1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * linux/fs/jbd2/journal.c 4 * 5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 6 * 7 * Copyright 1998 Red Hat corp --- All Rights Reserved 8 * 9 * Generic filesystem journal-writing code; part of the ext2fs 10 * journaling system. 11 * 12 * This file manages journals: areas of disk reserved for logging 13 * transactional updates. This includes the kernel journaling thread 14 * which is responsible for scheduling updates to the log. 15 * 16 * We do not actually manage the physical storage of the journal in this 17 * file: that is left to a per-journal policy function, which allows us 18 * to store the journal within a filesystem-specified area for ext2 19 * journaling (ext2 can use a reserved inode for storing the log). 20 */ 21 22 #include <linux/module.h> 23 #include <linux/time.h> 24 #include <linux/fs.h> 25 #include <linux/jbd2.h> 26 #include <linux/errno.h> 27 #include <linux/slab.h> 28 #include <linux/init.h> 29 #include <linux/mm.h> 30 #include <linux/freezer.h> 31 #include <linux/pagemap.h> 32 #include <linux/kthread.h> 33 #include <linux/poison.h> 34 #include <linux/proc_fs.h> 35 #include <linux/seq_file.h> 36 #include <linux/math64.h> 37 #include <linux/hash.h> 38 #include <linux/log2.h> 39 #include <linux/vmalloc.h> 40 #include <linux/backing-dev.h> 41 #include <linux/bitops.h> 42 #include <linux/ratelimit.h> 43 #include <linux/sched/mm.h> 44 45 #define CREATE_TRACE_POINTS 46 #include <trace/events/jbd2.h> 47 48 #include <linux/uaccess.h> 49 #include <asm/page.h> 50 51 #ifdef CONFIG_JBD2_DEBUG 52 static ushort jbd2_journal_enable_debug __read_mostly; 53 54 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644); 55 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2"); 56 #endif 57 58 EXPORT_SYMBOL(jbd2_journal_extend); 59 EXPORT_SYMBOL(jbd2_journal_stop); 60 EXPORT_SYMBOL(jbd2_journal_lock_updates); 61 EXPORT_SYMBOL(jbd2_journal_unlock_updates); 62 EXPORT_SYMBOL(jbd2_journal_get_write_access); 63 EXPORT_SYMBOL(jbd2_journal_get_create_access); 64 EXPORT_SYMBOL(jbd2_journal_get_undo_access); 65 EXPORT_SYMBOL(jbd2_journal_set_triggers); 66 EXPORT_SYMBOL(jbd2_journal_dirty_metadata); 67 EXPORT_SYMBOL(jbd2_journal_forget); 68 EXPORT_SYMBOL(jbd2_journal_flush); 69 EXPORT_SYMBOL(jbd2_journal_revoke); 70 71 EXPORT_SYMBOL(jbd2_journal_init_dev); 72 EXPORT_SYMBOL(jbd2_journal_init_inode); 73 EXPORT_SYMBOL(jbd2_journal_check_used_features); 74 EXPORT_SYMBOL(jbd2_journal_check_available_features); 75 EXPORT_SYMBOL(jbd2_journal_set_features); 76 EXPORT_SYMBOL(jbd2_journal_load); 77 EXPORT_SYMBOL(jbd2_journal_destroy); 78 EXPORT_SYMBOL(jbd2_journal_abort); 79 EXPORT_SYMBOL(jbd2_journal_errno); 80 EXPORT_SYMBOL(jbd2_journal_ack_err); 81 EXPORT_SYMBOL(jbd2_journal_clear_err); 82 EXPORT_SYMBOL(jbd2_log_wait_commit); 83 EXPORT_SYMBOL(jbd2_journal_start_commit); 84 EXPORT_SYMBOL(jbd2_journal_force_commit_nested); 85 EXPORT_SYMBOL(jbd2_journal_wipe); 86 EXPORT_SYMBOL(jbd2_journal_blocks_per_page); 87 EXPORT_SYMBOL(jbd2_journal_invalidate_folio); 88 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers); 89 EXPORT_SYMBOL(jbd2_journal_force_commit); 90 EXPORT_SYMBOL(jbd2_journal_inode_ranged_write); 91 EXPORT_SYMBOL(jbd2_journal_inode_ranged_wait); 92 EXPORT_SYMBOL(jbd2_journal_finish_inode_data_buffers); 93 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode); 94 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode); 95 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate); 96 EXPORT_SYMBOL(jbd2_inode_cache); 97 98 static int jbd2_journal_create_slab(size_t slab_size); 99 100 #ifdef CONFIG_JBD2_DEBUG 101 void __jbd2_debug(int level, const char *file, const char *func, 102 unsigned int line, const char *fmt, ...) 103 { 104 struct va_format vaf; 105 va_list args; 106 107 if (level > jbd2_journal_enable_debug) 108 return; 109 va_start(args, fmt); 110 vaf.fmt = fmt; 111 vaf.va = &args; 112 printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf); 113 va_end(args); 114 } 115 #endif 116 117 /* Checksumming functions */ 118 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb) 119 { 120 __u32 csum; 121 __be32 old_csum; 122 123 old_csum = sb->s_checksum; 124 sb->s_checksum = 0; 125 csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t)); 126 sb->s_checksum = old_csum; 127 128 return cpu_to_be32(csum); 129 } 130 131 /* 132 * Helper function used to manage commit timeouts 133 */ 134 135 static void commit_timeout(struct timer_list *t) 136 { 137 journal_t *journal = from_timer(journal, t, j_commit_timer); 138 139 wake_up_process(journal->j_task); 140 } 141 142 /* 143 * kjournald2: The main thread function used to manage a logging device 144 * journal. 145 * 146 * This kernel thread is responsible for two things: 147 * 148 * 1) COMMIT: Every so often we need to commit the current state of the 149 * filesystem to disk. The journal thread is responsible for writing 150 * all of the metadata buffers to disk. If a fast commit is ongoing 151 * journal thread waits until it's done and then continues from 152 * there on. 153 * 154 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all 155 * of the data in that part of the log has been rewritten elsewhere on 156 * the disk. Flushing these old buffers to reclaim space in the log is 157 * known as checkpointing, and this thread is responsible for that job. 158 */ 159 160 static int kjournald2(void *arg) 161 { 162 journal_t *journal = arg; 163 transaction_t *transaction; 164 165 /* 166 * Set up an interval timer which can be used to trigger a commit wakeup 167 * after the commit interval expires 168 */ 169 timer_setup(&journal->j_commit_timer, commit_timeout, 0); 170 171 set_freezable(); 172 173 /* Record that the journal thread is running */ 174 journal->j_task = current; 175 wake_up(&journal->j_wait_done_commit); 176 177 /* 178 * Make sure that no allocations from this kernel thread will ever 179 * recurse to the fs layer because we are responsible for the 180 * transaction commit and any fs involvement might get stuck waiting for 181 * the trasn. commit. 182 */ 183 memalloc_nofs_save(); 184 185 /* 186 * And now, wait forever for commit wakeup events. 187 */ 188 write_lock(&journal->j_state_lock); 189 190 loop: 191 if (journal->j_flags & JBD2_UNMOUNT) 192 goto end_loop; 193 194 jbd2_debug(1, "commit_sequence=%u, commit_request=%u\n", 195 journal->j_commit_sequence, journal->j_commit_request); 196 197 if (journal->j_commit_sequence != journal->j_commit_request) { 198 jbd2_debug(1, "OK, requests differ\n"); 199 write_unlock(&journal->j_state_lock); 200 del_timer_sync(&journal->j_commit_timer); 201 jbd2_journal_commit_transaction(journal); 202 write_lock(&journal->j_state_lock); 203 goto loop; 204 } 205 206 wake_up(&journal->j_wait_done_commit); 207 if (freezing(current)) { 208 /* 209 * The simpler the better. Flushing journal isn't a 210 * good idea, because that depends on threads that may 211 * be already stopped. 212 */ 213 jbd2_debug(1, "Now suspending kjournald2\n"); 214 write_unlock(&journal->j_state_lock); 215 try_to_freeze(); 216 write_lock(&journal->j_state_lock); 217 } else { 218 /* 219 * We assume on resume that commits are already there, 220 * so we don't sleep 221 */ 222 DEFINE_WAIT(wait); 223 224 prepare_to_wait(&journal->j_wait_commit, &wait, 225 TASK_INTERRUPTIBLE); 226 transaction = journal->j_running_transaction; 227 if (transaction == NULL || 228 time_before(jiffies, transaction->t_expires)) { 229 write_unlock(&journal->j_state_lock); 230 schedule(); 231 write_lock(&journal->j_state_lock); 232 } 233 finish_wait(&journal->j_wait_commit, &wait); 234 } 235 236 jbd2_debug(1, "kjournald2 wakes\n"); 237 238 /* 239 * Were we woken up by a commit wakeup event? 240 */ 241 transaction = journal->j_running_transaction; 242 if (transaction && time_after_eq(jiffies, transaction->t_expires)) { 243 journal->j_commit_request = transaction->t_tid; 244 jbd2_debug(1, "woke because of timeout\n"); 245 } 246 goto loop; 247 248 end_loop: 249 del_timer_sync(&journal->j_commit_timer); 250 journal->j_task = NULL; 251 wake_up(&journal->j_wait_done_commit); 252 jbd2_debug(1, "Journal thread exiting.\n"); 253 write_unlock(&journal->j_state_lock); 254 return 0; 255 } 256 257 static int jbd2_journal_start_thread(journal_t *journal) 258 { 259 struct task_struct *t; 260 261 t = kthread_run(kjournald2, journal, "jbd2/%s", 262 journal->j_devname); 263 if (IS_ERR(t)) 264 return PTR_ERR(t); 265 266 wait_event(journal->j_wait_done_commit, journal->j_task != NULL); 267 return 0; 268 } 269 270 static void journal_kill_thread(journal_t *journal) 271 { 272 write_lock(&journal->j_state_lock); 273 journal->j_flags |= JBD2_UNMOUNT; 274 275 while (journal->j_task) { 276 write_unlock(&journal->j_state_lock); 277 wake_up(&journal->j_wait_commit); 278 wait_event(journal->j_wait_done_commit, journal->j_task == NULL); 279 write_lock(&journal->j_state_lock); 280 } 281 write_unlock(&journal->j_state_lock); 282 } 283 284 static inline bool jbd2_data_needs_escaping(char *data) 285 { 286 return *((__be32 *)data) == cpu_to_be32(JBD2_MAGIC_NUMBER); 287 } 288 289 static inline void jbd2_data_do_escape(char *data) 290 { 291 *((unsigned int *)data) = 0; 292 } 293 294 /* 295 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal. 296 * 297 * Writes a metadata buffer to a given disk block. The actual IO is not 298 * performed but a new buffer_head is constructed which labels the data 299 * to be written with the correct destination disk block. 300 * 301 * Any magic-number escaping which needs to be done will cause a 302 * copy-out here. If the buffer happens to start with the 303 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the 304 * magic number is only written to the log for descripter blocks. In 305 * this case, we copy the data and replace the first word with 0, and we 306 * return a result code which indicates that this buffer needs to be 307 * marked as an escaped buffer in the corresponding log descriptor 308 * block. The missing word can then be restored when the block is read 309 * during recovery. 310 * 311 * If the source buffer has already been modified by a new transaction 312 * since we took the last commit snapshot, we use the frozen copy of 313 * that data for IO. If we end up using the existing buffer_head's data 314 * for the write, then we have to make sure nobody modifies it while the 315 * IO is in progress. do_get_write_access() handles this. 316 * 317 * The function returns a pointer to the buffer_head to be used for IO. 318 * 319 * 320 * Return value: 321 * =0: Finished OK without escape 322 * =1: Finished OK with escape 323 */ 324 325 int jbd2_journal_write_metadata_buffer(transaction_t *transaction, 326 struct journal_head *jh_in, 327 struct buffer_head **bh_out, 328 sector_t blocknr) 329 { 330 int do_escape = 0; 331 struct buffer_head *new_bh; 332 struct folio *new_folio; 333 unsigned int new_offset; 334 struct buffer_head *bh_in = jh2bh(jh_in); 335 journal_t *journal = transaction->t_journal; 336 337 /* 338 * The buffer really shouldn't be locked: only the current committing 339 * transaction is allowed to write it, so nobody else is allowed 340 * to do any IO. 341 * 342 * akpm: except if we're journalling data, and write() output is 343 * also part of a shared mapping, and another thread has 344 * decided to launch a writepage() against this buffer. 345 */ 346 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in)); 347 348 new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL); 349 350 /* keep subsequent assertions sane */ 351 atomic_set(&new_bh->b_count, 1); 352 353 spin_lock(&jh_in->b_state_lock); 354 /* 355 * If a new transaction has already done a buffer copy-out, then 356 * we use that version of the data for the commit. 357 */ 358 if (jh_in->b_frozen_data) { 359 new_folio = virt_to_folio(jh_in->b_frozen_data); 360 new_offset = offset_in_folio(new_folio, jh_in->b_frozen_data); 361 do_escape = jbd2_data_needs_escaping(jh_in->b_frozen_data); 362 if (do_escape) 363 jbd2_data_do_escape(jh_in->b_frozen_data); 364 } else { 365 char *tmp; 366 char *mapped_data; 367 368 new_folio = bh_in->b_folio; 369 new_offset = offset_in_folio(new_folio, bh_in->b_data); 370 mapped_data = kmap_local_folio(new_folio, new_offset); 371 /* 372 * Fire data frozen trigger if data already wasn't frozen. Do 373 * this before checking for escaping, as the trigger may modify 374 * the magic offset. If a copy-out happens afterwards, it will 375 * have the correct data in the buffer. 376 */ 377 jbd2_buffer_frozen_trigger(jh_in, mapped_data, 378 jh_in->b_triggers); 379 do_escape = jbd2_data_needs_escaping(mapped_data); 380 kunmap_local(mapped_data); 381 /* 382 * Do we need to do a data copy? 383 */ 384 if (!do_escape) 385 goto escape_done; 386 387 spin_unlock(&jh_in->b_state_lock); 388 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS | __GFP_NOFAIL); 389 spin_lock(&jh_in->b_state_lock); 390 if (jh_in->b_frozen_data) { 391 jbd2_free(tmp, bh_in->b_size); 392 goto copy_done; 393 } 394 395 jh_in->b_frozen_data = tmp; 396 memcpy_from_folio(tmp, new_folio, new_offset, bh_in->b_size); 397 /* 398 * This isn't strictly necessary, as we're using frozen 399 * data for the escaping, but it keeps consistency with 400 * b_frozen_data usage. 401 */ 402 jh_in->b_frozen_triggers = jh_in->b_triggers; 403 404 copy_done: 405 new_folio = virt_to_folio(jh_in->b_frozen_data); 406 new_offset = offset_in_folio(new_folio, jh_in->b_frozen_data); 407 jbd2_data_do_escape(jh_in->b_frozen_data); 408 } 409 410 escape_done: 411 folio_set_bh(new_bh, new_folio, new_offset); 412 new_bh->b_size = bh_in->b_size; 413 new_bh->b_bdev = journal->j_dev; 414 new_bh->b_blocknr = blocknr; 415 new_bh->b_private = bh_in; 416 set_buffer_mapped(new_bh); 417 set_buffer_dirty(new_bh); 418 419 *bh_out = new_bh; 420 421 /* 422 * The to-be-written buffer needs to get moved to the io queue, 423 * and the original buffer whose contents we are shadowing or 424 * copying is moved to the transaction's shadow queue. 425 */ 426 JBUFFER_TRACE(jh_in, "file as BJ_Shadow"); 427 spin_lock(&journal->j_list_lock); 428 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow); 429 spin_unlock(&journal->j_list_lock); 430 set_buffer_shadow(bh_in); 431 spin_unlock(&jh_in->b_state_lock); 432 433 return do_escape; 434 } 435 436 /* 437 * Allocation code for the journal file. Manage the space left in the 438 * journal, so that we can begin checkpointing when appropriate. 439 */ 440 441 /* 442 * Called with j_state_lock locked for writing. 443 * Returns true if a transaction commit was started. 444 */ 445 static int __jbd2_log_start_commit(journal_t *journal, tid_t target) 446 { 447 /* Return if the txn has already requested to be committed */ 448 if (journal->j_commit_request == target) 449 return 0; 450 451 /* 452 * The only transaction we can possibly wait upon is the 453 * currently running transaction (if it exists). Otherwise, 454 * the target tid must be an old one. 455 */ 456 if (journal->j_running_transaction && 457 journal->j_running_transaction->t_tid == target) { 458 /* 459 * We want a new commit: OK, mark the request and wakeup the 460 * commit thread. We do _not_ do the commit ourselves. 461 */ 462 463 journal->j_commit_request = target; 464 jbd2_debug(1, "JBD2: requesting commit %u/%u\n", 465 journal->j_commit_request, 466 journal->j_commit_sequence); 467 journal->j_running_transaction->t_requested = jiffies; 468 wake_up(&journal->j_wait_commit); 469 return 1; 470 } else if (!tid_geq(journal->j_commit_request, target)) 471 /* This should never happen, but if it does, preserve 472 the evidence before kjournald goes into a loop and 473 increments j_commit_sequence beyond all recognition. */ 474 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n", 475 journal->j_commit_request, 476 journal->j_commit_sequence, 477 target, journal->j_running_transaction ? 478 journal->j_running_transaction->t_tid : 0); 479 return 0; 480 } 481 482 int jbd2_log_start_commit(journal_t *journal, tid_t tid) 483 { 484 int ret; 485 486 write_lock(&journal->j_state_lock); 487 ret = __jbd2_log_start_commit(journal, tid); 488 write_unlock(&journal->j_state_lock); 489 return ret; 490 } 491 492 /* 493 * Force and wait any uncommitted transactions. We can only force the running 494 * transaction if we don't have an active handle, otherwise, we will deadlock. 495 * Returns: <0 in case of error, 496 * 0 if nothing to commit, 497 * 1 if transaction was successfully committed. 498 */ 499 static int __jbd2_journal_force_commit(journal_t *journal) 500 { 501 transaction_t *transaction = NULL; 502 tid_t tid; 503 int need_to_start = 0, ret = 0; 504 505 read_lock(&journal->j_state_lock); 506 if (journal->j_running_transaction && !current->journal_info) { 507 transaction = journal->j_running_transaction; 508 if (!tid_geq(journal->j_commit_request, transaction->t_tid)) 509 need_to_start = 1; 510 } else if (journal->j_committing_transaction) 511 transaction = journal->j_committing_transaction; 512 513 if (!transaction) { 514 /* Nothing to commit */ 515 read_unlock(&journal->j_state_lock); 516 return 0; 517 } 518 tid = transaction->t_tid; 519 read_unlock(&journal->j_state_lock); 520 if (need_to_start) 521 jbd2_log_start_commit(journal, tid); 522 ret = jbd2_log_wait_commit(journal, tid); 523 if (!ret) 524 ret = 1; 525 526 return ret; 527 } 528 529 /** 530 * jbd2_journal_force_commit_nested - Force and wait upon a commit if the 531 * calling process is not within transaction. 532 * 533 * @journal: journal to force 534 * Returns true if progress was made. 535 * 536 * This is used for forcing out undo-protected data which contains 537 * bitmaps, when the fs is running out of space. 538 */ 539 int jbd2_journal_force_commit_nested(journal_t *journal) 540 { 541 int ret; 542 543 ret = __jbd2_journal_force_commit(journal); 544 return ret > 0; 545 } 546 547 /** 548 * jbd2_journal_force_commit() - force any uncommitted transactions 549 * @journal: journal to force 550 * 551 * Caller want unconditional commit. We can only force the running transaction 552 * if we don't have an active handle, otherwise, we will deadlock. 553 */ 554 int jbd2_journal_force_commit(journal_t *journal) 555 { 556 int ret; 557 558 J_ASSERT(!current->journal_info); 559 ret = __jbd2_journal_force_commit(journal); 560 if (ret > 0) 561 ret = 0; 562 return ret; 563 } 564 565 /* 566 * Start a commit of the current running transaction (if any). Returns true 567 * if a transaction is going to be committed (or is currently already 568 * committing), and fills its tid in at *ptid 569 */ 570 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid) 571 { 572 int ret = 0; 573 574 write_lock(&journal->j_state_lock); 575 if (journal->j_running_transaction) { 576 tid_t tid = journal->j_running_transaction->t_tid; 577 578 __jbd2_log_start_commit(journal, tid); 579 /* There's a running transaction and we've just made sure 580 * it's commit has been scheduled. */ 581 if (ptid) 582 *ptid = tid; 583 ret = 1; 584 } else if (journal->j_committing_transaction) { 585 /* 586 * If commit has been started, then we have to wait for 587 * completion of that transaction. 588 */ 589 if (ptid) 590 *ptid = journal->j_committing_transaction->t_tid; 591 ret = 1; 592 } 593 write_unlock(&journal->j_state_lock); 594 return ret; 595 } 596 597 /* 598 * Return 1 if a given transaction has not yet sent barrier request 599 * connected with a transaction commit. If 0 is returned, transaction 600 * may or may not have sent the barrier. Used to avoid sending barrier 601 * twice in common cases. 602 */ 603 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid) 604 { 605 int ret = 0; 606 transaction_t *commit_trans; 607 608 if (!(journal->j_flags & JBD2_BARRIER)) 609 return 0; 610 read_lock(&journal->j_state_lock); 611 /* Transaction already committed? */ 612 if (tid_geq(journal->j_commit_sequence, tid)) 613 goto out; 614 commit_trans = journal->j_committing_transaction; 615 if (!commit_trans || commit_trans->t_tid != tid) { 616 ret = 1; 617 goto out; 618 } 619 /* 620 * Transaction is being committed and we already proceeded to 621 * submitting a flush to fs partition? 622 */ 623 if (journal->j_fs_dev != journal->j_dev) { 624 if (!commit_trans->t_need_data_flush || 625 commit_trans->t_state >= T_COMMIT_DFLUSH) 626 goto out; 627 } else { 628 if (commit_trans->t_state >= T_COMMIT_JFLUSH) 629 goto out; 630 } 631 ret = 1; 632 out: 633 read_unlock(&journal->j_state_lock); 634 return ret; 635 } 636 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier); 637 638 /* 639 * Wait for a specified commit to complete. 640 * The caller may not hold the journal lock. 641 */ 642 int jbd2_log_wait_commit(journal_t *journal, tid_t tid) 643 { 644 int err = 0; 645 646 read_lock(&journal->j_state_lock); 647 #ifdef CONFIG_PROVE_LOCKING 648 /* 649 * Some callers make sure transaction is already committing and in that 650 * case we cannot block on open handles anymore. So don't warn in that 651 * case. 652 */ 653 if (tid_gt(tid, journal->j_commit_sequence) && 654 (!journal->j_committing_transaction || 655 journal->j_committing_transaction->t_tid != tid)) { 656 read_unlock(&journal->j_state_lock); 657 jbd2_might_wait_for_commit(journal); 658 read_lock(&journal->j_state_lock); 659 } 660 #endif 661 #ifdef CONFIG_JBD2_DEBUG 662 if (!tid_geq(journal->j_commit_request, tid)) { 663 printk(KERN_ERR 664 "%s: error: j_commit_request=%u, tid=%u\n", 665 __func__, journal->j_commit_request, tid); 666 } 667 #endif 668 while (tid_gt(tid, journal->j_commit_sequence)) { 669 jbd2_debug(1, "JBD2: want %u, j_commit_sequence=%u\n", 670 tid, journal->j_commit_sequence); 671 read_unlock(&journal->j_state_lock); 672 wake_up(&journal->j_wait_commit); 673 wait_event(journal->j_wait_done_commit, 674 !tid_gt(tid, journal->j_commit_sequence)); 675 read_lock(&journal->j_state_lock); 676 } 677 read_unlock(&journal->j_state_lock); 678 679 if (unlikely(is_journal_aborted(journal))) 680 err = -EIO; 681 return err; 682 } 683 684 /* 685 * Start a fast commit. If there's an ongoing fast or full commit wait for 686 * it to complete. Returns 0 if a new fast commit was started. Returns -EALREADY 687 * if a fast commit is not needed, either because there's an already a commit 688 * going on or this tid has already been committed. Returns -EINVAL if no jbd2 689 * commit has yet been performed. 690 */ 691 int jbd2_fc_begin_commit(journal_t *journal, tid_t tid) 692 { 693 if (unlikely(is_journal_aborted(journal))) 694 return -EIO; 695 /* 696 * Fast commits only allowed if at least one full commit has 697 * been processed. 698 */ 699 if (!journal->j_stats.ts_tid) 700 return -EINVAL; 701 702 write_lock(&journal->j_state_lock); 703 if (tid_geq(journal->j_commit_sequence, tid)) { 704 write_unlock(&journal->j_state_lock); 705 return -EALREADY; 706 } 707 708 if (journal->j_flags & JBD2_FULL_COMMIT_ONGOING || 709 (journal->j_flags & JBD2_FAST_COMMIT_ONGOING)) { 710 DEFINE_WAIT(wait); 711 712 prepare_to_wait(&journal->j_fc_wait, &wait, 713 TASK_UNINTERRUPTIBLE); 714 write_unlock(&journal->j_state_lock); 715 schedule(); 716 finish_wait(&journal->j_fc_wait, &wait); 717 return -EALREADY; 718 } 719 journal->j_flags |= JBD2_FAST_COMMIT_ONGOING; 720 write_unlock(&journal->j_state_lock); 721 jbd2_journal_lock_updates(journal); 722 723 return 0; 724 } 725 EXPORT_SYMBOL(jbd2_fc_begin_commit); 726 727 /* 728 * Stop a fast commit. If fallback is set, this function starts commit of 729 * TID tid before any other fast commit can start. 730 */ 731 static int __jbd2_fc_end_commit(journal_t *journal, tid_t tid, bool fallback) 732 { 733 if (journal->j_fc_cleanup_callback) 734 journal->j_fc_cleanup_callback(journal, 0, tid); 735 jbd2_journal_unlock_updates(journal); 736 write_lock(&journal->j_state_lock); 737 journal->j_flags &= ~JBD2_FAST_COMMIT_ONGOING; 738 if (fallback) 739 journal->j_flags |= JBD2_FULL_COMMIT_ONGOING; 740 write_unlock(&journal->j_state_lock); 741 wake_up(&journal->j_fc_wait); 742 if (fallback) 743 return jbd2_complete_transaction(journal, tid); 744 return 0; 745 } 746 747 int jbd2_fc_end_commit(journal_t *journal) 748 { 749 return __jbd2_fc_end_commit(journal, 0, false); 750 } 751 EXPORT_SYMBOL(jbd2_fc_end_commit); 752 753 int jbd2_fc_end_commit_fallback(journal_t *journal) 754 { 755 tid_t tid; 756 757 read_lock(&journal->j_state_lock); 758 tid = journal->j_running_transaction ? 759 journal->j_running_transaction->t_tid : 0; 760 read_unlock(&journal->j_state_lock); 761 return __jbd2_fc_end_commit(journal, tid, true); 762 } 763 EXPORT_SYMBOL(jbd2_fc_end_commit_fallback); 764 765 /* Return 1 when transaction with given tid has already committed. */ 766 int jbd2_transaction_committed(journal_t *journal, tid_t tid) 767 { 768 return tid_geq(READ_ONCE(journal->j_commit_sequence), tid); 769 } 770 EXPORT_SYMBOL(jbd2_transaction_committed); 771 772 /* 773 * When this function returns the transaction corresponding to tid 774 * will be completed. If the transaction has currently running, start 775 * committing that transaction before waiting for it to complete. If 776 * the transaction id is stale, it is by definition already completed, 777 * so just return SUCCESS. 778 */ 779 int jbd2_complete_transaction(journal_t *journal, tid_t tid) 780 { 781 int need_to_wait = 1; 782 783 read_lock(&journal->j_state_lock); 784 if (journal->j_running_transaction && 785 journal->j_running_transaction->t_tid == tid) { 786 if (journal->j_commit_request != tid) { 787 /* transaction not yet started, so request it */ 788 read_unlock(&journal->j_state_lock); 789 jbd2_log_start_commit(journal, tid); 790 goto wait_commit; 791 } 792 } else if (!(journal->j_committing_transaction && 793 journal->j_committing_transaction->t_tid == tid)) 794 need_to_wait = 0; 795 read_unlock(&journal->j_state_lock); 796 if (!need_to_wait) 797 return 0; 798 wait_commit: 799 return jbd2_log_wait_commit(journal, tid); 800 } 801 EXPORT_SYMBOL(jbd2_complete_transaction); 802 803 /* 804 * Log buffer allocation routines: 805 */ 806 807 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp) 808 { 809 unsigned long blocknr; 810 811 write_lock(&journal->j_state_lock); 812 J_ASSERT(journal->j_free > 1); 813 814 blocknr = journal->j_head; 815 journal->j_head++; 816 journal->j_free--; 817 if (journal->j_head == journal->j_last) 818 journal->j_head = journal->j_first; 819 write_unlock(&journal->j_state_lock); 820 return jbd2_journal_bmap(journal, blocknr, retp); 821 } 822 823 /* Map one fast commit buffer for use by the file system */ 824 int jbd2_fc_get_buf(journal_t *journal, struct buffer_head **bh_out) 825 { 826 unsigned long long pblock; 827 unsigned long blocknr; 828 int ret = 0; 829 struct buffer_head *bh; 830 int fc_off; 831 832 *bh_out = NULL; 833 834 if (journal->j_fc_off + journal->j_fc_first >= journal->j_fc_last) 835 return -EINVAL; 836 837 fc_off = journal->j_fc_off; 838 blocknr = journal->j_fc_first + fc_off; 839 journal->j_fc_off++; 840 ret = jbd2_journal_bmap(journal, blocknr, &pblock); 841 if (ret) 842 return ret; 843 844 bh = __getblk(journal->j_dev, pblock, journal->j_blocksize); 845 if (!bh) 846 return -ENOMEM; 847 848 journal->j_fc_wbuf[fc_off] = bh; 849 850 *bh_out = bh; 851 852 return 0; 853 } 854 EXPORT_SYMBOL(jbd2_fc_get_buf); 855 856 /* 857 * Wait on fast commit buffers that were allocated by jbd2_fc_get_buf 858 * for completion. 859 */ 860 int jbd2_fc_wait_bufs(journal_t *journal, int num_blks) 861 { 862 struct buffer_head *bh; 863 int i, j_fc_off; 864 865 j_fc_off = journal->j_fc_off; 866 867 /* 868 * Wait in reverse order to minimize chances of us being woken up before 869 * all IOs have completed 870 */ 871 for (i = j_fc_off - 1; i >= j_fc_off - num_blks; i--) { 872 bh = journal->j_fc_wbuf[i]; 873 wait_on_buffer(bh); 874 /* 875 * Update j_fc_off so jbd2_fc_release_bufs can release remain 876 * buffer head. 877 */ 878 if (unlikely(!buffer_uptodate(bh))) { 879 journal->j_fc_off = i + 1; 880 return -EIO; 881 } 882 put_bh(bh); 883 journal->j_fc_wbuf[i] = NULL; 884 } 885 886 return 0; 887 } 888 EXPORT_SYMBOL(jbd2_fc_wait_bufs); 889 890 void jbd2_fc_release_bufs(journal_t *journal) 891 { 892 struct buffer_head *bh; 893 int i, j_fc_off; 894 895 j_fc_off = journal->j_fc_off; 896 897 for (i = j_fc_off - 1; i >= 0; i--) { 898 bh = journal->j_fc_wbuf[i]; 899 if (!bh) 900 break; 901 put_bh(bh); 902 journal->j_fc_wbuf[i] = NULL; 903 } 904 } 905 EXPORT_SYMBOL(jbd2_fc_release_bufs); 906 907 /* 908 * Conversion of logical to physical block numbers for the journal 909 * 910 * On external journals the journal blocks are identity-mapped, so 911 * this is a no-op. If needed, we can use j_blk_offset - everything is 912 * ready. 913 */ 914 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr, 915 unsigned long long *retp) 916 { 917 int err = 0; 918 unsigned long long ret; 919 sector_t block = blocknr; 920 921 if (journal->j_bmap) { 922 err = journal->j_bmap(journal, &block); 923 if (err == 0) 924 *retp = block; 925 } else if (journal->j_inode) { 926 ret = bmap(journal->j_inode, &block); 927 928 if (ret || !block) { 929 printk(KERN_ALERT "%s: journal block not found " 930 "at offset %lu on %s\n", 931 __func__, blocknr, journal->j_devname); 932 err = -EIO; 933 jbd2_journal_abort(journal, err); 934 } else { 935 *retp = block; 936 } 937 938 } else { 939 *retp = blocknr; /* +journal->j_blk_offset */ 940 } 941 return err; 942 } 943 944 /* 945 * We play buffer_head aliasing tricks to write data/metadata blocks to 946 * the journal without copying their contents, but for journal 947 * descriptor blocks we do need to generate bona fide buffers. 948 * 949 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying 950 * the buffer's contents they really should run flush_dcache_page(bh->b_page). 951 * But we don't bother doing that, so there will be coherency problems with 952 * mmaps of blockdevs which hold live JBD-controlled filesystems. 953 */ 954 struct buffer_head * 955 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type) 956 { 957 journal_t *journal = transaction->t_journal; 958 struct buffer_head *bh; 959 unsigned long long blocknr; 960 journal_header_t *header; 961 int err; 962 963 err = jbd2_journal_next_log_block(journal, &blocknr); 964 965 if (err) 966 return NULL; 967 968 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize); 969 if (!bh) 970 return NULL; 971 atomic_dec(&transaction->t_outstanding_credits); 972 lock_buffer(bh); 973 memset(bh->b_data, 0, journal->j_blocksize); 974 header = (journal_header_t *)bh->b_data; 975 header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER); 976 header->h_blocktype = cpu_to_be32(type); 977 header->h_sequence = cpu_to_be32(transaction->t_tid); 978 set_buffer_uptodate(bh); 979 unlock_buffer(bh); 980 BUFFER_TRACE(bh, "return this buffer"); 981 return bh; 982 } 983 984 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh) 985 { 986 struct jbd2_journal_block_tail *tail; 987 __u32 csum; 988 989 if (!jbd2_journal_has_csum_v2or3(j)) 990 return; 991 992 tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize - 993 sizeof(struct jbd2_journal_block_tail)); 994 tail->t_checksum = 0; 995 csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize); 996 tail->t_checksum = cpu_to_be32(csum); 997 } 998 999 /* 1000 * Return tid of the oldest transaction in the journal and block in the journal 1001 * where the transaction starts. 1002 * 1003 * If the journal is now empty, return which will be the next transaction ID 1004 * we will write and where will that transaction start. 1005 * 1006 * The return value is 0 if journal tail cannot be pushed any further, 1 if 1007 * it can. 1008 */ 1009 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid, 1010 unsigned long *block) 1011 { 1012 transaction_t *transaction; 1013 int ret; 1014 1015 read_lock(&journal->j_state_lock); 1016 spin_lock(&journal->j_list_lock); 1017 transaction = journal->j_checkpoint_transactions; 1018 if (transaction) { 1019 *tid = transaction->t_tid; 1020 *block = transaction->t_log_start; 1021 } else if ((transaction = journal->j_committing_transaction) != NULL) { 1022 *tid = transaction->t_tid; 1023 *block = transaction->t_log_start; 1024 } else if ((transaction = journal->j_running_transaction) != NULL) { 1025 *tid = transaction->t_tid; 1026 *block = journal->j_head; 1027 } else { 1028 *tid = journal->j_transaction_sequence; 1029 *block = journal->j_head; 1030 } 1031 ret = tid_gt(*tid, journal->j_tail_sequence); 1032 spin_unlock(&journal->j_list_lock); 1033 read_unlock(&journal->j_state_lock); 1034 1035 return ret; 1036 } 1037 1038 /* 1039 * Update information in journal structure and in on disk journal superblock 1040 * about log tail. This function does not check whether information passed in 1041 * really pushes log tail further. It's responsibility of the caller to make 1042 * sure provided log tail information is valid (e.g. by holding 1043 * j_checkpoint_mutex all the time between computing log tail and calling this 1044 * function as is the case with jbd2_cleanup_journal_tail()). 1045 * 1046 * Requires j_checkpoint_mutex 1047 */ 1048 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block) 1049 { 1050 unsigned long freed; 1051 int ret; 1052 1053 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1054 1055 /* 1056 * We cannot afford for write to remain in drive's caches since as 1057 * soon as we update j_tail, next transaction can start reusing journal 1058 * space and if we lose sb update during power failure we'd replay 1059 * old transaction with possibly newly overwritten data. 1060 */ 1061 ret = jbd2_journal_update_sb_log_tail(journal, tid, block, REQ_FUA); 1062 if (ret) 1063 goto out; 1064 1065 write_lock(&journal->j_state_lock); 1066 freed = block - journal->j_tail; 1067 if (block < journal->j_tail) 1068 freed += journal->j_last - journal->j_first; 1069 1070 trace_jbd2_update_log_tail(journal, tid, block, freed); 1071 jbd2_debug(1, 1072 "Cleaning journal tail from %u to %u (offset %lu), " 1073 "freeing %lu\n", 1074 journal->j_tail_sequence, tid, block, freed); 1075 1076 journal->j_free += freed; 1077 journal->j_tail_sequence = tid; 1078 journal->j_tail = block; 1079 write_unlock(&journal->j_state_lock); 1080 1081 out: 1082 return ret; 1083 } 1084 1085 /* 1086 * This is a variation of __jbd2_update_log_tail which checks for validity of 1087 * provided log tail and locks j_checkpoint_mutex. So it is safe against races 1088 * with other threads updating log tail. 1089 */ 1090 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block) 1091 { 1092 mutex_lock_io(&journal->j_checkpoint_mutex); 1093 if (tid_gt(tid, journal->j_tail_sequence)) 1094 __jbd2_update_log_tail(journal, tid, block); 1095 mutex_unlock(&journal->j_checkpoint_mutex); 1096 } 1097 1098 struct jbd2_stats_proc_session { 1099 journal_t *journal; 1100 struct transaction_stats_s *stats; 1101 int start; 1102 int max; 1103 }; 1104 1105 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos) 1106 { 1107 return *pos ? NULL : SEQ_START_TOKEN; 1108 } 1109 1110 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos) 1111 { 1112 (*pos)++; 1113 return NULL; 1114 } 1115 1116 static int jbd2_seq_info_show(struct seq_file *seq, void *v) 1117 { 1118 struct jbd2_stats_proc_session *s = seq->private; 1119 1120 if (v != SEQ_START_TOKEN) 1121 return 0; 1122 seq_printf(seq, "%lu transactions (%lu requested), " 1123 "each up to %u blocks\n", 1124 s->stats->ts_tid, s->stats->ts_requested, 1125 s->journal->j_max_transaction_buffers); 1126 if (s->stats->ts_tid == 0) 1127 return 0; 1128 seq_printf(seq, "average: \n %ums waiting for transaction\n", 1129 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid)); 1130 seq_printf(seq, " %ums request delay\n", 1131 (s->stats->ts_requested == 0) ? 0 : 1132 jiffies_to_msecs(s->stats->run.rs_request_delay / 1133 s->stats->ts_requested)); 1134 seq_printf(seq, " %ums running transaction\n", 1135 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid)); 1136 seq_printf(seq, " %ums transaction was being locked\n", 1137 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid)); 1138 seq_printf(seq, " %ums flushing data (in ordered mode)\n", 1139 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid)); 1140 seq_printf(seq, " %ums logging transaction\n", 1141 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid)); 1142 seq_printf(seq, " %lluus average transaction commit time\n", 1143 div_u64(s->journal->j_average_commit_time, 1000)); 1144 seq_printf(seq, " %lu handles per transaction\n", 1145 s->stats->run.rs_handle_count / s->stats->ts_tid); 1146 seq_printf(seq, " %lu blocks per transaction\n", 1147 s->stats->run.rs_blocks / s->stats->ts_tid); 1148 seq_printf(seq, " %lu logged blocks per transaction\n", 1149 s->stats->run.rs_blocks_logged / s->stats->ts_tid); 1150 return 0; 1151 } 1152 1153 static void jbd2_seq_info_stop(struct seq_file *seq, void *v) 1154 { 1155 } 1156 1157 static const struct seq_operations jbd2_seq_info_ops = { 1158 .start = jbd2_seq_info_start, 1159 .next = jbd2_seq_info_next, 1160 .stop = jbd2_seq_info_stop, 1161 .show = jbd2_seq_info_show, 1162 }; 1163 1164 static int jbd2_seq_info_open(struct inode *inode, struct file *file) 1165 { 1166 journal_t *journal = pde_data(inode); 1167 struct jbd2_stats_proc_session *s; 1168 int rc, size; 1169 1170 s = kmalloc(sizeof(*s), GFP_KERNEL); 1171 if (s == NULL) 1172 return -ENOMEM; 1173 size = sizeof(struct transaction_stats_s); 1174 s->stats = kmalloc(size, GFP_KERNEL); 1175 if (s->stats == NULL) { 1176 kfree(s); 1177 return -ENOMEM; 1178 } 1179 spin_lock(&journal->j_history_lock); 1180 memcpy(s->stats, &journal->j_stats, size); 1181 s->journal = journal; 1182 spin_unlock(&journal->j_history_lock); 1183 1184 rc = seq_open(file, &jbd2_seq_info_ops); 1185 if (rc == 0) { 1186 struct seq_file *m = file->private_data; 1187 m->private = s; 1188 } else { 1189 kfree(s->stats); 1190 kfree(s); 1191 } 1192 return rc; 1193 1194 } 1195 1196 static int jbd2_seq_info_release(struct inode *inode, struct file *file) 1197 { 1198 struct seq_file *seq = file->private_data; 1199 struct jbd2_stats_proc_session *s = seq->private; 1200 kfree(s->stats); 1201 kfree(s); 1202 return seq_release(inode, file); 1203 } 1204 1205 static const struct proc_ops jbd2_info_proc_ops = { 1206 .proc_open = jbd2_seq_info_open, 1207 .proc_read = seq_read, 1208 .proc_lseek = seq_lseek, 1209 .proc_release = jbd2_seq_info_release, 1210 }; 1211 1212 static struct proc_dir_entry *proc_jbd2_stats; 1213 1214 static void jbd2_stats_proc_init(journal_t *journal) 1215 { 1216 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats); 1217 if (journal->j_proc_entry) { 1218 proc_create_data("info", S_IRUGO, journal->j_proc_entry, 1219 &jbd2_info_proc_ops, journal); 1220 } 1221 } 1222 1223 static void jbd2_stats_proc_exit(journal_t *journal) 1224 { 1225 remove_proc_entry("info", journal->j_proc_entry); 1226 remove_proc_entry(journal->j_devname, proc_jbd2_stats); 1227 } 1228 1229 /* Minimum size of descriptor tag */ 1230 static int jbd2_min_tag_size(void) 1231 { 1232 /* 1233 * Tag with 32-bit block numbers does not use last four bytes of the 1234 * structure 1235 */ 1236 return sizeof(journal_block_tag_t) - 4; 1237 } 1238 1239 /** 1240 * jbd2_journal_shrink_scan() 1241 * @shrink: shrinker to work on 1242 * @sc: reclaim request to process 1243 * 1244 * Scan the checkpointed buffer on the checkpoint list and release the 1245 * journal_head. 1246 */ 1247 static unsigned long jbd2_journal_shrink_scan(struct shrinker *shrink, 1248 struct shrink_control *sc) 1249 { 1250 journal_t *journal = shrink->private_data; 1251 unsigned long nr_to_scan = sc->nr_to_scan; 1252 unsigned long nr_shrunk; 1253 unsigned long count; 1254 1255 count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count); 1256 trace_jbd2_shrink_scan_enter(journal, sc->nr_to_scan, count); 1257 1258 nr_shrunk = jbd2_journal_shrink_checkpoint_list(journal, &nr_to_scan); 1259 1260 count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count); 1261 trace_jbd2_shrink_scan_exit(journal, nr_to_scan, nr_shrunk, count); 1262 1263 return nr_shrunk; 1264 } 1265 1266 /** 1267 * jbd2_journal_shrink_count() 1268 * @shrink: shrinker to work on 1269 * @sc: reclaim request to process 1270 * 1271 * Count the number of checkpoint buffers on the checkpoint list. 1272 */ 1273 static unsigned long jbd2_journal_shrink_count(struct shrinker *shrink, 1274 struct shrink_control *sc) 1275 { 1276 journal_t *journal = shrink->private_data; 1277 unsigned long count; 1278 1279 count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count); 1280 trace_jbd2_shrink_count(journal, sc->nr_to_scan, count); 1281 1282 return count; 1283 } 1284 1285 /* 1286 * If the journal init or create aborts, we need to mark the journal 1287 * superblock as being NULL to prevent the journal destroy from writing 1288 * back a bogus superblock. 1289 */ 1290 static void journal_fail_superblock(journal_t *journal) 1291 { 1292 struct buffer_head *bh = journal->j_sb_buffer; 1293 brelse(bh); 1294 journal->j_sb_buffer = NULL; 1295 } 1296 1297 /* 1298 * Check the superblock for a given journal, performing initial 1299 * validation of the format. 1300 */ 1301 static int journal_check_superblock(journal_t *journal) 1302 { 1303 journal_superblock_t *sb = journal->j_superblock; 1304 int num_fc_blks; 1305 int err = -EINVAL; 1306 1307 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) || 1308 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) { 1309 printk(KERN_WARNING "JBD2: no valid journal superblock found\n"); 1310 return err; 1311 } 1312 1313 if (be32_to_cpu(sb->s_header.h_blocktype) != JBD2_SUPERBLOCK_V1 && 1314 be32_to_cpu(sb->s_header.h_blocktype) != JBD2_SUPERBLOCK_V2) { 1315 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n"); 1316 return err; 1317 } 1318 1319 if (be32_to_cpu(sb->s_maxlen) > journal->j_total_len) { 1320 printk(KERN_WARNING "JBD2: journal file too short\n"); 1321 return err; 1322 } 1323 1324 if (be32_to_cpu(sb->s_first) == 0 || 1325 be32_to_cpu(sb->s_first) >= journal->j_total_len) { 1326 printk(KERN_WARNING 1327 "JBD2: Invalid start block of journal: %u\n", 1328 be32_to_cpu(sb->s_first)); 1329 return err; 1330 } 1331 1332 /* 1333 * If this is a V2 superblock, then we have to check the 1334 * features flags on it. 1335 */ 1336 if (!jbd2_format_support_feature(journal)) 1337 return 0; 1338 1339 if ((sb->s_feature_ro_compat & 1340 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) || 1341 (sb->s_feature_incompat & 1342 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) { 1343 printk(KERN_WARNING "JBD2: Unrecognised features on journal\n"); 1344 return err; 1345 } 1346 1347 num_fc_blks = jbd2_has_feature_fast_commit(journal) ? 1348 jbd2_journal_get_num_fc_blks(sb) : 0; 1349 if (be32_to_cpu(sb->s_maxlen) < JBD2_MIN_JOURNAL_BLOCKS || 1350 be32_to_cpu(sb->s_maxlen) - JBD2_MIN_JOURNAL_BLOCKS < num_fc_blks) { 1351 printk(KERN_ERR "JBD2: journal file too short %u,%d\n", 1352 be32_to_cpu(sb->s_maxlen), num_fc_blks); 1353 return err; 1354 } 1355 1356 if (jbd2_has_feature_csum2(journal) && 1357 jbd2_has_feature_csum3(journal)) { 1358 /* Can't have checksum v2 and v3 at the same time! */ 1359 printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 " 1360 "at the same time!\n"); 1361 return err; 1362 } 1363 1364 if (jbd2_journal_has_csum_v2or3_feature(journal) && 1365 jbd2_has_feature_checksum(journal)) { 1366 /* Can't have checksum v1 and v2 on at the same time! */ 1367 printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 " 1368 "at the same time!\n"); 1369 return err; 1370 } 1371 1372 /* Load the checksum driver */ 1373 if (jbd2_journal_has_csum_v2or3_feature(journal)) { 1374 if (sb->s_checksum_type != JBD2_CRC32C_CHKSUM) { 1375 printk(KERN_ERR "JBD2: Unknown checksum type\n"); 1376 return err; 1377 } 1378 1379 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 1380 if (IS_ERR(journal->j_chksum_driver)) { 1381 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n"); 1382 err = PTR_ERR(journal->j_chksum_driver); 1383 journal->j_chksum_driver = NULL; 1384 return err; 1385 } 1386 /* Check superblock checksum */ 1387 if (sb->s_checksum != jbd2_superblock_csum(journal, sb)) { 1388 printk(KERN_ERR "JBD2: journal checksum error\n"); 1389 err = -EFSBADCRC; 1390 return err; 1391 } 1392 } 1393 1394 return 0; 1395 } 1396 1397 static int journal_revoke_records_per_block(journal_t *journal) 1398 { 1399 int record_size; 1400 int space = journal->j_blocksize - sizeof(jbd2_journal_revoke_header_t); 1401 1402 if (jbd2_has_feature_64bit(journal)) 1403 record_size = 8; 1404 else 1405 record_size = 4; 1406 1407 if (jbd2_journal_has_csum_v2or3(journal)) 1408 space -= sizeof(struct jbd2_journal_block_tail); 1409 return space / record_size; 1410 } 1411 1412 static int jbd2_journal_get_max_txn_bufs(journal_t *journal) 1413 { 1414 return (journal->j_total_len - journal->j_fc_wbufsize) / 3; 1415 } 1416 1417 /* 1418 * Base amount of descriptor blocks we reserve for each transaction. 1419 */ 1420 static int jbd2_descriptor_blocks_per_trans(journal_t *journal) 1421 { 1422 int tag_space = journal->j_blocksize - sizeof(journal_header_t); 1423 int tags_per_block; 1424 1425 /* Subtract UUID */ 1426 tag_space -= 16; 1427 if (jbd2_journal_has_csum_v2or3(journal)) 1428 tag_space -= sizeof(struct jbd2_journal_block_tail); 1429 /* Commit code leaves a slack space of 16 bytes at the end of block */ 1430 tags_per_block = (tag_space - 16) / journal_tag_bytes(journal); 1431 /* 1432 * Revoke descriptors are accounted separately so we need to reserve 1433 * space for commit block and normal transaction descriptor blocks. 1434 */ 1435 return 1 + DIV_ROUND_UP(jbd2_journal_get_max_txn_bufs(journal), 1436 tags_per_block); 1437 } 1438 1439 /* 1440 * Initialize number of blocks each transaction reserves for its bookkeeping 1441 * and maximum number of blocks a transaction can use. This needs to be called 1442 * after the journal size and the fastcommit area size are initialized. 1443 */ 1444 static void jbd2_journal_init_transaction_limits(journal_t *journal) 1445 { 1446 journal->j_revoke_records_per_block = 1447 journal_revoke_records_per_block(journal); 1448 journal->j_transaction_overhead_buffers = 1449 jbd2_descriptor_blocks_per_trans(journal); 1450 journal->j_max_transaction_buffers = 1451 jbd2_journal_get_max_txn_bufs(journal); 1452 } 1453 1454 /* 1455 * Load the on-disk journal superblock and read the key fields into the 1456 * journal_t. 1457 */ 1458 static int journal_load_superblock(journal_t *journal) 1459 { 1460 int err; 1461 struct buffer_head *bh; 1462 journal_superblock_t *sb; 1463 1464 bh = getblk_unmovable(journal->j_dev, journal->j_blk_offset, 1465 journal->j_blocksize); 1466 if (bh) 1467 err = bh_read(bh, 0); 1468 if (!bh || err < 0) { 1469 pr_err("%s: Cannot read journal superblock\n", __func__); 1470 brelse(bh); 1471 return -EIO; 1472 } 1473 1474 journal->j_sb_buffer = bh; 1475 sb = (journal_superblock_t *)bh->b_data; 1476 journal->j_superblock = sb; 1477 err = journal_check_superblock(journal); 1478 if (err) { 1479 journal_fail_superblock(journal); 1480 return err; 1481 } 1482 1483 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence); 1484 journal->j_tail = be32_to_cpu(sb->s_start); 1485 journal->j_first = be32_to_cpu(sb->s_first); 1486 journal->j_errno = be32_to_cpu(sb->s_errno); 1487 journal->j_last = be32_to_cpu(sb->s_maxlen); 1488 1489 if (be32_to_cpu(sb->s_maxlen) < journal->j_total_len) 1490 journal->j_total_len = be32_to_cpu(sb->s_maxlen); 1491 /* Precompute checksum seed for all metadata */ 1492 if (jbd2_journal_has_csum_v2or3(journal)) 1493 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid, 1494 sizeof(sb->s_uuid)); 1495 /* After journal features are set, we can compute transaction limits */ 1496 jbd2_journal_init_transaction_limits(journal); 1497 1498 if (jbd2_has_feature_fast_commit(journal)) { 1499 journal->j_fc_last = be32_to_cpu(sb->s_maxlen); 1500 journal->j_last = journal->j_fc_last - 1501 jbd2_journal_get_num_fc_blks(sb); 1502 journal->j_fc_first = journal->j_last + 1; 1503 journal->j_fc_off = 0; 1504 } 1505 1506 return 0; 1507 } 1508 1509 1510 /* 1511 * Management for journal control blocks: functions to create and 1512 * destroy journal_t structures, and to initialise and read existing 1513 * journal blocks from disk. */ 1514 1515 /* The journal_init_common() function creates and fills a journal_t object 1516 * in memory. It calls journal_load_superblock() to load the on-disk journal 1517 * superblock and initialize the journal_t object. 1518 */ 1519 1520 static journal_t *journal_init_common(struct block_device *bdev, 1521 struct block_device *fs_dev, 1522 unsigned long long start, int len, int blocksize) 1523 { 1524 static struct lock_class_key jbd2_trans_commit_key; 1525 journal_t *journal; 1526 int err; 1527 int n; 1528 1529 journal = kzalloc(sizeof(*journal), GFP_KERNEL); 1530 if (!journal) 1531 return ERR_PTR(-ENOMEM); 1532 1533 journal->j_blocksize = blocksize; 1534 journal->j_dev = bdev; 1535 journal->j_fs_dev = fs_dev; 1536 journal->j_blk_offset = start; 1537 journal->j_total_len = len; 1538 jbd2_init_fs_dev_write_error(journal); 1539 1540 err = journal_load_superblock(journal); 1541 if (err) 1542 goto err_cleanup; 1543 1544 init_waitqueue_head(&journal->j_wait_transaction_locked); 1545 init_waitqueue_head(&journal->j_wait_done_commit); 1546 init_waitqueue_head(&journal->j_wait_commit); 1547 init_waitqueue_head(&journal->j_wait_updates); 1548 init_waitqueue_head(&journal->j_wait_reserved); 1549 init_waitqueue_head(&journal->j_fc_wait); 1550 mutex_init(&journal->j_abort_mutex); 1551 mutex_init(&journal->j_barrier); 1552 mutex_init(&journal->j_checkpoint_mutex); 1553 spin_lock_init(&journal->j_revoke_lock); 1554 spin_lock_init(&journal->j_list_lock); 1555 spin_lock_init(&journal->j_history_lock); 1556 rwlock_init(&journal->j_state_lock); 1557 1558 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE); 1559 journal->j_min_batch_time = 0; 1560 journal->j_max_batch_time = 15000; /* 15ms */ 1561 atomic_set(&journal->j_reserved_credits, 0); 1562 lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle", 1563 &jbd2_trans_commit_key, 0); 1564 1565 /* The journal is marked for error until we succeed with recovery! */ 1566 journal->j_flags = JBD2_ABORT; 1567 1568 /* Set up a default-sized revoke table for the new mount. */ 1569 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH); 1570 if (err) 1571 goto err_cleanup; 1572 1573 /* 1574 * journal descriptor can store up to n blocks, we need enough 1575 * buffers to write out full descriptor block. 1576 */ 1577 err = -ENOMEM; 1578 n = journal->j_blocksize / jbd2_min_tag_size(); 1579 journal->j_wbufsize = n; 1580 journal->j_fc_wbuf = NULL; 1581 journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *), 1582 GFP_KERNEL); 1583 if (!journal->j_wbuf) 1584 goto err_cleanup; 1585 1586 err = percpu_counter_init(&journal->j_checkpoint_jh_count, 0, 1587 GFP_KERNEL); 1588 if (err) 1589 goto err_cleanup; 1590 1591 journal->j_shrink_transaction = NULL; 1592 1593 journal->j_shrinker = shrinker_alloc(0, "jbd2-journal:(%u:%u)", 1594 MAJOR(bdev->bd_dev), 1595 MINOR(bdev->bd_dev)); 1596 if (!journal->j_shrinker) { 1597 err = -ENOMEM; 1598 goto err_cleanup; 1599 } 1600 1601 journal->j_shrinker->scan_objects = jbd2_journal_shrink_scan; 1602 journal->j_shrinker->count_objects = jbd2_journal_shrink_count; 1603 journal->j_shrinker->private_data = journal; 1604 1605 shrinker_register(journal->j_shrinker); 1606 1607 return journal; 1608 1609 err_cleanup: 1610 percpu_counter_destroy(&journal->j_checkpoint_jh_count); 1611 if (journal->j_chksum_driver) 1612 crypto_free_shash(journal->j_chksum_driver); 1613 kfree(journal->j_wbuf); 1614 jbd2_journal_destroy_revoke(journal); 1615 journal_fail_superblock(journal); 1616 kfree(journal); 1617 return ERR_PTR(err); 1618 } 1619 1620 /* jbd2_journal_init_dev and jbd2_journal_init_inode: 1621 * 1622 * Create a journal structure assigned some fixed set of disk blocks to 1623 * the journal. We don't actually touch those disk blocks yet, but we 1624 * need to set up all of the mapping information to tell the journaling 1625 * system where the journal blocks are. 1626 * 1627 */ 1628 1629 /** 1630 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure 1631 * @bdev: Block device on which to create the journal 1632 * @fs_dev: Device which hold journalled filesystem for this journal. 1633 * @start: Block nr Start of journal. 1634 * @len: Length of the journal in blocks. 1635 * @blocksize: blocksize of journalling device 1636 * 1637 * Returns: a newly created journal_t * 1638 * 1639 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous 1640 * range of blocks on an arbitrary block device. 1641 * 1642 */ 1643 journal_t *jbd2_journal_init_dev(struct block_device *bdev, 1644 struct block_device *fs_dev, 1645 unsigned long long start, int len, int blocksize) 1646 { 1647 journal_t *journal; 1648 1649 journal = journal_init_common(bdev, fs_dev, start, len, blocksize); 1650 if (IS_ERR(journal)) 1651 return ERR_CAST(journal); 1652 1653 snprintf(journal->j_devname, sizeof(journal->j_devname), 1654 "%pg", journal->j_dev); 1655 strreplace(journal->j_devname, '/', '!'); 1656 jbd2_stats_proc_init(journal); 1657 1658 return journal; 1659 } 1660 1661 /** 1662 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode. 1663 * @inode: An inode to create the journal in 1664 * 1665 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as 1666 * the journal. The inode must exist already, must support bmap() and 1667 * must have all data blocks preallocated. 1668 */ 1669 journal_t *jbd2_journal_init_inode(struct inode *inode) 1670 { 1671 journal_t *journal; 1672 sector_t blocknr; 1673 int err = 0; 1674 1675 blocknr = 0; 1676 err = bmap(inode, &blocknr); 1677 if (err || !blocknr) { 1678 pr_err("%s: Cannot locate journal superblock\n", __func__); 1679 return err ? ERR_PTR(err) : ERR_PTR(-EINVAL); 1680 } 1681 1682 jbd2_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n", 1683 inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size, 1684 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize); 1685 1686 journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev, 1687 blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits, 1688 inode->i_sb->s_blocksize); 1689 if (IS_ERR(journal)) 1690 return ERR_CAST(journal); 1691 1692 journal->j_inode = inode; 1693 snprintf(journal->j_devname, sizeof(journal->j_devname), 1694 "%pg-%lu", journal->j_dev, journal->j_inode->i_ino); 1695 strreplace(journal->j_devname, '/', '!'); 1696 jbd2_stats_proc_init(journal); 1697 1698 return journal; 1699 } 1700 1701 /* 1702 * Given a journal_t structure, initialise the various fields for 1703 * startup of a new journaling session. We use this both when creating 1704 * a journal, and after recovering an old journal to reset it for 1705 * subsequent use. 1706 */ 1707 1708 static int journal_reset(journal_t *journal) 1709 { 1710 journal_superblock_t *sb = journal->j_superblock; 1711 unsigned long long first, last; 1712 1713 first = be32_to_cpu(sb->s_first); 1714 last = be32_to_cpu(sb->s_maxlen); 1715 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) { 1716 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n", 1717 first, last); 1718 journal_fail_superblock(journal); 1719 return -EINVAL; 1720 } 1721 1722 journal->j_first = first; 1723 journal->j_last = last; 1724 1725 if (journal->j_head != 0 && journal->j_flags & JBD2_CYCLE_RECORD) { 1726 /* 1727 * Disable the cycled recording mode if the journal head block 1728 * number is not correct. 1729 */ 1730 if (journal->j_head < first || journal->j_head >= last) { 1731 printk(KERN_WARNING "JBD2: Incorrect Journal head block %lu, " 1732 "disable journal_cycle_record\n", 1733 journal->j_head); 1734 journal->j_head = journal->j_first; 1735 } 1736 } else { 1737 journal->j_head = journal->j_first; 1738 } 1739 journal->j_tail = journal->j_head; 1740 journal->j_free = journal->j_last - journal->j_first; 1741 1742 journal->j_tail_sequence = journal->j_transaction_sequence; 1743 journal->j_commit_sequence = journal->j_transaction_sequence - 1; 1744 journal->j_commit_request = journal->j_commit_sequence; 1745 1746 /* 1747 * Now that journal recovery is done, turn fast commits off here. This 1748 * way, if fast commit was enabled before the crash but if now FS has 1749 * disabled it, we don't enable fast commits. 1750 */ 1751 jbd2_clear_feature_fast_commit(journal); 1752 1753 /* 1754 * As a special case, if the on-disk copy is already marked as needing 1755 * no recovery (s_start == 0), then we can safely defer the superblock 1756 * update until the next commit by setting JBD2_FLUSHED. This avoids 1757 * attempting a write to a potential-readonly device. 1758 */ 1759 if (sb->s_start == 0) { 1760 jbd2_debug(1, "JBD2: Skipping superblock update on recovered sb " 1761 "(start %ld, seq %u, errno %d)\n", 1762 journal->j_tail, journal->j_tail_sequence, 1763 journal->j_errno); 1764 journal->j_flags |= JBD2_FLUSHED; 1765 } else { 1766 /* Lock here to make assertions happy... */ 1767 mutex_lock_io(&journal->j_checkpoint_mutex); 1768 /* 1769 * Update log tail information. We use REQ_FUA since new 1770 * transaction will start reusing journal space and so we 1771 * must make sure information about current log tail is on 1772 * disk before that. 1773 */ 1774 jbd2_journal_update_sb_log_tail(journal, 1775 journal->j_tail_sequence, 1776 journal->j_tail, REQ_FUA); 1777 mutex_unlock(&journal->j_checkpoint_mutex); 1778 } 1779 return jbd2_journal_start_thread(journal); 1780 } 1781 1782 /* 1783 * This function expects that the caller will have locked the journal 1784 * buffer head, and will return with it unlocked 1785 */ 1786 static int jbd2_write_superblock(journal_t *journal, blk_opf_t write_flags) 1787 { 1788 struct buffer_head *bh = journal->j_sb_buffer; 1789 journal_superblock_t *sb = journal->j_superblock; 1790 int ret = 0; 1791 1792 /* Buffer got discarded which means block device got invalidated */ 1793 if (!buffer_mapped(bh)) { 1794 unlock_buffer(bh); 1795 return -EIO; 1796 } 1797 1798 /* 1799 * Always set high priority flags to exempt from block layer's 1800 * QOS policies, e.g. writeback throttle. 1801 */ 1802 write_flags |= JBD2_JOURNAL_REQ_FLAGS; 1803 if (!(journal->j_flags & JBD2_BARRIER)) 1804 write_flags &= ~(REQ_FUA | REQ_PREFLUSH); 1805 1806 trace_jbd2_write_superblock(journal, write_flags); 1807 1808 if (buffer_write_io_error(bh)) { 1809 /* 1810 * Oh, dear. A previous attempt to write the journal 1811 * superblock failed. This could happen because the 1812 * USB device was yanked out. Or it could happen to 1813 * be a transient write error and maybe the block will 1814 * be remapped. Nothing we can do but to retry the 1815 * write and hope for the best. 1816 */ 1817 printk(KERN_ERR "JBD2: previous I/O error detected " 1818 "for journal superblock update for %s.\n", 1819 journal->j_devname); 1820 clear_buffer_write_io_error(bh); 1821 set_buffer_uptodate(bh); 1822 } 1823 if (jbd2_journal_has_csum_v2or3(journal)) 1824 sb->s_checksum = jbd2_superblock_csum(journal, sb); 1825 get_bh(bh); 1826 bh->b_end_io = end_buffer_write_sync; 1827 submit_bh(REQ_OP_WRITE | write_flags, bh); 1828 wait_on_buffer(bh); 1829 if (buffer_write_io_error(bh)) { 1830 clear_buffer_write_io_error(bh); 1831 set_buffer_uptodate(bh); 1832 ret = -EIO; 1833 } 1834 if (ret) { 1835 printk(KERN_ERR "JBD2: I/O error when updating journal superblock for %s.\n", 1836 journal->j_devname); 1837 if (!is_journal_aborted(journal)) 1838 jbd2_journal_abort(journal, ret); 1839 } 1840 1841 return ret; 1842 } 1843 1844 /** 1845 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk. 1846 * @journal: The journal to update. 1847 * @tail_tid: TID of the new transaction at the tail of the log 1848 * @tail_block: The first block of the transaction at the tail of the log 1849 * @write_flags: Flags for the journal sb write operation 1850 * 1851 * Update a journal's superblock information about log tail and write it to 1852 * disk, waiting for the IO to complete. 1853 */ 1854 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid, 1855 unsigned long tail_block, 1856 blk_opf_t write_flags) 1857 { 1858 journal_superblock_t *sb = journal->j_superblock; 1859 int ret; 1860 1861 if (is_journal_aborted(journal)) 1862 return -EIO; 1863 if (jbd2_check_fs_dev_write_error(journal)) { 1864 jbd2_journal_abort(journal, -EIO); 1865 return -EIO; 1866 } 1867 1868 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1869 jbd2_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n", 1870 tail_block, tail_tid); 1871 1872 lock_buffer(journal->j_sb_buffer); 1873 sb->s_sequence = cpu_to_be32(tail_tid); 1874 sb->s_start = cpu_to_be32(tail_block); 1875 1876 ret = jbd2_write_superblock(journal, write_flags); 1877 if (ret) 1878 goto out; 1879 1880 /* Log is no longer empty */ 1881 write_lock(&journal->j_state_lock); 1882 WARN_ON(!sb->s_sequence); 1883 journal->j_flags &= ~JBD2_FLUSHED; 1884 write_unlock(&journal->j_state_lock); 1885 1886 out: 1887 return ret; 1888 } 1889 1890 /** 1891 * jbd2_mark_journal_empty() - Mark on disk journal as empty. 1892 * @journal: The journal to update. 1893 * @write_flags: Flags for the journal sb write operation 1894 * 1895 * Update a journal's dynamic superblock fields to show that journal is empty. 1896 * Write updated superblock to disk waiting for IO to complete. 1897 */ 1898 static void jbd2_mark_journal_empty(journal_t *journal, blk_opf_t write_flags) 1899 { 1900 journal_superblock_t *sb = journal->j_superblock; 1901 bool had_fast_commit = false; 1902 1903 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1904 lock_buffer(journal->j_sb_buffer); 1905 if (sb->s_start == 0) { /* Is it already empty? */ 1906 unlock_buffer(journal->j_sb_buffer); 1907 return; 1908 } 1909 1910 jbd2_debug(1, "JBD2: Marking journal as empty (seq %u)\n", 1911 journal->j_tail_sequence); 1912 1913 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence); 1914 sb->s_start = cpu_to_be32(0); 1915 sb->s_head = cpu_to_be32(journal->j_head); 1916 if (jbd2_has_feature_fast_commit(journal)) { 1917 /* 1918 * When journal is clean, no need to commit fast commit flag and 1919 * make file system incompatible with older kernels. 1920 */ 1921 jbd2_clear_feature_fast_commit(journal); 1922 had_fast_commit = true; 1923 } 1924 1925 jbd2_write_superblock(journal, write_flags); 1926 1927 if (had_fast_commit) 1928 jbd2_set_feature_fast_commit(journal); 1929 1930 /* Log is empty */ 1931 write_lock(&journal->j_state_lock); 1932 journal->j_flags |= JBD2_FLUSHED; 1933 write_unlock(&journal->j_state_lock); 1934 } 1935 1936 /** 1937 * __jbd2_journal_erase() - Discard or zeroout journal blocks (excluding superblock) 1938 * @journal: The journal to erase. 1939 * @flags: A discard/zeroout request is sent for each physically contigous 1940 * region of the journal. Either JBD2_JOURNAL_FLUSH_DISCARD or 1941 * JBD2_JOURNAL_FLUSH_ZEROOUT must be set to determine which operation 1942 * to perform. 1943 * 1944 * Note: JBD2_JOURNAL_FLUSH_ZEROOUT attempts to use hardware offload. Zeroes 1945 * will be explicitly written if no hardware offload is available, see 1946 * blkdev_issue_zeroout for more details. 1947 */ 1948 static int __jbd2_journal_erase(journal_t *journal, unsigned int flags) 1949 { 1950 int err = 0; 1951 unsigned long block, log_offset; /* logical */ 1952 unsigned long long phys_block, block_start, block_stop; /* physical */ 1953 loff_t byte_start, byte_stop, byte_count; 1954 1955 /* flags must be set to either discard or zeroout */ 1956 if ((flags & ~JBD2_JOURNAL_FLUSH_VALID) || !flags || 1957 ((flags & JBD2_JOURNAL_FLUSH_DISCARD) && 1958 (flags & JBD2_JOURNAL_FLUSH_ZEROOUT))) 1959 return -EINVAL; 1960 1961 if ((flags & JBD2_JOURNAL_FLUSH_DISCARD) && 1962 !bdev_max_discard_sectors(journal->j_dev)) 1963 return -EOPNOTSUPP; 1964 1965 /* 1966 * lookup block mapping and issue discard/zeroout for each 1967 * contiguous region 1968 */ 1969 log_offset = be32_to_cpu(journal->j_superblock->s_first); 1970 block_start = ~0ULL; 1971 for (block = log_offset; block < journal->j_total_len; block++) { 1972 err = jbd2_journal_bmap(journal, block, &phys_block); 1973 if (err) { 1974 pr_err("JBD2: bad block at offset %lu", block); 1975 return err; 1976 } 1977 1978 if (block_start == ~0ULL) { 1979 block_start = phys_block; 1980 block_stop = block_start - 1; 1981 } 1982 1983 /* 1984 * last block not contiguous with current block, 1985 * process last contiguous region and return to this block on 1986 * next loop 1987 */ 1988 if (phys_block != block_stop + 1) { 1989 block--; 1990 } else { 1991 block_stop++; 1992 /* 1993 * if this isn't the last block of journal, 1994 * no need to process now because next block may also 1995 * be part of this contiguous region 1996 */ 1997 if (block != journal->j_total_len - 1) 1998 continue; 1999 } 2000 2001 /* 2002 * end of contiguous region or this is last block of journal, 2003 * take care of the region 2004 */ 2005 byte_start = block_start * journal->j_blocksize; 2006 byte_stop = block_stop * journal->j_blocksize; 2007 byte_count = (block_stop - block_start + 1) * 2008 journal->j_blocksize; 2009 2010 truncate_inode_pages_range(journal->j_dev->bd_mapping, 2011 byte_start, byte_stop); 2012 2013 if (flags & JBD2_JOURNAL_FLUSH_DISCARD) { 2014 err = blkdev_issue_discard(journal->j_dev, 2015 byte_start >> SECTOR_SHIFT, 2016 byte_count >> SECTOR_SHIFT, 2017 GFP_NOFS); 2018 } else if (flags & JBD2_JOURNAL_FLUSH_ZEROOUT) { 2019 err = blkdev_issue_zeroout(journal->j_dev, 2020 byte_start >> SECTOR_SHIFT, 2021 byte_count >> SECTOR_SHIFT, 2022 GFP_NOFS, 0); 2023 } 2024 2025 if (unlikely(err != 0)) { 2026 pr_err("JBD2: (error %d) unable to wipe journal at physical blocks %llu - %llu", 2027 err, block_start, block_stop); 2028 return err; 2029 } 2030 2031 /* reset start and stop after processing a region */ 2032 block_start = ~0ULL; 2033 } 2034 2035 return blkdev_issue_flush(journal->j_dev); 2036 } 2037 2038 /** 2039 * jbd2_journal_update_sb_errno() - Update error in the journal. 2040 * @journal: The journal to update. 2041 * 2042 * Update a journal's errno. Write updated superblock to disk waiting for IO 2043 * to complete. 2044 */ 2045 void jbd2_journal_update_sb_errno(journal_t *journal) 2046 { 2047 journal_superblock_t *sb = journal->j_superblock; 2048 int errcode; 2049 2050 lock_buffer(journal->j_sb_buffer); 2051 errcode = journal->j_errno; 2052 if (errcode == -ESHUTDOWN) 2053 errcode = 0; 2054 jbd2_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode); 2055 sb->s_errno = cpu_to_be32(errcode); 2056 2057 jbd2_write_superblock(journal, REQ_FUA); 2058 } 2059 EXPORT_SYMBOL(jbd2_journal_update_sb_errno); 2060 2061 /** 2062 * jbd2_journal_load() - Read journal from disk. 2063 * @journal: Journal to act on. 2064 * 2065 * Given a journal_t structure which tells us which disk blocks contain 2066 * a journal, read the journal from disk to initialise the in-memory 2067 * structures. 2068 */ 2069 int jbd2_journal_load(journal_t *journal) 2070 { 2071 int err; 2072 journal_superblock_t *sb = journal->j_superblock; 2073 2074 /* 2075 * Create a slab for this blocksize 2076 */ 2077 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize)); 2078 if (err) 2079 return err; 2080 2081 /* Let the recovery code check whether it needs to recover any 2082 * data from the journal. */ 2083 err = jbd2_journal_recover(journal); 2084 if (err) { 2085 pr_warn("JBD2: journal recovery failed\n"); 2086 return err; 2087 } 2088 2089 if (journal->j_failed_commit) { 2090 printk(KERN_ERR "JBD2: journal transaction %u on %s " 2091 "is corrupt.\n", journal->j_failed_commit, 2092 journal->j_devname); 2093 return -EFSCORRUPTED; 2094 } 2095 /* 2096 * clear JBD2_ABORT flag initialized in journal_init_common 2097 * here to update log tail information with the newest seq. 2098 */ 2099 journal->j_flags &= ~JBD2_ABORT; 2100 2101 /* OK, we've finished with the dynamic journal bits: 2102 * reinitialise the dynamic contents of the superblock in memory 2103 * and reset them on disk. */ 2104 err = journal_reset(journal); 2105 if (err) { 2106 pr_warn("JBD2: journal reset failed\n"); 2107 return err; 2108 } 2109 2110 journal->j_flags |= JBD2_LOADED; 2111 return 0; 2112 } 2113 2114 /** 2115 * jbd2_journal_destroy() - Release a journal_t structure. 2116 * @journal: Journal to act on. 2117 * 2118 * Release a journal_t structure once it is no longer in use by the 2119 * journaled object. 2120 * Return <0 if we couldn't clean up the journal. 2121 */ 2122 int jbd2_journal_destroy(journal_t *journal) 2123 { 2124 int err = 0; 2125 2126 /* Wait for the commit thread to wake up and die. */ 2127 journal_kill_thread(journal); 2128 2129 /* Force a final log commit */ 2130 if (journal->j_running_transaction) 2131 jbd2_journal_commit_transaction(journal); 2132 2133 /* Force any old transactions to disk */ 2134 2135 /* Totally anal locking here... */ 2136 spin_lock(&journal->j_list_lock); 2137 while (journal->j_checkpoint_transactions != NULL) { 2138 spin_unlock(&journal->j_list_lock); 2139 mutex_lock_io(&journal->j_checkpoint_mutex); 2140 err = jbd2_log_do_checkpoint(journal); 2141 mutex_unlock(&journal->j_checkpoint_mutex); 2142 /* 2143 * If checkpointing failed, just free the buffers to avoid 2144 * looping forever 2145 */ 2146 if (err) { 2147 jbd2_journal_destroy_checkpoint(journal); 2148 spin_lock(&journal->j_list_lock); 2149 break; 2150 } 2151 spin_lock(&journal->j_list_lock); 2152 } 2153 2154 J_ASSERT(journal->j_running_transaction == NULL); 2155 J_ASSERT(journal->j_committing_transaction == NULL); 2156 J_ASSERT(journal->j_checkpoint_transactions == NULL); 2157 spin_unlock(&journal->j_list_lock); 2158 2159 /* 2160 * OK, all checkpoint transactions have been checked, now check the 2161 * writeback errseq of fs dev and abort the journal if some buffer 2162 * failed to write back to the original location, otherwise the 2163 * filesystem may become inconsistent. 2164 */ 2165 if (!is_journal_aborted(journal) && 2166 jbd2_check_fs_dev_write_error(journal)) 2167 jbd2_journal_abort(journal, -EIO); 2168 2169 if (journal->j_sb_buffer) { 2170 if (!is_journal_aborted(journal)) { 2171 mutex_lock_io(&journal->j_checkpoint_mutex); 2172 2173 write_lock(&journal->j_state_lock); 2174 journal->j_tail_sequence = 2175 ++journal->j_transaction_sequence; 2176 write_unlock(&journal->j_state_lock); 2177 2178 jbd2_mark_journal_empty(journal, REQ_PREFLUSH | REQ_FUA); 2179 mutex_unlock(&journal->j_checkpoint_mutex); 2180 } else 2181 err = -EIO; 2182 brelse(journal->j_sb_buffer); 2183 } 2184 2185 if (journal->j_shrinker) { 2186 percpu_counter_destroy(&journal->j_checkpoint_jh_count); 2187 shrinker_free(journal->j_shrinker); 2188 } 2189 if (journal->j_proc_entry) 2190 jbd2_stats_proc_exit(journal); 2191 iput(journal->j_inode); 2192 if (journal->j_revoke) 2193 jbd2_journal_destroy_revoke(journal); 2194 if (journal->j_chksum_driver) 2195 crypto_free_shash(journal->j_chksum_driver); 2196 kfree(journal->j_fc_wbuf); 2197 kfree(journal->j_wbuf); 2198 kfree(journal); 2199 2200 return err; 2201 } 2202 2203 2204 /** 2205 * jbd2_journal_check_used_features() - Check if features specified are used. 2206 * @journal: Journal to check. 2207 * @compat: bitmask of compatible features 2208 * @ro: bitmask of features that force read-only mount 2209 * @incompat: bitmask of incompatible features 2210 * 2211 * Check whether the journal uses all of a given set of 2212 * features. Return true (non-zero) if it does. 2213 **/ 2214 2215 int jbd2_journal_check_used_features(journal_t *journal, unsigned long compat, 2216 unsigned long ro, unsigned long incompat) 2217 { 2218 journal_superblock_t *sb; 2219 2220 if (!compat && !ro && !incompat) 2221 return 1; 2222 if (!jbd2_format_support_feature(journal)) 2223 return 0; 2224 2225 sb = journal->j_superblock; 2226 2227 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) && 2228 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) && 2229 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat)) 2230 return 1; 2231 2232 return 0; 2233 } 2234 2235 /** 2236 * jbd2_journal_check_available_features() - Check feature set in journalling layer 2237 * @journal: Journal to check. 2238 * @compat: bitmask of compatible features 2239 * @ro: bitmask of features that force read-only mount 2240 * @incompat: bitmask of incompatible features 2241 * 2242 * Check whether the journaling code supports the use of 2243 * all of a given set of features on this journal. Return true 2244 * (non-zero) if it can. */ 2245 2246 int jbd2_journal_check_available_features(journal_t *journal, unsigned long compat, 2247 unsigned long ro, unsigned long incompat) 2248 { 2249 if (!compat && !ro && !incompat) 2250 return 1; 2251 2252 if (!jbd2_format_support_feature(journal)) 2253 return 0; 2254 2255 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat && 2256 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro && 2257 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat) 2258 return 1; 2259 2260 return 0; 2261 } 2262 2263 static int 2264 jbd2_journal_initialize_fast_commit(journal_t *journal) 2265 { 2266 journal_superblock_t *sb = journal->j_superblock; 2267 unsigned long long num_fc_blks; 2268 2269 num_fc_blks = jbd2_journal_get_num_fc_blks(sb); 2270 if (journal->j_last - num_fc_blks < JBD2_MIN_JOURNAL_BLOCKS) 2271 return -ENOSPC; 2272 2273 /* Are we called twice? */ 2274 WARN_ON(journal->j_fc_wbuf != NULL); 2275 journal->j_fc_wbuf = kmalloc_array(num_fc_blks, 2276 sizeof(struct buffer_head *), GFP_KERNEL); 2277 if (!journal->j_fc_wbuf) 2278 return -ENOMEM; 2279 2280 journal->j_fc_wbufsize = num_fc_blks; 2281 journal->j_fc_last = journal->j_last; 2282 journal->j_last = journal->j_fc_last - num_fc_blks; 2283 journal->j_fc_first = journal->j_last + 1; 2284 journal->j_fc_off = 0; 2285 journal->j_free = journal->j_last - journal->j_first; 2286 2287 return 0; 2288 } 2289 2290 /** 2291 * jbd2_journal_set_features() - Mark a given journal feature in the superblock 2292 * @journal: Journal to act on. 2293 * @compat: bitmask of compatible features 2294 * @ro: bitmask of features that force read-only mount 2295 * @incompat: bitmask of incompatible features 2296 * 2297 * Mark a given journal feature as present on the 2298 * superblock. Returns true if the requested features could be set. 2299 * 2300 */ 2301 2302 int jbd2_journal_set_features(journal_t *journal, unsigned long compat, 2303 unsigned long ro, unsigned long incompat) 2304 { 2305 #define INCOMPAT_FEATURE_ON(f) \ 2306 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f))) 2307 #define COMPAT_FEATURE_ON(f) \ 2308 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f))) 2309 journal_superblock_t *sb; 2310 2311 if (jbd2_journal_check_used_features(journal, compat, ro, incompat)) 2312 return 1; 2313 2314 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat)) 2315 return 0; 2316 2317 /* If enabling v2 checksums, turn on v3 instead */ 2318 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) { 2319 incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2; 2320 incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3; 2321 } 2322 2323 /* Asking for checksumming v3 and v1? Only give them v3. */ 2324 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 && 2325 compat & JBD2_FEATURE_COMPAT_CHECKSUM) 2326 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM; 2327 2328 jbd2_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n", 2329 compat, ro, incompat); 2330 2331 sb = journal->j_superblock; 2332 2333 if (incompat & JBD2_FEATURE_INCOMPAT_FAST_COMMIT) { 2334 if (jbd2_journal_initialize_fast_commit(journal)) { 2335 pr_err("JBD2: Cannot enable fast commits.\n"); 2336 return 0; 2337 } 2338 } 2339 2340 /* Load the checksum driver if necessary */ 2341 if ((journal->j_chksum_driver == NULL) && 2342 INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) { 2343 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 2344 if (IS_ERR(journal->j_chksum_driver)) { 2345 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n"); 2346 journal->j_chksum_driver = NULL; 2347 return 0; 2348 } 2349 /* Precompute checksum seed for all metadata */ 2350 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid, 2351 sizeof(sb->s_uuid)); 2352 } 2353 2354 lock_buffer(journal->j_sb_buffer); 2355 2356 /* If enabling v3 checksums, update superblock */ 2357 if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) { 2358 sb->s_checksum_type = JBD2_CRC32C_CHKSUM; 2359 sb->s_feature_compat &= 2360 ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM); 2361 } 2362 2363 /* If enabling v1 checksums, downgrade superblock */ 2364 if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM)) 2365 sb->s_feature_incompat &= 2366 ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 | 2367 JBD2_FEATURE_INCOMPAT_CSUM_V3); 2368 2369 sb->s_feature_compat |= cpu_to_be32(compat); 2370 sb->s_feature_ro_compat |= cpu_to_be32(ro); 2371 sb->s_feature_incompat |= cpu_to_be32(incompat); 2372 unlock_buffer(journal->j_sb_buffer); 2373 jbd2_journal_init_transaction_limits(journal); 2374 2375 return 1; 2376 #undef COMPAT_FEATURE_ON 2377 #undef INCOMPAT_FEATURE_ON 2378 } 2379 2380 /* 2381 * jbd2_journal_clear_features() - Clear a given journal feature in the 2382 * superblock 2383 * @journal: Journal to act on. 2384 * @compat: bitmask of compatible features 2385 * @ro: bitmask of features that force read-only mount 2386 * @incompat: bitmask of incompatible features 2387 * 2388 * Clear a given journal feature as present on the 2389 * superblock. 2390 */ 2391 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat, 2392 unsigned long ro, unsigned long incompat) 2393 { 2394 journal_superblock_t *sb; 2395 2396 jbd2_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n", 2397 compat, ro, incompat); 2398 2399 sb = journal->j_superblock; 2400 2401 sb->s_feature_compat &= ~cpu_to_be32(compat); 2402 sb->s_feature_ro_compat &= ~cpu_to_be32(ro); 2403 sb->s_feature_incompat &= ~cpu_to_be32(incompat); 2404 jbd2_journal_init_transaction_limits(journal); 2405 } 2406 EXPORT_SYMBOL(jbd2_journal_clear_features); 2407 2408 /** 2409 * jbd2_journal_flush() - Flush journal 2410 * @journal: Journal to act on. 2411 * @flags: optional operation on the journal blocks after the flush (see below) 2412 * 2413 * Flush all data for a given journal to disk and empty the journal. 2414 * Filesystems can use this when remounting readonly to ensure that 2415 * recovery does not need to happen on remount. Optionally, a discard or zeroout 2416 * can be issued on the journal blocks after flushing. 2417 * 2418 * flags: 2419 * JBD2_JOURNAL_FLUSH_DISCARD: issues discards for the journal blocks 2420 * JBD2_JOURNAL_FLUSH_ZEROOUT: issues zeroouts for the journal blocks 2421 */ 2422 int jbd2_journal_flush(journal_t *journal, unsigned int flags) 2423 { 2424 int err = 0; 2425 transaction_t *transaction = NULL; 2426 2427 write_lock(&journal->j_state_lock); 2428 2429 /* Force everything buffered to the log... */ 2430 if (journal->j_running_transaction) { 2431 transaction = journal->j_running_transaction; 2432 __jbd2_log_start_commit(journal, transaction->t_tid); 2433 } else if (journal->j_committing_transaction) 2434 transaction = journal->j_committing_transaction; 2435 2436 /* Wait for the log commit to complete... */ 2437 if (transaction) { 2438 tid_t tid = transaction->t_tid; 2439 2440 write_unlock(&journal->j_state_lock); 2441 jbd2_log_wait_commit(journal, tid); 2442 } else { 2443 write_unlock(&journal->j_state_lock); 2444 } 2445 2446 /* ...and flush everything in the log out to disk. */ 2447 spin_lock(&journal->j_list_lock); 2448 while (!err && journal->j_checkpoint_transactions != NULL) { 2449 spin_unlock(&journal->j_list_lock); 2450 mutex_lock_io(&journal->j_checkpoint_mutex); 2451 err = jbd2_log_do_checkpoint(journal); 2452 mutex_unlock(&journal->j_checkpoint_mutex); 2453 spin_lock(&journal->j_list_lock); 2454 } 2455 spin_unlock(&journal->j_list_lock); 2456 2457 if (is_journal_aborted(journal)) 2458 return -EIO; 2459 2460 mutex_lock_io(&journal->j_checkpoint_mutex); 2461 if (!err) { 2462 err = jbd2_cleanup_journal_tail(journal); 2463 if (err < 0) { 2464 mutex_unlock(&journal->j_checkpoint_mutex); 2465 goto out; 2466 } 2467 err = 0; 2468 } 2469 2470 /* Finally, mark the journal as really needing no recovery. 2471 * This sets s_start==0 in the underlying superblock, which is 2472 * the magic code for a fully-recovered superblock. Any future 2473 * commits of data to the journal will restore the current 2474 * s_start value. */ 2475 jbd2_mark_journal_empty(journal, REQ_FUA); 2476 2477 if (flags) 2478 err = __jbd2_journal_erase(journal, flags); 2479 2480 mutex_unlock(&journal->j_checkpoint_mutex); 2481 write_lock(&journal->j_state_lock); 2482 J_ASSERT(!journal->j_running_transaction); 2483 J_ASSERT(!journal->j_committing_transaction); 2484 J_ASSERT(!journal->j_checkpoint_transactions); 2485 J_ASSERT(journal->j_head == journal->j_tail); 2486 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence); 2487 write_unlock(&journal->j_state_lock); 2488 out: 2489 return err; 2490 } 2491 2492 /** 2493 * jbd2_journal_wipe() - Wipe journal contents 2494 * @journal: Journal to act on. 2495 * @write: flag (see below) 2496 * 2497 * Wipe out all of the contents of a journal, safely. This will produce 2498 * a warning if the journal contains any valid recovery information. 2499 * Must be called between journal_init_*() and jbd2_journal_load(). 2500 * 2501 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise 2502 * we merely suppress recovery. 2503 */ 2504 2505 int jbd2_journal_wipe(journal_t *journal, int write) 2506 { 2507 int err; 2508 2509 J_ASSERT (!(journal->j_flags & JBD2_LOADED)); 2510 2511 if (!journal->j_tail) 2512 return 0; 2513 2514 printk(KERN_WARNING "JBD2: %s recovery information on journal\n", 2515 write ? "Clearing" : "Ignoring"); 2516 2517 err = jbd2_journal_skip_recovery(journal); 2518 if (write) { 2519 /* Lock to make assertions happy... */ 2520 mutex_lock_io(&journal->j_checkpoint_mutex); 2521 jbd2_mark_journal_empty(journal, REQ_FUA); 2522 mutex_unlock(&journal->j_checkpoint_mutex); 2523 } 2524 2525 return err; 2526 } 2527 2528 /** 2529 * jbd2_journal_abort () - Shutdown the journal immediately. 2530 * @journal: the journal to shutdown. 2531 * @errno: an error number to record in the journal indicating 2532 * the reason for the shutdown. 2533 * 2534 * Perform a complete, immediate shutdown of the ENTIRE 2535 * journal (not of a single transaction). This operation cannot be 2536 * undone without closing and reopening the journal. 2537 * 2538 * The jbd2_journal_abort function is intended to support higher level error 2539 * recovery mechanisms such as the ext2/ext3 remount-readonly error 2540 * mode. 2541 * 2542 * Journal abort has very specific semantics. Any existing dirty, 2543 * unjournaled buffers in the main filesystem will still be written to 2544 * disk by bdflush, but the journaling mechanism will be suspended 2545 * immediately and no further transaction commits will be honoured. 2546 * 2547 * Any dirty, journaled buffers will be written back to disk without 2548 * hitting the journal. Atomicity cannot be guaranteed on an aborted 2549 * filesystem, but we _do_ attempt to leave as much data as possible 2550 * behind for fsck to use for cleanup. 2551 * 2552 * Any attempt to get a new transaction handle on a journal which is in 2553 * ABORT state will just result in an -EROFS error return. A 2554 * jbd2_journal_stop on an existing handle will return -EIO if we have 2555 * entered abort state during the update. 2556 * 2557 * Recursive transactions are not disturbed by journal abort until the 2558 * final jbd2_journal_stop, which will receive the -EIO error. 2559 * 2560 * Finally, the jbd2_journal_abort call allows the caller to supply an errno 2561 * which will be recorded (if possible) in the journal superblock. This 2562 * allows a client to record failure conditions in the middle of a 2563 * transaction without having to complete the transaction to record the 2564 * failure to disk. ext3_error, for example, now uses this 2565 * functionality. 2566 * 2567 */ 2568 2569 void jbd2_journal_abort(journal_t *journal, int errno) 2570 { 2571 transaction_t *transaction; 2572 2573 /* 2574 * Lock the aborting procedure until everything is done, this avoid 2575 * races between filesystem's error handling flow (e.g. ext4_abort()), 2576 * ensure panic after the error info is written into journal's 2577 * superblock. 2578 */ 2579 mutex_lock(&journal->j_abort_mutex); 2580 /* 2581 * ESHUTDOWN always takes precedence because a file system check 2582 * caused by any other journal abort error is not required after 2583 * a shutdown triggered. 2584 */ 2585 write_lock(&journal->j_state_lock); 2586 if (journal->j_flags & JBD2_ABORT) { 2587 int old_errno = journal->j_errno; 2588 2589 write_unlock(&journal->j_state_lock); 2590 if (old_errno != -ESHUTDOWN && errno == -ESHUTDOWN) { 2591 journal->j_errno = errno; 2592 jbd2_journal_update_sb_errno(journal); 2593 } 2594 mutex_unlock(&journal->j_abort_mutex); 2595 return; 2596 } 2597 2598 /* 2599 * Mark the abort as occurred and start current running transaction 2600 * to release all journaled buffer. 2601 */ 2602 pr_err("Aborting journal on device %s.\n", journal->j_devname); 2603 2604 journal->j_flags |= JBD2_ABORT; 2605 journal->j_errno = errno; 2606 transaction = journal->j_running_transaction; 2607 if (transaction) 2608 __jbd2_log_start_commit(journal, transaction->t_tid); 2609 write_unlock(&journal->j_state_lock); 2610 2611 /* 2612 * Record errno to the journal super block, so that fsck and jbd2 2613 * layer could realise that a filesystem check is needed. 2614 */ 2615 jbd2_journal_update_sb_errno(journal); 2616 mutex_unlock(&journal->j_abort_mutex); 2617 } 2618 2619 /** 2620 * jbd2_journal_errno() - returns the journal's error state. 2621 * @journal: journal to examine. 2622 * 2623 * This is the errno number set with jbd2_journal_abort(), the last 2624 * time the journal was mounted - if the journal was stopped 2625 * without calling abort this will be 0. 2626 * 2627 * If the journal has been aborted on this mount time -EROFS will 2628 * be returned. 2629 */ 2630 int jbd2_journal_errno(journal_t *journal) 2631 { 2632 int err; 2633 2634 read_lock(&journal->j_state_lock); 2635 if (journal->j_flags & JBD2_ABORT) 2636 err = -EROFS; 2637 else 2638 err = journal->j_errno; 2639 read_unlock(&journal->j_state_lock); 2640 return err; 2641 } 2642 2643 /** 2644 * jbd2_journal_clear_err() - clears the journal's error state 2645 * @journal: journal to act on. 2646 * 2647 * An error must be cleared or acked to take a FS out of readonly 2648 * mode. 2649 */ 2650 int jbd2_journal_clear_err(journal_t *journal) 2651 { 2652 int err = 0; 2653 2654 write_lock(&journal->j_state_lock); 2655 if (journal->j_flags & JBD2_ABORT) 2656 err = -EROFS; 2657 else 2658 journal->j_errno = 0; 2659 write_unlock(&journal->j_state_lock); 2660 return err; 2661 } 2662 2663 /** 2664 * jbd2_journal_ack_err() - Ack journal err. 2665 * @journal: journal to act on. 2666 * 2667 * An error must be cleared or acked to take a FS out of readonly 2668 * mode. 2669 */ 2670 void jbd2_journal_ack_err(journal_t *journal) 2671 { 2672 write_lock(&journal->j_state_lock); 2673 if (journal->j_errno) 2674 journal->j_flags |= JBD2_ACK_ERR; 2675 write_unlock(&journal->j_state_lock); 2676 } 2677 2678 int jbd2_journal_blocks_per_page(struct inode *inode) 2679 { 2680 return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 2681 } 2682 2683 /* 2684 * helper functions to deal with 32 or 64bit block numbers. 2685 */ 2686 size_t journal_tag_bytes(journal_t *journal) 2687 { 2688 size_t sz; 2689 2690 if (jbd2_has_feature_csum3(journal)) 2691 return sizeof(journal_block_tag3_t); 2692 2693 sz = sizeof(journal_block_tag_t); 2694 2695 if (jbd2_has_feature_csum2(journal)) 2696 sz += sizeof(__u16); 2697 2698 if (jbd2_has_feature_64bit(journal)) 2699 return sz; 2700 else 2701 return sz - sizeof(__u32); 2702 } 2703 2704 /* 2705 * JBD memory management 2706 * 2707 * These functions are used to allocate block-sized chunks of memory 2708 * used for making copies of buffer_head data. Very often it will be 2709 * page-sized chunks of data, but sometimes it will be in 2710 * sub-page-size chunks. (For example, 16k pages on Power systems 2711 * with a 4k block file system.) For blocks smaller than a page, we 2712 * use a SLAB allocator. There are slab caches for each block size, 2713 * which are allocated at mount time, if necessary, and we only free 2714 * (all of) the slab caches when/if the jbd2 module is unloaded. For 2715 * this reason we don't need to a mutex to protect access to 2716 * jbd2_slab[] allocating or releasing memory; only in 2717 * jbd2_journal_create_slab(). 2718 */ 2719 #define JBD2_MAX_SLABS 8 2720 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS]; 2721 2722 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = { 2723 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k", 2724 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k" 2725 }; 2726 2727 2728 static void jbd2_journal_destroy_slabs(void) 2729 { 2730 int i; 2731 2732 for (i = 0; i < JBD2_MAX_SLABS; i++) { 2733 kmem_cache_destroy(jbd2_slab[i]); 2734 jbd2_slab[i] = NULL; 2735 } 2736 } 2737 2738 static int jbd2_journal_create_slab(size_t size) 2739 { 2740 static DEFINE_MUTEX(jbd2_slab_create_mutex); 2741 int i = order_base_2(size) - 10; 2742 size_t slab_size; 2743 2744 if (size == PAGE_SIZE) 2745 return 0; 2746 2747 if (i >= JBD2_MAX_SLABS) 2748 return -EINVAL; 2749 2750 if (unlikely(i < 0)) 2751 i = 0; 2752 mutex_lock(&jbd2_slab_create_mutex); 2753 if (jbd2_slab[i]) { 2754 mutex_unlock(&jbd2_slab_create_mutex); 2755 return 0; /* Already created */ 2756 } 2757 2758 slab_size = 1 << (i+10); 2759 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size, 2760 slab_size, 0, NULL); 2761 mutex_unlock(&jbd2_slab_create_mutex); 2762 if (!jbd2_slab[i]) { 2763 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n"); 2764 return -ENOMEM; 2765 } 2766 return 0; 2767 } 2768 2769 static struct kmem_cache *get_slab(size_t size) 2770 { 2771 int i = order_base_2(size) - 10; 2772 2773 BUG_ON(i >= JBD2_MAX_SLABS); 2774 if (unlikely(i < 0)) 2775 i = 0; 2776 BUG_ON(jbd2_slab[i] == NULL); 2777 return jbd2_slab[i]; 2778 } 2779 2780 void *jbd2_alloc(size_t size, gfp_t flags) 2781 { 2782 void *ptr; 2783 2784 BUG_ON(size & (size-1)); /* Must be a power of 2 */ 2785 2786 if (size < PAGE_SIZE) 2787 ptr = kmem_cache_alloc(get_slab(size), flags); 2788 else 2789 ptr = (void *)__get_free_pages(flags, get_order(size)); 2790 2791 /* Check alignment; SLUB has gotten this wrong in the past, 2792 * and this can lead to user data corruption! */ 2793 BUG_ON(((unsigned long) ptr) & (size-1)); 2794 2795 return ptr; 2796 } 2797 2798 void jbd2_free(void *ptr, size_t size) 2799 { 2800 if (size < PAGE_SIZE) 2801 kmem_cache_free(get_slab(size), ptr); 2802 else 2803 free_pages((unsigned long)ptr, get_order(size)); 2804 }; 2805 2806 /* 2807 * Journal_head storage management 2808 */ 2809 static struct kmem_cache *jbd2_journal_head_cache; 2810 #ifdef CONFIG_JBD2_DEBUG 2811 static atomic_t nr_journal_heads = ATOMIC_INIT(0); 2812 #endif 2813 2814 static int __init jbd2_journal_init_journal_head_cache(void) 2815 { 2816 J_ASSERT(!jbd2_journal_head_cache); 2817 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head", 2818 sizeof(struct journal_head), 2819 0, /* offset */ 2820 SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU, 2821 NULL); /* ctor */ 2822 if (!jbd2_journal_head_cache) { 2823 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n"); 2824 return -ENOMEM; 2825 } 2826 return 0; 2827 } 2828 2829 static void jbd2_journal_destroy_journal_head_cache(void) 2830 { 2831 kmem_cache_destroy(jbd2_journal_head_cache); 2832 jbd2_journal_head_cache = NULL; 2833 } 2834 2835 /* 2836 * journal_head splicing and dicing 2837 */ 2838 static struct journal_head *journal_alloc_journal_head(void) 2839 { 2840 struct journal_head *ret; 2841 2842 #ifdef CONFIG_JBD2_DEBUG 2843 atomic_inc(&nr_journal_heads); 2844 #endif 2845 ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS); 2846 if (!ret) { 2847 jbd2_debug(1, "out of memory for journal_head\n"); 2848 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__); 2849 ret = kmem_cache_zalloc(jbd2_journal_head_cache, 2850 GFP_NOFS | __GFP_NOFAIL); 2851 } 2852 spin_lock_init(&ret->b_state_lock); 2853 return ret; 2854 } 2855 2856 static void journal_free_journal_head(struct journal_head *jh) 2857 { 2858 #ifdef CONFIG_JBD2_DEBUG 2859 atomic_dec(&nr_journal_heads); 2860 memset(jh, JBD2_POISON_FREE, sizeof(*jh)); 2861 #endif 2862 kmem_cache_free(jbd2_journal_head_cache, jh); 2863 } 2864 2865 /* 2866 * A journal_head is attached to a buffer_head whenever JBD has an 2867 * interest in the buffer. 2868 * 2869 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit 2870 * is set. This bit is tested in core kernel code where we need to take 2871 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable 2872 * there. 2873 * 2874 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one. 2875 * 2876 * When a buffer has its BH_JBD bit set it is immune from being released by 2877 * core kernel code, mainly via ->b_count. 2878 * 2879 * A journal_head is detached from its buffer_head when the journal_head's 2880 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint 2881 * transaction (b_cp_transaction) hold their references to b_jcount. 2882 * 2883 * Various places in the kernel want to attach a journal_head to a buffer_head 2884 * _before_ attaching the journal_head to a transaction. To protect the 2885 * journal_head in this situation, jbd2_journal_add_journal_head elevates the 2886 * journal_head's b_jcount refcount by one. The caller must call 2887 * jbd2_journal_put_journal_head() to undo this. 2888 * 2889 * So the typical usage would be: 2890 * 2891 * (Attach a journal_head if needed. Increments b_jcount) 2892 * struct journal_head *jh = jbd2_journal_add_journal_head(bh); 2893 * ... 2894 * (Get another reference for transaction) 2895 * jbd2_journal_grab_journal_head(bh); 2896 * jh->b_transaction = xxx; 2897 * (Put original reference) 2898 * jbd2_journal_put_journal_head(jh); 2899 */ 2900 2901 /* 2902 * Give a buffer_head a journal_head. 2903 * 2904 * May sleep. 2905 */ 2906 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh) 2907 { 2908 struct journal_head *jh; 2909 struct journal_head *new_jh = NULL; 2910 2911 repeat: 2912 if (!buffer_jbd(bh)) 2913 new_jh = journal_alloc_journal_head(); 2914 2915 jbd_lock_bh_journal_head(bh); 2916 if (buffer_jbd(bh)) { 2917 jh = bh2jh(bh); 2918 } else { 2919 J_ASSERT_BH(bh, 2920 (atomic_read(&bh->b_count) > 0) || 2921 (bh->b_folio && bh->b_folio->mapping)); 2922 2923 if (!new_jh) { 2924 jbd_unlock_bh_journal_head(bh); 2925 goto repeat; 2926 } 2927 2928 jh = new_jh; 2929 new_jh = NULL; /* We consumed it */ 2930 set_buffer_jbd(bh); 2931 bh->b_private = jh; 2932 jh->b_bh = bh; 2933 get_bh(bh); 2934 BUFFER_TRACE(bh, "added journal_head"); 2935 } 2936 jh->b_jcount++; 2937 jbd_unlock_bh_journal_head(bh); 2938 if (new_jh) 2939 journal_free_journal_head(new_jh); 2940 return bh->b_private; 2941 } 2942 2943 /* 2944 * Grab a ref against this buffer_head's journal_head. If it ended up not 2945 * having a journal_head, return NULL 2946 */ 2947 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh) 2948 { 2949 struct journal_head *jh = NULL; 2950 2951 jbd_lock_bh_journal_head(bh); 2952 if (buffer_jbd(bh)) { 2953 jh = bh2jh(bh); 2954 jh->b_jcount++; 2955 } 2956 jbd_unlock_bh_journal_head(bh); 2957 return jh; 2958 } 2959 EXPORT_SYMBOL(jbd2_journal_grab_journal_head); 2960 2961 static void __journal_remove_journal_head(struct buffer_head *bh) 2962 { 2963 struct journal_head *jh = bh2jh(bh); 2964 2965 J_ASSERT_JH(jh, jh->b_transaction == NULL); 2966 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 2967 J_ASSERT_JH(jh, jh->b_cp_transaction == NULL); 2968 J_ASSERT_JH(jh, jh->b_jlist == BJ_None); 2969 J_ASSERT_BH(bh, buffer_jbd(bh)); 2970 J_ASSERT_BH(bh, jh2bh(jh) == bh); 2971 BUFFER_TRACE(bh, "remove journal_head"); 2972 2973 /* Unlink before dropping the lock */ 2974 bh->b_private = NULL; 2975 jh->b_bh = NULL; /* debug, really */ 2976 clear_buffer_jbd(bh); 2977 } 2978 2979 static void journal_release_journal_head(struct journal_head *jh, size_t b_size) 2980 { 2981 if (jh->b_frozen_data) { 2982 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__); 2983 jbd2_free(jh->b_frozen_data, b_size); 2984 } 2985 if (jh->b_committed_data) { 2986 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__); 2987 jbd2_free(jh->b_committed_data, b_size); 2988 } 2989 journal_free_journal_head(jh); 2990 } 2991 2992 /* 2993 * Drop a reference on the passed journal_head. If it fell to zero then 2994 * release the journal_head from the buffer_head. 2995 */ 2996 void jbd2_journal_put_journal_head(struct journal_head *jh) 2997 { 2998 struct buffer_head *bh = jh2bh(jh); 2999 3000 jbd_lock_bh_journal_head(bh); 3001 J_ASSERT_JH(jh, jh->b_jcount > 0); 3002 --jh->b_jcount; 3003 if (!jh->b_jcount) { 3004 __journal_remove_journal_head(bh); 3005 jbd_unlock_bh_journal_head(bh); 3006 journal_release_journal_head(jh, bh->b_size); 3007 __brelse(bh); 3008 } else { 3009 jbd_unlock_bh_journal_head(bh); 3010 } 3011 } 3012 EXPORT_SYMBOL(jbd2_journal_put_journal_head); 3013 3014 /* 3015 * Initialize jbd inode head 3016 */ 3017 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode) 3018 { 3019 jinode->i_transaction = NULL; 3020 jinode->i_next_transaction = NULL; 3021 jinode->i_vfs_inode = inode; 3022 jinode->i_flags = 0; 3023 jinode->i_dirty_start = 0; 3024 jinode->i_dirty_end = 0; 3025 INIT_LIST_HEAD(&jinode->i_list); 3026 } 3027 3028 /* 3029 * Function to be called before we start removing inode from memory (i.e., 3030 * clear_inode() is a fine place to be called from). It removes inode from 3031 * transaction's lists. 3032 */ 3033 void jbd2_journal_release_jbd_inode(journal_t *journal, 3034 struct jbd2_inode *jinode) 3035 { 3036 if (!journal) 3037 return; 3038 restart: 3039 spin_lock(&journal->j_list_lock); 3040 /* Is commit writing out inode - we have to wait */ 3041 if (jinode->i_flags & JI_COMMIT_RUNNING) { 3042 wait_queue_head_t *wq; 3043 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING); 3044 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING); 3045 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 3046 spin_unlock(&journal->j_list_lock); 3047 schedule(); 3048 finish_wait(wq, &wait.wq_entry); 3049 goto restart; 3050 } 3051 3052 if (jinode->i_transaction) { 3053 list_del(&jinode->i_list); 3054 jinode->i_transaction = NULL; 3055 } 3056 spin_unlock(&journal->j_list_lock); 3057 } 3058 3059 3060 #ifdef CONFIG_PROC_FS 3061 3062 #define JBD2_STATS_PROC_NAME "fs/jbd2" 3063 3064 static void __init jbd2_create_jbd_stats_proc_entry(void) 3065 { 3066 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL); 3067 } 3068 3069 static void __exit jbd2_remove_jbd_stats_proc_entry(void) 3070 { 3071 if (proc_jbd2_stats) 3072 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL); 3073 } 3074 3075 #else 3076 3077 #define jbd2_create_jbd_stats_proc_entry() do {} while (0) 3078 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0) 3079 3080 #endif 3081 3082 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache; 3083 3084 static int __init jbd2_journal_init_inode_cache(void) 3085 { 3086 J_ASSERT(!jbd2_inode_cache); 3087 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0); 3088 if (!jbd2_inode_cache) { 3089 pr_emerg("JBD2: failed to create inode cache\n"); 3090 return -ENOMEM; 3091 } 3092 return 0; 3093 } 3094 3095 static int __init jbd2_journal_init_handle_cache(void) 3096 { 3097 J_ASSERT(!jbd2_handle_cache); 3098 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY); 3099 if (!jbd2_handle_cache) { 3100 printk(KERN_EMERG "JBD2: failed to create handle cache\n"); 3101 return -ENOMEM; 3102 } 3103 return 0; 3104 } 3105 3106 static void jbd2_journal_destroy_inode_cache(void) 3107 { 3108 kmem_cache_destroy(jbd2_inode_cache); 3109 jbd2_inode_cache = NULL; 3110 } 3111 3112 static void jbd2_journal_destroy_handle_cache(void) 3113 { 3114 kmem_cache_destroy(jbd2_handle_cache); 3115 jbd2_handle_cache = NULL; 3116 } 3117 3118 /* 3119 * Module startup and shutdown 3120 */ 3121 3122 static int __init journal_init_caches(void) 3123 { 3124 int ret; 3125 3126 ret = jbd2_journal_init_revoke_record_cache(); 3127 if (ret == 0) 3128 ret = jbd2_journal_init_revoke_table_cache(); 3129 if (ret == 0) 3130 ret = jbd2_journal_init_journal_head_cache(); 3131 if (ret == 0) 3132 ret = jbd2_journal_init_handle_cache(); 3133 if (ret == 0) 3134 ret = jbd2_journal_init_inode_cache(); 3135 if (ret == 0) 3136 ret = jbd2_journal_init_transaction_cache(); 3137 return ret; 3138 } 3139 3140 static void jbd2_journal_destroy_caches(void) 3141 { 3142 jbd2_journal_destroy_revoke_record_cache(); 3143 jbd2_journal_destroy_revoke_table_cache(); 3144 jbd2_journal_destroy_journal_head_cache(); 3145 jbd2_journal_destroy_handle_cache(); 3146 jbd2_journal_destroy_inode_cache(); 3147 jbd2_journal_destroy_transaction_cache(); 3148 jbd2_journal_destroy_slabs(); 3149 } 3150 3151 static int __init journal_init(void) 3152 { 3153 int ret; 3154 3155 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024); 3156 3157 ret = journal_init_caches(); 3158 if (ret == 0) { 3159 jbd2_create_jbd_stats_proc_entry(); 3160 } else { 3161 jbd2_journal_destroy_caches(); 3162 } 3163 return ret; 3164 } 3165 3166 static void __exit journal_exit(void) 3167 { 3168 #ifdef CONFIG_JBD2_DEBUG 3169 int n = atomic_read(&nr_journal_heads); 3170 if (n) 3171 printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n); 3172 #endif 3173 jbd2_remove_jbd_stats_proc_entry(); 3174 jbd2_journal_destroy_caches(); 3175 } 3176 3177 MODULE_DESCRIPTION("Generic filesystem journal-writing module"); 3178 MODULE_LICENSE("GPL"); 3179 module_init(journal_init); 3180 module_exit(journal_exit); 3181 3182