1 /* 2 * linux/fs/jbd2/journal.c 3 * 4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 5 * 6 * Copyright 1998 Red Hat corp --- All Rights Reserved 7 * 8 * This file is part of the Linux kernel and is made available under 9 * the terms of the GNU General Public License, version 2, or at your 10 * option, any later version, incorporated herein by reference. 11 * 12 * Generic filesystem journal-writing code; part of the ext2fs 13 * journaling system. 14 * 15 * This file manages journals: areas of disk reserved for logging 16 * transactional updates. This includes the kernel journaling thread 17 * which is responsible for scheduling updates to the log. 18 * 19 * We do not actually manage the physical storage of the journal in this 20 * file: that is left to a per-journal policy function, which allows us 21 * to store the journal within a filesystem-specified area for ext2 22 * journaling (ext2 can use a reserved inode for storing the log). 23 */ 24 25 #include <linux/module.h> 26 #include <linux/time.h> 27 #include <linux/fs.h> 28 #include <linux/jbd2.h> 29 #include <linux/errno.h> 30 #include <linux/slab.h> 31 #include <linux/smp_lock.h> 32 #include <linux/init.h> 33 #include <linux/mm.h> 34 #include <linux/freezer.h> 35 #include <linux/pagemap.h> 36 #include <linux/kthread.h> 37 #include <linux/poison.h> 38 #include <linux/proc_fs.h> 39 40 #include <asm/uaccess.h> 41 #include <asm/page.h> 42 43 EXPORT_SYMBOL(jbd2_journal_start); 44 EXPORT_SYMBOL(jbd2_journal_restart); 45 EXPORT_SYMBOL(jbd2_journal_extend); 46 EXPORT_SYMBOL(jbd2_journal_stop); 47 EXPORT_SYMBOL(jbd2_journal_lock_updates); 48 EXPORT_SYMBOL(jbd2_journal_unlock_updates); 49 EXPORT_SYMBOL(jbd2_journal_get_write_access); 50 EXPORT_SYMBOL(jbd2_journal_get_create_access); 51 EXPORT_SYMBOL(jbd2_journal_get_undo_access); 52 EXPORT_SYMBOL(jbd2_journal_dirty_data); 53 EXPORT_SYMBOL(jbd2_journal_dirty_metadata); 54 EXPORT_SYMBOL(jbd2_journal_release_buffer); 55 EXPORT_SYMBOL(jbd2_journal_forget); 56 #if 0 57 EXPORT_SYMBOL(journal_sync_buffer); 58 #endif 59 EXPORT_SYMBOL(jbd2_journal_flush); 60 EXPORT_SYMBOL(jbd2_journal_revoke); 61 62 EXPORT_SYMBOL(jbd2_journal_init_dev); 63 EXPORT_SYMBOL(jbd2_journal_init_inode); 64 EXPORT_SYMBOL(jbd2_journal_update_format); 65 EXPORT_SYMBOL(jbd2_journal_check_used_features); 66 EXPORT_SYMBOL(jbd2_journal_check_available_features); 67 EXPORT_SYMBOL(jbd2_journal_set_features); 68 EXPORT_SYMBOL(jbd2_journal_create); 69 EXPORT_SYMBOL(jbd2_journal_load); 70 EXPORT_SYMBOL(jbd2_journal_destroy); 71 EXPORT_SYMBOL(jbd2_journal_update_superblock); 72 EXPORT_SYMBOL(jbd2_journal_abort); 73 EXPORT_SYMBOL(jbd2_journal_errno); 74 EXPORT_SYMBOL(jbd2_journal_ack_err); 75 EXPORT_SYMBOL(jbd2_journal_clear_err); 76 EXPORT_SYMBOL(jbd2_log_wait_commit); 77 EXPORT_SYMBOL(jbd2_journal_start_commit); 78 EXPORT_SYMBOL(jbd2_journal_force_commit_nested); 79 EXPORT_SYMBOL(jbd2_journal_wipe); 80 EXPORT_SYMBOL(jbd2_journal_blocks_per_page); 81 EXPORT_SYMBOL(jbd2_journal_invalidatepage); 82 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers); 83 EXPORT_SYMBOL(jbd2_journal_force_commit); 84 85 static int journal_convert_superblock_v1(journal_t *, journal_superblock_t *); 86 static void __journal_abort_soft (journal_t *journal, int errno); 87 static int jbd2_journal_create_jbd_slab(size_t slab_size); 88 89 /* 90 * Helper function used to manage commit timeouts 91 */ 92 93 static void commit_timeout(unsigned long __data) 94 { 95 struct task_struct * p = (struct task_struct *) __data; 96 97 wake_up_process(p); 98 } 99 100 /* 101 * kjournald2: The main thread function used to manage a logging device 102 * journal. 103 * 104 * This kernel thread is responsible for two things: 105 * 106 * 1) COMMIT: Every so often we need to commit the current state of the 107 * filesystem to disk. The journal thread is responsible for writing 108 * all of the metadata buffers to disk. 109 * 110 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all 111 * of the data in that part of the log has been rewritten elsewhere on 112 * the disk. Flushing these old buffers to reclaim space in the log is 113 * known as checkpointing, and this thread is responsible for that job. 114 */ 115 116 static int kjournald2(void *arg) 117 { 118 journal_t *journal = arg; 119 transaction_t *transaction; 120 121 /* 122 * Set up an interval timer which can be used to trigger a commit wakeup 123 * after the commit interval expires 124 */ 125 setup_timer(&journal->j_commit_timer, commit_timeout, 126 (unsigned long)current); 127 128 /* Record that the journal thread is running */ 129 journal->j_task = current; 130 wake_up(&journal->j_wait_done_commit); 131 132 printk(KERN_INFO "kjournald2 starting. Commit interval %ld seconds\n", 133 journal->j_commit_interval / HZ); 134 135 /* 136 * And now, wait forever for commit wakeup events. 137 */ 138 spin_lock(&journal->j_state_lock); 139 140 loop: 141 if (journal->j_flags & JBD2_UNMOUNT) 142 goto end_loop; 143 144 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n", 145 journal->j_commit_sequence, journal->j_commit_request); 146 147 if (journal->j_commit_sequence != journal->j_commit_request) { 148 jbd_debug(1, "OK, requests differ\n"); 149 spin_unlock(&journal->j_state_lock); 150 del_timer_sync(&journal->j_commit_timer); 151 jbd2_journal_commit_transaction(journal); 152 spin_lock(&journal->j_state_lock); 153 goto loop; 154 } 155 156 wake_up(&journal->j_wait_done_commit); 157 if (freezing(current)) { 158 /* 159 * The simpler the better. Flushing journal isn't a 160 * good idea, because that depends on threads that may 161 * be already stopped. 162 */ 163 jbd_debug(1, "Now suspending kjournald2\n"); 164 spin_unlock(&journal->j_state_lock); 165 refrigerator(); 166 spin_lock(&journal->j_state_lock); 167 } else { 168 /* 169 * We assume on resume that commits are already there, 170 * so we don't sleep 171 */ 172 DEFINE_WAIT(wait); 173 int should_sleep = 1; 174 175 prepare_to_wait(&journal->j_wait_commit, &wait, 176 TASK_INTERRUPTIBLE); 177 if (journal->j_commit_sequence != journal->j_commit_request) 178 should_sleep = 0; 179 transaction = journal->j_running_transaction; 180 if (transaction && time_after_eq(jiffies, 181 transaction->t_expires)) 182 should_sleep = 0; 183 if (journal->j_flags & JBD2_UNMOUNT) 184 should_sleep = 0; 185 if (should_sleep) { 186 spin_unlock(&journal->j_state_lock); 187 schedule(); 188 spin_lock(&journal->j_state_lock); 189 } 190 finish_wait(&journal->j_wait_commit, &wait); 191 } 192 193 jbd_debug(1, "kjournald2 wakes\n"); 194 195 /* 196 * Were we woken up by a commit wakeup event? 197 */ 198 transaction = journal->j_running_transaction; 199 if (transaction && time_after_eq(jiffies, transaction->t_expires)) { 200 journal->j_commit_request = transaction->t_tid; 201 jbd_debug(1, "woke because of timeout\n"); 202 } 203 goto loop; 204 205 end_loop: 206 spin_unlock(&journal->j_state_lock); 207 del_timer_sync(&journal->j_commit_timer); 208 journal->j_task = NULL; 209 wake_up(&journal->j_wait_done_commit); 210 jbd_debug(1, "Journal thread exiting.\n"); 211 return 0; 212 } 213 214 static void jbd2_journal_start_thread(journal_t *journal) 215 { 216 kthread_run(kjournald2, journal, "kjournald2"); 217 wait_event(journal->j_wait_done_commit, journal->j_task != 0); 218 } 219 220 static void journal_kill_thread(journal_t *journal) 221 { 222 spin_lock(&journal->j_state_lock); 223 journal->j_flags |= JBD2_UNMOUNT; 224 225 while (journal->j_task) { 226 wake_up(&journal->j_wait_commit); 227 spin_unlock(&journal->j_state_lock); 228 wait_event(journal->j_wait_done_commit, journal->j_task == 0); 229 spin_lock(&journal->j_state_lock); 230 } 231 spin_unlock(&journal->j_state_lock); 232 } 233 234 /* 235 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal. 236 * 237 * Writes a metadata buffer to a given disk block. The actual IO is not 238 * performed but a new buffer_head is constructed which labels the data 239 * to be written with the correct destination disk block. 240 * 241 * Any magic-number escaping which needs to be done will cause a 242 * copy-out here. If the buffer happens to start with the 243 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the 244 * magic number is only written to the log for descripter blocks. In 245 * this case, we copy the data and replace the first word with 0, and we 246 * return a result code which indicates that this buffer needs to be 247 * marked as an escaped buffer in the corresponding log descriptor 248 * block. The missing word can then be restored when the block is read 249 * during recovery. 250 * 251 * If the source buffer has already been modified by a new transaction 252 * since we took the last commit snapshot, we use the frozen copy of 253 * that data for IO. If we end up using the existing buffer_head's data 254 * for the write, then we *have* to lock the buffer to prevent anyone 255 * else from using and possibly modifying it while the IO is in 256 * progress. 257 * 258 * The function returns a pointer to the buffer_heads to be used for IO. 259 * 260 * We assume that the journal has already been locked in this function. 261 * 262 * Return value: 263 * <0: Error 264 * >=0: Finished OK 265 * 266 * On success: 267 * Bit 0 set == escape performed on the data 268 * Bit 1 set == buffer copy-out performed (kfree the data after IO) 269 */ 270 271 int jbd2_journal_write_metadata_buffer(transaction_t *transaction, 272 struct journal_head *jh_in, 273 struct journal_head **jh_out, 274 unsigned long long blocknr) 275 { 276 int need_copy_out = 0; 277 int done_copy_out = 0; 278 int do_escape = 0; 279 char *mapped_data; 280 struct buffer_head *new_bh; 281 struct journal_head *new_jh; 282 struct page *new_page; 283 unsigned int new_offset; 284 struct buffer_head *bh_in = jh2bh(jh_in); 285 286 /* 287 * The buffer really shouldn't be locked: only the current committing 288 * transaction is allowed to write it, so nobody else is allowed 289 * to do any IO. 290 * 291 * akpm: except if we're journalling data, and write() output is 292 * also part of a shared mapping, and another thread has 293 * decided to launch a writepage() against this buffer. 294 */ 295 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in)); 296 297 new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL); 298 299 /* 300 * If a new transaction has already done a buffer copy-out, then 301 * we use that version of the data for the commit. 302 */ 303 jbd_lock_bh_state(bh_in); 304 repeat: 305 if (jh_in->b_frozen_data) { 306 done_copy_out = 1; 307 new_page = virt_to_page(jh_in->b_frozen_data); 308 new_offset = offset_in_page(jh_in->b_frozen_data); 309 } else { 310 new_page = jh2bh(jh_in)->b_page; 311 new_offset = offset_in_page(jh2bh(jh_in)->b_data); 312 } 313 314 mapped_data = kmap_atomic(new_page, KM_USER0); 315 /* 316 * Check for escaping 317 */ 318 if (*((__be32 *)(mapped_data + new_offset)) == 319 cpu_to_be32(JBD2_MAGIC_NUMBER)) { 320 need_copy_out = 1; 321 do_escape = 1; 322 } 323 kunmap_atomic(mapped_data, KM_USER0); 324 325 /* 326 * Do we need to do a data copy? 327 */ 328 if (need_copy_out && !done_copy_out) { 329 char *tmp; 330 331 jbd_unlock_bh_state(bh_in); 332 tmp = jbd2_slab_alloc(bh_in->b_size, GFP_NOFS); 333 jbd_lock_bh_state(bh_in); 334 if (jh_in->b_frozen_data) { 335 jbd2_slab_free(tmp, bh_in->b_size); 336 goto repeat; 337 } 338 339 jh_in->b_frozen_data = tmp; 340 mapped_data = kmap_atomic(new_page, KM_USER0); 341 memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size); 342 kunmap_atomic(mapped_data, KM_USER0); 343 344 new_page = virt_to_page(tmp); 345 new_offset = offset_in_page(tmp); 346 done_copy_out = 1; 347 } 348 349 /* 350 * Did we need to do an escaping? Now we've done all the 351 * copying, we can finally do so. 352 */ 353 if (do_escape) { 354 mapped_data = kmap_atomic(new_page, KM_USER0); 355 *((unsigned int *)(mapped_data + new_offset)) = 0; 356 kunmap_atomic(mapped_data, KM_USER0); 357 } 358 359 /* keep subsequent assertions sane */ 360 new_bh->b_state = 0; 361 init_buffer(new_bh, NULL, NULL); 362 atomic_set(&new_bh->b_count, 1); 363 jbd_unlock_bh_state(bh_in); 364 365 new_jh = jbd2_journal_add_journal_head(new_bh); /* This sleeps */ 366 367 set_bh_page(new_bh, new_page, new_offset); 368 new_jh->b_transaction = NULL; 369 new_bh->b_size = jh2bh(jh_in)->b_size; 370 new_bh->b_bdev = transaction->t_journal->j_dev; 371 new_bh->b_blocknr = blocknr; 372 set_buffer_mapped(new_bh); 373 set_buffer_dirty(new_bh); 374 375 *jh_out = new_jh; 376 377 /* 378 * The to-be-written buffer needs to get moved to the io queue, 379 * and the original buffer whose contents we are shadowing or 380 * copying is moved to the transaction's shadow queue. 381 */ 382 JBUFFER_TRACE(jh_in, "file as BJ_Shadow"); 383 jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow); 384 JBUFFER_TRACE(new_jh, "file as BJ_IO"); 385 jbd2_journal_file_buffer(new_jh, transaction, BJ_IO); 386 387 return do_escape | (done_copy_out << 1); 388 } 389 390 /* 391 * Allocation code for the journal file. Manage the space left in the 392 * journal, so that we can begin checkpointing when appropriate. 393 */ 394 395 /* 396 * __jbd2_log_space_left: Return the number of free blocks left in the journal. 397 * 398 * Called with the journal already locked. 399 * 400 * Called under j_state_lock 401 */ 402 403 int __jbd2_log_space_left(journal_t *journal) 404 { 405 int left = journal->j_free; 406 407 assert_spin_locked(&journal->j_state_lock); 408 409 /* 410 * Be pessimistic here about the number of those free blocks which 411 * might be required for log descriptor control blocks. 412 */ 413 414 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */ 415 416 left -= MIN_LOG_RESERVED_BLOCKS; 417 418 if (left <= 0) 419 return 0; 420 left -= (left >> 3); 421 return left; 422 } 423 424 /* 425 * Called under j_state_lock. Returns true if a transaction was started. 426 */ 427 int __jbd2_log_start_commit(journal_t *journal, tid_t target) 428 { 429 /* 430 * Are we already doing a recent enough commit? 431 */ 432 if (!tid_geq(journal->j_commit_request, target)) { 433 /* 434 * We want a new commit: OK, mark the request and wakup the 435 * commit thread. We do _not_ do the commit ourselves. 436 */ 437 438 journal->j_commit_request = target; 439 jbd_debug(1, "JBD: requesting commit %d/%d\n", 440 journal->j_commit_request, 441 journal->j_commit_sequence); 442 wake_up(&journal->j_wait_commit); 443 return 1; 444 } 445 return 0; 446 } 447 448 int jbd2_log_start_commit(journal_t *journal, tid_t tid) 449 { 450 int ret; 451 452 spin_lock(&journal->j_state_lock); 453 ret = __jbd2_log_start_commit(journal, tid); 454 spin_unlock(&journal->j_state_lock); 455 return ret; 456 } 457 458 /* 459 * Force and wait upon a commit if the calling process is not within 460 * transaction. This is used for forcing out undo-protected data which contains 461 * bitmaps, when the fs is running out of space. 462 * 463 * We can only force the running transaction if we don't have an active handle; 464 * otherwise, we will deadlock. 465 * 466 * Returns true if a transaction was started. 467 */ 468 int jbd2_journal_force_commit_nested(journal_t *journal) 469 { 470 transaction_t *transaction = NULL; 471 tid_t tid; 472 473 spin_lock(&journal->j_state_lock); 474 if (journal->j_running_transaction && !current->journal_info) { 475 transaction = journal->j_running_transaction; 476 __jbd2_log_start_commit(journal, transaction->t_tid); 477 } else if (journal->j_committing_transaction) 478 transaction = journal->j_committing_transaction; 479 480 if (!transaction) { 481 spin_unlock(&journal->j_state_lock); 482 return 0; /* Nothing to retry */ 483 } 484 485 tid = transaction->t_tid; 486 spin_unlock(&journal->j_state_lock); 487 jbd2_log_wait_commit(journal, tid); 488 return 1; 489 } 490 491 /* 492 * Start a commit of the current running transaction (if any). Returns true 493 * if a transaction was started, and fills its tid in at *ptid 494 */ 495 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid) 496 { 497 int ret = 0; 498 499 spin_lock(&journal->j_state_lock); 500 if (journal->j_running_transaction) { 501 tid_t tid = journal->j_running_transaction->t_tid; 502 503 ret = __jbd2_log_start_commit(journal, tid); 504 if (ret && ptid) 505 *ptid = tid; 506 } else if (journal->j_committing_transaction && ptid) { 507 /* 508 * If ext3_write_super() recently started a commit, then we 509 * have to wait for completion of that transaction 510 */ 511 *ptid = journal->j_committing_transaction->t_tid; 512 ret = 1; 513 } 514 spin_unlock(&journal->j_state_lock); 515 return ret; 516 } 517 518 /* 519 * Wait for a specified commit to complete. 520 * The caller may not hold the journal lock. 521 */ 522 int jbd2_log_wait_commit(journal_t *journal, tid_t tid) 523 { 524 int err = 0; 525 526 #ifdef CONFIG_JBD_DEBUG 527 spin_lock(&journal->j_state_lock); 528 if (!tid_geq(journal->j_commit_request, tid)) { 529 printk(KERN_EMERG 530 "%s: error: j_commit_request=%d, tid=%d\n", 531 __FUNCTION__, journal->j_commit_request, tid); 532 } 533 spin_unlock(&journal->j_state_lock); 534 #endif 535 spin_lock(&journal->j_state_lock); 536 while (tid_gt(tid, journal->j_commit_sequence)) { 537 jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n", 538 tid, journal->j_commit_sequence); 539 wake_up(&journal->j_wait_commit); 540 spin_unlock(&journal->j_state_lock); 541 wait_event(journal->j_wait_done_commit, 542 !tid_gt(tid, journal->j_commit_sequence)); 543 spin_lock(&journal->j_state_lock); 544 } 545 spin_unlock(&journal->j_state_lock); 546 547 if (unlikely(is_journal_aborted(journal))) { 548 printk(KERN_EMERG "journal commit I/O error\n"); 549 err = -EIO; 550 } 551 return err; 552 } 553 554 /* 555 * Log buffer allocation routines: 556 */ 557 558 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp) 559 { 560 unsigned long blocknr; 561 562 spin_lock(&journal->j_state_lock); 563 J_ASSERT(journal->j_free > 1); 564 565 blocknr = journal->j_head; 566 journal->j_head++; 567 journal->j_free--; 568 if (journal->j_head == journal->j_last) 569 journal->j_head = journal->j_first; 570 spin_unlock(&journal->j_state_lock); 571 return jbd2_journal_bmap(journal, blocknr, retp); 572 } 573 574 /* 575 * Conversion of logical to physical block numbers for the journal 576 * 577 * On external journals the journal blocks are identity-mapped, so 578 * this is a no-op. If needed, we can use j_blk_offset - everything is 579 * ready. 580 */ 581 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr, 582 unsigned long long *retp) 583 { 584 int err = 0; 585 unsigned long long ret; 586 587 if (journal->j_inode) { 588 ret = bmap(journal->j_inode, blocknr); 589 if (ret) 590 *retp = ret; 591 else { 592 char b[BDEVNAME_SIZE]; 593 594 printk(KERN_ALERT "%s: journal block not found " 595 "at offset %lu on %s\n", 596 __FUNCTION__, 597 blocknr, 598 bdevname(journal->j_dev, b)); 599 err = -EIO; 600 __journal_abort_soft(journal, err); 601 } 602 } else { 603 *retp = blocknr; /* +journal->j_blk_offset */ 604 } 605 return err; 606 } 607 608 /* 609 * We play buffer_head aliasing tricks to write data/metadata blocks to 610 * the journal without copying their contents, but for journal 611 * descriptor blocks we do need to generate bona fide buffers. 612 * 613 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying 614 * the buffer's contents they really should run flush_dcache_page(bh->b_page). 615 * But we don't bother doing that, so there will be coherency problems with 616 * mmaps of blockdevs which hold live JBD-controlled filesystems. 617 */ 618 struct journal_head *jbd2_journal_get_descriptor_buffer(journal_t *journal) 619 { 620 struct buffer_head *bh; 621 unsigned long long blocknr; 622 int err; 623 624 err = jbd2_journal_next_log_block(journal, &blocknr); 625 626 if (err) 627 return NULL; 628 629 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize); 630 lock_buffer(bh); 631 memset(bh->b_data, 0, journal->j_blocksize); 632 set_buffer_uptodate(bh); 633 unlock_buffer(bh); 634 BUFFER_TRACE(bh, "return this buffer"); 635 return jbd2_journal_add_journal_head(bh); 636 } 637 638 /* 639 * Management for journal control blocks: functions to create and 640 * destroy journal_t structures, and to initialise and read existing 641 * journal blocks from disk. */ 642 643 /* First: create and setup a journal_t object in memory. We initialise 644 * very few fields yet: that has to wait until we have created the 645 * journal structures from from scratch, or loaded them from disk. */ 646 647 static journal_t * journal_init_common (void) 648 { 649 journal_t *journal; 650 int err; 651 652 journal = jbd_kmalloc(sizeof(*journal), GFP_KERNEL); 653 if (!journal) 654 goto fail; 655 memset(journal, 0, sizeof(*journal)); 656 657 init_waitqueue_head(&journal->j_wait_transaction_locked); 658 init_waitqueue_head(&journal->j_wait_logspace); 659 init_waitqueue_head(&journal->j_wait_done_commit); 660 init_waitqueue_head(&journal->j_wait_checkpoint); 661 init_waitqueue_head(&journal->j_wait_commit); 662 init_waitqueue_head(&journal->j_wait_updates); 663 mutex_init(&journal->j_barrier); 664 mutex_init(&journal->j_checkpoint_mutex); 665 spin_lock_init(&journal->j_revoke_lock); 666 spin_lock_init(&journal->j_list_lock); 667 spin_lock_init(&journal->j_state_lock); 668 669 journal->j_commit_interval = (HZ * JBD_DEFAULT_MAX_COMMIT_AGE); 670 671 /* The journal is marked for error until we succeed with recovery! */ 672 journal->j_flags = JBD2_ABORT; 673 674 /* Set up a default-sized revoke table for the new mount. */ 675 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH); 676 if (err) { 677 kfree(journal); 678 goto fail; 679 } 680 return journal; 681 fail: 682 return NULL; 683 } 684 685 /* jbd2_journal_init_dev and jbd2_journal_init_inode: 686 * 687 * Create a journal structure assigned some fixed set of disk blocks to 688 * the journal. We don't actually touch those disk blocks yet, but we 689 * need to set up all of the mapping information to tell the journaling 690 * system where the journal blocks are. 691 * 692 */ 693 694 /** 695 * journal_t * jbd2_journal_init_dev() - creates an initialises a journal structure 696 * @bdev: Block device on which to create the journal 697 * @fs_dev: Device which hold journalled filesystem for this journal. 698 * @start: Block nr Start of journal. 699 * @len: Length of the journal in blocks. 700 * @blocksize: blocksize of journalling device 701 * @returns: a newly created journal_t * 702 * 703 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous 704 * range of blocks on an arbitrary block device. 705 * 706 */ 707 journal_t * jbd2_journal_init_dev(struct block_device *bdev, 708 struct block_device *fs_dev, 709 unsigned long long start, int len, int blocksize) 710 { 711 journal_t *journal = journal_init_common(); 712 struct buffer_head *bh; 713 int n; 714 715 if (!journal) 716 return NULL; 717 718 /* journal descriptor can store up to n blocks -bzzz */ 719 journal->j_blocksize = blocksize; 720 n = journal->j_blocksize / sizeof(journal_block_tag_t); 721 journal->j_wbufsize = n; 722 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL); 723 if (!journal->j_wbuf) { 724 printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n", 725 __FUNCTION__); 726 kfree(journal); 727 journal = NULL; 728 goto out; 729 } 730 journal->j_dev = bdev; 731 journal->j_fs_dev = fs_dev; 732 journal->j_blk_offset = start; 733 journal->j_maxlen = len; 734 735 bh = __getblk(journal->j_dev, start, journal->j_blocksize); 736 J_ASSERT(bh != NULL); 737 journal->j_sb_buffer = bh; 738 journal->j_superblock = (journal_superblock_t *)bh->b_data; 739 out: 740 return journal; 741 } 742 743 /** 744 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode. 745 * @inode: An inode to create the journal in 746 * 747 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as 748 * the journal. The inode must exist already, must support bmap() and 749 * must have all data blocks preallocated. 750 */ 751 journal_t * jbd2_journal_init_inode (struct inode *inode) 752 { 753 struct buffer_head *bh; 754 journal_t *journal = journal_init_common(); 755 int err; 756 int n; 757 unsigned long long blocknr; 758 759 if (!journal) 760 return NULL; 761 762 journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev; 763 journal->j_inode = inode; 764 jbd_debug(1, 765 "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n", 766 journal, inode->i_sb->s_id, inode->i_ino, 767 (long long) inode->i_size, 768 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize); 769 770 journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits; 771 journal->j_blocksize = inode->i_sb->s_blocksize; 772 773 /* journal descriptor can store up to n blocks -bzzz */ 774 n = journal->j_blocksize / sizeof(journal_block_tag_t); 775 journal->j_wbufsize = n; 776 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL); 777 if (!journal->j_wbuf) { 778 printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n", 779 __FUNCTION__); 780 kfree(journal); 781 return NULL; 782 } 783 784 err = jbd2_journal_bmap(journal, 0, &blocknr); 785 /* If that failed, give up */ 786 if (err) { 787 printk(KERN_ERR "%s: Cannnot locate journal superblock\n", 788 __FUNCTION__); 789 kfree(journal); 790 return NULL; 791 } 792 793 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize); 794 J_ASSERT(bh != NULL); 795 journal->j_sb_buffer = bh; 796 journal->j_superblock = (journal_superblock_t *)bh->b_data; 797 798 return journal; 799 } 800 801 /* 802 * If the journal init or create aborts, we need to mark the journal 803 * superblock as being NULL to prevent the journal destroy from writing 804 * back a bogus superblock. 805 */ 806 static void journal_fail_superblock (journal_t *journal) 807 { 808 struct buffer_head *bh = journal->j_sb_buffer; 809 brelse(bh); 810 journal->j_sb_buffer = NULL; 811 } 812 813 /* 814 * Given a journal_t structure, initialise the various fields for 815 * startup of a new journaling session. We use this both when creating 816 * a journal, and after recovering an old journal to reset it for 817 * subsequent use. 818 */ 819 820 static int journal_reset(journal_t *journal) 821 { 822 journal_superblock_t *sb = journal->j_superblock; 823 unsigned long long first, last; 824 825 first = be32_to_cpu(sb->s_first); 826 last = be32_to_cpu(sb->s_maxlen); 827 828 journal->j_first = first; 829 journal->j_last = last; 830 831 journal->j_head = first; 832 journal->j_tail = first; 833 journal->j_free = last - first; 834 835 journal->j_tail_sequence = journal->j_transaction_sequence; 836 journal->j_commit_sequence = journal->j_transaction_sequence - 1; 837 journal->j_commit_request = journal->j_commit_sequence; 838 839 journal->j_max_transaction_buffers = journal->j_maxlen / 4; 840 841 /* Add the dynamic fields and write it to disk. */ 842 jbd2_journal_update_superblock(journal, 1); 843 jbd2_journal_start_thread(journal); 844 return 0; 845 } 846 847 /** 848 * int jbd2_journal_create() - Initialise the new journal file 849 * @journal: Journal to create. This structure must have been initialised 850 * 851 * Given a journal_t structure which tells us which disk blocks we can 852 * use, create a new journal superblock and initialise all of the 853 * journal fields from scratch. 854 **/ 855 int jbd2_journal_create(journal_t *journal) 856 { 857 unsigned long long blocknr; 858 struct buffer_head *bh; 859 journal_superblock_t *sb; 860 int i, err; 861 862 if (journal->j_maxlen < JBD2_MIN_JOURNAL_BLOCKS) { 863 printk (KERN_ERR "Journal length (%d blocks) too short.\n", 864 journal->j_maxlen); 865 journal_fail_superblock(journal); 866 return -EINVAL; 867 } 868 869 if (journal->j_inode == NULL) { 870 /* 871 * We don't know what block to start at! 872 */ 873 printk(KERN_EMERG 874 "%s: creation of journal on external device!\n", 875 __FUNCTION__); 876 BUG(); 877 } 878 879 /* Zero out the entire journal on disk. We cannot afford to 880 have any blocks on disk beginning with JBD2_MAGIC_NUMBER. */ 881 jbd_debug(1, "JBD: Zeroing out journal blocks...\n"); 882 for (i = 0; i < journal->j_maxlen; i++) { 883 err = jbd2_journal_bmap(journal, i, &blocknr); 884 if (err) 885 return err; 886 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize); 887 lock_buffer(bh); 888 memset (bh->b_data, 0, journal->j_blocksize); 889 BUFFER_TRACE(bh, "marking dirty"); 890 mark_buffer_dirty(bh); 891 BUFFER_TRACE(bh, "marking uptodate"); 892 set_buffer_uptodate(bh); 893 unlock_buffer(bh); 894 __brelse(bh); 895 } 896 897 sync_blockdev(journal->j_dev); 898 jbd_debug(1, "JBD: journal cleared.\n"); 899 900 /* OK, fill in the initial static fields in the new superblock */ 901 sb = journal->j_superblock; 902 903 sb->s_header.h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER); 904 sb->s_header.h_blocktype = cpu_to_be32(JBD2_SUPERBLOCK_V2); 905 906 sb->s_blocksize = cpu_to_be32(journal->j_blocksize); 907 sb->s_maxlen = cpu_to_be32(journal->j_maxlen); 908 sb->s_first = cpu_to_be32(1); 909 910 journal->j_transaction_sequence = 1; 911 912 journal->j_flags &= ~JBD2_ABORT; 913 journal->j_format_version = 2; 914 915 return journal_reset(journal); 916 } 917 918 /** 919 * void jbd2_journal_update_superblock() - Update journal sb on disk. 920 * @journal: The journal to update. 921 * @wait: Set to '0' if you don't want to wait for IO completion. 922 * 923 * Update a journal's dynamic superblock fields and write it to disk, 924 * optionally waiting for the IO to complete. 925 */ 926 void jbd2_journal_update_superblock(journal_t *journal, int wait) 927 { 928 journal_superblock_t *sb = journal->j_superblock; 929 struct buffer_head *bh = journal->j_sb_buffer; 930 931 /* 932 * As a special case, if the on-disk copy is already marked as needing 933 * no recovery (s_start == 0) and there are no outstanding transactions 934 * in the filesystem, then we can safely defer the superblock update 935 * until the next commit by setting JBD2_FLUSHED. This avoids 936 * attempting a write to a potential-readonly device. 937 */ 938 if (sb->s_start == 0 && journal->j_tail_sequence == 939 journal->j_transaction_sequence) { 940 jbd_debug(1,"JBD: Skipping superblock update on recovered sb " 941 "(start %ld, seq %d, errno %d)\n", 942 journal->j_tail, journal->j_tail_sequence, 943 journal->j_errno); 944 goto out; 945 } 946 947 spin_lock(&journal->j_state_lock); 948 jbd_debug(1,"JBD: updating superblock (start %ld, seq %d, errno %d)\n", 949 journal->j_tail, journal->j_tail_sequence, journal->j_errno); 950 951 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence); 952 sb->s_start = cpu_to_be32(journal->j_tail); 953 sb->s_errno = cpu_to_be32(journal->j_errno); 954 spin_unlock(&journal->j_state_lock); 955 956 BUFFER_TRACE(bh, "marking dirty"); 957 mark_buffer_dirty(bh); 958 if (wait) 959 sync_dirty_buffer(bh); 960 else 961 ll_rw_block(SWRITE, 1, &bh); 962 963 out: 964 /* If we have just flushed the log (by marking s_start==0), then 965 * any future commit will have to be careful to update the 966 * superblock again to re-record the true start of the log. */ 967 968 spin_lock(&journal->j_state_lock); 969 if (sb->s_start) 970 journal->j_flags &= ~JBD2_FLUSHED; 971 else 972 journal->j_flags |= JBD2_FLUSHED; 973 spin_unlock(&journal->j_state_lock); 974 } 975 976 /* 977 * Read the superblock for a given journal, performing initial 978 * validation of the format. 979 */ 980 981 static int journal_get_superblock(journal_t *journal) 982 { 983 struct buffer_head *bh; 984 journal_superblock_t *sb; 985 int err = -EIO; 986 987 bh = journal->j_sb_buffer; 988 989 J_ASSERT(bh != NULL); 990 if (!buffer_uptodate(bh)) { 991 ll_rw_block(READ, 1, &bh); 992 wait_on_buffer(bh); 993 if (!buffer_uptodate(bh)) { 994 printk (KERN_ERR 995 "JBD: IO error reading journal superblock\n"); 996 goto out; 997 } 998 } 999 1000 sb = journal->j_superblock; 1001 1002 err = -EINVAL; 1003 1004 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) || 1005 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) { 1006 printk(KERN_WARNING "JBD: no valid journal superblock found\n"); 1007 goto out; 1008 } 1009 1010 switch(be32_to_cpu(sb->s_header.h_blocktype)) { 1011 case JBD2_SUPERBLOCK_V1: 1012 journal->j_format_version = 1; 1013 break; 1014 case JBD2_SUPERBLOCK_V2: 1015 journal->j_format_version = 2; 1016 break; 1017 default: 1018 printk(KERN_WARNING "JBD: unrecognised superblock format ID\n"); 1019 goto out; 1020 } 1021 1022 if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen) 1023 journal->j_maxlen = be32_to_cpu(sb->s_maxlen); 1024 else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) { 1025 printk (KERN_WARNING "JBD: journal file too short\n"); 1026 goto out; 1027 } 1028 1029 return 0; 1030 1031 out: 1032 journal_fail_superblock(journal); 1033 return err; 1034 } 1035 1036 /* 1037 * Load the on-disk journal superblock and read the key fields into the 1038 * journal_t. 1039 */ 1040 1041 static int load_superblock(journal_t *journal) 1042 { 1043 int err; 1044 journal_superblock_t *sb; 1045 1046 err = journal_get_superblock(journal); 1047 if (err) 1048 return err; 1049 1050 sb = journal->j_superblock; 1051 1052 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence); 1053 journal->j_tail = be32_to_cpu(sb->s_start); 1054 journal->j_first = be32_to_cpu(sb->s_first); 1055 journal->j_last = be32_to_cpu(sb->s_maxlen); 1056 journal->j_errno = be32_to_cpu(sb->s_errno); 1057 1058 return 0; 1059 } 1060 1061 1062 /** 1063 * int jbd2_journal_load() - Read journal from disk. 1064 * @journal: Journal to act on. 1065 * 1066 * Given a journal_t structure which tells us which disk blocks contain 1067 * a journal, read the journal from disk to initialise the in-memory 1068 * structures. 1069 */ 1070 int jbd2_journal_load(journal_t *journal) 1071 { 1072 int err; 1073 journal_superblock_t *sb; 1074 1075 err = load_superblock(journal); 1076 if (err) 1077 return err; 1078 1079 sb = journal->j_superblock; 1080 /* If this is a V2 superblock, then we have to check the 1081 * features flags on it. */ 1082 1083 if (journal->j_format_version >= 2) { 1084 if ((sb->s_feature_ro_compat & 1085 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) || 1086 (sb->s_feature_incompat & 1087 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) { 1088 printk (KERN_WARNING 1089 "JBD: Unrecognised features on journal\n"); 1090 return -EINVAL; 1091 } 1092 } 1093 1094 /* 1095 * Create a slab for this blocksize 1096 */ 1097 err = jbd2_journal_create_jbd_slab(be32_to_cpu(sb->s_blocksize)); 1098 if (err) 1099 return err; 1100 1101 /* Let the recovery code check whether it needs to recover any 1102 * data from the journal. */ 1103 if (jbd2_journal_recover(journal)) 1104 goto recovery_error; 1105 1106 /* OK, we've finished with the dynamic journal bits: 1107 * reinitialise the dynamic contents of the superblock in memory 1108 * and reset them on disk. */ 1109 if (journal_reset(journal)) 1110 goto recovery_error; 1111 1112 journal->j_flags &= ~JBD2_ABORT; 1113 journal->j_flags |= JBD2_LOADED; 1114 return 0; 1115 1116 recovery_error: 1117 printk (KERN_WARNING "JBD: recovery failed\n"); 1118 return -EIO; 1119 } 1120 1121 /** 1122 * void jbd2_journal_destroy() - Release a journal_t structure. 1123 * @journal: Journal to act on. 1124 * 1125 * Release a journal_t structure once it is no longer in use by the 1126 * journaled object. 1127 */ 1128 void jbd2_journal_destroy(journal_t *journal) 1129 { 1130 /* Wait for the commit thread to wake up and die. */ 1131 journal_kill_thread(journal); 1132 1133 /* Force a final log commit */ 1134 if (journal->j_running_transaction) 1135 jbd2_journal_commit_transaction(journal); 1136 1137 /* Force any old transactions to disk */ 1138 1139 /* Totally anal locking here... */ 1140 spin_lock(&journal->j_list_lock); 1141 while (journal->j_checkpoint_transactions != NULL) { 1142 spin_unlock(&journal->j_list_lock); 1143 jbd2_log_do_checkpoint(journal); 1144 spin_lock(&journal->j_list_lock); 1145 } 1146 1147 J_ASSERT(journal->j_running_transaction == NULL); 1148 J_ASSERT(journal->j_committing_transaction == NULL); 1149 J_ASSERT(journal->j_checkpoint_transactions == NULL); 1150 spin_unlock(&journal->j_list_lock); 1151 1152 /* We can now mark the journal as empty. */ 1153 journal->j_tail = 0; 1154 journal->j_tail_sequence = ++journal->j_transaction_sequence; 1155 if (journal->j_sb_buffer) { 1156 jbd2_journal_update_superblock(journal, 1); 1157 brelse(journal->j_sb_buffer); 1158 } 1159 1160 if (journal->j_inode) 1161 iput(journal->j_inode); 1162 if (journal->j_revoke) 1163 jbd2_journal_destroy_revoke(journal); 1164 kfree(journal->j_wbuf); 1165 kfree(journal); 1166 } 1167 1168 1169 /** 1170 *int jbd2_journal_check_used_features () - Check if features specified are used. 1171 * @journal: Journal to check. 1172 * @compat: bitmask of compatible features 1173 * @ro: bitmask of features that force read-only mount 1174 * @incompat: bitmask of incompatible features 1175 * 1176 * Check whether the journal uses all of a given set of 1177 * features. Return true (non-zero) if it does. 1178 **/ 1179 1180 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat, 1181 unsigned long ro, unsigned long incompat) 1182 { 1183 journal_superblock_t *sb; 1184 1185 if (!compat && !ro && !incompat) 1186 return 1; 1187 if (journal->j_format_version == 1) 1188 return 0; 1189 1190 sb = journal->j_superblock; 1191 1192 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) && 1193 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) && 1194 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat)) 1195 return 1; 1196 1197 return 0; 1198 } 1199 1200 /** 1201 * int jbd2_journal_check_available_features() - Check feature set in journalling layer 1202 * @journal: Journal to check. 1203 * @compat: bitmask of compatible features 1204 * @ro: bitmask of features that force read-only mount 1205 * @incompat: bitmask of incompatible features 1206 * 1207 * Check whether the journaling code supports the use of 1208 * all of a given set of features on this journal. Return true 1209 * (non-zero) if it can. */ 1210 1211 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat, 1212 unsigned long ro, unsigned long incompat) 1213 { 1214 journal_superblock_t *sb; 1215 1216 if (!compat && !ro && !incompat) 1217 return 1; 1218 1219 sb = journal->j_superblock; 1220 1221 /* We can support any known requested features iff the 1222 * superblock is in version 2. Otherwise we fail to support any 1223 * extended sb features. */ 1224 1225 if (journal->j_format_version != 2) 1226 return 0; 1227 1228 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat && 1229 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro && 1230 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat) 1231 return 1; 1232 1233 return 0; 1234 } 1235 1236 /** 1237 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock 1238 * @journal: Journal to act on. 1239 * @compat: bitmask of compatible features 1240 * @ro: bitmask of features that force read-only mount 1241 * @incompat: bitmask of incompatible features 1242 * 1243 * Mark a given journal feature as present on the 1244 * superblock. Returns true if the requested features could be set. 1245 * 1246 */ 1247 1248 int jbd2_journal_set_features (journal_t *journal, unsigned long compat, 1249 unsigned long ro, unsigned long incompat) 1250 { 1251 journal_superblock_t *sb; 1252 1253 if (jbd2_journal_check_used_features(journal, compat, ro, incompat)) 1254 return 1; 1255 1256 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat)) 1257 return 0; 1258 1259 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n", 1260 compat, ro, incompat); 1261 1262 sb = journal->j_superblock; 1263 1264 sb->s_feature_compat |= cpu_to_be32(compat); 1265 sb->s_feature_ro_compat |= cpu_to_be32(ro); 1266 sb->s_feature_incompat |= cpu_to_be32(incompat); 1267 1268 return 1; 1269 } 1270 1271 1272 /** 1273 * int jbd2_journal_update_format () - Update on-disk journal structure. 1274 * @journal: Journal to act on. 1275 * 1276 * Given an initialised but unloaded journal struct, poke about in the 1277 * on-disk structure to update it to the most recent supported version. 1278 */ 1279 int jbd2_journal_update_format (journal_t *journal) 1280 { 1281 journal_superblock_t *sb; 1282 int err; 1283 1284 err = journal_get_superblock(journal); 1285 if (err) 1286 return err; 1287 1288 sb = journal->j_superblock; 1289 1290 switch (be32_to_cpu(sb->s_header.h_blocktype)) { 1291 case JBD2_SUPERBLOCK_V2: 1292 return 0; 1293 case JBD2_SUPERBLOCK_V1: 1294 return journal_convert_superblock_v1(journal, sb); 1295 default: 1296 break; 1297 } 1298 return -EINVAL; 1299 } 1300 1301 static int journal_convert_superblock_v1(journal_t *journal, 1302 journal_superblock_t *sb) 1303 { 1304 int offset, blocksize; 1305 struct buffer_head *bh; 1306 1307 printk(KERN_WARNING 1308 "JBD: Converting superblock from version 1 to 2.\n"); 1309 1310 /* Pre-initialise new fields to zero */ 1311 offset = ((char *) &(sb->s_feature_compat)) - ((char *) sb); 1312 blocksize = be32_to_cpu(sb->s_blocksize); 1313 memset(&sb->s_feature_compat, 0, blocksize-offset); 1314 1315 sb->s_nr_users = cpu_to_be32(1); 1316 sb->s_header.h_blocktype = cpu_to_be32(JBD2_SUPERBLOCK_V2); 1317 journal->j_format_version = 2; 1318 1319 bh = journal->j_sb_buffer; 1320 BUFFER_TRACE(bh, "marking dirty"); 1321 mark_buffer_dirty(bh); 1322 sync_dirty_buffer(bh); 1323 return 0; 1324 } 1325 1326 1327 /** 1328 * int jbd2_journal_flush () - Flush journal 1329 * @journal: Journal to act on. 1330 * 1331 * Flush all data for a given journal to disk and empty the journal. 1332 * Filesystems can use this when remounting readonly to ensure that 1333 * recovery does not need to happen on remount. 1334 */ 1335 1336 int jbd2_journal_flush(journal_t *journal) 1337 { 1338 int err = 0; 1339 transaction_t *transaction = NULL; 1340 unsigned long old_tail; 1341 1342 spin_lock(&journal->j_state_lock); 1343 1344 /* Force everything buffered to the log... */ 1345 if (journal->j_running_transaction) { 1346 transaction = journal->j_running_transaction; 1347 __jbd2_log_start_commit(journal, transaction->t_tid); 1348 } else if (journal->j_committing_transaction) 1349 transaction = journal->j_committing_transaction; 1350 1351 /* Wait for the log commit to complete... */ 1352 if (transaction) { 1353 tid_t tid = transaction->t_tid; 1354 1355 spin_unlock(&journal->j_state_lock); 1356 jbd2_log_wait_commit(journal, tid); 1357 } else { 1358 spin_unlock(&journal->j_state_lock); 1359 } 1360 1361 /* ...and flush everything in the log out to disk. */ 1362 spin_lock(&journal->j_list_lock); 1363 while (!err && journal->j_checkpoint_transactions != NULL) { 1364 spin_unlock(&journal->j_list_lock); 1365 err = jbd2_log_do_checkpoint(journal); 1366 spin_lock(&journal->j_list_lock); 1367 } 1368 spin_unlock(&journal->j_list_lock); 1369 jbd2_cleanup_journal_tail(journal); 1370 1371 /* Finally, mark the journal as really needing no recovery. 1372 * This sets s_start==0 in the underlying superblock, which is 1373 * the magic code for a fully-recovered superblock. Any future 1374 * commits of data to the journal will restore the current 1375 * s_start value. */ 1376 spin_lock(&journal->j_state_lock); 1377 old_tail = journal->j_tail; 1378 journal->j_tail = 0; 1379 spin_unlock(&journal->j_state_lock); 1380 jbd2_journal_update_superblock(journal, 1); 1381 spin_lock(&journal->j_state_lock); 1382 journal->j_tail = old_tail; 1383 1384 J_ASSERT(!journal->j_running_transaction); 1385 J_ASSERT(!journal->j_committing_transaction); 1386 J_ASSERT(!journal->j_checkpoint_transactions); 1387 J_ASSERT(journal->j_head == journal->j_tail); 1388 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence); 1389 spin_unlock(&journal->j_state_lock); 1390 return err; 1391 } 1392 1393 /** 1394 * int jbd2_journal_wipe() - Wipe journal contents 1395 * @journal: Journal to act on. 1396 * @write: flag (see below) 1397 * 1398 * Wipe out all of the contents of a journal, safely. This will produce 1399 * a warning if the journal contains any valid recovery information. 1400 * Must be called between journal_init_*() and jbd2_journal_load(). 1401 * 1402 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise 1403 * we merely suppress recovery. 1404 */ 1405 1406 int jbd2_journal_wipe(journal_t *journal, int write) 1407 { 1408 journal_superblock_t *sb; 1409 int err = 0; 1410 1411 J_ASSERT (!(journal->j_flags & JBD2_LOADED)); 1412 1413 err = load_superblock(journal); 1414 if (err) 1415 return err; 1416 1417 sb = journal->j_superblock; 1418 1419 if (!journal->j_tail) 1420 goto no_recovery; 1421 1422 printk (KERN_WARNING "JBD: %s recovery information on journal\n", 1423 write ? "Clearing" : "Ignoring"); 1424 1425 err = jbd2_journal_skip_recovery(journal); 1426 if (write) 1427 jbd2_journal_update_superblock(journal, 1); 1428 1429 no_recovery: 1430 return err; 1431 } 1432 1433 /* 1434 * journal_dev_name: format a character string to describe on what 1435 * device this journal is present. 1436 */ 1437 1438 static const char *journal_dev_name(journal_t *journal, char *buffer) 1439 { 1440 struct block_device *bdev; 1441 1442 if (journal->j_inode) 1443 bdev = journal->j_inode->i_sb->s_bdev; 1444 else 1445 bdev = journal->j_dev; 1446 1447 return bdevname(bdev, buffer); 1448 } 1449 1450 /* 1451 * Journal abort has very specific semantics, which we describe 1452 * for journal abort. 1453 * 1454 * Two internal function, which provide abort to te jbd layer 1455 * itself are here. 1456 */ 1457 1458 /* 1459 * Quick version for internal journal use (doesn't lock the journal). 1460 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else, 1461 * and don't attempt to make any other journal updates. 1462 */ 1463 void __jbd2_journal_abort_hard(journal_t *journal) 1464 { 1465 transaction_t *transaction; 1466 char b[BDEVNAME_SIZE]; 1467 1468 if (journal->j_flags & JBD2_ABORT) 1469 return; 1470 1471 printk(KERN_ERR "Aborting journal on device %s.\n", 1472 journal_dev_name(journal, b)); 1473 1474 spin_lock(&journal->j_state_lock); 1475 journal->j_flags |= JBD2_ABORT; 1476 transaction = journal->j_running_transaction; 1477 if (transaction) 1478 __jbd2_log_start_commit(journal, transaction->t_tid); 1479 spin_unlock(&journal->j_state_lock); 1480 } 1481 1482 /* Soft abort: record the abort error status in the journal superblock, 1483 * but don't do any other IO. */ 1484 static void __journal_abort_soft (journal_t *journal, int errno) 1485 { 1486 if (journal->j_flags & JBD2_ABORT) 1487 return; 1488 1489 if (!journal->j_errno) 1490 journal->j_errno = errno; 1491 1492 __jbd2_journal_abort_hard(journal); 1493 1494 if (errno) 1495 jbd2_journal_update_superblock(journal, 1); 1496 } 1497 1498 /** 1499 * void jbd2_journal_abort () - Shutdown the journal immediately. 1500 * @journal: the journal to shutdown. 1501 * @errno: an error number to record in the journal indicating 1502 * the reason for the shutdown. 1503 * 1504 * Perform a complete, immediate shutdown of the ENTIRE 1505 * journal (not of a single transaction). This operation cannot be 1506 * undone without closing and reopening the journal. 1507 * 1508 * The jbd2_journal_abort function is intended to support higher level error 1509 * recovery mechanisms such as the ext2/ext3 remount-readonly error 1510 * mode. 1511 * 1512 * Journal abort has very specific semantics. Any existing dirty, 1513 * unjournaled buffers in the main filesystem will still be written to 1514 * disk by bdflush, but the journaling mechanism will be suspended 1515 * immediately and no further transaction commits will be honoured. 1516 * 1517 * Any dirty, journaled buffers will be written back to disk without 1518 * hitting the journal. Atomicity cannot be guaranteed on an aborted 1519 * filesystem, but we _do_ attempt to leave as much data as possible 1520 * behind for fsck to use for cleanup. 1521 * 1522 * Any attempt to get a new transaction handle on a journal which is in 1523 * ABORT state will just result in an -EROFS error return. A 1524 * jbd2_journal_stop on an existing handle will return -EIO if we have 1525 * entered abort state during the update. 1526 * 1527 * Recursive transactions are not disturbed by journal abort until the 1528 * final jbd2_journal_stop, which will receive the -EIO error. 1529 * 1530 * Finally, the jbd2_journal_abort call allows the caller to supply an errno 1531 * which will be recorded (if possible) in the journal superblock. This 1532 * allows a client to record failure conditions in the middle of a 1533 * transaction without having to complete the transaction to record the 1534 * failure to disk. ext3_error, for example, now uses this 1535 * functionality. 1536 * 1537 * Errors which originate from within the journaling layer will NOT 1538 * supply an errno; a null errno implies that absolutely no further 1539 * writes are done to the journal (unless there are any already in 1540 * progress). 1541 * 1542 */ 1543 1544 void jbd2_journal_abort(journal_t *journal, int errno) 1545 { 1546 __journal_abort_soft(journal, errno); 1547 } 1548 1549 /** 1550 * int jbd2_journal_errno () - returns the journal's error state. 1551 * @journal: journal to examine. 1552 * 1553 * This is the errno numbet set with jbd2_journal_abort(), the last 1554 * time the journal was mounted - if the journal was stopped 1555 * without calling abort this will be 0. 1556 * 1557 * If the journal has been aborted on this mount time -EROFS will 1558 * be returned. 1559 */ 1560 int jbd2_journal_errno(journal_t *journal) 1561 { 1562 int err; 1563 1564 spin_lock(&journal->j_state_lock); 1565 if (journal->j_flags & JBD2_ABORT) 1566 err = -EROFS; 1567 else 1568 err = journal->j_errno; 1569 spin_unlock(&journal->j_state_lock); 1570 return err; 1571 } 1572 1573 /** 1574 * int jbd2_journal_clear_err () - clears the journal's error state 1575 * @journal: journal to act on. 1576 * 1577 * An error must be cleared or Acked to take a FS out of readonly 1578 * mode. 1579 */ 1580 int jbd2_journal_clear_err(journal_t *journal) 1581 { 1582 int err = 0; 1583 1584 spin_lock(&journal->j_state_lock); 1585 if (journal->j_flags & JBD2_ABORT) 1586 err = -EROFS; 1587 else 1588 journal->j_errno = 0; 1589 spin_unlock(&journal->j_state_lock); 1590 return err; 1591 } 1592 1593 /** 1594 * void jbd2_journal_ack_err() - Ack journal err. 1595 * @journal: journal to act on. 1596 * 1597 * An error must be cleared or Acked to take a FS out of readonly 1598 * mode. 1599 */ 1600 void jbd2_journal_ack_err(journal_t *journal) 1601 { 1602 spin_lock(&journal->j_state_lock); 1603 if (journal->j_errno) 1604 journal->j_flags |= JBD2_ACK_ERR; 1605 spin_unlock(&journal->j_state_lock); 1606 } 1607 1608 int jbd2_journal_blocks_per_page(struct inode *inode) 1609 { 1610 return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 1611 } 1612 1613 /* 1614 * helper functions to deal with 32 or 64bit block numbers. 1615 */ 1616 size_t journal_tag_bytes(journal_t *journal) 1617 { 1618 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT)) 1619 return JBD_TAG_SIZE64; 1620 else 1621 return JBD_TAG_SIZE32; 1622 } 1623 1624 /* 1625 * Simple support for retrying memory allocations. Introduced to help to 1626 * debug different VM deadlock avoidance strategies. 1627 */ 1628 void * __jbd2_kmalloc (const char *where, size_t size, gfp_t flags, int retry) 1629 { 1630 return kmalloc(size, flags | (retry ? __GFP_NOFAIL : 0)); 1631 } 1632 1633 /* 1634 * jbd slab management: create 1k, 2k, 4k, 8k slabs as needed 1635 * and allocate frozen and commit buffers from these slabs. 1636 * 1637 * Reason for doing this is to avoid, SLAB_DEBUG - since it could 1638 * cause bh to cross page boundary. 1639 */ 1640 1641 #define JBD_MAX_SLABS 5 1642 #define JBD_SLAB_INDEX(size) (size >> 11) 1643 1644 static struct kmem_cache *jbd_slab[JBD_MAX_SLABS]; 1645 static const char *jbd_slab_names[JBD_MAX_SLABS] = { 1646 "jbd2_1k", "jbd2_2k", "jbd2_4k", NULL, "jbd2_8k" 1647 }; 1648 1649 static void jbd2_journal_destroy_jbd_slabs(void) 1650 { 1651 int i; 1652 1653 for (i = 0; i < JBD_MAX_SLABS; i++) { 1654 if (jbd_slab[i]) 1655 kmem_cache_destroy(jbd_slab[i]); 1656 jbd_slab[i] = NULL; 1657 } 1658 } 1659 1660 static int jbd2_journal_create_jbd_slab(size_t slab_size) 1661 { 1662 int i = JBD_SLAB_INDEX(slab_size); 1663 1664 BUG_ON(i >= JBD_MAX_SLABS); 1665 1666 /* 1667 * Check if we already have a slab created for this size 1668 */ 1669 if (jbd_slab[i]) 1670 return 0; 1671 1672 /* 1673 * Create a slab and force alignment to be same as slabsize - 1674 * this will make sure that allocations won't cross the page 1675 * boundary. 1676 */ 1677 jbd_slab[i] = kmem_cache_create(jbd_slab_names[i], 1678 slab_size, slab_size, 0, NULL, NULL); 1679 if (!jbd_slab[i]) { 1680 printk(KERN_EMERG "JBD: no memory for jbd_slab cache\n"); 1681 return -ENOMEM; 1682 } 1683 return 0; 1684 } 1685 1686 void * jbd2_slab_alloc(size_t size, gfp_t flags) 1687 { 1688 int idx; 1689 1690 idx = JBD_SLAB_INDEX(size); 1691 BUG_ON(jbd_slab[idx] == NULL); 1692 return kmem_cache_alloc(jbd_slab[idx], flags | __GFP_NOFAIL); 1693 } 1694 1695 void jbd2_slab_free(void *ptr, size_t size) 1696 { 1697 int idx; 1698 1699 idx = JBD_SLAB_INDEX(size); 1700 BUG_ON(jbd_slab[idx] == NULL); 1701 kmem_cache_free(jbd_slab[idx], ptr); 1702 } 1703 1704 /* 1705 * Journal_head storage management 1706 */ 1707 static struct kmem_cache *jbd2_journal_head_cache; 1708 #ifdef CONFIG_JBD_DEBUG 1709 static atomic_t nr_journal_heads = ATOMIC_INIT(0); 1710 #endif 1711 1712 static int journal_init_jbd2_journal_head_cache(void) 1713 { 1714 int retval; 1715 1716 J_ASSERT(jbd2_journal_head_cache == 0); 1717 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head", 1718 sizeof(struct journal_head), 1719 0, /* offset */ 1720 0, /* flags */ 1721 NULL, /* ctor */ 1722 NULL); /* dtor */ 1723 retval = 0; 1724 if (jbd2_journal_head_cache == 0) { 1725 retval = -ENOMEM; 1726 printk(KERN_EMERG "JBD: no memory for journal_head cache\n"); 1727 } 1728 return retval; 1729 } 1730 1731 static void jbd2_journal_destroy_jbd2_journal_head_cache(void) 1732 { 1733 J_ASSERT(jbd2_journal_head_cache != NULL); 1734 kmem_cache_destroy(jbd2_journal_head_cache); 1735 jbd2_journal_head_cache = NULL; 1736 } 1737 1738 /* 1739 * journal_head splicing and dicing 1740 */ 1741 static struct journal_head *journal_alloc_journal_head(void) 1742 { 1743 struct journal_head *ret; 1744 static unsigned long last_warning; 1745 1746 #ifdef CONFIG_JBD_DEBUG 1747 atomic_inc(&nr_journal_heads); 1748 #endif 1749 ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS); 1750 if (ret == 0) { 1751 jbd_debug(1, "out of memory for journal_head\n"); 1752 if (time_after(jiffies, last_warning + 5*HZ)) { 1753 printk(KERN_NOTICE "ENOMEM in %s, retrying.\n", 1754 __FUNCTION__); 1755 last_warning = jiffies; 1756 } 1757 while (ret == 0) { 1758 yield(); 1759 ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS); 1760 } 1761 } 1762 return ret; 1763 } 1764 1765 static void journal_free_journal_head(struct journal_head *jh) 1766 { 1767 #ifdef CONFIG_JBD_DEBUG 1768 atomic_dec(&nr_journal_heads); 1769 memset(jh, JBD_POISON_FREE, sizeof(*jh)); 1770 #endif 1771 kmem_cache_free(jbd2_journal_head_cache, jh); 1772 } 1773 1774 /* 1775 * A journal_head is attached to a buffer_head whenever JBD has an 1776 * interest in the buffer. 1777 * 1778 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit 1779 * is set. This bit is tested in core kernel code where we need to take 1780 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable 1781 * there. 1782 * 1783 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one. 1784 * 1785 * When a buffer has its BH_JBD bit set it is immune from being released by 1786 * core kernel code, mainly via ->b_count. 1787 * 1788 * A journal_head may be detached from its buffer_head when the journal_head's 1789 * b_transaction, b_cp_transaction and b_next_transaction pointers are NULL. 1790 * Various places in JBD call jbd2_journal_remove_journal_head() to indicate that the 1791 * journal_head can be dropped if needed. 1792 * 1793 * Various places in the kernel want to attach a journal_head to a buffer_head 1794 * _before_ attaching the journal_head to a transaction. To protect the 1795 * journal_head in this situation, jbd2_journal_add_journal_head elevates the 1796 * journal_head's b_jcount refcount by one. The caller must call 1797 * jbd2_journal_put_journal_head() to undo this. 1798 * 1799 * So the typical usage would be: 1800 * 1801 * (Attach a journal_head if needed. Increments b_jcount) 1802 * struct journal_head *jh = jbd2_journal_add_journal_head(bh); 1803 * ... 1804 * jh->b_transaction = xxx; 1805 * jbd2_journal_put_journal_head(jh); 1806 * 1807 * Now, the journal_head's b_jcount is zero, but it is safe from being released 1808 * because it has a non-zero b_transaction. 1809 */ 1810 1811 /* 1812 * Give a buffer_head a journal_head. 1813 * 1814 * Doesn't need the journal lock. 1815 * May sleep. 1816 */ 1817 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh) 1818 { 1819 struct journal_head *jh; 1820 struct journal_head *new_jh = NULL; 1821 1822 repeat: 1823 if (!buffer_jbd(bh)) { 1824 new_jh = journal_alloc_journal_head(); 1825 memset(new_jh, 0, sizeof(*new_jh)); 1826 } 1827 1828 jbd_lock_bh_journal_head(bh); 1829 if (buffer_jbd(bh)) { 1830 jh = bh2jh(bh); 1831 } else { 1832 J_ASSERT_BH(bh, 1833 (atomic_read(&bh->b_count) > 0) || 1834 (bh->b_page && bh->b_page->mapping)); 1835 1836 if (!new_jh) { 1837 jbd_unlock_bh_journal_head(bh); 1838 goto repeat; 1839 } 1840 1841 jh = new_jh; 1842 new_jh = NULL; /* We consumed it */ 1843 set_buffer_jbd(bh); 1844 bh->b_private = jh; 1845 jh->b_bh = bh; 1846 get_bh(bh); 1847 BUFFER_TRACE(bh, "added journal_head"); 1848 } 1849 jh->b_jcount++; 1850 jbd_unlock_bh_journal_head(bh); 1851 if (new_jh) 1852 journal_free_journal_head(new_jh); 1853 return bh->b_private; 1854 } 1855 1856 /* 1857 * Grab a ref against this buffer_head's journal_head. If it ended up not 1858 * having a journal_head, return NULL 1859 */ 1860 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh) 1861 { 1862 struct journal_head *jh = NULL; 1863 1864 jbd_lock_bh_journal_head(bh); 1865 if (buffer_jbd(bh)) { 1866 jh = bh2jh(bh); 1867 jh->b_jcount++; 1868 } 1869 jbd_unlock_bh_journal_head(bh); 1870 return jh; 1871 } 1872 1873 static void __journal_remove_journal_head(struct buffer_head *bh) 1874 { 1875 struct journal_head *jh = bh2jh(bh); 1876 1877 J_ASSERT_JH(jh, jh->b_jcount >= 0); 1878 1879 get_bh(bh); 1880 if (jh->b_jcount == 0) { 1881 if (jh->b_transaction == NULL && 1882 jh->b_next_transaction == NULL && 1883 jh->b_cp_transaction == NULL) { 1884 J_ASSERT_JH(jh, jh->b_jlist == BJ_None); 1885 J_ASSERT_BH(bh, buffer_jbd(bh)); 1886 J_ASSERT_BH(bh, jh2bh(jh) == bh); 1887 BUFFER_TRACE(bh, "remove journal_head"); 1888 if (jh->b_frozen_data) { 1889 printk(KERN_WARNING "%s: freeing " 1890 "b_frozen_data\n", 1891 __FUNCTION__); 1892 jbd2_slab_free(jh->b_frozen_data, bh->b_size); 1893 } 1894 if (jh->b_committed_data) { 1895 printk(KERN_WARNING "%s: freeing " 1896 "b_committed_data\n", 1897 __FUNCTION__); 1898 jbd2_slab_free(jh->b_committed_data, bh->b_size); 1899 } 1900 bh->b_private = NULL; 1901 jh->b_bh = NULL; /* debug, really */ 1902 clear_buffer_jbd(bh); 1903 __brelse(bh); 1904 journal_free_journal_head(jh); 1905 } else { 1906 BUFFER_TRACE(bh, "journal_head was locked"); 1907 } 1908 } 1909 } 1910 1911 /* 1912 * jbd2_journal_remove_journal_head(): if the buffer isn't attached to a transaction 1913 * and has a zero b_jcount then remove and release its journal_head. If we did 1914 * see that the buffer is not used by any transaction we also "logically" 1915 * decrement ->b_count. 1916 * 1917 * We in fact take an additional increment on ->b_count as a convenience, 1918 * because the caller usually wants to do additional things with the bh 1919 * after calling here. 1920 * The caller of jbd2_journal_remove_journal_head() *must* run __brelse(bh) at some 1921 * time. Once the caller has run __brelse(), the buffer is eligible for 1922 * reaping by try_to_free_buffers(). 1923 */ 1924 void jbd2_journal_remove_journal_head(struct buffer_head *bh) 1925 { 1926 jbd_lock_bh_journal_head(bh); 1927 __journal_remove_journal_head(bh); 1928 jbd_unlock_bh_journal_head(bh); 1929 } 1930 1931 /* 1932 * Drop a reference on the passed journal_head. If it fell to zero then try to 1933 * release the journal_head from the buffer_head. 1934 */ 1935 void jbd2_journal_put_journal_head(struct journal_head *jh) 1936 { 1937 struct buffer_head *bh = jh2bh(jh); 1938 1939 jbd_lock_bh_journal_head(bh); 1940 J_ASSERT_JH(jh, jh->b_jcount > 0); 1941 --jh->b_jcount; 1942 if (!jh->b_jcount && !jh->b_transaction) { 1943 __journal_remove_journal_head(bh); 1944 __brelse(bh); 1945 } 1946 jbd_unlock_bh_journal_head(bh); 1947 } 1948 1949 /* 1950 * /proc tunables 1951 */ 1952 #if defined(CONFIG_JBD_DEBUG) 1953 int jbd2_journal_enable_debug; 1954 EXPORT_SYMBOL(jbd2_journal_enable_debug); 1955 #endif 1956 1957 #if defined(CONFIG_JBD_DEBUG) && defined(CONFIG_PROC_FS) 1958 1959 static struct proc_dir_entry *proc_jbd_debug; 1960 1961 static int read_jbd_debug(char *page, char **start, off_t off, 1962 int count, int *eof, void *data) 1963 { 1964 int ret; 1965 1966 ret = sprintf(page + off, "%d\n", jbd2_journal_enable_debug); 1967 *eof = 1; 1968 return ret; 1969 } 1970 1971 static int write_jbd_debug(struct file *file, const char __user *buffer, 1972 unsigned long count, void *data) 1973 { 1974 char buf[32]; 1975 1976 if (count > ARRAY_SIZE(buf) - 1) 1977 count = ARRAY_SIZE(buf) - 1; 1978 if (copy_from_user(buf, buffer, count)) 1979 return -EFAULT; 1980 buf[ARRAY_SIZE(buf) - 1] = '\0'; 1981 jbd2_journal_enable_debug = simple_strtoul(buf, NULL, 10); 1982 return count; 1983 } 1984 1985 #define JBD_PROC_NAME "sys/fs/jbd2-debug" 1986 1987 static void __init create_jbd_proc_entry(void) 1988 { 1989 proc_jbd_debug = create_proc_entry(JBD_PROC_NAME, 0644, NULL); 1990 if (proc_jbd_debug) { 1991 /* Why is this so hard? */ 1992 proc_jbd_debug->read_proc = read_jbd_debug; 1993 proc_jbd_debug->write_proc = write_jbd_debug; 1994 } 1995 } 1996 1997 static void __exit jbd2_remove_jbd_proc_entry(void) 1998 { 1999 if (proc_jbd_debug) 2000 remove_proc_entry(JBD_PROC_NAME, NULL); 2001 } 2002 2003 #else 2004 2005 #define create_jbd_proc_entry() do {} while (0) 2006 #define jbd2_remove_jbd_proc_entry() do {} while (0) 2007 2008 #endif 2009 2010 struct kmem_cache *jbd2_handle_cache; 2011 2012 static int __init journal_init_handle_cache(void) 2013 { 2014 jbd2_handle_cache = kmem_cache_create("jbd2_journal_handle", 2015 sizeof(handle_t), 2016 0, /* offset */ 2017 0, /* flags */ 2018 NULL, /* ctor */ 2019 NULL); /* dtor */ 2020 if (jbd2_handle_cache == NULL) { 2021 printk(KERN_EMERG "JBD: failed to create handle cache\n"); 2022 return -ENOMEM; 2023 } 2024 return 0; 2025 } 2026 2027 static void jbd2_journal_destroy_handle_cache(void) 2028 { 2029 if (jbd2_handle_cache) 2030 kmem_cache_destroy(jbd2_handle_cache); 2031 } 2032 2033 /* 2034 * Module startup and shutdown 2035 */ 2036 2037 static int __init journal_init_caches(void) 2038 { 2039 int ret; 2040 2041 ret = jbd2_journal_init_revoke_caches(); 2042 if (ret == 0) 2043 ret = journal_init_jbd2_journal_head_cache(); 2044 if (ret == 0) 2045 ret = journal_init_handle_cache(); 2046 return ret; 2047 } 2048 2049 static void jbd2_journal_destroy_caches(void) 2050 { 2051 jbd2_journal_destroy_revoke_caches(); 2052 jbd2_journal_destroy_jbd2_journal_head_cache(); 2053 jbd2_journal_destroy_handle_cache(); 2054 jbd2_journal_destroy_jbd_slabs(); 2055 } 2056 2057 static int __init journal_init(void) 2058 { 2059 int ret; 2060 2061 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024); 2062 2063 ret = journal_init_caches(); 2064 if (ret != 0) 2065 jbd2_journal_destroy_caches(); 2066 create_jbd_proc_entry(); 2067 return ret; 2068 } 2069 2070 static void __exit journal_exit(void) 2071 { 2072 #ifdef CONFIG_JBD_DEBUG 2073 int n = atomic_read(&nr_journal_heads); 2074 if (n) 2075 printk(KERN_EMERG "JBD: leaked %d journal_heads!\n", n); 2076 #endif 2077 jbd2_remove_jbd_proc_entry(); 2078 jbd2_journal_destroy_caches(); 2079 } 2080 2081 MODULE_LICENSE("GPL"); 2082 module_init(journal_init); 2083 module_exit(journal_exit); 2084 2085