1 /* 2 * linux/fs/jbd2/journal.c 3 * 4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 5 * 6 * Copyright 1998 Red Hat corp --- All Rights Reserved 7 * 8 * This file is part of the Linux kernel and is made available under 9 * the terms of the GNU General Public License, version 2, or at your 10 * option, any later version, incorporated herein by reference. 11 * 12 * Generic filesystem journal-writing code; part of the ext2fs 13 * journaling system. 14 * 15 * This file manages journals: areas of disk reserved for logging 16 * transactional updates. This includes the kernel journaling thread 17 * which is responsible for scheduling updates to the log. 18 * 19 * We do not actually manage the physical storage of the journal in this 20 * file: that is left to a per-journal policy function, which allows us 21 * to store the journal within a filesystem-specified area for ext2 22 * journaling (ext2 can use a reserved inode for storing the log). 23 */ 24 25 #include <linux/module.h> 26 #include <linux/time.h> 27 #include <linux/fs.h> 28 #include <linux/jbd2.h> 29 #include <linux/errno.h> 30 #include <linux/slab.h> 31 #include <linux/init.h> 32 #include <linux/mm.h> 33 #include <linux/freezer.h> 34 #include <linux/pagemap.h> 35 #include <linux/kthread.h> 36 #include <linux/poison.h> 37 #include <linux/proc_fs.h> 38 #include <linux/seq_file.h> 39 #include <linux/math64.h> 40 #include <linux/hash.h> 41 #include <linux/log2.h> 42 #include <linux/vmalloc.h> 43 #include <linux/backing-dev.h> 44 #include <linux/bitops.h> 45 #include <linux/ratelimit.h> 46 47 #define CREATE_TRACE_POINTS 48 #include <trace/events/jbd2.h> 49 50 #include <asm/uaccess.h> 51 #include <asm/page.h> 52 53 #ifdef CONFIG_JBD2_DEBUG 54 ushort jbd2_journal_enable_debug __read_mostly; 55 EXPORT_SYMBOL(jbd2_journal_enable_debug); 56 57 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644); 58 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2"); 59 #endif 60 61 EXPORT_SYMBOL(jbd2_journal_extend); 62 EXPORT_SYMBOL(jbd2_journal_stop); 63 EXPORT_SYMBOL(jbd2_journal_lock_updates); 64 EXPORT_SYMBOL(jbd2_journal_unlock_updates); 65 EXPORT_SYMBOL(jbd2_journal_get_write_access); 66 EXPORT_SYMBOL(jbd2_journal_get_create_access); 67 EXPORT_SYMBOL(jbd2_journal_get_undo_access); 68 EXPORT_SYMBOL(jbd2_journal_set_triggers); 69 EXPORT_SYMBOL(jbd2_journal_dirty_metadata); 70 EXPORT_SYMBOL(jbd2_journal_forget); 71 #if 0 72 EXPORT_SYMBOL(journal_sync_buffer); 73 #endif 74 EXPORT_SYMBOL(jbd2_journal_flush); 75 EXPORT_SYMBOL(jbd2_journal_revoke); 76 77 EXPORT_SYMBOL(jbd2_journal_init_dev); 78 EXPORT_SYMBOL(jbd2_journal_init_inode); 79 EXPORT_SYMBOL(jbd2_journal_check_used_features); 80 EXPORT_SYMBOL(jbd2_journal_check_available_features); 81 EXPORT_SYMBOL(jbd2_journal_set_features); 82 EXPORT_SYMBOL(jbd2_journal_load); 83 EXPORT_SYMBOL(jbd2_journal_destroy); 84 EXPORT_SYMBOL(jbd2_journal_abort); 85 EXPORT_SYMBOL(jbd2_journal_errno); 86 EXPORT_SYMBOL(jbd2_journal_ack_err); 87 EXPORT_SYMBOL(jbd2_journal_clear_err); 88 EXPORT_SYMBOL(jbd2_log_wait_commit); 89 EXPORT_SYMBOL(jbd2_log_start_commit); 90 EXPORT_SYMBOL(jbd2_journal_start_commit); 91 EXPORT_SYMBOL(jbd2_journal_force_commit_nested); 92 EXPORT_SYMBOL(jbd2_journal_wipe); 93 EXPORT_SYMBOL(jbd2_journal_blocks_per_page); 94 EXPORT_SYMBOL(jbd2_journal_invalidatepage); 95 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers); 96 EXPORT_SYMBOL(jbd2_journal_force_commit); 97 EXPORT_SYMBOL(jbd2_journal_inode_add_write); 98 EXPORT_SYMBOL(jbd2_journal_inode_add_wait); 99 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode); 100 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode); 101 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate); 102 EXPORT_SYMBOL(jbd2_inode_cache); 103 104 static void __journal_abort_soft (journal_t *journal, int errno); 105 static int jbd2_journal_create_slab(size_t slab_size); 106 107 #ifdef CONFIG_JBD2_DEBUG 108 void __jbd2_debug(int level, const char *file, const char *func, 109 unsigned int line, const char *fmt, ...) 110 { 111 struct va_format vaf; 112 va_list args; 113 114 if (level > jbd2_journal_enable_debug) 115 return; 116 va_start(args, fmt); 117 vaf.fmt = fmt; 118 vaf.va = &args; 119 printk(KERN_DEBUG "%s: (%s, %u): %pV\n", file, func, line, &vaf); 120 va_end(args); 121 } 122 EXPORT_SYMBOL(__jbd2_debug); 123 #endif 124 125 /* Checksumming functions */ 126 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb) 127 { 128 if (!jbd2_journal_has_csum_v2or3_feature(j)) 129 return 1; 130 131 return sb->s_checksum_type == JBD2_CRC32C_CHKSUM; 132 } 133 134 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb) 135 { 136 __u32 csum; 137 __be32 old_csum; 138 139 old_csum = sb->s_checksum; 140 sb->s_checksum = 0; 141 csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t)); 142 sb->s_checksum = old_csum; 143 144 return cpu_to_be32(csum); 145 } 146 147 static int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb) 148 { 149 if (!jbd2_journal_has_csum_v2or3(j)) 150 return 1; 151 152 return sb->s_checksum == jbd2_superblock_csum(j, sb); 153 } 154 155 static void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb) 156 { 157 if (!jbd2_journal_has_csum_v2or3(j)) 158 return; 159 160 sb->s_checksum = jbd2_superblock_csum(j, sb); 161 } 162 163 /* 164 * Helper function used to manage commit timeouts 165 */ 166 167 static void commit_timeout(unsigned long __data) 168 { 169 struct task_struct * p = (struct task_struct *) __data; 170 171 wake_up_process(p); 172 } 173 174 /* 175 * kjournald2: The main thread function used to manage a logging device 176 * journal. 177 * 178 * This kernel thread is responsible for two things: 179 * 180 * 1) COMMIT: Every so often we need to commit the current state of the 181 * filesystem to disk. The journal thread is responsible for writing 182 * all of the metadata buffers to disk. 183 * 184 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all 185 * of the data in that part of the log has been rewritten elsewhere on 186 * the disk. Flushing these old buffers to reclaim space in the log is 187 * known as checkpointing, and this thread is responsible for that job. 188 */ 189 190 static int kjournald2(void *arg) 191 { 192 journal_t *journal = arg; 193 transaction_t *transaction; 194 195 /* 196 * Set up an interval timer which can be used to trigger a commit wakeup 197 * after the commit interval expires 198 */ 199 setup_timer(&journal->j_commit_timer, commit_timeout, 200 (unsigned long)current); 201 202 set_freezable(); 203 204 /* Record that the journal thread is running */ 205 journal->j_task = current; 206 wake_up(&journal->j_wait_done_commit); 207 208 /* 209 * And now, wait forever for commit wakeup events. 210 */ 211 write_lock(&journal->j_state_lock); 212 213 loop: 214 if (journal->j_flags & JBD2_UNMOUNT) 215 goto end_loop; 216 217 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n", 218 journal->j_commit_sequence, journal->j_commit_request); 219 220 if (journal->j_commit_sequence != journal->j_commit_request) { 221 jbd_debug(1, "OK, requests differ\n"); 222 write_unlock(&journal->j_state_lock); 223 del_timer_sync(&journal->j_commit_timer); 224 jbd2_journal_commit_transaction(journal); 225 write_lock(&journal->j_state_lock); 226 goto loop; 227 } 228 229 wake_up(&journal->j_wait_done_commit); 230 if (freezing(current)) { 231 /* 232 * The simpler the better. Flushing journal isn't a 233 * good idea, because that depends on threads that may 234 * be already stopped. 235 */ 236 jbd_debug(1, "Now suspending kjournald2\n"); 237 write_unlock(&journal->j_state_lock); 238 try_to_freeze(); 239 write_lock(&journal->j_state_lock); 240 } else { 241 /* 242 * We assume on resume that commits are already there, 243 * so we don't sleep 244 */ 245 DEFINE_WAIT(wait); 246 int should_sleep = 1; 247 248 prepare_to_wait(&journal->j_wait_commit, &wait, 249 TASK_INTERRUPTIBLE); 250 if (journal->j_commit_sequence != journal->j_commit_request) 251 should_sleep = 0; 252 transaction = journal->j_running_transaction; 253 if (transaction && time_after_eq(jiffies, 254 transaction->t_expires)) 255 should_sleep = 0; 256 if (journal->j_flags & JBD2_UNMOUNT) 257 should_sleep = 0; 258 if (should_sleep) { 259 write_unlock(&journal->j_state_lock); 260 schedule(); 261 write_lock(&journal->j_state_lock); 262 } 263 finish_wait(&journal->j_wait_commit, &wait); 264 } 265 266 jbd_debug(1, "kjournald2 wakes\n"); 267 268 /* 269 * Were we woken up by a commit wakeup event? 270 */ 271 transaction = journal->j_running_transaction; 272 if (transaction && time_after_eq(jiffies, transaction->t_expires)) { 273 journal->j_commit_request = transaction->t_tid; 274 jbd_debug(1, "woke because of timeout\n"); 275 } 276 goto loop; 277 278 end_loop: 279 write_unlock(&journal->j_state_lock); 280 del_timer_sync(&journal->j_commit_timer); 281 journal->j_task = NULL; 282 wake_up(&journal->j_wait_done_commit); 283 jbd_debug(1, "Journal thread exiting.\n"); 284 return 0; 285 } 286 287 static int jbd2_journal_start_thread(journal_t *journal) 288 { 289 struct task_struct *t; 290 291 t = kthread_run(kjournald2, journal, "jbd2/%s", 292 journal->j_devname); 293 if (IS_ERR(t)) 294 return PTR_ERR(t); 295 296 wait_event(journal->j_wait_done_commit, journal->j_task != NULL); 297 return 0; 298 } 299 300 static void journal_kill_thread(journal_t *journal) 301 { 302 write_lock(&journal->j_state_lock); 303 journal->j_flags |= JBD2_UNMOUNT; 304 305 while (journal->j_task) { 306 write_unlock(&journal->j_state_lock); 307 wake_up(&journal->j_wait_commit); 308 wait_event(journal->j_wait_done_commit, journal->j_task == NULL); 309 write_lock(&journal->j_state_lock); 310 } 311 write_unlock(&journal->j_state_lock); 312 } 313 314 /* 315 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal. 316 * 317 * Writes a metadata buffer to a given disk block. The actual IO is not 318 * performed but a new buffer_head is constructed which labels the data 319 * to be written with the correct destination disk block. 320 * 321 * Any magic-number escaping which needs to be done will cause a 322 * copy-out here. If the buffer happens to start with the 323 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the 324 * magic number is only written to the log for descripter blocks. In 325 * this case, we copy the data and replace the first word with 0, and we 326 * return a result code which indicates that this buffer needs to be 327 * marked as an escaped buffer in the corresponding log descriptor 328 * block. The missing word can then be restored when the block is read 329 * during recovery. 330 * 331 * If the source buffer has already been modified by a new transaction 332 * since we took the last commit snapshot, we use the frozen copy of 333 * that data for IO. If we end up using the existing buffer_head's data 334 * for the write, then we have to make sure nobody modifies it while the 335 * IO is in progress. do_get_write_access() handles this. 336 * 337 * The function returns a pointer to the buffer_head to be used for IO. 338 * 339 * 340 * Return value: 341 * <0: Error 342 * >=0: Finished OK 343 * 344 * On success: 345 * Bit 0 set == escape performed on the data 346 * Bit 1 set == buffer copy-out performed (kfree the data after IO) 347 */ 348 349 int jbd2_journal_write_metadata_buffer(transaction_t *transaction, 350 struct journal_head *jh_in, 351 struct buffer_head **bh_out, 352 sector_t blocknr) 353 { 354 int need_copy_out = 0; 355 int done_copy_out = 0; 356 int do_escape = 0; 357 char *mapped_data; 358 struct buffer_head *new_bh; 359 struct page *new_page; 360 unsigned int new_offset; 361 struct buffer_head *bh_in = jh2bh(jh_in); 362 journal_t *journal = transaction->t_journal; 363 364 /* 365 * The buffer really shouldn't be locked: only the current committing 366 * transaction is allowed to write it, so nobody else is allowed 367 * to do any IO. 368 * 369 * akpm: except if we're journalling data, and write() output is 370 * also part of a shared mapping, and another thread has 371 * decided to launch a writepage() against this buffer. 372 */ 373 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in)); 374 375 new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL); 376 377 /* keep subsequent assertions sane */ 378 atomic_set(&new_bh->b_count, 1); 379 380 jbd_lock_bh_state(bh_in); 381 repeat: 382 /* 383 * If a new transaction has already done a buffer copy-out, then 384 * we use that version of the data for the commit. 385 */ 386 if (jh_in->b_frozen_data) { 387 done_copy_out = 1; 388 new_page = virt_to_page(jh_in->b_frozen_data); 389 new_offset = offset_in_page(jh_in->b_frozen_data); 390 } else { 391 new_page = jh2bh(jh_in)->b_page; 392 new_offset = offset_in_page(jh2bh(jh_in)->b_data); 393 } 394 395 mapped_data = kmap_atomic(new_page); 396 /* 397 * Fire data frozen trigger if data already wasn't frozen. Do this 398 * before checking for escaping, as the trigger may modify the magic 399 * offset. If a copy-out happens afterwards, it will have the correct 400 * data in the buffer. 401 */ 402 if (!done_copy_out) 403 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset, 404 jh_in->b_triggers); 405 406 /* 407 * Check for escaping 408 */ 409 if (*((__be32 *)(mapped_data + new_offset)) == 410 cpu_to_be32(JBD2_MAGIC_NUMBER)) { 411 need_copy_out = 1; 412 do_escape = 1; 413 } 414 kunmap_atomic(mapped_data); 415 416 /* 417 * Do we need to do a data copy? 418 */ 419 if (need_copy_out && !done_copy_out) { 420 char *tmp; 421 422 jbd_unlock_bh_state(bh_in); 423 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS); 424 if (!tmp) { 425 brelse(new_bh); 426 return -ENOMEM; 427 } 428 jbd_lock_bh_state(bh_in); 429 if (jh_in->b_frozen_data) { 430 jbd2_free(tmp, bh_in->b_size); 431 goto repeat; 432 } 433 434 jh_in->b_frozen_data = tmp; 435 mapped_data = kmap_atomic(new_page); 436 memcpy(tmp, mapped_data + new_offset, bh_in->b_size); 437 kunmap_atomic(mapped_data); 438 439 new_page = virt_to_page(tmp); 440 new_offset = offset_in_page(tmp); 441 done_copy_out = 1; 442 443 /* 444 * This isn't strictly necessary, as we're using frozen 445 * data for the escaping, but it keeps consistency with 446 * b_frozen_data usage. 447 */ 448 jh_in->b_frozen_triggers = jh_in->b_triggers; 449 } 450 451 /* 452 * Did we need to do an escaping? Now we've done all the 453 * copying, we can finally do so. 454 */ 455 if (do_escape) { 456 mapped_data = kmap_atomic(new_page); 457 *((unsigned int *)(mapped_data + new_offset)) = 0; 458 kunmap_atomic(mapped_data); 459 } 460 461 set_bh_page(new_bh, new_page, new_offset); 462 new_bh->b_size = bh_in->b_size; 463 new_bh->b_bdev = journal->j_dev; 464 new_bh->b_blocknr = blocknr; 465 new_bh->b_private = bh_in; 466 set_buffer_mapped(new_bh); 467 set_buffer_dirty(new_bh); 468 469 *bh_out = new_bh; 470 471 /* 472 * The to-be-written buffer needs to get moved to the io queue, 473 * and the original buffer whose contents we are shadowing or 474 * copying is moved to the transaction's shadow queue. 475 */ 476 JBUFFER_TRACE(jh_in, "file as BJ_Shadow"); 477 spin_lock(&journal->j_list_lock); 478 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow); 479 spin_unlock(&journal->j_list_lock); 480 set_buffer_shadow(bh_in); 481 jbd_unlock_bh_state(bh_in); 482 483 return do_escape | (done_copy_out << 1); 484 } 485 486 /* 487 * Allocation code for the journal file. Manage the space left in the 488 * journal, so that we can begin checkpointing when appropriate. 489 */ 490 491 /* 492 * Called with j_state_lock locked for writing. 493 * Returns true if a transaction commit was started. 494 */ 495 int __jbd2_log_start_commit(journal_t *journal, tid_t target) 496 { 497 /* Return if the txn has already requested to be committed */ 498 if (journal->j_commit_request == target) 499 return 0; 500 501 /* 502 * The only transaction we can possibly wait upon is the 503 * currently running transaction (if it exists). Otherwise, 504 * the target tid must be an old one. 505 */ 506 if (journal->j_running_transaction && 507 journal->j_running_transaction->t_tid == target) { 508 /* 509 * We want a new commit: OK, mark the request and wakeup the 510 * commit thread. We do _not_ do the commit ourselves. 511 */ 512 513 journal->j_commit_request = target; 514 jbd_debug(1, "JBD2: requesting commit %d/%d\n", 515 journal->j_commit_request, 516 journal->j_commit_sequence); 517 journal->j_running_transaction->t_requested = jiffies; 518 wake_up(&journal->j_wait_commit); 519 return 1; 520 } else if (!tid_geq(journal->j_commit_request, target)) 521 /* This should never happen, but if it does, preserve 522 the evidence before kjournald goes into a loop and 523 increments j_commit_sequence beyond all recognition. */ 524 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n", 525 journal->j_commit_request, 526 journal->j_commit_sequence, 527 target, journal->j_running_transaction ? 528 journal->j_running_transaction->t_tid : 0); 529 return 0; 530 } 531 532 int jbd2_log_start_commit(journal_t *journal, tid_t tid) 533 { 534 int ret; 535 536 write_lock(&journal->j_state_lock); 537 ret = __jbd2_log_start_commit(journal, tid); 538 write_unlock(&journal->j_state_lock); 539 return ret; 540 } 541 542 /* 543 * Force and wait any uncommitted transactions. We can only force the running 544 * transaction if we don't have an active handle, otherwise, we will deadlock. 545 * Returns: <0 in case of error, 546 * 0 if nothing to commit, 547 * 1 if transaction was successfully committed. 548 */ 549 static int __jbd2_journal_force_commit(journal_t *journal) 550 { 551 transaction_t *transaction = NULL; 552 tid_t tid; 553 int need_to_start = 0, ret = 0; 554 555 read_lock(&journal->j_state_lock); 556 if (journal->j_running_transaction && !current->journal_info) { 557 transaction = journal->j_running_transaction; 558 if (!tid_geq(journal->j_commit_request, transaction->t_tid)) 559 need_to_start = 1; 560 } else if (journal->j_committing_transaction) 561 transaction = journal->j_committing_transaction; 562 563 if (!transaction) { 564 /* Nothing to commit */ 565 read_unlock(&journal->j_state_lock); 566 return 0; 567 } 568 tid = transaction->t_tid; 569 read_unlock(&journal->j_state_lock); 570 if (need_to_start) 571 jbd2_log_start_commit(journal, tid); 572 ret = jbd2_log_wait_commit(journal, tid); 573 if (!ret) 574 ret = 1; 575 576 return ret; 577 } 578 579 /** 580 * Force and wait upon a commit if the calling process is not within 581 * transaction. This is used for forcing out undo-protected data which contains 582 * bitmaps, when the fs is running out of space. 583 * 584 * @journal: journal to force 585 * Returns true if progress was made. 586 */ 587 int jbd2_journal_force_commit_nested(journal_t *journal) 588 { 589 int ret; 590 591 ret = __jbd2_journal_force_commit(journal); 592 return ret > 0; 593 } 594 595 /** 596 * int journal_force_commit() - force any uncommitted transactions 597 * @journal: journal to force 598 * 599 * Caller want unconditional commit. We can only force the running transaction 600 * if we don't have an active handle, otherwise, we will deadlock. 601 */ 602 int jbd2_journal_force_commit(journal_t *journal) 603 { 604 int ret; 605 606 J_ASSERT(!current->journal_info); 607 ret = __jbd2_journal_force_commit(journal); 608 if (ret > 0) 609 ret = 0; 610 return ret; 611 } 612 613 /* 614 * Start a commit of the current running transaction (if any). Returns true 615 * if a transaction is going to be committed (or is currently already 616 * committing), and fills its tid in at *ptid 617 */ 618 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid) 619 { 620 int ret = 0; 621 622 write_lock(&journal->j_state_lock); 623 if (journal->j_running_transaction) { 624 tid_t tid = journal->j_running_transaction->t_tid; 625 626 __jbd2_log_start_commit(journal, tid); 627 /* There's a running transaction and we've just made sure 628 * it's commit has been scheduled. */ 629 if (ptid) 630 *ptid = tid; 631 ret = 1; 632 } else if (journal->j_committing_transaction) { 633 /* 634 * If commit has been started, then we have to wait for 635 * completion of that transaction. 636 */ 637 if (ptid) 638 *ptid = journal->j_committing_transaction->t_tid; 639 ret = 1; 640 } 641 write_unlock(&journal->j_state_lock); 642 return ret; 643 } 644 645 /* 646 * Return 1 if a given transaction has not yet sent barrier request 647 * connected with a transaction commit. If 0 is returned, transaction 648 * may or may not have sent the barrier. Used to avoid sending barrier 649 * twice in common cases. 650 */ 651 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid) 652 { 653 int ret = 0; 654 transaction_t *commit_trans; 655 656 if (!(journal->j_flags & JBD2_BARRIER)) 657 return 0; 658 read_lock(&journal->j_state_lock); 659 /* Transaction already committed? */ 660 if (tid_geq(journal->j_commit_sequence, tid)) 661 goto out; 662 commit_trans = journal->j_committing_transaction; 663 if (!commit_trans || commit_trans->t_tid != tid) { 664 ret = 1; 665 goto out; 666 } 667 /* 668 * Transaction is being committed and we already proceeded to 669 * submitting a flush to fs partition? 670 */ 671 if (journal->j_fs_dev != journal->j_dev) { 672 if (!commit_trans->t_need_data_flush || 673 commit_trans->t_state >= T_COMMIT_DFLUSH) 674 goto out; 675 } else { 676 if (commit_trans->t_state >= T_COMMIT_JFLUSH) 677 goto out; 678 } 679 ret = 1; 680 out: 681 read_unlock(&journal->j_state_lock); 682 return ret; 683 } 684 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier); 685 686 /* 687 * Wait for a specified commit to complete. 688 * The caller may not hold the journal lock. 689 */ 690 int jbd2_log_wait_commit(journal_t *journal, tid_t tid) 691 { 692 int err = 0; 693 694 jbd2_might_wait_for_commit(journal); 695 read_lock(&journal->j_state_lock); 696 #ifdef CONFIG_JBD2_DEBUG 697 if (!tid_geq(journal->j_commit_request, tid)) { 698 printk(KERN_ERR 699 "%s: error: j_commit_request=%d, tid=%d\n", 700 __func__, journal->j_commit_request, tid); 701 } 702 #endif 703 while (tid_gt(tid, journal->j_commit_sequence)) { 704 jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n", 705 tid, journal->j_commit_sequence); 706 read_unlock(&journal->j_state_lock); 707 wake_up(&journal->j_wait_commit); 708 wait_event(journal->j_wait_done_commit, 709 !tid_gt(tid, journal->j_commit_sequence)); 710 read_lock(&journal->j_state_lock); 711 } 712 read_unlock(&journal->j_state_lock); 713 714 if (unlikely(is_journal_aborted(journal))) 715 err = -EIO; 716 return err; 717 } 718 719 /* 720 * When this function returns the transaction corresponding to tid 721 * will be completed. If the transaction has currently running, start 722 * committing that transaction before waiting for it to complete. If 723 * the transaction id is stale, it is by definition already completed, 724 * so just return SUCCESS. 725 */ 726 int jbd2_complete_transaction(journal_t *journal, tid_t tid) 727 { 728 int need_to_wait = 1; 729 730 read_lock(&journal->j_state_lock); 731 if (journal->j_running_transaction && 732 journal->j_running_transaction->t_tid == tid) { 733 if (journal->j_commit_request != tid) { 734 /* transaction not yet started, so request it */ 735 read_unlock(&journal->j_state_lock); 736 jbd2_log_start_commit(journal, tid); 737 goto wait_commit; 738 } 739 } else if (!(journal->j_committing_transaction && 740 journal->j_committing_transaction->t_tid == tid)) 741 need_to_wait = 0; 742 read_unlock(&journal->j_state_lock); 743 if (!need_to_wait) 744 return 0; 745 wait_commit: 746 return jbd2_log_wait_commit(journal, tid); 747 } 748 EXPORT_SYMBOL(jbd2_complete_transaction); 749 750 /* 751 * Log buffer allocation routines: 752 */ 753 754 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp) 755 { 756 unsigned long blocknr; 757 758 write_lock(&journal->j_state_lock); 759 J_ASSERT(journal->j_free > 1); 760 761 blocknr = journal->j_head; 762 journal->j_head++; 763 journal->j_free--; 764 if (journal->j_head == journal->j_last) 765 journal->j_head = journal->j_first; 766 write_unlock(&journal->j_state_lock); 767 return jbd2_journal_bmap(journal, blocknr, retp); 768 } 769 770 /* 771 * Conversion of logical to physical block numbers for the journal 772 * 773 * On external journals the journal blocks are identity-mapped, so 774 * this is a no-op. If needed, we can use j_blk_offset - everything is 775 * ready. 776 */ 777 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr, 778 unsigned long long *retp) 779 { 780 int err = 0; 781 unsigned long long ret; 782 783 if (journal->j_inode) { 784 ret = bmap(journal->j_inode, blocknr); 785 if (ret) 786 *retp = ret; 787 else { 788 printk(KERN_ALERT "%s: journal block not found " 789 "at offset %lu on %s\n", 790 __func__, blocknr, journal->j_devname); 791 err = -EIO; 792 __journal_abort_soft(journal, err); 793 } 794 } else { 795 *retp = blocknr; /* +journal->j_blk_offset */ 796 } 797 return err; 798 } 799 800 /* 801 * We play buffer_head aliasing tricks to write data/metadata blocks to 802 * the journal without copying their contents, but for journal 803 * descriptor blocks we do need to generate bona fide buffers. 804 * 805 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying 806 * the buffer's contents they really should run flush_dcache_page(bh->b_page). 807 * But we don't bother doing that, so there will be coherency problems with 808 * mmaps of blockdevs which hold live JBD-controlled filesystems. 809 */ 810 struct buffer_head * 811 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type) 812 { 813 journal_t *journal = transaction->t_journal; 814 struct buffer_head *bh; 815 unsigned long long blocknr; 816 journal_header_t *header; 817 int err; 818 819 err = jbd2_journal_next_log_block(journal, &blocknr); 820 821 if (err) 822 return NULL; 823 824 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize); 825 if (!bh) 826 return NULL; 827 lock_buffer(bh); 828 memset(bh->b_data, 0, journal->j_blocksize); 829 header = (journal_header_t *)bh->b_data; 830 header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER); 831 header->h_blocktype = cpu_to_be32(type); 832 header->h_sequence = cpu_to_be32(transaction->t_tid); 833 set_buffer_uptodate(bh); 834 unlock_buffer(bh); 835 BUFFER_TRACE(bh, "return this buffer"); 836 return bh; 837 } 838 839 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh) 840 { 841 struct jbd2_journal_block_tail *tail; 842 __u32 csum; 843 844 if (!jbd2_journal_has_csum_v2or3(j)) 845 return; 846 847 tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize - 848 sizeof(struct jbd2_journal_block_tail)); 849 tail->t_checksum = 0; 850 csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize); 851 tail->t_checksum = cpu_to_be32(csum); 852 } 853 854 /* 855 * Return tid of the oldest transaction in the journal and block in the journal 856 * where the transaction starts. 857 * 858 * If the journal is now empty, return which will be the next transaction ID 859 * we will write and where will that transaction start. 860 * 861 * The return value is 0 if journal tail cannot be pushed any further, 1 if 862 * it can. 863 */ 864 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid, 865 unsigned long *block) 866 { 867 transaction_t *transaction; 868 int ret; 869 870 read_lock(&journal->j_state_lock); 871 spin_lock(&journal->j_list_lock); 872 transaction = journal->j_checkpoint_transactions; 873 if (transaction) { 874 *tid = transaction->t_tid; 875 *block = transaction->t_log_start; 876 } else if ((transaction = journal->j_committing_transaction) != NULL) { 877 *tid = transaction->t_tid; 878 *block = transaction->t_log_start; 879 } else if ((transaction = journal->j_running_transaction) != NULL) { 880 *tid = transaction->t_tid; 881 *block = journal->j_head; 882 } else { 883 *tid = journal->j_transaction_sequence; 884 *block = journal->j_head; 885 } 886 ret = tid_gt(*tid, journal->j_tail_sequence); 887 spin_unlock(&journal->j_list_lock); 888 read_unlock(&journal->j_state_lock); 889 890 return ret; 891 } 892 893 /* 894 * Update information in journal structure and in on disk journal superblock 895 * about log tail. This function does not check whether information passed in 896 * really pushes log tail further. It's responsibility of the caller to make 897 * sure provided log tail information is valid (e.g. by holding 898 * j_checkpoint_mutex all the time between computing log tail and calling this 899 * function as is the case with jbd2_cleanup_journal_tail()). 900 * 901 * Requires j_checkpoint_mutex 902 */ 903 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block) 904 { 905 unsigned long freed; 906 int ret; 907 908 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 909 910 /* 911 * We cannot afford for write to remain in drive's caches since as 912 * soon as we update j_tail, next transaction can start reusing journal 913 * space and if we lose sb update during power failure we'd replay 914 * old transaction with possibly newly overwritten data. 915 */ 916 ret = jbd2_journal_update_sb_log_tail(journal, tid, block, WRITE_FUA); 917 if (ret) 918 goto out; 919 920 write_lock(&journal->j_state_lock); 921 freed = block - journal->j_tail; 922 if (block < journal->j_tail) 923 freed += journal->j_last - journal->j_first; 924 925 trace_jbd2_update_log_tail(journal, tid, block, freed); 926 jbd_debug(1, 927 "Cleaning journal tail from %d to %d (offset %lu), " 928 "freeing %lu\n", 929 journal->j_tail_sequence, tid, block, freed); 930 931 journal->j_free += freed; 932 journal->j_tail_sequence = tid; 933 journal->j_tail = block; 934 write_unlock(&journal->j_state_lock); 935 936 out: 937 return ret; 938 } 939 940 /* 941 * This is a variaon of __jbd2_update_log_tail which checks for validity of 942 * provided log tail and locks j_checkpoint_mutex. So it is safe against races 943 * with other threads updating log tail. 944 */ 945 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block) 946 { 947 mutex_lock(&journal->j_checkpoint_mutex); 948 if (tid_gt(tid, journal->j_tail_sequence)) 949 __jbd2_update_log_tail(journal, tid, block); 950 mutex_unlock(&journal->j_checkpoint_mutex); 951 } 952 953 struct jbd2_stats_proc_session { 954 journal_t *journal; 955 struct transaction_stats_s *stats; 956 int start; 957 int max; 958 }; 959 960 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos) 961 { 962 return *pos ? NULL : SEQ_START_TOKEN; 963 } 964 965 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos) 966 { 967 return NULL; 968 } 969 970 static int jbd2_seq_info_show(struct seq_file *seq, void *v) 971 { 972 struct jbd2_stats_proc_session *s = seq->private; 973 974 if (v != SEQ_START_TOKEN) 975 return 0; 976 seq_printf(seq, "%lu transactions (%lu requested), " 977 "each up to %u blocks\n", 978 s->stats->ts_tid, s->stats->ts_requested, 979 s->journal->j_max_transaction_buffers); 980 if (s->stats->ts_tid == 0) 981 return 0; 982 seq_printf(seq, "average: \n %ums waiting for transaction\n", 983 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid)); 984 seq_printf(seq, " %ums request delay\n", 985 (s->stats->ts_requested == 0) ? 0 : 986 jiffies_to_msecs(s->stats->run.rs_request_delay / 987 s->stats->ts_requested)); 988 seq_printf(seq, " %ums running transaction\n", 989 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid)); 990 seq_printf(seq, " %ums transaction was being locked\n", 991 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid)); 992 seq_printf(seq, " %ums flushing data (in ordered mode)\n", 993 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid)); 994 seq_printf(seq, " %ums logging transaction\n", 995 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid)); 996 seq_printf(seq, " %lluus average transaction commit time\n", 997 div_u64(s->journal->j_average_commit_time, 1000)); 998 seq_printf(seq, " %lu handles per transaction\n", 999 s->stats->run.rs_handle_count / s->stats->ts_tid); 1000 seq_printf(seq, " %lu blocks per transaction\n", 1001 s->stats->run.rs_blocks / s->stats->ts_tid); 1002 seq_printf(seq, " %lu logged blocks per transaction\n", 1003 s->stats->run.rs_blocks_logged / s->stats->ts_tid); 1004 return 0; 1005 } 1006 1007 static void jbd2_seq_info_stop(struct seq_file *seq, void *v) 1008 { 1009 } 1010 1011 static const struct seq_operations jbd2_seq_info_ops = { 1012 .start = jbd2_seq_info_start, 1013 .next = jbd2_seq_info_next, 1014 .stop = jbd2_seq_info_stop, 1015 .show = jbd2_seq_info_show, 1016 }; 1017 1018 static int jbd2_seq_info_open(struct inode *inode, struct file *file) 1019 { 1020 journal_t *journal = PDE_DATA(inode); 1021 struct jbd2_stats_proc_session *s; 1022 int rc, size; 1023 1024 s = kmalloc(sizeof(*s), GFP_KERNEL); 1025 if (s == NULL) 1026 return -ENOMEM; 1027 size = sizeof(struct transaction_stats_s); 1028 s->stats = kmalloc(size, GFP_KERNEL); 1029 if (s->stats == NULL) { 1030 kfree(s); 1031 return -ENOMEM; 1032 } 1033 spin_lock(&journal->j_history_lock); 1034 memcpy(s->stats, &journal->j_stats, size); 1035 s->journal = journal; 1036 spin_unlock(&journal->j_history_lock); 1037 1038 rc = seq_open(file, &jbd2_seq_info_ops); 1039 if (rc == 0) { 1040 struct seq_file *m = file->private_data; 1041 m->private = s; 1042 } else { 1043 kfree(s->stats); 1044 kfree(s); 1045 } 1046 return rc; 1047 1048 } 1049 1050 static int jbd2_seq_info_release(struct inode *inode, struct file *file) 1051 { 1052 struct seq_file *seq = file->private_data; 1053 struct jbd2_stats_proc_session *s = seq->private; 1054 kfree(s->stats); 1055 kfree(s); 1056 return seq_release(inode, file); 1057 } 1058 1059 static const struct file_operations jbd2_seq_info_fops = { 1060 .owner = THIS_MODULE, 1061 .open = jbd2_seq_info_open, 1062 .read = seq_read, 1063 .llseek = seq_lseek, 1064 .release = jbd2_seq_info_release, 1065 }; 1066 1067 static struct proc_dir_entry *proc_jbd2_stats; 1068 1069 static void jbd2_stats_proc_init(journal_t *journal) 1070 { 1071 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats); 1072 if (journal->j_proc_entry) { 1073 proc_create_data("info", S_IRUGO, journal->j_proc_entry, 1074 &jbd2_seq_info_fops, journal); 1075 } 1076 } 1077 1078 static void jbd2_stats_proc_exit(journal_t *journal) 1079 { 1080 remove_proc_entry("info", journal->j_proc_entry); 1081 remove_proc_entry(journal->j_devname, proc_jbd2_stats); 1082 } 1083 1084 /* 1085 * Management for journal control blocks: functions to create and 1086 * destroy journal_t structures, and to initialise and read existing 1087 * journal blocks from disk. */ 1088 1089 /* First: create and setup a journal_t object in memory. We initialise 1090 * very few fields yet: that has to wait until we have created the 1091 * journal structures from from scratch, or loaded them from disk. */ 1092 1093 static journal_t * journal_init_common (void) 1094 { 1095 static struct lock_class_key jbd2_trans_commit_key; 1096 journal_t *journal; 1097 int err; 1098 1099 journal = kzalloc(sizeof(*journal), GFP_KERNEL); 1100 if (!journal) 1101 return NULL; 1102 1103 init_waitqueue_head(&journal->j_wait_transaction_locked); 1104 init_waitqueue_head(&journal->j_wait_done_commit); 1105 init_waitqueue_head(&journal->j_wait_commit); 1106 init_waitqueue_head(&journal->j_wait_updates); 1107 init_waitqueue_head(&journal->j_wait_reserved); 1108 mutex_init(&journal->j_barrier); 1109 mutex_init(&journal->j_checkpoint_mutex); 1110 spin_lock_init(&journal->j_revoke_lock); 1111 spin_lock_init(&journal->j_list_lock); 1112 rwlock_init(&journal->j_state_lock); 1113 1114 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE); 1115 journal->j_min_batch_time = 0; 1116 journal->j_max_batch_time = 15000; /* 15ms */ 1117 atomic_set(&journal->j_reserved_credits, 0); 1118 1119 /* The journal is marked for error until we succeed with recovery! */ 1120 journal->j_flags = JBD2_ABORT; 1121 1122 /* Set up a default-sized revoke table for the new mount. */ 1123 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH); 1124 if (err) { 1125 kfree(journal); 1126 return NULL; 1127 } 1128 1129 spin_lock_init(&journal->j_history_lock); 1130 1131 lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle", 1132 &jbd2_trans_commit_key, 0); 1133 1134 return journal; 1135 } 1136 1137 /* jbd2_journal_init_dev and jbd2_journal_init_inode: 1138 * 1139 * Create a journal structure assigned some fixed set of disk blocks to 1140 * the journal. We don't actually touch those disk blocks yet, but we 1141 * need to set up all of the mapping information to tell the journaling 1142 * system where the journal blocks are. 1143 * 1144 */ 1145 1146 /** 1147 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure 1148 * @bdev: Block device on which to create the journal 1149 * @fs_dev: Device which hold journalled filesystem for this journal. 1150 * @start: Block nr Start of journal. 1151 * @len: Length of the journal in blocks. 1152 * @blocksize: blocksize of journalling device 1153 * 1154 * Returns: a newly created journal_t * 1155 * 1156 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous 1157 * range of blocks on an arbitrary block device. 1158 * 1159 */ 1160 journal_t * jbd2_journal_init_dev(struct block_device *bdev, 1161 struct block_device *fs_dev, 1162 unsigned long long start, int len, int blocksize) 1163 { 1164 journal_t *journal = journal_init_common(); 1165 struct buffer_head *bh; 1166 int n; 1167 1168 if (!journal) 1169 return NULL; 1170 1171 /* journal descriptor can store up to n blocks -bzzz */ 1172 journal->j_blocksize = blocksize; 1173 journal->j_dev = bdev; 1174 journal->j_fs_dev = fs_dev; 1175 journal->j_blk_offset = start; 1176 journal->j_maxlen = len; 1177 bdevname(journal->j_dev, journal->j_devname); 1178 strreplace(journal->j_devname, '/', '!'); 1179 jbd2_stats_proc_init(journal); 1180 n = journal->j_blocksize / sizeof(journal_block_tag_t); 1181 journal->j_wbufsize = n; 1182 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL); 1183 if (!journal->j_wbuf) { 1184 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n", 1185 __func__); 1186 goto out_err; 1187 } 1188 1189 bh = __getblk(journal->j_dev, start, journal->j_blocksize); 1190 if (!bh) { 1191 printk(KERN_ERR 1192 "%s: Cannot get buffer for journal superblock\n", 1193 __func__); 1194 goto out_err; 1195 } 1196 journal->j_sb_buffer = bh; 1197 journal->j_superblock = (journal_superblock_t *)bh->b_data; 1198 1199 return journal; 1200 out_err: 1201 kfree(journal->j_wbuf); 1202 jbd2_stats_proc_exit(journal); 1203 kfree(journal); 1204 return NULL; 1205 } 1206 1207 /** 1208 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode. 1209 * @inode: An inode to create the journal in 1210 * 1211 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as 1212 * the journal. The inode must exist already, must support bmap() and 1213 * must have all data blocks preallocated. 1214 */ 1215 journal_t * jbd2_journal_init_inode (struct inode *inode) 1216 { 1217 struct buffer_head *bh; 1218 journal_t *journal = journal_init_common(); 1219 char *p; 1220 int err; 1221 int n; 1222 unsigned long long blocknr; 1223 1224 if (!journal) 1225 return NULL; 1226 1227 journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev; 1228 journal->j_inode = inode; 1229 bdevname(journal->j_dev, journal->j_devname); 1230 p = strreplace(journal->j_devname, '/', '!'); 1231 sprintf(p, "-%lu", journal->j_inode->i_ino); 1232 jbd_debug(1, 1233 "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n", 1234 journal, inode->i_sb->s_id, inode->i_ino, 1235 (long long) inode->i_size, 1236 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize); 1237 1238 journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits; 1239 journal->j_blocksize = inode->i_sb->s_blocksize; 1240 jbd2_stats_proc_init(journal); 1241 1242 /* journal descriptor can store up to n blocks -bzzz */ 1243 n = journal->j_blocksize / sizeof(journal_block_tag_t); 1244 journal->j_wbufsize = n; 1245 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL); 1246 if (!journal->j_wbuf) { 1247 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n", 1248 __func__); 1249 goto out_err; 1250 } 1251 1252 err = jbd2_journal_bmap(journal, 0, &blocknr); 1253 /* If that failed, give up */ 1254 if (err) { 1255 printk(KERN_ERR "%s: Cannot locate journal superblock\n", 1256 __func__); 1257 goto out_err; 1258 } 1259 1260 bh = getblk_unmovable(journal->j_dev, blocknr, journal->j_blocksize); 1261 if (!bh) { 1262 printk(KERN_ERR 1263 "%s: Cannot get buffer for journal superblock\n", 1264 __func__); 1265 goto out_err; 1266 } 1267 journal->j_sb_buffer = bh; 1268 journal->j_superblock = (journal_superblock_t *)bh->b_data; 1269 1270 return journal; 1271 out_err: 1272 kfree(journal->j_wbuf); 1273 jbd2_stats_proc_exit(journal); 1274 kfree(journal); 1275 return NULL; 1276 } 1277 1278 /* 1279 * If the journal init or create aborts, we need to mark the journal 1280 * superblock as being NULL to prevent the journal destroy from writing 1281 * back a bogus superblock. 1282 */ 1283 static void journal_fail_superblock (journal_t *journal) 1284 { 1285 struct buffer_head *bh = journal->j_sb_buffer; 1286 brelse(bh); 1287 journal->j_sb_buffer = NULL; 1288 } 1289 1290 /* 1291 * Given a journal_t structure, initialise the various fields for 1292 * startup of a new journaling session. We use this both when creating 1293 * a journal, and after recovering an old journal to reset it for 1294 * subsequent use. 1295 */ 1296 1297 static int journal_reset(journal_t *journal) 1298 { 1299 journal_superblock_t *sb = journal->j_superblock; 1300 unsigned long long first, last; 1301 1302 first = be32_to_cpu(sb->s_first); 1303 last = be32_to_cpu(sb->s_maxlen); 1304 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) { 1305 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n", 1306 first, last); 1307 journal_fail_superblock(journal); 1308 return -EINVAL; 1309 } 1310 1311 journal->j_first = first; 1312 journal->j_last = last; 1313 1314 journal->j_head = first; 1315 journal->j_tail = first; 1316 journal->j_free = last - first; 1317 1318 journal->j_tail_sequence = journal->j_transaction_sequence; 1319 journal->j_commit_sequence = journal->j_transaction_sequence - 1; 1320 journal->j_commit_request = journal->j_commit_sequence; 1321 1322 journal->j_max_transaction_buffers = journal->j_maxlen / 4; 1323 1324 /* 1325 * As a special case, if the on-disk copy is already marked as needing 1326 * no recovery (s_start == 0), then we can safely defer the superblock 1327 * update until the next commit by setting JBD2_FLUSHED. This avoids 1328 * attempting a write to a potential-readonly device. 1329 */ 1330 if (sb->s_start == 0) { 1331 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb " 1332 "(start %ld, seq %d, errno %d)\n", 1333 journal->j_tail, journal->j_tail_sequence, 1334 journal->j_errno); 1335 journal->j_flags |= JBD2_FLUSHED; 1336 } else { 1337 /* Lock here to make assertions happy... */ 1338 mutex_lock(&journal->j_checkpoint_mutex); 1339 /* 1340 * Update log tail information. We use WRITE_FUA since new 1341 * transaction will start reusing journal space and so we 1342 * must make sure information about current log tail is on 1343 * disk before that. 1344 */ 1345 jbd2_journal_update_sb_log_tail(journal, 1346 journal->j_tail_sequence, 1347 journal->j_tail, 1348 WRITE_FUA); 1349 mutex_unlock(&journal->j_checkpoint_mutex); 1350 } 1351 return jbd2_journal_start_thread(journal); 1352 } 1353 1354 static int jbd2_write_superblock(journal_t *journal, int write_flags) 1355 { 1356 struct buffer_head *bh = journal->j_sb_buffer; 1357 journal_superblock_t *sb = journal->j_superblock; 1358 int ret; 1359 1360 trace_jbd2_write_superblock(journal, write_flags); 1361 if (!(journal->j_flags & JBD2_BARRIER)) 1362 write_flags &= ~(REQ_FUA | REQ_PREFLUSH); 1363 lock_buffer(bh); 1364 if (buffer_write_io_error(bh)) { 1365 /* 1366 * Oh, dear. A previous attempt to write the journal 1367 * superblock failed. This could happen because the 1368 * USB device was yanked out. Or it could happen to 1369 * be a transient write error and maybe the block will 1370 * be remapped. Nothing we can do but to retry the 1371 * write and hope for the best. 1372 */ 1373 printk(KERN_ERR "JBD2: previous I/O error detected " 1374 "for journal superblock update for %s.\n", 1375 journal->j_devname); 1376 clear_buffer_write_io_error(bh); 1377 set_buffer_uptodate(bh); 1378 } 1379 jbd2_superblock_csum_set(journal, sb); 1380 get_bh(bh); 1381 bh->b_end_io = end_buffer_write_sync; 1382 ret = submit_bh(REQ_OP_WRITE, write_flags, bh); 1383 wait_on_buffer(bh); 1384 if (buffer_write_io_error(bh)) { 1385 clear_buffer_write_io_error(bh); 1386 set_buffer_uptodate(bh); 1387 ret = -EIO; 1388 } 1389 if (ret) { 1390 printk(KERN_ERR "JBD2: Error %d detected when updating " 1391 "journal superblock for %s.\n", ret, 1392 journal->j_devname); 1393 jbd2_journal_abort(journal, ret); 1394 } 1395 1396 return ret; 1397 } 1398 1399 /** 1400 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk. 1401 * @journal: The journal to update. 1402 * @tail_tid: TID of the new transaction at the tail of the log 1403 * @tail_block: The first block of the transaction at the tail of the log 1404 * @write_op: With which operation should we write the journal sb 1405 * 1406 * Update a journal's superblock information about log tail and write it to 1407 * disk, waiting for the IO to complete. 1408 */ 1409 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid, 1410 unsigned long tail_block, int write_op) 1411 { 1412 journal_superblock_t *sb = journal->j_superblock; 1413 int ret; 1414 1415 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1416 jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n", 1417 tail_block, tail_tid); 1418 1419 sb->s_sequence = cpu_to_be32(tail_tid); 1420 sb->s_start = cpu_to_be32(tail_block); 1421 1422 ret = jbd2_write_superblock(journal, write_op); 1423 if (ret) 1424 goto out; 1425 1426 /* Log is no longer empty */ 1427 write_lock(&journal->j_state_lock); 1428 WARN_ON(!sb->s_sequence); 1429 journal->j_flags &= ~JBD2_FLUSHED; 1430 write_unlock(&journal->j_state_lock); 1431 1432 out: 1433 return ret; 1434 } 1435 1436 /** 1437 * jbd2_mark_journal_empty() - Mark on disk journal as empty. 1438 * @journal: The journal to update. 1439 * @write_op: With which operation should we write the journal sb 1440 * 1441 * Update a journal's dynamic superblock fields to show that journal is empty. 1442 * Write updated superblock to disk waiting for IO to complete. 1443 */ 1444 static void jbd2_mark_journal_empty(journal_t *journal, int write_op) 1445 { 1446 journal_superblock_t *sb = journal->j_superblock; 1447 1448 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1449 read_lock(&journal->j_state_lock); 1450 /* Is it already empty? */ 1451 if (sb->s_start == 0) { 1452 read_unlock(&journal->j_state_lock); 1453 return; 1454 } 1455 jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n", 1456 journal->j_tail_sequence); 1457 1458 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence); 1459 sb->s_start = cpu_to_be32(0); 1460 read_unlock(&journal->j_state_lock); 1461 1462 jbd2_write_superblock(journal, write_op); 1463 1464 /* Log is no longer empty */ 1465 write_lock(&journal->j_state_lock); 1466 journal->j_flags |= JBD2_FLUSHED; 1467 write_unlock(&journal->j_state_lock); 1468 } 1469 1470 1471 /** 1472 * jbd2_journal_update_sb_errno() - Update error in the journal. 1473 * @journal: The journal to update. 1474 * 1475 * Update a journal's errno. Write updated superblock to disk waiting for IO 1476 * to complete. 1477 */ 1478 void jbd2_journal_update_sb_errno(journal_t *journal) 1479 { 1480 journal_superblock_t *sb = journal->j_superblock; 1481 1482 read_lock(&journal->j_state_lock); 1483 jbd_debug(1, "JBD2: updating superblock error (errno %d)\n", 1484 journal->j_errno); 1485 sb->s_errno = cpu_to_be32(journal->j_errno); 1486 read_unlock(&journal->j_state_lock); 1487 1488 jbd2_write_superblock(journal, WRITE_FUA); 1489 } 1490 EXPORT_SYMBOL(jbd2_journal_update_sb_errno); 1491 1492 /* 1493 * Read the superblock for a given journal, performing initial 1494 * validation of the format. 1495 */ 1496 static int journal_get_superblock(journal_t *journal) 1497 { 1498 struct buffer_head *bh; 1499 journal_superblock_t *sb; 1500 int err = -EIO; 1501 1502 bh = journal->j_sb_buffer; 1503 1504 J_ASSERT(bh != NULL); 1505 if (!buffer_uptodate(bh)) { 1506 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 1507 wait_on_buffer(bh); 1508 if (!buffer_uptodate(bh)) { 1509 printk(KERN_ERR 1510 "JBD2: IO error reading journal superblock\n"); 1511 goto out; 1512 } 1513 } 1514 1515 if (buffer_verified(bh)) 1516 return 0; 1517 1518 sb = journal->j_superblock; 1519 1520 err = -EINVAL; 1521 1522 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) || 1523 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) { 1524 printk(KERN_WARNING "JBD2: no valid journal superblock found\n"); 1525 goto out; 1526 } 1527 1528 switch(be32_to_cpu(sb->s_header.h_blocktype)) { 1529 case JBD2_SUPERBLOCK_V1: 1530 journal->j_format_version = 1; 1531 break; 1532 case JBD2_SUPERBLOCK_V2: 1533 journal->j_format_version = 2; 1534 break; 1535 default: 1536 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n"); 1537 goto out; 1538 } 1539 1540 if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen) 1541 journal->j_maxlen = be32_to_cpu(sb->s_maxlen); 1542 else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) { 1543 printk(KERN_WARNING "JBD2: journal file too short\n"); 1544 goto out; 1545 } 1546 1547 if (be32_to_cpu(sb->s_first) == 0 || 1548 be32_to_cpu(sb->s_first) >= journal->j_maxlen) { 1549 printk(KERN_WARNING 1550 "JBD2: Invalid start block of journal: %u\n", 1551 be32_to_cpu(sb->s_first)); 1552 goto out; 1553 } 1554 1555 if (jbd2_has_feature_csum2(journal) && 1556 jbd2_has_feature_csum3(journal)) { 1557 /* Can't have checksum v2 and v3 at the same time! */ 1558 printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 " 1559 "at the same time!\n"); 1560 goto out; 1561 } 1562 1563 if (jbd2_journal_has_csum_v2or3_feature(journal) && 1564 jbd2_has_feature_checksum(journal)) { 1565 /* Can't have checksum v1 and v2 on at the same time! */ 1566 printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 " 1567 "at the same time!\n"); 1568 goto out; 1569 } 1570 1571 if (!jbd2_verify_csum_type(journal, sb)) { 1572 printk(KERN_ERR "JBD2: Unknown checksum type\n"); 1573 goto out; 1574 } 1575 1576 /* Load the checksum driver */ 1577 if (jbd2_journal_has_csum_v2or3_feature(journal)) { 1578 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 1579 if (IS_ERR(journal->j_chksum_driver)) { 1580 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n"); 1581 err = PTR_ERR(journal->j_chksum_driver); 1582 journal->j_chksum_driver = NULL; 1583 goto out; 1584 } 1585 } 1586 1587 /* Check superblock checksum */ 1588 if (!jbd2_superblock_csum_verify(journal, sb)) { 1589 printk(KERN_ERR "JBD2: journal checksum error\n"); 1590 err = -EFSBADCRC; 1591 goto out; 1592 } 1593 1594 /* Precompute checksum seed for all metadata */ 1595 if (jbd2_journal_has_csum_v2or3(journal)) 1596 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid, 1597 sizeof(sb->s_uuid)); 1598 1599 set_buffer_verified(bh); 1600 1601 return 0; 1602 1603 out: 1604 journal_fail_superblock(journal); 1605 return err; 1606 } 1607 1608 /* 1609 * Load the on-disk journal superblock and read the key fields into the 1610 * journal_t. 1611 */ 1612 1613 static int load_superblock(journal_t *journal) 1614 { 1615 int err; 1616 journal_superblock_t *sb; 1617 1618 err = journal_get_superblock(journal); 1619 if (err) 1620 return err; 1621 1622 sb = journal->j_superblock; 1623 1624 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence); 1625 journal->j_tail = be32_to_cpu(sb->s_start); 1626 journal->j_first = be32_to_cpu(sb->s_first); 1627 journal->j_last = be32_to_cpu(sb->s_maxlen); 1628 journal->j_errno = be32_to_cpu(sb->s_errno); 1629 1630 return 0; 1631 } 1632 1633 1634 /** 1635 * int jbd2_journal_load() - Read journal from disk. 1636 * @journal: Journal to act on. 1637 * 1638 * Given a journal_t structure which tells us which disk blocks contain 1639 * a journal, read the journal from disk to initialise the in-memory 1640 * structures. 1641 */ 1642 int jbd2_journal_load(journal_t *journal) 1643 { 1644 int err; 1645 journal_superblock_t *sb; 1646 1647 err = load_superblock(journal); 1648 if (err) 1649 return err; 1650 1651 sb = journal->j_superblock; 1652 /* If this is a V2 superblock, then we have to check the 1653 * features flags on it. */ 1654 1655 if (journal->j_format_version >= 2) { 1656 if ((sb->s_feature_ro_compat & 1657 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) || 1658 (sb->s_feature_incompat & 1659 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) { 1660 printk(KERN_WARNING 1661 "JBD2: Unrecognised features on journal\n"); 1662 return -EINVAL; 1663 } 1664 } 1665 1666 /* 1667 * Create a slab for this blocksize 1668 */ 1669 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize)); 1670 if (err) 1671 return err; 1672 1673 /* Let the recovery code check whether it needs to recover any 1674 * data from the journal. */ 1675 if (jbd2_journal_recover(journal)) 1676 goto recovery_error; 1677 1678 if (journal->j_failed_commit) { 1679 printk(KERN_ERR "JBD2: journal transaction %u on %s " 1680 "is corrupt.\n", journal->j_failed_commit, 1681 journal->j_devname); 1682 return -EFSCORRUPTED; 1683 } 1684 1685 /* OK, we've finished with the dynamic journal bits: 1686 * reinitialise the dynamic contents of the superblock in memory 1687 * and reset them on disk. */ 1688 if (journal_reset(journal)) 1689 goto recovery_error; 1690 1691 journal->j_flags &= ~JBD2_ABORT; 1692 journal->j_flags |= JBD2_LOADED; 1693 return 0; 1694 1695 recovery_error: 1696 printk(KERN_WARNING "JBD2: recovery failed\n"); 1697 return -EIO; 1698 } 1699 1700 /** 1701 * void jbd2_journal_destroy() - Release a journal_t structure. 1702 * @journal: Journal to act on. 1703 * 1704 * Release a journal_t structure once it is no longer in use by the 1705 * journaled object. 1706 * Return <0 if we couldn't clean up the journal. 1707 */ 1708 int jbd2_journal_destroy(journal_t *journal) 1709 { 1710 int err = 0; 1711 1712 /* Wait for the commit thread to wake up and die. */ 1713 journal_kill_thread(journal); 1714 1715 /* Force a final log commit */ 1716 if (journal->j_running_transaction) 1717 jbd2_journal_commit_transaction(journal); 1718 1719 /* Force any old transactions to disk */ 1720 1721 /* Totally anal locking here... */ 1722 spin_lock(&journal->j_list_lock); 1723 while (journal->j_checkpoint_transactions != NULL) { 1724 spin_unlock(&journal->j_list_lock); 1725 mutex_lock(&journal->j_checkpoint_mutex); 1726 err = jbd2_log_do_checkpoint(journal); 1727 mutex_unlock(&journal->j_checkpoint_mutex); 1728 /* 1729 * If checkpointing failed, just free the buffers to avoid 1730 * looping forever 1731 */ 1732 if (err) { 1733 jbd2_journal_destroy_checkpoint(journal); 1734 spin_lock(&journal->j_list_lock); 1735 break; 1736 } 1737 spin_lock(&journal->j_list_lock); 1738 } 1739 1740 J_ASSERT(journal->j_running_transaction == NULL); 1741 J_ASSERT(journal->j_committing_transaction == NULL); 1742 J_ASSERT(journal->j_checkpoint_transactions == NULL); 1743 spin_unlock(&journal->j_list_lock); 1744 1745 if (journal->j_sb_buffer) { 1746 if (!is_journal_aborted(journal)) { 1747 mutex_lock(&journal->j_checkpoint_mutex); 1748 1749 write_lock(&journal->j_state_lock); 1750 journal->j_tail_sequence = 1751 ++journal->j_transaction_sequence; 1752 write_unlock(&journal->j_state_lock); 1753 1754 jbd2_mark_journal_empty(journal, WRITE_FLUSH_FUA); 1755 mutex_unlock(&journal->j_checkpoint_mutex); 1756 } else 1757 err = -EIO; 1758 brelse(journal->j_sb_buffer); 1759 } 1760 1761 if (journal->j_proc_entry) 1762 jbd2_stats_proc_exit(journal); 1763 iput(journal->j_inode); 1764 if (journal->j_revoke) 1765 jbd2_journal_destroy_revoke(journal); 1766 if (journal->j_chksum_driver) 1767 crypto_free_shash(journal->j_chksum_driver); 1768 kfree(journal->j_wbuf); 1769 kfree(journal); 1770 1771 return err; 1772 } 1773 1774 1775 /** 1776 *int jbd2_journal_check_used_features () - Check if features specified are used. 1777 * @journal: Journal to check. 1778 * @compat: bitmask of compatible features 1779 * @ro: bitmask of features that force read-only mount 1780 * @incompat: bitmask of incompatible features 1781 * 1782 * Check whether the journal uses all of a given set of 1783 * features. Return true (non-zero) if it does. 1784 **/ 1785 1786 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat, 1787 unsigned long ro, unsigned long incompat) 1788 { 1789 journal_superblock_t *sb; 1790 1791 if (!compat && !ro && !incompat) 1792 return 1; 1793 /* Load journal superblock if it is not loaded yet. */ 1794 if (journal->j_format_version == 0 && 1795 journal_get_superblock(journal) != 0) 1796 return 0; 1797 if (journal->j_format_version == 1) 1798 return 0; 1799 1800 sb = journal->j_superblock; 1801 1802 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) && 1803 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) && 1804 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat)) 1805 return 1; 1806 1807 return 0; 1808 } 1809 1810 /** 1811 * int jbd2_journal_check_available_features() - Check feature set in journalling layer 1812 * @journal: Journal to check. 1813 * @compat: bitmask of compatible features 1814 * @ro: bitmask of features that force read-only mount 1815 * @incompat: bitmask of incompatible features 1816 * 1817 * Check whether the journaling code supports the use of 1818 * all of a given set of features on this journal. Return true 1819 * (non-zero) if it can. */ 1820 1821 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat, 1822 unsigned long ro, unsigned long incompat) 1823 { 1824 if (!compat && !ro && !incompat) 1825 return 1; 1826 1827 /* We can support any known requested features iff the 1828 * superblock is in version 2. Otherwise we fail to support any 1829 * extended sb features. */ 1830 1831 if (journal->j_format_version != 2) 1832 return 0; 1833 1834 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat && 1835 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro && 1836 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat) 1837 return 1; 1838 1839 return 0; 1840 } 1841 1842 /** 1843 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock 1844 * @journal: Journal to act on. 1845 * @compat: bitmask of compatible features 1846 * @ro: bitmask of features that force read-only mount 1847 * @incompat: bitmask of incompatible features 1848 * 1849 * Mark a given journal feature as present on the 1850 * superblock. Returns true if the requested features could be set. 1851 * 1852 */ 1853 1854 int jbd2_journal_set_features (journal_t *journal, unsigned long compat, 1855 unsigned long ro, unsigned long incompat) 1856 { 1857 #define INCOMPAT_FEATURE_ON(f) \ 1858 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f))) 1859 #define COMPAT_FEATURE_ON(f) \ 1860 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f))) 1861 journal_superblock_t *sb; 1862 1863 if (jbd2_journal_check_used_features(journal, compat, ro, incompat)) 1864 return 1; 1865 1866 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat)) 1867 return 0; 1868 1869 /* If enabling v2 checksums, turn on v3 instead */ 1870 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) { 1871 incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2; 1872 incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3; 1873 } 1874 1875 /* Asking for checksumming v3 and v1? Only give them v3. */ 1876 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 && 1877 compat & JBD2_FEATURE_COMPAT_CHECKSUM) 1878 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM; 1879 1880 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n", 1881 compat, ro, incompat); 1882 1883 sb = journal->j_superblock; 1884 1885 /* If enabling v3 checksums, update superblock */ 1886 if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) { 1887 sb->s_checksum_type = JBD2_CRC32C_CHKSUM; 1888 sb->s_feature_compat &= 1889 ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM); 1890 1891 /* Load the checksum driver */ 1892 if (journal->j_chksum_driver == NULL) { 1893 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 1894 0, 0); 1895 if (IS_ERR(journal->j_chksum_driver)) { 1896 printk(KERN_ERR "JBD2: Cannot load crc32c " 1897 "driver.\n"); 1898 journal->j_chksum_driver = NULL; 1899 return 0; 1900 } 1901 1902 /* Precompute checksum seed for all metadata */ 1903 journal->j_csum_seed = jbd2_chksum(journal, ~0, 1904 sb->s_uuid, 1905 sizeof(sb->s_uuid)); 1906 } 1907 } 1908 1909 /* If enabling v1 checksums, downgrade superblock */ 1910 if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM)) 1911 sb->s_feature_incompat &= 1912 ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 | 1913 JBD2_FEATURE_INCOMPAT_CSUM_V3); 1914 1915 sb->s_feature_compat |= cpu_to_be32(compat); 1916 sb->s_feature_ro_compat |= cpu_to_be32(ro); 1917 sb->s_feature_incompat |= cpu_to_be32(incompat); 1918 1919 return 1; 1920 #undef COMPAT_FEATURE_ON 1921 #undef INCOMPAT_FEATURE_ON 1922 } 1923 1924 /* 1925 * jbd2_journal_clear_features () - Clear a given journal feature in the 1926 * superblock 1927 * @journal: Journal to act on. 1928 * @compat: bitmask of compatible features 1929 * @ro: bitmask of features that force read-only mount 1930 * @incompat: bitmask of incompatible features 1931 * 1932 * Clear a given journal feature as present on the 1933 * superblock. 1934 */ 1935 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat, 1936 unsigned long ro, unsigned long incompat) 1937 { 1938 journal_superblock_t *sb; 1939 1940 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n", 1941 compat, ro, incompat); 1942 1943 sb = journal->j_superblock; 1944 1945 sb->s_feature_compat &= ~cpu_to_be32(compat); 1946 sb->s_feature_ro_compat &= ~cpu_to_be32(ro); 1947 sb->s_feature_incompat &= ~cpu_to_be32(incompat); 1948 } 1949 EXPORT_SYMBOL(jbd2_journal_clear_features); 1950 1951 /** 1952 * int jbd2_journal_flush () - Flush journal 1953 * @journal: Journal to act on. 1954 * 1955 * Flush all data for a given journal to disk and empty the journal. 1956 * Filesystems can use this when remounting readonly to ensure that 1957 * recovery does not need to happen on remount. 1958 */ 1959 1960 int jbd2_journal_flush(journal_t *journal) 1961 { 1962 int err = 0; 1963 transaction_t *transaction = NULL; 1964 1965 write_lock(&journal->j_state_lock); 1966 1967 /* Force everything buffered to the log... */ 1968 if (journal->j_running_transaction) { 1969 transaction = journal->j_running_transaction; 1970 __jbd2_log_start_commit(journal, transaction->t_tid); 1971 } else if (journal->j_committing_transaction) 1972 transaction = journal->j_committing_transaction; 1973 1974 /* Wait for the log commit to complete... */ 1975 if (transaction) { 1976 tid_t tid = transaction->t_tid; 1977 1978 write_unlock(&journal->j_state_lock); 1979 jbd2_log_wait_commit(journal, tid); 1980 } else { 1981 write_unlock(&journal->j_state_lock); 1982 } 1983 1984 /* ...and flush everything in the log out to disk. */ 1985 spin_lock(&journal->j_list_lock); 1986 while (!err && journal->j_checkpoint_transactions != NULL) { 1987 spin_unlock(&journal->j_list_lock); 1988 mutex_lock(&journal->j_checkpoint_mutex); 1989 err = jbd2_log_do_checkpoint(journal); 1990 mutex_unlock(&journal->j_checkpoint_mutex); 1991 spin_lock(&journal->j_list_lock); 1992 } 1993 spin_unlock(&journal->j_list_lock); 1994 1995 if (is_journal_aborted(journal)) 1996 return -EIO; 1997 1998 mutex_lock(&journal->j_checkpoint_mutex); 1999 if (!err) { 2000 err = jbd2_cleanup_journal_tail(journal); 2001 if (err < 0) { 2002 mutex_unlock(&journal->j_checkpoint_mutex); 2003 goto out; 2004 } 2005 err = 0; 2006 } 2007 2008 /* Finally, mark the journal as really needing no recovery. 2009 * This sets s_start==0 in the underlying superblock, which is 2010 * the magic code for a fully-recovered superblock. Any future 2011 * commits of data to the journal will restore the current 2012 * s_start value. */ 2013 jbd2_mark_journal_empty(journal, WRITE_FUA); 2014 mutex_unlock(&journal->j_checkpoint_mutex); 2015 write_lock(&journal->j_state_lock); 2016 J_ASSERT(!journal->j_running_transaction); 2017 J_ASSERT(!journal->j_committing_transaction); 2018 J_ASSERT(!journal->j_checkpoint_transactions); 2019 J_ASSERT(journal->j_head == journal->j_tail); 2020 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence); 2021 write_unlock(&journal->j_state_lock); 2022 out: 2023 return err; 2024 } 2025 2026 /** 2027 * int jbd2_journal_wipe() - Wipe journal contents 2028 * @journal: Journal to act on. 2029 * @write: flag (see below) 2030 * 2031 * Wipe out all of the contents of a journal, safely. This will produce 2032 * a warning if the journal contains any valid recovery information. 2033 * Must be called between journal_init_*() and jbd2_journal_load(). 2034 * 2035 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise 2036 * we merely suppress recovery. 2037 */ 2038 2039 int jbd2_journal_wipe(journal_t *journal, int write) 2040 { 2041 int err = 0; 2042 2043 J_ASSERT (!(journal->j_flags & JBD2_LOADED)); 2044 2045 err = load_superblock(journal); 2046 if (err) 2047 return err; 2048 2049 if (!journal->j_tail) 2050 goto no_recovery; 2051 2052 printk(KERN_WARNING "JBD2: %s recovery information on journal\n", 2053 write ? "Clearing" : "Ignoring"); 2054 2055 err = jbd2_journal_skip_recovery(journal); 2056 if (write) { 2057 /* Lock to make assertions happy... */ 2058 mutex_lock(&journal->j_checkpoint_mutex); 2059 jbd2_mark_journal_empty(journal, WRITE_FUA); 2060 mutex_unlock(&journal->j_checkpoint_mutex); 2061 } 2062 2063 no_recovery: 2064 return err; 2065 } 2066 2067 /* 2068 * Journal abort has very specific semantics, which we describe 2069 * for journal abort. 2070 * 2071 * Two internal functions, which provide abort to the jbd layer 2072 * itself are here. 2073 */ 2074 2075 /* 2076 * Quick version for internal journal use (doesn't lock the journal). 2077 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else, 2078 * and don't attempt to make any other journal updates. 2079 */ 2080 void __jbd2_journal_abort_hard(journal_t *journal) 2081 { 2082 transaction_t *transaction; 2083 2084 if (journal->j_flags & JBD2_ABORT) 2085 return; 2086 2087 printk(KERN_ERR "Aborting journal on device %s.\n", 2088 journal->j_devname); 2089 2090 write_lock(&journal->j_state_lock); 2091 journal->j_flags |= JBD2_ABORT; 2092 transaction = journal->j_running_transaction; 2093 if (transaction) 2094 __jbd2_log_start_commit(journal, transaction->t_tid); 2095 write_unlock(&journal->j_state_lock); 2096 } 2097 2098 /* Soft abort: record the abort error status in the journal superblock, 2099 * but don't do any other IO. */ 2100 static void __journal_abort_soft (journal_t *journal, int errno) 2101 { 2102 if (journal->j_flags & JBD2_ABORT) 2103 return; 2104 2105 if (!journal->j_errno) 2106 journal->j_errno = errno; 2107 2108 __jbd2_journal_abort_hard(journal); 2109 2110 if (errno) { 2111 jbd2_journal_update_sb_errno(journal); 2112 write_lock(&journal->j_state_lock); 2113 journal->j_flags |= JBD2_REC_ERR; 2114 write_unlock(&journal->j_state_lock); 2115 } 2116 } 2117 2118 /** 2119 * void jbd2_journal_abort () - Shutdown the journal immediately. 2120 * @journal: the journal to shutdown. 2121 * @errno: an error number to record in the journal indicating 2122 * the reason for the shutdown. 2123 * 2124 * Perform a complete, immediate shutdown of the ENTIRE 2125 * journal (not of a single transaction). This operation cannot be 2126 * undone without closing and reopening the journal. 2127 * 2128 * The jbd2_journal_abort function is intended to support higher level error 2129 * recovery mechanisms such as the ext2/ext3 remount-readonly error 2130 * mode. 2131 * 2132 * Journal abort has very specific semantics. Any existing dirty, 2133 * unjournaled buffers in the main filesystem will still be written to 2134 * disk by bdflush, but the journaling mechanism will be suspended 2135 * immediately and no further transaction commits will be honoured. 2136 * 2137 * Any dirty, journaled buffers will be written back to disk without 2138 * hitting the journal. Atomicity cannot be guaranteed on an aborted 2139 * filesystem, but we _do_ attempt to leave as much data as possible 2140 * behind for fsck to use for cleanup. 2141 * 2142 * Any attempt to get a new transaction handle on a journal which is in 2143 * ABORT state will just result in an -EROFS error return. A 2144 * jbd2_journal_stop on an existing handle will return -EIO if we have 2145 * entered abort state during the update. 2146 * 2147 * Recursive transactions are not disturbed by journal abort until the 2148 * final jbd2_journal_stop, which will receive the -EIO error. 2149 * 2150 * Finally, the jbd2_journal_abort call allows the caller to supply an errno 2151 * which will be recorded (if possible) in the journal superblock. This 2152 * allows a client to record failure conditions in the middle of a 2153 * transaction without having to complete the transaction to record the 2154 * failure to disk. ext3_error, for example, now uses this 2155 * functionality. 2156 * 2157 * Errors which originate from within the journaling layer will NOT 2158 * supply an errno; a null errno implies that absolutely no further 2159 * writes are done to the journal (unless there are any already in 2160 * progress). 2161 * 2162 */ 2163 2164 void jbd2_journal_abort(journal_t *journal, int errno) 2165 { 2166 __journal_abort_soft(journal, errno); 2167 } 2168 2169 /** 2170 * int jbd2_journal_errno () - returns the journal's error state. 2171 * @journal: journal to examine. 2172 * 2173 * This is the errno number set with jbd2_journal_abort(), the last 2174 * time the journal was mounted - if the journal was stopped 2175 * without calling abort this will be 0. 2176 * 2177 * If the journal has been aborted on this mount time -EROFS will 2178 * be returned. 2179 */ 2180 int jbd2_journal_errno(journal_t *journal) 2181 { 2182 int err; 2183 2184 read_lock(&journal->j_state_lock); 2185 if (journal->j_flags & JBD2_ABORT) 2186 err = -EROFS; 2187 else 2188 err = journal->j_errno; 2189 read_unlock(&journal->j_state_lock); 2190 return err; 2191 } 2192 2193 /** 2194 * int jbd2_journal_clear_err () - clears the journal's error state 2195 * @journal: journal to act on. 2196 * 2197 * An error must be cleared or acked to take a FS out of readonly 2198 * mode. 2199 */ 2200 int jbd2_journal_clear_err(journal_t *journal) 2201 { 2202 int err = 0; 2203 2204 write_lock(&journal->j_state_lock); 2205 if (journal->j_flags & JBD2_ABORT) 2206 err = -EROFS; 2207 else 2208 journal->j_errno = 0; 2209 write_unlock(&journal->j_state_lock); 2210 return err; 2211 } 2212 2213 /** 2214 * void jbd2_journal_ack_err() - Ack journal err. 2215 * @journal: journal to act on. 2216 * 2217 * An error must be cleared or acked to take a FS out of readonly 2218 * mode. 2219 */ 2220 void jbd2_journal_ack_err(journal_t *journal) 2221 { 2222 write_lock(&journal->j_state_lock); 2223 if (journal->j_errno) 2224 journal->j_flags |= JBD2_ACK_ERR; 2225 write_unlock(&journal->j_state_lock); 2226 } 2227 2228 int jbd2_journal_blocks_per_page(struct inode *inode) 2229 { 2230 return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 2231 } 2232 2233 /* 2234 * helper functions to deal with 32 or 64bit block numbers. 2235 */ 2236 size_t journal_tag_bytes(journal_t *journal) 2237 { 2238 size_t sz; 2239 2240 if (jbd2_has_feature_csum3(journal)) 2241 return sizeof(journal_block_tag3_t); 2242 2243 sz = sizeof(journal_block_tag_t); 2244 2245 if (jbd2_has_feature_csum2(journal)) 2246 sz += sizeof(__u16); 2247 2248 if (jbd2_has_feature_64bit(journal)) 2249 return sz; 2250 else 2251 return sz - sizeof(__u32); 2252 } 2253 2254 /* 2255 * JBD memory management 2256 * 2257 * These functions are used to allocate block-sized chunks of memory 2258 * used for making copies of buffer_head data. Very often it will be 2259 * page-sized chunks of data, but sometimes it will be in 2260 * sub-page-size chunks. (For example, 16k pages on Power systems 2261 * with a 4k block file system.) For blocks smaller than a page, we 2262 * use a SLAB allocator. There are slab caches for each block size, 2263 * which are allocated at mount time, if necessary, and we only free 2264 * (all of) the slab caches when/if the jbd2 module is unloaded. For 2265 * this reason we don't need to a mutex to protect access to 2266 * jbd2_slab[] allocating or releasing memory; only in 2267 * jbd2_journal_create_slab(). 2268 */ 2269 #define JBD2_MAX_SLABS 8 2270 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS]; 2271 2272 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = { 2273 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k", 2274 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k" 2275 }; 2276 2277 2278 static void jbd2_journal_destroy_slabs(void) 2279 { 2280 int i; 2281 2282 for (i = 0; i < JBD2_MAX_SLABS; i++) { 2283 if (jbd2_slab[i]) 2284 kmem_cache_destroy(jbd2_slab[i]); 2285 jbd2_slab[i] = NULL; 2286 } 2287 } 2288 2289 static int jbd2_journal_create_slab(size_t size) 2290 { 2291 static DEFINE_MUTEX(jbd2_slab_create_mutex); 2292 int i = order_base_2(size) - 10; 2293 size_t slab_size; 2294 2295 if (size == PAGE_SIZE) 2296 return 0; 2297 2298 if (i >= JBD2_MAX_SLABS) 2299 return -EINVAL; 2300 2301 if (unlikely(i < 0)) 2302 i = 0; 2303 mutex_lock(&jbd2_slab_create_mutex); 2304 if (jbd2_slab[i]) { 2305 mutex_unlock(&jbd2_slab_create_mutex); 2306 return 0; /* Already created */ 2307 } 2308 2309 slab_size = 1 << (i+10); 2310 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size, 2311 slab_size, 0, NULL); 2312 mutex_unlock(&jbd2_slab_create_mutex); 2313 if (!jbd2_slab[i]) { 2314 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n"); 2315 return -ENOMEM; 2316 } 2317 return 0; 2318 } 2319 2320 static struct kmem_cache *get_slab(size_t size) 2321 { 2322 int i = order_base_2(size) - 10; 2323 2324 BUG_ON(i >= JBD2_MAX_SLABS); 2325 if (unlikely(i < 0)) 2326 i = 0; 2327 BUG_ON(jbd2_slab[i] == NULL); 2328 return jbd2_slab[i]; 2329 } 2330 2331 void *jbd2_alloc(size_t size, gfp_t flags) 2332 { 2333 void *ptr; 2334 2335 BUG_ON(size & (size-1)); /* Must be a power of 2 */ 2336 2337 if (size < PAGE_SIZE) 2338 ptr = kmem_cache_alloc(get_slab(size), flags); 2339 else 2340 ptr = (void *)__get_free_pages(flags, get_order(size)); 2341 2342 /* Check alignment; SLUB has gotten this wrong in the past, 2343 * and this can lead to user data corruption! */ 2344 BUG_ON(((unsigned long) ptr) & (size-1)); 2345 2346 return ptr; 2347 } 2348 2349 void jbd2_free(void *ptr, size_t size) 2350 { 2351 if (size < PAGE_SIZE) 2352 kmem_cache_free(get_slab(size), ptr); 2353 else 2354 free_pages((unsigned long)ptr, get_order(size)); 2355 }; 2356 2357 /* 2358 * Journal_head storage management 2359 */ 2360 static struct kmem_cache *jbd2_journal_head_cache; 2361 #ifdef CONFIG_JBD2_DEBUG 2362 static atomic_t nr_journal_heads = ATOMIC_INIT(0); 2363 #endif 2364 2365 static int jbd2_journal_init_journal_head_cache(void) 2366 { 2367 int retval; 2368 2369 J_ASSERT(jbd2_journal_head_cache == NULL); 2370 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head", 2371 sizeof(struct journal_head), 2372 0, /* offset */ 2373 SLAB_TEMPORARY | SLAB_DESTROY_BY_RCU, 2374 NULL); /* ctor */ 2375 retval = 0; 2376 if (!jbd2_journal_head_cache) { 2377 retval = -ENOMEM; 2378 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n"); 2379 } 2380 return retval; 2381 } 2382 2383 static void jbd2_journal_destroy_journal_head_cache(void) 2384 { 2385 if (jbd2_journal_head_cache) { 2386 kmem_cache_destroy(jbd2_journal_head_cache); 2387 jbd2_journal_head_cache = NULL; 2388 } 2389 } 2390 2391 /* 2392 * journal_head splicing and dicing 2393 */ 2394 static struct journal_head *journal_alloc_journal_head(void) 2395 { 2396 struct journal_head *ret; 2397 2398 #ifdef CONFIG_JBD2_DEBUG 2399 atomic_inc(&nr_journal_heads); 2400 #endif 2401 ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS); 2402 if (!ret) { 2403 jbd_debug(1, "out of memory for journal_head\n"); 2404 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__); 2405 ret = kmem_cache_zalloc(jbd2_journal_head_cache, 2406 GFP_NOFS | __GFP_NOFAIL); 2407 } 2408 return ret; 2409 } 2410 2411 static void journal_free_journal_head(struct journal_head *jh) 2412 { 2413 #ifdef CONFIG_JBD2_DEBUG 2414 atomic_dec(&nr_journal_heads); 2415 memset(jh, JBD2_POISON_FREE, sizeof(*jh)); 2416 #endif 2417 kmem_cache_free(jbd2_journal_head_cache, jh); 2418 } 2419 2420 /* 2421 * A journal_head is attached to a buffer_head whenever JBD has an 2422 * interest in the buffer. 2423 * 2424 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit 2425 * is set. This bit is tested in core kernel code where we need to take 2426 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable 2427 * there. 2428 * 2429 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one. 2430 * 2431 * When a buffer has its BH_JBD bit set it is immune from being released by 2432 * core kernel code, mainly via ->b_count. 2433 * 2434 * A journal_head is detached from its buffer_head when the journal_head's 2435 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint 2436 * transaction (b_cp_transaction) hold their references to b_jcount. 2437 * 2438 * Various places in the kernel want to attach a journal_head to a buffer_head 2439 * _before_ attaching the journal_head to a transaction. To protect the 2440 * journal_head in this situation, jbd2_journal_add_journal_head elevates the 2441 * journal_head's b_jcount refcount by one. The caller must call 2442 * jbd2_journal_put_journal_head() to undo this. 2443 * 2444 * So the typical usage would be: 2445 * 2446 * (Attach a journal_head if needed. Increments b_jcount) 2447 * struct journal_head *jh = jbd2_journal_add_journal_head(bh); 2448 * ... 2449 * (Get another reference for transaction) 2450 * jbd2_journal_grab_journal_head(bh); 2451 * jh->b_transaction = xxx; 2452 * (Put original reference) 2453 * jbd2_journal_put_journal_head(jh); 2454 */ 2455 2456 /* 2457 * Give a buffer_head a journal_head. 2458 * 2459 * May sleep. 2460 */ 2461 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh) 2462 { 2463 struct journal_head *jh; 2464 struct journal_head *new_jh = NULL; 2465 2466 repeat: 2467 if (!buffer_jbd(bh)) 2468 new_jh = journal_alloc_journal_head(); 2469 2470 jbd_lock_bh_journal_head(bh); 2471 if (buffer_jbd(bh)) { 2472 jh = bh2jh(bh); 2473 } else { 2474 J_ASSERT_BH(bh, 2475 (atomic_read(&bh->b_count) > 0) || 2476 (bh->b_page && bh->b_page->mapping)); 2477 2478 if (!new_jh) { 2479 jbd_unlock_bh_journal_head(bh); 2480 goto repeat; 2481 } 2482 2483 jh = new_jh; 2484 new_jh = NULL; /* We consumed it */ 2485 set_buffer_jbd(bh); 2486 bh->b_private = jh; 2487 jh->b_bh = bh; 2488 get_bh(bh); 2489 BUFFER_TRACE(bh, "added journal_head"); 2490 } 2491 jh->b_jcount++; 2492 jbd_unlock_bh_journal_head(bh); 2493 if (new_jh) 2494 journal_free_journal_head(new_jh); 2495 return bh->b_private; 2496 } 2497 2498 /* 2499 * Grab a ref against this buffer_head's journal_head. If it ended up not 2500 * having a journal_head, return NULL 2501 */ 2502 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh) 2503 { 2504 struct journal_head *jh = NULL; 2505 2506 jbd_lock_bh_journal_head(bh); 2507 if (buffer_jbd(bh)) { 2508 jh = bh2jh(bh); 2509 jh->b_jcount++; 2510 } 2511 jbd_unlock_bh_journal_head(bh); 2512 return jh; 2513 } 2514 2515 static void __journal_remove_journal_head(struct buffer_head *bh) 2516 { 2517 struct journal_head *jh = bh2jh(bh); 2518 2519 J_ASSERT_JH(jh, jh->b_jcount >= 0); 2520 J_ASSERT_JH(jh, jh->b_transaction == NULL); 2521 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 2522 J_ASSERT_JH(jh, jh->b_cp_transaction == NULL); 2523 J_ASSERT_JH(jh, jh->b_jlist == BJ_None); 2524 J_ASSERT_BH(bh, buffer_jbd(bh)); 2525 J_ASSERT_BH(bh, jh2bh(jh) == bh); 2526 BUFFER_TRACE(bh, "remove journal_head"); 2527 if (jh->b_frozen_data) { 2528 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__); 2529 jbd2_free(jh->b_frozen_data, bh->b_size); 2530 } 2531 if (jh->b_committed_data) { 2532 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__); 2533 jbd2_free(jh->b_committed_data, bh->b_size); 2534 } 2535 bh->b_private = NULL; 2536 jh->b_bh = NULL; /* debug, really */ 2537 clear_buffer_jbd(bh); 2538 journal_free_journal_head(jh); 2539 } 2540 2541 /* 2542 * Drop a reference on the passed journal_head. If it fell to zero then 2543 * release the journal_head from the buffer_head. 2544 */ 2545 void jbd2_journal_put_journal_head(struct journal_head *jh) 2546 { 2547 struct buffer_head *bh = jh2bh(jh); 2548 2549 jbd_lock_bh_journal_head(bh); 2550 J_ASSERT_JH(jh, jh->b_jcount > 0); 2551 --jh->b_jcount; 2552 if (!jh->b_jcount) { 2553 __journal_remove_journal_head(bh); 2554 jbd_unlock_bh_journal_head(bh); 2555 __brelse(bh); 2556 } else 2557 jbd_unlock_bh_journal_head(bh); 2558 } 2559 2560 /* 2561 * Initialize jbd inode head 2562 */ 2563 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode) 2564 { 2565 jinode->i_transaction = NULL; 2566 jinode->i_next_transaction = NULL; 2567 jinode->i_vfs_inode = inode; 2568 jinode->i_flags = 0; 2569 INIT_LIST_HEAD(&jinode->i_list); 2570 } 2571 2572 /* 2573 * Function to be called before we start removing inode from memory (i.e., 2574 * clear_inode() is a fine place to be called from). It removes inode from 2575 * transaction's lists. 2576 */ 2577 void jbd2_journal_release_jbd_inode(journal_t *journal, 2578 struct jbd2_inode *jinode) 2579 { 2580 if (!journal) 2581 return; 2582 restart: 2583 spin_lock(&journal->j_list_lock); 2584 /* Is commit writing out inode - we have to wait */ 2585 if (jinode->i_flags & JI_COMMIT_RUNNING) { 2586 wait_queue_head_t *wq; 2587 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING); 2588 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING); 2589 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 2590 spin_unlock(&journal->j_list_lock); 2591 schedule(); 2592 finish_wait(wq, &wait.wait); 2593 goto restart; 2594 } 2595 2596 if (jinode->i_transaction) { 2597 list_del(&jinode->i_list); 2598 jinode->i_transaction = NULL; 2599 } 2600 spin_unlock(&journal->j_list_lock); 2601 } 2602 2603 2604 #ifdef CONFIG_PROC_FS 2605 2606 #define JBD2_STATS_PROC_NAME "fs/jbd2" 2607 2608 static void __init jbd2_create_jbd_stats_proc_entry(void) 2609 { 2610 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL); 2611 } 2612 2613 static void __exit jbd2_remove_jbd_stats_proc_entry(void) 2614 { 2615 if (proc_jbd2_stats) 2616 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL); 2617 } 2618 2619 #else 2620 2621 #define jbd2_create_jbd_stats_proc_entry() do {} while (0) 2622 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0) 2623 2624 #endif 2625 2626 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache; 2627 2628 static int __init jbd2_journal_init_handle_cache(void) 2629 { 2630 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY); 2631 if (jbd2_handle_cache == NULL) { 2632 printk(KERN_EMERG "JBD2: failed to create handle cache\n"); 2633 return -ENOMEM; 2634 } 2635 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0); 2636 if (jbd2_inode_cache == NULL) { 2637 printk(KERN_EMERG "JBD2: failed to create inode cache\n"); 2638 kmem_cache_destroy(jbd2_handle_cache); 2639 return -ENOMEM; 2640 } 2641 return 0; 2642 } 2643 2644 static void jbd2_journal_destroy_handle_cache(void) 2645 { 2646 if (jbd2_handle_cache) 2647 kmem_cache_destroy(jbd2_handle_cache); 2648 if (jbd2_inode_cache) 2649 kmem_cache_destroy(jbd2_inode_cache); 2650 2651 } 2652 2653 /* 2654 * Module startup and shutdown 2655 */ 2656 2657 static int __init journal_init_caches(void) 2658 { 2659 int ret; 2660 2661 ret = jbd2_journal_init_revoke_caches(); 2662 if (ret == 0) 2663 ret = jbd2_journal_init_journal_head_cache(); 2664 if (ret == 0) 2665 ret = jbd2_journal_init_handle_cache(); 2666 if (ret == 0) 2667 ret = jbd2_journal_init_transaction_cache(); 2668 return ret; 2669 } 2670 2671 static void jbd2_journal_destroy_caches(void) 2672 { 2673 jbd2_journal_destroy_revoke_caches(); 2674 jbd2_journal_destroy_journal_head_cache(); 2675 jbd2_journal_destroy_handle_cache(); 2676 jbd2_journal_destroy_transaction_cache(); 2677 jbd2_journal_destroy_slabs(); 2678 } 2679 2680 static int __init journal_init(void) 2681 { 2682 int ret; 2683 2684 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024); 2685 2686 ret = journal_init_caches(); 2687 if (ret == 0) { 2688 jbd2_create_jbd_stats_proc_entry(); 2689 } else { 2690 jbd2_journal_destroy_caches(); 2691 } 2692 return ret; 2693 } 2694 2695 static void __exit journal_exit(void) 2696 { 2697 #ifdef CONFIG_JBD2_DEBUG 2698 int n = atomic_read(&nr_journal_heads); 2699 if (n) 2700 printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n); 2701 #endif 2702 jbd2_remove_jbd_stats_proc_entry(); 2703 jbd2_journal_destroy_caches(); 2704 } 2705 2706 MODULE_LICENSE("GPL"); 2707 module_init(journal_init); 2708 module_exit(journal_exit); 2709 2710