1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * linux/fs/jbd2/journal.c 4 * 5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 6 * 7 * Copyright 1998 Red Hat corp --- All Rights Reserved 8 * 9 * Generic filesystem journal-writing code; part of the ext2fs 10 * journaling system. 11 * 12 * This file manages journals: areas of disk reserved for logging 13 * transactional updates. This includes the kernel journaling thread 14 * which is responsible for scheduling updates to the log. 15 * 16 * We do not actually manage the physical storage of the journal in this 17 * file: that is left to a per-journal policy function, which allows us 18 * to store the journal within a filesystem-specified area for ext2 19 * journaling (ext2 can use a reserved inode for storing the log). 20 */ 21 22 #include <linux/module.h> 23 #include <linux/time.h> 24 #include <linux/fs.h> 25 #include <linux/jbd2.h> 26 #include <linux/errno.h> 27 #include <linux/slab.h> 28 #include <linux/init.h> 29 #include <linux/mm.h> 30 #include <linux/freezer.h> 31 #include <linux/pagemap.h> 32 #include <linux/kthread.h> 33 #include <linux/poison.h> 34 #include <linux/proc_fs.h> 35 #include <linux/seq_file.h> 36 #include <linux/math64.h> 37 #include <linux/hash.h> 38 #include <linux/log2.h> 39 #include <linux/vmalloc.h> 40 #include <linux/backing-dev.h> 41 #include <linux/bitops.h> 42 #include <linux/ratelimit.h> 43 #include <linux/sched/mm.h> 44 45 #define CREATE_TRACE_POINTS 46 #include <trace/events/jbd2.h> 47 48 #include <linux/uaccess.h> 49 #include <asm/page.h> 50 51 #ifdef CONFIG_JBD2_DEBUG 52 static ushort jbd2_journal_enable_debug __read_mostly; 53 54 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644); 55 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2"); 56 #endif 57 58 EXPORT_SYMBOL(jbd2_journal_extend); 59 EXPORT_SYMBOL(jbd2_journal_stop); 60 EXPORT_SYMBOL(jbd2_journal_lock_updates); 61 EXPORT_SYMBOL(jbd2_journal_unlock_updates); 62 EXPORT_SYMBOL(jbd2_journal_get_write_access); 63 EXPORT_SYMBOL(jbd2_journal_get_create_access); 64 EXPORT_SYMBOL(jbd2_journal_get_undo_access); 65 EXPORT_SYMBOL(jbd2_journal_set_triggers); 66 EXPORT_SYMBOL(jbd2_journal_dirty_metadata); 67 EXPORT_SYMBOL(jbd2_journal_forget); 68 EXPORT_SYMBOL(jbd2_journal_flush); 69 EXPORT_SYMBOL(jbd2_journal_revoke); 70 71 EXPORT_SYMBOL(jbd2_journal_init_dev); 72 EXPORT_SYMBOL(jbd2_journal_init_inode); 73 EXPORT_SYMBOL(jbd2_journal_check_used_features); 74 EXPORT_SYMBOL(jbd2_journal_check_available_features); 75 EXPORT_SYMBOL(jbd2_journal_set_features); 76 EXPORT_SYMBOL(jbd2_journal_load); 77 EXPORT_SYMBOL(jbd2_journal_destroy); 78 EXPORT_SYMBOL(jbd2_journal_abort); 79 EXPORT_SYMBOL(jbd2_journal_errno); 80 EXPORT_SYMBOL(jbd2_journal_ack_err); 81 EXPORT_SYMBOL(jbd2_journal_clear_err); 82 EXPORT_SYMBOL(jbd2_log_wait_commit); 83 EXPORT_SYMBOL(jbd2_journal_start_commit); 84 EXPORT_SYMBOL(jbd2_journal_force_commit_nested); 85 EXPORT_SYMBOL(jbd2_journal_wipe); 86 EXPORT_SYMBOL(jbd2_journal_blocks_per_page); 87 EXPORT_SYMBOL(jbd2_journal_invalidate_folio); 88 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers); 89 EXPORT_SYMBOL(jbd2_journal_force_commit); 90 EXPORT_SYMBOL(jbd2_journal_inode_ranged_write); 91 EXPORT_SYMBOL(jbd2_journal_inode_ranged_wait); 92 EXPORT_SYMBOL(jbd2_journal_finish_inode_data_buffers); 93 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode); 94 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode); 95 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate); 96 EXPORT_SYMBOL(jbd2_inode_cache); 97 98 static int jbd2_journal_create_slab(size_t slab_size); 99 100 #ifdef CONFIG_JBD2_DEBUG 101 void __jbd2_debug(int level, const char *file, const char *func, 102 unsigned int line, const char *fmt, ...) 103 { 104 struct va_format vaf; 105 va_list args; 106 107 if (level > jbd2_journal_enable_debug) 108 return; 109 va_start(args, fmt); 110 vaf.fmt = fmt; 111 vaf.va = &args; 112 printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf); 113 va_end(args); 114 } 115 #endif 116 117 /* Checksumming functions */ 118 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb) 119 { 120 if (!jbd2_journal_has_csum_v2or3_feature(j)) 121 return 1; 122 123 return sb->s_checksum_type == JBD2_CRC32C_CHKSUM; 124 } 125 126 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb) 127 { 128 __u32 csum; 129 __be32 old_csum; 130 131 old_csum = sb->s_checksum; 132 sb->s_checksum = 0; 133 csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t)); 134 sb->s_checksum = old_csum; 135 136 return cpu_to_be32(csum); 137 } 138 139 /* 140 * Helper function used to manage commit timeouts 141 */ 142 143 static void commit_timeout(struct timer_list *t) 144 { 145 journal_t *journal = from_timer(journal, t, j_commit_timer); 146 147 wake_up_process(journal->j_task); 148 } 149 150 /* 151 * kjournald2: The main thread function used to manage a logging device 152 * journal. 153 * 154 * This kernel thread is responsible for two things: 155 * 156 * 1) COMMIT: Every so often we need to commit the current state of the 157 * filesystem to disk. The journal thread is responsible for writing 158 * all of the metadata buffers to disk. If a fast commit is ongoing 159 * journal thread waits until it's done and then continues from 160 * there on. 161 * 162 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all 163 * of the data in that part of the log has been rewritten elsewhere on 164 * the disk. Flushing these old buffers to reclaim space in the log is 165 * known as checkpointing, and this thread is responsible for that job. 166 */ 167 168 static int kjournald2(void *arg) 169 { 170 journal_t *journal = arg; 171 transaction_t *transaction; 172 173 /* 174 * Set up an interval timer which can be used to trigger a commit wakeup 175 * after the commit interval expires 176 */ 177 timer_setup(&journal->j_commit_timer, commit_timeout, 0); 178 179 set_freezable(); 180 181 /* Record that the journal thread is running */ 182 journal->j_task = current; 183 wake_up(&journal->j_wait_done_commit); 184 185 /* 186 * Make sure that no allocations from this kernel thread will ever 187 * recurse to the fs layer because we are responsible for the 188 * transaction commit and any fs involvement might get stuck waiting for 189 * the trasn. commit. 190 */ 191 memalloc_nofs_save(); 192 193 /* 194 * And now, wait forever for commit wakeup events. 195 */ 196 write_lock(&journal->j_state_lock); 197 198 loop: 199 if (journal->j_flags & JBD2_UNMOUNT) 200 goto end_loop; 201 202 jbd2_debug(1, "commit_sequence=%u, commit_request=%u\n", 203 journal->j_commit_sequence, journal->j_commit_request); 204 205 if (journal->j_commit_sequence != journal->j_commit_request) { 206 jbd2_debug(1, "OK, requests differ\n"); 207 write_unlock(&journal->j_state_lock); 208 del_timer_sync(&journal->j_commit_timer); 209 jbd2_journal_commit_transaction(journal); 210 write_lock(&journal->j_state_lock); 211 goto loop; 212 } 213 214 wake_up(&journal->j_wait_done_commit); 215 if (freezing(current)) { 216 /* 217 * The simpler the better. Flushing journal isn't a 218 * good idea, because that depends on threads that may 219 * be already stopped. 220 */ 221 jbd2_debug(1, "Now suspending kjournald2\n"); 222 write_unlock(&journal->j_state_lock); 223 try_to_freeze(); 224 write_lock(&journal->j_state_lock); 225 } else { 226 /* 227 * We assume on resume that commits are already there, 228 * so we don't sleep 229 */ 230 DEFINE_WAIT(wait); 231 int should_sleep = 1; 232 233 prepare_to_wait(&journal->j_wait_commit, &wait, 234 TASK_INTERRUPTIBLE); 235 if (journal->j_commit_sequence != journal->j_commit_request) 236 should_sleep = 0; 237 transaction = journal->j_running_transaction; 238 if (transaction && time_after_eq(jiffies, 239 transaction->t_expires)) 240 should_sleep = 0; 241 if (journal->j_flags & JBD2_UNMOUNT) 242 should_sleep = 0; 243 if (should_sleep) { 244 write_unlock(&journal->j_state_lock); 245 schedule(); 246 write_lock(&journal->j_state_lock); 247 } 248 finish_wait(&journal->j_wait_commit, &wait); 249 } 250 251 jbd2_debug(1, "kjournald2 wakes\n"); 252 253 /* 254 * Were we woken up by a commit wakeup event? 255 */ 256 transaction = journal->j_running_transaction; 257 if (transaction && time_after_eq(jiffies, transaction->t_expires)) { 258 journal->j_commit_request = transaction->t_tid; 259 jbd2_debug(1, "woke because of timeout\n"); 260 } 261 goto loop; 262 263 end_loop: 264 del_timer_sync(&journal->j_commit_timer); 265 journal->j_task = NULL; 266 wake_up(&journal->j_wait_done_commit); 267 jbd2_debug(1, "Journal thread exiting.\n"); 268 write_unlock(&journal->j_state_lock); 269 return 0; 270 } 271 272 static int jbd2_journal_start_thread(journal_t *journal) 273 { 274 struct task_struct *t; 275 276 t = kthread_run(kjournald2, journal, "jbd2/%s", 277 journal->j_devname); 278 if (IS_ERR(t)) 279 return PTR_ERR(t); 280 281 wait_event(journal->j_wait_done_commit, journal->j_task != NULL); 282 return 0; 283 } 284 285 static void journal_kill_thread(journal_t *journal) 286 { 287 write_lock(&journal->j_state_lock); 288 journal->j_flags |= JBD2_UNMOUNT; 289 290 while (journal->j_task) { 291 write_unlock(&journal->j_state_lock); 292 wake_up(&journal->j_wait_commit); 293 wait_event(journal->j_wait_done_commit, journal->j_task == NULL); 294 write_lock(&journal->j_state_lock); 295 } 296 write_unlock(&journal->j_state_lock); 297 } 298 299 /* 300 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal. 301 * 302 * Writes a metadata buffer to a given disk block. The actual IO is not 303 * performed but a new buffer_head is constructed which labels the data 304 * to be written with the correct destination disk block. 305 * 306 * Any magic-number escaping which needs to be done will cause a 307 * copy-out here. If the buffer happens to start with the 308 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the 309 * magic number is only written to the log for descripter blocks. In 310 * this case, we copy the data and replace the first word with 0, and we 311 * return a result code which indicates that this buffer needs to be 312 * marked as an escaped buffer in the corresponding log descriptor 313 * block. The missing word can then be restored when the block is read 314 * during recovery. 315 * 316 * If the source buffer has already been modified by a new transaction 317 * since we took the last commit snapshot, we use the frozen copy of 318 * that data for IO. If we end up using the existing buffer_head's data 319 * for the write, then we have to make sure nobody modifies it while the 320 * IO is in progress. do_get_write_access() handles this. 321 * 322 * The function returns a pointer to the buffer_head to be used for IO. 323 * 324 * 325 * Return value: 326 * <0: Error 327 * >=0: Finished OK 328 * 329 * On success: 330 * Bit 0 set == escape performed on the data 331 * Bit 1 set == buffer copy-out performed (kfree the data after IO) 332 */ 333 334 int jbd2_journal_write_metadata_buffer(transaction_t *transaction, 335 struct journal_head *jh_in, 336 struct buffer_head **bh_out, 337 sector_t blocknr) 338 { 339 int need_copy_out = 0; 340 int done_copy_out = 0; 341 int do_escape = 0; 342 char *mapped_data; 343 struct buffer_head *new_bh; 344 struct page *new_page; 345 unsigned int new_offset; 346 struct buffer_head *bh_in = jh2bh(jh_in); 347 journal_t *journal = transaction->t_journal; 348 349 /* 350 * The buffer really shouldn't be locked: only the current committing 351 * transaction is allowed to write it, so nobody else is allowed 352 * to do any IO. 353 * 354 * akpm: except if we're journalling data, and write() output is 355 * also part of a shared mapping, and another thread has 356 * decided to launch a writepage() against this buffer. 357 */ 358 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in)); 359 360 new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL); 361 362 /* keep subsequent assertions sane */ 363 atomic_set(&new_bh->b_count, 1); 364 365 spin_lock(&jh_in->b_state_lock); 366 repeat: 367 /* 368 * If a new transaction has already done a buffer copy-out, then 369 * we use that version of the data for the commit. 370 */ 371 if (jh_in->b_frozen_data) { 372 done_copy_out = 1; 373 new_page = virt_to_page(jh_in->b_frozen_data); 374 new_offset = offset_in_page(jh_in->b_frozen_data); 375 } else { 376 new_page = jh2bh(jh_in)->b_page; 377 new_offset = offset_in_page(jh2bh(jh_in)->b_data); 378 } 379 380 mapped_data = kmap_atomic(new_page); 381 /* 382 * Fire data frozen trigger if data already wasn't frozen. Do this 383 * before checking for escaping, as the trigger may modify the magic 384 * offset. If a copy-out happens afterwards, it will have the correct 385 * data in the buffer. 386 */ 387 if (!done_copy_out) 388 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset, 389 jh_in->b_triggers); 390 391 /* 392 * Check for escaping 393 */ 394 if (*((__be32 *)(mapped_data + new_offset)) == 395 cpu_to_be32(JBD2_MAGIC_NUMBER)) { 396 need_copy_out = 1; 397 do_escape = 1; 398 } 399 kunmap_atomic(mapped_data); 400 401 /* 402 * Do we need to do a data copy? 403 */ 404 if (need_copy_out && !done_copy_out) { 405 char *tmp; 406 407 spin_unlock(&jh_in->b_state_lock); 408 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS); 409 if (!tmp) { 410 brelse(new_bh); 411 return -ENOMEM; 412 } 413 spin_lock(&jh_in->b_state_lock); 414 if (jh_in->b_frozen_data) { 415 jbd2_free(tmp, bh_in->b_size); 416 goto repeat; 417 } 418 419 jh_in->b_frozen_data = tmp; 420 mapped_data = kmap_atomic(new_page); 421 memcpy(tmp, mapped_data + new_offset, bh_in->b_size); 422 kunmap_atomic(mapped_data); 423 424 new_page = virt_to_page(tmp); 425 new_offset = offset_in_page(tmp); 426 done_copy_out = 1; 427 428 /* 429 * This isn't strictly necessary, as we're using frozen 430 * data for the escaping, but it keeps consistency with 431 * b_frozen_data usage. 432 */ 433 jh_in->b_frozen_triggers = jh_in->b_triggers; 434 } 435 436 /* 437 * Did we need to do an escaping? Now we've done all the 438 * copying, we can finally do so. 439 */ 440 if (do_escape) { 441 mapped_data = kmap_atomic(new_page); 442 *((unsigned int *)(mapped_data + new_offset)) = 0; 443 kunmap_atomic(mapped_data); 444 } 445 446 set_bh_page(new_bh, new_page, new_offset); 447 new_bh->b_size = bh_in->b_size; 448 new_bh->b_bdev = journal->j_dev; 449 new_bh->b_blocknr = blocknr; 450 new_bh->b_private = bh_in; 451 set_buffer_mapped(new_bh); 452 set_buffer_dirty(new_bh); 453 454 *bh_out = new_bh; 455 456 /* 457 * The to-be-written buffer needs to get moved to the io queue, 458 * and the original buffer whose contents we are shadowing or 459 * copying is moved to the transaction's shadow queue. 460 */ 461 JBUFFER_TRACE(jh_in, "file as BJ_Shadow"); 462 spin_lock(&journal->j_list_lock); 463 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow); 464 spin_unlock(&journal->j_list_lock); 465 set_buffer_shadow(bh_in); 466 spin_unlock(&jh_in->b_state_lock); 467 468 return do_escape | (done_copy_out << 1); 469 } 470 471 /* 472 * Allocation code for the journal file. Manage the space left in the 473 * journal, so that we can begin checkpointing when appropriate. 474 */ 475 476 /* 477 * Called with j_state_lock locked for writing. 478 * Returns true if a transaction commit was started. 479 */ 480 static int __jbd2_log_start_commit(journal_t *journal, tid_t target) 481 { 482 /* Return if the txn has already requested to be committed */ 483 if (journal->j_commit_request == target) 484 return 0; 485 486 /* 487 * The only transaction we can possibly wait upon is the 488 * currently running transaction (if it exists). Otherwise, 489 * the target tid must be an old one. 490 */ 491 if (journal->j_running_transaction && 492 journal->j_running_transaction->t_tid == target) { 493 /* 494 * We want a new commit: OK, mark the request and wakeup the 495 * commit thread. We do _not_ do the commit ourselves. 496 */ 497 498 journal->j_commit_request = target; 499 jbd2_debug(1, "JBD2: requesting commit %u/%u\n", 500 journal->j_commit_request, 501 journal->j_commit_sequence); 502 journal->j_running_transaction->t_requested = jiffies; 503 wake_up(&journal->j_wait_commit); 504 return 1; 505 } else if (!tid_geq(journal->j_commit_request, target)) 506 /* This should never happen, but if it does, preserve 507 the evidence before kjournald goes into a loop and 508 increments j_commit_sequence beyond all recognition. */ 509 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n", 510 journal->j_commit_request, 511 journal->j_commit_sequence, 512 target, journal->j_running_transaction ? 513 journal->j_running_transaction->t_tid : 0); 514 return 0; 515 } 516 517 int jbd2_log_start_commit(journal_t *journal, tid_t tid) 518 { 519 int ret; 520 521 write_lock(&journal->j_state_lock); 522 ret = __jbd2_log_start_commit(journal, tid); 523 write_unlock(&journal->j_state_lock); 524 return ret; 525 } 526 527 /* 528 * Force and wait any uncommitted transactions. We can only force the running 529 * transaction if we don't have an active handle, otherwise, we will deadlock. 530 * Returns: <0 in case of error, 531 * 0 if nothing to commit, 532 * 1 if transaction was successfully committed. 533 */ 534 static int __jbd2_journal_force_commit(journal_t *journal) 535 { 536 transaction_t *transaction = NULL; 537 tid_t tid; 538 int need_to_start = 0, ret = 0; 539 540 read_lock(&journal->j_state_lock); 541 if (journal->j_running_transaction && !current->journal_info) { 542 transaction = journal->j_running_transaction; 543 if (!tid_geq(journal->j_commit_request, transaction->t_tid)) 544 need_to_start = 1; 545 } else if (journal->j_committing_transaction) 546 transaction = journal->j_committing_transaction; 547 548 if (!transaction) { 549 /* Nothing to commit */ 550 read_unlock(&journal->j_state_lock); 551 return 0; 552 } 553 tid = transaction->t_tid; 554 read_unlock(&journal->j_state_lock); 555 if (need_to_start) 556 jbd2_log_start_commit(journal, tid); 557 ret = jbd2_log_wait_commit(journal, tid); 558 if (!ret) 559 ret = 1; 560 561 return ret; 562 } 563 564 /** 565 * jbd2_journal_force_commit_nested - Force and wait upon a commit if the 566 * calling process is not within transaction. 567 * 568 * @journal: journal to force 569 * Returns true if progress was made. 570 * 571 * This is used for forcing out undo-protected data which contains 572 * bitmaps, when the fs is running out of space. 573 */ 574 int jbd2_journal_force_commit_nested(journal_t *journal) 575 { 576 int ret; 577 578 ret = __jbd2_journal_force_commit(journal); 579 return ret > 0; 580 } 581 582 /** 583 * jbd2_journal_force_commit() - force any uncommitted transactions 584 * @journal: journal to force 585 * 586 * Caller want unconditional commit. We can only force the running transaction 587 * if we don't have an active handle, otherwise, we will deadlock. 588 */ 589 int jbd2_journal_force_commit(journal_t *journal) 590 { 591 int ret; 592 593 J_ASSERT(!current->journal_info); 594 ret = __jbd2_journal_force_commit(journal); 595 if (ret > 0) 596 ret = 0; 597 return ret; 598 } 599 600 /* 601 * Start a commit of the current running transaction (if any). Returns true 602 * if a transaction is going to be committed (or is currently already 603 * committing), and fills its tid in at *ptid 604 */ 605 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid) 606 { 607 int ret = 0; 608 609 write_lock(&journal->j_state_lock); 610 if (journal->j_running_transaction) { 611 tid_t tid = journal->j_running_transaction->t_tid; 612 613 __jbd2_log_start_commit(journal, tid); 614 /* There's a running transaction and we've just made sure 615 * it's commit has been scheduled. */ 616 if (ptid) 617 *ptid = tid; 618 ret = 1; 619 } else if (journal->j_committing_transaction) { 620 /* 621 * If commit has been started, then we have to wait for 622 * completion of that transaction. 623 */ 624 if (ptid) 625 *ptid = journal->j_committing_transaction->t_tid; 626 ret = 1; 627 } 628 write_unlock(&journal->j_state_lock); 629 return ret; 630 } 631 632 /* 633 * Return 1 if a given transaction has not yet sent barrier request 634 * connected with a transaction commit. If 0 is returned, transaction 635 * may or may not have sent the barrier. Used to avoid sending barrier 636 * twice in common cases. 637 */ 638 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid) 639 { 640 int ret = 0; 641 transaction_t *commit_trans; 642 643 if (!(journal->j_flags & JBD2_BARRIER)) 644 return 0; 645 read_lock(&journal->j_state_lock); 646 /* Transaction already committed? */ 647 if (tid_geq(journal->j_commit_sequence, tid)) 648 goto out; 649 commit_trans = journal->j_committing_transaction; 650 if (!commit_trans || commit_trans->t_tid != tid) { 651 ret = 1; 652 goto out; 653 } 654 /* 655 * Transaction is being committed and we already proceeded to 656 * submitting a flush to fs partition? 657 */ 658 if (journal->j_fs_dev != journal->j_dev) { 659 if (!commit_trans->t_need_data_flush || 660 commit_trans->t_state >= T_COMMIT_DFLUSH) 661 goto out; 662 } else { 663 if (commit_trans->t_state >= T_COMMIT_JFLUSH) 664 goto out; 665 } 666 ret = 1; 667 out: 668 read_unlock(&journal->j_state_lock); 669 return ret; 670 } 671 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier); 672 673 /* 674 * Wait for a specified commit to complete. 675 * The caller may not hold the journal lock. 676 */ 677 int jbd2_log_wait_commit(journal_t *journal, tid_t tid) 678 { 679 int err = 0; 680 681 read_lock(&journal->j_state_lock); 682 #ifdef CONFIG_PROVE_LOCKING 683 /* 684 * Some callers make sure transaction is already committing and in that 685 * case we cannot block on open handles anymore. So don't warn in that 686 * case. 687 */ 688 if (tid_gt(tid, journal->j_commit_sequence) && 689 (!journal->j_committing_transaction || 690 journal->j_committing_transaction->t_tid != tid)) { 691 read_unlock(&journal->j_state_lock); 692 jbd2_might_wait_for_commit(journal); 693 read_lock(&journal->j_state_lock); 694 } 695 #endif 696 #ifdef CONFIG_JBD2_DEBUG 697 if (!tid_geq(journal->j_commit_request, tid)) { 698 printk(KERN_ERR 699 "%s: error: j_commit_request=%u, tid=%u\n", 700 __func__, journal->j_commit_request, tid); 701 } 702 #endif 703 while (tid_gt(tid, journal->j_commit_sequence)) { 704 jbd2_debug(1, "JBD2: want %u, j_commit_sequence=%u\n", 705 tid, journal->j_commit_sequence); 706 read_unlock(&journal->j_state_lock); 707 wake_up(&journal->j_wait_commit); 708 wait_event(journal->j_wait_done_commit, 709 !tid_gt(tid, journal->j_commit_sequence)); 710 read_lock(&journal->j_state_lock); 711 } 712 read_unlock(&journal->j_state_lock); 713 714 if (unlikely(is_journal_aborted(journal))) 715 err = -EIO; 716 return err; 717 } 718 719 /* 720 * Start a fast commit. If there's an ongoing fast or full commit wait for 721 * it to complete. Returns 0 if a new fast commit was started. Returns -EALREADY 722 * if a fast commit is not needed, either because there's an already a commit 723 * going on or this tid has already been committed. Returns -EINVAL if no jbd2 724 * commit has yet been performed. 725 */ 726 int jbd2_fc_begin_commit(journal_t *journal, tid_t tid) 727 { 728 if (unlikely(is_journal_aborted(journal))) 729 return -EIO; 730 /* 731 * Fast commits only allowed if at least one full commit has 732 * been processed. 733 */ 734 if (!journal->j_stats.ts_tid) 735 return -EINVAL; 736 737 write_lock(&journal->j_state_lock); 738 if (tid <= journal->j_commit_sequence) { 739 write_unlock(&journal->j_state_lock); 740 return -EALREADY; 741 } 742 743 if (journal->j_flags & JBD2_FULL_COMMIT_ONGOING || 744 (journal->j_flags & JBD2_FAST_COMMIT_ONGOING)) { 745 DEFINE_WAIT(wait); 746 747 prepare_to_wait(&journal->j_fc_wait, &wait, 748 TASK_UNINTERRUPTIBLE); 749 write_unlock(&journal->j_state_lock); 750 schedule(); 751 finish_wait(&journal->j_fc_wait, &wait); 752 return -EALREADY; 753 } 754 journal->j_flags |= JBD2_FAST_COMMIT_ONGOING; 755 write_unlock(&journal->j_state_lock); 756 jbd2_journal_lock_updates(journal); 757 758 return 0; 759 } 760 EXPORT_SYMBOL(jbd2_fc_begin_commit); 761 762 /* 763 * Stop a fast commit. If fallback is set, this function starts commit of 764 * TID tid before any other fast commit can start. 765 */ 766 static int __jbd2_fc_end_commit(journal_t *journal, tid_t tid, bool fallback) 767 { 768 jbd2_journal_unlock_updates(journal); 769 if (journal->j_fc_cleanup_callback) 770 journal->j_fc_cleanup_callback(journal, 0, tid); 771 write_lock(&journal->j_state_lock); 772 journal->j_flags &= ~JBD2_FAST_COMMIT_ONGOING; 773 if (fallback) 774 journal->j_flags |= JBD2_FULL_COMMIT_ONGOING; 775 write_unlock(&journal->j_state_lock); 776 wake_up(&journal->j_fc_wait); 777 if (fallback) 778 return jbd2_complete_transaction(journal, tid); 779 return 0; 780 } 781 782 int jbd2_fc_end_commit(journal_t *journal) 783 { 784 return __jbd2_fc_end_commit(journal, 0, false); 785 } 786 EXPORT_SYMBOL(jbd2_fc_end_commit); 787 788 int jbd2_fc_end_commit_fallback(journal_t *journal) 789 { 790 tid_t tid; 791 792 read_lock(&journal->j_state_lock); 793 tid = journal->j_running_transaction ? 794 journal->j_running_transaction->t_tid : 0; 795 read_unlock(&journal->j_state_lock); 796 return __jbd2_fc_end_commit(journal, tid, true); 797 } 798 EXPORT_SYMBOL(jbd2_fc_end_commit_fallback); 799 800 /* Return 1 when transaction with given tid has already committed. */ 801 int jbd2_transaction_committed(journal_t *journal, tid_t tid) 802 { 803 int ret = 1; 804 805 read_lock(&journal->j_state_lock); 806 if (journal->j_running_transaction && 807 journal->j_running_transaction->t_tid == tid) 808 ret = 0; 809 if (journal->j_committing_transaction && 810 journal->j_committing_transaction->t_tid == tid) 811 ret = 0; 812 read_unlock(&journal->j_state_lock); 813 return ret; 814 } 815 EXPORT_SYMBOL(jbd2_transaction_committed); 816 817 /* 818 * When this function returns the transaction corresponding to tid 819 * will be completed. If the transaction has currently running, start 820 * committing that transaction before waiting for it to complete. If 821 * the transaction id is stale, it is by definition already completed, 822 * so just return SUCCESS. 823 */ 824 int jbd2_complete_transaction(journal_t *journal, tid_t tid) 825 { 826 int need_to_wait = 1; 827 828 read_lock(&journal->j_state_lock); 829 if (journal->j_running_transaction && 830 journal->j_running_transaction->t_tid == tid) { 831 if (journal->j_commit_request != tid) { 832 /* transaction not yet started, so request it */ 833 read_unlock(&journal->j_state_lock); 834 jbd2_log_start_commit(journal, tid); 835 goto wait_commit; 836 } 837 } else if (!(journal->j_committing_transaction && 838 journal->j_committing_transaction->t_tid == tid)) 839 need_to_wait = 0; 840 read_unlock(&journal->j_state_lock); 841 if (!need_to_wait) 842 return 0; 843 wait_commit: 844 return jbd2_log_wait_commit(journal, tid); 845 } 846 EXPORT_SYMBOL(jbd2_complete_transaction); 847 848 /* 849 * Log buffer allocation routines: 850 */ 851 852 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp) 853 { 854 unsigned long blocknr; 855 856 write_lock(&journal->j_state_lock); 857 J_ASSERT(journal->j_free > 1); 858 859 blocknr = journal->j_head; 860 journal->j_head++; 861 journal->j_free--; 862 if (journal->j_head == journal->j_last) 863 journal->j_head = journal->j_first; 864 write_unlock(&journal->j_state_lock); 865 return jbd2_journal_bmap(journal, blocknr, retp); 866 } 867 868 /* Map one fast commit buffer for use by the file system */ 869 int jbd2_fc_get_buf(journal_t *journal, struct buffer_head **bh_out) 870 { 871 unsigned long long pblock; 872 unsigned long blocknr; 873 int ret = 0; 874 struct buffer_head *bh; 875 int fc_off; 876 877 *bh_out = NULL; 878 879 if (journal->j_fc_off + journal->j_fc_first < journal->j_fc_last) { 880 fc_off = journal->j_fc_off; 881 blocknr = journal->j_fc_first + fc_off; 882 journal->j_fc_off++; 883 } else { 884 ret = -EINVAL; 885 } 886 887 if (ret) 888 return ret; 889 890 ret = jbd2_journal_bmap(journal, blocknr, &pblock); 891 if (ret) 892 return ret; 893 894 bh = __getblk(journal->j_dev, pblock, journal->j_blocksize); 895 if (!bh) 896 return -ENOMEM; 897 898 899 journal->j_fc_wbuf[fc_off] = bh; 900 901 *bh_out = bh; 902 903 return 0; 904 } 905 EXPORT_SYMBOL(jbd2_fc_get_buf); 906 907 /* 908 * Wait on fast commit buffers that were allocated by jbd2_fc_get_buf 909 * for completion. 910 */ 911 int jbd2_fc_wait_bufs(journal_t *journal, int num_blks) 912 { 913 struct buffer_head *bh; 914 int i, j_fc_off; 915 916 j_fc_off = journal->j_fc_off; 917 918 /* 919 * Wait in reverse order to minimize chances of us being woken up before 920 * all IOs have completed 921 */ 922 for (i = j_fc_off - 1; i >= j_fc_off - num_blks; i--) { 923 bh = journal->j_fc_wbuf[i]; 924 wait_on_buffer(bh); 925 /* 926 * Update j_fc_off so jbd2_fc_release_bufs can release remain 927 * buffer head. 928 */ 929 if (unlikely(!buffer_uptodate(bh))) { 930 journal->j_fc_off = i + 1; 931 return -EIO; 932 } 933 put_bh(bh); 934 journal->j_fc_wbuf[i] = NULL; 935 } 936 937 return 0; 938 } 939 EXPORT_SYMBOL(jbd2_fc_wait_bufs); 940 941 int jbd2_fc_release_bufs(journal_t *journal) 942 { 943 struct buffer_head *bh; 944 int i, j_fc_off; 945 946 j_fc_off = journal->j_fc_off; 947 948 for (i = j_fc_off - 1; i >= 0; i--) { 949 bh = journal->j_fc_wbuf[i]; 950 if (!bh) 951 break; 952 put_bh(bh); 953 journal->j_fc_wbuf[i] = NULL; 954 } 955 956 return 0; 957 } 958 EXPORT_SYMBOL(jbd2_fc_release_bufs); 959 960 /* 961 * Conversion of logical to physical block numbers for the journal 962 * 963 * On external journals the journal blocks are identity-mapped, so 964 * this is a no-op. If needed, we can use j_blk_offset - everything is 965 * ready. 966 */ 967 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr, 968 unsigned long long *retp) 969 { 970 int err = 0; 971 unsigned long long ret; 972 sector_t block = 0; 973 974 if (journal->j_inode) { 975 block = blocknr; 976 ret = bmap(journal->j_inode, &block); 977 978 if (ret || !block) { 979 printk(KERN_ALERT "%s: journal block not found " 980 "at offset %lu on %s\n", 981 __func__, blocknr, journal->j_devname); 982 err = -EIO; 983 jbd2_journal_abort(journal, err); 984 } else { 985 *retp = block; 986 } 987 988 } else { 989 *retp = blocknr; /* +journal->j_blk_offset */ 990 } 991 return err; 992 } 993 994 /* 995 * We play buffer_head aliasing tricks to write data/metadata blocks to 996 * the journal without copying their contents, but for journal 997 * descriptor blocks we do need to generate bona fide buffers. 998 * 999 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying 1000 * the buffer's contents they really should run flush_dcache_page(bh->b_page). 1001 * But we don't bother doing that, so there will be coherency problems with 1002 * mmaps of blockdevs which hold live JBD-controlled filesystems. 1003 */ 1004 struct buffer_head * 1005 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type) 1006 { 1007 journal_t *journal = transaction->t_journal; 1008 struct buffer_head *bh; 1009 unsigned long long blocknr; 1010 journal_header_t *header; 1011 int err; 1012 1013 err = jbd2_journal_next_log_block(journal, &blocknr); 1014 1015 if (err) 1016 return NULL; 1017 1018 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize); 1019 if (!bh) 1020 return NULL; 1021 atomic_dec(&transaction->t_outstanding_credits); 1022 lock_buffer(bh); 1023 memset(bh->b_data, 0, journal->j_blocksize); 1024 header = (journal_header_t *)bh->b_data; 1025 header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER); 1026 header->h_blocktype = cpu_to_be32(type); 1027 header->h_sequence = cpu_to_be32(transaction->t_tid); 1028 set_buffer_uptodate(bh); 1029 unlock_buffer(bh); 1030 BUFFER_TRACE(bh, "return this buffer"); 1031 return bh; 1032 } 1033 1034 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh) 1035 { 1036 struct jbd2_journal_block_tail *tail; 1037 __u32 csum; 1038 1039 if (!jbd2_journal_has_csum_v2or3(j)) 1040 return; 1041 1042 tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize - 1043 sizeof(struct jbd2_journal_block_tail)); 1044 tail->t_checksum = 0; 1045 csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize); 1046 tail->t_checksum = cpu_to_be32(csum); 1047 } 1048 1049 /* 1050 * Return tid of the oldest transaction in the journal and block in the journal 1051 * where the transaction starts. 1052 * 1053 * If the journal is now empty, return which will be the next transaction ID 1054 * we will write and where will that transaction start. 1055 * 1056 * The return value is 0 if journal tail cannot be pushed any further, 1 if 1057 * it can. 1058 */ 1059 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid, 1060 unsigned long *block) 1061 { 1062 transaction_t *transaction; 1063 int ret; 1064 1065 read_lock(&journal->j_state_lock); 1066 spin_lock(&journal->j_list_lock); 1067 transaction = journal->j_checkpoint_transactions; 1068 if (transaction) { 1069 *tid = transaction->t_tid; 1070 *block = transaction->t_log_start; 1071 } else if ((transaction = journal->j_committing_transaction) != NULL) { 1072 *tid = transaction->t_tid; 1073 *block = transaction->t_log_start; 1074 } else if ((transaction = journal->j_running_transaction) != NULL) { 1075 *tid = transaction->t_tid; 1076 *block = journal->j_head; 1077 } else { 1078 *tid = journal->j_transaction_sequence; 1079 *block = journal->j_head; 1080 } 1081 ret = tid_gt(*tid, journal->j_tail_sequence); 1082 spin_unlock(&journal->j_list_lock); 1083 read_unlock(&journal->j_state_lock); 1084 1085 return ret; 1086 } 1087 1088 /* 1089 * Update information in journal structure and in on disk journal superblock 1090 * about log tail. This function does not check whether information passed in 1091 * really pushes log tail further. It's responsibility of the caller to make 1092 * sure provided log tail information is valid (e.g. by holding 1093 * j_checkpoint_mutex all the time between computing log tail and calling this 1094 * function as is the case with jbd2_cleanup_journal_tail()). 1095 * 1096 * Requires j_checkpoint_mutex 1097 */ 1098 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block) 1099 { 1100 unsigned long freed; 1101 int ret; 1102 1103 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1104 1105 /* 1106 * We cannot afford for write to remain in drive's caches since as 1107 * soon as we update j_tail, next transaction can start reusing journal 1108 * space and if we lose sb update during power failure we'd replay 1109 * old transaction with possibly newly overwritten data. 1110 */ 1111 ret = jbd2_journal_update_sb_log_tail(journal, tid, block, 1112 REQ_SYNC | REQ_FUA); 1113 if (ret) 1114 goto out; 1115 1116 write_lock(&journal->j_state_lock); 1117 freed = block - journal->j_tail; 1118 if (block < journal->j_tail) 1119 freed += journal->j_last - journal->j_first; 1120 1121 trace_jbd2_update_log_tail(journal, tid, block, freed); 1122 jbd2_debug(1, 1123 "Cleaning journal tail from %u to %u (offset %lu), " 1124 "freeing %lu\n", 1125 journal->j_tail_sequence, tid, block, freed); 1126 1127 journal->j_free += freed; 1128 journal->j_tail_sequence = tid; 1129 journal->j_tail = block; 1130 write_unlock(&journal->j_state_lock); 1131 1132 out: 1133 return ret; 1134 } 1135 1136 /* 1137 * This is a variation of __jbd2_update_log_tail which checks for validity of 1138 * provided log tail and locks j_checkpoint_mutex. So it is safe against races 1139 * with other threads updating log tail. 1140 */ 1141 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block) 1142 { 1143 mutex_lock_io(&journal->j_checkpoint_mutex); 1144 if (tid_gt(tid, journal->j_tail_sequence)) 1145 __jbd2_update_log_tail(journal, tid, block); 1146 mutex_unlock(&journal->j_checkpoint_mutex); 1147 } 1148 1149 struct jbd2_stats_proc_session { 1150 journal_t *journal; 1151 struct transaction_stats_s *stats; 1152 int start; 1153 int max; 1154 }; 1155 1156 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos) 1157 { 1158 return *pos ? NULL : SEQ_START_TOKEN; 1159 } 1160 1161 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos) 1162 { 1163 (*pos)++; 1164 return NULL; 1165 } 1166 1167 static int jbd2_seq_info_show(struct seq_file *seq, void *v) 1168 { 1169 struct jbd2_stats_proc_session *s = seq->private; 1170 1171 if (v != SEQ_START_TOKEN) 1172 return 0; 1173 seq_printf(seq, "%lu transactions (%lu requested), " 1174 "each up to %u blocks\n", 1175 s->stats->ts_tid, s->stats->ts_requested, 1176 s->journal->j_max_transaction_buffers); 1177 if (s->stats->ts_tid == 0) 1178 return 0; 1179 seq_printf(seq, "average: \n %ums waiting for transaction\n", 1180 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid)); 1181 seq_printf(seq, " %ums request delay\n", 1182 (s->stats->ts_requested == 0) ? 0 : 1183 jiffies_to_msecs(s->stats->run.rs_request_delay / 1184 s->stats->ts_requested)); 1185 seq_printf(seq, " %ums running transaction\n", 1186 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid)); 1187 seq_printf(seq, " %ums transaction was being locked\n", 1188 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid)); 1189 seq_printf(seq, " %ums flushing data (in ordered mode)\n", 1190 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid)); 1191 seq_printf(seq, " %ums logging transaction\n", 1192 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid)); 1193 seq_printf(seq, " %lluus average transaction commit time\n", 1194 div_u64(s->journal->j_average_commit_time, 1000)); 1195 seq_printf(seq, " %lu handles per transaction\n", 1196 s->stats->run.rs_handle_count / s->stats->ts_tid); 1197 seq_printf(seq, " %lu blocks per transaction\n", 1198 s->stats->run.rs_blocks / s->stats->ts_tid); 1199 seq_printf(seq, " %lu logged blocks per transaction\n", 1200 s->stats->run.rs_blocks_logged / s->stats->ts_tid); 1201 return 0; 1202 } 1203 1204 static void jbd2_seq_info_stop(struct seq_file *seq, void *v) 1205 { 1206 } 1207 1208 static const struct seq_operations jbd2_seq_info_ops = { 1209 .start = jbd2_seq_info_start, 1210 .next = jbd2_seq_info_next, 1211 .stop = jbd2_seq_info_stop, 1212 .show = jbd2_seq_info_show, 1213 }; 1214 1215 static int jbd2_seq_info_open(struct inode *inode, struct file *file) 1216 { 1217 journal_t *journal = pde_data(inode); 1218 struct jbd2_stats_proc_session *s; 1219 int rc, size; 1220 1221 s = kmalloc(sizeof(*s), GFP_KERNEL); 1222 if (s == NULL) 1223 return -ENOMEM; 1224 size = sizeof(struct transaction_stats_s); 1225 s->stats = kmalloc(size, GFP_KERNEL); 1226 if (s->stats == NULL) { 1227 kfree(s); 1228 return -ENOMEM; 1229 } 1230 spin_lock(&journal->j_history_lock); 1231 memcpy(s->stats, &journal->j_stats, size); 1232 s->journal = journal; 1233 spin_unlock(&journal->j_history_lock); 1234 1235 rc = seq_open(file, &jbd2_seq_info_ops); 1236 if (rc == 0) { 1237 struct seq_file *m = file->private_data; 1238 m->private = s; 1239 } else { 1240 kfree(s->stats); 1241 kfree(s); 1242 } 1243 return rc; 1244 1245 } 1246 1247 static int jbd2_seq_info_release(struct inode *inode, struct file *file) 1248 { 1249 struct seq_file *seq = file->private_data; 1250 struct jbd2_stats_proc_session *s = seq->private; 1251 kfree(s->stats); 1252 kfree(s); 1253 return seq_release(inode, file); 1254 } 1255 1256 static const struct proc_ops jbd2_info_proc_ops = { 1257 .proc_open = jbd2_seq_info_open, 1258 .proc_read = seq_read, 1259 .proc_lseek = seq_lseek, 1260 .proc_release = jbd2_seq_info_release, 1261 }; 1262 1263 static struct proc_dir_entry *proc_jbd2_stats; 1264 1265 static void jbd2_stats_proc_init(journal_t *journal) 1266 { 1267 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats); 1268 if (journal->j_proc_entry) { 1269 proc_create_data("info", S_IRUGO, journal->j_proc_entry, 1270 &jbd2_info_proc_ops, journal); 1271 } 1272 } 1273 1274 static void jbd2_stats_proc_exit(journal_t *journal) 1275 { 1276 remove_proc_entry("info", journal->j_proc_entry); 1277 remove_proc_entry(journal->j_devname, proc_jbd2_stats); 1278 } 1279 1280 /* Minimum size of descriptor tag */ 1281 static int jbd2_min_tag_size(void) 1282 { 1283 /* 1284 * Tag with 32-bit block numbers does not use last four bytes of the 1285 * structure 1286 */ 1287 return sizeof(journal_block_tag_t) - 4; 1288 } 1289 1290 /** 1291 * jbd2_journal_shrink_scan() 1292 * @shrink: shrinker to work on 1293 * @sc: reclaim request to process 1294 * 1295 * Scan the checkpointed buffer on the checkpoint list and release the 1296 * journal_head. 1297 */ 1298 static unsigned long jbd2_journal_shrink_scan(struct shrinker *shrink, 1299 struct shrink_control *sc) 1300 { 1301 journal_t *journal = container_of(shrink, journal_t, j_shrinker); 1302 unsigned long nr_to_scan = sc->nr_to_scan; 1303 unsigned long nr_shrunk; 1304 unsigned long count; 1305 1306 count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count); 1307 trace_jbd2_shrink_scan_enter(journal, sc->nr_to_scan, count); 1308 1309 nr_shrunk = jbd2_journal_shrink_checkpoint_list(journal, &nr_to_scan); 1310 1311 count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count); 1312 trace_jbd2_shrink_scan_exit(journal, nr_to_scan, nr_shrunk, count); 1313 1314 return nr_shrunk; 1315 } 1316 1317 /** 1318 * jbd2_journal_shrink_count() 1319 * @shrink: shrinker to work on 1320 * @sc: reclaim request to process 1321 * 1322 * Count the number of checkpoint buffers on the checkpoint list. 1323 */ 1324 static unsigned long jbd2_journal_shrink_count(struct shrinker *shrink, 1325 struct shrink_control *sc) 1326 { 1327 journal_t *journal = container_of(shrink, journal_t, j_shrinker); 1328 unsigned long count; 1329 1330 count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count); 1331 trace_jbd2_shrink_count(journal, sc->nr_to_scan, count); 1332 1333 return count; 1334 } 1335 1336 /* 1337 * Management for journal control blocks: functions to create and 1338 * destroy journal_t structures, and to initialise and read existing 1339 * journal blocks from disk. */ 1340 1341 /* First: create and setup a journal_t object in memory. We initialise 1342 * very few fields yet: that has to wait until we have created the 1343 * journal structures from from scratch, or loaded them from disk. */ 1344 1345 static journal_t *journal_init_common(struct block_device *bdev, 1346 struct block_device *fs_dev, 1347 unsigned long long start, int len, int blocksize) 1348 { 1349 static struct lock_class_key jbd2_trans_commit_key; 1350 journal_t *journal; 1351 int err; 1352 struct buffer_head *bh; 1353 int n; 1354 1355 journal = kzalloc(sizeof(*journal), GFP_KERNEL); 1356 if (!journal) 1357 return NULL; 1358 1359 init_waitqueue_head(&journal->j_wait_transaction_locked); 1360 init_waitqueue_head(&journal->j_wait_done_commit); 1361 init_waitqueue_head(&journal->j_wait_commit); 1362 init_waitqueue_head(&journal->j_wait_updates); 1363 init_waitqueue_head(&journal->j_wait_reserved); 1364 init_waitqueue_head(&journal->j_fc_wait); 1365 mutex_init(&journal->j_abort_mutex); 1366 mutex_init(&journal->j_barrier); 1367 mutex_init(&journal->j_checkpoint_mutex); 1368 spin_lock_init(&journal->j_revoke_lock); 1369 spin_lock_init(&journal->j_list_lock); 1370 rwlock_init(&journal->j_state_lock); 1371 1372 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE); 1373 journal->j_min_batch_time = 0; 1374 journal->j_max_batch_time = 15000; /* 15ms */ 1375 atomic_set(&journal->j_reserved_credits, 0); 1376 1377 /* The journal is marked for error until we succeed with recovery! */ 1378 journal->j_flags = JBD2_ABORT; 1379 1380 /* Set up a default-sized revoke table for the new mount. */ 1381 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH); 1382 if (err) 1383 goto err_cleanup; 1384 1385 spin_lock_init(&journal->j_history_lock); 1386 1387 lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle", 1388 &jbd2_trans_commit_key, 0); 1389 1390 /* journal descriptor can store up to n blocks -bzzz */ 1391 journal->j_blocksize = blocksize; 1392 journal->j_dev = bdev; 1393 journal->j_fs_dev = fs_dev; 1394 journal->j_blk_offset = start; 1395 journal->j_total_len = len; 1396 /* We need enough buffers to write out full descriptor block. */ 1397 n = journal->j_blocksize / jbd2_min_tag_size(); 1398 journal->j_wbufsize = n; 1399 journal->j_fc_wbuf = NULL; 1400 journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *), 1401 GFP_KERNEL); 1402 if (!journal->j_wbuf) 1403 goto err_cleanup; 1404 1405 bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize); 1406 if (!bh) { 1407 pr_err("%s: Cannot get buffer for journal superblock\n", 1408 __func__); 1409 goto err_cleanup; 1410 } 1411 journal->j_sb_buffer = bh; 1412 journal->j_superblock = (journal_superblock_t *)bh->b_data; 1413 1414 journal->j_shrink_transaction = NULL; 1415 journal->j_shrinker.scan_objects = jbd2_journal_shrink_scan; 1416 journal->j_shrinker.count_objects = jbd2_journal_shrink_count; 1417 journal->j_shrinker.seeks = DEFAULT_SEEKS; 1418 journal->j_shrinker.batch = journal->j_max_transaction_buffers; 1419 1420 if (percpu_counter_init(&journal->j_checkpoint_jh_count, 0, GFP_KERNEL)) 1421 goto err_cleanup; 1422 1423 if (register_shrinker(&journal->j_shrinker, "jbd2-journal:(%u:%u)", 1424 MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev))) { 1425 percpu_counter_destroy(&journal->j_checkpoint_jh_count); 1426 goto err_cleanup; 1427 } 1428 return journal; 1429 1430 err_cleanup: 1431 brelse(journal->j_sb_buffer); 1432 kfree(journal->j_wbuf); 1433 jbd2_journal_destroy_revoke(journal); 1434 kfree(journal); 1435 return NULL; 1436 } 1437 1438 /* jbd2_journal_init_dev and jbd2_journal_init_inode: 1439 * 1440 * Create a journal structure assigned some fixed set of disk blocks to 1441 * the journal. We don't actually touch those disk blocks yet, but we 1442 * need to set up all of the mapping information to tell the journaling 1443 * system where the journal blocks are. 1444 * 1445 */ 1446 1447 /** 1448 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure 1449 * @bdev: Block device on which to create the journal 1450 * @fs_dev: Device which hold journalled filesystem for this journal. 1451 * @start: Block nr Start of journal. 1452 * @len: Length of the journal in blocks. 1453 * @blocksize: blocksize of journalling device 1454 * 1455 * Returns: a newly created journal_t * 1456 * 1457 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous 1458 * range of blocks on an arbitrary block device. 1459 * 1460 */ 1461 journal_t *jbd2_journal_init_dev(struct block_device *bdev, 1462 struct block_device *fs_dev, 1463 unsigned long long start, int len, int blocksize) 1464 { 1465 journal_t *journal; 1466 1467 journal = journal_init_common(bdev, fs_dev, start, len, blocksize); 1468 if (!journal) 1469 return NULL; 1470 1471 snprintf(journal->j_devname, sizeof(journal->j_devname), 1472 "%pg", journal->j_dev); 1473 strreplace(journal->j_devname, '/', '!'); 1474 jbd2_stats_proc_init(journal); 1475 1476 return journal; 1477 } 1478 1479 /** 1480 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode. 1481 * @inode: An inode to create the journal in 1482 * 1483 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as 1484 * the journal. The inode must exist already, must support bmap() and 1485 * must have all data blocks preallocated. 1486 */ 1487 journal_t *jbd2_journal_init_inode(struct inode *inode) 1488 { 1489 journal_t *journal; 1490 sector_t blocknr; 1491 char *p; 1492 int err = 0; 1493 1494 blocknr = 0; 1495 err = bmap(inode, &blocknr); 1496 1497 if (err || !blocknr) { 1498 pr_err("%s: Cannot locate journal superblock\n", 1499 __func__); 1500 return NULL; 1501 } 1502 1503 jbd2_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n", 1504 inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size, 1505 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize); 1506 1507 journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev, 1508 blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits, 1509 inode->i_sb->s_blocksize); 1510 if (!journal) 1511 return NULL; 1512 1513 journal->j_inode = inode; 1514 snprintf(journal->j_devname, sizeof(journal->j_devname), 1515 "%pg", journal->j_dev); 1516 p = strreplace(journal->j_devname, '/', '!'); 1517 sprintf(p, "-%lu", journal->j_inode->i_ino); 1518 jbd2_stats_proc_init(journal); 1519 1520 return journal; 1521 } 1522 1523 /* 1524 * If the journal init or create aborts, we need to mark the journal 1525 * superblock as being NULL to prevent the journal destroy from writing 1526 * back a bogus superblock. 1527 */ 1528 static void journal_fail_superblock(journal_t *journal) 1529 { 1530 struct buffer_head *bh = journal->j_sb_buffer; 1531 brelse(bh); 1532 journal->j_sb_buffer = NULL; 1533 } 1534 1535 /* 1536 * Given a journal_t structure, initialise the various fields for 1537 * startup of a new journaling session. We use this both when creating 1538 * a journal, and after recovering an old journal to reset it for 1539 * subsequent use. 1540 */ 1541 1542 static int journal_reset(journal_t *journal) 1543 { 1544 journal_superblock_t *sb = journal->j_superblock; 1545 unsigned long long first, last; 1546 1547 first = be32_to_cpu(sb->s_first); 1548 last = be32_to_cpu(sb->s_maxlen); 1549 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) { 1550 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n", 1551 first, last); 1552 journal_fail_superblock(journal); 1553 return -EINVAL; 1554 } 1555 1556 journal->j_first = first; 1557 journal->j_last = last; 1558 1559 journal->j_head = journal->j_first; 1560 journal->j_tail = journal->j_first; 1561 journal->j_free = journal->j_last - journal->j_first; 1562 1563 journal->j_tail_sequence = journal->j_transaction_sequence; 1564 journal->j_commit_sequence = journal->j_transaction_sequence - 1; 1565 journal->j_commit_request = journal->j_commit_sequence; 1566 1567 journal->j_max_transaction_buffers = jbd2_journal_get_max_txn_bufs(journal); 1568 1569 /* 1570 * Now that journal recovery is done, turn fast commits off here. This 1571 * way, if fast commit was enabled before the crash but if now FS has 1572 * disabled it, we don't enable fast commits. 1573 */ 1574 jbd2_clear_feature_fast_commit(journal); 1575 1576 /* 1577 * As a special case, if the on-disk copy is already marked as needing 1578 * no recovery (s_start == 0), then we can safely defer the superblock 1579 * update until the next commit by setting JBD2_FLUSHED. This avoids 1580 * attempting a write to a potential-readonly device. 1581 */ 1582 if (sb->s_start == 0) { 1583 jbd2_debug(1, "JBD2: Skipping superblock update on recovered sb " 1584 "(start %ld, seq %u, errno %d)\n", 1585 journal->j_tail, journal->j_tail_sequence, 1586 journal->j_errno); 1587 journal->j_flags |= JBD2_FLUSHED; 1588 } else { 1589 /* Lock here to make assertions happy... */ 1590 mutex_lock_io(&journal->j_checkpoint_mutex); 1591 /* 1592 * Update log tail information. We use REQ_FUA since new 1593 * transaction will start reusing journal space and so we 1594 * must make sure information about current log tail is on 1595 * disk before that. 1596 */ 1597 jbd2_journal_update_sb_log_tail(journal, 1598 journal->j_tail_sequence, 1599 journal->j_tail, 1600 REQ_SYNC | REQ_FUA); 1601 mutex_unlock(&journal->j_checkpoint_mutex); 1602 } 1603 return jbd2_journal_start_thread(journal); 1604 } 1605 1606 /* 1607 * This function expects that the caller will have locked the journal 1608 * buffer head, and will return with it unlocked 1609 */ 1610 static int jbd2_write_superblock(journal_t *journal, blk_opf_t write_flags) 1611 { 1612 struct buffer_head *bh = journal->j_sb_buffer; 1613 journal_superblock_t *sb = journal->j_superblock; 1614 int ret = 0; 1615 1616 /* Buffer got discarded which means block device got invalidated */ 1617 if (!buffer_mapped(bh)) { 1618 unlock_buffer(bh); 1619 return -EIO; 1620 } 1621 1622 trace_jbd2_write_superblock(journal, write_flags); 1623 if (!(journal->j_flags & JBD2_BARRIER)) 1624 write_flags &= ~(REQ_FUA | REQ_PREFLUSH); 1625 if (buffer_write_io_error(bh)) { 1626 /* 1627 * Oh, dear. A previous attempt to write the journal 1628 * superblock failed. This could happen because the 1629 * USB device was yanked out. Or it could happen to 1630 * be a transient write error and maybe the block will 1631 * be remapped. Nothing we can do but to retry the 1632 * write and hope for the best. 1633 */ 1634 printk(KERN_ERR "JBD2: previous I/O error detected " 1635 "for journal superblock update for %s.\n", 1636 journal->j_devname); 1637 clear_buffer_write_io_error(bh); 1638 set_buffer_uptodate(bh); 1639 } 1640 if (jbd2_journal_has_csum_v2or3(journal)) 1641 sb->s_checksum = jbd2_superblock_csum(journal, sb); 1642 get_bh(bh); 1643 bh->b_end_io = end_buffer_write_sync; 1644 submit_bh(REQ_OP_WRITE | write_flags, bh); 1645 wait_on_buffer(bh); 1646 if (buffer_write_io_error(bh)) { 1647 clear_buffer_write_io_error(bh); 1648 set_buffer_uptodate(bh); 1649 ret = -EIO; 1650 } 1651 if (ret) { 1652 printk(KERN_ERR "JBD2: I/O error when updating journal superblock for %s.\n", 1653 journal->j_devname); 1654 if (!is_journal_aborted(journal)) 1655 jbd2_journal_abort(journal, ret); 1656 } 1657 1658 return ret; 1659 } 1660 1661 /** 1662 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk. 1663 * @journal: The journal to update. 1664 * @tail_tid: TID of the new transaction at the tail of the log 1665 * @tail_block: The first block of the transaction at the tail of the log 1666 * @write_flags: Flags for the journal sb write operation 1667 * 1668 * Update a journal's superblock information about log tail and write it to 1669 * disk, waiting for the IO to complete. 1670 */ 1671 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid, 1672 unsigned long tail_block, 1673 blk_opf_t write_flags) 1674 { 1675 journal_superblock_t *sb = journal->j_superblock; 1676 int ret; 1677 1678 if (is_journal_aborted(journal)) 1679 return -EIO; 1680 if (test_bit(JBD2_CHECKPOINT_IO_ERROR, &journal->j_atomic_flags)) { 1681 jbd2_journal_abort(journal, -EIO); 1682 return -EIO; 1683 } 1684 1685 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1686 jbd2_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n", 1687 tail_block, tail_tid); 1688 1689 lock_buffer(journal->j_sb_buffer); 1690 sb->s_sequence = cpu_to_be32(tail_tid); 1691 sb->s_start = cpu_to_be32(tail_block); 1692 1693 ret = jbd2_write_superblock(journal, write_flags); 1694 if (ret) 1695 goto out; 1696 1697 /* Log is no longer empty */ 1698 write_lock(&journal->j_state_lock); 1699 WARN_ON(!sb->s_sequence); 1700 journal->j_flags &= ~JBD2_FLUSHED; 1701 write_unlock(&journal->j_state_lock); 1702 1703 out: 1704 return ret; 1705 } 1706 1707 /** 1708 * jbd2_mark_journal_empty() - Mark on disk journal as empty. 1709 * @journal: The journal to update. 1710 * @write_flags: Flags for the journal sb write operation 1711 * 1712 * Update a journal's dynamic superblock fields to show that journal is empty. 1713 * Write updated superblock to disk waiting for IO to complete. 1714 */ 1715 static void jbd2_mark_journal_empty(journal_t *journal, blk_opf_t write_flags) 1716 { 1717 journal_superblock_t *sb = journal->j_superblock; 1718 bool had_fast_commit = false; 1719 1720 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1721 lock_buffer(journal->j_sb_buffer); 1722 if (sb->s_start == 0) { /* Is it already empty? */ 1723 unlock_buffer(journal->j_sb_buffer); 1724 return; 1725 } 1726 1727 jbd2_debug(1, "JBD2: Marking journal as empty (seq %u)\n", 1728 journal->j_tail_sequence); 1729 1730 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence); 1731 sb->s_start = cpu_to_be32(0); 1732 if (jbd2_has_feature_fast_commit(journal)) { 1733 /* 1734 * When journal is clean, no need to commit fast commit flag and 1735 * make file system incompatible with older kernels. 1736 */ 1737 jbd2_clear_feature_fast_commit(journal); 1738 had_fast_commit = true; 1739 } 1740 1741 jbd2_write_superblock(journal, write_flags); 1742 1743 if (had_fast_commit) 1744 jbd2_set_feature_fast_commit(journal); 1745 1746 /* Log is no longer empty */ 1747 write_lock(&journal->j_state_lock); 1748 journal->j_flags |= JBD2_FLUSHED; 1749 write_unlock(&journal->j_state_lock); 1750 } 1751 1752 /** 1753 * __jbd2_journal_erase() - Discard or zeroout journal blocks (excluding superblock) 1754 * @journal: The journal to erase. 1755 * @flags: A discard/zeroout request is sent for each physically contigous 1756 * region of the journal. Either JBD2_JOURNAL_FLUSH_DISCARD or 1757 * JBD2_JOURNAL_FLUSH_ZEROOUT must be set to determine which operation 1758 * to perform. 1759 * 1760 * Note: JBD2_JOURNAL_FLUSH_ZEROOUT attempts to use hardware offload. Zeroes 1761 * will be explicitly written if no hardware offload is available, see 1762 * blkdev_issue_zeroout for more details. 1763 */ 1764 static int __jbd2_journal_erase(journal_t *journal, unsigned int flags) 1765 { 1766 int err = 0; 1767 unsigned long block, log_offset; /* logical */ 1768 unsigned long long phys_block, block_start, block_stop; /* physical */ 1769 loff_t byte_start, byte_stop, byte_count; 1770 1771 /* flags must be set to either discard or zeroout */ 1772 if ((flags & ~JBD2_JOURNAL_FLUSH_VALID) || !flags || 1773 ((flags & JBD2_JOURNAL_FLUSH_DISCARD) && 1774 (flags & JBD2_JOURNAL_FLUSH_ZEROOUT))) 1775 return -EINVAL; 1776 1777 if ((flags & JBD2_JOURNAL_FLUSH_DISCARD) && 1778 !bdev_max_discard_sectors(journal->j_dev)) 1779 return -EOPNOTSUPP; 1780 1781 /* 1782 * lookup block mapping and issue discard/zeroout for each 1783 * contiguous region 1784 */ 1785 log_offset = be32_to_cpu(journal->j_superblock->s_first); 1786 block_start = ~0ULL; 1787 for (block = log_offset; block < journal->j_total_len; block++) { 1788 err = jbd2_journal_bmap(journal, block, &phys_block); 1789 if (err) { 1790 pr_err("JBD2: bad block at offset %lu", block); 1791 return err; 1792 } 1793 1794 if (block_start == ~0ULL) { 1795 block_start = phys_block; 1796 block_stop = block_start - 1; 1797 } 1798 1799 /* 1800 * last block not contiguous with current block, 1801 * process last contiguous region and return to this block on 1802 * next loop 1803 */ 1804 if (phys_block != block_stop + 1) { 1805 block--; 1806 } else { 1807 block_stop++; 1808 /* 1809 * if this isn't the last block of journal, 1810 * no need to process now because next block may also 1811 * be part of this contiguous region 1812 */ 1813 if (block != journal->j_total_len - 1) 1814 continue; 1815 } 1816 1817 /* 1818 * end of contiguous region or this is last block of journal, 1819 * take care of the region 1820 */ 1821 byte_start = block_start * journal->j_blocksize; 1822 byte_stop = block_stop * journal->j_blocksize; 1823 byte_count = (block_stop - block_start + 1) * 1824 journal->j_blocksize; 1825 1826 truncate_inode_pages_range(journal->j_dev->bd_inode->i_mapping, 1827 byte_start, byte_stop); 1828 1829 if (flags & JBD2_JOURNAL_FLUSH_DISCARD) { 1830 err = blkdev_issue_discard(journal->j_dev, 1831 byte_start >> SECTOR_SHIFT, 1832 byte_count >> SECTOR_SHIFT, 1833 GFP_NOFS); 1834 } else if (flags & JBD2_JOURNAL_FLUSH_ZEROOUT) { 1835 err = blkdev_issue_zeroout(journal->j_dev, 1836 byte_start >> SECTOR_SHIFT, 1837 byte_count >> SECTOR_SHIFT, 1838 GFP_NOFS, 0); 1839 } 1840 1841 if (unlikely(err != 0)) { 1842 pr_err("JBD2: (error %d) unable to wipe journal at physical blocks %llu - %llu", 1843 err, block_start, block_stop); 1844 return err; 1845 } 1846 1847 /* reset start and stop after processing a region */ 1848 block_start = ~0ULL; 1849 } 1850 1851 return blkdev_issue_flush(journal->j_dev); 1852 } 1853 1854 /** 1855 * jbd2_journal_update_sb_errno() - Update error in the journal. 1856 * @journal: The journal to update. 1857 * 1858 * Update a journal's errno. Write updated superblock to disk waiting for IO 1859 * to complete. 1860 */ 1861 void jbd2_journal_update_sb_errno(journal_t *journal) 1862 { 1863 journal_superblock_t *sb = journal->j_superblock; 1864 int errcode; 1865 1866 lock_buffer(journal->j_sb_buffer); 1867 errcode = journal->j_errno; 1868 if (errcode == -ESHUTDOWN) 1869 errcode = 0; 1870 jbd2_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode); 1871 sb->s_errno = cpu_to_be32(errcode); 1872 1873 jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA); 1874 } 1875 EXPORT_SYMBOL(jbd2_journal_update_sb_errno); 1876 1877 static int journal_revoke_records_per_block(journal_t *journal) 1878 { 1879 int record_size; 1880 int space = journal->j_blocksize - sizeof(jbd2_journal_revoke_header_t); 1881 1882 if (jbd2_has_feature_64bit(journal)) 1883 record_size = 8; 1884 else 1885 record_size = 4; 1886 1887 if (jbd2_journal_has_csum_v2or3(journal)) 1888 space -= sizeof(struct jbd2_journal_block_tail); 1889 return space / record_size; 1890 } 1891 1892 /* 1893 * Read the superblock for a given journal, performing initial 1894 * validation of the format. 1895 */ 1896 static int journal_get_superblock(journal_t *journal) 1897 { 1898 struct buffer_head *bh; 1899 journal_superblock_t *sb; 1900 int err; 1901 1902 bh = journal->j_sb_buffer; 1903 1904 J_ASSERT(bh != NULL); 1905 err = bh_read(bh, 0); 1906 if (err < 0) { 1907 printk(KERN_ERR 1908 "JBD2: IO error reading journal superblock\n"); 1909 goto out; 1910 } 1911 1912 if (buffer_verified(bh)) 1913 return 0; 1914 1915 sb = journal->j_superblock; 1916 1917 err = -EINVAL; 1918 1919 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) || 1920 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) { 1921 printk(KERN_WARNING "JBD2: no valid journal superblock found\n"); 1922 goto out; 1923 } 1924 1925 switch(be32_to_cpu(sb->s_header.h_blocktype)) { 1926 case JBD2_SUPERBLOCK_V1: 1927 journal->j_format_version = 1; 1928 break; 1929 case JBD2_SUPERBLOCK_V2: 1930 journal->j_format_version = 2; 1931 break; 1932 default: 1933 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n"); 1934 goto out; 1935 } 1936 1937 if (be32_to_cpu(sb->s_maxlen) < journal->j_total_len) 1938 journal->j_total_len = be32_to_cpu(sb->s_maxlen); 1939 else if (be32_to_cpu(sb->s_maxlen) > journal->j_total_len) { 1940 printk(KERN_WARNING "JBD2: journal file too short\n"); 1941 goto out; 1942 } 1943 1944 if (be32_to_cpu(sb->s_first) == 0 || 1945 be32_to_cpu(sb->s_first) >= journal->j_total_len) { 1946 printk(KERN_WARNING 1947 "JBD2: Invalid start block of journal: %u\n", 1948 be32_to_cpu(sb->s_first)); 1949 goto out; 1950 } 1951 1952 if (jbd2_has_feature_csum2(journal) && 1953 jbd2_has_feature_csum3(journal)) { 1954 /* Can't have checksum v2 and v3 at the same time! */ 1955 printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 " 1956 "at the same time!\n"); 1957 goto out; 1958 } 1959 1960 if (jbd2_journal_has_csum_v2or3_feature(journal) && 1961 jbd2_has_feature_checksum(journal)) { 1962 /* Can't have checksum v1 and v2 on at the same time! */ 1963 printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 " 1964 "at the same time!\n"); 1965 goto out; 1966 } 1967 1968 if (!jbd2_verify_csum_type(journal, sb)) { 1969 printk(KERN_ERR "JBD2: Unknown checksum type\n"); 1970 goto out; 1971 } 1972 1973 /* Load the checksum driver */ 1974 if (jbd2_journal_has_csum_v2or3_feature(journal)) { 1975 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 1976 if (IS_ERR(journal->j_chksum_driver)) { 1977 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n"); 1978 err = PTR_ERR(journal->j_chksum_driver); 1979 journal->j_chksum_driver = NULL; 1980 goto out; 1981 } 1982 } 1983 1984 if (jbd2_journal_has_csum_v2or3(journal)) { 1985 /* Check superblock checksum */ 1986 if (sb->s_checksum != jbd2_superblock_csum(journal, sb)) { 1987 printk(KERN_ERR "JBD2: journal checksum error\n"); 1988 err = -EFSBADCRC; 1989 goto out; 1990 } 1991 1992 /* Precompute checksum seed for all metadata */ 1993 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid, 1994 sizeof(sb->s_uuid)); 1995 } 1996 1997 journal->j_revoke_records_per_block = 1998 journal_revoke_records_per_block(journal); 1999 set_buffer_verified(bh); 2000 2001 return 0; 2002 2003 out: 2004 journal_fail_superblock(journal); 2005 return err; 2006 } 2007 2008 /* 2009 * Load the on-disk journal superblock and read the key fields into the 2010 * journal_t. 2011 */ 2012 2013 static int load_superblock(journal_t *journal) 2014 { 2015 int err; 2016 journal_superblock_t *sb; 2017 int num_fc_blocks; 2018 2019 err = journal_get_superblock(journal); 2020 if (err) 2021 return err; 2022 2023 sb = journal->j_superblock; 2024 2025 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence); 2026 journal->j_tail = be32_to_cpu(sb->s_start); 2027 journal->j_first = be32_to_cpu(sb->s_first); 2028 journal->j_errno = be32_to_cpu(sb->s_errno); 2029 journal->j_last = be32_to_cpu(sb->s_maxlen); 2030 2031 if (jbd2_has_feature_fast_commit(journal)) { 2032 journal->j_fc_last = be32_to_cpu(sb->s_maxlen); 2033 num_fc_blocks = jbd2_journal_get_num_fc_blks(sb); 2034 if (journal->j_last - num_fc_blocks >= JBD2_MIN_JOURNAL_BLOCKS) 2035 journal->j_last = journal->j_fc_last - num_fc_blocks; 2036 journal->j_fc_first = journal->j_last + 1; 2037 journal->j_fc_off = 0; 2038 } 2039 2040 return 0; 2041 } 2042 2043 2044 /** 2045 * jbd2_journal_load() - Read journal from disk. 2046 * @journal: Journal to act on. 2047 * 2048 * Given a journal_t structure which tells us which disk blocks contain 2049 * a journal, read the journal from disk to initialise the in-memory 2050 * structures. 2051 */ 2052 int jbd2_journal_load(journal_t *journal) 2053 { 2054 int err; 2055 journal_superblock_t *sb; 2056 2057 err = load_superblock(journal); 2058 if (err) 2059 return err; 2060 2061 sb = journal->j_superblock; 2062 /* If this is a V2 superblock, then we have to check the 2063 * features flags on it. */ 2064 2065 if (journal->j_format_version >= 2) { 2066 if ((sb->s_feature_ro_compat & 2067 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) || 2068 (sb->s_feature_incompat & 2069 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) { 2070 printk(KERN_WARNING 2071 "JBD2: Unrecognised features on journal\n"); 2072 return -EINVAL; 2073 } 2074 } 2075 2076 /* 2077 * Create a slab for this blocksize 2078 */ 2079 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize)); 2080 if (err) 2081 return err; 2082 2083 /* Let the recovery code check whether it needs to recover any 2084 * data from the journal. */ 2085 if (jbd2_journal_recover(journal)) 2086 goto recovery_error; 2087 2088 if (journal->j_failed_commit) { 2089 printk(KERN_ERR "JBD2: journal transaction %u on %s " 2090 "is corrupt.\n", journal->j_failed_commit, 2091 journal->j_devname); 2092 return -EFSCORRUPTED; 2093 } 2094 /* 2095 * clear JBD2_ABORT flag initialized in journal_init_common 2096 * here to update log tail information with the newest seq. 2097 */ 2098 journal->j_flags &= ~JBD2_ABORT; 2099 2100 /* OK, we've finished with the dynamic journal bits: 2101 * reinitialise the dynamic contents of the superblock in memory 2102 * and reset them on disk. */ 2103 if (journal_reset(journal)) 2104 goto recovery_error; 2105 2106 journal->j_flags |= JBD2_LOADED; 2107 return 0; 2108 2109 recovery_error: 2110 printk(KERN_WARNING "JBD2: recovery failed\n"); 2111 return -EIO; 2112 } 2113 2114 /** 2115 * jbd2_journal_destroy() - Release a journal_t structure. 2116 * @journal: Journal to act on. 2117 * 2118 * Release a journal_t structure once it is no longer in use by the 2119 * journaled object. 2120 * Return <0 if we couldn't clean up the journal. 2121 */ 2122 int jbd2_journal_destroy(journal_t *journal) 2123 { 2124 int err = 0; 2125 2126 /* Wait for the commit thread to wake up and die. */ 2127 journal_kill_thread(journal); 2128 2129 /* Force a final log commit */ 2130 if (journal->j_running_transaction) 2131 jbd2_journal_commit_transaction(journal); 2132 2133 /* Force any old transactions to disk */ 2134 2135 /* Totally anal locking here... */ 2136 spin_lock(&journal->j_list_lock); 2137 while (journal->j_checkpoint_transactions != NULL) { 2138 spin_unlock(&journal->j_list_lock); 2139 mutex_lock_io(&journal->j_checkpoint_mutex); 2140 err = jbd2_log_do_checkpoint(journal); 2141 mutex_unlock(&journal->j_checkpoint_mutex); 2142 /* 2143 * If checkpointing failed, just free the buffers to avoid 2144 * looping forever 2145 */ 2146 if (err) { 2147 jbd2_journal_destroy_checkpoint(journal); 2148 spin_lock(&journal->j_list_lock); 2149 break; 2150 } 2151 spin_lock(&journal->j_list_lock); 2152 } 2153 2154 J_ASSERT(journal->j_running_transaction == NULL); 2155 J_ASSERT(journal->j_committing_transaction == NULL); 2156 J_ASSERT(journal->j_checkpoint_transactions == NULL); 2157 spin_unlock(&journal->j_list_lock); 2158 2159 /* 2160 * OK, all checkpoint transactions have been checked, now check the 2161 * write out io error flag and abort the journal if some buffer failed 2162 * to write back to the original location, otherwise the filesystem 2163 * may become inconsistent. 2164 */ 2165 if (!is_journal_aborted(journal) && 2166 test_bit(JBD2_CHECKPOINT_IO_ERROR, &journal->j_atomic_flags)) 2167 jbd2_journal_abort(journal, -EIO); 2168 2169 if (journal->j_sb_buffer) { 2170 if (!is_journal_aborted(journal)) { 2171 mutex_lock_io(&journal->j_checkpoint_mutex); 2172 2173 write_lock(&journal->j_state_lock); 2174 journal->j_tail_sequence = 2175 ++journal->j_transaction_sequence; 2176 write_unlock(&journal->j_state_lock); 2177 2178 jbd2_mark_journal_empty(journal, 2179 REQ_SYNC | REQ_PREFLUSH | REQ_FUA); 2180 mutex_unlock(&journal->j_checkpoint_mutex); 2181 } else 2182 err = -EIO; 2183 brelse(journal->j_sb_buffer); 2184 } 2185 2186 if (journal->j_shrinker.flags & SHRINKER_REGISTERED) { 2187 percpu_counter_destroy(&journal->j_checkpoint_jh_count); 2188 unregister_shrinker(&journal->j_shrinker); 2189 } 2190 if (journal->j_proc_entry) 2191 jbd2_stats_proc_exit(journal); 2192 iput(journal->j_inode); 2193 if (journal->j_revoke) 2194 jbd2_journal_destroy_revoke(journal); 2195 if (journal->j_chksum_driver) 2196 crypto_free_shash(journal->j_chksum_driver); 2197 kfree(journal->j_fc_wbuf); 2198 kfree(journal->j_wbuf); 2199 kfree(journal); 2200 2201 return err; 2202 } 2203 2204 2205 /** 2206 * jbd2_journal_check_used_features() - Check if features specified are used. 2207 * @journal: Journal to check. 2208 * @compat: bitmask of compatible features 2209 * @ro: bitmask of features that force read-only mount 2210 * @incompat: bitmask of incompatible features 2211 * 2212 * Check whether the journal uses all of a given set of 2213 * features. Return true (non-zero) if it does. 2214 **/ 2215 2216 int jbd2_journal_check_used_features(journal_t *journal, unsigned long compat, 2217 unsigned long ro, unsigned long incompat) 2218 { 2219 journal_superblock_t *sb; 2220 2221 if (!compat && !ro && !incompat) 2222 return 1; 2223 /* Load journal superblock if it is not loaded yet. */ 2224 if (journal->j_format_version == 0 && 2225 journal_get_superblock(journal) != 0) 2226 return 0; 2227 if (journal->j_format_version == 1) 2228 return 0; 2229 2230 sb = journal->j_superblock; 2231 2232 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) && 2233 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) && 2234 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat)) 2235 return 1; 2236 2237 return 0; 2238 } 2239 2240 /** 2241 * jbd2_journal_check_available_features() - Check feature set in journalling layer 2242 * @journal: Journal to check. 2243 * @compat: bitmask of compatible features 2244 * @ro: bitmask of features that force read-only mount 2245 * @incompat: bitmask of incompatible features 2246 * 2247 * Check whether the journaling code supports the use of 2248 * all of a given set of features on this journal. Return true 2249 * (non-zero) if it can. */ 2250 2251 int jbd2_journal_check_available_features(journal_t *journal, unsigned long compat, 2252 unsigned long ro, unsigned long incompat) 2253 { 2254 if (!compat && !ro && !incompat) 2255 return 1; 2256 2257 /* We can support any known requested features iff the 2258 * superblock is in version 2. Otherwise we fail to support any 2259 * extended sb features. */ 2260 2261 if (journal->j_format_version != 2) 2262 return 0; 2263 2264 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat && 2265 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro && 2266 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat) 2267 return 1; 2268 2269 return 0; 2270 } 2271 2272 static int 2273 jbd2_journal_initialize_fast_commit(journal_t *journal) 2274 { 2275 journal_superblock_t *sb = journal->j_superblock; 2276 unsigned long long num_fc_blks; 2277 2278 num_fc_blks = jbd2_journal_get_num_fc_blks(sb); 2279 if (journal->j_last - num_fc_blks < JBD2_MIN_JOURNAL_BLOCKS) 2280 return -ENOSPC; 2281 2282 /* Are we called twice? */ 2283 WARN_ON(journal->j_fc_wbuf != NULL); 2284 journal->j_fc_wbuf = kmalloc_array(num_fc_blks, 2285 sizeof(struct buffer_head *), GFP_KERNEL); 2286 if (!journal->j_fc_wbuf) 2287 return -ENOMEM; 2288 2289 journal->j_fc_wbufsize = num_fc_blks; 2290 journal->j_fc_last = journal->j_last; 2291 journal->j_last = journal->j_fc_last - num_fc_blks; 2292 journal->j_fc_first = journal->j_last + 1; 2293 journal->j_fc_off = 0; 2294 journal->j_free = journal->j_last - journal->j_first; 2295 journal->j_max_transaction_buffers = 2296 jbd2_journal_get_max_txn_bufs(journal); 2297 2298 return 0; 2299 } 2300 2301 /** 2302 * jbd2_journal_set_features() - Mark a given journal feature in the superblock 2303 * @journal: Journal to act on. 2304 * @compat: bitmask of compatible features 2305 * @ro: bitmask of features that force read-only mount 2306 * @incompat: bitmask of incompatible features 2307 * 2308 * Mark a given journal feature as present on the 2309 * superblock. Returns true if the requested features could be set. 2310 * 2311 */ 2312 2313 int jbd2_journal_set_features(journal_t *journal, unsigned long compat, 2314 unsigned long ro, unsigned long incompat) 2315 { 2316 #define INCOMPAT_FEATURE_ON(f) \ 2317 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f))) 2318 #define COMPAT_FEATURE_ON(f) \ 2319 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f))) 2320 journal_superblock_t *sb; 2321 2322 if (jbd2_journal_check_used_features(journal, compat, ro, incompat)) 2323 return 1; 2324 2325 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat)) 2326 return 0; 2327 2328 /* If enabling v2 checksums, turn on v3 instead */ 2329 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) { 2330 incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2; 2331 incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3; 2332 } 2333 2334 /* Asking for checksumming v3 and v1? Only give them v3. */ 2335 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 && 2336 compat & JBD2_FEATURE_COMPAT_CHECKSUM) 2337 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM; 2338 2339 jbd2_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n", 2340 compat, ro, incompat); 2341 2342 sb = journal->j_superblock; 2343 2344 if (incompat & JBD2_FEATURE_INCOMPAT_FAST_COMMIT) { 2345 if (jbd2_journal_initialize_fast_commit(journal)) { 2346 pr_err("JBD2: Cannot enable fast commits.\n"); 2347 return 0; 2348 } 2349 } 2350 2351 /* Load the checksum driver if necessary */ 2352 if ((journal->j_chksum_driver == NULL) && 2353 INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) { 2354 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 2355 if (IS_ERR(journal->j_chksum_driver)) { 2356 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n"); 2357 journal->j_chksum_driver = NULL; 2358 return 0; 2359 } 2360 /* Precompute checksum seed for all metadata */ 2361 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid, 2362 sizeof(sb->s_uuid)); 2363 } 2364 2365 lock_buffer(journal->j_sb_buffer); 2366 2367 /* If enabling v3 checksums, update superblock */ 2368 if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) { 2369 sb->s_checksum_type = JBD2_CRC32C_CHKSUM; 2370 sb->s_feature_compat &= 2371 ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM); 2372 } 2373 2374 /* If enabling v1 checksums, downgrade superblock */ 2375 if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM)) 2376 sb->s_feature_incompat &= 2377 ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 | 2378 JBD2_FEATURE_INCOMPAT_CSUM_V3); 2379 2380 sb->s_feature_compat |= cpu_to_be32(compat); 2381 sb->s_feature_ro_compat |= cpu_to_be32(ro); 2382 sb->s_feature_incompat |= cpu_to_be32(incompat); 2383 unlock_buffer(journal->j_sb_buffer); 2384 journal->j_revoke_records_per_block = 2385 journal_revoke_records_per_block(journal); 2386 2387 return 1; 2388 #undef COMPAT_FEATURE_ON 2389 #undef INCOMPAT_FEATURE_ON 2390 } 2391 2392 /* 2393 * jbd2_journal_clear_features() - Clear a given journal feature in the 2394 * superblock 2395 * @journal: Journal to act on. 2396 * @compat: bitmask of compatible features 2397 * @ro: bitmask of features that force read-only mount 2398 * @incompat: bitmask of incompatible features 2399 * 2400 * Clear a given journal feature as present on the 2401 * superblock. 2402 */ 2403 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat, 2404 unsigned long ro, unsigned long incompat) 2405 { 2406 journal_superblock_t *sb; 2407 2408 jbd2_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n", 2409 compat, ro, incompat); 2410 2411 sb = journal->j_superblock; 2412 2413 sb->s_feature_compat &= ~cpu_to_be32(compat); 2414 sb->s_feature_ro_compat &= ~cpu_to_be32(ro); 2415 sb->s_feature_incompat &= ~cpu_to_be32(incompat); 2416 journal->j_revoke_records_per_block = 2417 journal_revoke_records_per_block(journal); 2418 } 2419 EXPORT_SYMBOL(jbd2_journal_clear_features); 2420 2421 /** 2422 * jbd2_journal_flush() - Flush journal 2423 * @journal: Journal to act on. 2424 * @flags: optional operation on the journal blocks after the flush (see below) 2425 * 2426 * Flush all data for a given journal to disk and empty the journal. 2427 * Filesystems can use this when remounting readonly to ensure that 2428 * recovery does not need to happen on remount. Optionally, a discard or zeroout 2429 * can be issued on the journal blocks after flushing. 2430 * 2431 * flags: 2432 * JBD2_JOURNAL_FLUSH_DISCARD: issues discards for the journal blocks 2433 * JBD2_JOURNAL_FLUSH_ZEROOUT: issues zeroouts for the journal blocks 2434 */ 2435 int jbd2_journal_flush(journal_t *journal, unsigned int flags) 2436 { 2437 int err = 0; 2438 transaction_t *transaction = NULL; 2439 2440 write_lock(&journal->j_state_lock); 2441 2442 /* Force everything buffered to the log... */ 2443 if (journal->j_running_transaction) { 2444 transaction = journal->j_running_transaction; 2445 __jbd2_log_start_commit(journal, transaction->t_tid); 2446 } else if (journal->j_committing_transaction) 2447 transaction = journal->j_committing_transaction; 2448 2449 /* Wait for the log commit to complete... */ 2450 if (transaction) { 2451 tid_t tid = transaction->t_tid; 2452 2453 write_unlock(&journal->j_state_lock); 2454 jbd2_log_wait_commit(journal, tid); 2455 } else { 2456 write_unlock(&journal->j_state_lock); 2457 } 2458 2459 /* ...and flush everything in the log out to disk. */ 2460 spin_lock(&journal->j_list_lock); 2461 while (!err && journal->j_checkpoint_transactions != NULL) { 2462 spin_unlock(&journal->j_list_lock); 2463 mutex_lock_io(&journal->j_checkpoint_mutex); 2464 err = jbd2_log_do_checkpoint(journal); 2465 mutex_unlock(&journal->j_checkpoint_mutex); 2466 spin_lock(&journal->j_list_lock); 2467 } 2468 spin_unlock(&journal->j_list_lock); 2469 2470 if (is_journal_aborted(journal)) 2471 return -EIO; 2472 2473 mutex_lock_io(&journal->j_checkpoint_mutex); 2474 if (!err) { 2475 err = jbd2_cleanup_journal_tail(journal); 2476 if (err < 0) { 2477 mutex_unlock(&journal->j_checkpoint_mutex); 2478 goto out; 2479 } 2480 err = 0; 2481 } 2482 2483 /* Finally, mark the journal as really needing no recovery. 2484 * This sets s_start==0 in the underlying superblock, which is 2485 * the magic code for a fully-recovered superblock. Any future 2486 * commits of data to the journal will restore the current 2487 * s_start value. */ 2488 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA); 2489 2490 if (flags) 2491 err = __jbd2_journal_erase(journal, flags); 2492 2493 mutex_unlock(&journal->j_checkpoint_mutex); 2494 write_lock(&journal->j_state_lock); 2495 J_ASSERT(!journal->j_running_transaction); 2496 J_ASSERT(!journal->j_committing_transaction); 2497 J_ASSERT(!journal->j_checkpoint_transactions); 2498 J_ASSERT(journal->j_head == journal->j_tail); 2499 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence); 2500 write_unlock(&journal->j_state_lock); 2501 out: 2502 return err; 2503 } 2504 2505 /** 2506 * jbd2_journal_wipe() - Wipe journal contents 2507 * @journal: Journal to act on. 2508 * @write: flag (see below) 2509 * 2510 * Wipe out all of the contents of a journal, safely. This will produce 2511 * a warning if the journal contains any valid recovery information. 2512 * Must be called between journal_init_*() and jbd2_journal_load(). 2513 * 2514 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise 2515 * we merely suppress recovery. 2516 */ 2517 2518 int jbd2_journal_wipe(journal_t *journal, int write) 2519 { 2520 int err = 0; 2521 2522 J_ASSERT (!(journal->j_flags & JBD2_LOADED)); 2523 2524 err = load_superblock(journal); 2525 if (err) 2526 return err; 2527 2528 if (!journal->j_tail) 2529 goto no_recovery; 2530 2531 printk(KERN_WARNING "JBD2: %s recovery information on journal\n", 2532 write ? "Clearing" : "Ignoring"); 2533 2534 err = jbd2_journal_skip_recovery(journal); 2535 if (write) { 2536 /* Lock to make assertions happy... */ 2537 mutex_lock_io(&journal->j_checkpoint_mutex); 2538 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA); 2539 mutex_unlock(&journal->j_checkpoint_mutex); 2540 } 2541 2542 no_recovery: 2543 return err; 2544 } 2545 2546 /** 2547 * jbd2_journal_abort () - Shutdown the journal immediately. 2548 * @journal: the journal to shutdown. 2549 * @errno: an error number to record in the journal indicating 2550 * the reason for the shutdown. 2551 * 2552 * Perform a complete, immediate shutdown of the ENTIRE 2553 * journal (not of a single transaction). This operation cannot be 2554 * undone without closing and reopening the journal. 2555 * 2556 * The jbd2_journal_abort function is intended to support higher level error 2557 * recovery mechanisms such as the ext2/ext3 remount-readonly error 2558 * mode. 2559 * 2560 * Journal abort has very specific semantics. Any existing dirty, 2561 * unjournaled buffers in the main filesystem will still be written to 2562 * disk by bdflush, but the journaling mechanism will be suspended 2563 * immediately and no further transaction commits will be honoured. 2564 * 2565 * Any dirty, journaled buffers will be written back to disk without 2566 * hitting the journal. Atomicity cannot be guaranteed on an aborted 2567 * filesystem, but we _do_ attempt to leave as much data as possible 2568 * behind for fsck to use for cleanup. 2569 * 2570 * Any attempt to get a new transaction handle on a journal which is in 2571 * ABORT state will just result in an -EROFS error return. A 2572 * jbd2_journal_stop on an existing handle will return -EIO if we have 2573 * entered abort state during the update. 2574 * 2575 * Recursive transactions are not disturbed by journal abort until the 2576 * final jbd2_journal_stop, which will receive the -EIO error. 2577 * 2578 * Finally, the jbd2_journal_abort call allows the caller to supply an errno 2579 * which will be recorded (if possible) in the journal superblock. This 2580 * allows a client to record failure conditions in the middle of a 2581 * transaction without having to complete the transaction to record the 2582 * failure to disk. ext3_error, for example, now uses this 2583 * functionality. 2584 * 2585 */ 2586 2587 void jbd2_journal_abort(journal_t *journal, int errno) 2588 { 2589 transaction_t *transaction; 2590 2591 /* 2592 * Lock the aborting procedure until everything is done, this avoid 2593 * races between filesystem's error handling flow (e.g. ext4_abort()), 2594 * ensure panic after the error info is written into journal's 2595 * superblock. 2596 */ 2597 mutex_lock(&journal->j_abort_mutex); 2598 /* 2599 * ESHUTDOWN always takes precedence because a file system check 2600 * caused by any other journal abort error is not required after 2601 * a shutdown triggered. 2602 */ 2603 write_lock(&journal->j_state_lock); 2604 if (journal->j_flags & JBD2_ABORT) { 2605 int old_errno = journal->j_errno; 2606 2607 write_unlock(&journal->j_state_lock); 2608 if (old_errno != -ESHUTDOWN && errno == -ESHUTDOWN) { 2609 journal->j_errno = errno; 2610 jbd2_journal_update_sb_errno(journal); 2611 } 2612 mutex_unlock(&journal->j_abort_mutex); 2613 return; 2614 } 2615 2616 /* 2617 * Mark the abort as occurred and start current running transaction 2618 * to release all journaled buffer. 2619 */ 2620 pr_err("Aborting journal on device %s.\n", journal->j_devname); 2621 2622 journal->j_flags |= JBD2_ABORT; 2623 journal->j_errno = errno; 2624 transaction = journal->j_running_transaction; 2625 if (transaction) 2626 __jbd2_log_start_commit(journal, transaction->t_tid); 2627 write_unlock(&journal->j_state_lock); 2628 2629 /* 2630 * Record errno to the journal super block, so that fsck and jbd2 2631 * layer could realise that a filesystem check is needed. 2632 */ 2633 jbd2_journal_update_sb_errno(journal); 2634 mutex_unlock(&journal->j_abort_mutex); 2635 } 2636 2637 /** 2638 * jbd2_journal_errno() - returns the journal's error state. 2639 * @journal: journal to examine. 2640 * 2641 * This is the errno number set with jbd2_journal_abort(), the last 2642 * time the journal was mounted - if the journal was stopped 2643 * without calling abort this will be 0. 2644 * 2645 * If the journal has been aborted on this mount time -EROFS will 2646 * be returned. 2647 */ 2648 int jbd2_journal_errno(journal_t *journal) 2649 { 2650 int err; 2651 2652 read_lock(&journal->j_state_lock); 2653 if (journal->j_flags & JBD2_ABORT) 2654 err = -EROFS; 2655 else 2656 err = journal->j_errno; 2657 read_unlock(&journal->j_state_lock); 2658 return err; 2659 } 2660 2661 /** 2662 * jbd2_journal_clear_err() - clears the journal's error state 2663 * @journal: journal to act on. 2664 * 2665 * An error must be cleared or acked to take a FS out of readonly 2666 * mode. 2667 */ 2668 int jbd2_journal_clear_err(journal_t *journal) 2669 { 2670 int err = 0; 2671 2672 write_lock(&journal->j_state_lock); 2673 if (journal->j_flags & JBD2_ABORT) 2674 err = -EROFS; 2675 else 2676 journal->j_errno = 0; 2677 write_unlock(&journal->j_state_lock); 2678 return err; 2679 } 2680 2681 /** 2682 * jbd2_journal_ack_err() - Ack journal err. 2683 * @journal: journal to act on. 2684 * 2685 * An error must be cleared or acked to take a FS out of readonly 2686 * mode. 2687 */ 2688 void jbd2_journal_ack_err(journal_t *journal) 2689 { 2690 write_lock(&journal->j_state_lock); 2691 if (journal->j_errno) 2692 journal->j_flags |= JBD2_ACK_ERR; 2693 write_unlock(&journal->j_state_lock); 2694 } 2695 2696 int jbd2_journal_blocks_per_page(struct inode *inode) 2697 { 2698 return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 2699 } 2700 2701 /* 2702 * helper functions to deal with 32 or 64bit block numbers. 2703 */ 2704 size_t journal_tag_bytes(journal_t *journal) 2705 { 2706 size_t sz; 2707 2708 if (jbd2_has_feature_csum3(journal)) 2709 return sizeof(journal_block_tag3_t); 2710 2711 sz = sizeof(journal_block_tag_t); 2712 2713 if (jbd2_has_feature_csum2(journal)) 2714 sz += sizeof(__u16); 2715 2716 if (jbd2_has_feature_64bit(journal)) 2717 return sz; 2718 else 2719 return sz - sizeof(__u32); 2720 } 2721 2722 /* 2723 * JBD memory management 2724 * 2725 * These functions are used to allocate block-sized chunks of memory 2726 * used for making copies of buffer_head data. Very often it will be 2727 * page-sized chunks of data, but sometimes it will be in 2728 * sub-page-size chunks. (For example, 16k pages on Power systems 2729 * with a 4k block file system.) For blocks smaller than a page, we 2730 * use a SLAB allocator. There are slab caches for each block size, 2731 * which are allocated at mount time, if necessary, and we only free 2732 * (all of) the slab caches when/if the jbd2 module is unloaded. For 2733 * this reason we don't need to a mutex to protect access to 2734 * jbd2_slab[] allocating or releasing memory; only in 2735 * jbd2_journal_create_slab(). 2736 */ 2737 #define JBD2_MAX_SLABS 8 2738 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS]; 2739 2740 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = { 2741 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k", 2742 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k" 2743 }; 2744 2745 2746 static void jbd2_journal_destroy_slabs(void) 2747 { 2748 int i; 2749 2750 for (i = 0; i < JBD2_MAX_SLABS; i++) { 2751 kmem_cache_destroy(jbd2_slab[i]); 2752 jbd2_slab[i] = NULL; 2753 } 2754 } 2755 2756 static int jbd2_journal_create_slab(size_t size) 2757 { 2758 static DEFINE_MUTEX(jbd2_slab_create_mutex); 2759 int i = order_base_2(size) - 10; 2760 size_t slab_size; 2761 2762 if (size == PAGE_SIZE) 2763 return 0; 2764 2765 if (i >= JBD2_MAX_SLABS) 2766 return -EINVAL; 2767 2768 if (unlikely(i < 0)) 2769 i = 0; 2770 mutex_lock(&jbd2_slab_create_mutex); 2771 if (jbd2_slab[i]) { 2772 mutex_unlock(&jbd2_slab_create_mutex); 2773 return 0; /* Already created */ 2774 } 2775 2776 slab_size = 1 << (i+10); 2777 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size, 2778 slab_size, 0, NULL); 2779 mutex_unlock(&jbd2_slab_create_mutex); 2780 if (!jbd2_slab[i]) { 2781 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n"); 2782 return -ENOMEM; 2783 } 2784 return 0; 2785 } 2786 2787 static struct kmem_cache *get_slab(size_t size) 2788 { 2789 int i = order_base_2(size) - 10; 2790 2791 BUG_ON(i >= JBD2_MAX_SLABS); 2792 if (unlikely(i < 0)) 2793 i = 0; 2794 BUG_ON(jbd2_slab[i] == NULL); 2795 return jbd2_slab[i]; 2796 } 2797 2798 void *jbd2_alloc(size_t size, gfp_t flags) 2799 { 2800 void *ptr; 2801 2802 BUG_ON(size & (size-1)); /* Must be a power of 2 */ 2803 2804 if (size < PAGE_SIZE) 2805 ptr = kmem_cache_alloc(get_slab(size), flags); 2806 else 2807 ptr = (void *)__get_free_pages(flags, get_order(size)); 2808 2809 /* Check alignment; SLUB has gotten this wrong in the past, 2810 * and this can lead to user data corruption! */ 2811 BUG_ON(((unsigned long) ptr) & (size-1)); 2812 2813 return ptr; 2814 } 2815 2816 void jbd2_free(void *ptr, size_t size) 2817 { 2818 if (size < PAGE_SIZE) 2819 kmem_cache_free(get_slab(size), ptr); 2820 else 2821 free_pages((unsigned long)ptr, get_order(size)); 2822 }; 2823 2824 /* 2825 * Journal_head storage management 2826 */ 2827 static struct kmem_cache *jbd2_journal_head_cache; 2828 #ifdef CONFIG_JBD2_DEBUG 2829 static atomic_t nr_journal_heads = ATOMIC_INIT(0); 2830 #endif 2831 2832 static int __init jbd2_journal_init_journal_head_cache(void) 2833 { 2834 J_ASSERT(!jbd2_journal_head_cache); 2835 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head", 2836 sizeof(struct journal_head), 2837 0, /* offset */ 2838 SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU, 2839 NULL); /* ctor */ 2840 if (!jbd2_journal_head_cache) { 2841 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n"); 2842 return -ENOMEM; 2843 } 2844 return 0; 2845 } 2846 2847 static void jbd2_journal_destroy_journal_head_cache(void) 2848 { 2849 kmem_cache_destroy(jbd2_journal_head_cache); 2850 jbd2_journal_head_cache = NULL; 2851 } 2852 2853 /* 2854 * journal_head splicing and dicing 2855 */ 2856 static struct journal_head *journal_alloc_journal_head(void) 2857 { 2858 struct journal_head *ret; 2859 2860 #ifdef CONFIG_JBD2_DEBUG 2861 atomic_inc(&nr_journal_heads); 2862 #endif 2863 ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS); 2864 if (!ret) { 2865 jbd2_debug(1, "out of memory for journal_head\n"); 2866 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__); 2867 ret = kmem_cache_zalloc(jbd2_journal_head_cache, 2868 GFP_NOFS | __GFP_NOFAIL); 2869 } 2870 if (ret) 2871 spin_lock_init(&ret->b_state_lock); 2872 return ret; 2873 } 2874 2875 static void journal_free_journal_head(struct journal_head *jh) 2876 { 2877 #ifdef CONFIG_JBD2_DEBUG 2878 atomic_dec(&nr_journal_heads); 2879 memset(jh, JBD2_POISON_FREE, sizeof(*jh)); 2880 #endif 2881 kmem_cache_free(jbd2_journal_head_cache, jh); 2882 } 2883 2884 /* 2885 * A journal_head is attached to a buffer_head whenever JBD has an 2886 * interest in the buffer. 2887 * 2888 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit 2889 * is set. This bit is tested in core kernel code where we need to take 2890 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable 2891 * there. 2892 * 2893 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one. 2894 * 2895 * When a buffer has its BH_JBD bit set it is immune from being released by 2896 * core kernel code, mainly via ->b_count. 2897 * 2898 * A journal_head is detached from its buffer_head when the journal_head's 2899 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint 2900 * transaction (b_cp_transaction) hold their references to b_jcount. 2901 * 2902 * Various places in the kernel want to attach a journal_head to a buffer_head 2903 * _before_ attaching the journal_head to a transaction. To protect the 2904 * journal_head in this situation, jbd2_journal_add_journal_head elevates the 2905 * journal_head's b_jcount refcount by one. The caller must call 2906 * jbd2_journal_put_journal_head() to undo this. 2907 * 2908 * So the typical usage would be: 2909 * 2910 * (Attach a journal_head if needed. Increments b_jcount) 2911 * struct journal_head *jh = jbd2_journal_add_journal_head(bh); 2912 * ... 2913 * (Get another reference for transaction) 2914 * jbd2_journal_grab_journal_head(bh); 2915 * jh->b_transaction = xxx; 2916 * (Put original reference) 2917 * jbd2_journal_put_journal_head(jh); 2918 */ 2919 2920 /* 2921 * Give a buffer_head a journal_head. 2922 * 2923 * May sleep. 2924 */ 2925 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh) 2926 { 2927 struct journal_head *jh; 2928 struct journal_head *new_jh = NULL; 2929 2930 repeat: 2931 if (!buffer_jbd(bh)) 2932 new_jh = journal_alloc_journal_head(); 2933 2934 jbd_lock_bh_journal_head(bh); 2935 if (buffer_jbd(bh)) { 2936 jh = bh2jh(bh); 2937 } else { 2938 J_ASSERT_BH(bh, 2939 (atomic_read(&bh->b_count) > 0) || 2940 (bh->b_folio && bh->b_folio->mapping)); 2941 2942 if (!new_jh) { 2943 jbd_unlock_bh_journal_head(bh); 2944 goto repeat; 2945 } 2946 2947 jh = new_jh; 2948 new_jh = NULL; /* We consumed it */ 2949 set_buffer_jbd(bh); 2950 bh->b_private = jh; 2951 jh->b_bh = bh; 2952 get_bh(bh); 2953 BUFFER_TRACE(bh, "added journal_head"); 2954 } 2955 jh->b_jcount++; 2956 jbd_unlock_bh_journal_head(bh); 2957 if (new_jh) 2958 journal_free_journal_head(new_jh); 2959 return bh->b_private; 2960 } 2961 2962 /* 2963 * Grab a ref against this buffer_head's journal_head. If it ended up not 2964 * having a journal_head, return NULL 2965 */ 2966 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh) 2967 { 2968 struct journal_head *jh = NULL; 2969 2970 jbd_lock_bh_journal_head(bh); 2971 if (buffer_jbd(bh)) { 2972 jh = bh2jh(bh); 2973 jh->b_jcount++; 2974 } 2975 jbd_unlock_bh_journal_head(bh); 2976 return jh; 2977 } 2978 EXPORT_SYMBOL(jbd2_journal_grab_journal_head); 2979 2980 static void __journal_remove_journal_head(struct buffer_head *bh) 2981 { 2982 struct journal_head *jh = bh2jh(bh); 2983 2984 J_ASSERT_JH(jh, jh->b_transaction == NULL); 2985 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 2986 J_ASSERT_JH(jh, jh->b_cp_transaction == NULL); 2987 J_ASSERT_JH(jh, jh->b_jlist == BJ_None); 2988 J_ASSERT_BH(bh, buffer_jbd(bh)); 2989 J_ASSERT_BH(bh, jh2bh(jh) == bh); 2990 BUFFER_TRACE(bh, "remove journal_head"); 2991 2992 /* Unlink before dropping the lock */ 2993 bh->b_private = NULL; 2994 jh->b_bh = NULL; /* debug, really */ 2995 clear_buffer_jbd(bh); 2996 } 2997 2998 static void journal_release_journal_head(struct journal_head *jh, size_t b_size) 2999 { 3000 if (jh->b_frozen_data) { 3001 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__); 3002 jbd2_free(jh->b_frozen_data, b_size); 3003 } 3004 if (jh->b_committed_data) { 3005 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__); 3006 jbd2_free(jh->b_committed_data, b_size); 3007 } 3008 journal_free_journal_head(jh); 3009 } 3010 3011 /* 3012 * Drop a reference on the passed journal_head. If it fell to zero then 3013 * release the journal_head from the buffer_head. 3014 */ 3015 void jbd2_journal_put_journal_head(struct journal_head *jh) 3016 { 3017 struct buffer_head *bh = jh2bh(jh); 3018 3019 jbd_lock_bh_journal_head(bh); 3020 J_ASSERT_JH(jh, jh->b_jcount > 0); 3021 --jh->b_jcount; 3022 if (!jh->b_jcount) { 3023 __journal_remove_journal_head(bh); 3024 jbd_unlock_bh_journal_head(bh); 3025 journal_release_journal_head(jh, bh->b_size); 3026 __brelse(bh); 3027 } else { 3028 jbd_unlock_bh_journal_head(bh); 3029 } 3030 } 3031 EXPORT_SYMBOL(jbd2_journal_put_journal_head); 3032 3033 /* 3034 * Initialize jbd inode head 3035 */ 3036 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode) 3037 { 3038 jinode->i_transaction = NULL; 3039 jinode->i_next_transaction = NULL; 3040 jinode->i_vfs_inode = inode; 3041 jinode->i_flags = 0; 3042 jinode->i_dirty_start = 0; 3043 jinode->i_dirty_end = 0; 3044 INIT_LIST_HEAD(&jinode->i_list); 3045 } 3046 3047 /* 3048 * Function to be called before we start removing inode from memory (i.e., 3049 * clear_inode() is a fine place to be called from). It removes inode from 3050 * transaction's lists. 3051 */ 3052 void jbd2_journal_release_jbd_inode(journal_t *journal, 3053 struct jbd2_inode *jinode) 3054 { 3055 if (!journal) 3056 return; 3057 restart: 3058 spin_lock(&journal->j_list_lock); 3059 /* Is commit writing out inode - we have to wait */ 3060 if (jinode->i_flags & JI_COMMIT_RUNNING) { 3061 wait_queue_head_t *wq; 3062 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING); 3063 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING); 3064 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 3065 spin_unlock(&journal->j_list_lock); 3066 schedule(); 3067 finish_wait(wq, &wait.wq_entry); 3068 goto restart; 3069 } 3070 3071 if (jinode->i_transaction) { 3072 list_del(&jinode->i_list); 3073 jinode->i_transaction = NULL; 3074 } 3075 spin_unlock(&journal->j_list_lock); 3076 } 3077 3078 3079 #ifdef CONFIG_PROC_FS 3080 3081 #define JBD2_STATS_PROC_NAME "fs/jbd2" 3082 3083 static void __init jbd2_create_jbd_stats_proc_entry(void) 3084 { 3085 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL); 3086 } 3087 3088 static void __exit jbd2_remove_jbd_stats_proc_entry(void) 3089 { 3090 if (proc_jbd2_stats) 3091 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL); 3092 } 3093 3094 #else 3095 3096 #define jbd2_create_jbd_stats_proc_entry() do {} while (0) 3097 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0) 3098 3099 #endif 3100 3101 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache; 3102 3103 static int __init jbd2_journal_init_inode_cache(void) 3104 { 3105 J_ASSERT(!jbd2_inode_cache); 3106 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0); 3107 if (!jbd2_inode_cache) { 3108 pr_emerg("JBD2: failed to create inode cache\n"); 3109 return -ENOMEM; 3110 } 3111 return 0; 3112 } 3113 3114 static int __init jbd2_journal_init_handle_cache(void) 3115 { 3116 J_ASSERT(!jbd2_handle_cache); 3117 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY); 3118 if (!jbd2_handle_cache) { 3119 printk(KERN_EMERG "JBD2: failed to create handle cache\n"); 3120 return -ENOMEM; 3121 } 3122 return 0; 3123 } 3124 3125 static void jbd2_journal_destroy_inode_cache(void) 3126 { 3127 kmem_cache_destroy(jbd2_inode_cache); 3128 jbd2_inode_cache = NULL; 3129 } 3130 3131 static void jbd2_journal_destroy_handle_cache(void) 3132 { 3133 kmem_cache_destroy(jbd2_handle_cache); 3134 jbd2_handle_cache = NULL; 3135 } 3136 3137 /* 3138 * Module startup and shutdown 3139 */ 3140 3141 static int __init journal_init_caches(void) 3142 { 3143 int ret; 3144 3145 ret = jbd2_journal_init_revoke_record_cache(); 3146 if (ret == 0) 3147 ret = jbd2_journal_init_revoke_table_cache(); 3148 if (ret == 0) 3149 ret = jbd2_journal_init_journal_head_cache(); 3150 if (ret == 0) 3151 ret = jbd2_journal_init_handle_cache(); 3152 if (ret == 0) 3153 ret = jbd2_journal_init_inode_cache(); 3154 if (ret == 0) 3155 ret = jbd2_journal_init_transaction_cache(); 3156 return ret; 3157 } 3158 3159 static void jbd2_journal_destroy_caches(void) 3160 { 3161 jbd2_journal_destroy_revoke_record_cache(); 3162 jbd2_journal_destroy_revoke_table_cache(); 3163 jbd2_journal_destroy_journal_head_cache(); 3164 jbd2_journal_destroy_handle_cache(); 3165 jbd2_journal_destroy_inode_cache(); 3166 jbd2_journal_destroy_transaction_cache(); 3167 jbd2_journal_destroy_slabs(); 3168 } 3169 3170 static int __init journal_init(void) 3171 { 3172 int ret; 3173 3174 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024); 3175 3176 ret = journal_init_caches(); 3177 if (ret == 0) { 3178 jbd2_create_jbd_stats_proc_entry(); 3179 } else { 3180 jbd2_journal_destroy_caches(); 3181 } 3182 return ret; 3183 } 3184 3185 static void __exit journal_exit(void) 3186 { 3187 #ifdef CONFIG_JBD2_DEBUG 3188 int n = atomic_read(&nr_journal_heads); 3189 if (n) 3190 printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n); 3191 #endif 3192 jbd2_remove_jbd_stats_proc_entry(); 3193 jbd2_journal_destroy_caches(); 3194 } 3195 3196 MODULE_LICENSE("GPL"); 3197 module_init(journal_init); 3198 module_exit(journal_exit); 3199 3200