xref: /linux/fs/jbd2/journal.c (revision b6ebbac51bedf9e98e837688bc838f400196da5e)
1 /*
2  * linux/fs/jbd2/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24 
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/math64.h>
40 #include <linux/hash.h>
41 #include <linux/log2.h>
42 #include <linux/vmalloc.h>
43 #include <linux/backing-dev.h>
44 #include <linux/bitops.h>
45 #include <linux/ratelimit.h>
46 
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/jbd2.h>
49 
50 #include <asm/uaccess.h>
51 #include <asm/page.h>
52 
53 #ifdef CONFIG_JBD2_DEBUG
54 ushort jbd2_journal_enable_debug __read_mostly;
55 EXPORT_SYMBOL(jbd2_journal_enable_debug);
56 
57 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
58 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
59 #endif
60 
61 EXPORT_SYMBOL(jbd2_journal_extend);
62 EXPORT_SYMBOL(jbd2_journal_stop);
63 EXPORT_SYMBOL(jbd2_journal_lock_updates);
64 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
65 EXPORT_SYMBOL(jbd2_journal_get_write_access);
66 EXPORT_SYMBOL(jbd2_journal_get_create_access);
67 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
68 EXPORT_SYMBOL(jbd2_journal_set_triggers);
69 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
70 EXPORT_SYMBOL(jbd2_journal_forget);
71 #if 0
72 EXPORT_SYMBOL(journal_sync_buffer);
73 #endif
74 EXPORT_SYMBOL(jbd2_journal_flush);
75 EXPORT_SYMBOL(jbd2_journal_revoke);
76 
77 EXPORT_SYMBOL(jbd2_journal_init_dev);
78 EXPORT_SYMBOL(jbd2_journal_init_inode);
79 EXPORT_SYMBOL(jbd2_journal_check_used_features);
80 EXPORT_SYMBOL(jbd2_journal_check_available_features);
81 EXPORT_SYMBOL(jbd2_journal_set_features);
82 EXPORT_SYMBOL(jbd2_journal_load);
83 EXPORT_SYMBOL(jbd2_journal_destroy);
84 EXPORT_SYMBOL(jbd2_journal_abort);
85 EXPORT_SYMBOL(jbd2_journal_errno);
86 EXPORT_SYMBOL(jbd2_journal_ack_err);
87 EXPORT_SYMBOL(jbd2_journal_clear_err);
88 EXPORT_SYMBOL(jbd2_log_wait_commit);
89 EXPORT_SYMBOL(jbd2_log_start_commit);
90 EXPORT_SYMBOL(jbd2_journal_start_commit);
91 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
92 EXPORT_SYMBOL(jbd2_journal_wipe);
93 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
94 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
95 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
96 EXPORT_SYMBOL(jbd2_journal_force_commit);
97 EXPORT_SYMBOL(jbd2_journal_inode_add_write);
98 EXPORT_SYMBOL(jbd2_journal_inode_add_wait);
99 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
100 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
101 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
102 EXPORT_SYMBOL(jbd2_inode_cache);
103 
104 static void __journal_abort_soft (journal_t *journal, int errno);
105 static int jbd2_journal_create_slab(size_t slab_size);
106 
107 #ifdef CONFIG_JBD2_DEBUG
108 void __jbd2_debug(int level, const char *file, const char *func,
109 		  unsigned int line, const char *fmt, ...)
110 {
111 	struct va_format vaf;
112 	va_list args;
113 
114 	if (level > jbd2_journal_enable_debug)
115 		return;
116 	va_start(args, fmt);
117 	vaf.fmt = fmt;
118 	vaf.va = &args;
119 	printk(KERN_DEBUG "%s: (%s, %u): %pV\n", file, func, line, &vaf);
120 	va_end(args);
121 }
122 EXPORT_SYMBOL(__jbd2_debug);
123 #endif
124 
125 /* Checksumming functions */
126 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
127 {
128 	if (!jbd2_journal_has_csum_v2or3_feature(j))
129 		return 1;
130 
131 	return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
132 }
133 
134 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
135 {
136 	__u32 csum;
137 	__be32 old_csum;
138 
139 	old_csum = sb->s_checksum;
140 	sb->s_checksum = 0;
141 	csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
142 	sb->s_checksum = old_csum;
143 
144 	return cpu_to_be32(csum);
145 }
146 
147 static int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb)
148 {
149 	if (!jbd2_journal_has_csum_v2or3(j))
150 		return 1;
151 
152 	return sb->s_checksum == jbd2_superblock_csum(j, sb);
153 }
154 
155 static void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb)
156 {
157 	if (!jbd2_journal_has_csum_v2or3(j))
158 		return;
159 
160 	sb->s_checksum = jbd2_superblock_csum(j, sb);
161 }
162 
163 /*
164  * Helper function used to manage commit timeouts
165  */
166 
167 static void commit_timeout(unsigned long __data)
168 {
169 	struct task_struct * p = (struct task_struct *) __data;
170 
171 	wake_up_process(p);
172 }
173 
174 /*
175  * kjournald2: The main thread function used to manage a logging device
176  * journal.
177  *
178  * This kernel thread is responsible for two things:
179  *
180  * 1) COMMIT:  Every so often we need to commit the current state of the
181  *    filesystem to disk.  The journal thread is responsible for writing
182  *    all of the metadata buffers to disk.
183  *
184  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
185  *    of the data in that part of the log has been rewritten elsewhere on
186  *    the disk.  Flushing these old buffers to reclaim space in the log is
187  *    known as checkpointing, and this thread is responsible for that job.
188  */
189 
190 static int kjournald2(void *arg)
191 {
192 	journal_t *journal = arg;
193 	transaction_t *transaction;
194 
195 	/*
196 	 * Set up an interval timer which can be used to trigger a commit wakeup
197 	 * after the commit interval expires
198 	 */
199 	setup_timer(&journal->j_commit_timer, commit_timeout,
200 			(unsigned long)current);
201 
202 	set_freezable();
203 
204 	/* Record that the journal thread is running */
205 	journal->j_task = current;
206 	wake_up(&journal->j_wait_done_commit);
207 
208 	/*
209 	 * And now, wait forever for commit wakeup events.
210 	 */
211 	write_lock(&journal->j_state_lock);
212 
213 loop:
214 	if (journal->j_flags & JBD2_UNMOUNT)
215 		goto end_loop;
216 
217 	jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
218 		journal->j_commit_sequence, journal->j_commit_request);
219 
220 	if (journal->j_commit_sequence != journal->j_commit_request) {
221 		jbd_debug(1, "OK, requests differ\n");
222 		write_unlock(&journal->j_state_lock);
223 		del_timer_sync(&journal->j_commit_timer);
224 		jbd2_journal_commit_transaction(journal);
225 		write_lock(&journal->j_state_lock);
226 		goto loop;
227 	}
228 
229 	wake_up(&journal->j_wait_done_commit);
230 	if (freezing(current)) {
231 		/*
232 		 * The simpler the better. Flushing journal isn't a
233 		 * good idea, because that depends on threads that may
234 		 * be already stopped.
235 		 */
236 		jbd_debug(1, "Now suspending kjournald2\n");
237 		write_unlock(&journal->j_state_lock);
238 		try_to_freeze();
239 		write_lock(&journal->j_state_lock);
240 	} else {
241 		/*
242 		 * We assume on resume that commits are already there,
243 		 * so we don't sleep
244 		 */
245 		DEFINE_WAIT(wait);
246 		int should_sleep = 1;
247 
248 		prepare_to_wait(&journal->j_wait_commit, &wait,
249 				TASK_INTERRUPTIBLE);
250 		if (journal->j_commit_sequence != journal->j_commit_request)
251 			should_sleep = 0;
252 		transaction = journal->j_running_transaction;
253 		if (transaction && time_after_eq(jiffies,
254 						transaction->t_expires))
255 			should_sleep = 0;
256 		if (journal->j_flags & JBD2_UNMOUNT)
257 			should_sleep = 0;
258 		if (should_sleep) {
259 			write_unlock(&journal->j_state_lock);
260 			schedule();
261 			write_lock(&journal->j_state_lock);
262 		}
263 		finish_wait(&journal->j_wait_commit, &wait);
264 	}
265 
266 	jbd_debug(1, "kjournald2 wakes\n");
267 
268 	/*
269 	 * Were we woken up by a commit wakeup event?
270 	 */
271 	transaction = journal->j_running_transaction;
272 	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
273 		journal->j_commit_request = transaction->t_tid;
274 		jbd_debug(1, "woke because of timeout\n");
275 	}
276 	goto loop;
277 
278 end_loop:
279 	write_unlock(&journal->j_state_lock);
280 	del_timer_sync(&journal->j_commit_timer);
281 	journal->j_task = NULL;
282 	wake_up(&journal->j_wait_done_commit);
283 	jbd_debug(1, "Journal thread exiting.\n");
284 	return 0;
285 }
286 
287 static int jbd2_journal_start_thread(journal_t *journal)
288 {
289 	struct task_struct *t;
290 
291 	t = kthread_run(kjournald2, journal, "jbd2/%s",
292 			journal->j_devname);
293 	if (IS_ERR(t))
294 		return PTR_ERR(t);
295 
296 	wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
297 	return 0;
298 }
299 
300 static void journal_kill_thread(journal_t *journal)
301 {
302 	write_lock(&journal->j_state_lock);
303 	journal->j_flags |= JBD2_UNMOUNT;
304 
305 	while (journal->j_task) {
306 		write_unlock(&journal->j_state_lock);
307 		wake_up(&journal->j_wait_commit);
308 		wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
309 		write_lock(&journal->j_state_lock);
310 	}
311 	write_unlock(&journal->j_state_lock);
312 }
313 
314 /*
315  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
316  *
317  * Writes a metadata buffer to a given disk block.  The actual IO is not
318  * performed but a new buffer_head is constructed which labels the data
319  * to be written with the correct destination disk block.
320  *
321  * Any magic-number escaping which needs to be done will cause a
322  * copy-out here.  If the buffer happens to start with the
323  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
324  * magic number is only written to the log for descripter blocks.  In
325  * this case, we copy the data and replace the first word with 0, and we
326  * return a result code which indicates that this buffer needs to be
327  * marked as an escaped buffer in the corresponding log descriptor
328  * block.  The missing word can then be restored when the block is read
329  * during recovery.
330  *
331  * If the source buffer has already been modified by a new transaction
332  * since we took the last commit snapshot, we use the frozen copy of
333  * that data for IO. If we end up using the existing buffer_head's data
334  * for the write, then we have to make sure nobody modifies it while the
335  * IO is in progress. do_get_write_access() handles this.
336  *
337  * The function returns a pointer to the buffer_head to be used for IO.
338  *
339  *
340  * Return value:
341  *  <0: Error
342  * >=0: Finished OK
343  *
344  * On success:
345  * Bit 0 set == escape performed on the data
346  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
347  */
348 
349 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
350 				  struct journal_head  *jh_in,
351 				  struct buffer_head **bh_out,
352 				  sector_t blocknr)
353 {
354 	int need_copy_out = 0;
355 	int done_copy_out = 0;
356 	int do_escape = 0;
357 	char *mapped_data;
358 	struct buffer_head *new_bh;
359 	struct page *new_page;
360 	unsigned int new_offset;
361 	struct buffer_head *bh_in = jh2bh(jh_in);
362 	journal_t *journal = transaction->t_journal;
363 
364 	/*
365 	 * The buffer really shouldn't be locked: only the current committing
366 	 * transaction is allowed to write it, so nobody else is allowed
367 	 * to do any IO.
368 	 *
369 	 * akpm: except if we're journalling data, and write() output is
370 	 * also part of a shared mapping, and another thread has
371 	 * decided to launch a writepage() against this buffer.
372 	 */
373 	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
374 
375 	new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
376 
377 	/* keep subsequent assertions sane */
378 	atomic_set(&new_bh->b_count, 1);
379 
380 	jbd_lock_bh_state(bh_in);
381 repeat:
382 	/*
383 	 * If a new transaction has already done a buffer copy-out, then
384 	 * we use that version of the data for the commit.
385 	 */
386 	if (jh_in->b_frozen_data) {
387 		done_copy_out = 1;
388 		new_page = virt_to_page(jh_in->b_frozen_data);
389 		new_offset = offset_in_page(jh_in->b_frozen_data);
390 	} else {
391 		new_page = jh2bh(jh_in)->b_page;
392 		new_offset = offset_in_page(jh2bh(jh_in)->b_data);
393 	}
394 
395 	mapped_data = kmap_atomic(new_page);
396 	/*
397 	 * Fire data frozen trigger if data already wasn't frozen.  Do this
398 	 * before checking for escaping, as the trigger may modify the magic
399 	 * offset.  If a copy-out happens afterwards, it will have the correct
400 	 * data in the buffer.
401 	 */
402 	if (!done_copy_out)
403 		jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
404 					   jh_in->b_triggers);
405 
406 	/*
407 	 * Check for escaping
408 	 */
409 	if (*((__be32 *)(mapped_data + new_offset)) ==
410 				cpu_to_be32(JBD2_MAGIC_NUMBER)) {
411 		need_copy_out = 1;
412 		do_escape = 1;
413 	}
414 	kunmap_atomic(mapped_data);
415 
416 	/*
417 	 * Do we need to do a data copy?
418 	 */
419 	if (need_copy_out && !done_copy_out) {
420 		char *tmp;
421 
422 		jbd_unlock_bh_state(bh_in);
423 		tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
424 		if (!tmp) {
425 			brelse(new_bh);
426 			return -ENOMEM;
427 		}
428 		jbd_lock_bh_state(bh_in);
429 		if (jh_in->b_frozen_data) {
430 			jbd2_free(tmp, bh_in->b_size);
431 			goto repeat;
432 		}
433 
434 		jh_in->b_frozen_data = tmp;
435 		mapped_data = kmap_atomic(new_page);
436 		memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
437 		kunmap_atomic(mapped_data);
438 
439 		new_page = virt_to_page(tmp);
440 		new_offset = offset_in_page(tmp);
441 		done_copy_out = 1;
442 
443 		/*
444 		 * This isn't strictly necessary, as we're using frozen
445 		 * data for the escaping, but it keeps consistency with
446 		 * b_frozen_data usage.
447 		 */
448 		jh_in->b_frozen_triggers = jh_in->b_triggers;
449 	}
450 
451 	/*
452 	 * Did we need to do an escaping?  Now we've done all the
453 	 * copying, we can finally do so.
454 	 */
455 	if (do_escape) {
456 		mapped_data = kmap_atomic(new_page);
457 		*((unsigned int *)(mapped_data + new_offset)) = 0;
458 		kunmap_atomic(mapped_data);
459 	}
460 
461 	set_bh_page(new_bh, new_page, new_offset);
462 	new_bh->b_size = bh_in->b_size;
463 	new_bh->b_bdev = journal->j_dev;
464 	new_bh->b_blocknr = blocknr;
465 	new_bh->b_private = bh_in;
466 	set_buffer_mapped(new_bh);
467 	set_buffer_dirty(new_bh);
468 
469 	*bh_out = new_bh;
470 
471 	/*
472 	 * The to-be-written buffer needs to get moved to the io queue,
473 	 * and the original buffer whose contents we are shadowing or
474 	 * copying is moved to the transaction's shadow queue.
475 	 */
476 	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
477 	spin_lock(&journal->j_list_lock);
478 	__jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
479 	spin_unlock(&journal->j_list_lock);
480 	set_buffer_shadow(bh_in);
481 	jbd_unlock_bh_state(bh_in);
482 
483 	return do_escape | (done_copy_out << 1);
484 }
485 
486 /*
487  * Allocation code for the journal file.  Manage the space left in the
488  * journal, so that we can begin checkpointing when appropriate.
489  */
490 
491 /*
492  * Called with j_state_lock locked for writing.
493  * Returns true if a transaction commit was started.
494  */
495 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
496 {
497 	/* Return if the txn has already requested to be committed */
498 	if (journal->j_commit_request == target)
499 		return 0;
500 
501 	/*
502 	 * The only transaction we can possibly wait upon is the
503 	 * currently running transaction (if it exists).  Otherwise,
504 	 * the target tid must be an old one.
505 	 */
506 	if (journal->j_running_transaction &&
507 	    journal->j_running_transaction->t_tid == target) {
508 		/*
509 		 * We want a new commit: OK, mark the request and wakeup the
510 		 * commit thread.  We do _not_ do the commit ourselves.
511 		 */
512 
513 		journal->j_commit_request = target;
514 		jbd_debug(1, "JBD2: requesting commit %d/%d\n",
515 			  journal->j_commit_request,
516 			  journal->j_commit_sequence);
517 		journal->j_running_transaction->t_requested = jiffies;
518 		wake_up(&journal->j_wait_commit);
519 		return 1;
520 	} else if (!tid_geq(journal->j_commit_request, target))
521 		/* This should never happen, but if it does, preserve
522 		   the evidence before kjournald goes into a loop and
523 		   increments j_commit_sequence beyond all recognition. */
524 		WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
525 			  journal->j_commit_request,
526 			  journal->j_commit_sequence,
527 			  target, journal->j_running_transaction ?
528 			  journal->j_running_transaction->t_tid : 0);
529 	return 0;
530 }
531 
532 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
533 {
534 	int ret;
535 
536 	write_lock(&journal->j_state_lock);
537 	ret = __jbd2_log_start_commit(journal, tid);
538 	write_unlock(&journal->j_state_lock);
539 	return ret;
540 }
541 
542 /*
543  * Force and wait any uncommitted transactions.  We can only force the running
544  * transaction if we don't have an active handle, otherwise, we will deadlock.
545  * Returns: <0 in case of error,
546  *           0 if nothing to commit,
547  *           1 if transaction was successfully committed.
548  */
549 static int __jbd2_journal_force_commit(journal_t *journal)
550 {
551 	transaction_t *transaction = NULL;
552 	tid_t tid;
553 	int need_to_start = 0, ret = 0;
554 
555 	read_lock(&journal->j_state_lock);
556 	if (journal->j_running_transaction && !current->journal_info) {
557 		transaction = journal->j_running_transaction;
558 		if (!tid_geq(journal->j_commit_request, transaction->t_tid))
559 			need_to_start = 1;
560 	} else if (journal->j_committing_transaction)
561 		transaction = journal->j_committing_transaction;
562 
563 	if (!transaction) {
564 		/* Nothing to commit */
565 		read_unlock(&journal->j_state_lock);
566 		return 0;
567 	}
568 	tid = transaction->t_tid;
569 	read_unlock(&journal->j_state_lock);
570 	if (need_to_start)
571 		jbd2_log_start_commit(journal, tid);
572 	ret = jbd2_log_wait_commit(journal, tid);
573 	if (!ret)
574 		ret = 1;
575 
576 	return ret;
577 }
578 
579 /**
580  * Force and wait upon a commit if the calling process is not within
581  * transaction.  This is used for forcing out undo-protected data which contains
582  * bitmaps, when the fs is running out of space.
583  *
584  * @journal: journal to force
585  * Returns true if progress was made.
586  */
587 int jbd2_journal_force_commit_nested(journal_t *journal)
588 {
589 	int ret;
590 
591 	ret = __jbd2_journal_force_commit(journal);
592 	return ret > 0;
593 }
594 
595 /**
596  * int journal_force_commit() - force any uncommitted transactions
597  * @journal: journal to force
598  *
599  * Caller want unconditional commit. We can only force the running transaction
600  * if we don't have an active handle, otherwise, we will deadlock.
601  */
602 int jbd2_journal_force_commit(journal_t *journal)
603 {
604 	int ret;
605 
606 	J_ASSERT(!current->journal_info);
607 	ret = __jbd2_journal_force_commit(journal);
608 	if (ret > 0)
609 		ret = 0;
610 	return ret;
611 }
612 
613 /*
614  * Start a commit of the current running transaction (if any).  Returns true
615  * if a transaction is going to be committed (or is currently already
616  * committing), and fills its tid in at *ptid
617  */
618 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
619 {
620 	int ret = 0;
621 
622 	write_lock(&journal->j_state_lock);
623 	if (journal->j_running_transaction) {
624 		tid_t tid = journal->j_running_transaction->t_tid;
625 
626 		__jbd2_log_start_commit(journal, tid);
627 		/* There's a running transaction and we've just made sure
628 		 * it's commit has been scheduled. */
629 		if (ptid)
630 			*ptid = tid;
631 		ret = 1;
632 	} else if (journal->j_committing_transaction) {
633 		/*
634 		 * If commit has been started, then we have to wait for
635 		 * completion of that transaction.
636 		 */
637 		if (ptid)
638 			*ptid = journal->j_committing_transaction->t_tid;
639 		ret = 1;
640 	}
641 	write_unlock(&journal->j_state_lock);
642 	return ret;
643 }
644 
645 /*
646  * Return 1 if a given transaction has not yet sent barrier request
647  * connected with a transaction commit. If 0 is returned, transaction
648  * may or may not have sent the barrier. Used to avoid sending barrier
649  * twice in common cases.
650  */
651 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
652 {
653 	int ret = 0;
654 	transaction_t *commit_trans;
655 
656 	if (!(journal->j_flags & JBD2_BARRIER))
657 		return 0;
658 	read_lock(&journal->j_state_lock);
659 	/* Transaction already committed? */
660 	if (tid_geq(journal->j_commit_sequence, tid))
661 		goto out;
662 	commit_trans = journal->j_committing_transaction;
663 	if (!commit_trans || commit_trans->t_tid != tid) {
664 		ret = 1;
665 		goto out;
666 	}
667 	/*
668 	 * Transaction is being committed and we already proceeded to
669 	 * submitting a flush to fs partition?
670 	 */
671 	if (journal->j_fs_dev != journal->j_dev) {
672 		if (!commit_trans->t_need_data_flush ||
673 		    commit_trans->t_state >= T_COMMIT_DFLUSH)
674 			goto out;
675 	} else {
676 		if (commit_trans->t_state >= T_COMMIT_JFLUSH)
677 			goto out;
678 	}
679 	ret = 1;
680 out:
681 	read_unlock(&journal->j_state_lock);
682 	return ret;
683 }
684 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
685 
686 /*
687  * Wait for a specified commit to complete.
688  * The caller may not hold the journal lock.
689  */
690 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
691 {
692 	int err = 0;
693 
694 	jbd2_might_wait_for_commit(journal);
695 	read_lock(&journal->j_state_lock);
696 #ifdef CONFIG_JBD2_DEBUG
697 	if (!tid_geq(journal->j_commit_request, tid)) {
698 		printk(KERN_ERR
699 		       "%s: error: j_commit_request=%d, tid=%d\n",
700 		       __func__, journal->j_commit_request, tid);
701 	}
702 #endif
703 	while (tid_gt(tid, journal->j_commit_sequence)) {
704 		jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
705 				  tid, journal->j_commit_sequence);
706 		read_unlock(&journal->j_state_lock);
707 		wake_up(&journal->j_wait_commit);
708 		wait_event(journal->j_wait_done_commit,
709 				!tid_gt(tid, journal->j_commit_sequence));
710 		read_lock(&journal->j_state_lock);
711 	}
712 	read_unlock(&journal->j_state_lock);
713 
714 	if (unlikely(is_journal_aborted(journal)))
715 		err = -EIO;
716 	return err;
717 }
718 
719 /*
720  * When this function returns the transaction corresponding to tid
721  * will be completed.  If the transaction has currently running, start
722  * committing that transaction before waiting for it to complete.  If
723  * the transaction id is stale, it is by definition already completed,
724  * so just return SUCCESS.
725  */
726 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
727 {
728 	int	need_to_wait = 1;
729 
730 	read_lock(&journal->j_state_lock);
731 	if (journal->j_running_transaction &&
732 	    journal->j_running_transaction->t_tid == tid) {
733 		if (journal->j_commit_request != tid) {
734 			/* transaction not yet started, so request it */
735 			read_unlock(&journal->j_state_lock);
736 			jbd2_log_start_commit(journal, tid);
737 			goto wait_commit;
738 		}
739 	} else if (!(journal->j_committing_transaction &&
740 		     journal->j_committing_transaction->t_tid == tid))
741 		need_to_wait = 0;
742 	read_unlock(&journal->j_state_lock);
743 	if (!need_to_wait)
744 		return 0;
745 wait_commit:
746 	return jbd2_log_wait_commit(journal, tid);
747 }
748 EXPORT_SYMBOL(jbd2_complete_transaction);
749 
750 /*
751  * Log buffer allocation routines:
752  */
753 
754 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
755 {
756 	unsigned long blocknr;
757 
758 	write_lock(&journal->j_state_lock);
759 	J_ASSERT(journal->j_free > 1);
760 
761 	blocknr = journal->j_head;
762 	journal->j_head++;
763 	journal->j_free--;
764 	if (journal->j_head == journal->j_last)
765 		journal->j_head = journal->j_first;
766 	write_unlock(&journal->j_state_lock);
767 	return jbd2_journal_bmap(journal, blocknr, retp);
768 }
769 
770 /*
771  * Conversion of logical to physical block numbers for the journal
772  *
773  * On external journals the journal blocks are identity-mapped, so
774  * this is a no-op.  If needed, we can use j_blk_offset - everything is
775  * ready.
776  */
777 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
778 		 unsigned long long *retp)
779 {
780 	int err = 0;
781 	unsigned long long ret;
782 
783 	if (journal->j_inode) {
784 		ret = bmap(journal->j_inode, blocknr);
785 		if (ret)
786 			*retp = ret;
787 		else {
788 			printk(KERN_ALERT "%s: journal block not found "
789 					"at offset %lu on %s\n",
790 			       __func__, blocknr, journal->j_devname);
791 			err = -EIO;
792 			__journal_abort_soft(journal, err);
793 		}
794 	} else {
795 		*retp = blocknr; /* +journal->j_blk_offset */
796 	}
797 	return err;
798 }
799 
800 /*
801  * We play buffer_head aliasing tricks to write data/metadata blocks to
802  * the journal without copying their contents, but for journal
803  * descriptor blocks we do need to generate bona fide buffers.
804  *
805  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
806  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
807  * But we don't bother doing that, so there will be coherency problems with
808  * mmaps of blockdevs which hold live JBD-controlled filesystems.
809  */
810 struct buffer_head *
811 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
812 {
813 	journal_t *journal = transaction->t_journal;
814 	struct buffer_head *bh;
815 	unsigned long long blocknr;
816 	journal_header_t *header;
817 	int err;
818 
819 	err = jbd2_journal_next_log_block(journal, &blocknr);
820 
821 	if (err)
822 		return NULL;
823 
824 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
825 	if (!bh)
826 		return NULL;
827 	lock_buffer(bh);
828 	memset(bh->b_data, 0, journal->j_blocksize);
829 	header = (journal_header_t *)bh->b_data;
830 	header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
831 	header->h_blocktype = cpu_to_be32(type);
832 	header->h_sequence = cpu_to_be32(transaction->t_tid);
833 	set_buffer_uptodate(bh);
834 	unlock_buffer(bh);
835 	BUFFER_TRACE(bh, "return this buffer");
836 	return bh;
837 }
838 
839 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
840 {
841 	struct jbd2_journal_block_tail *tail;
842 	__u32 csum;
843 
844 	if (!jbd2_journal_has_csum_v2or3(j))
845 		return;
846 
847 	tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
848 			sizeof(struct jbd2_journal_block_tail));
849 	tail->t_checksum = 0;
850 	csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
851 	tail->t_checksum = cpu_to_be32(csum);
852 }
853 
854 /*
855  * Return tid of the oldest transaction in the journal and block in the journal
856  * where the transaction starts.
857  *
858  * If the journal is now empty, return which will be the next transaction ID
859  * we will write and where will that transaction start.
860  *
861  * The return value is 0 if journal tail cannot be pushed any further, 1 if
862  * it can.
863  */
864 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
865 			      unsigned long *block)
866 {
867 	transaction_t *transaction;
868 	int ret;
869 
870 	read_lock(&journal->j_state_lock);
871 	spin_lock(&journal->j_list_lock);
872 	transaction = journal->j_checkpoint_transactions;
873 	if (transaction) {
874 		*tid = transaction->t_tid;
875 		*block = transaction->t_log_start;
876 	} else if ((transaction = journal->j_committing_transaction) != NULL) {
877 		*tid = transaction->t_tid;
878 		*block = transaction->t_log_start;
879 	} else if ((transaction = journal->j_running_transaction) != NULL) {
880 		*tid = transaction->t_tid;
881 		*block = journal->j_head;
882 	} else {
883 		*tid = journal->j_transaction_sequence;
884 		*block = journal->j_head;
885 	}
886 	ret = tid_gt(*tid, journal->j_tail_sequence);
887 	spin_unlock(&journal->j_list_lock);
888 	read_unlock(&journal->j_state_lock);
889 
890 	return ret;
891 }
892 
893 /*
894  * Update information in journal structure and in on disk journal superblock
895  * about log tail. This function does not check whether information passed in
896  * really pushes log tail further. It's responsibility of the caller to make
897  * sure provided log tail information is valid (e.g. by holding
898  * j_checkpoint_mutex all the time between computing log tail and calling this
899  * function as is the case with jbd2_cleanup_journal_tail()).
900  *
901  * Requires j_checkpoint_mutex
902  */
903 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
904 {
905 	unsigned long freed;
906 	int ret;
907 
908 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
909 
910 	/*
911 	 * We cannot afford for write to remain in drive's caches since as
912 	 * soon as we update j_tail, next transaction can start reusing journal
913 	 * space and if we lose sb update during power failure we'd replay
914 	 * old transaction with possibly newly overwritten data.
915 	 */
916 	ret = jbd2_journal_update_sb_log_tail(journal, tid, block, WRITE_FUA);
917 	if (ret)
918 		goto out;
919 
920 	write_lock(&journal->j_state_lock);
921 	freed = block - journal->j_tail;
922 	if (block < journal->j_tail)
923 		freed += journal->j_last - journal->j_first;
924 
925 	trace_jbd2_update_log_tail(journal, tid, block, freed);
926 	jbd_debug(1,
927 		  "Cleaning journal tail from %d to %d (offset %lu), "
928 		  "freeing %lu\n",
929 		  journal->j_tail_sequence, tid, block, freed);
930 
931 	journal->j_free += freed;
932 	journal->j_tail_sequence = tid;
933 	journal->j_tail = block;
934 	write_unlock(&journal->j_state_lock);
935 
936 out:
937 	return ret;
938 }
939 
940 /*
941  * This is a variaon of __jbd2_update_log_tail which checks for validity of
942  * provided log tail and locks j_checkpoint_mutex. So it is safe against races
943  * with other threads updating log tail.
944  */
945 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
946 {
947 	mutex_lock(&journal->j_checkpoint_mutex);
948 	if (tid_gt(tid, journal->j_tail_sequence))
949 		__jbd2_update_log_tail(journal, tid, block);
950 	mutex_unlock(&journal->j_checkpoint_mutex);
951 }
952 
953 struct jbd2_stats_proc_session {
954 	journal_t *journal;
955 	struct transaction_stats_s *stats;
956 	int start;
957 	int max;
958 };
959 
960 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
961 {
962 	return *pos ? NULL : SEQ_START_TOKEN;
963 }
964 
965 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
966 {
967 	return NULL;
968 }
969 
970 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
971 {
972 	struct jbd2_stats_proc_session *s = seq->private;
973 
974 	if (v != SEQ_START_TOKEN)
975 		return 0;
976 	seq_printf(seq, "%lu transactions (%lu requested), "
977 		   "each up to %u blocks\n",
978 		   s->stats->ts_tid, s->stats->ts_requested,
979 		   s->journal->j_max_transaction_buffers);
980 	if (s->stats->ts_tid == 0)
981 		return 0;
982 	seq_printf(seq, "average: \n  %ums waiting for transaction\n",
983 	    jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
984 	seq_printf(seq, "  %ums request delay\n",
985 	    (s->stats->ts_requested == 0) ? 0 :
986 	    jiffies_to_msecs(s->stats->run.rs_request_delay /
987 			     s->stats->ts_requested));
988 	seq_printf(seq, "  %ums running transaction\n",
989 	    jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
990 	seq_printf(seq, "  %ums transaction was being locked\n",
991 	    jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
992 	seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
993 	    jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
994 	seq_printf(seq, "  %ums logging transaction\n",
995 	    jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
996 	seq_printf(seq, "  %lluus average transaction commit time\n",
997 		   div_u64(s->journal->j_average_commit_time, 1000));
998 	seq_printf(seq, "  %lu handles per transaction\n",
999 	    s->stats->run.rs_handle_count / s->stats->ts_tid);
1000 	seq_printf(seq, "  %lu blocks per transaction\n",
1001 	    s->stats->run.rs_blocks / s->stats->ts_tid);
1002 	seq_printf(seq, "  %lu logged blocks per transaction\n",
1003 	    s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1004 	return 0;
1005 }
1006 
1007 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1008 {
1009 }
1010 
1011 static const struct seq_operations jbd2_seq_info_ops = {
1012 	.start  = jbd2_seq_info_start,
1013 	.next   = jbd2_seq_info_next,
1014 	.stop   = jbd2_seq_info_stop,
1015 	.show   = jbd2_seq_info_show,
1016 };
1017 
1018 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1019 {
1020 	journal_t *journal = PDE_DATA(inode);
1021 	struct jbd2_stats_proc_session *s;
1022 	int rc, size;
1023 
1024 	s = kmalloc(sizeof(*s), GFP_KERNEL);
1025 	if (s == NULL)
1026 		return -ENOMEM;
1027 	size = sizeof(struct transaction_stats_s);
1028 	s->stats = kmalloc(size, GFP_KERNEL);
1029 	if (s->stats == NULL) {
1030 		kfree(s);
1031 		return -ENOMEM;
1032 	}
1033 	spin_lock(&journal->j_history_lock);
1034 	memcpy(s->stats, &journal->j_stats, size);
1035 	s->journal = journal;
1036 	spin_unlock(&journal->j_history_lock);
1037 
1038 	rc = seq_open(file, &jbd2_seq_info_ops);
1039 	if (rc == 0) {
1040 		struct seq_file *m = file->private_data;
1041 		m->private = s;
1042 	} else {
1043 		kfree(s->stats);
1044 		kfree(s);
1045 	}
1046 	return rc;
1047 
1048 }
1049 
1050 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1051 {
1052 	struct seq_file *seq = file->private_data;
1053 	struct jbd2_stats_proc_session *s = seq->private;
1054 	kfree(s->stats);
1055 	kfree(s);
1056 	return seq_release(inode, file);
1057 }
1058 
1059 static const struct file_operations jbd2_seq_info_fops = {
1060 	.owner		= THIS_MODULE,
1061 	.open           = jbd2_seq_info_open,
1062 	.read           = seq_read,
1063 	.llseek         = seq_lseek,
1064 	.release        = jbd2_seq_info_release,
1065 };
1066 
1067 static struct proc_dir_entry *proc_jbd2_stats;
1068 
1069 static void jbd2_stats_proc_init(journal_t *journal)
1070 {
1071 	journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1072 	if (journal->j_proc_entry) {
1073 		proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1074 				 &jbd2_seq_info_fops, journal);
1075 	}
1076 }
1077 
1078 static void jbd2_stats_proc_exit(journal_t *journal)
1079 {
1080 	remove_proc_entry("info", journal->j_proc_entry);
1081 	remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1082 }
1083 
1084 /*
1085  * Management for journal control blocks: functions to create and
1086  * destroy journal_t structures, and to initialise and read existing
1087  * journal blocks from disk.  */
1088 
1089 /* First: create and setup a journal_t object in memory.  We initialise
1090  * very few fields yet: that has to wait until we have created the
1091  * journal structures from from scratch, or loaded them from disk. */
1092 
1093 static journal_t * journal_init_common (void)
1094 {
1095 	static struct lock_class_key jbd2_trans_commit_key;
1096 	journal_t *journal;
1097 	int err;
1098 
1099 	journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1100 	if (!journal)
1101 		return NULL;
1102 
1103 	init_waitqueue_head(&journal->j_wait_transaction_locked);
1104 	init_waitqueue_head(&journal->j_wait_done_commit);
1105 	init_waitqueue_head(&journal->j_wait_commit);
1106 	init_waitqueue_head(&journal->j_wait_updates);
1107 	init_waitqueue_head(&journal->j_wait_reserved);
1108 	mutex_init(&journal->j_barrier);
1109 	mutex_init(&journal->j_checkpoint_mutex);
1110 	spin_lock_init(&journal->j_revoke_lock);
1111 	spin_lock_init(&journal->j_list_lock);
1112 	rwlock_init(&journal->j_state_lock);
1113 
1114 	journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1115 	journal->j_min_batch_time = 0;
1116 	journal->j_max_batch_time = 15000; /* 15ms */
1117 	atomic_set(&journal->j_reserved_credits, 0);
1118 
1119 	/* The journal is marked for error until we succeed with recovery! */
1120 	journal->j_flags = JBD2_ABORT;
1121 
1122 	/* Set up a default-sized revoke table for the new mount. */
1123 	err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1124 	if (err) {
1125 		kfree(journal);
1126 		return NULL;
1127 	}
1128 
1129 	spin_lock_init(&journal->j_history_lock);
1130 
1131 	lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1132 			 &jbd2_trans_commit_key, 0);
1133 
1134 	return journal;
1135 }
1136 
1137 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1138  *
1139  * Create a journal structure assigned some fixed set of disk blocks to
1140  * the journal.  We don't actually touch those disk blocks yet, but we
1141  * need to set up all of the mapping information to tell the journaling
1142  * system where the journal blocks are.
1143  *
1144  */
1145 
1146 /**
1147  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1148  *  @bdev: Block device on which to create the journal
1149  *  @fs_dev: Device which hold journalled filesystem for this journal.
1150  *  @start: Block nr Start of journal.
1151  *  @len:  Length of the journal in blocks.
1152  *  @blocksize: blocksize of journalling device
1153  *
1154  *  Returns: a newly created journal_t *
1155  *
1156  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1157  *  range of blocks on an arbitrary block device.
1158  *
1159  */
1160 journal_t * jbd2_journal_init_dev(struct block_device *bdev,
1161 			struct block_device *fs_dev,
1162 			unsigned long long start, int len, int blocksize)
1163 {
1164 	journal_t *journal = journal_init_common();
1165 	struct buffer_head *bh;
1166 	int n;
1167 
1168 	if (!journal)
1169 		return NULL;
1170 
1171 	/* journal descriptor can store up to n blocks -bzzz */
1172 	journal->j_blocksize = blocksize;
1173 	journal->j_dev = bdev;
1174 	journal->j_fs_dev = fs_dev;
1175 	journal->j_blk_offset = start;
1176 	journal->j_maxlen = len;
1177 	bdevname(journal->j_dev, journal->j_devname);
1178 	strreplace(journal->j_devname, '/', '!');
1179 	jbd2_stats_proc_init(journal);
1180 	n = journal->j_blocksize / sizeof(journal_block_tag_t);
1181 	journal->j_wbufsize = n;
1182 	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1183 	if (!journal->j_wbuf) {
1184 		printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1185 			__func__);
1186 		goto out_err;
1187 	}
1188 
1189 	bh = __getblk(journal->j_dev, start, journal->j_blocksize);
1190 	if (!bh) {
1191 		printk(KERN_ERR
1192 		       "%s: Cannot get buffer for journal superblock\n",
1193 		       __func__);
1194 		goto out_err;
1195 	}
1196 	journal->j_sb_buffer = bh;
1197 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
1198 
1199 	return journal;
1200 out_err:
1201 	kfree(journal->j_wbuf);
1202 	jbd2_stats_proc_exit(journal);
1203 	kfree(journal);
1204 	return NULL;
1205 }
1206 
1207 /**
1208  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1209  *  @inode: An inode to create the journal in
1210  *
1211  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1212  * the journal.  The inode must exist already, must support bmap() and
1213  * must have all data blocks preallocated.
1214  */
1215 journal_t * jbd2_journal_init_inode (struct inode *inode)
1216 {
1217 	struct buffer_head *bh;
1218 	journal_t *journal = journal_init_common();
1219 	char *p;
1220 	int err;
1221 	int n;
1222 	unsigned long long blocknr;
1223 
1224 	if (!journal)
1225 		return NULL;
1226 
1227 	journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
1228 	journal->j_inode = inode;
1229 	bdevname(journal->j_dev, journal->j_devname);
1230 	p = strreplace(journal->j_devname, '/', '!');
1231 	sprintf(p, "-%lu", journal->j_inode->i_ino);
1232 	jbd_debug(1,
1233 		  "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
1234 		  journal, inode->i_sb->s_id, inode->i_ino,
1235 		  (long long) inode->i_size,
1236 		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1237 
1238 	journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
1239 	journal->j_blocksize = inode->i_sb->s_blocksize;
1240 	jbd2_stats_proc_init(journal);
1241 
1242 	/* journal descriptor can store up to n blocks -bzzz */
1243 	n = journal->j_blocksize / sizeof(journal_block_tag_t);
1244 	journal->j_wbufsize = n;
1245 	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1246 	if (!journal->j_wbuf) {
1247 		printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1248 			__func__);
1249 		goto out_err;
1250 	}
1251 
1252 	err = jbd2_journal_bmap(journal, 0, &blocknr);
1253 	/* If that failed, give up */
1254 	if (err) {
1255 		printk(KERN_ERR "%s: Cannot locate journal superblock\n",
1256 		       __func__);
1257 		goto out_err;
1258 	}
1259 
1260 	bh = getblk_unmovable(journal->j_dev, blocknr, journal->j_blocksize);
1261 	if (!bh) {
1262 		printk(KERN_ERR
1263 		       "%s: Cannot get buffer for journal superblock\n",
1264 		       __func__);
1265 		goto out_err;
1266 	}
1267 	journal->j_sb_buffer = bh;
1268 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
1269 
1270 	return journal;
1271 out_err:
1272 	kfree(journal->j_wbuf);
1273 	jbd2_stats_proc_exit(journal);
1274 	kfree(journal);
1275 	return NULL;
1276 }
1277 
1278 /*
1279  * If the journal init or create aborts, we need to mark the journal
1280  * superblock as being NULL to prevent the journal destroy from writing
1281  * back a bogus superblock.
1282  */
1283 static void journal_fail_superblock (journal_t *journal)
1284 {
1285 	struct buffer_head *bh = journal->j_sb_buffer;
1286 	brelse(bh);
1287 	journal->j_sb_buffer = NULL;
1288 }
1289 
1290 /*
1291  * Given a journal_t structure, initialise the various fields for
1292  * startup of a new journaling session.  We use this both when creating
1293  * a journal, and after recovering an old journal to reset it for
1294  * subsequent use.
1295  */
1296 
1297 static int journal_reset(journal_t *journal)
1298 {
1299 	journal_superblock_t *sb = journal->j_superblock;
1300 	unsigned long long first, last;
1301 
1302 	first = be32_to_cpu(sb->s_first);
1303 	last = be32_to_cpu(sb->s_maxlen);
1304 	if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1305 		printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1306 		       first, last);
1307 		journal_fail_superblock(journal);
1308 		return -EINVAL;
1309 	}
1310 
1311 	journal->j_first = first;
1312 	journal->j_last = last;
1313 
1314 	journal->j_head = first;
1315 	journal->j_tail = first;
1316 	journal->j_free = last - first;
1317 
1318 	journal->j_tail_sequence = journal->j_transaction_sequence;
1319 	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1320 	journal->j_commit_request = journal->j_commit_sequence;
1321 
1322 	journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1323 
1324 	/*
1325 	 * As a special case, if the on-disk copy is already marked as needing
1326 	 * no recovery (s_start == 0), then we can safely defer the superblock
1327 	 * update until the next commit by setting JBD2_FLUSHED.  This avoids
1328 	 * attempting a write to a potential-readonly device.
1329 	 */
1330 	if (sb->s_start == 0) {
1331 		jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1332 			"(start %ld, seq %d, errno %d)\n",
1333 			journal->j_tail, journal->j_tail_sequence,
1334 			journal->j_errno);
1335 		journal->j_flags |= JBD2_FLUSHED;
1336 	} else {
1337 		/* Lock here to make assertions happy... */
1338 		mutex_lock(&journal->j_checkpoint_mutex);
1339 		/*
1340 		 * Update log tail information. We use WRITE_FUA since new
1341 		 * transaction will start reusing journal space and so we
1342 		 * must make sure information about current log tail is on
1343 		 * disk before that.
1344 		 */
1345 		jbd2_journal_update_sb_log_tail(journal,
1346 						journal->j_tail_sequence,
1347 						journal->j_tail,
1348 						WRITE_FUA);
1349 		mutex_unlock(&journal->j_checkpoint_mutex);
1350 	}
1351 	return jbd2_journal_start_thread(journal);
1352 }
1353 
1354 static int jbd2_write_superblock(journal_t *journal, int write_flags)
1355 {
1356 	struct buffer_head *bh = journal->j_sb_buffer;
1357 	journal_superblock_t *sb = journal->j_superblock;
1358 	int ret;
1359 
1360 	trace_jbd2_write_superblock(journal, write_flags);
1361 	if (!(journal->j_flags & JBD2_BARRIER))
1362 		write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1363 	lock_buffer(bh);
1364 	if (buffer_write_io_error(bh)) {
1365 		/*
1366 		 * Oh, dear.  A previous attempt to write the journal
1367 		 * superblock failed.  This could happen because the
1368 		 * USB device was yanked out.  Or it could happen to
1369 		 * be a transient write error and maybe the block will
1370 		 * be remapped.  Nothing we can do but to retry the
1371 		 * write and hope for the best.
1372 		 */
1373 		printk(KERN_ERR "JBD2: previous I/O error detected "
1374 		       "for journal superblock update for %s.\n",
1375 		       journal->j_devname);
1376 		clear_buffer_write_io_error(bh);
1377 		set_buffer_uptodate(bh);
1378 	}
1379 	jbd2_superblock_csum_set(journal, sb);
1380 	get_bh(bh);
1381 	bh->b_end_io = end_buffer_write_sync;
1382 	ret = submit_bh(REQ_OP_WRITE, write_flags, bh);
1383 	wait_on_buffer(bh);
1384 	if (buffer_write_io_error(bh)) {
1385 		clear_buffer_write_io_error(bh);
1386 		set_buffer_uptodate(bh);
1387 		ret = -EIO;
1388 	}
1389 	if (ret) {
1390 		printk(KERN_ERR "JBD2: Error %d detected when updating "
1391 		       "journal superblock for %s.\n", ret,
1392 		       journal->j_devname);
1393 		jbd2_journal_abort(journal, ret);
1394 	}
1395 
1396 	return ret;
1397 }
1398 
1399 /**
1400  * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1401  * @journal: The journal to update.
1402  * @tail_tid: TID of the new transaction at the tail of the log
1403  * @tail_block: The first block of the transaction at the tail of the log
1404  * @write_op: With which operation should we write the journal sb
1405  *
1406  * Update a journal's superblock information about log tail and write it to
1407  * disk, waiting for the IO to complete.
1408  */
1409 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1410 				     unsigned long tail_block, int write_op)
1411 {
1412 	journal_superblock_t *sb = journal->j_superblock;
1413 	int ret;
1414 
1415 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1416 	jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1417 		  tail_block, tail_tid);
1418 
1419 	sb->s_sequence = cpu_to_be32(tail_tid);
1420 	sb->s_start    = cpu_to_be32(tail_block);
1421 
1422 	ret = jbd2_write_superblock(journal, write_op);
1423 	if (ret)
1424 		goto out;
1425 
1426 	/* Log is no longer empty */
1427 	write_lock(&journal->j_state_lock);
1428 	WARN_ON(!sb->s_sequence);
1429 	journal->j_flags &= ~JBD2_FLUSHED;
1430 	write_unlock(&journal->j_state_lock);
1431 
1432 out:
1433 	return ret;
1434 }
1435 
1436 /**
1437  * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1438  * @journal: The journal to update.
1439  * @write_op: With which operation should we write the journal sb
1440  *
1441  * Update a journal's dynamic superblock fields to show that journal is empty.
1442  * Write updated superblock to disk waiting for IO to complete.
1443  */
1444 static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1445 {
1446 	journal_superblock_t *sb = journal->j_superblock;
1447 
1448 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1449 	read_lock(&journal->j_state_lock);
1450 	/* Is it already empty? */
1451 	if (sb->s_start == 0) {
1452 		read_unlock(&journal->j_state_lock);
1453 		return;
1454 	}
1455 	jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1456 		  journal->j_tail_sequence);
1457 
1458 	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1459 	sb->s_start    = cpu_to_be32(0);
1460 	read_unlock(&journal->j_state_lock);
1461 
1462 	jbd2_write_superblock(journal, write_op);
1463 
1464 	/* Log is no longer empty */
1465 	write_lock(&journal->j_state_lock);
1466 	journal->j_flags |= JBD2_FLUSHED;
1467 	write_unlock(&journal->j_state_lock);
1468 }
1469 
1470 
1471 /**
1472  * jbd2_journal_update_sb_errno() - Update error in the journal.
1473  * @journal: The journal to update.
1474  *
1475  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1476  * to complete.
1477  */
1478 void jbd2_journal_update_sb_errno(journal_t *journal)
1479 {
1480 	journal_superblock_t *sb = journal->j_superblock;
1481 
1482 	read_lock(&journal->j_state_lock);
1483 	jbd_debug(1, "JBD2: updating superblock error (errno %d)\n",
1484 		  journal->j_errno);
1485 	sb->s_errno    = cpu_to_be32(journal->j_errno);
1486 	read_unlock(&journal->j_state_lock);
1487 
1488 	jbd2_write_superblock(journal, WRITE_FUA);
1489 }
1490 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1491 
1492 /*
1493  * Read the superblock for a given journal, performing initial
1494  * validation of the format.
1495  */
1496 static int journal_get_superblock(journal_t *journal)
1497 {
1498 	struct buffer_head *bh;
1499 	journal_superblock_t *sb;
1500 	int err = -EIO;
1501 
1502 	bh = journal->j_sb_buffer;
1503 
1504 	J_ASSERT(bh != NULL);
1505 	if (!buffer_uptodate(bh)) {
1506 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1507 		wait_on_buffer(bh);
1508 		if (!buffer_uptodate(bh)) {
1509 			printk(KERN_ERR
1510 				"JBD2: IO error reading journal superblock\n");
1511 			goto out;
1512 		}
1513 	}
1514 
1515 	if (buffer_verified(bh))
1516 		return 0;
1517 
1518 	sb = journal->j_superblock;
1519 
1520 	err = -EINVAL;
1521 
1522 	if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1523 	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1524 		printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1525 		goto out;
1526 	}
1527 
1528 	switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1529 	case JBD2_SUPERBLOCK_V1:
1530 		journal->j_format_version = 1;
1531 		break;
1532 	case JBD2_SUPERBLOCK_V2:
1533 		journal->j_format_version = 2;
1534 		break;
1535 	default:
1536 		printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1537 		goto out;
1538 	}
1539 
1540 	if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1541 		journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1542 	else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1543 		printk(KERN_WARNING "JBD2: journal file too short\n");
1544 		goto out;
1545 	}
1546 
1547 	if (be32_to_cpu(sb->s_first) == 0 ||
1548 	    be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1549 		printk(KERN_WARNING
1550 			"JBD2: Invalid start block of journal: %u\n",
1551 			be32_to_cpu(sb->s_first));
1552 		goto out;
1553 	}
1554 
1555 	if (jbd2_has_feature_csum2(journal) &&
1556 	    jbd2_has_feature_csum3(journal)) {
1557 		/* Can't have checksum v2 and v3 at the same time! */
1558 		printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1559 		       "at the same time!\n");
1560 		goto out;
1561 	}
1562 
1563 	if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1564 	    jbd2_has_feature_checksum(journal)) {
1565 		/* Can't have checksum v1 and v2 on at the same time! */
1566 		printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1567 		       "at the same time!\n");
1568 		goto out;
1569 	}
1570 
1571 	if (!jbd2_verify_csum_type(journal, sb)) {
1572 		printk(KERN_ERR "JBD2: Unknown checksum type\n");
1573 		goto out;
1574 	}
1575 
1576 	/* Load the checksum driver */
1577 	if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1578 		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1579 		if (IS_ERR(journal->j_chksum_driver)) {
1580 			printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1581 			err = PTR_ERR(journal->j_chksum_driver);
1582 			journal->j_chksum_driver = NULL;
1583 			goto out;
1584 		}
1585 	}
1586 
1587 	/* Check superblock checksum */
1588 	if (!jbd2_superblock_csum_verify(journal, sb)) {
1589 		printk(KERN_ERR "JBD2: journal checksum error\n");
1590 		err = -EFSBADCRC;
1591 		goto out;
1592 	}
1593 
1594 	/* Precompute checksum seed for all metadata */
1595 	if (jbd2_journal_has_csum_v2or3(journal))
1596 		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1597 						   sizeof(sb->s_uuid));
1598 
1599 	set_buffer_verified(bh);
1600 
1601 	return 0;
1602 
1603 out:
1604 	journal_fail_superblock(journal);
1605 	return err;
1606 }
1607 
1608 /*
1609  * Load the on-disk journal superblock and read the key fields into the
1610  * journal_t.
1611  */
1612 
1613 static int load_superblock(journal_t *journal)
1614 {
1615 	int err;
1616 	journal_superblock_t *sb;
1617 
1618 	err = journal_get_superblock(journal);
1619 	if (err)
1620 		return err;
1621 
1622 	sb = journal->j_superblock;
1623 
1624 	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1625 	journal->j_tail = be32_to_cpu(sb->s_start);
1626 	journal->j_first = be32_to_cpu(sb->s_first);
1627 	journal->j_last = be32_to_cpu(sb->s_maxlen);
1628 	journal->j_errno = be32_to_cpu(sb->s_errno);
1629 
1630 	return 0;
1631 }
1632 
1633 
1634 /**
1635  * int jbd2_journal_load() - Read journal from disk.
1636  * @journal: Journal to act on.
1637  *
1638  * Given a journal_t structure which tells us which disk blocks contain
1639  * a journal, read the journal from disk to initialise the in-memory
1640  * structures.
1641  */
1642 int jbd2_journal_load(journal_t *journal)
1643 {
1644 	int err;
1645 	journal_superblock_t *sb;
1646 
1647 	err = load_superblock(journal);
1648 	if (err)
1649 		return err;
1650 
1651 	sb = journal->j_superblock;
1652 	/* If this is a V2 superblock, then we have to check the
1653 	 * features flags on it. */
1654 
1655 	if (journal->j_format_version >= 2) {
1656 		if ((sb->s_feature_ro_compat &
1657 		     ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1658 		    (sb->s_feature_incompat &
1659 		     ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1660 			printk(KERN_WARNING
1661 				"JBD2: Unrecognised features on journal\n");
1662 			return -EINVAL;
1663 		}
1664 	}
1665 
1666 	/*
1667 	 * Create a slab for this blocksize
1668 	 */
1669 	err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1670 	if (err)
1671 		return err;
1672 
1673 	/* Let the recovery code check whether it needs to recover any
1674 	 * data from the journal. */
1675 	if (jbd2_journal_recover(journal))
1676 		goto recovery_error;
1677 
1678 	if (journal->j_failed_commit) {
1679 		printk(KERN_ERR "JBD2: journal transaction %u on %s "
1680 		       "is corrupt.\n", journal->j_failed_commit,
1681 		       journal->j_devname);
1682 		return -EFSCORRUPTED;
1683 	}
1684 
1685 	/* OK, we've finished with the dynamic journal bits:
1686 	 * reinitialise the dynamic contents of the superblock in memory
1687 	 * and reset them on disk. */
1688 	if (journal_reset(journal))
1689 		goto recovery_error;
1690 
1691 	journal->j_flags &= ~JBD2_ABORT;
1692 	journal->j_flags |= JBD2_LOADED;
1693 	return 0;
1694 
1695 recovery_error:
1696 	printk(KERN_WARNING "JBD2: recovery failed\n");
1697 	return -EIO;
1698 }
1699 
1700 /**
1701  * void jbd2_journal_destroy() - Release a journal_t structure.
1702  * @journal: Journal to act on.
1703  *
1704  * Release a journal_t structure once it is no longer in use by the
1705  * journaled object.
1706  * Return <0 if we couldn't clean up the journal.
1707  */
1708 int jbd2_journal_destroy(journal_t *journal)
1709 {
1710 	int err = 0;
1711 
1712 	/* Wait for the commit thread to wake up and die. */
1713 	journal_kill_thread(journal);
1714 
1715 	/* Force a final log commit */
1716 	if (journal->j_running_transaction)
1717 		jbd2_journal_commit_transaction(journal);
1718 
1719 	/* Force any old transactions to disk */
1720 
1721 	/* Totally anal locking here... */
1722 	spin_lock(&journal->j_list_lock);
1723 	while (journal->j_checkpoint_transactions != NULL) {
1724 		spin_unlock(&journal->j_list_lock);
1725 		mutex_lock(&journal->j_checkpoint_mutex);
1726 		err = jbd2_log_do_checkpoint(journal);
1727 		mutex_unlock(&journal->j_checkpoint_mutex);
1728 		/*
1729 		 * If checkpointing failed, just free the buffers to avoid
1730 		 * looping forever
1731 		 */
1732 		if (err) {
1733 			jbd2_journal_destroy_checkpoint(journal);
1734 			spin_lock(&journal->j_list_lock);
1735 			break;
1736 		}
1737 		spin_lock(&journal->j_list_lock);
1738 	}
1739 
1740 	J_ASSERT(journal->j_running_transaction == NULL);
1741 	J_ASSERT(journal->j_committing_transaction == NULL);
1742 	J_ASSERT(journal->j_checkpoint_transactions == NULL);
1743 	spin_unlock(&journal->j_list_lock);
1744 
1745 	if (journal->j_sb_buffer) {
1746 		if (!is_journal_aborted(journal)) {
1747 			mutex_lock(&journal->j_checkpoint_mutex);
1748 
1749 			write_lock(&journal->j_state_lock);
1750 			journal->j_tail_sequence =
1751 				++journal->j_transaction_sequence;
1752 			write_unlock(&journal->j_state_lock);
1753 
1754 			jbd2_mark_journal_empty(journal, WRITE_FLUSH_FUA);
1755 			mutex_unlock(&journal->j_checkpoint_mutex);
1756 		} else
1757 			err = -EIO;
1758 		brelse(journal->j_sb_buffer);
1759 	}
1760 
1761 	if (journal->j_proc_entry)
1762 		jbd2_stats_proc_exit(journal);
1763 	iput(journal->j_inode);
1764 	if (journal->j_revoke)
1765 		jbd2_journal_destroy_revoke(journal);
1766 	if (journal->j_chksum_driver)
1767 		crypto_free_shash(journal->j_chksum_driver);
1768 	kfree(journal->j_wbuf);
1769 	kfree(journal);
1770 
1771 	return err;
1772 }
1773 
1774 
1775 /**
1776  *int jbd2_journal_check_used_features () - Check if features specified are used.
1777  * @journal: Journal to check.
1778  * @compat: bitmask of compatible features
1779  * @ro: bitmask of features that force read-only mount
1780  * @incompat: bitmask of incompatible features
1781  *
1782  * Check whether the journal uses all of a given set of
1783  * features.  Return true (non-zero) if it does.
1784  **/
1785 
1786 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1787 				 unsigned long ro, unsigned long incompat)
1788 {
1789 	journal_superblock_t *sb;
1790 
1791 	if (!compat && !ro && !incompat)
1792 		return 1;
1793 	/* Load journal superblock if it is not loaded yet. */
1794 	if (journal->j_format_version == 0 &&
1795 	    journal_get_superblock(journal) != 0)
1796 		return 0;
1797 	if (journal->j_format_version == 1)
1798 		return 0;
1799 
1800 	sb = journal->j_superblock;
1801 
1802 	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1803 	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1804 	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1805 		return 1;
1806 
1807 	return 0;
1808 }
1809 
1810 /**
1811  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1812  * @journal: Journal to check.
1813  * @compat: bitmask of compatible features
1814  * @ro: bitmask of features that force read-only mount
1815  * @incompat: bitmask of incompatible features
1816  *
1817  * Check whether the journaling code supports the use of
1818  * all of a given set of features on this journal.  Return true
1819  * (non-zero) if it can. */
1820 
1821 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1822 				      unsigned long ro, unsigned long incompat)
1823 {
1824 	if (!compat && !ro && !incompat)
1825 		return 1;
1826 
1827 	/* We can support any known requested features iff the
1828 	 * superblock is in version 2.  Otherwise we fail to support any
1829 	 * extended sb features. */
1830 
1831 	if (journal->j_format_version != 2)
1832 		return 0;
1833 
1834 	if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1835 	    (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1836 	    (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1837 		return 1;
1838 
1839 	return 0;
1840 }
1841 
1842 /**
1843  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1844  * @journal: Journal to act on.
1845  * @compat: bitmask of compatible features
1846  * @ro: bitmask of features that force read-only mount
1847  * @incompat: bitmask of incompatible features
1848  *
1849  * Mark a given journal feature as present on the
1850  * superblock.  Returns true if the requested features could be set.
1851  *
1852  */
1853 
1854 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1855 			  unsigned long ro, unsigned long incompat)
1856 {
1857 #define INCOMPAT_FEATURE_ON(f) \
1858 		((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1859 #define COMPAT_FEATURE_ON(f) \
1860 		((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1861 	journal_superblock_t *sb;
1862 
1863 	if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1864 		return 1;
1865 
1866 	if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1867 		return 0;
1868 
1869 	/* If enabling v2 checksums, turn on v3 instead */
1870 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
1871 		incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
1872 		incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
1873 	}
1874 
1875 	/* Asking for checksumming v3 and v1?  Only give them v3. */
1876 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
1877 	    compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1878 		compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1879 
1880 	jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1881 		  compat, ro, incompat);
1882 
1883 	sb = journal->j_superblock;
1884 
1885 	/* If enabling v3 checksums, update superblock */
1886 	if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1887 		sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1888 		sb->s_feature_compat &=
1889 			~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1890 
1891 		/* Load the checksum driver */
1892 		if (journal->j_chksum_driver == NULL) {
1893 			journal->j_chksum_driver = crypto_alloc_shash("crc32c",
1894 								      0, 0);
1895 			if (IS_ERR(journal->j_chksum_driver)) {
1896 				printk(KERN_ERR "JBD2: Cannot load crc32c "
1897 				       "driver.\n");
1898 				journal->j_chksum_driver = NULL;
1899 				return 0;
1900 			}
1901 
1902 			/* Precompute checksum seed for all metadata */
1903 			journal->j_csum_seed = jbd2_chksum(journal, ~0,
1904 							   sb->s_uuid,
1905 							   sizeof(sb->s_uuid));
1906 		}
1907 	}
1908 
1909 	/* If enabling v1 checksums, downgrade superblock */
1910 	if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1911 		sb->s_feature_incompat &=
1912 			~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
1913 				     JBD2_FEATURE_INCOMPAT_CSUM_V3);
1914 
1915 	sb->s_feature_compat    |= cpu_to_be32(compat);
1916 	sb->s_feature_ro_compat |= cpu_to_be32(ro);
1917 	sb->s_feature_incompat  |= cpu_to_be32(incompat);
1918 
1919 	return 1;
1920 #undef COMPAT_FEATURE_ON
1921 #undef INCOMPAT_FEATURE_ON
1922 }
1923 
1924 /*
1925  * jbd2_journal_clear_features () - Clear a given journal feature in the
1926  * 				    superblock
1927  * @journal: Journal to act on.
1928  * @compat: bitmask of compatible features
1929  * @ro: bitmask of features that force read-only mount
1930  * @incompat: bitmask of incompatible features
1931  *
1932  * Clear a given journal feature as present on the
1933  * superblock.
1934  */
1935 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1936 				unsigned long ro, unsigned long incompat)
1937 {
1938 	journal_superblock_t *sb;
1939 
1940 	jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1941 		  compat, ro, incompat);
1942 
1943 	sb = journal->j_superblock;
1944 
1945 	sb->s_feature_compat    &= ~cpu_to_be32(compat);
1946 	sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1947 	sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1948 }
1949 EXPORT_SYMBOL(jbd2_journal_clear_features);
1950 
1951 /**
1952  * int jbd2_journal_flush () - Flush journal
1953  * @journal: Journal to act on.
1954  *
1955  * Flush all data for a given journal to disk and empty the journal.
1956  * Filesystems can use this when remounting readonly to ensure that
1957  * recovery does not need to happen on remount.
1958  */
1959 
1960 int jbd2_journal_flush(journal_t *journal)
1961 {
1962 	int err = 0;
1963 	transaction_t *transaction = NULL;
1964 
1965 	write_lock(&journal->j_state_lock);
1966 
1967 	/* Force everything buffered to the log... */
1968 	if (journal->j_running_transaction) {
1969 		transaction = journal->j_running_transaction;
1970 		__jbd2_log_start_commit(journal, transaction->t_tid);
1971 	} else if (journal->j_committing_transaction)
1972 		transaction = journal->j_committing_transaction;
1973 
1974 	/* Wait for the log commit to complete... */
1975 	if (transaction) {
1976 		tid_t tid = transaction->t_tid;
1977 
1978 		write_unlock(&journal->j_state_lock);
1979 		jbd2_log_wait_commit(journal, tid);
1980 	} else {
1981 		write_unlock(&journal->j_state_lock);
1982 	}
1983 
1984 	/* ...and flush everything in the log out to disk. */
1985 	spin_lock(&journal->j_list_lock);
1986 	while (!err && journal->j_checkpoint_transactions != NULL) {
1987 		spin_unlock(&journal->j_list_lock);
1988 		mutex_lock(&journal->j_checkpoint_mutex);
1989 		err = jbd2_log_do_checkpoint(journal);
1990 		mutex_unlock(&journal->j_checkpoint_mutex);
1991 		spin_lock(&journal->j_list_lock);
1992 	}
1993 	spin_unlock(&journal->j_list_lock);
1994 
1995 	if (is_journal_aborted(journal))
1996 		return -EIO;
1997 
1998 	mutex_lock(&journal->j_checkpoint_mutex);
1999 	if (!err) {
2000 		err = jbd2_cleanup_journal_tail(journal);
2001 		if (err < 0) {
2002 			mutex_unlock(&journal->j_checkpoint_mutex);
2003 			goto out;
2004 		}
2005 		err = 0;
2006 	}
2007 
2008 	/* Finally, mark the journal as really needing no recovery.
2009 	 * This sets s_start==0 in the underlying superblock, which is
2010 	 * the magic code for a fully-recovered superblock.  Any future
2011 	 * commits of data to the journal will restore the current
2012 	 * s_start value. */
2013 	jbd2_mark_journal_empty(journal, WRITE_FUA);
2014 	mutex_unlock(&journal->j_checkpoint_mutex);
2015 	write_lock(&journal->j_state_lock);
2016 	J_ASSERT(!journal->j_running_transaction);
2017 	J_ASSERT(!journal->j_committing_transaction);
2018 	J_ASSERT(!journal->j_checkpoint_transactions);
2019 	J_ASSERT(journal->j_head == journal->j_tail);
2020 	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2021 	write_unlock(&journal->j_state_lock);
2022 out:
2023 	return err;
2024 }
2025 
2026 /**
2027  * int jbd2_journal_wipe() - Wipe journal contents
2028  * @journal: Journal to act on.
2029  * @write: flag (see below)
2030  *
2031  * Wipe out all of the contents of a journal, safely.  This will produce
2032  * a warning if the journal contains any valid recovery information.
2033  * Must be called between journal_init_*() and jbd2_journal_load().
2034  *
2035  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2036  * we merely suppress recovery.
2037  */
2038 
2039 int jbd2_journal_wipe(journal_t *journal, int write)
2040 {
2041 	int err = 0;
2042 
2043 	J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2044 
2045 	err = load_superblock(journal);
2046 	if (err)
2047 		return err;
2048 
2049 	if (!journal->j_tail)
2050 		goto no_recovery;
2051 
2052 	printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2053 		write ? "Clearing" : "Ignoring");
2054 
2055 	err = jbd2_journal_skip_recovery(journal);
2056 	if (write) {
2057 		/* Lock to make assertions happy... */
2058 		mutex_lock(&journal->j_checkpoint_mutex);
2059 		jbd2_mark_journal_empty(journal, WRITE_FUA);
2060 		mutex_unlock(&journal->j_checkpoint_mutex);
2061 	}
2062 
2063  no_recovery:
2064 	return err;
2065 }
2066 
2067 /*
2068  * Journal abort has very specific semantics, which we describe
2069  * for journal abort.
2070  *
2071  * Two internal functions, which provide abort to the jbd layer
2072  * itself are here.
2073  */
2074 
2075 /*
2076  * Quick version for internal journal use (doesn't lock the journal).
2077  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
2078  * and don't attempt to make any other journal updates.
2079  */
2080 void __jbd2_journal_abort_hard(journal_t *journal)
2081 {
2082 	transaction_t *transaction;
2083 
2084 	if (journal->j_flags & JBD2_ABORT)
2085 		return;
2086 
2087 	printk(KERN_ERR "Aborting journal on device %s.\n",
2088 	       journal->j_devname);
2089 
2090 	write_lock(&journal->j_state_lock);
2091 	journal->j_flags |= JBD2_ABORT;
2092 	transaction = journal->j_running_transaction;
2093 	if (transaction)
2094 		__jbd2_log_start_commit(journal, transaction->t_tid);
2095 	write_unlock(&journal->j_state_lock);
2096 }
2097 
2098 /* Soft abort: record the abort error status in the journal superblock,
2099  * but don't do any other IO. */
2100 static void __journal_abort_soft (journal_t *journal, int errno)
2101 {
2102 	if (journal->j_flags & JBD2_ABORT)
2103 		return;
2104 
2105 	if (!journal->j_errno)
2106 		journal->j_errno = errno;
2107 
2108 	__jbd2_journal_abort_hard(journal);
2109 
2110 	if (errno) {
2111 		jbd2_journal_update_sb_errno(journal);
2112 		write_lock(&journal->j_state_lock);
2113 		journal->j_flags |= JBD2_REC_ERR;
2114 		write_unlock(&journal->j_state_lock);
2115 	}
2116 }
2117 
2118 /**
2119  * void jbd2_journal_abort () - Shutdown the journal immediately.
2120  * @journal: the journal to shutdown.
2121  * @errno:   an error number to record in the journal indicating
2122  *           the reason for the shutdown.
2123  *
2124  * Perform a complete, immediate shutdown of the ENTIRE
2125  * journal (not of a single transaction).  This operation cannot be
2126  * undone without closing and reopening the journal.
2127  *
2128  * The jbd2_journal_abort function is intended to support higher level error
2129  * recovery mechanisms such as the ext2/ext3 remount-readonly error
2130  * mode.
2131  *
2132  * Journal abort has very specific semantics.  Any existing dirty,
2133  * unjournaled buffers in the main filesystem will still be written to
2134  * disk by bdflush, but the journaling mechanism will be suspended
2135  * immediately and no further transaction commits will be honoured.
2136  *
2137  * Any dirty, journaled buffers will be written back to disk without
2138  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2139  * filesystem, but we _do_ attempt to leave as much data as possible
2140  * behind for fsck to use for cleanup.
2141  *
2142  * Any attempt to get a new transaction handle on a journal which is in
2143  * ABORT state will just result in an -EROFS error return.  A
2144  * jbd2_journal_stop on an existing handle will return -EIO if we have
2145  * entered abort state during the update.
2146  *
2147  * Recursive transactions are not disturbed by journal abort until the
2148  * final jbd2_journal_stop, which will receive the -EIO error.
2149  *
2150  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2151  * which will be recorded (if possible) in the journal superblock.  This
2152  * allows a client to record failure conditions in the middle of a
2153  * transaction without having to complete the transaction to record the
2154  * failure to disk.  ext3_error, for example, now uses this
2155  * functionality.
2156  *
2157  * Errors which originate from within the journaling layer will NOT
2158  * supply an errno; a null errno implies that absolutely no further
2159  * writes are done to the journal (unless there are any already in
2160  * progress).
2161  *
2162  */
2163 
2164 void jbd2_journal_abort(journal_t *journal, int errno)
2165 {
2166 	__journal_abort_soft(journal, errno);
2167 }
2168 
2169 /**
2170  * int jbd2_journal_errno () - returns the journal's error state.
2171  * @journal: journal to examine.
2172  *
2173  * This is the errno number set with jbd2_journal_abort(), the last
2174  * time the journal was mounted - if the journal was stopped
2175  * without calling abort this will be 0.
2176  *
2177  * If the journal has been aborted on this mount time -EROFS will
2178  * be returned.
2179  */
2180 int jbd2_journal_errno(journal_t *journal)
2181 {
2182 	int err;
2183 
2184 	read_lock(&journal->j_state_lock);
2185 	if (journal->j_flags & JBD2_ABORT)
2186 		err = -EROFS;
2187 	else
2188 		err = journal->j_errno;
2189 	read_unlock(&journal->j_state_lock);
2190 	return err;
2191 }
2192 
2193 /**
2194  * int jbd2_journal_clear_err () - clears the journal's error state
2195  * @journal: journal to act on.
2196  *
2197  * An error must be cleared or acked to take a FS out of readonly
2198  * mode.
2199  */
2200 int jbd2_journal_clear_err(journal_t *journal)
2201 {
2202 	int err = 0;
2203 
2204 	write_lock(&journal->j_state_lock);
2205 	if (journal->j_flags & JBD2_ABORT)
2206 		err = -EROFS;
2207 	else
2208 		journal->j_errno = 0;
2209 	write_unlock(&journal->j_state_lock);
2210 	return err;
2211 }
2212 
2213 /**
2214  * void jbd2_journal_ack_err() - Ack journal err.
2215  * @journal: journal to act on.
2216  *
2217  * An error must be cleared or acked to take a FS out of readonly
2218  * mode.
2219  */
2220 void jbd2_journal_ack_err(journal_t *journal)
2221 {
2222 	write_lock(&journal->j_state_lock);
2223 	if (journal->j_errno)
2224 		journal->j_flags |= JBD2_ACK_ERR;
2225 	write_unlock(&journal->j_state_lock);
2226 }
2227 
2228 int jbd2_journal_blocks_per_page(struct inode *inode)
2229 {
2230 	return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2231 }
2232 
2233 /*
2234  * helper functions to deal with 32 or 64bit block numbers.
2235  */
2236 size_t journal_tag_bytes(journal_t *journal)
2237 {
2238 	size_t sz;
2239 
2240 	if (jbd2_has_feature_csum3(journal))
2241 		return sizeof(journal_block_tag3_t);
2242 
2243 	sz = sizeof(journal_block_tag_t);
2244 
2245 	if (jbd2_has_feature_csum2(journal))
2246 		sz += sizeof(__u16);
2247 
2248 	if (jbd2_has_feature_64bit(journal))
2249 		return sz;
2250 	else
2251 		return sz - sizeof(__u32);
2252 }
2253 
2254 /*
2255  * JBD memory management
2256  *
2257  * These functions are used to allocate block-sized chunks of memory
2258  * used for making copies of buffer_head data.  Very often it will be
2259  * page-sized chunks of data, but sometimes it will be in
2260  * sub-page-size chunks.  (For example, 16k pages on Power systems
2261  * with a 4k block file system.)  For blocks smaller than a page, we
2262  * use a SLAB allocator.  There are slab caches for each block size,
2263  * which are allocated at mount time, if necessary, and we only free
2264  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2265  * this reason we don't need to a mutex to protect access to
2266  * jbd2_slab[] allocating or releasing memory; only in
2267  * jbd2_journal_create_slab().
2268  */
2269 #define JBD2_MAX_SLABS 8
2270 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2271 
2272 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2273 	"jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2274 	"jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2275 };
2276 
2277 
2278 static void jbd2_journal_destroy_slabs(void)
2279 {
2280 	int i;
2281 
2282 	for (i = 0; i < JBD2_MAX_SLABS; i++) {
2283 		if (jbd2_slab[i])
2284 			kmem_cache_destroy(jbd2_slab[i]);
2285 		jbd2_slab[i] = NULL;
2286 	}
2287 }
2288 
2289 static int jbd2_journal_create_slab(size_t size)
2290 {
2291 	static DEFINE_MUTEX(jbd2_slab_create_mutex);
2292 	int i = order_base_2(size) - 10;
2293 	size_t slab_size;
2294 
2295 	if (size == PAGE_SIZE)
2296 		return 0;
2297 
2298 	if (i >= JBD2_MAX_SLABS)
2299 		return -EINVAL;
2300 
2301 	if (unlikely(i < 0))
2302 		i = 0;
2303 	mutex_lock(&jbd2_slab_create_mutex);
2304 	if (jbd2_slab[i]) {
2305 		mutex_unlock(&jbd2_slab_create_mutex);
2306 		return 0;	/* Already created */
2307 	}
2308 
2309 	slab_size = 1 << (i+10);
2310 	jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2311 					 slab_size, 0, NULL);
2312 	mutex_unlock(&jbd2_slab_create_mutex);
2313 	if (!jbd2_slab[i]) {
2314 		printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2315 		return -ENOMEM;
2316 	}
2317 	return 0;
2318 }
2319 
2320 static struct kmem_cache *get_slab(size_t size)
2321 {
2322 	int i = order_base_2(size) - 10;
2323 
2324 	BUG_ON(i >= JBD2_MAX_SLABS);
2325 	if (unlikely(i < 0))
2326 		i = 0;
2327 	BUG_ON(jbd2_slab[i] == NULL);
2328 	return jbd2_slab[i];
2329 }
2330 
2331 void *jbd2_alloc(size_t size, gfp_t flags)
2332 {
2333 	void *ptr;
2334 
2335 	BUG_ON(size & (size-1)); /* Must be a power of 2 */
2336 
2337 	if (size < PAGE_SIZE)
2338 		ptr = kmem_cache_alloc(get_slab(size), flags);
2339 	else
2340 		ptr = (void *)__get_free_pages(flags, get_order(size));
2341 
2342 	/* Check alignment; SLUB has gotten this wrong in the past,
2343 	 * and this can lead to user data corruption! */
2344 	BUG_ON(((unsigned long) ptr) & (size-1));
2345 
2346 	return ptr;
2347 }
2348 
2349 void jbd2_free(void *ptr, size_t size)
2350 {
2351 	if (size < PAGE_SIZE)
2352 		kmem_cache_free(get_slab(size), ptr);
2353 	else
2354 		free_pages((unsigned long)ptr, get_order(size));
2355 };
2356 
2357 /*
2358  * Journal_head storage management
2359  */
2360 static struct kmem_cache *jbd2_journal_head_cache;
2361 #ifdef CONFIG_JBD2_DEBUG
2362 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2363 #endif
2364 
2365 static int jbd2_journal_init_journal_head_cache(void)
2366 {
2367 	int retval;
2368 
2369 	J_ASSERT(jbd2_journal_head_cache == NULL);
2370 	jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2371 				sizeof(struct journal_head),
2372 				0,		/* offset */
2373 				SLAB_TEMPORARY | SLAB_DESTROY_BY_RCU,
2374 				NULL);		/* ctor */
2375 	retval = 0;
2376 	if (!jbd2_journal_head_cache) {
2377 		retval = -ENOMEM;
2378 		printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2379 	}
2380 	return retval;
2381 }
2382 
2383 static void jbd2_journal_destroy_journal_head_cache(void)
2384 {
2385 	if (jbd2_journal_head_cache) {
2386 		kmem_cache_destroy(jbd2_journal_head_cache);
2387 		jbd2_journal_head_cache = NULL;
2388 	}
2389 }
2390 
2391 /*
2392  * journal_head splicing and dicing
2393  */
2394 static struct journal_head *journal_alloc_journal_head(void)
2395 {
2396 	struct journal_head *ret;
2397 
2398 #ifdef CONFIG_JBD2_DEBUG
2399 	atomic_inc(&nr_journal_heads);
2400 #endif
2401 	ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2402 	if (!ret) {
2403 		jbd_debug(1, "out of memory for journal_head\n");
2404 		pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2405 		ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2406 				GFP_NOFS | __GFP_NOFAIL);
2407 	}
2408 	return ret;
2409 }
2410 
2411 static void journal_free_journal_head(struct journal_head *jh)
2412 {
2413 #ifdef CONFIG_JBD2_DEBUG
2414 	atomic_dec(&nr_journal_heads);
2415 	memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2416 #endif
2417 	kmem_cache_free(jbd2_journal_head_cache, jh);
2418 }
2419 
2420 /*
2421  * A journal_head is attached to a buffer_head whenever JBD has an
2422  * interest in the buffer.
2423  *
2424  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2425  * is set.  This bit is tested in core kernel code where we need to take
2426  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2427  * there.
2428  *
2429  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2430  *
2431  * When a buffer has its BH_JBD bit set it is immune from being released by
2432  * core kernel code, mainly via ->b_count.
2433  *
2434  * A journal_head is detached from its buffer_head when the journal_head's
2435  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2436  * transaction (b_cp_transaction) hold their references to b_jcount.
2437  *
2438  * Various places in the kernel want to attach a journal_head to a buffer_head
2439  * _before_ attaching the journal_head to a transaction.  To protect the
2440  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2441  * journal_head's b_jcount refcount by one.  The caller must call
2442  * jbd2_journal_put_journal_head() to undo this.
2443  *
2444  * So the typical usage would be:
2445  *
2446  *	(Attach a journal_head if needed.  Increments b_jcount)
2447  *	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2448  *	...
2449  *      (Get another reference for transaction)
2450  *	jbd2_journal_grab_journal_head(bh);
2451  *	jh->b_transaction = xxx;
2452  *	(Put original reference)
2453  *	jbd2_journal_put_journal_head(jh);
2454  */
2455 
2456 /*
2457  * Give a buffer_head a journal_head.
2458  *
2459  * May sleep.
2460  */
2461 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2462 {
2463 	struct journal_head *jh;
2464 	struct journal_head *new_jh = NULL;
2465 
2466 repeat:
2467 	if (!buffer_jbd(bh))
2468 		new_jh = journal_alloc_journal_head();
2469 
2470 	jbd_lock_bh_journal_head(bh);
2471 	if (buffer_jbd(bh)) {
2472 		jh = bh2jh(bh);
2473 	} else {
2474 		J_ASSERT_BH(bh,
2475 			(atomic_read(&bh->b_count) > 0) ||
2476 			(bh->b_page && bh->b_page->mapping));
2477 
2478 		if (!new_jh) {
2479 			jbd_unlock_bh_journal_head(bh);
2480 			goto repeat;
2481 		}
2482 
2483 		jh = new_jh;
2484 		new_jh = NULL;		/* We consumed it */
2485 		set_buffer_jbd(bh);
2486 		bh->b_private = jh;
2487 		jh->b_bh = bh;
2488 		get_bh(bh);
2489 		BUFFER_TRACE(bh, "added journal_head");
2490 	}
2491 	jh->b_jcount++;
2492 	jbd_unlock_bh_journal_head(bh);
2493 	if (new_jh)
2494 		journal_free_journal_head(new_jh);
2495 	return bh->b_private;
2496 }
2497 
2498 /*
2499  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2500  * having a journal_head, return NULL
2501  */
2502 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2503 {
2504 	struct journal_head *jh = NULL;
2505 
2506 	jbd_lock_bh_journal_head(bh);
2507 	if (buffer_jbd(bh)) {
2508 		jh = bh2jh(bh);
2509 		jh->b_jcount++;
2510 	}
2511 	jbd_unlock_bh_journal_head(bh);
2512 	return jh;
2513 }
2514 
2515 static void __journal_remove_journal_head(struct buffer_head *bh)
2516 {
2517 	struct journal_head *jh = bh2jh(bh);
2518 
2519 	J_ASSERT_JH(jh, jh->b_jcount >= 0);
2520 	J_ASSERT_JH(jh, jh->b_transaction == NULL);
2521 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2522 	J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2523 	J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2524 	J_ASSERT_BH(bh, buffer_jbd(bh));
2525 	J_ASSERT_BH(bh, jh2bh(jh) == bh);
2526 	BUFFER_TRACE(bh, "remove journal_head");
2527 	if (jh->b_frozen_data) {
2528 		printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2529 		jbd2_free(jh->b_frozen_data, bh->b_size);
2530 	}
2531 	if (jh->b_committed_data) {
2532 		printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2533 		jbd2_free(jh->b_committed_data, bh->b_size);
2534 	}
2535 	bh->b_private = NULL;
2536 	jh->b_bh = NULL;	/* debug, really */
2537 	clear_buffer_jbd(bh);
2538 	journal_free_journal_head(jh);
2539 }
2540 
2541 /*
2542  * Drop a reference on the passed journal_head.  If it fell to zero then
2543  * release the journal_head from the buffer_head.
2544  */
2545 void jbd2_journal_put_journal_head(struct journal_head *jh)
2546 {
2547 	struct buffer_head *bh = jh2bh(jh);
2548 
2549 	jbd_lock_bh_journal_head(bh);
2550 	J_ASSERT_JH(jh, jh->b_jcount > 0);
2551 	--jh->b_jcount;
2552 	if (!jh->b_jcount) {
2553 		__journal_remove_journal_head(bh);
2554 		jbd_unlock_bh_journal_head(bh);
2555 		__brelse(bh);
2556 	} else
2557 		jbd_unlock_bh_journal_head(bh);
2558 }
2559 
2560 /*
2561  * Initialize jbd inode head
2562  */
2563 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2564 {
2565 	jinode->i_transaction = NULL;
2566 	jinode->i_next_transaction = NULL;
2567 	jinode->i_vfs_inode = inode;
2568 	jinode->i_flags = 0;
2569 	INIT_LIST_HEAD(&jinode->i_list);
2570 }
2571 
2572 /*
2573  * Function to be called before we start removing inode from memory (i.e.,
2574  * clear_inode() is a fine place to be called from). It removes inode from
2575  * transaction's lists.
2576  */
2577 void jbd2_journal_release_jbd_inode(journal_t *journal,
2578 				    struct jbd2_inode *jinode)
2579 {
2580 	if (!journal)
2581 		return;
2582 restart:
2583 	spin_lock(&journal->j_list_lock);
2584 	/* Is commit writing out inode - we have to wait */
2585 	if (jinode->i_flags & JI_COMMIT_RUNNING) {
2586 		wait_queue_head_t *wq;
2587 		DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2588 		wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2589 		prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2590 		spin_unlock(&journal->j_list_lock);
2591 		schedule();
2592 		finish_wait(wq, &wait.wait);
2593 		goto restart;
2594 	}
2595 
2596 	if (jinode->i_transaction) {
2597 		list_del(&jinode->i_list);
2598 		jinode->i_transaction = NULL;
2599 	}
2600 	spin_unlock(&journal->j_list_lock);
2601 }
2602 
2603 
2604 #ifdef CONFIG_PROC_FS
2605 
2606 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2607 
2608 static void __init jbd2_create_jbd_stats_proc_entry(void)
2609 {
2610 	proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2611 }
2612 
2613 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2614 {
2615 	if (proc_jbd2_stats)
2616 		remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2617 }
2618 
2619 #else
2620 
2621 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2622 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2623 
2624 #endif
2625 
2626 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2627 
2628 static int __init jbd2_journal_init_handle_cache(void)
2629 {
2630 	jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2631 	if (jbd2_handle_cache == NULL) {
2632 		printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2633 		return -ENOMEM;
2634 	}
2635 	jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2636 	if (jbd2_inode_cache == NULL) {
2637 		printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2638 		kmem_cache_destroy(jbd2_handle_cache);
2639 		return -ENOMEM;
2640 	}
2641 	return 0;
2642 }
2643 
2644 static void jbd2_journal_destroy_handle_cache(void)
2645 {
2646 	if (jbd2_handle_cache)
2647 		kmem_cache_destroy(jbd2_handle_cache);
2648 	if (jbd2_inode_cache)
2649 		kmem_cache_destroy(jbd2_inode_cache);
2650 
2651 }
2652 
2653 /*
2654  * Module startup and shutdown
2655  */
2656 
2657 static int __init journal_init_caches(void)
2658 {
2659 	int ret;
2660 
2661 	ret = jbd2_journal_init_revoke_caches();
2662 	if (ret == 0)
2663 		ret = jbd2_journal_init_journal_head_cache();
2664 	if (ret == 0)
2665 		ret = jbd2_journal_init_handle_cache();
2666 	if (ret == 0)
2667 		ret = jbd2_journal_init_transaction_cache();
2668 	return ret;
2669 }
2670 
2671 static void jbd2_journal_destroy_caches(void)
2672 {
2673 	jbd2_journal_destroy_revoke_caches();
2674 	jbd2_journal_destroy_journal_head_cache();
2675 	jbd2_journal_destroy_handle_cache();
2676 	jbd2_journal_destroy_transaction_cache();
2677 	jbd2_journal_destroy_slabs();
2678 }
2679 
2680 static int __init journal_init(void)
2681 {
2682 	int ret;
2683 
2684 	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2685 
2686 	ret = journal_init_caches();
2687 	if (ret == 0) {
2688 		jbd2_create_jbd_stats_proc_entry();
2689 	} else {
2690 		jbd2_journal_destroy_caches();
2691 	}
2692 	return ret;
2693 }
2694 
2695 static void __exit journal_exit(void)
2696 {
2697 #ifdef CONFIG_JBD2_DEBUG
2698 	int n = atomic_read(&nr_journal_heads);
2699 	if (n)
2700 		printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
2701 #endif
2702 	jbd2_remove_jbd_stats_proc_entry();
2703 	jbd2_journal_destroy_caches();
2704 }
2705 
2706 MODULE_LICENSE("GPL");
2707 module_init(journal_init);
2708 module_exit(journal_exit);
2709 
2710