xref: /linux/fs/jbd2/journal.c (revision c537b994505099b7197e7d3125b942ecbcc51eb6)
1 /*
2  * linux/fs/jbd2/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24 
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/smp_lock.h>
32 #include <linux/init.h>
33 #include <linux/mm.h>
34 #include <linux/freezer.h>
35 #include <linux/pagemap.h>
36 #include <linux/kthread.h>
37 #include <linux/poison.h>
38 #include <linux/proc_fs.h>
39 
40 #include <asm/uaccess.h>
41 #include <asm/page.h>
42 
43 EXPORT_SYMBOL(jbd2_journal_start);
44 EXPORT_SYMBOL(jbd2_journal_restart);
45 EXPORT_SYMBOL(jbd2_journal_extend);
46 EXPORT_SYMBOL(jbd2_journal_stop);
47 EXPORT_SYMBOL(jbd2_journal_lock_updates);
48 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
49 EXPORT_SYMBOL(jbd2_journal_get_write_access);
50 EXPORT_SYMBOL(jbd2_journal_get_create_access);
51 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
52 EXPORT_SYMBOL(jbd2_journal_dirty_data);
53 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
54 EXPORT_SYMBOL(jbd2_journal_release_buffer);
55 EXPORT_SYMBOL(jbd2_journal_forget);
56 #if 0
57 EXPORT_SYMBOL(journal_sync_buffer);
58 #endif
59 EXPORT_SYMBOL(jbd2_journal_flush);
60 EXPORT_SYMBOL(jbd2_journal_revoke);
61 
62 EXPORT_SYMBOL(jbd2_journal_init_dev);
63 EXPORT_SYMBOL(jbd2_journal_init_inode);
64 EXPORT_SYMBOL(jbd2_journal_update_format);
65 EXPORT_SYMBOL(jbd2_journal_check_used_features);
66 EXPORT_SYMBOL(jbd2_journal_check_available_features);
67 EXPORT_SYMBOL(jbd2_journal_set_features);
68 EXPORT_SYMBOL(jbd2_journal_create);
69 EXPORT_SYMBOL(jbd2_journal_load);
70 EXPORT_SYMBOL(jbd2_journal_destroy);
71 EXPORT_SYMBOL(jbd2_journal_update_superblock);
72 EXPORT_SYMBOL(jbd2_journal_abort);
73 EXPORT_SYMBOL(jbd2_journal_errno);
74 EXPORT_SYMBOL(jbd2_journal_ack_err);
75 EXPORT_SYMBOL(jbd2_journal_clear_err);
76 EXPORT_SYMBOL(jbd2_log_wait_commit);
77 EXPORT_SYMBOL(jbd2_journal_start_commit);
78 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
79 EXPORT_SYMBOL(jbd2_journal_wipe);
80 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
81 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
82 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
83 EXPORT_SYMBOL(jbd2_journal_force_commit);
84 
85 static int journal_convert_superblock_v1(journal_t *, journal_superblock_t *);
86 static void __journal_abort_soft (journal_t *journal, int errno);
87 static int jbd2_journal_create_jbd_slab(size_t slab_size);
88 
89 /*
90  * Helper function used to manage commit timeouts
91  */
92 
93 static void commit_timeout(unsigned long __data)
94 {
95 	struct task_struct * p = (struct task_struct *) __data;
96 
97 	wake_up_process(p);
98 }
99 
100 /*
101  * kjournald2: The main thread function used to manage a logging device
102  * journal.
103  *
104  * This kernel thread is responsible for two things:
105  *
106  * 1) COMMIT:  Every so often we need to commit the current state of the
107  *    filesystem to disk.  The journal thread is responsible for writing
108  *    all of the metadata buffers to disk.
109  *
110  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
111  *    of the data in that part of the log has been rewritten elsewhere on
112  *    the disk.  Flushing these old buffers to reclaim space in the log is
113  *    known as checkpointing, and this thread is responsible for that job.
114  */
115 
116 static int kjournald2(void *arg)
117 {
118 	journal_t *journal = arg;
119 	transaction_t *transaction;
120 
121 	/*
122 	 * Set up an interval timer which can be used to trigger a commit wakeup
123 	 * after the commit interval expires
124 	 */
125 	setup_timer(&journal->j_commit_timer, commit_timeout,
126 			(unsigned long)current);
127 
128 	/* Record that the journal thread is running */
129 	journal->j_task = current;
130 	wake_up(&journal->j_wait_done_commit);
131 
132 	printk(KERN_INFO "kjournald2 starting.  Commit interval %ld seconds\n",
133 			journal->j_commit_interval / HZ);
134 
135 	/*
136 	 * And now, wait forever for commit wakeup events.
137 	 */
138 	spin_lock(&journal->j_state_lock);
139 
140 loop:
141 	if (journal->j_flags & JBD2_UNMOUNT)
142 		goto end_loop;
143 
144 	jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
145 		journal->j_commit_sequence, journal->j_commit_request);
146 
147 	if (journal->j_commit_sequence != journal->j_commit_request) {
148 		jbd_debug(1, "OK, requests differ\n");
149 		spin_unlock(&journal->j_state_lock);
150 		del_timer_sync(&journal->j_commit_timer);
151 		jbd2_journal_commit_transaction(journal);
152 		spin_lock(&journal->j_state_lock);
153 		goto loop;
154 	}
155 
156 	wake_up(&journal->j_wait_done_commit);
157 	if (freezing(current)) {
158 		/*
159 		 * The simpler the better. Flushing journal isn't a
160 		 * good idea, because that depends on threads that may
161 		 * be already stopped.
162 		 */
163 		jbd_debug(1, "Now suspending kjournald2\n");
164 		spin_unlock(&journal->j_state_lock);
165 		refrigerator();
166 		spin_lock(&journal->j_state_lock);
167 	} else {
168 		/*
169 		 * We assume on resume that commits are already there,
170 		 * so we don't sleep
171 		 */
172 		DEFINE_WAIT(wait);
173 		int should_sleep = 1;
174 
175 		prepare_to_wait(&journal->j_wait_commit, &wait,
176 				TASK_INTERRUPTIBLE);
177 		if (journal->j_commit_sequence != journal->j_commit_request)
178 			should_sleep = 0;
179 		transaction = journal->j_running_transaction;
180 		if (transaction && time_after_eq(jiffies,
181 						transaction->t_expires))
182 			should_sleep = 0;
183 		if (journal->j_flags & JBD2_UNMOUNT)
184 			should_sleep = 0;
185 		if (should_sleep) {
186 			spin_unlock(&journal->j_state_lock);
187 			schedule();
188 			spin_lock(&journal->j_state_lock);
189 		}
190 		finish_wait(&journal->j_wait_commit, &wait);
191 	}
192 
193 	jbd_debug(1, "kjournald2 wakes\n");
194 
195 	/*
196 	 * Were we woken up by a commit wakeup event?
197 	 */
198 	transaction = journal->j_running_transaction;
199 	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
200 		journal->j_commit_request = transaction->t_tid;
201 		jbd_debug(1, "woke because of timeout\n");
202 	}
203 	goto loop;
204 
205 end_loop:
206 	spin_unlock(&journal->j_state_lock);
207 	del_timer_sync(&journal->j_commit_timer);
208 	journal->j_task = NULL;
209 	wake_up(&journal->j_wait_done_commit);
210 	jbd_debug(1, "Journal thread exiting.\n");
211 	return 0;
212 }
213 
214 static void jbd2_journal_start_thread(journal_t *journal)
215 {
216 	kthread_run(kjournald2, journal, "kjournald2");
217 	wait_event(journal->j_wait_done_commit, journal->j_task != 0);
218 }
219 
220 static void journal_kill_thread(journal_t *journal)
221 {
222 	spin_lock(&journal->j_state_lock);
223 	journal->j_flags |= JBD2_UNMOUNT;
224 
225 	while (journal->j_task) {
226 		wake_up(&journal->j_wait_commit);
227 		spin_unlock(&journal->j_state_lock);
228 		wait_event(journal->j_wait_done_commit, journal->j_task == 0);
229 		spin_lock(&journal->j_state_lock);
230 	}
231 	spin_unlock(&journal->j_state_lock);
232 }
233 
234 /*
235  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
236  *
237  * Writes a metadata buffer to a given disk block.  The actual IO is not
238  * performed but a new buffer_head is constructed which labels the data
239  * to be written with the correct destination disk block.
240  *
241  * Any magic-number escaping which needs to be done will cause a
242  * copy-out here.  If the buffer happens to start with the
243  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
244  * magic number is only written to the log for descripter blocks.  In
245  * this case, we copy the data and replace the first word with 0, and we
246  * return a result code which indicates that this buffer needs to be
247  * marked as an escaped buffer in the corresponding log descriptor
248  * block.  The missing word can then be restored when the block is read
249  * during recovery.
250  *
251  * If the source buffer has already been modified by a new transaction
252  * since we took the last commit snapshot, we use the frozen copy of
253  * that data for IO.  If we end up using the existing buffer_head's data
254  * for the write, then we *have* to lock the buffer to prevent anyone
255  * else from using and possibly modifying it while the IO is in
256  * progress.
257  *
258  * The function returns a pointer to the buffer_heads to be used for IO.
259  *
260  * We assume that the journal has already been locked in this function.
261  *
262  * Return value:
263  *  <0: Error
264  * >=0: Finished OK
265  *
266  * On success:
267  * Bit 0 set == escape performed on the data
268  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
269  */
270 
271 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
272 				  struct journal_head  *jh_in,
273 				  struct journal_head **jh_out,
274 				  unsigned long long blocknr)
275 {
276 	int need_copy_out = 0;
277 	int done_copy_out = 0;
278 	int do_escape = 0;
279 	char *mapped_data;
280 	struct buffer_head *new_bh;
281 	struct journal_head *new_jh;
282 	struct page *new_page;
283 	unsigned int new_offset;
284 	struct buffer_head *bh_in = jh2bh(jh_in);
285 
286 	/*
287 	 * The buffer really shouldn't be locked: only the current committing
288 	 * transaction is allowed to write it, so nobody else is allowed
289 	 * to do any IO.
290 	 *
291 	 * akpm: except if we're journalling data, and write() output is
292 	 * also part of a shared mapping, and another thread has
293 	 * decided to launch a writepage() against this buffer.
294 	 */
295 	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
296 
297 	new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
298 
299 	/*
300 	 * If a new transaction has already done a buffer copy-out, then
301 	 * we use that version of the data for the commit.
302 	 */
303 	jbd_lock_bh_state(bh_in);
304 repeat:
305 	if (jh_in->b_frozen_data) {
306 		done_copy_out = 1;
307 		new_page = virt_to_page(jh_in->b_frozen_data);
308 		new_offset = offset_in_page(jh_in->b_frozen_data);
309 	} else {
310 		new_page = jh2bh(jh_in)->b_page;
311 		new_offset = offset_in_page(jh2bh(jh_in)->b_data);
312 	}
313 
314 	mapped_data = kmap_atomic(new_page, KM_USER0);
315 	/*
316 	 * Check for escaping
317 	 */
318 	if (*((__be32 *)(mapped_data + new_offset)) ==
319 				cpu_to_be32(JBD2_MAGIC_NUMBER)) {
320 		need_copy_out = 1;
321 		do_escape = 1;
322 	}
323 	kunmap_atomic(mapped_data, KM_USER0);
324 
325 	/*
326 	 * Do we need to do a data copy?
327 	 */
328 	if (need_copy_out && !done_copy_out) {
329 		char *tmp;
330 
331 		jbd_unlock_bh_state(bh_in);
332 		tmp = jbd2_slab_alloc(bh_in->b_size, GFP_NOFS);
333 		jbd_lock_bh_state(bh_in);
334 		if (jh_in->b_frozen_data) {
335 			jbd2_slab_free(tmp, bh_in->b_size);
336 			goto repeat;
337 		}
338 
339 		jh_in->b_frozen_data = tmp;
340 		mapped_data = kmap_atomic(new_page, KM_USER0);
341 		memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
342 		kunmap_atomic(mapped_data, KM_USER0);
343 
344 		new_page = virt_to_page(tmp);
345 		new_offset = offset_in_page(tmp);
346 		done_copy_out = 1;
347 	}
348 
349 	/*
350 	 * Did we need to do an escaping?  Now we've done all the
351 	 * copying, we can finally do so.
352 	 */
353 	if (do_escape) {
354 		mapped_data = kmap_atomic(new_page, KM_USER0);
355 		*((unsigned int *)(mapped_data + new_offset)) = 0;
356 		kunmap_atomic(mapped_data, KM_USER0);
357 	}
358 
359 	/* keep subsequent assertions sane */
360 	new_bh->b_state = 0;
361 	init_buffer(new_bh, NULL, NULL);
362 	atomic_set(&new_bh->b_count, 1);
363 	jbd_unlock_bh_state(bh_in);
364 
365 	new_jh = jbd2_journal_add_journal_head(new_bh);	/* This sleeps */
366 
367 	set_bh_page(new_bh, new_page, new_offset);
368 	new_jh->b_transaction = NULL;
369 	new_bh->b_size = jh2bh(jh_in)->b_size;
370 	new_bh->b_bdev = transaction->t_journal->j_dev;
371 	new_bh->b_blocknr = blocknr;
372 	set_buffer_mapped(new_bh);
373 	set_buffer_dirty(new_bh);
374 
375 	*jh_out = new_jh;
376 
377 	/*
378 	 * The to-be-written buffer needs to get moved to the io queue,
379 	 * and the original buffer whose contents we are shadowing or
380 	 * copying is moved to the transaction's shadow queue.
381 	 */
382 	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
383 	jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
384 	JBUFFER_TRACE(new_jh, "file as BJ_IO");
385 	jbd2_journal_file_buffer(new_jh, transaction, BJ_IO);
386 
387 	return do_escape | (done_copy_out << 1);
388 }
389 
390 /*
391  * Allocation code for the journal file.  Manage the space left in the
392  * journal, so that we can begin checkpointing when appropriate.
393  */
394 
395 /*
396  * __jbd2_log_space_left: Return the number of free blocks left in the journal.
397  *
398  * Called with the journal already locked.
399  *
400  * Called under j_state_lock
401  */
402 
403 int __jbd2_log_space_left(journal_t *journal)
404 {
405 	int left = journal->j_free;
406 
407 	assert_spin_locked(&journal->j_state_lock);
408 
409 	/*
410 	 * Be pessimistic here about the number of those free blocks which
411 	 * might be required for log descriptor control blocks.
412 	 */
413 
414 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
415 
416 	left -= MIN_LOG_RESERVED_BLOCKS;
417 
418 	if (left <= 0)
419 		return 0;
420 	left -= (left >> 3);
421 	return left;
422 }
423 
424 /*
425  * Called under j_state_lock.  Returns true if a transaction was started.
426  */
427 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
428 {
429 	/*
430 	 * Are we already doing a recent enough commit?
431 	 */
432 	if (!tid_geq(journal->j_commit_request, target)) {
433 		/*
434 		 * We want a new commit: OK, mark the request and wakup the
435 		 * commit thread.  We do _not_ do the commit ourselves.
436 		 */
437 
438 		journal->j_commit_request = target;
439 		jbd_debug(1, "JBD: requesting commit %d/%d\n",
440 			  journal->j_commit_request,
441 			  journal->j_commit_sequence);
442 		wake_up(&journal->j_wait_commit);
443 		return 1;
444 	}
445 	return 0;
446 }
447 
448 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
449 {
450 	int ret;
451 
452 	spin_lock(&journal->j_state_lock);
453 	ret = __jbd2_log_start_commit(journal, tid);
454 	spin_unlock(&journal->j_state_lock);
455 	return ret;
456 }
457 
458 /*
459  * Force and wait upon a commit if the calling process is not within
460  * transaction.  This is used for forcing out undo-protected data which contains
461  * bitmaps, when the fs is running out of space.
462  *
463  * We can only force the running transaction if we don't have an active handle;
464  * otherwise, we will deadlock.
465  *
466  * Returns true if a transaction was started.
467  */
468 int jbd2_journal_force_commit_nested(journal_t *journal)
469 {
470 	transaction_t *transaction = NULL;
471 	tid_t tid;
472 
473 	spin_lock(&journal->j_state_lock);
474 	if (journal->j_running_transaction && !current->journal_info) {
475 		transaction = journal->j_running_transaction;
476 		__jbd2_log_start_commit(journal, transaction->t_tid);
477 	} else if (journal->j_committing_transaction)
478 		transaction = journal->j_committing_transaction;
479 
480 	if (!transaction) {
481 		spin_unlock(&journal->j_state_lock);
482 		return 0;	/* Nothing to retry */
483 	}
484 
485 	tid = transaction->t_tid;
486 	spin_unlock(&journal->j_state_lock);
487 	jbd2_log_wait_commit(journal, tid);
488 	return 1;
489 }
490 
491 /*
492  * Start a commit of the current running transaction (if any).  Returns true
493  * if a transaction was started, and fills its tid in at *ptid
494  */
495 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
496 {
497 	int ret = 0;
498 
499 	spin_lock(&journal->j_state_lock);
500 	if (journal->j_running_transaction) {
501 		tid_t tid = journal->j_running_transaction->t_tid;
502 
503 		ret = __jbd2_log_start_commit(journal, tid);
504 		if (ret && ptid)
505 			*ptid = tid;
506 	} else if (journal->j_committing_transaction && ptid) {
507 		/*
508 		 * If ext3_write_super() recently started a commit, then we
509 		 * have to wait for completion of that transaction
510 		 */
511 		*ptid = journal->j_committing_transaction->t_tid;
512 		ret = 1;
513 	}
514 	spin_unlock(&journal->j_state_lock);
515 	return ret;
516 }
517 
518 /*
519  * Wait for a specified commit to complete.
520  * The caller may not hold the journal lock.
521  */
522 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
523 {
524 	int err = 0;
525 
526 #ifdef CONFIG_JBD_DEBUG
527 	spin_lock(&journal->j_state_lock);
528 	if (!tid_geq(journal->j_commit_request, tid)) {
529 		printk(KERN_EMERG
530 		       "%s: error: j_commit_request=%d, tid=%d\n",
531 		       __FUNCTION__, journal->j_commit_request, tid);
532 	}
533 	spin_unlock(&journal->j_state_lock);
534 #endif
535 	spin_lock(&journal->j_state_lock);
536 	while (tid_gt(tid, journal->j_commit_sequence)) {
537 		jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n",
538 				  tid, journal->j_commit_sequence);
539 		wake_up(&journal->j_wait_commit);
540 		spin_unlock(&journal->j_state_lock);
541 		wait_event(journal->j_wait_done_commit,
542 				!tid_gt(tid, journal->j_commit_sequence));
543 		spin_lock(&journal->j_state_lock);
544 	}
545 	spin_unlock(&journal->j_state_lock);
546 
547 	if (unlikely(is_journal_aborted(journal))) {
548 		printk(KERN_EMERG "journal commit I/O error\n");
549 		err = -EIO;
550 	}
551 	return err;
552 }
553 
554 /*
555  * Log buffer allocation routines:
556  */
557 
558 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
559 {
560 	unsigned long blocknr;
561 
562 	spin_lock(&journal->j_state_lock);
563 	J_ASSERT(journal->j_free > 1);
564 
565 	blocknr = journal->j_head;
566 	journal->j_head++;
567 	journal->j_free--;
568 	if (journal->j_head == journal->j_last)
569 		journal->j_head = journal->j_first;
570 	spin_unlock(&journal->j_state_lock);
571 	return jbd2_journal_bmap(journal, blocknr, retp);
572 }
573 
574 /*
575  * Conversion of logical to physical block numbers for the journal
576  *
577  * On external journals the journal blocks are identity-mapped, so
578  * this is a no-op.  If needed, we can use j_blk_offset - everything is
579  * ready.
580  */
581 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
582 		 unsigned long long *retp)
583 {
584 	int err = 0;
585 	unsigned long long ret;
586 
587 	if (journal->j_inode) {
588 		ret = bmap(journal->j_inode, blocknr);
589 		if (ret)
590 			*retp = ret;
591 		else {
592 			char b[BDEVNAME_SIZE];
593 
594 			printk(KERN_ALERT "%s: journal block not found "
595 					"at offset %lu on %s\n",
596 				__FUNCTION__,
597 				blocknr,
598 				bdevname(journal->j_dev, b));
599 			err = -EIO;
600 			__journal_abort_soft(journal, err);
601 		}
602 	} else {
603 		*retp = blocknr; /* +journal->j_blk_offset */
604 	}
605 	return err;
606 }
607 
608 /*
609  * We play buffer_head aliasing tricks to write data/metadata blocks to
610  * the journal without copying their contents, but for journal
611  * descriptor blocks we do need to generate bona fide buffers.
612  *
613  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
614  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
615  * But we don't bother doing that, so there will be coherency problems with
616  * mmaps of blockdevs which hold live JBD-controlled filesystems.
617  */
618 struct journal_head *jbd2_journal_get_descriptor_buffer(journal_t *journal)
619 {
620 	struct buffer_head *bh;
621 	unsigned long long blocknr;
622 	int err;
623 
624 	err = jbd2_journal_next_log_block(journal, &blocknr);
625 
626 	if (err)
627 		return NULL;
628 
629 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
630 	lock_buffer(bh);
631 	memset(bh->b_data, 0, journal->j_blocksize);
632 	set_buffer_uptodate(bh);
633 	unlock_buffer(bh);
634 	BUFFER_TRACE(bh, "return this buffer");
635 	return jbd2_journal_add_journal_head(bh);
636 }
637 
638 /*
639  * Management for journal control blocks: functions to create and
640  * destroy journal_t structures, and to initialise and read existing
641  * journal blocks from disk.  */
642 
643 /* First: create and setup a journal_t object in memory.  We initialise
644  * very few fields yet: that has to wait until we have created the
645  * journal structures from from scratch, or loaded them from disk. */
646 
647 static journal_t * journal_init_common (void)
648 {
649 	journal_t *journal;
650 	int err;
651 
652 	journal = jbd_kmalloc(sizeof(*journal), GFP_KERNEL);
653 	if (!journal)
654 		goto fail;
655 	memset(journal, 0, sizeof(*journal));
656 
657 	init_waitqueue_head(&journal->j_wait_transaction_locked);
658 	init_waitqueue_head(&journal->j_wait_logspace);
659 	init_waitqueue_head(&journal->j_wait_done_commit);
660 	init_waitqueue_head(&journal->j_wait_checkpoint);
661 	init_waitqueue_head(&journal->j_wait_commit);
662 	init_waitqueue_head(&journal->j_wait_updates);
663 	mutex_init(&journal->j_barrier);
664 	mutex_init(&journal->j_checkpoint_mutex);
665 	spin_lock_init(&journal->j_revoke_lock);
666 	spin_lock_init(&journal->j_list_lock);
667 	spin_lock_init(&journal->j_state_lock);
668 
669 	journal->j_commit_interval = (HZ * JBD_DEFAULT_MAX_COMMIT_AGE);
670 
671 	/* The journal is marked for error until we succeed with recovery! */
672 	journal->j_flags = JBD2_ABORT;
673 
674 	/* Set up a default-sized revoke table for the new mount. */
675 	err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
676 	if (err) {
677 		kfree(journal);
678 		goto fail;
679 	}
680 	return journal;
681 fail:
682 	return NULL;
683 }
684 
685 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
686  *
687  * Create a journal structure assigned some fixed set of disk blocks to
688  * the journal.  We don't actually touch those disk blocks yet, but we
689  * need to set up all of the mapping information to tell the journaling
690  * system where the journal blocks are.
691  *
692  */
693 
694 /**
695  *  journal_t * jbd2_journal_init_dev() - creates an initialises a journal structure
696  *  @bdev: Block device on which to create the journal
697  *  @fs_dev: Device which hold journalled filesystem for this journal.
698  *  @start: Block nr Start of journal.
699  *  @len:  Length of the journal in blocks.
700  *  @blocksize: blocksize of journalling device
701  *  @returns: a newly created journal_t *
702  *
703  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
704  *  range of blocks on an arbitrary block device.
705  *
706  */
707 journal_t * jbd2_journal_init_dev(struct block_device *bdev,
708 			struct block_device *fs_dev,
709 			unsigned long long start, int len, int blocksize)
710 {
711 	journal_t *journal = journal_init_common();
712 	struct buffer_head *bh;
713 	int n;
714 
715 	if (!journal)
716 		return NULL;
717 
718 	/* journal descriptor can store up to n blocks -bzzz */
719 	journal->j_blocksize = blocksize;
720 	n = journal->j_blocksize / sizeof(journal_block_tag_t);
721 	journal->j_wbufsize = n;
722 	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
723 	if (!journal->j_wbuf) {
724 		printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n",
725 			__FUNCTION__);
726 		kfree(journal);
727 		journal = NULL;
728 		goto out;
729 	}
730 	journal->j_dev = bdev;
731 	journal->j_fs_dev = fs_dev;
732 	journal->j_blk_offset = start;
733 	journal->j_maxlen = len;
734 
735 	bh = __getblk(journal->j_dev, start, journal->j_blocksize);
736 	J_ASSERT(bh != NULL);
737 	journal->j_sb_buffer = bh;
738 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
739 out:
740 	return journal;
741 }
742 
743 /**
744  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
745  *  @inode: An inode to create the journal in
746  *
747  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
748  * the journal.  The inode must exist already, must support bmap() and
749  * must have all data blocks preallocated.
750  */
751 journal_t * jbd2_journal_init_inode (struct inode *inode)
752 {
753 	struct buffer_head *bh;
754 	journal_t *journal = journal_init_common();
755 	int err;
756 	int n;
757 	unsigned long long blocknr;
758 
759 	if (!journal)
760 		return NULL;
761 
762 	journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
763 	journal->j_inode = inode;
764 	jbd_debug(1,
765 		  "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
766 		  journal, inode->i_sb->s_id, inode->i_ino,
767 		  (long long) inode->i_size,
768 		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
769 
770 	journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
771 	journal->j_blocksize = inode->i_sb->s_blocksize;
772 
773 	/* journal descriptor can store up to n blocks -bzzz */
774 	n = journal->j_blocksize / sizeof(journal_block_tag_t);
775 	journal->j_wbufsize = n;
776 	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
777 	if (!journal->j_wbuf) {
778 		printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n",
779 			__FUNCTION__);
780 		kfree(journal);
781 		return NULL;
782 	}
783 
784 	err = jbd2_journal_bmap(journal, 0, &blocknr);
785 	/* If that failed, give up */
786 	if (err) {
787 		printk(KERN_ERR "%s: Cannnot locate journal superblock\n",
788 		       __FUNCTION__);
789 		kfree(journal);
790 		return NULL;
791 	}
792 
793 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
794 	J_ASSERT(bh != NULL);
795 	journal->j_sb_buffer = bh;
796 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
797 
798 	return journal;
799 }
800 
801 /*
802  * If the journal init or create aborts, we need to mark the journal
803  * superblock as being NULL to prevent the journal destroy from writing
804  * back a bogus superblock.
805  */
806 static void journal_fail_superblock (journal_t *journal)
807 {
808 	struct buffer_head *bh = journal->j_sb_buffer;
809 	brelse(bh);
810 	journal->j_sb_buffer = NULL;
811 }
812 
813 /*
814  * Given a journal_t structure, initialise the various fields for
815  * startup of a new journaling session.  We use this both when creating
816  * a journal, and after recovering an old journal to reset it for
817  * subsequent use.
818  */
819 
820 static int journal_reset(journal_t *journal)
821 {
822 	journal_superblock_t *sb = journal->j_superblock;
823 	unsigned long long first, last;
824 
825 	first = be32_to_cpu(sb->s_first);
826 	last = be32_to_cpu(sb->s_maxlen);
827 
828 	journal->j_first = first;
829 	journal->j_last = last;
830 
831 	journal->j_head = first;
832 	journal->j_tail = first;
833 	journal->j_free = last - first;
834 
835 	journal->j_tail_sequence = journal->j_transaction_sequence;
836 	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
837 	journal->j_commit_request = journal->j_commit_sequence;
838 
839 	journal->j_max_transaction_buffers = journal->j_maxlen / 4;
840 
841 	/* Add the dynamic fields and write it to disk. */
842 	jbd2_journal_update_superblock(journal, 1);
843 	jbd2_journal_start_thread(journal);
844 	return 0;
845 }
846 
847 /**
848  * int jbd2_journal_create() - Initialise the new journal file
849  * @journal: Journal to create. This structure must have been initialised
850  *
851  * Given a journal_t structure which tells us which disk blocks we can
852  * use, create a new journal superblock and initialise all of the
853  * journal fields from scratch.
854  **/
855 int jbd2_journal_create(journal_t *journal)
856 {
857 	unsigned long long blocknr;
858 	struct buffer_head *bh;
859 	journal_superblock_t *sb;
860 	int i, err;
861 
862 	if (journal->j_maxlen < JBD2_MIN_JOURNAL_BLOCKS) {
863 		printk (KERN_ERR "Journal length (%d blocks) too short.\n",
864 			journal->j_maxlen);
865 		journal_fail_superblock(journal);
866 		return -EINVAL;
867 	}
868 
869 	if (journal->j_inode == NULL) {
870 		/*
871 		 * We don't know what block to start at!
872 		 */
873 		printk(KERN_EMERG
874 		       "%s: creation of journal on external device!\n",
875 		       __FUNCTION__);
876 		BUG();
877 	}
878 
879 	/* Zero out the entire journal on disk.  We cannot afford to
880 	   have any blocks on disk beginning with JBD2_MAGIC_NUMBER. */
881 	jbd_debug(1, "JBD: Zeroing out journal blocks...\n");
882 	for (i = 0; i < journal->j_maxlen; i++) {
883 		err = jbd2_journal_bmap(journal, i, &blocknr);
884 		if (err)
885 			return err;
886 		bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
887 		lock_buffer(bh);
888 		memset (bh->b_data, 0, journal->j_blocksize);
889 		BUFFER_TRACE(bh, "marking dirty");
890 		mark_buffer_dirty(bh);
891 		BUFFER_TRACE(bh, "marking uptodate");
892 		set_buffer_uptodate(bh);
893 		unlock_buffer(bh);
894 		__brelse(bh);
895 	}
896 
897 	sync_blockdev(journal->j_dev);
898 	jbd_debug(1, "JBD: journal cleared.\n");
899 
900 	/* OK, fill in the initial static fields in the new superblock */
901 	sb = journal->j_superblock;
902 
903 	sb->s_header.h_magic	 = cpu_to_be32(JBD2_MAGIC_NUMBER);
904 	sb->s_header.h_blocktype = cpu_to_be32(JBD2_SUPERBLOCK_V2);
905 
906 	sb->s_blocksize	= cpu_to_be32(journal->j_blocksize);
907 	sb->s_maxlen	= cpu_to_be32(journal->j_maxlen);
908 	sb->s_first	= cpu_to_be32(1);
909 
910 	journal->j_transaction_sequence = 1;
911 
912 	journal->j_flags &= ~JBD2_ABORT;
913 	journal->j_format_version = 2;
914 
915 	return journal_reset(journal);
916 }
917 
918 /**
919  * void jbd2_journal_update_superblock() - Update journal sb on disk.
920  * @journal: The journal to update.
921  * @wait: Set to '0' if you don't want to wait for IO completion.
922  *
923  * Update a journal's dynamic superblock fields and write it to disk,
924  * optionally waiting for the IO to complete.
925  */
926 void jbd2_journal_update_superblock(journal_t *journal, int wait)
927 {
928 	journal_superblock_t *sb = journal->j_superblock;
929 	struct buffer_head *bh = journal->j_sb_buffer;
930 
931 	/*
932 	 * As a special case, if the on-disk copy is already marked as needing
933 	 * no recovery (s_start == 0) and there are no outstanding transactions
934 	 * in the filesystem, then we can safely defer the superblock update
935 	 * until the next commit by setting JBD2_FLUSHED.  This avoids
936 	 * attempting a write to a potential-readonly device.
937 	 */
938 	if (sb->s_start == 0 && journal->j_tail_sequence ==
939 				journal->j_transaction_sequence) {
940 		jbd_debug(1,"JBD: Skipping superblock update on recovered sb "
941 			"(start %ld, seq %d, errno %d)\n",
942 			journal->j_tail, journal->j_tail_sequence,
943 			journal->j_errno);
944 		goto out;
945 	}
946 
947 	spin_lock(&journal->j_state_lock);
948 	jbd_debug(1,"JBD: updating superblock (start %ld, seq %d, errno %d)\n",
949 		  journal->j_tail, journal->j_tail_sequence, journal->j_errno);
950 
951 	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
952 	sb->s_start    = cpu_to_be32(journal->j_tail);
953 	sb->s_errno    = cpu_to_be32(journal->j_errno);
954 	spin_unlock(&journal->j_state_lock);
955 
956 	BUFFER_TRACE(bh, "marking dirty");
957 	mark_buffer_dirty(bh);
958 	if (wait)
959 		sync_dirty_buffer(bh);
960 	else
961 		ll_rw_block(SWRITE, 1, &bh);
962 
963 out:
964 	/* If we have just flushed the log (by marking s_start==0), then
965 	 * any future commit will have to be careful to update the
966 	 * superblock again to re-record the true start of the log. */
967 
968 	spin_lock(&journal->j_state_lock);
969 	if (sb->s_start)
970 		journal->j_flags &= ~JBD2_FLUSHED;
971 	else
972 		journal->j_flags |= JBD2_FLUSHED;
973 	spin_unlock(&journal->j_state_lock);
974 }
975 
976 /*
977  * Read the superblock for a given journal, performing initial
978  * validation of the format.
979  */
980 
981 static int journal_get_superblock(journal_t *journal)
982 {
983 	struct buffer_head *bh;
984 	journal_superblock_t *sb;
985 	int err = -EIO;
986 
987 	bh = journal->j_sb_buffer;
988 
989 	J_ASSERT(bh != NULL);
990 	if (!buffer_uptodate(bh)) {
991 		ll_rw_block(READ, 1, &bh);
992 		wait_on_buffer(bh);
993 		if (!buffer_uptodate(bh)) {
994 			printk (KERN_ERR
995 				"JBD: IO error reading journal superblock\n");
996 			goto out;
997 		}
998 	}
999 
1000 	sb = journal->j_superblock;
1001 
1002 	err = -EINVAL;
1003 
1004 	if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1005 	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1006 		printk(KERN_WARNING "JBD: no valid journal superblock found\n");
1007 		goto out;
1008 	}
1009 
1010 	switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1011 	case JBD2_SUPERBLOCK_V1:
1012 		journal->j_format_version = 1;
1013 		break;
1014 	case JBD2_SUPERBLOCK_V2:
1015 		journal->j_format_version = 2;
1016 		break;
1017 	default:
1018 		printk(KERN_WARNING "JBD: unrecognised superblock format ID\n");
1019 		goto out;
1020 	}
1021 
1022 	if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1023 		journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1024 	else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1025 		printk (KERN_WARNING "JBD: journal file too short\n");
1026 		goto out;
1027 	}
1028 
1029 	return 0;
1030 
1031 out:
1032 	journal_fail_superblock(journal);
1033 	return err;
1034 }
1035 
1036 /*
1037  * Load the on-disk journal superblock and read the key fields into the
1038  * journal_t.
1039  */
1040 
1041 static int load_superblock(journal_t *journal)
1042 {
1043 	int err;
1044 	journal_superblock_t *sb;
1045 
1046 	err = journal_get_superblock(journal);
1047 	if (err)
1048 		return err;
1049 
1050 	sb = journal->j_superblock;
1051 
1052 	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1053 	journal->j_tail = be32_to_cpu(sb->s_start);
1054 	journal->j_first = be32_to_cpu(sb->s_first);
1055 	journal->j_last = be32_to_cpu(sb->s_maxlen);
1056 	journal->j_errno = be32_to_cpu(sb->s_errno);
1057 
1058 	return 0;
1059 }
1060 
1061 
1062 /**
1063  * int jbd2_journal_load() - Read journal from disk.
1064  * @journal: Journal to act on.
1065  *
1066  * Given a journal_t structure which tells us which disk blocks contain
1067  * a journal, read the journal from disk to initialise the in-memory
1068  * structures.
1069  */
1070 int jbd2_journal_load(journal_t *journal)
1071 {
1072 	int err;
1073 	journal_superblock_t *sb;
1074 
1075 	err = load_superblock(journal);
1076 	if (err)
1077 		return err;
1078 
1079 	sb = journal->j_superblock;
1080 	/* If this is a V2 superblock, then we have to check the
1081 	 * features flags on it. */
1082 
1083 	if (journal->j_format_version >= 2) {
1084 		if ((sb->s_feature_ro_compat &
1085 		     ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1086 		    (sb->s_feature_incompat &
1087 		     ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1088 			printk (KERN_WARNING
1089 				"JBD: Unrecognised features on journal\n");
1090 			return -EINVAL;
1091 		}
1092 	}
1093 
1094 	/*
1095 	 * Create a slab for this blocksize
1096 	 */
1097 	err = jbd2_journal_create_jbd_slab(be32_to_cpu(sb->s_blocksize));
1098 	if (err)
1099 		return err;
1100 
1101 	/* Let the recovery code check whether it needs to recover any
1102 	 * data from the journal. */
1103 	if (jbd2_journal_recover(journal))
1104 		goto recovery_error;
1105 
1106 	/* OK, we've finished with the dynamic journal bits:
1107 	 * reinitialise the dynamic contents of the superblock in memory
1108 	 * and reset them on disk. */
1109 	if (journal_reset(journal))
1110 		goto recovery_error;
1111 
1112 	journal->j_flags &= ~JBD2_ABORT;
1113 	journal->j_flags |= JBD2_LOADED;
1114 	return 0;
1115 
1116 recovery_error:
1117 	printk (KERN_WARNING "JBD: recovery failed\n");
1118 	return -EIO;
1119 }
1120 
1121 /**
1122  * void jbd2_journal_destroy() - Release a journal_t structure.
1123  * @journal: Journal to act on.
1124  *
1125  * Release a journal_t structure once it is no longer in use by the
1126  * journaled object.
1127  */
1128 void jbd2_journal_destroy(journal_t *journal)
1129 {
1130 	/* Wait for the commit thread to wake up and die. */
1131 	journal_kill_thread(journal);
1132 
1133 	/* Force a final log commit */
1134 	if (journal->j_running_transaction)
1135 		jbd2_journal_commit_transaction(journal);
1136 
1137 	/* Force any old transactions to disk */
1138 
1139 	/* Totally anal locking here... */
1140 	spin_lock(&journal->j_list_lock);
1141 	while (journal->j_checkpoint_transactions != NULL) {
1142 		spin_unlock(&journal->j_list_lock);
1143 		jbd2_log_do_checkpoint(journal);
1144 		spin_lock(&journal->j_list_lock);
1145 	}
1146 
1147 	J_ASSERT(journal->j_running_transaction == NULL);
1148 	J_ASSERT(journal->j_committing_transaction == NULL);
1149 	J_ASSERT(journal->j_checkpoint_transactions == NULL);
1150 	spin_unlock(&journal->j_list_lock);
1151 
1152 	/* We can now mark the journal as empty. */
1153 	journal->j_tail = 0;
1154 	journal->j_tail_sequence = ++journal->j_transaction_sequence;
1155 	if (journal->j_sb_buffer) {
1156 		jbd2_journal_update_superblock(journal, 1);
1157 		brelse(journal->j_sb_buffer);
1158 	}
1159 
1160 	if (journal->j_inode)
1161 		iput(journal->j_inode);
1162 	if (journal->j_revoke)
1163 		jbd2_journal_destroy_revoke(journal);
1164 	kfree(journal->j_wbuf);
1165 	kfree(journal);
1166 }
1167 
1168 
1169 /**
1170  *int jbd2_journal_check_used_features () - Check if features specified are used.
1171  * @journal: Journal to check.
1172  * @compat: bitmask of compatible features
1173  * @ro: bitmask of features that force read-only mount
1174  * @incompat: bitmask of incompatible features
1175  *
1176  * Check whether the journal uses all of a given set of
1177  * features.  Return true (non-zero) if it does.
1178  **/
1179 
1180 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1181 				 unsigned long ro, unsigned long incompat)
1182 {
1183 	journal_superblock_t *sb;
1184 
1185 	if (!compat && !ro && !incompat)
1186 		return 1;
1187 	if (journal->j_format_version == 1)
1188 		return 0;
1189 
1190 	sb = journal->j_superblock;
1191 
1192 	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1193 	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1194 	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1195 		return 1;
1196 
1197 	return 0;
1198 }
1199 
1200 /**
1201  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1202  * @journal: Journal to check.
1203  * @compat: bitmask of compatible features
1204  * @ro: bitmask of features that force read-only mount
1205  * @incompat: bitmask of incompatible features
1206  *
1207  * Check whether the journaling code supports the use of
1208  * all of a given set of features on this journal.  Return true
1209  * (non-zero) if it can. */
1210 
1211 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1212 				      unsigned long ro, unsigned long incompat)
1213 {
1214 	journal_superblock_t *sb;
1215 
1216 	if (!compat && !ro && !incompat)
1217 		return 1;
1218 
1219 	sb = journal->j_superblock;
1220 
1221 	/* We can support any known requested features iff the
1222 	 * superblock is in version 2.  Otherwise we fail to support any
1223 	 * extended sb features. */
1224 
1225 	if (journal->j_format_version != 2)
1226 		return 0;
1227 
1228 	if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1229 	    (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1230 	    (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1231 		return 1;
1232 
1233 	return 0;
1234 }
1235 
1236 /**
1237  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1238  * @journal: Journal to act on.
1239  * @compat: bitmask of compatible features
1240  * @ro: bitmask of features that force read-only mount
1241  * @incompat: bitmask of incompatible features
1242  *
1243  * Mark a given journal feature as present on the
1244  * superblock.  Returns true if the requested features could be set.
1245  *
1246  */
1247 
1248 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1249 			  unsigned long ro, unsigned long incompat)
1250 {
1251 	journal_superblock_t *sb;
1252 
1253 	if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1254 		return 1;
1255 
1256 	if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1257 		return 0;
1258 
1259 	jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1260 		  compat, ro, incompat);
1261 
1262 	sb = journal->j_superblock;
1263 
1264 	sb->s_feature_compat    |= cpu_to_be32(compat);
1265 	sb->s_feature_ro_compat |= cpu_to_be32(ro);
1266 	sb->s_feature_incompat  |= cpu_to_be32(incompat);
1267 
1268 	return 1;
1269 }
1270 
1271 
1272 /**
1273  * int jbd2_journal_update_format () - Update on-disk journal structure.
1274  * @journal: Journal to act on.
1275  *
1276  * Given an initialised but unloaded journal struct, poke about in the
1277  * on-disk structure to update it to the most recent supported version.
1278  */
1279 int jbd2_journal_update_format (journal_t *journal)
1280 {
1281 	journal_superblock_t *sb;
1282 	int err;
1283 
1284 	err = journal_get_superblock(journal);
1285 	if (err)
1286 		return err;
1287 
1288 	sb = journal->j_superblock;
1289 
1290 	switch (be32_to_cpu(sb->s_header.h_blocktype)) {
1291 	case JBD2_SUPERBLOCK_V2:
1292 		return 0;
1293 	case JBD2_SUPERBLOCK_V1:
1294 		return journal_convert_superblock_v1(journal, sb);
1295 	default:
1296 		break;
1297 	}
1298 	return -EINVAL;
1299 }
1300 
1301 static int journal_convert_superblock_v1(journal_t *journal,
1302 					 journal_superblock_t *sb)
1303 {
1304 	int offset, blocksize;
1305 	struct buffer_head *bh;
1306 
1307 	printk(KERN_WARNING
1308 		"JBD: Converting superblock from version 1 to 2.\n");
1309 
1310 	/* Pre-initialise new fields to zero */
1311 	offset = ((char *) &(sb->s_feature_compat)) - ((char *) sb);
1312 	blocksize = be32_to_cpu(sb->s_blocksize);
1313 	memset(&sb->s_feature_compat, 0, blocksize-offset);
1314 
1315 	sb->s_nr_users = cpu_to_be32(1);
1316 	sb->s_header.h_blocktype = cpu_to_be32(JBD2_SUPERBLOCK_V2);
1317 	journal->j_format_version = 2;
1318 
1319 	bh = journal->j_sb_buffer;
1320 	BUFFER_TRACE(bh, "marking dirty");
1321 	mark_buffer_dirty(bh);
1322 	sync_dirty_buffer(bh);
1323 	return 0;
1324 }
1325 
1326 
1327 /**
1328  * int jbd2_journal_flush () - Flush journal
1329  * @journal: Journal to act on.
1330  *
1331  * Flush all data for a given journal to disk and empty the journal.
1332  * Filesystems can use this when remounting readonly to ensure that
1333  * recovery does not need to happen on remount.
1334  */
1335 
1336 int jbd2_journal_flush(journal_t *journal)
1337 {
1338 	int err = 0;
1339 	transaction_t *transaction = NULL;
1340 	unsigned long old_tail;
1341 
1342 	spin_lock(&journal->j_state_lock);
1343 
1344 	/* Force everything buffered to the log... */
1345 	if (journal->j_running_transaction) {
1346 		transaction = journal->j_running_transaction;
1347 		__jbd2_log_start_commit(journal, transaction->t_tid);
1348 	} else if (journal->j_committing_transaction)
1349 		transaction = journal->j_committing_transaction;
1350 
1351 	/* Wait for the log commit to complete... */
1352 	if (transaction) {
1353 		tid_t tid = transaction->t_tid;
1354 
1355 		spin_unlock(&journal->j_state_lock);
1356 		jbd2_log_wait_commit(journal, tid);
1357 	} else {
1358 		spin_unlock(&journal->j_state_lock);
1359 	}
1360 
1361 	/* ...and flush everything in the log out to disk. */
1362 	spin_lock(&journal->j_list_lock);
1363 	while (!err && journal->j_checkpoint_transactions != NULL) {
1364 		spin_unlock(&journal->j_list_lock);
1365 		err = jbd2_log_do_checkpoint(journal);
1366 		spin_lock(&journal->j_list_lock);
1367 	}
1368 	spin_unlock(&journal->j_list_lock);
1369 	jbd2_cleanup_journal_tail(journal);
1370 
1371 	/* Finally, mark the journal as really needing no recovery.
1372 	 * This sets s_start==0 in the underlying superblock, which is
1373 	 * the magic code for a fully-recovered superblock.  Any future
1374 	 * commits of data to the journal will restore the current
1375 	 * s_start value. */
1376 	spin_lock(&journal->j_state_lock);
1377 	old_tail = journal->j_tail;
1378 	journal->j_tail = 0;
1379 	spin_unlock(&journal->j_state_lock);
1380 	jbd2_journal_update_superblock(journal, 1);
1381 	spin_lock(&journal->j_state_lock);
1382 	journal->j_tail = old_tail;
1383 
1384 	J_ASSERT(!journal->j_running_transaction);
1385 	J_ASSERT(!journal->j_committing_transaction);
1386 	J_ASSERT(!journal->j_checkpoint_transactions);
1387 	J_ASSERT(journal->j_head == journal->j_tail);
1388 	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1389 	spin_unlock(&journal->j_state_lock);
1390 	return err;
1391 }
1392 
1393 /**
1394  * int jbd2_journal_wipe() - Wipe journal contents
1395  * @journal: Journal to act on.
1396  * @write: flag (see below)
1397  *
1398  * Wipe out all of the contents of a journal, safely.  This will produce
1399  * a warning if the journal contains any valid recovery information.
1400  * Must be called between journal_init_*() and jbd2_journal_load().
1401  *
1402  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1403  * we merely suppress recovery.
1404  */
1405 
1406 int jbd2_journal_wipe(journal_t *journal, int write)
1407 {
1408 	journal_superblock_t *sb;
1409 	int err = 0;
1410 
1411 	J_ASSERT (!(journal->j_flags & JBD2_LOADED));
1412 
1413 	err = load_superblock(journal);
1414 	if (err)
1415 		return err;
1416 
1417 	sb = journal->j_superblock;
1418 
1419 	if (!journal->j_tail)
1420 		goto no_recovery;
1421 
1422 	printk (KERN_WARNING "JBD: %s recovery information on journal\n",
1423 		write ? "Clearing" : "Ignoring");
1424 
1425 	err = jbd2_journal_skip_recovery(journal);
1426 	if (write)
1427 		jbd2_journal_update_superblock(journal, 1);
1428 
1429  no_recovery:
1430 	return err;
1431 }
1432 
1433 /*
1434  * journal_dev_name: format a character string to describe on what
1435  * device this journal is present.
1436  */
1437 
1438 static const char *journal_dev_name(journal_t *journal, char *buffer)
1439 {
1440 	struct block_device *bdev;
1441 
1442 	if (journal->j_inode)
1443 		bdev = journal->j_inode->i_sb->s_bdev;
1444 	else
1445 		bdev = journal->j_dev;
1446 
1447 	return bdevname(bdev, buffer);
1448 }
1449 
1450 /*
1451  * Journal abort has very specific semantics, which we describe
1452  * for journal abort.
1453  *
1454  * Two internal function, which provide abort to te jbd layer
1455  * itself are here.
1456  */
1457 
1458 /*
1459  * Quick version for internal journal use (doesn't lock the journal).
1460  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1461  * and don't attempt to make any other journal updates.
1462  */
1463 void __jbd2_journal_abort_hard(journal_t *journal)
1464 {
1465 	transaction_t *transaction;
1466 	char b[BDEVNAME_SIZE];
1467 
1468 	if (journal->j_flags & JBD2_ABORT)
1469 		return;
1470 
1471 	printk(KERN_ERR "Aborting journal on device %s.\n",
1472 		journal_dev_name(journal, b));
1473 
1474 	spin_lock(&journal->j_state_lock);
1475 	journal->j_flags |= JBD2_ABORT;
1476 	transaction = journal->j_running_transaction;
1477 	if (transaction)
1478 		__jbd2_log_start_commit(journal, transaction->t_tid);
1479 	spin_unlock(&journal->j_state_lock);
1480 }
1481 
1482 /* Soft abort: record the abort error status in the journal superblock,
1483  * but don't do any other IO. */
1484 static void __journal_abort_soft (journal_t *journal, int errno)
1485 {
1486 	if (journal->j_flags & JBD2_ABORT)
1487 		return;
1488 
1489 	if (!journal->j_errno)
1490 		journal->j_errno = errno;
1491 
1492 	__jbd2_journal_abort_hard(journal);
1493 
1494 	if (errno)
1495 		jbd2_journal_update_superblock(journal, 1);
1496 }
1497 
1498 /**
1499  * void jbd2_journal_abort () - Shutdown the journal immediately.
1500  * @journal: the journal to shutdown.
1501  * @errno:   an error number to record in the journal indicating
1502  *           the reason for the shutdown.
1503  *
1504  * Perform a complete, immediate shutdown of the ENTIRE
1505  * journal (not of a single transaction).  This operation cannot be
1506  * undone without closing and reopening the journal.
1507  *
1508  * The jbd2_journal_abort function is intended to support higher level error
1509  * recovery mechanisms such as the ext2/ext3 remount-readonly error
1510  * mode.
1511  *
1512  * Journal abort has very specific semantics.  Any existing dirty,
1513  * unjournaled buffers in the main filesystem will still be written to
1514  * disk by bdflush, but the journaling mechanism will be suspended
1515  * immediately and no further transaction commits will be honoured.
1516  *
1517  * Any dirty, journaled buffers will be written back to disk without
1518  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
1519  * filesystem, but we _do_ attempt to leave as much data as possible
1520  * behind for fsck to use for cleanup.
1521  *
1522  * Any attempt to get a new transaction handle on a journal which is in
1523  * ABORT state will just result in an -EROFS error return.  A
1524  * jbd2_journal_stop on an existing handle will return -EIO if we have
1525  * entered abort state during the update.
1526  *
1527  * Recursive transactions are not disturbed by journal abort until the
1528  * final jbd2_journal_stop, which will receive the -EIO error.
1529  *
1530  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
1531  * which will be recorded (if possible) in the journal superblock.  This
1532  * allows a client to record failure conditions in the middle of a
1533  * transaction without having to complete the transaction to record the
1534  * failure to disk.  ext3_error, for example, now uses this
1535  * functionality.
1536  *
1537  * Errors which originate from within the journaling layer will NOT
1538  * supply an errno; a null errno implies that absolutely no further
1539  * writes are done to the journal (unless there are any already in
1540  * progress).
1541  *
1542  */
1543 
1544 void jbd2_journal_abort(journal_t *journal, int errno)
1545 {
1546 	__journal_abort_soft(journal, errno);
1547 }
1548 
1549 /**
1550  * int jbd2_journal_errno () - returns the journal's error state.
1551  * @journal: journal to examine.
1552  *
1553  * This is the errno numbet set with jbd2_journal_abort(), the last
1554  * time the journal was mounted - if the journal was stopped
1555  * without calling abort this will be 0.
1556  *
1557  * If the journal has been aborted on this mount time -EROFS will
1558  * be returned.
1559  */
1560 int jbd2_journal_errno(journal_t *journal)
1561 {
1562 	int err;
1563 
1564 	spin_lock(&journal->j_state_lock);
1565 	if (journal->j_flags & JBD2_ABORT)
1566 		err = -EROFS;
1567 	else
1568 		err = journal->j_errno;
1569 	spin_unlock(&journal->j_state_lock);
1570 	return err;
1571 }
1572 
1573 /**
1574  * int jbd2_journal_clear_err () - clears the journal's error state
1575  * @journal: journal to act on.
1576  *
1577  * An error must be cleared or Acked to take a FS out of readonly
1578  * mode.
1579  */
1580 int jbd2_journal_clear_err(journal_t *journal)
1581 {
1582 	int err = 0;
1583 
1584 	spin_lock(&journal->j_state_lock);
1585 	if (journal->j_flags & JBD2_ABORT)
1586 		err = -EROFS;
1587 	else
1588 		journal->j_errno = 0;
1589 	spin_unlock(&journal->j_state_lock);
1590 	return err;
1591 }
1592 
1593 /**
1594  * void jbd2_journal_ack_err() - Ack journal err.
1595  * @journal: journal to act on.
1596  *
1597  * An error must be cleared or Acked to take a FS out of readonly
1598  * mode.
1599  */
1600 void jbd2_journal_ack_err(journal_t *journal)
1601 {
1602 	spin_lock(&journal->j_state_lock);
1603 	if (journal->j_errno)
1604 		journal->j_flags |= JBD2_ACK_ERR;
1605 	spin_unlock(&journal->j_state_lock);
1606 }
1607 
1608 int jbd2_journal_blocks_per_page(struct inode *inode)
1609 {
1610 	return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1611 }
1612 
1613 /*
1614  * helper functions to deal with 32 or 64bit block numbers.
1615  */
1616 size_t journal_tag_bytes(journal_t *journal)
1617 {
1618 	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT))
1619 		return JBD_TAG_SIZE64;
1620 	else
1621 		return JBD_TAG_SIZE32;
1622 }
1623 
1624 /*
1625  * Simple support for retrying memory allocations.  Introduced to help to
1626  * debug different VM deadlock avoidance strategies.
1627  */
1628 void * __jbd2_kmalloc (const char *where, size_t size, gfp_t flags, int retry)
1629 {
1630 	return kmalloc(size, flags | (retry ? __GFP_NOFAIL : 0));
1631 }
1632 
1633 /*
1634  * jbd slab management: create 1k, 2k, 4k, 8k slabs as needed
1635  * and allocate frozen and commit buffers from these slabs.
1636  *
1637  * Reason for doing this is to avoid, SLAB_DEBUG - since it could
1638  * cause bh to cross page boundary.
1639  */
1640 
1641 #define JBD_MAX_SLABS 5
1642 #define JBD_SLAB_INDEX(size)  (size >> 11)
1643 
1644 static struct kmem_cache *jbd_slab[JBD_MAX_SLABS];
1645 static const char *jbd_slab_names[JBD_MAX_SLABS] = {
1646 	"jbd2_1k", "jbd2_2k", "jbd2_4k", NULL, "jbd2_8k"
1647 };
1648 
1649 static void jbd2_journal_destroy_jbd_slabs(void)
1650 {
1651 	int i;
1652 
1653 	for (i = 0; i < JBD_MAX_SLABS; i++) {
1654 		if (jbd_slab[i])
1655 			kmem_cache_destroy(jbd_slab[i]);
1656 		jbd_slab[i] = NULL;
1657 	}
1658 }
1659 
1660 static int jbd2_journal_create_jbd_slab(size_t slab_size)
1661 {
1662 	int i = JBD_SLAB_INDEX(slab_size);
1663 
1664 	BUG_ON(i >= JBD_MAX_SLABS);
1665 
1666 	/*
1667 	 * Check if we already have a slab created for this size
1668 	 */
1669 	if (jbd_slab[i])
1670 		return 0;
1671 
1672 	/*
1673 	 * Create a slab and force alignment to be same as slabsize -
1674 	 * this will make sure that allocations won't cross the page
1675 	 * boundary.
1676 	 */
1677 	jbd_slab[i] = kmem_cache_create(jbd_slab_names[i],
1678 				slab_size, slab_size, 0, NULL, NULL);
1679 	if (!jbd_slab[i]) {
1680 		printk(KERN_EMERG "JBD: no memory for jbd_slab cache\n");
1681 		return -ENOMEM;
1682 	}
1683 	return 0;
1684 }
1685 
1686 void * jbd2_slab_alloc(size_t size, gfp_t flags)
1687 {
1688 	int idx;
1689 
1690 	idx = JBD_SLAB_INDEX(size);
1691 	BUG_ON(jbd_slab[idx] == NULL);
1692 	return kmem_cache_alloc(jbd_slab[idx], flags | __GFP_NOFAIL);
1693 }
1694 
1695 void jbd2_slab_free(void *ptr,  size_t size)
1696 {
1697 	int idx;
1698 
1699 	idx = JBD_SLAB_INDEX(size);
1700 	BUG_ON(jbd_slab[idx] == NULL);
1701 	kmem_cache_free(jbd_slab[idx], ptr);
1702 }
1703 
1704 /*
1705  * Journal_head storage management
1706  */
1707 static struct kmem_cache *jbd2_journal_head_cache;
1708 #ifdef CONFIG_JBD_DEBUG
1709 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
1710 #endif
1711 
1712 static int journal_init_jbd2_journal_head_cache(void)
1713 {
1714 	int retval;
1715 
1716 	J_ASSERT(jbd2_journal_head_cache == 0);
1717 	jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
1718 				sizeof(struct journal_head),
1719 				0,		/* offset */
1720 				0,		/* flags */
1721 				NULL,		/* ctor */
1722 				NULL);		/* dtor */
1723 	retval = 0;
1724 	if (jbd2_journal_head_cache == 0) {
1725 		retval = -ENOMEM;
1726 		printk(KERN_EMERG "JBD: no memory for journal_head cache\n");
1727 	}
1728 	return retval;
1729 }
1730 
1731 static void jbd2_journal_destroy_jbd2_journal_head_cache(void)
1732 {
1733 	J_ASSERT(jbd2_journal_head_cache != NULL);
1734 	kmem_cache_destroy(jbd2_journal_head_cache);
1735 	jbd2_journal_head_cache = NULL;
1736 }
1737 
1738 /*
1739  * journal_head splicing and dicing
1740  */
1741 static struct journal_head *journal_alloc_journal_head(void)
1742 {
1743 	struct journal_head *ret;
1744 	static unsigned long last_warning;
1745 
1746 #ifdef CONFIG_JBD_DEBUG
1747 	atomic_inc(&nr_journal_heads);
1748 #endif
1749 	ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
1750 	if (ret == 0) {
1751 		jbd_debug(1, "out of memory for journal_head\n");
1752 		if (time_after(jiffies, last_warning + 5*HZ)) {
1753 			printk(KERN_NOTICE "ENOMEM in %s, retrying.\n",
1754 			       __FUNCTION__);
1755 			last_warning = jiffies;
1756 		}
1757 		while (ret == 0) {
1758 			yield();
1759 			ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
1760 		}
1761 	}
1762 	return ret;
1763 }
1764 
1765 static void journal_free_journal_head(struct journal_head *jh)
1766 {
1767 #ifdef CONFIG_JBD_DEBUG
1768 	atomic_dec(&nr_journal_heads);
1769 	memset(jh, JBD_POISON_FREE, sizeof(*jh));
1770 #endif
1771 	kmem_cache_free(jbd2_journal_head_cache, jh);
1772 }
1773 
1774 /*
1775  * A journal_head is attached to a buffer_head whenever JBD has an
1776  * interest in the buffer.
1777  *
1778  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
1779  * is set.  This bit is tested in core kernel code where we need to take
1780  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
1781  * there.
1782  *
1783  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
1784  *
1785  * When a buffer has its BH_JBD bit set it is immune from being released by
1786  * core kernel code, mainly via ->b_count.
1787  *
1788  * A journal_head may be detached from its buffer_head when the journal_head's
1789  * b_transaction, b_cp_transaction and b_next_transaction pointers are NULL.
1790  * Various places in JBD call jbd2_journal_remove_journal_head() to indicate that the
1791  * journal_head can be dropped if needed.
1792  *
1793  * Various places in the kernel want to attach a journal_head to a buffer_head
1794  * _before_ attaching the journal_head to a transaction.  To protect the
1795  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
1796  * journal_head's b_jcount refcount by one.  The caller must call
1797  * jbd2_journal_put_journal_head() to undo this.
1798  *
1799  * So the typical usage would be:
1800  *
1801  *	(Attach a journal_head if needed.  Increments b_jcount)
1802  *	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1803  *	...
1804  *	jh->b_transaction = xxx;
1805  *	jbd2_journal_put_journal_head(jh);
1806  *
1807  * Now, the journal_head's b_jcount is zero, but it is safe from being released
1808  * because it has a non-zero b_transaction.
1809  */
1810 
1811 /*
1812  * Give a buffer_head a journal_head.
1813  *
1814  * Doesn't need the journal lock.
1815  * May sleep.
1816  */
1817 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
1818 {
1819 	struct journal_head *jh;
1820 	struct journal_head *new_jh = NULL;
1821 
1822 repeat:
1823 	if (!buffer_jbd(bh)) {
1824 		new_jh = journal_alloc_journal_head();
1825 		memset(new_jh, 0, sizeof(*new_jh));
1826 	}
1827 
1828 	jbd_lock_bh_journal_head(bh);
1829 	if (buffer_jbd(bh)) {
1830 		jh = bh2jh(bh);
1831 	} else {
1832 		J_ASSERT_BH(bh,
1833 			(atomic_read(&bh->b_count) > 0) ||
1834 			(bh->b_page && bh->b_page->mapping));
1835 
1836 		if (!new_jh) {
1837 			jbd_unlock_bh_journal_head(bh);
1838 			goto repeat;
1839 		}
1840 
1841 		jh = new_jh;
1842 		new_jh = NULL;		/* We consumed it */
1843 		set_buffer_jbd(bh);
1844 		bh->b_private = jh;
1845 		jh->b_bh = bh;
1846 		get_bh(bh);
1847 		BUFFER_TRACE(bh, "added journal_head");
1848 	}
1849 	jh->b_jcount++;
1850 	jbd_unlock_bh_journal_head(bh);
1851 	if (new_jh)
1852 		journal_free_journal_head(new_jh);
1853 	return bh->b_private;
1854 }
1855 
1856 /*
1857  * Grab a ref against this buffer_head's journal_head.  If it ended up not
1858  * having a journal_head, return NULL
1859  */
1860 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
1861 {
1862 	struct journal_head *jh = NULL;
1863 
1864 	jbd_lock_bh_journal_head(bh);
1865 	if (buffer_jbd(bh)) {
1866 		jh = bh2jh(bh);
1867 		jh->b_jcount++;
1868 	}
1869 	jbd_unlock_bh_journal_head(bh);
1870 	return jh;
1871 }
1872 
1873 static void __journal_remove_journal_head(struct buffer_head *bh)
1874 {
1875 	struct journal_head *jh = bh2jh(bh);
1876 
1877 	J_ASSERT_JH(jh, jh->b_jcount >= 0);
1878 
1879 	get_bh(bh);
1880 	if (jh->b_jcount == 0) {
1881 		if (jh->b_transaction == NULL &&
1882 				jh->b_next_transaction == NULL &&
1883 				jh->b_cp_transaction == NULL) {
1884 			J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
1885 			J_ASSERT_BH(bh, buffer_jbd(bh));
1886 			J_ASSERT_BH(bh, jh2bh(jh) == bh);
1887 			BUFFER_TRACE(bh, "remove journal_head");
1888 			if (jh->b_frozen_data) {
1889 				printk(KERN_WARNING "%s: freeing "
1890 						"b_frozen_data\n",
1891 						__FUNCTION__);
1892 				jbd2_slab_free(jh->b_frozen_data, bh->b_size);
1893 			}
1894 			if (jh->b_committed_data) {
1895 				printk(KERN_WARNING "%s: freeing "
1896 						"b_committed_data\n",
1897 						__FUNCTION__);
1898 				jbd2_slab_free(jh->b_committed_data, bh->b_size);
1899 			}
1900 			bh->b_private = NULL;
1901 			jh->b_bh = NULL;	/* debug, really */
1902 			clear_buffer_jbd(bh);
1903 			__brelse(bh);
1904 			journal_free_journal_head(jh);
1905 		} else {
1906 			BUFFER_TRACE(bh, "journal_head was locked");
1907 		}
1908 	}
1909 }
1910 
1911 /*
1912  * jbd2_journal_remove_journal_head(): if the buffer isn't attached to a transaction
1913  * and has a zero b_jcount then remove and release its journal_head.   If we did
1914  * see that the buffer is not used by any transaction we also "logically"
1915  * decrement ->b_count.
1916  *
1917  * We in fact take an additional increment on ->b_count as a convenience,
1918  * because the caller usually wants to do additional things with the bh
1919  * after calling here.
1920  * The caller of jbd2_journal_remove_journal_head() *must* run __brelse(bh) at some
1921  * time.  Once the caller has run __brelse(), the buffer is eligible for
1922  * reaping by try_to_free_buffers().
1923  */
1924 void jbd2_journal_remove_journal_head(struct buffer_head *bh)
1925 {
1926 	jbd_lock_bh_journal_head(bh);
1927 	__journal_remove_journal_head(bh);
1928 	jbd_unlock_bh_journal_head(bh);
1929 }
1930 
1931 /*
1932  * Drop a reference on the passed journal_head.  If it fell to zero then try to
1933  * release the journal_head from the buffer_head.
1934  */
1935 void jbd2_journal_put_journal_head(struct journal_head *jh)
1936 {
1937 	struct buffer_head *bh = jh2bh(jh);
1938 
1939 	jbd_lock_bh_journal_head(bh);
1940 	J_ASSERT_JH(jh, jh->b_jcount > 0);
1941 	--jh->b_jcount;
1942 	if (!jh->b_jcount && !jh->b_transaction) {
1943 		__journal_remove_journal_head(bh);
1944 		__brelse(bh);
1945 	}
1946 	jbd_unlock_bh_journal_head(bh);
1947 }
1948 
1949 /*
1950  * /proc tunables
1951  */
1952 #if defined(CONFIG_JBD_DEBUG)
1953 int jbd2_journal_enable_debug;
1954 EXPORT_SYMBOL(jbd2_journal_enable_debug);
1955 #endif
1956 
1957 #if defined(CONFIG_JBD_DEBUG) && defined(CONFIG_PROC_FS)
1958 
1959 static struct proc_dir_entry *proc_jbd_debug;
1960 
1961 static int read_jbd_debug(char *page, char **start, off_t off,
1962 			  int count, int *eof, void *data)
1963 {
1964 	int ret;
1965 
1966 	ret = sprintf(page + off, "%d\n", jbd2_journal_enable_debug);
1967 	*eof = 1;
1968 	return ret;
1969 }
1970 
1971 static int write_jbd_debug(struct file *file, const char __user *buffer,
1972 			   unsigned long count, void *data)
1973 {
1974 	char buf[32];
1975 
1976 	if (count > ARRAY_SIZE(buf) - 1)
1977 		count = ARRAY_SIZE(buf) - 1;
1978 	if (copy_from_user(buf, buffer, count))
1979 		return -EFAULT;
1980 	buf[ARRAY_SIZE(buf) - 1] = '\0';
1981 	jbd2_journal_enable_debug = simple_strtoul(buf, NULL, 10);
1982 	return count;
1983 }
1984 
1985 #define JBD_PROC_NAME "sys/fs/jbd2-debug"
1986 
1987 static void __init create_jbd_proc_entry(void)
1988 {
1989 	proc_jbd_debug = create_proc_entry(JBD_PROC_NAME, 0644, NULL);
1990 	if (proc_jbd_debug) {
1991 		/* Why is this so hard? */
1992 		proc_jbd_debug->read_proc = read_jbd_debug;
1993 		proc_jbd_debug->write_proc = write_jbd_debug;
1994 	}
1995 }
1996 
1997 static void __exit jbd2_remove_jbd_proc_entry(void)
1998 {
1999 	if (proc_jbd_debug)
2000 		remove_proc_entry(JBD_PROC_NAME, NULL);
2001 }
2002 
2003 #else
2004 
2005 #define create_jbd_proc_entry() do {} while (0)
2006 #define jbd2_remove_jbd_proc_entry() do {} while (0)
2007 
2008 #endif
2009 
2010 struct kmem_cache *jbd2_handle_cache;
2011 
2012 static int __init journal_init_handle_cache(void)
2013 {
2014 	jbd2_handle_cache = kmem_cache_create("jbd2_journal_handle",
2015 				sizeof(handle_t),
2016 				0,		/* offset */
2017 				0,		/* flags */
2018 				NULL,		/* ctor */
2019 				NULL);		/* dtor */
2020 	if (jbd2_handle_cache == NULL) {
2021 		printk(KERN_EMERG "JBD: failed to create handle cache\n");
2022 		return -ENOMEM;
2023 	}
2024 	return 0;
2025 }
2026 
2027 static void jbd2_journal_destroy_handle_cache(void)
2028 {
2029 	if (jbd2_handle_cache)
2030 		kmem_cache_destroy(jbd2_handle_cache);
2031 }
2032 
2033 /*
2034  * Module startup and shutdown
2035  */
2036 
2037 static int __init journal_init_caches(void)
2038 {
2039 	int ret;
2040 
2041 	ret = jbd2_journal_init_revoke_caches();
2042 	if (ret == 0)
2043 		ret = journal_init_jbd2_journal_head_cache();
2044 	if (ret == 0)
2045 		ret = journal_init_handle_cache();
2046 	return ret;
2047 }
2048 
2049 static void jbd2_journal_destroy_caches(void)
2050 {
2051 	jbd2_journal_destroy_revoke_caches();
2052 	jbd2_journal_destroy_jbd2_journal_head_cache();
2053 	jbd2_journal_destroy_handle_cache();
2054 	jbd2_journal_destroy_jbd_slabs();
2055 }
2056 
2057 static int __init journal_init(void)
2058 {
2059 	int ret;
2060 
2061 	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2062 
2063 	ret = journal_init_caches();
2064 	if (ret != 0)
2065 		jbd2_journal_destroy_caches();
2066 	create_jbd_proc_entry();
2067 	return ret;
2068 }
2069 
2070 static void __exit journal_exit(void)
2071 {
2072 #ifdef CONFIG_JBD_DEBUG
2073 	int n = atomic_read(&nr_journal_heads);
2074 	if (n)
2075 		printk(KERN_EMERG "JBD: leaked %d journal_heads!\n", n);
2076 #endif
2077 	jbd2_remove_jbd_proc_entry();
2078 	jbd2_journal_destroy_caches();
2079 }
2080 
2081 MODULE_LICENSE("GPL");
2082 module_init(journal_init);
2083 module_exit(journal_exit);
2084 
2085