xref: /linux/fs/jbd2/journal.c (revision b3b77c8caef1750ebeea1054e39e358550ea9f55)
1 /*
2  * linux/fs/jbd2/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24 
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/debugfs.h>
39 #include <linux/seq_file.h>
40 #include <linux/math64.h>
41 #include <linux/hash.h>
42 #include <linux/log2.h>
43 #include <linux/vmalloc.h>
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/jbd2.h>
47 
48 #include <asm/uaccess.h>
49 #include <asm/page.h>
50 
51 EXPORT_SYMBOL(jbd2_journal_start);
52 EXPORT_SYMBOL(jbd2_journal_restart);
53 EXPORT_SYMBOL(jbd2_journal_extend);
54 EXPORT_SYMBOL(jbd2_journal_stop);
55 EXPORT_SYMBOL(jbd2_journal_lock_updates);
56 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
57 EXPORT_SYMBOL(jbd2_journal_get_write_access);
58 EXPORT_SYMBOL(jbd2_journal_get_create_access);
59 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
60 EXPORT_SYMBOL(jbd2_journal_set_triggers);
61 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
62 EXPORT_SYMBOL(jbd2_journal_release_buffer);
63 EXPORT_SYMBOL(jbd2_journal_forget);
64 #if 0
65 EXPORT_SYMBOL(journal_sync_buffer);
66 #endif
67 EXPORT_SYMBOL(jbd2_journal_flush);
68 EXPORT_SYMBOL(jbd2_journal_revoke);
69 
70 EXPORT_SYMBOL(jbd2_journal_init_dev);
71 EXPORT_SYMBOL(jbd2_journal_init_inode);
72 EXPORT_SYMBOL(jbd2_journal_update_format);
73 EXPORT_SYMBOL(jbd2_journal_check_used_features);
74 EXPORT_SYMBOL(jbd2_journal_check_available_features);
75 EXPORT_SYMBOL(jbd2_journal_set_features);
76 EXPORT_SYMBOL(jbd2_journal_load);
77 EXPORT_SYMBOL(jbd2_journal_destroy);
78 EXPORT_SYMBOL(jbd2_journal_abort);
79 EXPORT_SYMBOL(jbd2_journal_errno);
80 EXPORT_SYMBOL(jbd2_journal_ack_err);
81 EXPORT_SYMBOL(jbd2_journal_clear_err);
82 EXPORT_SYMBOL(jbd2_log_wait_commit);
83 EXPORT_SYMBOL(jbd2_log_start_commit);
84 EXPORT_SYMBOL(jbd2_journal_start_commit);
85 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
86 EXPORT_SYMBOL(jbd2_journal_wipe);
87 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
88 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
89 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
90 EXPORT_SYMBOL(jbd2_journal_force_commit);
91 EXPORT_SYMBOL(jbd2_journal_file_inode);
92 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
93 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
94 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
95 
96 static int journal_convert_superblock_v1(journal_t *, journal_superblock_t *);
97 static void __journal_abort_soft (journal_t *journal, int errno);
98 static int jbd2_journal_create_slab(size_t slab_size);
99 
100 /*
101  * Helper function used to manage commit timeouts
102  */
103 
104 static void commit_timeout(unsigned long __data)
105 {
106 	struct task_struct * p = (struct task_struct *) __data;
107 
108 	wake_up_process(p);
109 }
110 
111 /*
112  * kjournald2: The main thread function used to manage a logging device
113  * journal.
114  *
115  * This kernel thread is responsible for two things:
116  *
117  * 1) COMMIT:  Every so often we need to commit the current state of the
118  *    filesystem to disk.  The journal thread is responsible for writing
119  *    all of the metadata buffers to disk.
120  *
121  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
122  *    of the data in that part of the log has been rewritten elsewhere on
123  *    the disk.  Flushing these old buffers to reclaim space in the log is
124  *    known as checkpointing, and this thread is responsible for that job.
125  */
126 
127 static int kjournald2(void *arg)
128 {
129 	journal_t *journal = arg;
130 	transaction_t *transaction;
131 
132 	/*
133 	 * Set up an interval timer which can be used to trigger a commit wakeup
134 	 * after the commit interval expires
135 	 */
136 	setup_timer(&journal->j_commit_timer, commit_timeout,
137 			(unsigned long)current);
138 
139 	/* Record that the journal thread is running */
140 	journal->j_task = current;
141 	wake_up(&journal->j_wait_done_commit);
142 
143 	/*
144 	 * And now, wait forever for commit wakeup events.
145 	 */
146 	spin_lock(&journal->j_state_lock);
147 
148 loop:
149 	if (journal->j_flags & JBD2_UNMOUNT)
150 		goto end_loop;
151 
152 	jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
153 		journal->j_commit_sequence, journal->j_commit_request);
154 
155 	if (journal->j_commit_sequence != journal->j_commit_request) {
156 		jbd_debug(1, "OK, requests differ\n");
157 		spin_unlock(&journal->j_state_lock);
158 		del_timer_sync(&journal->j_commit_timer);
159 		jbd2_journal_commit_transaction(journal);
160 		spin_lock(&journal->j_state_lock);
161 		goto loop;
162 	}
163 
164 	wake_up(&journal->j_wait_done_commit);
165 	if (freezing(current)) {
166 		/*
167 		 * The simpler the better. Flushing journal isn't a
168 		 * good idea, because that depends on threads that may
169 		 * be already stopped.
170 		 */
171 		jbd_debug(1, "Now suspending kjournald2\n");
172 		spin_unlock(&journal->j_state_lock);
173 		refrigerator();
174 		spin_lock(&journal->j_state_lock);
175 	} else {
176 		/*
177 		 * We assume on resume that commits are already there,
178 		 * so we don't sleep
179 		 */
180 		DEFINE_WAIT(wait);
181 		int should_sleep = 1;
182 
183 		prepare_to_wait(&journal->j_wait_commit, &wait,
184 				TASK_INTERRUPTIBLE);
185 		if (journal->j_commit_sequence != journal->j_commit_request)
186 			should_sleep = 0;
187 		transaction = journal->j_running_transaction;
188 		if (transaction && time_after_eq(jiffies,
189 						transaction->t_expires))
190 			should_sleep = 0;
191 		if (journal->j_flags & JBD2_UNMOUNT)
192 			should_sleep = 0;
193 		if (should_sleep) {
194 			spin_unlock(&journal->j_state_lock);
195 			schedule();
196 			spin_lock(&journal->j_state_lock);
197 		}
198 		finish_wait(&journal->j_wait_commit, &wait);
199 	}
200 
201 	jbd_debug(1, "kjournald2 wakes\n");
202 
203 	/*
204 	 * Were we woken up by a commit wakeup event?
205 	 */
206 	transaction = journal->j_running_transaction;
207 	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
208 		journal->j_commit_request = transaction->t_tid;
209 		jbd_debug(1, "woke because of timeout\n");
210 	}
211 	goto loop;
212 
213 end_loop:
214 	spin_unlock(&journal->j_state_lock);
215 	del_timer_sync(&journal->j_commit_timer);
216 	journal->j_task = NULL;
217 	wake_up(&journal->j_wait_done_commit);
218 	jbd_debug(1, "Journal thread exiting.\n");
219 	return 0;
220 }
221 
222 static int jbd2_journal_start_thread(journal_t *journal)
223 {
224 	struct task_struct *t;
225 
226 	t = kthread_run(kjournald2, journal, "jbd2/%s",
227 			journal->j_devname);
228 	if (IS_ERR(t))
229 		return PTR_ERR(t);
230 
231 	wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
232 	return 0;
233 }
234 
235 static void journal_kill_thread(journal_t *journal)
236 {
237 	spin_lock(&journal->j_state_lock);
238 	journal->j_flags |= JBD2_UNMOUNT;
239 
240 	while (journal->j_task) {
241 		wake_up(&journal->j_wait_commit);
242 		spin_unlock(&journal->j_state_lock);
243 		wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
244 		spin_lock(&journal->j_state_lock);
245 	}
246 	spin_unlock(&journal->j_state_lock);
247 }
248 
249 /*
250  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
251  *
252  * Writes a metadata buffer to a given disk block.  The actual IO is not
253  * performed but a new buffer_head is constructed which labels the data
254  * to be written with the correct destination disk block.
255  *
256  * Any magic-number escaping which needs to be done will cause a
257  * copy-out here.  If the buffer happens to start with the
258  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
259  * magic number is only written to the log for descripter blocks.  In
260  * this case, we copy the data and replace the first word with 0, and we
261  * return a result code which indicates that this buffer needs to be
262  * marked as an escaped buffer in the corresponding log descriptor
263  * block.  The missing word can then be restored when the block is read
264  * during recovery.
265  *
266  * If the source buffer has already been modified by a new transaction
267  * since we took the last commit snapshot, we use the frozen copy of
268  * that data for IO.  If we end up using the existing buffer_head's data
269  * for the write, then we *have* to lock the buffer to prevent anyone
270  * else from using and possibly modifying it while the IO is in
271  * progress.
272  *
273  * The function returns a pointer to the buffer_heads to be used for IO.
274  *
275  * We assume that the journal has already been locked in this function.
276  *
277  * Return value:
278  *  <0: Error
279  * >=0: Finished OK
280  *
281  * On success:
282  * Bit 0 set == escape performed on the data
283  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
284  */
285 
286 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
287 				  struct journal_head  *jh_in,
288 				  struct journal_head **jh_out,
289 				  unsigned long long blocknr)
290 {
291 	int need_copy_out = 0;
292 	int done_copy_out = 0;
293 	int do_escape = 0;
294 	char *mapped_data;
295 	struct buffer_head *new_bh;
296 	struct journal_head *new_jh;
297 	struct page *new_page;
298 	unsigned int new_offset;
299 	struct buffer_head *bh_in = jh2bh(jh_in);
300 	struct jbd2_buffer_trigger_type *triggers;
301 	journal_t *journal = transaction->t_journal;
302 
303 	/*
304 	 * The buffer really shouldn't be locked: only the current committing
305 	 * transaction is allowed to write it, so nobody else is allowed
306 	 * to do any IO.
307 	 *
308 	 * akpm: except if we're journalling data, and write() output is
309 	 * also part of a shared mapping, and another thread has
310 	 * decided to launch a writepage() against this buffer.
311 	 */
312 	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
313 
314 	new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
315 	/* keep subsequent assertions sane */
316 	new_bh->b_state = 0;
317 	init_buffer(new_bh, NULL, NULL);
318 	atomic_set(&new_bh->b_count, 1);
319 	new_jh = jbd2_journal_add_journal_head(new_bh);	/* This sleeps */
320 
321 	/*
322 	 * If a new transaction has already done a buffer copy-out, then
323 	 * we use that version of the data for the commit.
324 	 */
325 	jbd_lock_bh_state(bh_in);
326 repeat:
327 	if (jh_in->b_frozen_data) {
328 		done_copy_out = 1;
329 		new_page = virt_to_page(jh_in->b_frozen_data);
330 		new_offset = offset_in_page(jh_in->b_frozen_data);
331 		triggers = jh_in->b_frozen_triggers;
332 	} else {
333 		new_page = jh2bh(jh_in)->b_page;
334 		new_offset = offset_in_page(jh2bh(jh_in)->b_data);
335 		triggers = jh_in->b_triggers;
336 	}
337 
338 	mapped_data = kmap_atomic(new_page, KM_USER0);
339 	/*
340 	 * Fire any commit trigger.  Do this before checking for escaping,
341 	 * as the trigger may modify the magic offset.  If a copy-out
342 	 * happens afterwards, it will have the correct data in the buffer.
343 	 */
344 	jbd2_buffer_commit_trigger(jh_in, mapped_data + new_offset,
345 				   triggers);
346 
347 	/*
348 	 * Check for escaping
349 	 */
350 	if (*((__be32 *)(mapped_data + new_offset)) ==
351 				cpu_to_be32(JBD2_MAGIC_NUMBER)) {
352 		need_copy_out = 1;
353 		do_escape = 1;
354 	}
355 	kunmap_atomic(mapped_data, KM_USER0);
356 
357 	/*
358 	 * Do we need to do a data copy?
359 	 */
360 	if (need_copy_out && !done_copy_out) {
361 		char *tmp;
362 
363 		jbd_unlock_bh_state(bh_in);
364 		tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
365 		if (!tmp) {
366 			jbd2_journal_put_journal_head(new_jh);
367 			return -ENOMEM;
368 		}
369 		jbd_lock_bh_state(bh_in);
370 		if (jh_in->b_frozen_data) {
371 			jbd2_free(tmp, bh_in->b_size);
372 			goto repeat;
373 		}
374 
375 		jh_in->b_frozen_data = tmp;
376 		mapped_data = kmap_atomic(new_page, KM_USER0);
377 		memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
378 		kunmap_atomic(mapped_data, KM_USER0);
379 
380 		new_page = virt_to_page(tmp);
381 		new_offset = offset_in_page(tmp);
382 		done_copy_out = 1;
383 
384 		/*
385 		 * This isn't strictly necessary, as we're using frozen
386 		 * data for the escaping, but it keeps consistency with
387 		 * b_frozen_data usage.
388 		 */
389 		jh_in->b_frozen_triggers = jh_in->b_triggers;
390 	}
391 
392 	/*
393 	 * Did we need to do an escaping?  Now we've done all the
394 	 * copying, we can finally do so.
395 	 */
396 	if (do_escape) {
397 		mapped_data = kmap_atomic(new_page, KM_USER0);
398 		*((unsigned int *)(mapped_data + new_offset)) = 0;
399 		kunmap_atomic(mapped_data, KM_USER0);
400 	}
401 
402 	set_bh_page(new_bh, new_page, new_offset);
403 	new_jh->b_transaction = NULL;
404 	new_bh->b_size = jh2bh(jh_in)->b_size;
405 	new_bh->b_bdev = transaction->t_journal->j_dev;
406 	new_bh->b_blocknr = blocknr;
407 	set_buffer_mapped(new_bh);
408 	set_buffer_dirty(new_bh);
409 
410 	*jh_out = new_jh;
411 
412 	/*
413 	 * The to-be-written buffer needs to get moved to the io queue,
414 	 * and the original buffer whose contents we are shadowing or
415 	 * copying is moved to the transaction's shadow queue.
416 	 */
417 	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
418 	spin_lock(&journal->j_list_lock);
419 	__jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
420 	spin_unlock(&journal->j_list_lock);
421 	jbd_unlock_bh_state(bh_in);
422 
423 	JBUFFER_TRACE(new_jh, "file as BJ_IO");
424 	jbd2_journal_file_buffer(new_jh, transaction, BJ_IO);
425 
426 	return do_escape | (done_copy_out << 1);
427 }
428 
429 /*
430  * Allocation code for the journal file.  Manage the space left in the
431  * journal, so that we can begin checkpointing when appropriate.
432  */
433 
434 /*
435  * __jbd2_log_space_left: Return the number of free blocks left in the journal.
436  *
437  * Called with the journal already locked.
438  *
439  * Called under j_state_lock
440  */
441 
442 int __jbd2_log_space_left(journal_t *journal)
443 {
444 	int left = journal->j_free;
445 
446 	assert_spin_locked(&journal->j_state_lock);
447 
448 	/*
449 	 * Be pessimistic here about the number of those free blocks which
450 	 * might be required for log descriptor control blocks.
451 	 */
452 
453 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
454 
455 	left -= MIN_LOG_RESERVED_BLOCKS;
456 
457 	if (left <= 0)
458 		return 0;
459 	left -= (left >> 3);
460 	return left;
461 }
462 
463 /*
464  * Called under j_state_lock.  Returns true if a transaction commit was started.
465  */
466 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
467 {
468 	/*
469 	 * Are we already doing a recent enough commit?
470 	 */
471 	if (!tid_geq(journal->j_commit_request, target)) {
472 		/*
473 		 * We want a new commit: OK, mark the request and wakup the
474 		 * commit thread.  We do _not_ do the commit ourselves.
475 		 */
476 
477 		journal->j_commit_request = target;
478 		jbd_debug(1, "JBD: requesting commit %d/%d\n",
479 			  journal->j_commit_request,
480 			  journal->j_commit_sequence);
481 		wake_up(&journal->j_wait_commit);
482 		return 1;
483 	}
484 	return 0;
485 }
486 
487 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
488 {
489 	int ret;
490 
491 	spin_lock(&journal->j_state_lock);
492 	ret = __jbd2_log_start_commit(journal, tid);
493 	spin_unlock(&journal->j_state_lock);
494 	return ret;
495 }
496 
497 /*
498  * Force and wait upon a commit if the calling process is not within
499  * transaction.  This is used for forcing out undo-protected data which contains
500  * bitmaps, when the fs is running out of space.
501  *
502  * We can only force the running transaction if we don't have an active handle;
503  * otherwise, we will deadlock.
504  *
505  * Returns true if a transaction was started.
506  */
507 int jbd2_journal_force_commit_nested(journal_t *journal)
508 {
509 	transaction_t *transaction = NULL;
510 	tid_t tid;
511 
512 	spin_lock(&journal->j_state_lock);
513 	if (journal->j_running_transaction && !current->journal_info) {
514 		transaction = journal->j_running_transaction;
515 		__jbd2_log_start_commit(journal, transaction->t_tid);
516 	} else if (journal->j_committing_transaction)
517 		transaction = journal->j_committing_transaction;
518 
519 	if (!transaction) {
520 		spin_unlock(&journal->j_state_lock);
521 		return 0;	/* Nothing to retry */
522 	}
523 
524 	tid = transaction->t_tid;
525 	spin_unlock(&journal->j_state_lock);
526 	jbd2_log_wait_commit(journal, tid);
527 	return 1;
528 }
529 
530 /*
531  * Start a commit of the current running transaction (if any).  Returns true
532  * if a transaction is going to be committed (or is currently already
533  * committing), and fills its tid in at *ptid
534  */
535 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
536 {
537 	int ret = 0;
538 
539 	spin_lock(&journal->j_state_lock);
540 	if (journal->j_running_transaction) {
541 		tid_t tid = journal->j_running_transaction->t_tid;
542 
543 		__jbd2_log_start_commit(journal, tid);
544 		/* There's a running transaction and we've just made sure
545 		 * it's commit has been scheduled. */
546 		if (ptid)
547 			*ptid = tid;
548 		ret = 1;
549 	} else if (journal->j_committing_transaction) {
550 		/*
551 		 * If ext3_write_super() recently started a commit, then we
552 		 * have to wait for completion of that transaction
553 		 */
554 		if (ptid)
555 			*ptid = journal->j_committing_transaction->t_tid;
556 		ret = 1;
557 	}
558 	spin_unlock(&journal->j_state_lock);
559 	return ret;
560 }
561 
562 /*
563  * Wait for a specified commit to complete.
564  * The caller may not hold the journal lock.
565  */
566 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
567 {
568 	int err = 0;
569 
570 #ifdef CONFIG_JBD2_DEBUG
571 	spin_lock(&journal->j_state_lock);
572 	if (!tid_geq(journal->j_commit_request, tid)) {
573 		printk(KERN_EMERG
574 		       "%s: error: j_commit_request=%d, tid=%d\n",
575 		       __func__, journal->j_commit_request, tid);
576 	}
577 	spin_unlock(&journal->j_state_lock);
578 #endif
579 	spin_lock(&journal->j_state_lock);
580 	while (tid_gt(tid, journal->j_commit_sequence)) {
581 		jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n",
582 				  tid, journal->j_commit_sequence);
583 		wake_up(&journal->j_wait_commit);
584 		spin_unlock(&journal->j_state_lock);
585 		wait_event(journal->j_wait_done_commit,
586 				!tid_gt(tid, journal->j_commit_sequence));
587 		spin_lock(&journal->j_state_lock);
588 	}
589 	spin_unlock(&journal->j_state_lock);
590 
591 	if (unlikely(is_journal_aborted(journal))) {
592 		printk(KERN_EMERG "journal commit I/O error\n");
593 		err = -EIO;
594 	}
595 	return err;
596 }
597 
598 /*
599  * Log buffer allocation routines:
600  */
601 
602 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
603 {
604 	unsigned long blocknr;
605 
606 	spin_lock(&journal->j_state_lock);
607 	J_ASSERT(journal->j_free > 1);
608 
609 	blocknr = journal->j_head;
610 	journal->j_head++;
611 	journal->j_free--;
612 	if (journal->j_head == journal->j_last)
613 		journal->j_head = journal->j_first;
614 	spin_unlock(&journal->j_state_lock);
615 	return jbd2_journal_bmap(journal, blocknr, retp);
616 }
617 
618 /*
619  * Conversion of logical to physical block numbers for the journal
620  *
621  * On external journals the journal blocks are identity-mapped, so
622  * this is a no-op.  If needed, we can use j_blk_offset - everything is
623  * ready.
624  */
625 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
626 		 unsigned long long *retp)
627 {
628 	int err = 0;
629 	unsigned long long ret;
630 
631 	if (journal->j_inode) {
632 		ret = bmap(journal->j_inode, blocknr);
633 		if (ret)
634 			*retp = ret;
635 		else {
636 			printk(KERN_ALERT "%s: journal block not found "
637 					"at offset %lu on %s\n",
638 			       __func__, blocknr, journal->j_devname);
639 			err = -EIO;
640 			__journal_abort_soft(journal, err);
641 		}
642 	} else {
643 		*retp = blocknr; /* +journal->j_blk_offset */
644 	}
645 	return err;
646 }
647 
648 /*
649  * We play buffer_head aliasing tricks to write data/metadata blocks to
650  * the journal without copying their contents, but for journal
651  * descriptor blocks we do need to generate bona fide buffers.
652  *
653  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
654  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
655  * But we don't bother doing that, so there will be coherency problems with
656  * mmaps of blockdevs which hold live JBD-controlled filesystems.
657  */
658 struct journal_head *jbd2_journal_get_descriptor_buffer(journal_t *journal)
659 {
660 	struct buffer_head *bh;
661 	unsigned long long blocknr;
662 	int err;
663 
664 	err = jbd2_journal_next_log_block(journal, &blocknr);
665 
666 	if (err)
667 		return NULL;
668 
669 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
670 	if (!bh)
671 		return NULL;
672 	lock_buffer(bh);
673 	memset(bh->b_data, 0, journal->j_blocksize);
674 	set_buffer_uptodate(bh);
675 	unlock_buffer(bh);
676 	BUFFER_TRACE(bh, "return this buffer");
677 	return jbd2_journal_add_journal_head(bh);
678 }
679 
680 struct jbd2_stats_proc_session {
681 	journal_t *journal;
682 	struct transaction_stats_s *stats;
683 	int start;
684 	int max;
685 };
686 
687 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
688 {
689 	return *pos ? NULL : SEQ_START_TOKEN;
690 }
691 
692 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
693 {
694 	return NULL;
695 }
696 
697 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
698 {
699 	struct jbd2_stats_proc_session *s = seq->private;
700 
701 	if (v != SEQ_START_TOKEN)
702 		return 0;
703 	seq_printf(seq, "%lu transaction, each up to %u blocks\n",
704 			s->stats->ts_tid,
705 			s->journal->j_max_transaction_buffers);
706 	if (s->stats->ts_tid == 0)
707 		return 0;
708 	seq_printf(seq, "average: \n  %ums waiting for transaction\n",
709 	    jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
710 	seq_printf(seq, "  %ums running transaction\n",
711 	    jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
712 	seq_printf(seq, "  %ums transaction was being locked\n",
713 	    jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
714 	seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
715 	    jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
716 	seq_printf(seq, "  %ums logging transaction\n",
717 	    jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
718 	seq_printf(seq, "  %lluus average transaction commit time\n",
719 		   div_u64(s->journal->j_average_commit_time, 1000));
720 	seq_printf(seq, "  %lu handles per transaction\n",
721 	    s->stats->run.rs_handle_count / s->stats->ts_tid);
722 	seq_printf(seq, "  %lu blocks per transaction\n",
723 	    s->stats->run.rs_blocks / s->stats->ts_tid);
724 	seq_printf(seq, "  %lu logged blocks per transaction\n",
725 	    s->stats->run.rs_blocks_logged / s->stats->ts_tid);
726 	return 0;
727 }
728 
729 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
730 {
731 }
732 
733 static const struct seq_operations jbd2_seq_info_ops = {
734 	.start  = jbd2_seq_info_start,
735 	.next   = jbd2_seq_info_next,
736 	.stop   = jbd2_seq_info_stop,
737 	.show   = jbd2_seq_info_show,
738 };
739 
740 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
741 {
742 	journal_t *journal = PDE(inode)->data;
743 	struct jbd2_stats_proc_session *s;
744 	int rc, size;
745 
746 	s = kmalloc(sizeof(*s), GFP_KERNEL);
747 	if (s == NULL)
748 		return -ENOMEM;
749 	size = sizeof(struct transaction_stats_s);
750 	s->stats = kmalloc(size, GFP_KERNEL);
751 	if (s->stats == NULL) {
752 		kfree(s);
753 		return -ENOMEM;
754 	}
755 	spin_lock(&journal->j_history_lock);
756 	memcpy(s->stats, &journal->j_stats, size);
757 	s->journal = journal;
758 	spin_unlock(&journal->j_history_lock);
759 
760 	rc = seq_open(file, &jbd2_seq_info_ops);
761 	if (rc == 0) {
762 		struct seq_file *m = file->private_data;
763 		m->private = s;
764 	} else {
765 		kfree(s->stats);
766 		kfree(s);
767 	}
768 	return rc;
769 
770 }
771 
772 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
773 {
774 	struct seq_file *seq = file->private_data;
775 	struct jbd2_stats_proc_session *s = seq->private;
776 	kfree(s->stats);
777 	kfree(s);
778 	return seq_release(inode, file);
779 }
780 
781 static const struct file_operations jbd2_seq_info_fops = {
782 	.owner		= THIS_MODULE,
783 	.open           = jbd2_seq_info_open,
784 	.read           = seq_read,
785 	.llseek         = seq_lseek,
786 	.release        = jbd2_seq_info_release,
787 };
788 
789 static struct proc_dir_entry *proc_jbd2_stats;
790 
791 static void jbd2_stats_proc_init(journal_t *journal)
792 {
793 	journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
794 	if (journal->j_proc_entry) {
795 		proc_create_data("info", S_IRUGO, journal->j_proc_entry,
796 				 &jbd2_seq_info_fops, journal);
797 	}
798 }
799 
800 static void jbd2_stats_proc_exit(journal_t *journal)
801 {
802 	remove_proc_entry("info", journal->j_proc_entry);
803 	remove_proc_entry(journal->j_devname, proc_jbd2_stats);
804 }
805 
806 /*
807  * Management for journal control blocks: functions to create and
808  * destroy journal_t structures, and to initialise and read existing
809  * journal blocks from disk.  */
810 
811 /* First: create and setup a journal_t object in memory.  We initialise
812  * very few fields yet: that has to wait until we have created the
813  * journal structures from from scratch, or loaded them from disk. */
814 
815 static journal_t * journal_init_common (void)
816 {
817 	journal_t *journal;
818 	int err;
819 
820 	journal = kzalloc(sizeof(*journal), GFP_KERNEL);
821 	if (!journal)
822 		goto fail;
823 
824 	init_waitqueue_head(&journal->j_wait_transaction_locked);
825 	init_waitqueue_head(&journal->j_wait_logspace);
826 	init_waitqueue_head(&journal->j_wait_done_commit);
827 	init_waitqueue_head(&journal->j_wait_checkpoint);
828 	init_waitqueue_head(&journal->j_wait_commit);
829 	init_waitqueue_head(&journal->j_wait_updates);
830 	mutex_init(&journal->j_barrier);
831 	mutex_init(&journal->j_checkpoint_mutex);
832 	spin_lock_init(&journal->j_revoke_lock);
833 	spin_lock_init(&journal->j_list_lock);
834 	spin_lock_init(&journal->j_state_lock);
835 
836 	journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
837 	journal->j_min_batch_time = 0;
838 	journal->j_max_batch_time = 15000; /* 15ms */
839 
840 	/* The journal is marked for error until we succeed with recovery! */
841 	journal->j_flags = JBD2_ABORT;
842 
843 	/* Set up a default-sized revoke table for the new mount. */
844 	err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
845 	if (err) {
846 		kfree(journal);
847 		goto fail;
848 	}
849 
850 	spin_lock_init(&journal->j_history_lock);
851 
852 	return journal;
853 fail:
854 	return NULL;
855 }
856 
857 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
858  *
859  * Create a journal structure assigned some fixed set of disk blocks to
860  * the journal.  We don't actually touch those disk blocks yet, but we
861  * need to set up all of the mapping information to tell the journaling
862  * system where the journal blocks are.
863  *
864  */
865 
866 /**
867  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
868  *  @bdev: Block device on which to create the journal
869  *  @fs_dev: Device which hold journalled filesystem for this journal.
870  *  @start: Block nr Start of journal.
871  *  @len:  Length of the journal in blocks.
872  *  @blocksize: blocksize of journalling device
873  *
874  *  Returns: a newly created journal_t *
875  *
876  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
877  *  range of blocks on an arbitrary block device.
878  *
879  */
880 journal_t * jbd2_journal_init_dev(struct block_device *bdev,
881 			struct block_device *fs_dev,
882 			unsigned long long start, int len, int blocksize)
883 {
884 	journal_t *journal = journal_init_common();
885 	struct buffer_head *bh;
886 	char *p;
887 	int n;
888 
889 	if (!journal)
890 		return NULL;
891 
892 	/* journal descriptor can store up to n blocks -bzzz */
893 	journal->j_blocksize = blocksize;
894 	jbd2_stats_proc_init(journal);
895 	n = journal->j_blocksize / sizeof(journal_block_tag_t);
896 	journal->j_wbufsize = n;
897 	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
898 	if (!journal->j_wbuf) {
899 		printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n",
900 			__func__);
901 		goto out_err;
902 	}
903 	journal->j_dev = bdev;
904 	journal->j_fs_dev = fs_dev;
905 	journal->j_blk_offset = start;
906 	journal->j_maxlen = len;
907 	bdevname(journal->j_dev, journal->j_devname);
908 	p = journal->j_devname;
909 	while ((p = strchr(p, '/')))
910 		*p = '!';
911 
912 	bh = __getblk(journal->j_dev, start, journal->j_blocksize);
913 	if (!bh) {
914 		printk(KERN_ERR
915 		       "%s: Cannot get buffer for journal superblock\n",
916 		       __func__);
917 		goto out_err;
918 	}
919 	journal->j_sb_buffer = bh;
920 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
921 
922 	return journal;
923 out_err:
924 	kfree(journal->j_wbuf);
925 	jbd2_stats_proc_exit(journal);
926 	kfree(journal);
927 	return NULL;
928 }
929 
930 /**
931  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
932  *  @inode: An inode to create the journal in
933  *
934  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
935  * the journal.  The inode must exist already, must support bmap() and
936  * must have all data blocks preallocated.
937  */
938 journal_t * jbd2_journal_init_inode (struct inode *inode)
939 {
940 	struct buffer_head *bh;
941 	journal_t *journal = journal_init_common();
942 	char *p;
943 	int err;
944 	int n;
945 	unsigned long long blocknr;
946 
947 	if (!journal)
948 		return NULL;
949 
950 	journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
951 	journal->j_inode = inode;
952 	bdevname(journal->j_dev, journal->j_devname);
953 	p = journal->j_devname;
954 	while ((p = strchr(p, '/')))
955 		*p = '!';
956 	p = journal->j_devname + strlen(journal->j_devname);
957 	sprintf(p, "-%lu", journal->j_inode->i_ino);
958 	jbd_debug(1,
959 		  "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
960 		  journal, inode->i_sb->s_id, inode->i_ino,
961 		  (long long) inode->i_size,
962 		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
963 
964 	journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
965 	journal->j_blocksize = inode->i_sb->s_blocksize;
966 	jbd2_stats_proc_init(journal);
967 
968 	/* journal descriptor can store up to n blocks -bzzz */
969 	n = journal->j_blocksize / sizeof(journal_block_tag_t);
970 	journal->j_wbufsize = n;
971 	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
972 	if (!journal->j_wbuf) {
973 		printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n",
974 			__func__);
975 		goto out_err;
976 	}
977 
978 	err = jbd2_journal_bmap(journal, 0, &blocknr);
979 	/* If that failed, give up */
980 	if (err) {
981 		printk(KERN_ERR "%s: Cannnot locate journal superblock\n",
982 		       __func__);
983 		goto out_err;
984 	}
985 
986 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
987 	if (!bh) {
988 		printk(KERN_ERR
989 		       "%s: Cannot get buffer for journal superblock\n",
990 		       __func__);
991 		goto out_err;
992 	}
993 	journal->j_sb_buffer = bh;
994 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
995 
996 	return journal;
997 out_err:
998 	kfree(journal->j_wbuf);
999 	jbd2_stats_proc_exit(journal);
1000 	kfree(journal);
1001 	return NULL;
1002 }
1003 
1004 /*
1005  * If the journal init or create aborts, we need to mark the journal
1006  * superblock as being NULL to prevent the journal destroy from writing
1007  * back a bogus superblock.
1008  */
1009 static void journal_fail_superblock (journal_t *journal)
1010 {
1011 	struct buffer_head *bh = journal->j_sb_buffer;
1012 	brelse(bh);
1013 	journal->j_sb_buffer = NULL;
1014 }
1015 
1016 /*
1017  * Given a journal_t structure, initialise the various fields for
1018  * startup of a new journaling session.  We use this both when creating
1019  * a journal, and after recovering an old journal to reset it for
1020  * subsequent use.
1021  */
1022 
1023 static int journal_reset(journal_t *journal)
1024 {
1025 	journal_superblock_t *sb = journal->j_superblock;
1026 	unsigned long long first, last;
1027 
1028 	first = be32_to_cpu(sb->s_first);
1029 	last = be32_to_cpu(sb->s_maxlen);
1030 	if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1031 		printk(KERN_ERR "JBD: Journal too short (blocks %llu-%llu).\n",
1032 		       first, last);
1033 		journal_fail_superblock(journal);
1034 		return -EINVAL;
1035 	}
1036 
1037 	journal->j_first = first;
1038 	journal->j_last = last;
1039 
1040 	journal->j_head = first;
1041 	journal->j_tail = first;
1042 	journal->j_free = last - first;
1043 
1044 	journal->j_tail_sequence = journal->j_transaction_sequence;
1045 	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1046 	journal->j_commit_request = journal->j_commit_sequence;
1047 
1048 	journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1049 
1050 	/* Add the dynamic fields and write it to disk. */
1051 	jbd2_journal_update_superblock(journal, 1);
1052 	return jbd2_journal_start_thread(journal);
1053 }
1054 
1055 /**
1056  * void jbd2_journal_update_superblock() - Update journal sb on disk.
1057  * @journal: The journal to update.
1058  * @wait: Set to '0' if you don't want to wait for IO completion.
1059  *
1060  * Update a journal's dynamic superblock fields and write it to disk,
1061  * optionally waiting for the IO to complete.
1062  */
1063 void jbd2_journal_update_superblock(journal_t *journal, int wait)
1064 {
1065 	journal_superblock_t *sb = journal->j_superblock;
1066 	struct buffer_head *bh = journal->j_sb_buffer;
1067 
1068 	/*
1069 	 * As a special case, if the on-disk copy is already marked as needing
1070 	 * no recovery (s_start == 0) and there are no outstanding transactions
1071 	 * in the filesystem, then we can safely defer the superblock update
1072 	 * until the next commit by setting JBD2_FLUSHED.  This avoids
1073 	 * attempting a write to a potential-readonly device.
1074 	 */
1075 	if (sb->s_start == 0 && journal->j_tail_sequence ==
1076 				journal->j_transaction_sequence) {
1077 		jbd_debug(1,"JBD: Skipping superblock update on recovered sb "
1078 			"(start %ld, seq %d, errno %d)\n",
1079 			journal->j_tail, journal->j_tail_sequence,
1080 			journal->j_errno);
1081 		goto out;
1082 	}
1083 
1084 	if (buffer_write_io_error(bh)) {
1085 		/*
1086 		 * Oh, dear.  A previous attempt to write the journal
1087 		 * superblock failed.  This could happen because the
1088 		 * USB device was yanked out.  Or it could happen to
1089 		 * be a transient write error and maybe the block will
1090 		 * be remapped.  Nothing we can do but to retry the
1091 		 * write and hope for the best.
1092 		 */
1093 		printk(KERN_ERR "JBD2: previous I/O error detected "
1094 		       "for journal superblock update for %s.\n",
1095 		       journal->j_devname);
1096 		clear_buffer_write_io_error(bh);
1097 		set_buffer_uptodate(bh);
1098 	}
1099 
1100 	spin_lock(&journal->j_state_lock);
1101 	jbd_debug(1,"JBD: updating superblock (start %ld, seq %d, errno %d)\n",
1102 		  journal->j_tail, journal->j_tail_sequence, journal->j_errno);
1103 
1104 	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1105 	sb->s_start    = cpu_to_be32(journal->j_tail);
1106 	sb->s_errno    = cpu_to_be32(journal->j_errno);
1107 	spin_unlock(&journal->j_state_lock);
1108 
1109 	BUFFER_TRACE(bh, "marking dirty");
1110 	mark_buffer_dirty(bh);
1111 	if (wait) {
1112 		sync_dirty_buffer(bh);
1113 		if (buffer_write_io_error(bh)) {
1114 			printk(KERN_ERR "JBD2: I/O error detected "
1115 			       "when updating journal superblock for %s.\n",
1116 			       journal->j_devname);
1117 			clear_buffer_write_io_error(bh);
1118 			set_buffer_uptodate(bh);
1119 		}
1120 	} else
1121 		ll_rw_block(SWRITE, 1, &bh);
1122 
1123 out:
1124 	/* If we have just flushed the log (by marking s_start==0), then
1125 	 * any future commit will have to be careful to update the
1126 	 * superblock again to re-record the true start of the log. */
1127 
1128 	spin_lock(&journal->j_state_lock);
1129 	if (sb->s_start)
1130 		journal->j_flags &= ~JBD2_FLUSHED;
1131 	else
1132 		journal->j_flags |= JBD2_FLUSHED;
1133 	spin_unlock(&journal->j_state_lock);
1134 }
1135 
1136 /*
1137  * Read the superblock for a given journal, performing initial
1138  * validation of the format.
1139  */
1140 
1141 static int journal_get_superblock(journal_t *journal)
1142 {
1143 	struct buffer_head *bh;
1144 	journal_superblock_t *sb;
1145 	int err = -EIO;
1146 
1147 	bh = journal->j_sb_buffer;
1148 
1149 	J_ASSERT(bh != NULL);
1150 	if (!buffer_uptodate(bh)) {
1151 		ll_rw_block(READ, 1, &bh);
1152 		wait_on_buffer(bh);
1153 		if (!buffer_uptodate(bh)) {
1154 			printk (KERN_ERR
1155 				"JBD: IO error reading journal superblock\n");
1156 			goto out;
1157 		}
1158 	}
1159 
1160 	sb = journal->j_superblock;
1161 
1162 	err = -EINVAL;
1163 
1164 	if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1165 	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1166 		printk(KERN_WARNING "JBD: no valid journal superblock found\n");
1167 		goto out;
1168 	}
1169 
1170 	switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1171 	case JBD2_SUPERBLOCK_V1:
1172 		journal->j_format_version = 1;
1173 		break;
1174 	case JBD2_SUPERBLOCK_V2:
1175 		journal->j_format_version = 2;
1176 		break;
1177 	default:
1178 		printk(KERN_WARNING "JBD: unrecognised superblock format ID\n");
1179 		goto out;
1180 	}
1181 
1182 	if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1183 		journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1184 	else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1185 		printk (KERN_WARNING "JBD: journal file too short\n");
1186 		goto out;
1187 	}
1188 
1189 	return 0;
1190 
1191 out:
1192 	journal_fail_superblock(journal);
1193 	return err;
1194 }
1195 
1196 /*
1197  * Load the on-disk journal superblock and read the key fields into the
1198  * journal_t.
1199  */
1200 
1201 static int load_superblock(journal_t *journal)
1202 {
1203 	int err;
1204 	journal_superblock_t *sb;
1205 
1206 	err = journal_get_superblock(journal);
1207 	if (err)
1208 		return err;
1209 
1210 	sb = journal->j_superblock;
1211 
1212 	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1213 	journal->j_tail = be32_to_cpu(sb->s_start);
1214 	journal->j_first = be32_to_cpu(sb->s_first);
1215 	journal->j_last = be32_to_cpu(sb->s_maxlen);
1216 	journal->j_errno = be32_to_cpu(sb->s_errno);
1217 
1218 	return 0;
1219 }
1220 
1221 
1222 /**
1223  * int jbd2_journal_load() - Read journal from disk.
1224  * @journal: Journal to act on.
1225  *
1226  * Given a journal_t structure which tells us which disk blocks contain
1227  * a journal, read the journal from disk to initialise the in-memory
1228  * structures.
1229  */
1230 int jbd2_journal_load(journal_t *journal)
1231 {
1232 	int err;
1233 	journal_superblock_t *sb;
1234 
1235 	err = load_superblock(journal);
1236 	if (err)
1237 		return err;
1238 
1239 	sb = journal->j_superblock;
1240 	/* If this is a V2 superblock, then we have to check the
1241 	 * features flags on it. */
1242 
1243 	if (journal->j_format_version >= 2) {
1244 		if ((sb->s_feature_ro_compat &
1245 		     ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1246 		    (sb->s_feature_incompat &
1247 		     ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1248 			printk (KERN_WARNING
1249 				"JBD: Unrecognised features on journal\n");
1250 			return -EINVAL;
1251 		}
1252 	}
1253 
1254 	/*
1255 	 * Create a slab for this blocksize
1256 	 */
1257 	err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1258 	if (err)
1259 		return err;
1260 
1261 	/* Let the recovery code check whether it needs to recover any
1262 	 * data from the journal. */
1263 	if (jbd2_journal_recover(journal))
1264 		goto recovery_error;
1265 
1266 	if (journal->j_failed_commit) {
1267 		printk(KERN_ERR "JBD2: journal transaction %u on %s "
1268 		       "is corrupt.\n", journal->j_failed_commit,
1269 		       journal->j_devname);
1270 		return -EIO;
1271 	}
1272 
1273 	/* OK, we've finished with the dynamic journal bits:
1274 	 * reinitialise the dynamic contents of the superblock in memory
1275 	 * and reset them on disk. */
1276 	if (journal_reset(journal))
1277 		goto recovery_error;
1278 
1279 	journal->j_flags &= ~JBD2_ABORT;
1280 	journal->j_flags |= JBD2_LOADED;
1281 	return 0;
1282 
1283 recovery_error:
1284 	printk (KERN_WARNING "JBD: recovery failed\n");
1285 	return -EIO;
1286 }
1287 
1288 /**
1289  * void jbd2_journal_destroy() - Release a journal_t structure.
1290  * @journal: Journal to act on.
1291  *
1292  * Release a journal_t structure once it is no longer in use by the
1293  * journaled object.
1294  * Return <0 if we couldn't clean up the journal.
1295  */
1296 int jbd2_journal_destroy(journal_t *journal)
1297 {
1298 	int err = 0;
1299 
1300 	/* Wait for the commit thread to wake up and die. */
1301 	journal_kill_thread(journal);
1302 
1303 	/* Force a final log commit */
1304 	if (journal->j_running_transaction)
1305 		jbd2_journal_commit_transaction(journal);
1306 
1307 	/* Force any old transactions to disk */
1308 
1309 	/* Totally anal locking here... */
1310 	spin_lock(&journal->j_list_lock);
1311 	while (journal->j_checkpoint_transactions != NULL) {
1312 		spin_unlock(&journal->j_list_lock);
1313 		mutex_lock(&journal->j_checkpoint_mutex);
1314 		jbd2_log_do_checkpoint(journal);
1315 		mutex_unlock(&journal->j_checkpoint_mutex);
1316 		spin_lock(&journal->j_list_lock);
1317 	}
1318 
1319 	J_ASSERT(journal->j_running_transaction == NULL);
1320 	J_ASSERT(journal->j_committing_transaction == NULL);
1321 	J_ASSERT(journal->j_checkpoint_transactions == NULL);
1322 	spin_unlock(&journal->j_list_lock);
1323 
1324 	if (journal->j_sb_buffer) {
1325 		if (!is_journal_aborted(journal)) {
1326 			/* We can now mark the journal as empty. */
1327 			journal->j_tail = 0;
1328 			journal->j_tail_sequence =
1329 				++journal->j_transaction_sequence;
1330 			jbd2_journal_update_superblock(journal, 1);
1331 		} else {
1332 			err = -EIO;
1333 		}
1334 		brelse(journal->j_sb_buffer);
1335 	}
1336 
1337 	if (journal->j_proc_entry)
1338 		jbd2_stats_proc_exit(journal);
1339 	if (journal->j_inode)
1340 		iput(journal->j_inode);
1341 	if (journal->j_revoke)
1342 		jbd2_journal_destroy_revoke(journal);
1343 	kfree(journal->j_wbuf);
1344 	kfree(journal);
1345 
1346 	return err;
1347 }
1348 
1349 
1350 /**
1351  *int jbd2_journal_check_used_features () - Check if features specified are used.
1352  * @journal: Journal to check.
1353  * @compat: bitmask of compatible features
1354  * @ro: bitmask of features that force read-only mount
1355  * @incompat: bitmask of incompatible features
1356  *
1357  * Check whether the journal uses all of a given set of
1358  * features.  Return true (non-zero) if it does.
1359  **/
1360 
1361 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1362 				 unsigned long ro, unsigned long incompat)
1363 {
1364 	journal_superblock_t *sb;
1365 
1366 	if (!compat && !ro && !incompat)
1367 		return 1;
1368 	if (journal->j_format_version == 1)
1369 		return 0;
1370 
1371 	sb = journal->j_superblock;
1372 
1373 	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1374 	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1375 	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1376 		return 1;
1377 
1378 	return 0;
1379 }
1380 
1381 /**
1382  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1383  * @journal: Journal to check.
1384  * @compat: bitmask of compatible features
1385  * @ro: bitmask of features that force read-only mount
1386  * @incompat: bitmask of incompatible features
1387  *
1388  * Check whether the journaling code supports the use of
1389  * all of a given set of features on this journal.  Return true
1390  * (non-zero) if it can. */
1391 
1392 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1393 				      unsigned long ro, unsigned long incompat)
1394 {
1395 	journal_superblock_t *sb;
1396 
1397 	if (!compat && !ro && !incompat)
1398 		return 1;
1399 
1400 	sb = journal->j_superblock;
1401 
1402 	/* We can support any known requested features iff the
1403 	 * superblock is in version 2.  Otherwise we fail to support any
1404 	 * extended sb features. */
1405 
1406 	if (journal->j_format_version != 2)
1407 		return 0;
1408 
1409 	if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1410 	    (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1411 	    (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1412 		return 1;
1413 
1414 	return 0;
1415 }
1416 
1417 /**
1418  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1419  * @journal: Journal to act on.
1420  * @compat: bitmask of compatible features
1421  * @ro: bitmask of features that force read-only mount
1422  * @incompat: bitmask of incompatible features
1423  *
1424  * Mark a given journal feature as present on the
1425  * superblock.  Returns true if the requested features could be set.
1426  *
1427  */
1428 
1429 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1430 			  unsigned long ro, unsigned long incompat)
1431 {
1432 	journal_superblock_t *sb;
1433 
1434 	if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1435 		return 1;
1436 
1437 	if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1438 		return 0;
1439 
1440 	jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1441 		  compat, ro, incompat);
1442 
1443 	sb = journal->j_superblock;
1444 
1445 	sb->s_feature_compat    |= cpu_to_be32(compat);
1446 	sb->s_feature_ro_compat |= cpu_to_be32(ro);
1447 	sb->s_feature_incompat  |= cpu_to_be32(incompat);
1448 
1449 	return 1;
1450 }
1451 
1452 /*
1453  * jbd2_journal_clear_features () - Clear a given journal feature in the
1454  * 				    superblock
1455  * @journal: Journal to act on.
1456  * @compat: bitmask of compatible features
1457  * @ro: bitmask of features that force read-only mount
1458  * @incompat: bitmask of incompatible features
1459  *
1460  * Clear a given journal feature as present on the
1461  * superblock.
1462  */
1463 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1464 				unsigned long ro, unsigned long incompat)
1465 {
1466 	journal_superblock_t *sb;
1467 
1468 	jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1469 		  compat, ro, incompat);
1470 
1471 	sb = journal->j_superblock;
1472 
1473 	sb->s_feature_compat    &= ~cpu_to_be32(compat);
1474 	sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1475 	sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1476 }
1477 EXPORT_SYMBOL(jbd2_journal_clear_features);
1478 
1479 /**
1480  * int jbd2_journal_update_format () - Update on-disk journal structure.
1481  * @journal: Journal to act on.
1482  *
1483  * Given an initialised but unloaded journal struct, poke about in the
1484  * on-disk structure to update it to the most recent supported version.
1485  */
1486 int jbd2_journal_update_format (journal_t *journal)
1487 {
1488 	journal_superblock_t *sb;
1489 	int err;
1490 
1491 	err = journal_get_superblock(journal);
1492 	if (err)
1493 		return err;
1494 
1495 	sb = journal->j_superblock;
1496 
1497 	switch (be32_to_cpu(sb->s_header.h_blocktype)) {
1498 	case JBD2_SUPERBLOCK_V2:
1499 		return 0;
1500 	case JBD2_SUPERBLOCK_V1:
1501 		return journal_convert_superblock_v1(journal, sb);
1502 	default:
1503 		break;
1504 	}
1505 	return -EINVAL;
1506 }
1507 
1508 static int journal_convert_superblock_v1(journal_t *journal,
1509 					 journal_superblock_t *sb)
1510 {
1511 	int offset, blocksize;
1512 	struct buffer_head *bh;
1513 
1514 	printk(KERN_WARNING
1515 		"JBD: Converting superblock from version 1 to 2.\n");
1516 
1517 	/* Pre-initialise new fields to zero */
1518 	offset = ((char *) &(sb->s_feature_compat)) - ((char *) sb);
1519 	blocksize = be32_to_cpu(sb->s_blocksize);
1520 	memset(&sb->s_feature_compat, 0, blocksize-offset);
1521 
1522 	sb->s_nr_users = cpu_to_be32(1);
1523 	sb->s_header.h_blocktype = cpu_to_be32(JBD2_SUPERBLOCK_V2);
1524 	journal->j_format_version = 2;
1525 
1526 	bh = journal->j_sb_buffer;
1527 	BUFFER_TRACE(bh, "marking dirty");
1528 	mark_buffer_dirty(bh);
1529 	sync_dirty_buffer(bh);
1530 	return 0;
1531 }
1532 
1533 
1534 /**
1535  * int jbd2_journal_flush () - Flush journal
1536  * @journal: Journal to act on.
1537  *
1538  * Flush all data for a given journal to disk and empty the journal.
1539  * Filesystems can use this when remounting readonly to ensure that
1540  * recovery does not need to happen on remount.
1541  */
1542 
1543 int jbd2_journal_flush(journal_t *journal)
1544 {
1545 	int err = 0;
1546 	transaction_t *transaction = NULL;
1547 	unsigned long old_tail;
1548 
1549 	spin_lock(&journal->j_state_lock);
1550 
1551 	/* Force everything buffered to the log... */
1552 	if (journal->j_running_transaction) {
1553 		transaction = journal->j_running_transaction;
1554 		__jbd2_log_start_commit(journal, transaction->t_tid);
1555 	} else if (journal->j_committing_transaction)
1556 		transaction = journal->j_committing_transaction;
1557 
1558 	/* Wait for the log commit to complete... */
1559 	if (transaction) {
1560 		tid_t tid = transaction->t_tid;
1561 
1562 		spin_unlock(&journal->j_state_lock);
1563 		jbd2_log_wait_commit(journal, tid);
1564 	} else {
1565 		spin_unlock(&journal->j_state_lock);
1566 	}
1567 
1568 	/* ...and flush everything in the log out to disk. */
1569 	spin_lock(&journal->j_list_lock);
1570 	while (!err && journal->j_checkpoint_transactions != NULL) {
1571 		spin_unlock(&journal->j_list_lock);
1572 		mutex_lock(&journal->j_checkpoint_mutex);
1573 		err = jbd2_log_do_checkpoint(journal);
1574 		mutex_unlock(&journal->j_checkpoint_mutex);
1575 		spin_lock(&journal->j_list_lock);
1576 	}
1577 	spin_unlock(&journal->j_list_lock);
1578 
1579 	if (is_journal_aborted(journal))
1580 		return -EIO;
1581 
1582 	jbd2_cleanup_journal_tail(journal);
1583 
1584 	/* Finally, mark the journal as really needing no recovery.
1585 	 * This sets s_start==0 in the underlying superblock, which is
1586 	 * the magic code for a fully-recovered superblock.  Any future
1587 	 * commits of data to the journal will restore the current
1588 	 * s_start value. */
1589 	spin_lock(&journal->j_state_lock);
1590 	old_tail = journal->j_tail;
1591 	journal->j_tail = 0;
1592 	spin_unlock(&journal->j_state_lock);
1593 	jbd2_journal_update_superblock(journal, 1);
1594 	spin_lock(&journal->j_state_lock);
1595 	journal->j_tail = old_tail;
1596 
1597 	J_ASSERT(!journal->j_running_transaction);
1598 	J_ASSERT(!journal->j_committing_transaction);
1599 	J_ASSERT(!journal->j_checkpoint_transactions);
1600 	J_ASSERT(journal->j_head == journal->j_tail);
1601 	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1602 	spin_unlock(&journal->j_state_lock);
1603 	return 0;
1604 }
1605 
1606 /**
1607  * int jbd2_journal_wipe() - Wipe journal contents
1608  * @journal: Journal to act on.
1609  * @write: flag (see below)
1610  *
1611  * Wipe out all of the contents of a journal, safely.  This will produce
1612  * a warning if the journal contains any valid recovery information.
1613  * Must be called between journal_init_*() and jbd2_journal_load().
1614  *
1615  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1616  * we merely suppress recovery.
1617  */
1618 
1619 int jbd2_journal_wipe(journal_t *journal, int write)
1620 {
1621 	journal_superblock_t *sb;
1622 	int err = 0;
1623 
1624 	J_ASSERT (!(journal->j_flags & JBD2_LOADED));
1625 
1626 	err = load_superblock(journal);
1627 	if (err)
1628 		return err;
1629 
1630 	sb = journal->j_superblock;
1631 
1632 	if (!journal->j_tail)
1633 		goto no_recovery;
1634 
1635 	printk (KERN_WARNING "JBD: %s recovery information on journal\n",
1636 		write ? "Clearing" : "Ignoring");
1637 
1638 	err = jbd2_journal_skip_recovery(journal);
1639 	if (write)
1640 		jbd2_journal_update_superblock(journal, 1);
1641 
1642  no_recovery:
1643 	return err;
1644 }
1645 
1646 /*
1647  * Journal abort has very specific semantics, which we describe
1648  * for journal abort.
1649  *
1650  * Two internal functions, which provide abort to the jbd layer
1651  * itself are here.
1652  */
1653 
1654 /*
1655  * Quick version for internal journal use (doesn't lock the journal).
1656  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1657  * and don't attempt to make any other journal updates.
1658  */
1659 void __jbd2_journal_abort_hard(journal_t *journal)
1660 {
1661 	transaction_t *transaction;
1662 
1663 	if (journal->j_flags & JBD2_ABORT)
1664 		return;
1665 
1666 	printk(KERN_ERR "Aborting journal on device %s.\n",
1667 	       journal->j_devname);
1668 
1669 	spin_lock(&journal->j_state_lock);
1670 	journal->j_flags |= JBD2_ABORT;
1671 	transaction = journal->j_running_transaction;
1672 	if (transaction)
1673 		__jbd2_log_start_commit(journal, transaction->t_tid);
1674 	spin_unlock(&journal->j_state_lock);
1675 }
1676 
1677 /* Soft abort: record the abort error status in the journal superblock,
1678  * but don't do any other IO. */
1679 static void __journal_abort_soft (journal_t *journal, int errno)
1680 {
1681 	if (journal->j_flags & JBD2_ABORT)
1682 		return;
1683 
1684 	if (!journal->j_errno)
1685 		journal->j_errno = errno;
1686 
1687 	__jbd2_journal_abort_hard(journal);
1688 
1689 	if (errno)
1690 		jbd2_journal_update_superblock(journal, 1);
1691 }
1692 
1693 /**
1694  * void jbd2_journal_abort () - Shutdown the journal immediately.
1695  * @journal: the journal to shutdown.
1696  * @errno:   an error number to record in the journal indicating
1697  *           the reason for the shutdown.
1698  *
1699  * Perform a complete, immediate shutdown of the ENTIRE
1700  * journal (not of a single transaction).  This operation cannot be
1701  * undone without closing and reopening the journal.
1702  *
1703  * The jbd2_journal_abort function is intended to support higher level error
1704  * recovery mechanisms such as the ext2/ext3 remount-readonly error
1705  * mode.
1706  *
1707  * Journal abort has very specific semantics.  Any existing dirty,
1708  * unjournaled buffers in the main filesystem will still be written to
1709  * disk by bdflush, but the journaling mechanism will be suspended
1710  * immediately and no further transaction commits will be honoured.
1711  *
1712  * Any dirty, journaled buffers will be written back to disk without
1713  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
1714  * filesystem, but we _do_ attempt to leave as much data as possible
1715  * behind for fsck to use for cleanup.
1716  *
1717  * Any attempt to get a new transaction handle on a journal which is in
1718  * ABORT state will just result in an -EROFS error return.  A
1719  * jbd2_journal_stop on an existing handle will return -EIO if we have
1720  * entered abort state during the update.
1721  *
1722  * Recursive transactions are not disturbed by journal abort until the
1723  * final jbd2_journal_stop, which will receive the -EIO error.
1724  *
1725  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
1726  * which will be recorded (if possible) in the journal superblock.  This
1727  * allows a client to record failure conditions in the middle of a
1728  * transaction without having to complete the transaction to record the
1729  * failure to disk.  ext3_error, for example, now uses this
1730  * functionality.
1731  *
1732  * Errors which originate from within the journaling layer will NOT
1733  * supply an errno; a null errno implies that absolutely no further
1734  * writes are done to the journal (unless there are any already in
1735  * progress).
1736  *
1737  */
1738 
1739 void jbd2_journal_abort(journal_t *journal, int errno)
1740 {
1741 	__journal_abort_soft(journal, errno);
1742 }
1743 
1744 /**
1745  * int jbd2_journal_errno () - returns the journal's error state.
1746  * @journal: journal to examine.
1747  *
1748  * This is the errno number set with jbd2_journal_abort(), the last
1749  * time the journal was mounted - if the journal was stopped
1750  * without calling abort this will be 0.
1751  *
1752  * If the journal has been aborted on this mount time -EROFS will
1753  * be returned.
1754  */
1755 int jbd2_journal_errno(journal_t *journal)
1756 {
1757 	int err;
1758 
1759 	spin_lock(&journal->j_state_lock);
1760 	if (journal->j_flags & JBD2_ABORT)
1761 		err = -EROFS;
1762 	else
1763 		err = journal->j_errno;
1764 	spin_unlock(&journal->j_state_lock);
1765 	return err;
1766 }
1767 
1768 /**
1769  * int jbd2_journal_clear_err () - clears the journal's error state
1770  * @journal: journal to act on.
1771  *
1772  * An error must be cleared or acked to take a FS out of readonly
1773  * mode.
1774  */
1775 int jbd2_journal_clear_err(journal_t *journal)
1776 {
1777 	int err = 0;
1778 
1779 	spin_lock(&journal->j_state_lock);
1780 	if (journal->j_flags & JBD2_ABORT)
1781 		err = -EROFS;
1782 	else
1783 		journal->j_errno = 0;
1784 	spin_unlock(&journal->j_state_lock);
1785 	return err;
1786 }
1787 
1788 /**
1789  * void jbd2_journal_ack_err() - Ack journal err.
1790  * @journal: journal to act on.
1791  *
1792  * An error must be cleared or acked to take a FS out of readonly
1793  * mode.
1794  */
1795 void jbd2_journal_ack_err(journal_t *journal)
1796 {
1797 	spin_lock(&journal->j_state_lock);
1798 	if (journal->j_errno)
1799 		journal->j_flags |= JBD2_ACK_ERR;
1800 	spin_unlock(&journal->j_state_lock);
1801 }
1802 
1803 int jbd2_journal_blocks_per_page(struct inode *inode)
1804 {
1805 	return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1806 }
1807 
1808 /*
1809  * helper functions to deal with 32 or 64bit block numbers.
1810  */
1811 size_t journal_tag_bytes(journal_t *journal)
1812 {
1813 	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT))
1814 		return JBD2_TAG_SIZE64;
1815 	else
1816 		return JBD2_TAG_SIZE32;
1817 }
1818 
1819 /*
1820  * JBD memory management
1821  *
1822  * These functions are used to allocate block-sized chunks of memory
1823  * used for making copies of buffer_head data.  Very often it will be
1824  * page-sized chunks of data, but sometimes it will be in
1825  * sub-page-size chunks.  (For example, 16k pages on Power systems
1826  * with a 4k block file system.)  For blocks smaller than a page, we
1827  * use a SLAB allocator.  There are slab caches for each block size,
1828  * which are allocated at mount time, if necessary, and we only free
1829  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
1830  * this reason we don't need to a mutex to protect access to
1831  * jbd2_slab[] allocating or releasing memory; only in
1832  * jbd2_journal_create_slab().
1833  */
1834 #define JBD2_MAX_SLABS 8
1835 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
1836 static DECLARE_MUTEX(jbd2_slab_create_sem);
1837 
1838 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
1839 	"jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
1840 	"jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
1841 };
1842 
1843 
1844 static void jbd2_journal_destroy_slabs(void)
1845 {
1846 	int i;
1847 
1848 	for (i = 0; i < JBD2_MAX_SLABS; i++) {
1849 		if (jbd2_slab[i])
1850 			kmem_cache_destroy(jbd2_slab[i]);
1851 		jbd2_slab[i] = NULL;
1852 	}
1853 }
1854 
1855 static int jbd2_journal_create_slab(size_t size)
1856 {
1857 	int i = order_base_2(size) - 10;
1858 	size_t slab_size;
1859 
1860 	if (size == PAGE_SIZE)
1861 		return 0;
1862 
1863 	if (i >= JBD2_MAX_SLABS)
1864 		return -EINVAL;
1865 
1866 	if (unlikely(i < 0))
1867 		i = 0;
1868 	down(&jbd2_slab_create_sem);
1869 	if (jbd2_slab[i]) {
1870 		up(&jbd2_slab_create_sem);
1871 		return 0;	/* Already created */
1872 	}
1873 
1874 	slab_size = 1 << (i+10);
1875 	jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
1876 					 slab_size, 0, NULL);
1877 	up(&jbd2_slab_create_sem);
1878 	if (!jbd2_slab[i]) {
1879 		printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
1880 		return -ENOMEM;
1881 	}
1882 	return 0;
1883 }
1884 
1885 static struct kmem_cache *get_slab(size_t size)
1886 {
1887 	int i = order_base_2(size) - 10;
1888 
1889 	BUG_ON(i >= JBD2_MAX_SLABS);
1890 	if (unlikely(i < 0))
1891 		i = 0;
1892 	BUG_ON(jbd2_slab[i] == NULL);
1893 	return jbd2_slab[i];
1894 }
1895 
1896 void *jbd2_alloc(size_t size, gfp_t flags)
1897 {
1898 	void *ptr;
1899 
1900 	BUG_ON(size & (size-1)); /* Must be a power of 2 */
1901 
1902 	flags |= __GFP_REPEAT;
1903 	if (size == PAGE_SIZE)
1904 		ptr = (void *)__get_free_pages(flags, 0);
1905 	else if (size > PAGE_SIZE) {
1906 		int order = get_order(size);
1907 
1908 		if (order < 3)
1909 			ptr = (void *)__get_free_pages(flags, order);
1910 		else
1911 			ptr = vmalloc(size);
1912 	} else
1913 		ptr = kmem_cache_alloc(get_slab(size), flags);
1914 
1915 	/* Check alignment; SLUB has gotten this wrong in the past,
1916 	 * and this can lead to user data corruption! */
1917 	BUG_ON(((unsigned long) ptr) & (size-1));
1918 
1919 	return ptr;
1920 }
1921 
1922 void jbd2_free(void *ptr, size_t size)
1923 {
1924 	if (size == PAGE_SIZE) {
1925 		free_pages((unsigned long)ptr, 0);
1926 		return;
1927 	}
1928 	if (size > PAGE_SIZE) {
1929 		int order = get_order(size);
1930 
1931 		if (order < 3)
1932 			free_pages((unsigned long)ptr, order);
1933 		else
1934 			vfree(ptr);
1935 		return;
1936 	}
1937 	kmem_cache_free(get_slab(size), ptr);
1938 };
1939 
1940 /*
1941  * Journal_head storage management
1942  */
1943 static struct kmem_cache *jbd2_journal_head_cache;
1944 #ifdef CONFIG_JBD2_DEBUG
1945 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
1946 #endif
1947 
1948 static int journal_init_jbd2_journal_head_cache(void)
1949 {
1950 	int retval;
1951 
1952 	J_ASSERT(jbd2_journal_head_cache == NULL);
1953 	jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
1954 				sizeof(struct journal_head),
1955 				0,		/* offset */
1956 				SLAB_TEMPORARY,	/* flags */
1957 				NULL);		/* ctor */
1958 	retval = 0;
1959 	if (!jbd2_journal_head_cache) {
1960 		retval = -ENOMEM;
1961 		printk(KERN_EMERG "JBD: no memory for journal_head cache\n");
1962 	}
1963 	return retval;
1964 }
1965 
1966 static void jbd2_journal_destroy_jbd2_journal_head_cache(void)
1967 {
1968 	if (jbd2_journal_head_cache) {
1969 		kmem_cache_destroy(jbd2_journal_head_cache);
1970 		jbd2_journal_head_cache = NULL;
1971 	}
1972 }
1973 
1974 /*
1975  * journal_head splicing and dicing
1976  */
1977 static struct journal_head *journal_alloc_journal_head(void)
1978 {
1979 	struct journal_head *ret;
1980 	static unsigned long last_warning;
1981 
1982 #ifdef CONFIG_JBD2_DEBUG
1983 	atomic_inc(&nr_journal_heads);
1984 #endif
1985 	ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
1986 	if (!ret) {
1987 		jbd_debug(1, "out of memory for journal_head\n");
1988 		if (time_after(jiffies, last_warning + 5*HZ)) {
1989 			printk(KERN_NOTICE "ENOMEM in %s, retrying.\n",
1990 			       __func__);
1991 			last_warning = jiffies;
1992 		}
1993 		while (!ret) {
1994 			yield();
1995 			ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
1996 		}
1997 	}
1998 	return ret;
1999 }
2000 
2001 static void journal_free_journal_head(struct journal_head *jh)
2002 {
2003 #ifdef CONFIG_JBD2_DEBUG
2004 	atomic_dec(&nr_journal_heads);
2005 	memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2006 #endif
2007 	kmem_cache_free(jbd2_journal_head_cache, jh);
2008 }
2009 
2010 /*
2011  * A journal_head is attached to a buffer_head whenever JBD has an
2012  * interest in the buffer.
2013  *
2014  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2015  * is set.  This bit is tested in core kernel code where we need to take
2016  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2017  * there.
2018  *
2019  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2020  *
2021  * When a buffer has its BH_JBD bit set it is immune from being released by
2022  * core kernel code, mainly via ->b_count.
2023  *
2024  * A journal_head may be detached from its buffer_head when the journal_head's
2025  * b_transaction, b_cp_transaction and b_next_transaction pointers are NULL.
2026  * Various places in JBD call jbd2_journal_remove_journal_head() to indicate that the
2027  * journal_head can be dropped if needed.
2028  *
2029  * Various places in the kernel want to attach a journal_head to a buffer_head
2030  * _before_ attaching the journal_head to a transaction.  To protect the
2031  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2032  * journal_head's b_jcount refcount by one.  The caller must call
2033  * jbd2_journal_put_journal_head() to undo this.
2034  *
2035  * So the typical usage would be:
2036  *
2037  *	(Attach a journal_head if needed.  Increments b_jcount)
2038  *	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2039  *	...
2040  *	jh->b_transaction = xxx;
2041  *	jbd2_journal_put_journal_head(jh);
2042  *
2043  * Now, the journal_head's b_jcount is zero, but it is safe from being released
2044  * because it has a non-zero b_transaction.
2045  */
2046 
2047 /*
2048  * Give a buffer_head a journal_head.
2049  *
2050  * Doesn't need the journal lock.
2051  * May sleep.
2052  */
2053 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2054 {
2055 	struct journal_head *jh;
2056 	struct journal_head *new_jh = NULL;
2057 
2058 repeat:
2059 	if (!buffer_jbd(bh)) {
2060 		new_jh = journal_alloc_journal_head();
2061 		memset(new_jh, 0, sizeof(*new_jh));
2062 	}
2063 
2064 	jbd_lock_bh_journal_head(bh);
2065 	if (buffer_jbd(bh)) {
2066 		jh = bh2jh(bh);
2067 	} else {
2068 		J_ASSERT_BH(bh,
2069 			(atomic_read(&bh->b_count) > 0) ||
2070 			(bh->b_page && bh->b_page->mapping));
2071 
2072 		if (!new_jh) {
2073 			jbd_unlock_bh_journal_head(bh);
2074 			goto repeat;
2075 		}
2076 
2077 		jh = new_jh;
2078 		new_jh = NULL;		/* We consumed it */
2079 		set_buffer_jbd(bh);
2080 		bh->b_private = jh;
2081 		jh->b_bh = bh;
2082 		get_bh(bh);
2083 		BUFFER_TRACE(bh, "added journal_head");
2084 	}
2085 	jh->b_jcount++;
2086 	jbd_unlock_bh_journal_head(bh);
2087 	if (new_jh)
2088 		journal_free_journal_head(new_jh);
2089 	return bh->b_private;
2090 }
2091 
2092 /*
2093  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2094  * having a journal_head, return NULL
2095  */
2096 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2097 {
2098 	struct journal_head *jh = NULL;
2099 
2100 	jbd_lock_bh_journal_head(bh);
2101 	if (buffer_jbd(bh)) {
2102 		jh = bh2jh(bh);
2103 		jh->b_jcount++;
2104 	}
2105 	jbd_unlock_bh_journal_head(bh);
2106 	return jh;
2107 }
2108 
2109 static void __journal_remove_journal_head(struct buffer_head *bh)
2110 {
2111 	struct journal_head *jh = bh2jh(bh);
2112 
2113 	J_ASSERT_JH(jh, jh->b_jcount >= 0);
2114 
2115 	get_bh(bh);
2116 	if (jh->b_jcount == 0) {
2117 		if (jh->b_transaction == NULL &&
2118 				jh->b_next_transaction == NULL &&
2119 				jh->b_cp_transaction == NULL) {
2120 			J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2121 			J_ASSERT_BH(bh, buffer_jbd(bh));
2122 			J_ASSERT_BH(bh, jh2bh(jh) == bh);
2123 			BUFFER_TRACE(bh, "remove journal_head");
2124 			if (jh->b_frozen_data) {
2125 				printk(KERN_WARNING "%s: freeing "
2126 						"b_frozen_data\n",
2127 						__func__);
2128 				jbd2_free(jh->b_frozen_data, bh->b_size);
2129 			}
2130 			if (jh->b_committed_data) {
2131 				printk(KERN_WARNING "%s: freeing "
2132 						"b_committed_data\n",
2133 						__func__);
2134 				jbd2_free(jh->b_committed_data, bh->b_size);
2135 			}
2136 			bh->b_private = NULL;
2137 			jh->b_bh = NULL;	/* debug, really */
2138 			clear_buffer_jbd(bh);
2139 			__brelse(bh);
2140 			journal_free_journal_head(jh);
2141 		} else {
2142 			BUFFER_TRACE(bh, "journal_head was locked");
2143 		}
2144 	}
2145 }
2146 
2147 /*
2148  * jbd2_journal_remove_journal_head(): if the buffer isn't attached to a transaction
2149  * and has a zero b_jcount then remove and release its journal_head.   If we did
2150  * see that the buffer is not used by any transaction we also "logically"
2151  * decrement ->b_count.
2152  *
2153  * We in fact take an additional increment on ->b_count as a convenience,
2154  * because the caller usually wants to do additional things with the bh
2155  * after calling here.
2156  * The caller of jbd2_journal_remove_journal_head() *must* run __brelse(bh) at some
2157  * time.  Once the caller has run __brelse(), the buffer is eligible for
2158  * reaping by try_to_free_buffers().
2159  */
2160 void jbd2_journal_remove_journal_head(struct buffer_head *bh)
2161 {
2162 	jbd_lock_bh_journal_head(bh);
2163 	__journal_remove_journal_head(bh);
2164 	jbd_unlock_bh_journal_head(bh);
2165 }
2166 
2167 /*
2168  * Drop a reference on the passed journal_head.  If it fell to zero then try to
2169  * release the journal_head from the buffer_head.
2170  */
2171 void jbd2_journal_put_journal_head(struct journal_head *jh)
2172 {
2173 	struct buffer_head *bh = jh2bh(jh);
2174 
2175 	jbd_lock_bh_journal_head(bh);
2176 	J_ASSERT_JH(jh, jh->b_jcount > 0);
2177 	--jh->b_jcount;
2178 	if (!jh->b_jcount && !jh->b_transaction) {
2179 		__journal_remove_journal_head(bh);
2180 		__brelse(bh);
2181 	}
2182 	jbd_unlock_bh_journal_head(bh);
2183 }
2184 
2185 /*
2186  * Initialize jbd inode head
2187  */
2188 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2189 {
2190 	jinode->i_transaction = NULL;
2191 	jinode->i_next_transaction = NULL;
2192 	jinode->i_vfs_inode = inode;
2193 	jinode->i_flags = 0;
2194 	INIT_LIST_HEAD(&jinode->i_list);
2195 }
2196 
2197 /*
2198  * Function to be called before we start removing inode from memory (i.e.,
2199  * clear_inode() is a fine place to be called from). It removes inode from
2200  * transaction's lists.
2201  */
2202 void jbd2_journal_release_jbd_inode(journal_t *journal,
2203 				    struct jbd2_inode *jinode)
2204 {
2205 	int writeout = 0;
2206 
2207 	if (!journal)
2208 		return;
2209 restart:
2210 	spin_lock(&journal->j_list_lock);
2211 	/* Is commit writing out inode - we have to wait */
2212 	if (jinode->i_flags & JI_COMMIT_RUNNING) {
2213 		wait_queue_head_t *wq;
2214 		DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2215 		wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2216 		prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2217 		spin_unlock(&journal->j_list_lock);
2218 		schedule();
2219 		finish_wait(wq, &wait.wait);
2220 		goto restart;
2221 	}
2222 
2223 	/* Do we need to wait for data writeback? */
2224 	if (journal->j_committing_transaction == jinode->i_transaction)
2225 		writeout = 1;
2226 	if (jinode->i_transaction) {
2227 		list_del(&jinode->i_list);
2228 		jinode->i_transaction = NULL;
2229 	}
2230 	spin_unlock(&journal->j_list_lock);
2231 }
2232 
2233 /*
2234  * debugfs tunables
2235  */
2236 #ifdef CONFIG_JBD2_DEBUG
2237 u8 jbd2_journal_enable_debug __read_mostly;
2238 EXPORT_SYMBOL(jbd2_journal_enable_debug);
2239 
2240 #define JBD2_DEBUG_NAME "jbd2-debug"
2241 
2242 static struct dentry *jbd2_debugfs_dir;
2243 static struct dentry *jbd2_debug;
2244 
2245 static void __init jbd2_create_debugfs_entry(void)
2246 {
2247 	jbd2_debugfs_dir = debugfs_create_dir("jbd2", NULL);
2248 	if (jbd2_debugfs_dir)
2249 		jbd2_debug = debugfs_create_u8(JBD2_DEBUG_NAME,
2250 					       S_IRUGO | S_IWUSR,
2251 					       jbd2_debugfs_dir,
2252 					       &jbd2_journal_enable_debug);
2253 }
2254 
2255 static void __exit jbd2_remove_debugfs_entry(void)
2256 {
2257 	debugfs_remove(jbd2_debug);
2258 	debugfs_remove(jbd2_debugfs_dir);
2259 }
2260 
2261 #else
2262 
2263 static void __init jbd2_create_debugfs_entry(void)
2264 {
2265 }
2266 
2267 static void __exit jbd2_remove_debugfs_entry(void)
2268 {
2269 }
2270 
2271 #endif
2272 
2273 #ifdef CONFIG_PROC_FS
2274 
2275 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2276 
2277 static void __init jbd2_create_jbd_stats_proc_entry(void)
2278 {
2279 	proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2280 }
2281 
2282 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2283 {
2284 	if (proc_jbd2_stats)
2285 		remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2286 }
2287 
2288 #else
2289 
2290 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2291 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2292 
2293 #endif
2294 
2295 struct kmem_cache *jbd2_handle_cache;
2296 
2297 static int __init journal_init_handle_cache(void)
2298 {
2299 	jbd2_handle_cache = kmem_cache_create("jbd2_journal_handle",
2300 				sizeof(handle_t),
2301 				0,		/* offset */
2302 				SLAB_TEMPORARY,	/* flags */
2303 				NULL);		/* ctor */
2304 	if (jbd2_handle_cache == NULL) {
2305 		printk(KERN_EMERG "JBD: failed to create handle cache\n");
2306 		return -ENOMEM;
2307 	}
2308 	return 0;
2309 }
2310 
2311 static void jbd2_journal_destroy_handle_cache(void)
2312 {
2313 	if (jbd2_handle_cache)
2314 		kmem_cache_destroy(jbd2_handle_cache);
2315 }
2316 
2317 /*
2318  * Module startup and shutdown
2319  */
2320 
2321 static int __init journal_init_caches(void)
2322 {
2323 	int ret;
2324 
2325 	ret = jbd2_journal_init_revoke_caches();
2326 	if (ret == 0)
2327 		ret = journal_init_jbd2_journal_head_cache();
2328 	if (ret == 0)
2329 		ret = journal_init_handle_cache();
2330 	return ret;
2331 }
2332 
2333 static void jbd2_journal_destroy_caches(void)
2334 {
2335 	jbd2_journal_destroy_revoke_caches();
2336 	jbd2_journal_destroy_jbd2_journal_head_cache();
2337 	jbd2_journal_destroy_handle_cache();
2338 	jbd2_journal_destroy_slabs();
2339 }
2340 
2341 static int __init journal_init(void)
2342 {
2343 	int ret;
2344 
2345 	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2346 
2347 	ret = journal_init_caches();
2348 	if (ret == 0) {
2349 		jbd2_create_debugfs_entry();
2350 		jbd2_create_jbd_stats_proc_entry();
2351 	} else {
2352 		jbd2_journal_destroy_caches();
2353 	}
2354 	return ret;
2355 }
2356 
2357 static void __exit journal_exit(void)
2358 {
2359 #ifdef CONFIG_JBD2_DEBUG
2360 	int n = atomic_read(&nr_journal_heads);
2361 	if (n)
2362 		printk(KERN_EMERG "JBD: leaked %d journal_heads!\n", n);
2363 #endif
2364 	jbd2_remove_debugfs_entry();
2365 	jbd2_remove_jbd_stats_proc_entry();
2366 	jbd2_journal_destroy_caches();
2367 }
2368 
2369 /*
2370  * jbd2_dev_to_name is a utility function used by the jbd2 and ext4
2371  * tracing infrastructure to map a dev_t to a device name.
2372  *
2373  * The caller should use rcu_read_lock() in order to make sure the
2374  * device name stays valid until its done with it.  We use
2375  * rcu_read_lock() as well to make sure we're safe in case the caller
2376  * gets sloppy, and because rcu_read_lock() is cheap and can be safely
2377  * nested.
2378  */
2379 struct devname_cache {
2380 	struct rcu_head	rcu;
2381 	dev_t		device;
2382 	char		devname[BDEVNAME_SIZE];
2383 };
2384 #define CACHE_SIZE_BITS 6
2385 static struct devname_cache *devcache[1 << CACHE_SIZE_BITS];
2386 static DEFINE_SPINLOCK(devname_cache_lock);
2387 
2388 static void free_devcache(struct rcu_head *rcu)
2389 {
2390 	kfree(rcu);
2391 }
2392 
2393 const char *jbd2_dev_to_name(dev_t device)
2394 {
2395 	int	i = hash_32(device, CACHE_SIZE_BITS);
2396 	char	*ret;
2397 	struct block_device *bd;
2398 	static struct devname_cache *new_dev;
2399 
2400 	rcu_read_lock();
2401 	if (devcache[i] && devcache[i]->device == device) {
2402 		ret = devcache[i]->devname;
2403 		rcu_read_unlock();
2404 		return ret;
2405 	}
2406 	rcu_read_unlock();
2407 
2408 	new_dev = kmalloc(sizeof(struct devname_cache), GFP_KERNEL);
2409 	if (!new_dev)
2410 		return "NODEV-ALLOCFAILURE"; /* Something non-NULL */
2411 	spin_lock(&devname_cache_lock);
2412 	if (devcache[i]) {
2413 		if (devcache[i]->device == device) {
2414 			kfree(new_dev);
2415 			ret = devcache[i]->devname;
2416 			spin_unlock(&devname_cache_lock);
2417 			return ret;
2418 		}
2419 		call_rcu(&devcache[i]->rcu, free_devcache);
2420 	}
2421 	devcache[i] = new_dev;
2422 	devcache[i]->device = device;
2423 	bd = bdget(device);
2424 	if (bd) {
2425 		bdevname(bd, devcache[i]->devname);
2426 		bdput(bd);
2427 	} else
2428 		__bdevname(device, devcache[i]->devname);
2429 	ret = devcache[i]->devname;
2430 	spin_unlock(&devname_cache_lock);
2431 	return ret;
2432 }
2433 EXPORT_SYMBOL(jbd2_dev_to_name);
2434 
2435 MODULE_LICENSE("GPL");
2436 module_init(journal_init);
2437 module_exit(journal_exit);
2438 
2439