1 /* 2 * linux/fs/jbd2/journal.c 3 * 4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 5 * 6 * Copyright 1998 Red Hat corp --- All Rights Reserved 7 * 8 * This file is part of the Linux kernel and is made available under 9 * the terms of the GNU General Public License, version 2, or at your 10 * option, any later version, incorporated herein by reference. 11 * 12 * Generic filesystem journal-writing code; part of the ext2fs 13 * journaling system. 14 * 15 * This file manages journals: areas of disk reserved for logging 16 * transactional updates. This includes the kernel journaling thread 17 * which is responsible for scheduling updates to the log. 18 * 19 * We do not actually manage the physical storage of the journal in this 20 * file: that is left to a per-journal policy function, which allows us 21 * to store the journal within a filesystem-specified area for ext2 22 * journaling (ext2 can use a reserved inode for storing the log). 23 */ 24 25 #include <linux/module.h> 26 #include <linux/time.h> 27 #include <linux/fs.h> 28 #include <linux/jbd2.h> 29 #include <linux/errno.h> 30 #include <linux/slab.h> 31 #include <linux/init.h> 32 #include <linux/mm.h> 33 #include <linux/freezer.h> 34 #include <linux/pagemap.h> 35 #include <linux/kthread.h> 36 #include <linux/poison.h> 37 #include <linux/proc_fs.h> 38 #include <linux/debugfs.h> 39 #include <linux/seq_file.h> 40 #include <linux/math64.h> 41 #include <linux/hash.h> 42 #include <linux/log2.h> 43 #include <linux/vmalloc.h> 44 #include <linux/backing-dev.h> 45 #include <linux/bitops.h> 46 #include <linux/ratelimit.h> 47 48 #define CREATE_TRACE_POINTS 49 #include <trace/events/jbd2.h> 50 51 #include <asm/uaccess.h> 52 #include <asm/page.h> 53 #include <asm/system.h> 54 55 EXPORT_SYMBOL(jbd2_journal_extend); 56 EXPORT_SYMBOL(jbd2_journal_stop); 57 EXPORT_SYMBOL(jbd2_journal_lock_updates); 58 EXPORT_SYMBOL(jbd2_journal_unlock_updates); 59 EXPORT_SYMBOL(jbd2_journal_get_write_access); 60 EXPORT_SYMBOL(jbd2_journal_get_create_access); 61 EXPORT_SYMBOL(jbd2_journal_get_undo_access); 62 EXPORT_SYMBOL(jbd2_journal_set_triggers); 63 EXPORT_SYMBOL(jbd2_journal_dirty_metadata); 64 EXPORT_SYMBOL(jbd2_journal_release_buffer); 65 EXPORT_SYMBOL(jbd2_journal_forget); 66 #if 0 67 EXPORT_SYMBOL(journal_sync_buffer); 68 #endif 69 EXPORT_SYMBOL(jbd2_journal_flush); 70 EXPORT_SYMBOL(jbd2_journal_revoke); 71 72 EXPORT_SYMBOL(jbd2_journal_init_dev); 73 EXPORT_SYMBOL(jbd2_journal_init_inode); 74 EXPORT_SYMBOL(jbd2_journal_update_format); 75 EXPORT_SYMBOL(jbd2_journal_check_used_features); 76 EXPORT_SYMBOL(jbd2_journal_check_available_features); 77 EXPORT_SYMBOL(jbd2_journal_set_features); 78 EXPORT_SYMBOL(jbd2_journal_load); 79 EXPORT_SYMBOL(jbd2_journal_destroy); 80 EXPORT_SYMBOL(jbd2_journal_abort); 81 EXPORT_SYMBOL(jbd2_journal_errno); 82 EXPORT_SYMBOL(jbd2_journal_ack_err); 83 EXPORT_SYMBOL(jbd2_journal_clear_err); 84 EXPORT_SYMBOL(jbd2_log_wait_commit); 85 EXPORT_SYMBOL(jbd2_log_start_commit); 86 EXPORT_SYMBOL(jbd2_journal_start_commit); 87 EXPORT_SYMBOL(jbd2_journal_force_commit_nested); 88 EXPORT_SYMBOL(jbd2_journal_wipe); 89 EXPORT_SYMBOL(jbd2_journal_blocks_per_page); 90 EXPORT_SYMBOL(jbd2_journal_invalidatepage); 91 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers); 92 EXPORT_SYMBOL(jbd2_journal_force_commit); 93 EXPORT_SYMBOL(jbd2_journal_file_inode); 94 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode); 95 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode); 96 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate); 97 EXPORT_SYMBOL(jbd2_inode_cache); 98 99 static int journal_convert_superblock_v1(journal_t *, journal_superblock_t *); 100 static void __journal_abort_soft (journal_t *journal, int errno); 101 static int jbd2_journal_create_slab(size_t slab_size); 102 103 /* 104 * Helper function used to manage commit timeouts 105 */ 106 107 static void commit_timeout(unsigned long __data) 108 { 109 struct task_struct * p = (struct task_struct *) __data; 110 111 wake_up_process(p); 112 } 113 114 /* 115 * kjournald2: The main thread function used to manage a logging device 116 * journal. 117 * 118 * This kernel thread is responsible for two things: 119 * 120 * 1) COMMIT: Every so often we need to commit the current state of the 121 * filesystem to disk. The journal thread is responsible for writing 122 * all of the metadata buffers to disk. 123 * 124 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all 125 * of the data in that part of the log has been rewritten elsewhere on 126 * the disk. Flushing these old buffers to reclaim space in the log is 127 * known as checkpointing, and this thread is responsible for that job. 128 */ 129 130 static int kjournald2(void *arg) 131 { 132 journal_t *journal = arg; 133 transaction_t *transaction; 134 135 /* 136 * Set up an interval timer which can be used to trigger a commit wakeup 137 * after the commit interval expires 138 */ 139 setup_timer(&journal->j_commit_timer, commit_timeout, 140 (unsigned long)current); 141 142 /* Record that the journal thread is running */ 143 journal->j_task = current; 144 wake_up(&journal->j_wait_done_commit); 145 146 /* 147 * And now, wait forever for commit wakeup events. 148 */ 149 write_lock(&journal->j_state_lock); 150 151 loop: 152 if (journal->j_flags & JBD2_UNMOUNT) 153 goto end_loop; 154 155 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n", 156 journal->j_commit_sequence, journal->j_commit_request); 157 158 if (journal->j_commit_sequence != journal->j_commit_request) { 159 jbd_debug(1, "OK, requests differ\n"); 160 write_unlock(&journal->j_state_lock); 161 del_timer_sync(&journal->j_commit_timer); 162 jbd2_journal_commit_transaction(journal); 163 write_lock(&journal->j_state_lock); 164 goto loop; 165 } 166 167 wake_up(&journal->j_wait_done_commit); 168 if (freezing(current)) { 169 /* 170 * The simpler the better. Flushing journal isn't a 171 * good idea, because that depends on threads that may 172 * be already stopped. 173 */ 174 jbd_debug(1, "Now suspending kjournald2\n"); 175 write_unlock(&journal->j_state_lock); 176 try_to_freeze(); 177 write_lock(&journal->j_state_lock); 178 } else { 179 /* 180 * We assume on resume that commits are already there, 181 * so we don't sleep 182 */ 183 DEFINE_WAIT(wait); 184 int should_sleep = 1; 185 186 prepare_to_wait(&journal->j_wait_commit, &wait, 187 TASK_INTERRUPTIBLE); 188 if (journal->j_commit_sequence != journal->j_commit_request) 189 should_sleep = 0; 190 transaction = journal->j_running_transaction; 191 if (transaction && time_after_eq(jiffies, 192 transaction->t_expires)) 193 should_sleep = 0; 194 if (journal->j_flags & JBD2_UNMOUNT) 195 should_sleep = 0; 196 if (should_sleep) { 197 write_unlock(&journal->j_state_lock); 198 schedule(); 199 write_lock(&journal->j_state_lock); 200 } 201 finish_wait(&journal->j_wait_commit, &wait); 202 } 203 204 jbd_debug(1, "kjournald2 wakes\n"); 205 206 /* 207 * Were we woken up by a commit wakeup event? 208 */ 209 transaction = journal->j_running_transaction; 210 if (transaction && time_after_eq(jiffies, transaction->t_expires)) { 211 journal->j_commit_request = transaction->t_tid; 212 jbd_debug(1, "woke because of timeout\n"); 213 } 214 goto loop; 215 216 end_loop: 217 write_unlock(&journal->j_state_lock); 218 del_timer_sync(&journal->j_commit_timer); 219 journal->j_task = NULL; 220 wake_up(&journal->j_wait_done_commit); 221 jbd_debug(1, "Journal thread exiting.\n"); 222 return 0; 223 } 224 225 static int jbd2_journal_start_thread(journal_t *journal) 226 { 227 struct task_struct *t; 228 229 t = kthread_run(kjournald2, journal, "jbd2/%s", 230 journal->j_devname); 231 if (IS_ERR(t)) 232 return PTR_ERR(t); 233 234 wait_event(journal->j_wait_done_commit, journal->j_task != NULL); 235 return 0; 236 } 237 238 static void journal_kill_thread(journal_t *journal) 239 { 240 write_lock(&journal->j_state_lock); 241 journal->j_flags |= JBD2_UNMOUNT; 242 243 while (journal->j_task) { 244 wake_up(&journal->j_wait_commit); 245 write_unlock(&journal->j_state_lock); 246 wait_event(journal->j_wait_done_commit, journal->j_task == NULL); 247 write_lock(&journal->j_state_lock); 248 } 249 write_unlock(&journal->j_state_lock); 250 } 251 252 /* 253 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal. 254 * 255 * Writes a metadata buffer to a given disk block. The actual IO is not 256 * performed but a new buffer_head is constructed which labels the data 257 * to be written with the correct destination disk block. 258 * 259 * Any magic-number escaping which needs to be done will cause a 260 * copy-out here. If the buffer happens to start with the 261 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the 262 * magic number is only written to the log for descripter blocks. In 263 * this case, we copy the data and replace the first word with 0, and we 264 * return a result code which indicates that this buffer needs to be 265 * marked as an escaped buffer in the corresponding log descriptor 266 * block. The missing word can then be restored when the block is read 267 * during recovery. 268 * 269 * If the source buffer has already been modified by a new transaction 270 * since we took the last commit snapshot, we use the frozen copy of 271 * that data for IO. If we end up using the existing buffer_head's data 272 * for the write, then we *have* to lock the buffer to prevent anyone 273 * else from using and possibly modifying it while the IO is in 274 * progress. 275 * 276 * The function returns a pointer to the buffer_heads to be used for IO. 277 * 278 * We assume that the journal has already been locked in this function. 279 * 280 * Return value: 281 * <0: Error 282 * >=0: Finished OK 283 * 284 * On success: 285 * Bit 0 set == escape performed on the data 286 * Bit 1 set == buffer copy-out performed (kfree the data after IO) 287 */ 288 289 int jbd2_journal_write_metadata_buffer(transaction_t *transaction, 290 struct journal_head *jh_in, 291 struct journal_head **jh_out, 292 unsigned long long blocknr) 293 { 294 int need_copy_out = 0; 295 int done_copy_out = 0; 296 int do_escape = 0; 297 char *mapped_data; 298 struct buffer_head *new_bh; 299 struct journal_head *new_jh; 300 struct page *new_page; 301 unsigned int new_offset; 302 struct buffer_head *bh_in = jh2bh(jh_in); 303 journal_t *journal = transaction->t_journal; 304 305 /* 306 * The buffer really shouldn't be locked: only the current committing 307 * transaction is allowed to write it, so nobody else is allowed 308 * to do any IO. 309 * 310 * akpm: except if we're journalling data, and write() output is 311 * also part of a shared mapping, and another thread has 312 * decided to launch a writepage() against this buffer. 313 */ 314 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in)); 315 316 retry_alloc: 317 new_bh = alloc_buffer_head(GFP_NOFS); 318 if (!new_bh) { 319 /* 320 * Failure is not an option, but __GFP_NOFAIL is going 321 * away; so we retry ourselves here. 322 */ 323 congestion_wait(BLK_RW_ASYNC, HZ/50); 324 goto retry_alloc; 325 } 326 327 /* keep subsequent assertions sane */ 328 new_bh->b_state = 0; 329 init_buffer(new_bh, NULL, NULL); 330 atomic_set(&new_bh->b_count, 1); 331 new_jh = jbd2_journal_add_journal_head(new_bh); /* This sleeps */ 332 333 /* 334 * If a new transaction has already done a buffer copy-out, then 335 * we use that version of the data for the commit. 336 */ 337 jbd_lock_bh_state(bh_in); 338 repeat: 339 if (jh_in->b_frozen_data) { 340 done_copy_out = 1; 341 new_page = virt_to_page(jh_in->b_frozen_data); 342 new_offset = offset_in_page(jh_in->b_frozen_data); 343 } else { 344 new_page = jh2bh(jh_in)->b_page; 345 new_offset = offset_in_page(jh2bh(jh_in)->b_data); 346 } 347 348 mapped_data = kmap_atomic(new_page, KM_USER0); 349 /* 350 * Fire data frozen trigger if data already wasn't frozen. Do this 351 * before checking for escaping, as the trigger may modify the magic 352 * offset. If a copy-out happens afterwards, it will have the correct 353 * data in the buffer. 354 */ 355 if (!done_copy_out) 356 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset, 357 jh_in->b_triggers); 358 359 /* 360 * Check for escaping 361 */ 362 if (*((__be32 *)(mapped_data + new_offset)) == 363 cpu_to_be32(JBD2_MAGIC_NUMBER)) { 364 need_copy_out = 1; 365 do_escape = 1; 366 } 367 kunmap_atomic(mapped_data, KM_USER0); 368 369 /* 370 * Do we need to do a data copy? 371 */ 372 if (need_copy_out && !done_copy_out) { 373 char *tmp; 374 375 jbd_unlock_bh_state(bh_in); 376 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS); 377 if (!tmp) { 378 jbd2_journal_put_journal_head(new_jh); 379 return -ENOMEM; 380 } 381 jbd_lock_bh_state(bh_in); 382 if (jh_in->b_frozen_data) { 383 jbd2_free(tmp, bh_in->b_size); 384 goto repeat; 385 } 386 387 jh_in->b_frozen_data = tmp; 388 mapped_data = kmap_atomic(new_page, KM_USER0); 389 memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size); 390 kunmap_atomic(mapped_data, KM_USER0); 391 392 new_page = virt_to_page(tmp); 393 new_offset = offset_in_page(tmp); 394 done_copy_out = 1; 395 396 /* 397 * This isn't strictly necessary, as we're using frozen 398 * data for the escaping, but it keeps consistency with 399 * b_frozen_data usage. 400 */ 401 jh_in->b_frozen_triggers = jh_in->b_triggers; 402 } 403 404 /* 405 * Did we need to do an escaping? Now we've done all the 406 * copying, we can finally do so. 407 */ 408 if (do_escape) { 409 mapped_data = kmap_atomic(new_page, KM_USER0); 410 *((unsigned int *)(mapped_data + new_offset)) = 0; 411 kunmap_atomic(mapped_data, KM_USER0); 412 } 413 414 set_bh_page(new_bh, new_page, new_offset); 415 new_jh->b_transaction = NULL; 416 new_bh->b_size = jh2bh(jh_in)->b_size; 417 new_bh->b_bdev = transaction->t_journal->j_dev; 418 new_bh->b_blocknr = blocknr; 419 set_buffer_mapped(new_bh); 420 set_buffer_dirty(new_bh); 421 422 *jh_out = new_jh; 423 424 /* 425 * The to-be-written buffer needs to get moved to the io queue, 426 * and the original buffer whose contents we are shadowing or 427 * copying is moved to the transaction's shadow queue. 428 */ 429 JBUFFER_TRACE(jh_in, "file as BJ_Shadow"); 430 spin_lock(&journal->j_list_lock); 431 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow); 432 spin_unlock(&journal->j_list_lock); 433 jbd_unlock_bh_state(bh_in); 434 435 JBUFFER_TRACE(new_jh, "file as BJ_IO"); 436 jbd2_journal_file_buffer(new_jh, transaction, BJ_IO); 437 438 return do_escape | (done_copy_out << 1); 439 } 440 441 /* 442 * Allocation code for the journal file. Manage the space left in the 443 * journal, so that we can begin checkpointing when appropriate. 444 */ 445 446 /* 447 * __jbd2_log_space_left: Return the number of free blocks left in the journal. 448 * 449 * Called with the journal already locked. 450 * 451 * Called under j_state_lock 452 */ 453 454 int __jbd2_log_space_left(journal_t *journal) 455 { 456 int left = journal->j_free; 457 458 /* assert_spin_locked(&journal->j_state_lock); */ 459 460 /* 461 * Be pessimistic here about the number of those free blocks which 462 * might be required for log descriptor control blocks. 463 */ 464 465 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */ 466 467 left -= MIN_LOG_RESERVED_BLOCKS; 468 469 if (left <= 0) 470 return 0; 471 left -= (left >> 3); 472 return left; 473 } 474 475 /* 476 * Called with j_state_lock locked for writing. 477 * Returns true if a transaction commit was started. 478 */ 479 int __jbd2_log_start_commit(journal_t *journal, tid_t target) 480 { 481 /* 482 * The only transaction we can possibly wait upon is the 483 * currently running transaction (if it exists). Otherwise, 484 * the target tid must be an old one. 485 */ 486 if (journal->j_running_transaction && 487 journal->j_running_transaction->t_tid == target) { 488 /* 489 * We want a new commit: OK, mark the request and wakeup the 490 * commit thread. We do _not_ do the commit ourselves. 491 */ 492 493 journal->j_commit_request = target; 494 jbd_debug(1, "JBD2: requesting commit %d/%d\n", 495 journal->j_commit_request, 496 journal->j_commit_sequence); 497 wake_up(&journal->j_wait_commit); 498 return 1; 499 } else if (!tid_geq(journal->j_commit_request, target)) 500 /* This should never happen, but if it does, preserve 501 the evidence before kjournald goes into a loop and 502 increments j_commit_sequence beyond all recognition. */ 503 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n", 504 journal->j_commit_request, 505 journal->j_commit_sequence, 506 target, journal->j_running_transaction ? 507 journal->j_running_transaction->t_tid : 0); 508 return 0; 509 } 510 511 int jbd2_log_start_commit(journal_t *journal, tid_t tid) 512 { 513 int ret; 514 515 write_lock(&journal->j_state_lock); 516 ret = __jbd2_log_start_commit(journal, tid); 517 write_unlock(&journal->j_state_lock); 518 return ret; 519 } 520 521 /* 522 * Force and wait upon a commit if the calling process is not within 523 * transaction. This is used for forcing out undo-protected data which contains 524 * bitmaps, when the fs is running out of space. 525 * 526 * We can only force the running transaction if we don't have an active handle; 527 * otherwise, we will deadlock. 528 * 529 * Returns true if a transaction was started. 530 */ 531 int jbd2_journal_force_commit_nested(journal_t *journal) 532 { 533 transaction_t *transaction = NULL; 534 tid_t tid; 535 int need_to_start = 0; 536 537 read_lock(&journal->j_state_lock); 538 if (journal->j_running_transaction && !current->journal_info) { 539 transaction = journal->j_running_transaction; 540 if (!tid_geq(journal->j_commit_request, transaction->t_tid)) 541 need_to_start = 1; 542 } else if (journal->j_committing_transaction) 543 transaction = journal->j_committing_transaction; 544 545 if (!transaction) { 546 read_unlock(&journal->j_state_lock); 547 return 0; /* Nothing to retry */ 548 } 549 550 tid = transaction->t_tid; 551 read_unlock(&journal->j_state_lock); 552 if (need_to_start) 553 jbd2_log_start_commit(journal, tid); 554 jbd2_log_wait_commit(journal, tid); 555 return 1; 556 } 557 558 /* 559 * Start a commit of the current running transaction (if any). Returns true 560 * if a transaction is going to be committed (or is currently already 561 * committing), and fills its tid in at *ptid 562 */ 563 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid) 564 { 565 int ret = 0; 566 567 write_lock(&journal->j_state_lock); 568 if (journal->j_running_transaction) { 569 tid_t tid = journal->j_running_transaction->t_tid; 570 571 __jbd2_log_start_commit(journal, tid); 572 /* There's a running transaction and we've just made sure 573 * it's commit has been scheduled. */ 574 if (ptid) 575 *ptid = tid; 576 ret = 1; 577 } else if (journal->j_committing_transaction) { 578 /* 579 * If ext3_write_super() recently started a commit, then we 580 * have to wait for completion of that transaction 581 */ 582 if (ptid) 583 *ptid = journal->j_committing_transaction->t_tid; 584 ret = 1; 585 } 586 write_unlock(&journal->j_state_lock); 587 return ret; 588 } 589 590 /* 591 * Return 1 if a given transaction has not yet sent barrier request 592 * connected with a transaction commit. If 0 is returned, transaction 593 * may or may not have sent the barrier. Used to avoid sending barrier 594 * twice in common cases. 595 */ 596 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid) 597 { 598 int ret = 0; 599 transaction_t *commit_trans; 600 601 if (!(journal->j_flags & JBD2_BARRIER)) 602 return 0; 603 read_lock(&journal->j_state_lock); 604 /* Transaction already committed? */ 605 if (tid_geq(journal->j_commit_sequence, tid)) 606 goto out; 607 commit_trans = journal->j_committing_transaction; 608 if (!commit_trans || commit_trans->t_tid != tid) { 609 ret = 1; 610 goto out; 611 } 612 /* 613 * Transaction is being committed and we already proceeded to 614 * submitting a flush to fs partition? 615 */ 616 if (journal->j_fs_dev != journal->j_dev) { 617 if (!commit_trans->t_need_data_flush || 618 commit_trans->t_state >= T_COMMIT_DFLUSH) 619 goto out; 620 } else { 621 if (commit_trans->t_state >= T_COMMIT_JFLUSH) 622 goto out; 623 } 624 ret = 1; 625 out: 626 read_unlock(&journal->j_state_lock); 627 return ret; 628 } 629 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier); 630 631 /* 632 * Wait for a specified commit to complete. 633 * The caller may not hold the journal lock. 634 */ 635 int jbd2_log_wait_commit(journal_t *journal, tid_t tid) 636 { 637 int err = 0; 638 639 read_lock(&journal->j_state_lock); 640 #ifdef CONFIG_JBD2_DEBUG 641 if (!tid_geq(journal->j_commit_request, tid)) { 642 printk(KERN_EMERG 643 "%s: error: j_commit_request=%d, tid=%d\n", 644 __func__, journal->j_commit_request, tid); 645 } 646 #endif 647 while (tid_gt(tid, journal->j_commit_sequence)) { 648 jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n", 649 tid, journal->j_commit_sequence); 650 wake_up(&journal->j_wait_commit); 651 read_unlock(&journal->j_state_lock); 652 wait_event(journal->j_wait_done_commit, 653 !tid_gt(tid, journal->j_commit_sequence)); 654 read_lock(&journal->j_state_lock); 655 } 656 read_unlock(&journal->j_state_lock); 657 658 if (unlikely(is_journal_aborted(journal))) { 659 printk(KERN_EMERG "journal commit I/O error\n"); 660 err = -EIO; 661 } 662 return err; 663 } 664 665 /* 666 * Log buffer allocation routines: 667 */ 668 669 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp) 670 { 671 unsigned long blocknr; 672 673 write_lock(&journal->j_state_lock); 674 J_ASSERT(journal->j_free > 1); 675 676 blocknr = journal->j_head; 677 journal->j_head++; 678 journal->j_free--; 679 if (journal->j_head == journal->j_last) 680 journal->j_head = journal->j_first; 681 write_unlock(&journal->j_state_lock); 682 return jbd2_journal_bmap(journal, blocknr, retp); 683 } 684 685 /* 686 * Conversion of logical to physical block numbers for the journal 687 * 688 * On external journals the journal blocks are identity-mapped, so 689 * this is a no-op. If needed, we can use j_blk_offset - everything is 690 * ready. 691 */ 692 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr, 693 unsigned long long *retp) 694 { 695 int err = 0; 696 unsigned long long ret; 697 698 if (journal->j_inode) { 699 ret = bmap(journal->j_inode, blocknr); 700 if (ret) 701 *retp = ret; 702 else { 703 printk(KERN_ALERT "%s: journal block not found " 704 "at offset %lu on %s\n", 705 __func__, blocknr, journal->j_devname); 706 err = -EIO; 707 __journal_abort_soft(journal, err); 708 } 709 } else { 710 *retp = blocknr; /* +journal->j_blk_offset */ 711 } 712 return err; 713 } 714 715 /* 716 * We play buffer_head aliasing tricks to write data/metadata blocks to 717 * the journal without copying their contents, but for journal 718 * descriptor blocks we do need to generate bona fide buffers. 719 * 720 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying 721 * the buffer's contents they really should run flush_dcache_page(bh->b_page). 722 * But we don't bother doing that, so there will be coherency problems with 723 * mmaps of blockdevs which hold live JBD-controlled filesystems. 724 */ 725 struct journal_head *jbd2_journal_get_descriptor_buffer(journal_t *journal) 726 { 727 struct buffer_head *bh; 728 unsigned long long blocknr; 729 int err; 730 731 err = jbd2_journal_next_log_block(journal, &blocknr); 732 733 if (err) 734 return NULL; 735 736 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize); 737 if (!bh) 738 return NULL; 739 lock_buffer(bh); 740 memset(bh->b_data, 0, journal->j_blocksize); 741 set_buffer_uptodate(bh); 742 unlock_buffer(bh); 743 BUFFER_TRACE(bh, "return this buffer"); 744 return jbd2_journal_add_journal_head(bh); 745 } 746 747 struct jbd2_stats_proc_session { 748 journal_t *journal; 749 struct transaction_stats_s *stats; 750 int start; 751 int max; 752 }; 753 754 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos) 755 { 756 return *pos ? NULL : SEQ_START_TOKEN; 757 } 758 759 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos) 760 { 761 return NULL; 762 } 763 764 static int jbd2_seq_info_show(struct seq_file *seq, void *v) 765 { 766 struct jbd2_stats_proc_session *s = seq->private; 767 768 if (v != SEQ_START_TOKEN) 769 return 0; 770 seq_printf(seq, "%lu transaction, each up to %u blocks\n", 771 s->stats->ts_tid, 772 s->journal->j_max_transaction_buffers); 773 if (s->stats->ts_tid == 0) 774 return 0; 775 seq_printf(seq, "average: \n %ums waiting for transaction\n", 776 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid)); 777 seq_printf(seq, " %ums running transaction\n", 778 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid)); 779 seq_printf(seq, " %ums transaction was being locked\n", 780 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid)); 781 seq_printf(seq, " %ums flushing data (in ordered mode)\n", 782 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid)); 783 seq_printf(seq, " %ums logging transaction\n", 784 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid)); 785 seq_printf(seq, " %lluus average transaction commit time\n", 786 div_u64(s->journal->j_average_commit_time, 1000)); 787 seq_printf(seq, " %lu handles per transaction\n", 788 s->stats->run.rs_handle_count / s->stats->ts_tid); 789 seq_printf(seq, " %lu blocks per transaction\n", 790 s->stats->run.rs_blocks / s->stats->ts_tid); 791 seq_printf(seq, " %lu logged blocks per transaction\n", 792 s->stats->run.rs_blocks_logged / s->stats->ts_tid); 793 return 0; 794 } 795 796 static void jbd2_seq_info_stop(struct seq_file *seq, void *v) 797 { 798 } 799 800 static const struct seq_operations jbd2_seq_info_ops = { 801 .start = jbd2_seq_info_start, 802 .next = jbd2_seq_info_next, 803 .stop = jbd2_seq_info_stop, 804 .show = jbd2_seq_info_show, 805 }; 806 807 static int jbd2_seq_info_open(struct inode *inode, struct file *file) 808 { 809 journal_t *journal = PDE(inode)->data; 810 struct jbd2_stats_proc_session *s; 811 int rc, size; 812 813 s = kmalloc(sizeof(*s), GFP_KERNEL); 814 if (s == NULL) 815 return -ENOMEM; 816 size = sizeof(struct transaction_stats_s); 817 s->stats = kmalloc(size, GFP_KERNEL); 818 if (s->stats == NULL) { 819 kfree(s); 820 return -ENOMEM; 821 } 822 spin_lock(&journal->j_history_lock); 823 memcpy(s->stats, &journal->j_stats, size); 824 s->journal = journal; 825 spin_unlock(&journal->j_history_lock); 826 827 rc = seq_open(file, &jbd2_seq_info_ops); 828 if (rc == 0) { 829 struct seq_file *m = file->private_data; 830 m->private = s; 831 } else { 832 kfree(s->stats); 833 kfree(s); 834 } 835 return rc; 836 837 } 838 839 static int jbd2_seq_info_release(struct inode *inode, struct file *file) 840 { 841 struct seq_file *seq = file->private_data; 842 struct jbd2_stats_proc_session *s = seq->private; 843 kfree(s->stats); 844 kfree(s); 845 return seq_release(inode, file); 846 } 847 848 static const struct file_operations jbd2_seq_info_fops = { 849 .owner = THIS_MODULE, 850 .open = jbd2_seq_info_open, 851 .read = seq_read, 852 .llseek = seq_lseek, 853 .release = jbd2_seq_info_release, 854 }; 855 856 static struct proc_dir_entry *proc_jbd2_stats; 857 858 static void jbd2_stats_proc_init(journal_t *journal) 859 { 860 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats); 861 if (journal->j_proc_entry) { 862 proc_create_data("info", S_IRUGO, journal->j_proc_entry, 863 &jbd2_seq_info_fops, journal); 864 } 865 } 866 867 static void jbd2_stats_proc_exit(journal_t *journal) 868 { 869 remove_proc_entry("info", journal->j_proc_entry); 870 remove_proc_entry(journal->j_devname, proc_jbd2_stats); 871 } 872 873 /* 874 * Management for journal control blocks: functions to create and 875 * destroy journal_t structures, and to initialise and read existing 876 * journal blocks from disk. */ 877 878 /* First: create and setup a journal_t object in memory. We initialise 879 * very few fields yet: that has to wait until we have created the 880 * journal structures from from scratch, or loaded them from disk. */ 881 882 static journal_t * journal_init_common (void) 883 { 884 journal_t *journal; 885 int err; 886 887 journal = kzalloc(sizeof(*journal), GFP_KERNEL); 888 if (!journal) 889 return NULL; 890 891 init_waitqueue_head(&journal->j_wait_transaction_locked); 892 init_waitqueue_head(&journal->j_wait_logspace); 893 init_waitqueue_head(&journal->j_wait_done_commit); 894 init_waitqueue_head(&journal->j_wait_checkpoint); 895 init_waitqueue_head(&journal->j_wait_commit); 896 init_waitqueue_head(&journal->j_wait_updates); 897 mutex_init(&journal->j_barrier); 898 mutex_init(&journal->j_checkpoint_mutex); 899 spin_lock_init(&journal->j_revoke_lock); 900 spin_lock_init(&journal->j_list_lock); 901 rwlock_init(&journal->j_state_lock); 902 903 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE); 904 journal->j_min_batch_time = 0; 905 journal->j_max_batch_time = 15000; /* 15ms */ 906 907 /* The journal is marked for error until we succeed with recovery! */ 908 journal->j_flags = JBD2_ABORT; 909 910 /* Set up a default-sized revoke table for the new mount. */ 911 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH); 912 if (err) { 913 kfree(journal); 914 return NULL; 915 } 916 917 spin_lock_init(&journal->j_history_lock); 918 919 return journal; 920 } 921 922 /* jbd2_journal_init_dev and jbd2_journal_init_inode: 923 * 924 * Create a journal structure assigned some fixed set of disk blocks to 925 * the journal. We don't actually touch those disk blocks yet, but we 926 * need to set up all of the mapping information to tell the journaling 927 * system where the journal blocks are. 928 * 929 */ 930 931 /** 932 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure 933 * @bdev: Block device on which to create the journal 934 * @fs_dev: Device which hold journalled filesystem for this journal. 935 * @start: Block nr Start of journal. 936 * @len: Length of the journal in blocks. 937 * @blocksize: blocksize of journalling device 938 * 939 * Returns: a newly created journal_t * 940 * 941 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous 942 * range of blocks on an arbitrary block device. 943 * 944 */ 945 journal_t * jbd2_journal_init_dev(struct block_device *bdev, 946 struct block_device *fs_dev, 947 unsigned long long start, int len, int blocksize) 948 { 949 journal_t *journal = journal_init_common(); 950 struct buffer_head *bh; 951 char *p; 952 int n; 953 954 if (!journal) 955 return NULL; 956 957 /* journal descriptor can store up to n blocks -bzzz */ 958 journal->j_blocksize = blocksize; 959 journal->j_dev = bdev; 960 journal->j_fs_dev = fs_dev; 961 journal->j_blk_offset = start; 962 journal->j_maxlen = len; 963 bdevname(journal->j_dev, journal->j_devname); 964 p = journal->j_devname; 965 while ((p = strchr(p, '/'))) 966 *p = '!'; 967 jbd2_stats_proc_init(journal); 968 n = journal->j_blocksize / sizeof(journal_block_tag_t); 969 journal->j_wbufsize = n; 970 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL); 971 if (!journal->j_wbuf) { 972 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n", 973 __func__); 974 goto out_err; 975 } 976 977 bh = __getblk(journal->j_dev, start, journal->j_blocksize); 978 if (!bh) { 979 printk(KERN_ERR 980 "%s: Cannot get buffer for journal superblock\n", 981 __func__); 982 goto out_err; 983 } 984 journal->j_sb_buffer = bh; 985 journal->j_superblock = (journal_superblock_t *)bh->b_data; 986 987 return journal; 988 out_err: 989 kfree(journal->j_wbuf); 990 jbd2_stats_proc_exit(journal); 991 kfree(journal); 992 return NULL; 993 } 994 995 /** 996 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode. 997 * @inode: An inode to create the journal in 998 * 999 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as 1000 * the journal. The inode must exist already, must support bmap() and 1001 * must have all data blocks preallocated. 1002 */ 1003 journal_t * jbd2_journal_init_inode (struct inode *inode) 1004 { 1005 struct buffer_head *bh; 1006 journal_t *journal = journal_init_common(); 1007 char *p; 1008 int err; 1009 int n; 1010 unsigned long long blocknr; 1011 1012 if (!journal) 1013 return NULL; 1014 1015 journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev; 1016 journal->j_inode = inode; 1017 bdevname(journal->j_dev, journal->j_devname); 1018 p = journal->j_devname; 1019 while ((p = strchr(p, '/'))) 1020 *p = '!'; 1021 p = journal->j_devname + strlen(journal->j_devname); 1022 sprintf(p, "-%lu", journal->j_inode->i_ino); 1023 jbd_debug(1, 1024 "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n", 1025 journal, inode->i_sb->s_id, inode->i_ino, 1026 (long long) inode->i_size, 1027 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize); 1028 1029 journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits; 1030 journal->j_blocksize = inode->i_sb->s_blocksize; 1031 jbd2_stats_proc_init(journal); 1032 1033 /* journal descriptor can store up to n blocks -bzzz */ 1034 n = journal->j_blocksize / sizeof(journal_block_tag_t); 1035 journal->j_wbufsize = n; 1036 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL); 1037 if (!journal->j_wbuf) { 1038 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n", 1039 __func__); 1040 goto out_err; 1041 } 1042 1043 err = jbd2_journal_bmap(journal, 0, &blocknr); 1044 /* If that failed, give up */ 1045 if (err) { 1046 printk(KERN_ERR "%s: Cannot locate journal superblock\n", 1047 __func__); 1048 goto out_err; 1049 } 1050 1051 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize); 1052 if (!bh) { 1053 printk(KERN_ERR 1054 "%s: Cannot get buffer for journal superblock\n", 1055 __func__); 1056 goto out_err; 1057 } 1058 journal->j_sb_buffer = bh; 1059 journal->j_superblock = (journal_superblock_t *)bh->b_data; 1060 1061 return journal; 1062 out_err: 1063 kfree(journal->j_wbuf); 1064 jbd2_stats_proc_exit(journal); 1065 kfree(journal); 1066 return NULL; 1067 } 1068 1069 /* 1070 * If the journal init or create aborts, we need to mark the journal 1071 * superblock as being NULL to prevent the journal destroy from writing 1072 * back a bogus superblock. 1073 */ 1074 static void journal_fail_superblock (journal_t *journal) 1075 { 1076 struct buffer_head *bh = journal->j_sb_buffer; 1077 brelse(bh); 1078 journal->j_sb_buffer = NULL; 1079 } 1080 1081 /* 1082 * Given a journal_t structure, initialise the various fields for 1083 * startup of a new journaling session. We use this both when creating 1084 * a journal, and after recovering an old journal to reset it for 1085 * subsequent use. 1086 */ 1087 1088 static int journal_reset(journal_t *journal) 1089 { 1090 journal_superblock_t *sb = journal->j_superblock; 1091 unsigned long long first, last; 1092 1093 first = be32_to_cpu(sb->s_first); 1094 last = be32_to_cpu(sb->s_maxlen); 1095 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) { 1096 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n", 1097 first, last); 1098 journal_fail_superblock(journal); 1099 return -EINVAL; 1100 } 1101 1102 journal->j_first = first; 1103 journal->j_last = last; 1104 1105 journal->j_head = first; 1106 journal->j_tail = first; 1107 journal->j_free = last - first; 1108 1109 journal->j_tail_sequence = journal->j_transaction_sequence; 1110 journal->j_commit_sequence = journal->j_transaction_sequence - 1; 1111 journal->j_commit_request = journal->j_commit_sequence; 1112 1113 journal->j_max_transaction_buffers = journal->j_maxlen / 4; 1114 1115 /* Add the dynamic fields and write it to disk. */ 1116 jbd2_journal_update_superblock(journal, 1); 1117 return jbd2_journal_start_thread(journal); 1118 } 1119 1120 /** 1121 * void jbd2_journal_update_superblock() - Update journal sb on disk. 1122 * @journal: The journal to update. 1123 * @wait: Set to '0' if you don't want to wait for IO completion. 1124 * 1125 * Update a journal's dynamic superblock fields and write it to disk, 1126 * optionally waiting for the IO to complete. 1127 */ 1128 void jbd2_journal_update_superblock(journal_t *journal, int wait) 1129 { 1130 journal_superblock_t *sb = journal->j_superblock; 1131 struct buffer_head *bh = journal->j_sb_buffer; 1132 1133 /* 1134 * As a special case, if the on-disk copy is already marked as needing 1135 * no recovery (s_start == 0) and there are no outstanding transactions 1136 * in the filesystem, then we can safely defer the superblock update 1137 * until the next commit by setting JBD2_FLUSHED. This avoids 1138 * attempting a write to a potential-readonly device. 1139 */ 1140 if (sb->s_start == 0 && journal->j_tail_sequence == 1141 journal->j_transaction_sequence) { 1142 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb " 1143 "(start %ld, seq %d, errno %d)\n", 1144 journal->j_tail, journal->j_tail_sequence, 1145 journal->j_errno); 1146 goto out; 1147 } 1148 1149 if (buffer_write_io_error(bh)) { 1150 /* 1151 * Oh, dear. A previous attempt to write the journal 1152 * superblock failed. This could happen because the 1153 * USB device was yanked out. Or it could happen to 1154 * be a transient write error and maybe the block will 1155 * be remapped. Nothing we can do but to retry the 1156 * write and hope for the best. 1157 */ 1158 printk(KERN_ERR "JBD2: previous I/O error detected " 1159 "for journal superblock update for %s.\n", 1160 journal->j_devname); 1161 clear_buffer_write_io_error(bh); 1162 set_buffer_uptodate(bh); 1163 } 1164 1165 read_lock(&journal->j_state_lock); 1166 jbd_debug(1, "JBD2: updating superblock (start %ld, seq %d, errno %d)\n", 1167 journal->j_tail, journal->j_tail_sequence, journal->j_errno); 1168 1169 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence); 1170 sb->s_start = cpu_to_be32(journal->j_tail); 1171 sb->s_errno = cpu_to_be32(journal->j_errno); 1172 read_unlock(&journal->j_state_lock); 1173 1174 BUFFER_TRACE(bh, "marking dirty"); 1175 mark_buffer_dirty(bh); 1176 if (wait) { 1177 sync_dirty_buffer(bh); 1178 if (buffer_write_io_error(bh)) { 1179 printk(KERN_ERR "JBD2: I/O error detected " 1180 "when updating journal superblock for %s.\n", 1181 journal->j_devname); 1182 clear_buffer_write_io_error(bh); 1183 set_buffer_uptodate(bh); 1184 } 1185 } else 1186 write_dirty_buffer(bh, WRITE); 1187 1188 out: 1189 /* If we have just flushed the log (by marking s_start==0), then 1190 * any future commit will have to be careful to update the 1191 * superblock again to re-record the true start of the log. */ 1192 1193 write_lock(&journal->j_state_lock); 1194 if (sb->s_start) 1195 journal->j_flags &= ~JBD2_FLUSHED; 1196 else 1197 journal->j_flags |= JBD2_FLUSHED; 1198 write_unlock(&journal->j_state_lock); 1199 } 1200 1201 /* 1202 * Read the superblock for a given journal, performing initial 1203 * validation of the format. 1204 */ 1205 1206 static int journal_get_superblock(journal_t *journal) 1207 { 1208 struct buffer_head *bh; 1209 journal_superblock_t *sb; 1210 int err = -EIO; 1211 1212 bh = journal->j_sb_buffer; 1213 1214 J_ASSERT(bh != NULL); 1215 if (!buffer_uptodate(bh)) { 1216 ll_rw_block(READ, 1, &bh); 1217 wait_on_buffer(bh); 1218 if (!buffer_uptodate(bh)) { 1219 printk(KERN_ERR 1220 "JBD2: IO error reading journal superblock\n"); 1221 goto out; 1222 } 1223 } 1224 1225 sb = journal->j_superblock; 1226 1227 err = -EINVAL; 1228 1229 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) || 1230 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) { 1231 printk(KERN_WARNING "JBD2: no valid journal superblock found\n"); 1232 goto out; 1233 } 1234 1235 switch(be32_to_cpu(sb->s_header.h_blocktype)) { 1236 case JBD2_SUPERBLOCK_V1: 1237 journal->j_format_version = 1; 1238 break; 1239 case JBD2_SUPERBLOCK_V2: 1240 journal->j_format_version = 2; 1241 break; 1242 default: 1243 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n"); 1244 goto out; 1245 } 1246 1247 if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen) 1248 journal->j_maxlen = be32_to_cpu(sb->s_maxlen); 1249 else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) { 1250 printk(KERN_WARNING "JBD2: journal file too short\n"); 1251 goto out; 1252 } 1253 1254 if (be32_to_cpu(sb->s_first) == 0 || 1255 be32_to_cpu(sb->s_first) >= journal->j_maxlen) { 1256 printk(KERN_WARNING 1257 "JBD2: Invalid start block of journal: %u\n", 1258 be32_to_cpu(sb->s_first)); 1259 goto out; 1260 } 1261 1262 return 0; 1263 1264 out: 1265 journal_fail_superblock(journal); 1266 return err; 1267 } 1268 1269 /* 1270 * Load the on-disk journal superblock and read the key fields into the 1271 * journal_t. 1272 */ 1273 1274 static int load_superblock(journal_t *journal) 1275 { 1276 int err; 1277 journal_superblock_t *sb; 1278 1279 err = journal_get_superblock(journal); 1280 if (err) 1281 return err; 1282 1283 sb = journal->j_superblock; 1284 1285 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence); 1286 journal->j_tail = be32_to_cpu(sb->s_start); 1287 journal->j_first = be32_to_cpu(sb->s_first); 1288 journal->j_last = be32_to_cpu(sb->s_maxlen); 1289 journal->j_errno = be32_to_cpu(sb->s_errno); 1290 1291 return 0; 1292 } 1293 1294 1295 /** 1296 * int jbd2_journal_load() - Read journal from disk. 1297 * @journal: Journal to act on. 1298 * 1299 * Given a journal_t structure which tells us which disk blocks contain 1300 * a journal, read the journal from disk to initialise the in-memory 1301 * structures. 1302 */ 1303 int jbd2_journal_load(journal_t *journal) 1304 { 1305 int err; 1306 journal_superblock_t *sb; 1307 1308 err = load_superblock(journal); 1309 if (err) 1310 return err; 1311 1312 sb = journal->j_superblock; 1313 /* If this is a V2 superblock, then we have to check the 1314 * features flags on it. */ 1315 1316 if (journal->j_format_version >= 2) { 1317 if ((sb->s_feature_ro_compat & 1318 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) || 1319 (sb->s_feature_incompat & 1320 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) { 1321 printk(KERN_WARNING 1322 "JBD2: Unrecognised features on journal\n"); 1323 return -EINVAL; 1324 } 1325 } 1326 1327 /* 1328 * Create a slab for this blocksize 1329 */ 1330 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize)); 1331 if (err) 1332 return err; 1333 1334 /* Let the recovery code check whether it needs to recover any 1335 * data from the journal. */ 1336 if (jbd2_journal_recover(journal)) 1337 goto recovery_error; 1338 1339 if (journal->j_failed_commit) { 1340 printk(KERN_ERR "JBD2: journal transaction %u on %s " 1341 "is corrupt.\n", journal->j_failed_commit, 1342 journal->j_devname); 1343 return -EIO; 1344 } 1345 1346 /* OK, we've finished with the dynamic journal bits: 1347 * reinitialise the dynamic contents of the superblock in memory 1348 * and reset them on disk. */ 1349 if (journal_reset(journal)) 1350 goto recovery_error; 1351 1352 journal->j_flags &= ~JBD2_ABORT; 1353 journal->j_flags |= JBD2_LOADED; 1354 return 0; 1355 1356 recovery_error: 1357 printk(KERN_WARNING "JBD2: recovery failed\n"); 1358 return -EIO; 1359 } 1360 1361 /** 1362 * void jbd2_journal_destroy() - Release a journal_t structure. 1363 * @journal: Journal to act on. 1364 * 1365 * Release a journal_t structure once it is no longer in use by the 1366 * journaled object. 1367 * Return <0 if we couldn't clean up the journal. 1368 */ 1369 int jbd2_journal_destroy(journal_t *journal) 1370 { 1371 int err = 0; 1372 1373 /* Wait for the commit thread to wake up and die. */ 1374 journal_kill_thread(journal); 1375 1376 /* Force a final log commit */ 1377 if (journal->j_running_transaction) 1378 jbd2_journal_commit_transaction(journal); 1379 1380 /* Force any old transactions to disk */ 1381 1382 /* Totally anal locking here... */ 1383 spin_lock(&journal->j_list_lock); 1384 while (journal->j_checkpoint_transactions != NULL) { 1385 spin_unlock(&journal->j_list_lock); 1386 mutex_lock(&journal->j_checkpoint_mutex); 1387 jbd2_log_do_checkpoint(journal); 1388 mutex_unlock(&journal->j_checkpoint_mutex); 1389 spin_lock(&journal->j_list_lock); 1390 } 1391 1392 J_ASSERT(journal->j_running_transaction == NULL); 1393 J_ASSERT(journal->j_committing_transaction == NULL); 1394 J_ASSERT(journal->j_checkpoint_transactions == NULL); 1395 spin_unlock(&journal->j_list_lock); 1396 1397 if (journal->j_sb_buffer) { 1398 if (!is_journal_aborted(journal)) { 1399 /* We can now mark the journal as empty. */ 1400 journal->j_tail = 0; 1401 journal->j_tail_sequence = 1402 ++journal->j_transaction_sequence; 1403 jbd2_journal_update_superblock(journal, 1); 1404 } else { 1405 err = -EIO; 1406 } 1407 brelse(journal->j_sb_buffer); 1408 } 1409 1410 if (journal->j_proc_entry) 1411 jbd2_stats_proc_exit(journal); 1412 if (journal->j_inode) 1413 iput(journal->j_inode); 1414 if (journal->j_revoke) 1415 jbd2_journal_destroy_revoke(journal); 1416 kfree(journal->j_wbuf); 1417 kfree(journal); 1418 1419 return err; 1420 } 1421 1422 1423 /** 1424 *int jbd2_journal_check_used_features () - Check if features specified are used. 1425 * @journal: Journal to check. 1426 * @compat: bitmask of compatible features 1427 * @ro: bitmask of features that force read-only mount 1428 * @incompat: bitmask of incompatible features 1429 * 1430 * Check whether the journal uses all of a given set of 1431 * features. Return true (non-zero) if it does. 1432 **/ 1433 1434 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat, 1435 unsigned long ro, unsigned long incompat) 1436 { 1437 journal_superblock_t *sb; 1438 1439 if (!compat && !ro && !incompat) 1440 return 1; 1441 /* Load journal superblock if it is not loaded yet. */ 1442 if (journal->j_format_version == 0 && 1443 journal_get_superblock(journal) != 0) 1444 return 0; 1445 if (journal->j_format_version == 1) 1446 return 0; 1447 1448 sb = journal->j_superblock; 1449 1450 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) && 1451 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) && 1452 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat)) 1453 return 1; 1454 1455 return 0; 1456 } 1457 1458 /** 1459 * int jbd2_journal_check_available_features() - Check feature set in journalling layer 1460 * @journal: Journal to check. 1461 * @compat: bitmask of compatible features 1462 * @ro: bitmask of features that force read-only mount 1463 * @incompat: bitmask of incompatible features 1464 * 1465 * Check whether the journaling code supports the use of 1466 * all of a given set of features on this journal. Return true 1467 * (non-zero) if it can. */ 1468 1469 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat, 1470 unsigned long ro, unsigned long incompat) 1471 { 1472 if (!compat && !ro && !incompat) 1473 return 1; 1474 1475 /* We can support any known requested features iff the 1476 * superblock is in version 2. Otherwise we fail to support any 1477 * extended sb features. */ 1478 1479 if (journal->j_format_version != 2) 1480 return 0; 1481 1482 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat && 1483 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro && 1484 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat) 1485 return 1; 1486 1487 return 0; 1488 } 1489 1490 /** 1491 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock 1492 * @journal: Journal to act on. 1493 * @compat: bitmask of compatible features 1494 * @ro: bitmask of features that force read-only mount 1495 * @incompat: bitmask of incompatible features 1496 * 1497 * Mark a given journal feature as present on the 1498 * superblock. Returns true if the requested features could be set. 1499 * 1500 */ 1501 1502 int jbd2_journal_set_features (journal_t *journal, unsigned long compat, 1503 unsigned long ro, unsigned long incompat) 1504 { 1505 journal_superblock_t *sb; 1506 1507 if (jbd2_journal_check_used_features(journal, compat, ro, incompat)) 1508 return 1; 1509 1510 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat)) 1511 return 0; 1512 1513 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n", 1514 compat, ro, incompat); 1515 1516 sb = journal->j_superblock; 1517 1518 sb->s_feature_compat |= cpu_to_be32(compat); 1519 sb->s_feature_ro_compat |= cpu_to_be32(ro); 1520 sb->s_feature_incompat |= cpu_to_be32(incompat); 1521 1522 return 1; 1523 } 1524 1525 /* 1526 * jbd2_journal_clear_features () - Clear a given journal feature in the 1527 * superblock 1528 * @journal: Journal to act on. 1529 * @compat: bitmask of compatible features 1530 * @ro: bitmask of features that force read-only mount 1531 * @incompat: bitmask of incompatible features 1532 * 1533 * Clear a given journal feature as present on the 1534 * superblock. 1535 */ 1536 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat, 1537 unsigned long ro, unsigned long incompat) 1538 { 1539 journal_superblock_t *sb; 1540 1541 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n", 1542 compat, ro, incompat); 1543 1544 sb = journal->j_superblock; 1545 1546 sb->s_feature_compat &= ~cpu_to_be32(compat); 1547 sb->s_feature_ro_compat &= ~cpu_to_be32(ro); 1548 sb->s_feature_incompat &= ~cpu_to_be32(incompat); 1549 } 1550 EXPORT_SYMBOL(jbd2_journal_clear_features); 1551 1552 /** 1553 * int jbd2_journal_update_format () - Update on-disk journal structure. 1554 * @journal: Journal to act on. 1555 * 1556 * Given an initialised but unloaded journal struct, poke about in the 1557 * on-disk structure to update it to the most recent supported version. 1558 */ 1559 int jbd2_journal_update_format (journal_t *journal) 1560 { 1561 journal_superblock_t *sb; 1562 int err; 1563 1564 err = journal_get_superblock(journal); 1565 if (err) 1566 return err; 1567 1568 sb = journal->j_superblock; 1569 1570 switch (be32_to_cpu(sb->s_header.h_blocktype)) { 1571 case JBD2_SUPERBLOCK_V2: 1572 return 0; 1573 case JBD2_SUPERBLOCK_V1: 1574 return journal_convert_superblock_v1(journal, sb); 1575 default: 1576 break; 1577 } 1578 return -EINVAL; 1579 } 1580 1581 static int journal_convert_superblock_v1(journal_t *journal, 1582 journal_superblock_t *sb) 1583 { 1584 int offset, blocksize; 1585 struct buffer_head *bh; 1586 1587 printk(KERN_WARNING 1588 "JBD2: Converting superblock from version 1 to 2.\n"); 1589 1590 /* Pre-initialise new fields to zero */ 1591 offset = ((char *) &(sb->s_feature_compat)) - ((char *) sb); 1592 blocksize = be32_to_cpu(sb->s_blocksize); 1593 memset(&sb->s_feature_compat, 0, blocksize-offset); 1594 1595 sb->s_nr_users = cpu_to_be32(1); 1596 sb->s_header.h_blocktype = cpu_to_be32(JBD2_SUPERBLOCK_V2); 1597 journal->j_format_version = 2; 1598 1599 bh = journal->j_sb_buffer; 1600 BUFFER_TRACE(bh, "marking dirty"); 1601 mark_buffer_dirty(bh); 1602 sync_dirty_buffer(bh); 1603 return 0; 1604 } 1605 1606 1607 /** 1608 * int jbd2_journal_flush () - Flush journal 1609 * @journal: Journal to act on. 1610 * 1611 * Flush all data for a given journal to disk and empty the journal. 1612 * Filesystems can use this when remounting readonly to ensure that 1613 * recovery does not need to happen on remount. 1614 */ 1615 1616 int jbd2_journal_flush(journal_t *journal) 1617 { 1618 int err = 0; 1619 transaction_t *transaction = NULL; 1620 unsigned long old_tail; 1621 1622 write_lock(&journal->j_state_lock); 1623 1624 /* Force everything buffered to the log... */ 1625 if (journal->j_running_transaction) { 1626 transaction = journal->j_running_transaction; 1627 __jbd2_log_start_commit(journal, transaction->t_tid); 1628 } else if (journal->j_committing_transaction) 1629 transaction = journal->j_committing_transaction; 1630 1631 /* Wait for the log commit to complete... */ 1632 if (transaction) { 1633 tid_t tid = transaction->t_tid; 1634 1635 write_unlock(&journal->j_state_lock); 1636 jbd2_log_wait_commit(journal, tid); 1637 } else { 1638 write_unlock(&journal->j_state_lock); 1639 } 1640 1641 /* ...and flush everything in the log out to disk. */ 1642 spin_lock(&journal->j_list_lock); 1643 while (!err && journal->j_checkpoint_transactions != NULL) { 1644 spin_unlock(&journal->j_list_lock); 1645 mutex_lock(&journal->j_checkpoint_mutex); 1646 err = jbd2_log_do_checkpoint(journal); 1647 mutex_unlock(&journal->j_checkpoint_mutex); 1648 spin_lock(&journal->j_list_lock); 1649 } 1650 spin_unlock(&journal->j_list_lock); 1651 1652 if (is_journal_aborted(journal)) 1653 return -EIO; 1654 1655 jbd2_cleanup_journal_tail(journal); 1656 1657 /* Finally, mark the journal as really needing no recovery. 1658 * This sets s_start==0 in the underlying superblock, which is 1659 * the magic code for a fully-recovered superblock. Any future 1660 * commits of data to the journal will restore the current 1661 * s_start value. */ 1662 write_lock(&journal->j_state_lock); 1663 old_tail = journal->j_tail; 1664 journal->j_tail = 0; 1665 write_unlock(&journal->j_state_lock); 1666 jbd2_journal_update_superblock(journal, 1); 1667 write_lock(&journal->j_state_lock); 1668 journal->j_tail = old_tail; 1669 1670 J_ASSERT(!journal->j_running_transaction); 1671 J_ASSERT(!journal->j_committing_transaction); 1672 J_ASSERT(!journal->j_checkpoint_transactions); 1673 J_ASSERT(journal->j_head == journal->j_tail); 1674 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence); 1675 write_unlock(&journal->j_state_lock); 1676 return 0; 1677 } 1678 1679 /** 1680 * int jbd2_journal_wipe() - Wipe journal contents 1681 * @journal: Journal to act on. 1682 * @write: flag (see below) 1683 * 1684 * Wipe out all of the contents of a journal, safely. This will produce 1685 * a warning if the journal contains any valid recovery information. 1686 * Must be called between journal_init_*() and jbd2_journal_load(). 1687 * 1688 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise 1689 * we merely suppress recovery. 1690 */ 1691 1692 int jbd2_journal_wipe(journal_t *journal, int write) 1693 { 1694 int err = 0; 1695 1696 J_ASSERT (!(journal->j_flags & JBD2_LOADED)); 1697 1698 err = load_superblock(journal); 1699 if (err) 1700 return err; 1701 1702 if (!journal->j_tail) 1703 goto no_recovery; 1704 1705 printk(KERN_WARNING "JBD2: %s recovery information on journal\n", 1706 write ? "Clearing" : "Ignoring"); 1707 1708 err = jbd2_journal_skip_recovery(journal); 1709 if (write) 1710 jbd2_journal_update_superblock(journal, 1); 1711 1712 no_recovery: 1713 return err; 1714 } 1715 1716 /* 1717 * Journal abort has very specific semantics, which we describe 1718 * for journal abort. 1719 * 1720 * Two internal functions, which provide abort to the jbd layer 1721 * itself are here. 1722 */ 1723 1724 /* 1725 * Quick version for internal journal use (doesn't lock the journal). 1726 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else, 1727 * and don't attempt to make any other journal updates. 1728 */ 1729 void __jbd2_journal_abort_hard(journal_t *journal) 1730 { 1731 transaction_t *transaction; 1732 1733 if (journal->j_flags & JBD2_ABORT) 1734 return; 1735 1736 printk(KERN_ERR "Aborting journal on device %s.\n", 1737 journal->j_devname); 1738 1739 write_lock(&journal->j_state_lock); 1740 journal->j_flags |= JBD2_ABORT; 1741 transaction = journal->j_running_transaction; 1742 if (transaction) 1743 __jbd2_log_start_commit(journal, transaction->t_tid); 1744 write_unlock(&journal->j_state_lock); 1745 } 1746 1747 /* Soft abort: record the abort error status in the journal superblock, 1748 * but don't do any other IO. */ 1749 static void __journal_abort_soft (journal_t *journal, int errno) 1750 { 1751 if (journal->j_flags & JBD2_ABORT) 1752 return; 1753 1754 if (!journal->j_errno) 1755 journal->j_errno = errno; 1756 1757 __jbd2_journal_abort_hard(journal); 1758 1759 if (errno) 1760 jbd2_journal_update_superblock(journal, 1); 1761 } 1762 1763 /** 1764 * void jbd2_journal_abort () - Shutdown the journal immediately. 1765 * @journal: the journal to shutdown. 1766 * @errno: an error number to record in the journal indicating 1767 * the reason for the shutdown. 1768 * 1769 * Perform a complete, immediate shutdown of the ENTIRE 1770 * journal (not of a single transaction). This operation cannot be 1771 * undone without closing and reopening the journal. 1772 * 1773 * The jbd2_journal_abort function is intended to support higher level error 1774 * recovery mechanisms such as the ext2/ext3 remount-readonly error 1775 * mode. 1776 * 1777 * Journal abort has very specific semantics. Any existing dirty, 1778 * unjournaled buffers in the main filesystem will still be written to 1779 * disk by bdflush, but the journaling mechanism will be suspended 1780 * immediately and no further transaction commits will be honoured. 1781 * 1782 * Any dirty, journaled buffers will be written back to disk without 1783 * hitting the journal. Atomicity cannot be guaranteed on an aborted 1784 * filesystem, but we _do_ attempt to leave as much data as possible 1785 * behind for fsck to use for cleanup. 1786 * 1787 * Any attempt to get a new transaction handle on a journal which is in 1788 * ABORT state will just result in an -EROFS error return. A 1789 * jbd2_journal_stop on an existing handle will return -EIO if we have 1790 * entered abort state during the update. 1791 * 1792 * Recursive transactions are not disturbed by journal abort until the 1793 * final jbd2_journal_stop, which will receive the -EIO error. 1794 * 1795 * Finally, the jbd2_journal_abort call allows the caller to supply an errno 1796 * which will be recorded (if possible) in the journal superblock. This 1797 * allows a client to record failure conditions in the middle of a 1798 * transaction without having to complete the transaction to record the 1799 * failure to disk. ext3_error, for example, now uses this 1800 * functionality. 1801 * 1802 * Errors which originate from within the journaling layer will NOT 1803 * supply an errno; a null errno implies that absolutely no further 1804 * writes are done to the journal (unless there are any already in 1805 * progress). 1806 * 1807 */ 1808 1809 void jbd2_journal_abort(journal_t *journal, int errno) 1810 { 1811 __journal_abort_soft(journal, errno); 1812 } 1813 1814 /** 1815 * int jbd2_journal_errno () - returns the journal's error state. 1816 * @journal: journal to examine. 1817 * 1818 * This is the errno number set with jbd2_journal_abort(), the last 1819 * time the journal was mounted - if the journal was stopped 1820 * without calling abort this will be 0. 1821 * 1822 * If the journal has been aborted on this mount time -EROFS will 1823 * be returned. 1824 */ 1825 int jbd2_journal_errno(journal_t *journal) 1826 { 1827 int err; 1828 1829 read_lock(&journal->j_state_lock); 1830 if (journal->j_flags & JBD2_ABORT) 1831 err = -EROFS; 1832 else 1833 err = journal->j_errno; 1834 read_unlock(&journal->j_state_lock); 1835 return err; 1836 } 1837 1838 /** 1839 * int jbd2_journal_clear_err () - clears the journal's error state 1840 * @journal: journal to act on. 1841 * 1842 * An error must be cleared or acked to take a FS out of readonly 1843 * mode. 1844 */ 1845 int jbd2_journal_clear_err(journal_t *journal) 1846 { 1847 int err = 0; 1848 1849 write_lock(&journal->j_state_lock); 1850 if (journal->j_flags & JBD2_ABORT) 1851 err = -EROFS; 1852 else 1853 journal->j_errno = 0; 1854 write_unlock(&journal->j_state_lock); 1855 return err; 1856 } 1857 1858 /** 1859 * void jbd2_journal_ack_err() - Ack journal err. 1860 * @journal: journal to act on. 1861 * 1862 * An error must be cleared or acked to take a FS out of readonly 1863 * mode. 1864 */ 1865 void jbd2_journal_ack_err(journal_t *journal) 1866 { 1867 write_lock(&journal->j_state_lock); 1868 if (journal->j_errno) 1869 journal->j_flags |= JBD2_ACK_ERR; 1870 write_unlock(&journal->j_state_lock); 1871 } 1872 1873 int jbd2_journal_blocks_per_page(struct inode *inode) 1874 { 1875 return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 1876 } 1877 1878 /* 1879 * helper functions to deal with 32 or 64bit block numbers. 1880 */ 1881 size_t journal_tag_bytes(journal_t *journal) 1882 { 1883 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT)) 1884 return JBD2_TAG_SIZE64; 1885 else 1886 return JBD2_TAG_SIZE32; 1887 } 1888 1889 /* 1890 * JBD memory management 1891 * 1892 * These functions are used to allocate block-sized chunks of memory 1893 * used for making copies of buffer_head data. Very often it will be 1894 * page-sized chunks of data, but sometimes it will be in 1895 * sub-page-size chunks. (For example, 16k pages on Power systems 1896 * with a 4k block file system.) For blocks smaller than a page, we 1897 * use a SLAB allocator. There are slab caches for each block size, 1898 * which are allocated at mount time, if necessary, and we only free 1899 * (all of) the slab caches when/if the jbd2 module is unloaded. For 1900 * this reason we don't need to a mutex to protect access to 1901 * jbd2_slab[] allocating or releasing memory; only in 1902 * jbd2_journal_create_slab(). 1903 */ 1904 #define JBD2_MAX_SLABS 8 1905 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS]; 1906 1907 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = { 1908 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k", 1909 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k" 1910 }; 1911 1912 1913 static void jbd2_journal_destroy_slabs(void) 1914 { 1915 int i; 1916 1917 for (i = 0; i < JBD2_MAX_SLABS; i++) { 1918 if (jbd2_slab[i]) 1919 kmem_cache_destroy(jbd2_slab[i]); 1920 jbd2_slab[i] = NULL; 1921 } 1922 } 1923 1924 static int jbd2_journal_create_slab(size_t size) 1925 { 1926 static DEFINE_MUTEX(jbd2_slab_create_mutex); 1927 int i = order_base_2(size) - 10; 1928 size_t slab_size; 1929 1930 if (size == PAGE_SIZE) 1931 return 0; 1932 1933 if (i >= JBD2_MAX_SLABS) 1934 return -EINVAL; 1935 1936 if (unlikely(i < 0)) 1937 i = 0; 1938 mutex_lock(&jbd2_slab_create_mutex); 1939 if (jbd2_slab[i]) { 1940 mutex_unlock(&jbd2_slab_create_mutex); 1941 return 0; /* Already created */ 1942 } 1943 1944 slab_size = 1 << (i+10); 1945 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size, 1946 slab_size, 0, NULL); 1947 mutex_unlock(&jbd2_slab_create_mutex); 1948 if (!jbd2_slab[i]) { 1949 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n"); 1950 return -ENOMEM; 1951 } 1952 return 0; 1953 } 1954 1955 static struct kmem_cache *get_slab(size_t size) 1956 { 1957 int i = order_base_2(size) - 10; 1958 1959 BUG_ON(i >= JBD2_MAX_SLABS); 1960 if (unlikely(i < 0)) 1961 i = 0; 1962 BUG_ON(jbd2_slab[i] == NULL); 1963 return jbd2_slab[i]; 1964 } 1965 1966 void *jbd2_alloc(size_t size, gfp_t flags) 1967 { 1968 void *ptr; 1969 1970 BUG_ON(size & (size-1)); /* Must be a power of 2 */ 1971 1972 flags |= __GFP_REPEAT; 1973 if (size == PAGE_SIZE) 1974 ptr = (void *)__get_free_pages(flags, 0); 1975 else if (size > PAGE_SIZE) { 1976 int order = get_order(size); 1977 1978 if (order < 3) 1979 ptr = (void *)__get_free_pages(flags, order); 1980 else 1981 ptr = vmalloc(size); 1982 } else 1983 ptr = kmem_cache_alloc(get_slab(size), flags); 1984 1985 /* Check alignment; SLUB has gotten this wrong in the past, 1986 * and this can lead to user data corruption! */ 1987 BUG_ON(((unsigned long) ptr) & (size-1)); 1988 1989 return ptr; 1990 } 1991 1992 void jbd2_free(void *ptr, size_t size) 1993 { 1994 if (size == PAGE_SIZE) { 1995 free_pages((unsigned long)ptr, 0); 1996 return; 1997 } 1998 if (size > PAGE_SIZE) { 1999 int order = get_order(size); 2000 2001 if (order < 3) 2002 free_pages((unsigned long)ptr, order); 2003 else 2004 vfree(ptr); 2005 return; 2006 } 2007 kmem_cache_free(get_slab(size), ptr); 2008 }; 2009 2010 /* 2011 * Journal_head storage management 2012 */ 2013 static struct kmem_cache *jbd2_journal_head_cache; 2014 #ifdef CONFIG_JBD2_DEBUG 2015 static atomic_t nr_journal_heads = ATOMIC_INIT(0); 2016 #endif 2017 2018 static int journal_init_jbd2_journal_head_cache(void) 2019 { 2020 int retval; 2021 2022 J_ASSERT(jbd2_journal_head_cache == NULL); 2023 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head", 2024 sizeof(struct journal_head), 2025 0, /* offset */ 2026 SLAB_TEMPORARY, /* flags */ 2027 NULL); /* ctor */ 2028 retval = 0; 2029 if (!jbd2_journal_head_cache) { 2030 retval = -ENOMEM; 2031 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n"); 2032 } 2033 return retval; 2034 } 2035 2036 static void jbd2_journal_destroy_jbd2_journal_head_cache(void) 2037 { 2038 if (jbd2_journal_head_cache) { 2039 kmem_cache_destroy(jbd2_journal_head_cache); 2040 jbd2_journal_head_cache = NULL; 2041 } 2042 } 2043 2044 /* 2045 * journal_head splicing and dicing 2046 */ 2047 static struct journal_head *journal_alloc_journal_head(void) 2048 { 2049 struct journal_head *ret; 2050 2051 #ifdef CONFIG_JBD2_DEBUG 2052 atomic_inc(&nr_journal_heads); 2053 #endif 2054 ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS); 2055 if (!ret) { 2056 jbd_debug(1, "out of memory for journal_head\n"); 2057 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__); 2058 while (!ret) { 2059 yield(); 2060 ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS); 2061 } 2062 } 2063 return ret; 2064 } 2065 2066 static void journal_free_journal_head(struct journal_head *jh) 2067 { 2068 #ifdef CONFIG_JBD2_DEBUG 2069 atomic_dec(&nr_journal_heads); 2070 memset(jh, JBD2_POISON_FREE, sizeof(*jh)); 2071 #endif 2072 kmem_cache_free(jbd2_journal_head_cache, jh); 2073 } 2074 2075 /* 2076 * A journal_head is attached to a buffer_head whenever JBD has an 2077 * interest in the buffer. 2078 * 2079 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit 2080 * is set. This bit is tested in core kernel code where we need to take 2081 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable 2082 * there. 2083 * 2084 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one. 2085 * 2086 * When a buffer has its BH_JBD bit set it is immune from being released by 2087 * core kernel code, mainly via ->b_count. 2088 * 2089 * A journal_head is detached from its buffer_head when the journal_head's 2090 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint 2091 * transaction (b_cp_transaction) hold their references to b_jcount. 2092 * 2093 * Various places in the kernel want to attach a journal_head to a buffer_head 2094 * _before_ attaching the journal_head to a transaction. To protect the 2095 * journal_head in this situation, jbd2_journal_add_journal_head elevates the 2096 * journal_head's b_jcount refcount by one. The caller must call 2097 * jbd2_journal_put_journal_head() to undo this. 2098 * 2099 * So the typical usage would be: 2100 * 2101 * (Attach a journal_head if needed. Increments b_jcount) 2102 * struct journal_head *jh = jbd2_journal_add_journal_head(bh); 2103 * ... 2104 * (Get another reference for transaction) 2105 * jbd2_journal_grab_journal_head(bh); 2106 * jh->b_transaction = xxx; 2107 * (Put original reference) 2108 * jbd2_journal_put_journal_head(jh); 2109 */ 2110 2111 /* 2112 * Give a buffer_head a journal_head. 2113 * 2114 * May sleep. 2115 */ 2116 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh) 2117 { 2118 struct journal_head *jh; 2119 struct journal_head *new_jh = NULL; 2120 2121 repeat: 2122 if (!buffer_jbd(bh)) { 2123 new_jh = journal_alloc_journal_head(); 2124 memset(new_jh, 0, sizeof(*new_jh)); 2125 } 2126 2127 jbd_lock_bh_journal_head(bh); 2128 if (buffer_jbd(bh)) { 2129 jh = bh2jh(bh); 2130 } else { 2131 J_ASSERT_BH(bh, 2132 (atomic_read(&bh->b_count) > 0) || 2133 (bh->b_page && bh->b_page->mapping)); 2134 2135 if (!new_jh) { 2136 jbd_unlock_bh_journal_head(bh); 2137 goto repeat; 2138 } 2139 2140 jh = new_jh; 2141 new_jh = NULL; /* We consumed it */ 2142 set_buffer_jbd(bh); 2143 bh->b_private = jh; 2144 jh->b_bh = bh; 2145 get_bh(bh); 2146 BUFFER_TRACE(bh, "added journal_head"); 2147 } 2148 jh->b_jcount++; 2149 jbd_unlock_bh_journal_head(bh); 2150 if (new_jh) 2151 journal_free_journal_head(new_jh); 2152 return bh->b_private; 2153 } 2154 2155 /* 2156 * Grab a ref against this buffer_head's journal_head. If it ended up not 2157 * having a journal_head, return NULL 2158 */ 2159 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh) 2160 { 2161 struct journal_head *jh = NULL; 2162 2163 jbd_lock_bh_journal_head(bh); 2164 if (buffer_jbd(bh)) { 2165 jh = bh2jh(bh); 2166 jh->b_jcount++; 2167 } 2168 jbd_unlock_bh_journal_head(bh); 2169 return jh; 2170 } 2171 2172 static void __journal_remove_journal_head(struct buffer_head *bh) 2173 { 2174 struct journal_head *jh = bh2jh(bh); 2175 2176 J_ASSERT_JH(jh, jh->b_jcount >= 0); 2177 J_ASSERT_JH(jh, jh->b_transaction == NULL); 2178 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 2179 J_ASSERT_JH(jh, jh->b_cp_transaction == NULL); 2180 J_ASSERT_JH(jh, jh->b_jlist == BJ_None); 2181 J_ASSERT_BH(bh, buffer_jbd(bh)); 2182 J_ASSERT_BH(bh, jh2bh(jh) == bh); 2183 BUFFER_TRACE(bh, "remove journal_head"); 2184 if (jh->b_frozen_data) { 2185 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__); 2186 jbd2_free(jh->b_frozen_data, bh->b_size); 2187 } 2188 if (jh->b_committed_data) { 2189 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__); 2190 jbd2_free(jh->b_committed_data, bh->b_size); 2191 } 2192 bh->b_private = NULL; 2193 jh->b_bh = NULL; /* debug, really */ 2194 clear_buffer_jbd(bh); 2195 journal_free_journal_head(jh); 2196 } 2197 2198 /* 2199 * Drop a reference on the passed journal_head. If it fell to zero then 2200 * release the journal_head from the buffer_head. 2201 */ 2202 void jbd2_journal_put_journal_head(struct journal_head *jh) 2203 { 2204 struct buffer_head *bh = jh2bh(jh); 2205 2206 jbd_lock_bh_journal_head(bh); 2207 J_ASSERT_JH(jh, jh->b_jcount > 0); 2208 --jh->b_jcount; 2209 if (!jh->b_jcount) { 2210 __journal_remove_journal_head(bh); 2211 jbd_unlock_bh_journal_head(bh); 2212 __brelse(bh); 2213 } else 2214 jbd_unlock_bh_journal_head(bh); 2215 } 2216 2217 /* 2218 * Initialize jbd inode head 2219 */ 2220 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode) 2221 { 2222 jinode->i_transaction = NULL; 2223 jinode->i_next_transaction = NULL; 2224 jinode->i_vfs_inode = inode; 2225 jinode->i_flags = 0; 2226 INIT_LIST_HEAD(&jinode->i_list); 2227 } 2228 2229 /* 2230 * Function to be called before we start removing inode from memory (i.e., 2231 * clear_inode() is a fine place to be called from). It removes inode from 2232 * transaction's lists. 2233 */ 2234 void jbd2_journal_release_jbd_inode(journal_t *journal, 2235 struct jbd2_inode *jinode) 2236 { 2237 if (!journal) 2238 return; 2239 restart: 2240 spin_lock(&journal->j_list_lock); 2241 /* Is commit writing out inode - we have to wait */ 2242 if (test_bit(__JI_COMMIT_RUNNING, &jinode->i_flags)) { 2243 wait_queue_head_t *wq; 2244 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING); 2245 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING); 2246 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 2247 spin_unlock(&journal->j_list_lock); 2248 schedule(); 2249 finish_wait(wq, &wait.wait); 2250 goto restart; 2251 } 2252 2253 if (jinode->i_transaction) { 2254 list_del(&jinode->i_list); 2255 jinode->i_transaction = NULL; 2256 } 2257 spin_unlock(&journal->j_list_lock); 2258 } 2259 2260 /* 2261 * debugfs tunables 2262 */ 2263 #ifdef CONFIG_JBD2_DEBUG 2264 u8 jbd2_journal_enable_debug __read_mostly; 2265 EXPORT_SYMBOL(jbd2_journal_enable_debug); 2266 2267 #define JBD2_DEBUG_NAME "jbd2-debug" 2268 2269 static struct dentry *jbd2_debugfs_dir; 2270 static struct dentry *jbd2_debug; 2271 2272 static void __init jbd2_create_debugfs_entry(void) 2273 { 2274 jbd2_debugfs_dir = debugfs_create_dir("jbd2", NULL); 2275 if (jbd2_debugfs_dir) 2276 jbd2_debug = debugfs_create_u8(JBD2_DEBUG_NAME, 2277 S_IRUGO | S_IWUSR, 2278 jbd2_debugfs_dir, 2279 &jbd2_journal_enable_debug); 2280 } 2281 2282 static void __exit jbd2_remove_debugfs_entry(void) 2283 { 2284 debugfs_remove(jbd2_debug); 2285 debugfs_remove(jbd2_debugfs_dir); 2286 } 2287 2288 #else 2289 2290 static void __init jbd2_create_debugfs_entry(void) 2291 { 2292 } 2293 2294 static void __exit jbd2_remove_debugfs_entry(void) 2295 { 2296 } 2297 2298 #endif 2299 2300 #ifdef CONFIG_PROC_FS 2301 2302 #define JBD2_STATS_PROC_NAME "fs/jbd2" 2303 2304 static void __init jbd2_create_jbd_stats_proc_entry(void) 2305 { 2306 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL); 2307 } 2308 2309 static void __exit jbd2_remove_jbd_stats_proc_entry(void) 2310 { 2311 if (proc_jbd2_stats) 2312 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL); 2313 } 2314 2315 #else 2316 2317 #define jbd2_create_jbd_stats_proc_entry() do {} while (0) 2318 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0) 2319 2320 #endif 2321 2322 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache; 2323 2324 static int __init journal_init_handle_cache(void) 2325 { 2326 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY); 2327 if (jbd2_handle_cache == NULL) { 2328 printk(KERN_EMERG "JBD2: failed to create handle cache\n"); 2329 return -ENOMEM; 2330 } 2331 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0); 2332 if (jbd2_inode_cache == NULL) { 2333 printk(KERN_EMERG "JBD2: failed to create inode cache\n"); 2334 kmem_cache_destroy(jbd2_handle_cache); 2335 return -ENOMEM; 2336 } 2337 return 0; 2338 } 2339 2340 static void jbd2_journal_destroy_handle_cache(void) 2341 { 2342 if (jbd2_handle_cache) 2343 kmem_cache_destroy(jbd2_handle_cache); 2344 if (jbd2_inode_cache) 2345 kmem_cache_destroy(jbd2_inode_cache); 2346 2347 } 2348 2349 /* 2350 * Module startup and shutdown 2351 */ 2352 2353 static int __init journal_init_caches(void) 2354 { 2355 int ret; 2356 2357 ret = jbd2_journal_init_revoke_caches(); 2358 if (ret == 0) 2359 ret = journal_init_jbd2_journal_head_cache(); 2360 if (ret == 0) 2361 ret = journal_init_handle_cache(); 2362 return ret; 2363 } 2364 2365 static void jbd2_journal_destroy_caches(void) 2366 { 2367 jbd2_journal_destroy_revoke_caches(); 2368 jbd2_journal_destroy_jbd2_journal_head_cache(); 2369 jbd2_journal_destroy_handle_cache(); 2370 jbd2_journal_destroy_slabs(); 2371 } 2372 2373 static int __init journal_init(void) 2374 { 2375 int ret; 2376 2377 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024); 2378 2379 ret = journal_init_caches(); 2380 if (ret == 0) { 2381 jbd2_create_debugfs_entry(); 2382 jbd2_create_jbd_stats_proc_entry(); 2383 } else { 2384 jbd2_journal_destroy_caches(); 2385 } 2386 return ret; 2387 } 2388 2389 static void __exit journal_exit(void) 2390 { 2391 #ifdef CONFIG_JBD2_DEBUG 2392 int n = atomic_read(&nr_journal_heads); 2393 if (n) 2394 printk(KERN_EMERG "JBD2: leaked %d journal_heads!\n", n); 2395 #endif 2396 jbd2_remove_debugfs_entry(); 2397 jbd2_remove_jbd_stats_proc_entry(); 2398 jbd2_journal_destroy_caches(); 2399 } 2400 2401 MODULE_LICENSE("GPL"); 2402 module_init(journal_init); 2403 module_exit(journal_exit); 2404 2405