
1637 	err = jbd2_journal_skip_recovery(journal);
1638 	if (write)
1639 		jbd2_journal_update_superblock(journal, 1);
1640 
1641  no_recovery:
1642 	return err;
1643 }
1644 
1645 /*
1646  * Journal abort has very specific semantics, which we describe
1647  * for journal abort.
1648  *
1649  * Two internal functions, which provide abort to the jbd layer
1650  * itself are here.
1651  */
1652 
1653 /*
1654  * Quick version for internal journal use (doesn't lock the journal).
1655  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1656  * and don't attempt to make any other journal updates.
1657  */
1658 void __jbd2_journal_abort_hard(journal_t *journal)
1659 {
1660 	transaction_t *transaction;
1661 
1662 	if (journal->j_flags & JBD2_ABORT)
1663 		return;
1664 
1665 	printk(KERN_ERR "Aborting journal on device %s.\n",
1666 	       journal->j_devname);
1667 
1668 	write_lock(&journal->j_state_lock);
1669 	journal->j_flags |= JBD2_ABORT;
1670 	transaction = journal->j_running_transaction;
1671 	if (transaction)
1672 		__jbd2_log_start_commit(journal, transaction->t_tid);
1673 	write_unlock(&journal->j_state_lock);
1674 }
1675 
1676 /* Soft abort: record the abort error status in the journal superblock,
1677  * but don't do any other IO. */
1678 static void __journal_abort_soft (journal_t *journal, int errno)
1679 {
1680 	if (journal->j_flags & JBD2_ABORT)
1681 		return;
1682 
1683 	if (!journal->j_errno)
1684 		journal->j_errno = errno;
1685 
1686 	__jbd2_journal_abort_hard(journal);
1687 
1688 	if (errno)
1689 		jbd2_journal_update_superblock(journal, 1);
1690 }
1691 
1692 /**
1693  * void jbd2_journal_abort () - Shutdown the journal immediately.
1694  * @journal: the journal to shutdown.
1695  * @errno:   an error number to record in the journal indicating
1696  *           the reason for the shutdown.
1697  *
1698  * Perform a complete, immediate shutdown of the ENTIRE
1699  * journal (not of a single transaction).  This operation cannot be
1700  * undone without closing and reopening the journal.
1701  *
1702  * The jbd2_journal_abort function is intended to support higher level error
1703  * recovery mechanisms such as the ext2/ext3 remount-readonly error
1704  * mode.
1705  *
1706  * Journal abort has very specific semantics.  Any existing dirty,
1707  * unjournaled buffers in the main filesystem will still be written to
1708  * disk by bdflush, but the journaling mechanism will be suspended
1709  * immediately and no further transaction commits will be honoured.
1710  *
1711  * Any dirty, journaled buffers will be written back to disk without
1712  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
1713  * filesystem, but we _do_ attempt to leave as much data as possible
1714  * behind for fsck to use for cleanup.
1715  *
1716  * Any attempt to get a new transaction handle on a journal which is in
1717  * ABORT state will just result in an -EROFS error return.  A
1718  * jbd2_journal_stop on an existing handle will return -EIO if we have
1719  * entered abort state during the update.
1720  *
1721  * Recursive transactions are not disturbed by journal abort until the
1722  * final jbd2_journal_stop, which will receive the -EIO error.
1723  *
1724  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
1725  * which will be recorded (if possible) in the journal superblock.  This
1726  * allows a client to record failure conditions in the middle of a
1727  * transaction without having to complete the transaction to record the
1728  * failure to disk.  ext3_error, for example, now uses this
1729  * functionality.
1730  *
1731  * Errors which originate from within the journaling layer will NOT
1732  * supply an errno; a null errno implies that absolutely no further
1733  * writes are done to the journal (unless there are any already in
1734  * progress).
1735  *
1736  */
1737 
1738 void jbd2_journal_abort(journal_t *journal, int errno)
1739 {
1740 	__journal_abort_soft(journal, errno);
1741 }
1742 
1743 /**
1744  * int jbd2_journal_errno () - returns the journal's error state.
1745  * @journal: journal to examine.
1746  *
1747  * This is the errno number set with jbd2_journal_abort(), the last
1748  * time the journal was mounted - if the journal was stopped
1749  * without calling abort this will be 0.
1750  *
1751  * If the journal has been aborted on this mount time -EROFS will
1752  * be returned.
1753  */
1754 int jbd2_journal_errno(journal_t *journal)
1755 {
1756 	int err;
1757 
1758 	read_lock(&journal->j_state_lock);
1759 	if (journal->j_flags & JBD2_ABORT)
1760 		err = -EROFS;
1761 	else
1762 		err = journal->j_errno;
1763 	read_unlock(&journal->j_state_lock);
1764 	return err;
1765 }
1766 
1767 /**
1768  * int jbd2_journal_clear_err () - clears the journal's error state
1769  * @journal: journal to act on.
1770  *
1771  * An error must be cleared or acked to take a FS out of readonly
1772  * mode.
1773  */
1774 int jbd2_journal_clear_err(journal_t *journal)
1775 {
1776 	int err = 0;
1777 
1778 	write_lock(&journal->j_state_lock);
1779 	if (journal->j_flags & JBD2_ABORT)
1780 		err = -EROFS;
1781 	else
1782 		journal->j_errno = 0;
1783 	write_unlock(&journal->j_state_lock);
1784 	return err;
1785 }
1786 
1787 /**
1788  * void jbd2_journal_ack_err() - Ack journal err.
1789  * @journal: journal to act on.
1790  *
1791  * An error must be cleared or acked to take a FS out of readonly
1792  * mode.
1793  */
1794 void jbd2_journal_ack_err(journal_t *journal)
1795 {
1796 	write_lock(&journal->j_state_lock);
1797 	if (journal->j_errno)
1798 		journal->j_flags |= JBD2_ACK_ERR;
1799 	write_unlock(&journal->j_state_lock);
1800 }
1801 
1802 int jbd2_journal_blocks_per_page(struct inode *inode)
1803 {
1804 	return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1805 }
1806 
1807 /*
1808  * helper functions to deal with 32 or 64bit block numbers.
1809  */
1810 size_t journal_tag_bytes(journal_t *journal)
1811 {
1812 	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT))
1813 		return JBD2_TAG_SIZE64;
1814 	else
1815 		return JBD2_TAG_SIZE32;
1816 }
1817 
1818 /*
1819  * JBD memory management
1820  *
1821  * These functions are used to allocate block-sized chunks of memory
1822  * used for making copies of buffer_head data.  Very often it will be
1823  * page-sized chunks of data, but sometimes it will be in
1824  * sub-page-size chunks.  (For example, 16k pages on Power systems
1825  * with a 4k block file system.)  For blocks smaller than a page, we
1826  * use a SLAB allocator.  There are slab caches for each block size,
1827  * which are allocated at mount time, if necessary, and we only free
1828  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
1829  * this reason we don't need to a mutex to protect access to
1830  * jbd2_slab[] allocating or releasing memory; only in
1831  * jbd2_journal_create_slab().
1832  */
1833 #define JBD2_MAX_SLABS 8
1834 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
1835 static DECLARE_MUTEX(jbd2_slab_create_sem);
1836 
1837 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
1838 	"jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
1839 	"jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
1840 };
1841 
1842 
1843 static void jbd2_journal_destroy_slabs(void)
1844 {
1845 	int i;
1846 
1847 	for (i = 0; i < JBD2_MAX_SLABS; i++) {
1848 		if (jbd2_slab[i])
1849 			kmem_cache_destroy(jbd2_slab[i]);
1850 		jbd2_slab[i] = NULL;
1851 	}
1852 }
1853 
1854 static int jbd2_journal_create_slab(size_t size)
1855 {
1856 	int i = order_base_2(size) - 10;
1857 	size_t slab_size;
1858 
1859 	if (size == PAGE_SIZE)
1860 		return 0;
1861 
1862 	if (i >= JBD2_MAX_SLABS)
1863 		return -EINVAL;
1864 
1865 	if (unlikely(i < 0))
1866 		i = 0;
1867 	down(&jbd2_slab_create_sem);
1868 	if (jbd2_slab[i]) {
1869 		up(&jbd2_slab_create_sem);
1870 		return 0;	/* Already created */
1871 	}
1872 
1873 	slab_size = 1 << (i+10);
1874 	jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
1875 					 slab_size, 0, NULL);
1876 	up(&jbd2_slab_create_sem);
1877 	if (!jbd2_slab[i]) {
1878 		printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
1879 		return -ENOMEM;
1880 	}
1881 	return 0;
1882 }
1883 
1884 static struct kmem_cache *get_slab(size_t size)
1885 {
1886 	int i = order_base_2(size) - 10;
1887 
1888 	BUG_ON(i >= JBD2_MAX_SLABS);
1889 	if (unlikely(i < 0))
1890 		i = 0;
1891 	BUG_ON(jbd2_slab[i] == NULL);
1892 	return jbd2_slab[i];
1893 }
1894 
1895 void *jbd2_alloc(size_t size, gfp_t flags)
1896 {
1897 	void *ptr;
1898 
1899 	BUG_ON(size & (size-1)); /* Must be a power of 2 */
1900 
1901 	flags |= __GFP_REPEAT;
1902 	if (size == PAGE_SIZE)
1903 		ptr = (void *)__get_free_pages(flags, 0);
1904 	else if (size > PAGE_SIZE) {
1905 		int order = get_order(size);
1906 
1907 		if (order < 3)
1908 			ptr = (void *)__get_free_pages(flags, order);
1909 		else
1910 			ptr = vmalloc(size);
1911 	} else
1912 		ptr = kmem_cache_alloc(get_slab(size), flags);
1913 
1914 	/* Check alignment; SLUB has gotten this wrong in the past,
1915 	 * and this can lead to user data corruption! */
1916 	BUG_ON(((unsigned long) ptr) & (size-1));
1917 
1918 	return ptr;
1919 }
1920 
1921 void jbd2_free(void *ptr, size_t size)
1922 {
1923 	if (size == PAGE_SIZE) {
1924 		free_pages((unsigned long)ptr, 0);
1925 		return;
1926 	}
1927 	if (size > PAGE_SIZE) {
1928 		int order = get_order(size);
1929 
1930 		if (order < 3)
1931 			free_pages((unsigned long)ptr, order);
1932 		else
1933 			vfree(ptr);
1934 		return;
1935 	}
1936 	kmem_cache_free(get_slab(size), ptr);
1937 };
1938 
1939 /*
1940  * Journal_head storage management
1941  */
1942 static struct kmem_cache *jbd2_journal_head_cache;
1943 #ifdef CONFIG_JBD2_DEBUG
1944 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
1945 #endif
1946 
1947 static int journal_init_jbd2_journal_head_cache(void)
1948 {
1949 	int retval;
1950 
1951 	J_ASSERT(jbd2_journal_head_cache == NULL);
1952 	jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
1953 				sizeof(struct journal_head),
1954 				0,		/* offset */
1955 				SLAB_TEMPORARY,	/* flags */
1956 				NULL);		/* ctor */
1957 	retval = 0;
1958 	if (!jbd2_journal_head_cache) {
1959 		retval = -ENOMEM;
1960 		printk(KERN_EMERG "JBD: no memory for journal_head cache\n");
1961 	}
1962 	return retval;
1963 }
1964 
1965 static void jbd2_journal_destroy_jbd2_journal_head_cache(void)
1966 {
1967 	if (jbd2_journal_head_cache) {
1968 		kmem_cache_destroy(jbd2_journal_head_cache);
1969 		jbd2_journal_head_cache = NULL;
1970 	}
1971 }
1972 
1973 /*
1974  * journal_head splicing and dicing
1975  */
1976 static struct journal_head *journal_alloc_journal_head(void)
1977 {
1978 	struct journal_head *ret;
1979 	static unsigned long last_warning;
1980 
1981 #ifdef CONFIG_JBD2_DEBUG
1982 	atomic_inc(&nr_journal_heads);
1983 #endif
1984 	ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
1985 	if (!ret) {
1986 		jbd_debug(1, "out of memory for journal_head\n");
1987 		if (time_after(jiffies, last_warning + 5*HZ)) {
1988 			printk(KERN_NOTICE "ENOMEM in %s, retrying.\n",
1989 			       __func__);
1990 			last_warning = jiffies;
1991 		}
1992 		while (!ret) {
1993 			yield();
1994 			ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
1995 		}
1996 	}
1997 	return ret;
1998 }
1999 
2000 static void journal_free_journal_head(struct journal_head *jh)
2001 {
2002 #ifdef CONFIG_JBD2_DEBUG
2003 	atomic_dec(&nr_journal_heads);
2004 	memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2005 #endif
2006 	kmem_cache_free(jbd2_journal_head_cache, jh);
2007 }
2008 
2009 /*
2010  * A journal_head is attached to a buffer_head whenever JBD has an
2011  * interest in the buffer.
2012  *
2013  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2014  * is set.  This bit is tested in core kernel code where we need to take
2015  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2016  * there.
2017  *
2018  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2019  *
2020  * When a buffer has its BH_JBD bit set it is immune from being released by
2021  * core kernel code, mainly via ->b_count.
2022  *
2023  * A journal_head may be detached from its buffer_head when the journal_head's
2024  * b_transaction, b_cp_transaction and b_next_transaction pointers are NULL.
2025  * Various places in JBD call jbd2_journal_remove_journal_head() to indicate that the
2026  * journal_head can be dropped if needed.
2027  *
2028  * Various places in the kernel want to attach a journal_head to a buffer_head
2029  * _before_ attaching the journal_head to a transaction.  To protect the
2030  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2031  * journal_head's b_jcount refcount by one.  The caller must call
2032  * jbd2_journal_put_journal_head() to undo this.
2033  *
2034  * So the typical usage would be:
2035  *
2036  *	(Attach a journal_head if needed.  Increments b_jcount)
2037  *	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2038  *	...
2039  *	jh->b_transaction = xxx;
2040  *	jbd2_journal_put_journal_head(jh);
2041  *
2042  * Now, the journal_head's b_jcount is zero, but it is safe from being released
2043  * because it has a non-zero b_transaction.
2044  */
2045 
2046 /*
2047  * Give a buffer_head a journal_head.
2048  *
2049  * Doesn't need the journal lock.
2050  * May sleep.
2051  */
2052 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2053 {
2054 	struct journal_head *jh;
2055 	struct journal_head *new_jh = NULL;
2056 
2057 repeat:
2058 	if (!buffer_jbd(bh)) {
2059 		new_jh = journal_alloc_journal_head();
2060 		memset(new_jh, 0, sizeof(*new_jh));
2061 	}
2062 
2063 	jbd_lock_bh_journal_head(bh);
2064 	if (buffer_jbd(bh)) {
2065 		jh = bh2jh(bh);
2066 	} else {
2067 		J_ASSERT_BH(bh,
2068 			(atomic_read(&bh->b_count) > 0) ||
2069 			(bh->b_page && bh->b_page->mapping));
2070 
2071 		if (!new_jh) {
2072 			jbd_unlock_bh_journal_head(bh);
2073 			goto repeat;
2074 		}
2075 
2076 		jh = new_jh;
2077 		new_jh = NULL;		/* We consumed it */
2078 		set_buffer_jbd(bh);
2079 		bh->b_private = jh;
2080 		jh->b_bh = bh;
2081 		get_bh(bh);
2082 		BUFFER_TRACE(bh, "added journal_head");
2083 	}
2084 	jh->b_jcount++;
2085 	jbd_unlock_bh_journal_head(bh);
2086 	if (new_jh)
2087 		journal_free_journal_head(new_jh);
2088 	return bh->b_private;
2089 }
2090 
2091 /*
2092  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2093  * having a journal_head, return NULL
2094  */
2095 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2096 {
2097 	struct journal_head *jh = NULL;
2098 
2099 	jbd_lock_bh_journal_head(bh);
2100 	if (buffer_jbd(bh)) {
2101 		jh = bh2jh(bh);
2102 		jh->b_jcount++;
2103 	}
2104 	jbd_unlock_bh_journal_head(bh);
2105 	return jh;
2106 }
2107 
2108 static void __journal_remove_journal_head(struct buffer_head *bh)
2109 {
2110 	struct journal_head *jh = bh2jh(bh);
2111 
2112 	J_ASSERT_JH(jh, jh->b_jcount >= 0);
2113 
2114 	get_bh(bh);
2115 	if (jh->b_jcount == 0) {
2116 		if (jh->b_transaction == NULL &&
2117 				jh->b_next_transaction == NULL &&
2118 				jh->b_cp_transaction == NULL) {
2119 			J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2120 			J_ASSERT_BH(bh, buffer_jbd(bh));
2121 			J_ASSERT_BH(bh, jh2bh(jh) == bh);
2122 			BUFFER_TRACE(bh, "remove journal_head");
2123 			if (jh->b_frozen_data) {
2124 				printk(KERN_WARNING "%s: freeing "
2125 						"b_frozen_data\n",
2126 						__func__);
2127 				jbd2_free(jh->b_frozen_data, bh->b_size);
2128 			}
2129 			if (jh->b_committed_data) {
2130 				printk(KERN_WARNING "%s: freeing "
2131 						"b_committed_data\n",
2132 						__func__);
2133 				jbd2_free(jh->b_committed_data, bh->b_size);
2134 			}
2135 			bh->b_private = NULL;
2136 			jh->b_bh = NULL;	/* debug, really */
2137 			clear_buffer_jbd(bh);
2138 			__brelse(bh);
2139 			journal_free_journal_head(jh);
2140 		} else {
2141 			BUFFER_TRACE(bh, "journal_head was locked");
2142 		}
2143 	}
2144 }
2145 
2146 /*
2147  * jbd2_journal_remove_journal_head(): if the buffer isn't attached to a transaction
2148  * and has a zero b_jcount then remove and release its journal_head.   If we did
2149  * see that the buffer is not used by any transaction we also "logically"
2150  * decrement ->b_count.
2151  *
2152  * We in fact take an additional increment on ->b_count as a convenience,
2153  * because the caller usually wants to do additional things with the bh
2154  * after calling here.
2155  * The caller of jbd2_journal_remove_journal_head() *must* run __brelse(bh) at some
2156  * time.  Once the caller has run __brelse(), the buffer is eligible for
2157  * reaping by try_to_free_buffers().
2158  */
2159 void jbd2_journal_remove_journal_head(struct buffer_head *bh)
2160 {
2161 	jbd_lock_bh_journal_head(bh);
2162 	__journal_remove_journal_head(bh);
2163 	jbd_unlock_bh_journal_head(bh);
2164 }
2165 
2166 /*
2167  * Drop a reference on the passed journal_head.  If it fell to zero then try to
2168  * release the journal_head from the buffer_head.
2169  */
2170 void jbd2_journal_put_journal_head(struct journal_head *jh)
2171 {
2172 	struct buffer_head *bh = jh2bh(jh);
2173 
2174 	jbd_lock_bh_journal_head(bh);
2175 	J_ASSERT_JH(jh, jh->b_jcount > 0);
2176 	--jh->b_jcount;
2177 	if (!jh->b_jcount && !jh->b_transaction) {
2178 		__journal_remove_journal_head(bh);
2179 		__brelse(bh);
2180 	}
2181 	jbd_unlock_bh_journal_head(bh);
2182 }
2183 
2184 /*
2185  * Initialize jbd inode head
2186  */
2187 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2188 {
2189 	jinode->i_transaction = NULL;
2190 	jinode->i_next_transaction = NULL;
2191 	jinode->i_vfs_inode = inode;
2192 	jinode->i_flags = 0;
2193 	INIT_LIST_HEAD(&jinode->i_list);
2194 }
2195 
2196 /*
2197  * Function to be called before we start removing inode from memory (i.e.,
2198  * clear_inode() is a fine place to be called from). It removes inode from
2199  * transaction's lists.
2200  */
2201 void jbd2_journal_release_jbd_inode(journal_t *journal,
2202 				    struct jbd2_inode *jinode)
2203 {
2204 	if (!journal)
2205 		return;
2206 restart:
2207 	spin_lock(&journal->j_list_lock);
2208 	/* Is commit writing out inode - we have to wait */
2209 	if (jinode->i_flags & JI_COMMIT_RUNNING) {
2210 		wait_queue_head_t *wq;
2211 		DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2212 		wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2213 		prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2214 		spin_unlock(&journal->j_list_lock);
2215 		schedule();
2216 		finish_wait(wq, &wait.wait);
2217 		goto restart;
2218 	}
2219 
2220 	if (jinode->i_transaction) {
2221 		list_del(&jinode->i_list);
2222 		jinode->i_transaction = NULL;
2223 	}
2224 	spin_unlock(&journal->j_list_lock);
2225 }
2226 
2227 /*
2228  * debugfs tunables
2229  */
2230 #ifdef CONFIG_JBD2_DEBUG
2231 u8 jbd2_journal_enable_debug __read_mostly;
2232 EXPORT_SYMBOL(jbd2_journal_enable_debug);
2233 
2234 #define JBD2_DEBUG_NAME "jbd2-debug"
2235 
2236 static struct dentry *jbd2_debugfs_dir;
2237 static struct dentry *jbd2_debug;
2238 
2239 static void __init jbd2_create_debugfs_entry(void)
2240 {
2241 	jbd2_debugfs_dir = debugfs_create_dir("jbd2", NULL);
2242 	if (jbd2_debugfs_dir)
2243 		jbd2_debug = debugfs_create_u8(JBD2_DEBUG_NAME,
2244 					       S_IRUGO | S_IWUSR,
2245 					       jbd2_debugfs_dir,
2246 					       &jbd2_journal_enable_debug);
2247 }
2248 
2249 static void __exit jbd2_remove_debugfs_entry(void)
2250 {
2251 	debugfs_remove(jbd2_debug);
2252 	debugfs_remove(jbd2_debugfs_dir);
2253 }
2254 
2255 #else
2256 
2257 static void __init jbd2_create_debugfs_entry(void)
2258 {
2259 }
2260 
2261 static void __exit jbd2_remove_debugfs_entry(void)
2262 {
2263 }
2264 
2265 #endif
2266 
2267 #ifdef CONFIG_PROC_FS
2268 
2269 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2270 
2271 static void __init jbd2_create_jbd_stats_proc_entry(void)
2272 {
2273 	proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2274 }
2275 
2276 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2277 {
2278 	if (proc_jbd2_stats)
2279 		remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2280 }
2281 
2282 #else
2283 
2284 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2285 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2286 
2287 #endif
2288 
2289 struct kmem_cache *jbd2_handle_cache;
2290 
2291 static int __init journal_init_handle_cache(void)
2292 {
2293 	jbd2_handle_cache = kmem_cache_create("jbd2_journal_handle",
2294 				sizeof(handle_t),
2295 				0,		/* offset */
2296 				SLAB_TEMPORARY,	/* flags */
2297 				NULL);		/* ctor */
2298 	if (jbd2_handle_cache == NULL) {
2299 		printk(KERN_EMERG "JBD: failed to create handle cache\n");
2300 		return -ENOMEM;
2301 	}
2302 	return 0;
2303 }
2304 
2305 static void jbd2_journal_destroy_handle_cache(void)
2306 {
2307 	if (jbd2_handle_cache)
2308 		kmem_cache_destroy(jbd2_handle_cache);
2309 }
2310 
2311 /*
2312  * Module startup and shutdown
2313  */
2314 
2315 static int __init journal_init_caches(void)
2316 {
2317 	int ret;
2318 
2319 	ret = jbd2_journal_init_revoke_caches();
2320 	if (ret == 0)
2321 		ret = journal_init_jbd2_journal_head_cache();
2322 	if (ret == 0)
2323 		ret = journal_init_handle_cache();
2324 	return ret;
2325 }
2326 
2327 static void jbd2_journal_destroy_caches(void)
2328 {
2329 	jbd2_journal_destroy_revoke_caches();
2330 	jbd2_journal_destroy_jbd2_journal_head_cache();
2331 	jbd2_journal_destroy_handle_cache();
2332 	jbd2_journal_destroy_slabs();
2333 }
2334 
2335 static int __init journal_init(void)
2336 {
2337 	int ret;
2338 
2339 	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2340 
2341 	ret = journal_init_caches();
2342 	if (ret == 0) {
2343 		jbd2_create_debugfs_entry();
2344 		jbd2_create_jbd_stats_proc_entry();
2345 	} else {
2346 		jbd2_journal_destroy_caches();
2347 	}
2348 	return ret;
2349 }
2350 
2351 static void __exit journal_exit(void)
2352 {
2353 #ifdef CONFIG_JBD2_DEBUG
2354 	int n = atomic_read(&nr_journal_heads);
2355 	if (n)
2356 		printk(KERN_EMERG "JBD: leaked %d journal_heads!\n", n);
2357 #endif
2358 	jbd2_remove_debugfs_entry();
2359 	jbd2_remove_jbd_stats_proc_entry();
2360 	jbd2_journal_destroy_caches();
2361 }
2362 
2363 /*
2364  * jbd2_dev_to_name is a utility function used by the jbd2 and ext4
2365  * tracing infrastructure to map a dev_t to a device name.
2366  *
2367  * The caller should use rcu_read_lock() in order to make sure the
2368  * device name stays valid until its done with it.  We use
2369  * rcu_read_lock() as well to make sure we're safe in case the caller
2370  * gets sloppy, and because rcu_read_lock() is cheap and can be safely
2371  * nested.
2372  */
2373 struct devname_cache {
2374 	struct rcu_head	rcu;
2375 	dev_t		device;
2376 	char		devname[BDEVNAME_SIZE];
2377 };
2378 #define CACHE_SIZE_BITS 6
2379 static struct devname_cache *devcache[1 << CACHE_SIZE_BITS];
2380 static DEFINE_SPINLOCK(devname_cache_lock);
2381 
2382 static void free_devcache(struct rcu_head *rcu)
2383 {
2384 	kfree(rcu);
2385 }
2386 
2387 const char *jbd2_dev_to_name(dev_t device)
2388 {
2389 	int	i = hash_32(device, CACHE_SIZE_BITS);
2390 	char	*ret;
2391 	struct block_device *bd;
2392 	static struct devname_cache *new_dev;
2393 
2394 	rcu_read_lock();
2395 	if (devcache[i] && devcache[i]->device == device) {
2396 		ret = devcache[i]->devname;
2397 		rcu_read_unlock();
2398 		return ret;
2399 	}
2400 	rcu_read_unlock();
2401 
2402 	new_dev = kmalloc(sizeof(struct devname_cache), GFP_KERNEL);
2403 	if (!new_dev)
2404 		return "NODEV-ALLOCFAILURE"; /* Something non-NULL */
2405 	spin_lock(&devname_cache_lock);
2406 	if (devcache[i]) {
2407 		if (devcache[i]->device == device) {
2408 			kfree(new_dev);
2409 			ret = devcache[i]->devname;
2410 			spin_unlock(&devname_cache_lock);
2411 			return ret;
2412 		}
2413 		call_rcu(&devcache[i]->rcu, free_devcache);
2414 	}
2415 	devcache[i] = new_dev;
2416 	devcache[i]->device = device;
2417 	bd = bdget(device);
2418 	if (bd) {
2419 		bdevname(bd, devcache[i]->devname);
2420 		bdput(bd);
2421 	} else
2422 		__bdevname(device, devcache[i]->devname);
2423 	ret = devcache[i]->devname;
2424 	spin_unlock(&devname_cache_lock);
2425 	return ret;
2426 }
2427 EXPORT_SYMBOL(jbd2_dev_to_name);
2428 
2429 MODULE_LICENSE("GPL");
2430 module_init(journal_init);
2431 module_exit(journal_exit);
2432 
2433