xref: /linux/fs/jbd2/journal.c (revision 6084a6e23c971ef703229ee1aec68d01688578d6)
1 /*
2  * linux/fs/jbd2/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24 
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/math64.h>
40 #include <linux/hash.h>
41 #include <linux/log2.h>
42 #include <linux/vmalloc.h>
43 #include <linux/backing-dev.h>
44 #include <linux/bitops.h>
45 #include <linux/ratelimit.h>
46 
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/jbd2.h>
49 
50 #include <asm/uaccess.h>
51 #include <asm/page.h>
52 
53 #ifdef CONFIG_JBD2_DEBUG
54 ushort jbd2_journal_enable_debug __read_mostly;
55 EXPORT_SYMBOL(jbd2_journal_enable_debug);
56 
57 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
58 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
59 #endif
60 
61 EXPORT_SYMBOL(jbd2_journal_extend);
62 EXPORT_SYMBOL(jbd2_journal_stop);
63 EXPORT_SYMBOL(jbd2_journal_lock_updates);
64 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
65 EXPORT_SYMBOL(jbd2_journal_get_write_access);
66 EXPORT_SYMBOL(jbd2_journal_get_create_access);
67 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
68 EXPORT_SYMBOL(jbd2_journal_set_triggers);
69 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
70 EXPORT_SYMBOL(jbd2_journal_forget);
71 #if 0
72 EXPORT_SYMBOL(journal_sync_buffer);
73 #endif
74 EXPORT_SYMBOL(jbd2_journal_flush);
75 EXPORT_SYMBOL(jbd2_journal_revoke);
76 
77 EXPORT_SYMBOL(jbd2_journal_init_dev);
78 EXPORT_SYMBOL(jbd2_journal_init_inode);
79 EXPORT_SYMBOL(jbd2_journal_check_used_features);
80 EXPORT_SYMBOL(jbd2_journal_check_available_features);
81 EXPORT_SYMBOL(jbd2_journal_set_features);
82 EXPORT_SYMBOL(jbd2_journal_load);
83 EXPORT_SYMBOL(jbd2_journal_destroy);
84 EXPORT_SYMBOL(jbd2_journal_abort);
85 EXPORT_SYMBOL(jbd2_journal_errno);
86 EXPORT_SYMBOL(jbd2_journal_ack_err);
87 EXPORT_SYMBOL(jbd2_journal_clear_err);
88 EXPORT_SYMBOL(jbd2_log_wait_commit);
89 EXPORT_SYMBOL(jbd2_log_start_commit);
90 EXPORT_SYMBOL(jbd2_journal_start_commit);
91 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
92 EXPORT_SYMBOL(jbd2_journal_wipe);
93 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
94 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
95 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
96 EXPORT_SYMBOL(jbd2_journal_force_commit);
97 EXPORT_SYMBOL(jbd2_journal_file_inode);
98 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
99 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
100 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
101 EXPORT_SYMBOL(jbd2_inode_cache);
102 
103 static void __journal_abort_soft (journal_t *journal, int errno);
104 static int jbd2_journal_create_slab(size_t slab_size);
105 
106 #ifdef CONFIG_JBD2_DEBUG
107 void __jbd2_debug(int level, const char *file, const char *func,
108 		  unsigned int line, const char *fmt, ...)
109 {
110 	struct va_format vaf;
111 	va_list args;
112 
113 	if (level > jbd2_journal_enable_debug)
114 		return;
115 	va_start(args, fmt);
116 	vaf.fmt = fmt;
117 	vaf.va = &args;
118 	printk(KERN_DEBUG "%s: (%s, %u): %pV\n", file, func, line, &vaf);
119 	va_end(args);
120 }
121 EXPORT_SYMBOL(__jbd2_debug);
122 #endif
123 
124 /* Checksumming functions */
125 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
126 {
127 	if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
128 		return 1;
129 
130 	return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
131 }
132 
133 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
134 {
135 	__u32 csum;
136 	__be32 old_csum;
137 
138 	old_csum = sb->s_checksum;
139 	sb->s_checksum = 0;
140 	csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
141 	sb->s_checksum = old_csum;
142 
143 	return cpu_to_be32(csum);
144 }
145 
146 static int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb)
147 {
148 	if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
149 		return 1;
150 
151 	return sb->s_checksum == jbd2_superblock_csum(j, sb);
152 }
153 
154 static void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb)
155 {
156 	if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
157 		return;
158 
159 	sb->s_checksum = jbd2_superblock_csum(j, sb);
160 }
161 
162 /*
163  * Helper function used to manage commit timeouts
164  */
165 
166 static void commit_timeout(unsigned long __data)
167 {
168 	struct task_struct * p = (struct task_struct *) __data;
169 
170 	wake_up_process(p);
171 }
172 
173 /*
174  * kjournald2: The main thread function used to manage a logging device
175  * journal.
176  *
177  * This kernel thread is responsible for two things:
178  *
179  * 1) COMMIT:  Every so often we need to commit the current state of the
180  *    filesystem to disk.  The journal thread is responsible for writing
181  *    all of the metadata buffers to disk.
182  *
183  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
184  *    of the data in that part of the log has been rewritten elsewhere on
185  *    the disk.  Flushing these old buffers to reclaim space in the log is
186  *    known as checkpointing, and this thread is responsible for that job.
187  */
188 
189 static int kjournald2(void *arg)
190 {
191 	journal_t *journal = arg;
192 	transaction_t *transaction;
193 
194 	/*
195 	 * Set up an interval timer which can be used to trigger a commit wakeup
196 	 * after the commit interval expires
197 	 */
198 	setup_timer(&journal->j_commit_timer, commit_timeout,
199 			(unsigned long)current);
200 
201 	set_freezable();
202 
203 	/* Record that the journal thread is running */
204 	journal->j_task = current;
205 	wake_up(&journal->j_wait_done_commit);
206 
207 	/*
208 	 * And now, wait forever for commit wakeup events.
209 	 */
210 	write_lock(&journal->j_state_lock);
211 
212 loop:
213 	if (journal->j_flags & JBD2_UNMOUNT)
214 		goto end_loop;
215 
216 	jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
217 		journal->j_commit_sequence, journal->j_commit_request);
218 
219 	if (journal->j_commit_sequence != journal->j_commit_request) {
220 		jbd_debug(1, "OK, requests differ\n");
221 		write_unlock(&journal->j_state_lock);
222 		del_timer_sync(&journal->j_commit_timer);
223 		jbd2_journal_commit_transaction(journal);
224 		write_lock(&journal->j_state_lock);
225 		goto loop;
226 	}
227 
228 	wake_up(&journal->j_wait_done_commit);
229 	if (freezing(current)) {
230 		/*
231 		 * The simpler the better. Flushing journal isn't a
232 		 * good idea, because that depends on threads that may
233 		 * be already stopped.
234 		 */
235 		jbd_debug(1, "Now suspending kjournald2\n");
236 		write_unlock(&journal->j_state_lock);
237 		try_to_freeze();
238 		write_lock(&journal->j_state_lock);
239 	} else {
240 		/*
241 		 * We assume on resume that commits are already there,
242 		 * so we don't sleep
243 		 */
244 		DEFINE_WAIT(wait);
245 		int should_sleep = 1;
246 
247 		prepare_to_wait(&journal->j_wait_commit, &wait,
248 				TASK_INTERRUPTIBLE);
249 		if (journal->j_commit_sequence != journal->j_commit_request)
250 			should_sleep = 0;
251 		transaction = journal->j_running_transaction;
252 		if (transaction && time_after_eq(jiffies,
253 						transaction->t_expires))
254 			should_sleep = 0;
255 		if (journal->j_flags & JBD2_UNMOUNT)
256 			should_sleep = 0;
257 		if (should_sleep) {
258 			write_unlock(&journal->j_state_lock);
259 			schedule();
260 			write_lock(&journal->j_state_lock);
261 		}
262 		finish_wait(&journal->j_wait_commit, &wait);
263 	}
264 
265 	jbd_debug(1, "kjournald2 wakes\n");
266 
267 	/*
268 	 * Were we woken up by a commit wakeup event?
269 	 */
270 	transaction = journal->j_running_transaction;
271 	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
272 		journal->j_commit_request = transaction->t_tid;
273 		jbd_debug(1, "woke because of timeout\n");
274 	}
275 	goto loop;
276 
277 end_loop:
278 	write_unlock(&journal->j_state_lock);
279 	del_timer_sync(&journal->j_commit_timer);
280 	journal->j_task = NULL;
281 	wake_up(&journal->j_wait_done_commit);
282 	jbd_debug(1, "Journal thread exiting.\n");
283 	return 0;
284 }
285 
286 static int jbd2_journal_start_thread(journal_t *journal)
287 {
288 	struct task_struct *t;
289 
290 	t = kthread_run(kjournald2, journal, "jbd2/%s",
291 			journal->j_devname);
292 	if (IS_ERR(t))
293 		return PTR_ERR(t);
294 
295 	wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
296 	return 0;
297 }
298 
299 static void journal_kill_thread(journal_t *journal)
300 {
301 	write_lock(&journal->j_state_lock);
302 	journal->j_flags |= JBD2_UNMOUNT;
303 
304 	while (journal->j_task) {
305 		write_unlock(&journal->j_state_lock);
306 		wake_up(&journal->j_wait_commit);
307 		wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
308 		write_lock(&journal->j_state_lock);
309 	}
310 	write_unlock(&journal->j_state_lock);
311 }
312 
313 /*
314  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
315  *
316  * Writes a metadata buffer to a given disk block.  The actual IO is not
317  * performed but a new buffer_head is constructed which labels the data
318  * to be written with the correct destination disk block.
319  *
320  * Any magic-number escaping which needs to be done will cause a
321  * copy-out here.  If the buffer happens to start with the
322  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
323  * magic number is only written to the log for descripter blocks.  In
324  * this case, we copy the data and replace the first word with 0, and we
325  * return a result code which indicates that this buffer needs to be
326  * marked as an escaped buffer in the corresponding log descriptor
327  * block.  The missing word can then be restored when the block is read
328  * during recovery.
329  *
330  * If the source buffer has already been modified by a new transaction
331  * since we took the last commit snapshot, we use the frozen copy of
332  * that data for IO. If we end up using the existing buffer_head's data
333  * for the write, then we have to make sure nobody modifies it while the
334  * IO is in progress. do_get_write_access() handles this.
335  *
336  * The function returns a pointer to the buffer_head to be used for IO.
337  *
338  *
339  * Return value:
340  *  <0: Error
341  * >=0: Finished OK
342  *
343  * On success:
344  * Bit 0 set == escape performed on the data
345  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
346  */
347 
348 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
349 				  struct journal_head  *jh_in,
350 				  struct buffer_head **bh_out,
351 				  sector_t blocknr)
352 {
353 	int need_copy_out = 0;
354 	int done_copy_out = 0;
355 	int do_escape = 0;
356 	char *mapped_data;
357 	struct buffer_head *new_bh;
358 	struct page *new_page;
359 	unsigned int new_offset;
360 	struct buffer_head *bh_in = jh2bh(jh_in);
361 	journal_t *journal = transaction->t_journal;
362 
363 	/*
364 	 * The buffer really shouldn't be locked: only the current committing
365 	 * transaction is allowed to write it, so nobody else is allowed
366 	 * to do any IO.
367 	 *
368 	 * akpm: except if we're journalling data, and write() output is
369 	 * also part of a shared mapping, and another thread has
370 	 * decided to launch a writepage() against this buffer.
371 	 */
372 	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
373 
374 retry_alloc:
375 	new_bh = alloc_buffer_head(GFP_NOFS);
376 	if (!new_bh) {
377 		/*
378 		 * Failure is not an option, but __GFP_NOFAIL is going
379 		 * away; so we retry ourselves here.
380 		 */
381 		congestion_wait(BLK_RW_ASYNC, HZ/50);
382 		goto retry_alloc;
383 	}
384 
385 	/* keep subsequent assertions sane */
386 	atomic_set(&new_bh->b_count, 1);
387 
388 	jbd_lock_bh_state(bh_in);
389 repeat:
390 	/*
391 	 * If a new transaction has already done a buffer copy-out, then
392 	 * we use that version of the data for the commit.
393 	 */
394 	if (jh_in->b_frozen_data) {
395 		done_copy_out = 1;
396 		new_page = virt_to_page(jh_in->b_frozen_data);
397 		new_offset = offset_in_page(jh_in->b_frozen_data);
398 	} else {
399 		new_page = jh2bh(jh_in)->b_page;
400 		new_offset = offset_in_page(jh2bh(jh_in)->b_data);
401 	}
402 
403 	mapped_data = kmap_atomic(new_page);
404 	/*
405 	 * Fire data frozen trigger if data already wasn't frozen.  Do this
406 	 * before checking for escaping, as the trigger may modify the magic
407 	 * offset.  If a copy-out happens afterwards, it will have the correct
408 	 * data in the buffer.
409 	 */
410 	if (!done_copy_out)
411 		jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
412 					   jh_in->b_triggers);
413 
414 	/*
415 	 * Check for escaping
416 	 */
417 	if (*((__be32 *)(mapped_data + new_offset)) ==
418 				cpu_to_be32(JBD2_MAGIC_NUMBER)) {
419 		need_copy_out = 1;
420 		do_escape = 1;
421 	}
422 	kunmap_atomic(mapped_data);
423 
424 	/*
425 	 * Do we need to do a data copy?
426 	 */
427 	if (need_copy_out && !done_copy_out) {
428 		char *tmp;
429 
430 		jbd_unlock_bh_state(bh_in);
431 		tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
432 		if (!tmp) {
433 			brelse(new_bh);
434 			return -ENOMEM;
435 		}
436 		jbd_lock_bh_state(bh_in);
437 		if (jh_in->b_frozen_data) {
438 			jbd2_free(tmp, bh_in->b_size);
439 			goto repeat;
440 		}
441 
442 		jh_in->b_frozen_data = tmp;
443 		mapped_data = kmap_atomic(new_page);
444 		memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
445 		kunmap_atomic(mapped_data);
446 
447 		new_page = virt_to_page(tmp);
448 		new_offset = offset_in_page(tmp);
449 		done_copy_out = 1;
450 
451 		/*
452 		 * This isn't strictly necessary, as we're using frozen
453 		 * data for the escaping, but it keeps consistency with
454 		 * b_frozen_data usage.
455 		 */
456 		jh_in->b_frozen_triggers = jh_in->b_triggers;
457 	}
458 
459 	/*
460 	 * Did we need to do an escaping?  Now we've done all the
461 	 * copying, we can finally do so.
462 	 */
463 	if (do_escape) {
464 		mapped_data = kmap_atomic(new_page);
465 		*((unsigned int *)(mapped_data + new_offset)) = 0;
466 		kunmap_atomic(mapped_data);
467 	}
468 
469 	set_bh_page(new_bh, new_page, new_offset);
470 	new_bh->b_size = bh_in->b_size;
471 	new_bh->b_bdev = journal->j_dev;
472 	new_bh->b_blocknr = blocknr;
473 	new_bh->b_private = bh_in;
474 	set_buffer_mapped(new_bh);
475 	set_buffer_dirty(new_bh);
476 
477 	*bh_out = new_bh;
478 
479 	/*
480 	 * The to-be-written buffer needs to get moved to the io queue,
481 	 * and the original buffer whose contents we are shadowing or
482 	 * copying is moved to the transaction's shadow queue.
483 	 */
484 	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
485 	spin_lock(&journal->j_list_lock);
486 	__jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
487 	spin_unlock(&journal->j_list_lock);
488 	set_buffer_shadow(bh_in);
489 	jbd_unlock_bh_state(bh_in);
490 
491 	return do_escape | (done_copy_out << 1);
492 }
493 
494 /*
495  * Allocation code for the journal file.  Manage the space left in the
496  * journal, so that we can begin checkpointing when appropriate.
497  */
498 
499 /*
500  * Called with j_state_lock locked for writing.
501  * Returns true if a transaction commit was started.
502  */
503 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
504 {
505 	/* Return if the txn has already requested to be committed */
506 	if (journal->j_commit_request == target)
507 		return 0;
508 
509 	/*
510 	 * The only transaction we can possibly wait upon is the
511 	 * currently running transaction (if it exists).  Otherwise,
512 	 * the target tid must be an old one.
513 	 */
514 	if (journal->j_running_transaction &&
515 	    journal->j_running_transaction->t_tid == target) {
516 		/*
517 		 * We want a new commit: OK, mark the request and wakeup the
518 		 * commit thread.  We do _not_ do the commit ourselves.
519 		 */
520 
521 		journal->j_commit_request = target;
522 		jbd_debug(1, "JBD2: requesting commit %d/%d\n",
523 			  journal->j_commit_request,
524 			  journal->j_commit_sequence);
525 		journal->j_running_transaction->t_requested = jiffies;
526 		wake_up(&journal->j_wait_commit);
527 		return 1;
528 	} else if (!tid_geq(journal->j_commit_request, target))
529 		/* This should never happen, but if it does, preserve
530 		   the evidence before kjournald goes into a loop and
531 		   increments j_commit_sequence beyond all recognition. */
532 		WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
533 			  journal->j_commit_request,
534 			  journal->j_commit_sequence,
535 			  target, journal->j_running_transaction ?
536 			  journal->j_running_transaction->t_tid : 0);
537 	return 0;
538 }
539 
540 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
541 {
542 	int ret;
543 
544 	write_lock(&journal->j_state_lock);
545 	ret = __jbd2_log_start_commit(journal, tid);
546 	write_unlock(&journal->j_state_lock);
547 	return ret;
548 }
549 
550 /*
551  * Force and wait any uncommitted transactions.  We can only force the running
552  * transaction if we don't have an active handle, otherwise, we will deadlock.
553  * Returns: <0 in case of error,
554  *           0 if nothing to commit,
555  *           1 if transaction was successfully committed.
556  */
557 static int __jbd2_journal_force_commit(journal_t *journal)
558 {
559 	transaction_t *transaction = NULL;
560 	tid_t tid;
561 	int need_to_start = 0, ret = 0;
562 
563 	read_lock(&journal->j_state_lock);
564 	if (journal->j_running_transaction && !current->journal_info) {
565 		transaction = journal->j_running_transaction;
566 		if (!tid_geq(journal->j_commit_request, transaction->t_tid))
567 			need_to_start = 1;
568 	} else if (journal->j_committing_transaction)
569 		transaction = journal->j_committing_transaction;
570 
571 	if (!transaction) {
572 		/* Nothing to commit */
573 		read_unlock(&journal->j_state_lock);
574 		return 0;
575 	}
576 	tid = transaction->t_tid;
577 	read_unlock(&journal->j_state_lock);
578 	if (need_to_start)
579 		jbd2_log_start_commit(journal, tid);
580 	ret = jbd2_log_wait_commit(journal, tid);
581 	if (!ret)
582 		ret = 1;
583 
584 	return ret;
585 }
586 
587 /**
588  * Force and wait upon a commit if the calling process is not within
589  * transaction.  This is used for forcing out undo-protected data which contains
590  * bitmaps, when the fs is running out of space.
591  *
592  * @journal: journal to force
593  * Returns true if progress was made.
594  */
595 int jbd2_journal_force_commit_nested(journal_t *journal)
596 {
597 	int ret;
598 
599 	ret = __jbd2_journal_force_commit(journal);
600 	return ret > 0;
601 }
602 
603 /**
604  * int journal_force_commit() - force any uncommitted transactions
605  * @journal: journal to force
606  *
607  * Caller want unconditional commit. We can only force the running transaction
608  * if we don't have an active handle, otherwise, we will deadlock.
609  */
610 int jbd2_journal_force_commit(journal_t *journal)
611 {
612 	int ret;
613 
614 	J_ASSERT(!current->journal_info);
615 	ret = __jbd2_journal_force_commit(journal);
616 	if (ret > 0)
617 		ret = 0;
618 	return ret;
619 }
620 
621 /*
622  * Start a commit of the current running transaction (if any).  Returns true
623  * if a transaction is going to be committed (or is currently already
624  * committing), and fills its tid in at *ptid
625  */
626 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
627 {
628 	int ret = 0;
629 
630 	write_lock(&journal->j_state_lock);
631 	if (journal->j_running_transaction) {
632 		tid_t tid = journal->j_running_transaction->t_tid;
633 
634 		__jbd2_log_start_commit(journal, tid);
635 		/* There's a running transaction and we've just made sure
636 		 * it's commit has been scheduled. */
637 		if (ptid)
638 			*ptid = tid;
639 		ret = 1;
640 	} else if (journal->j_committing_transaction) {
641 		/*
642 		 * If commit has been started, then we have to wait for
643 		 * completion of that transaction.
644 		 */
645 		if (ptid)
646 			*ptid = journal->j_committing_transaction->t_tid;
647 		ret = 1;
648 	}
649 	write_unlock(&journal->j_state_lock);
650 	return ret;
651 }
652 
653 /*
654  * Return 1 if a given transaction has not yet sent barrier request
655  * connected with a transaction commit. If 0 is returned, transaction
656  * may or may not have sent the barrier. Used to avoid sending barrier
657  * twice in common cases.
658  */
659 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
660 {
661 	int ret = 0;
662 	transaction_t *commit_trans;
663 
664 	if (!(journal->j_flags & JBD2_BARRIER))
665 		return 0;
666 	read_lock(&journal->j_state_lock);
667 	/* Transaction already committed? */
668 	if (tid_geq(journal->j_commit_sequence, tid))
669 		goto out;
670 	commit_trans = journal->j_committing_transaction;
671 	if (!commit_trans || commit_trans->t_tid != tid) {
672 		ret = 1;
673 		goto out;
674 	}
675 	/*
676 	 * Transaction is being committed and we already proceeded to
677 	 * submitting a flush to fs partition?
678 	 */
679 	if (journal->j_fs_dev != journal->j_dev) {
680 		if (!commit_trans->t_need_data_flush ||
681 		    commit_trans->t_state >= T_COMMIT_DFLUSH)
682 			goto out;
683 	} else {
684 		if (commit_trans->t_state >= T_COMMIT_JFLUSH)
685 			goto out;
686 	}
687 	ret = 1;
688 out:
689 	read_unlock(&journal->j_state_lock);
690 	return ret;
691 }
692 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
693 
694 /*
695  * Wait for a specified commit to complete.
696  * The caller may not hold the journal lock.
697  */
698 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
699 {
700 	int err = 0;
701 
702 	read_lock(&journal->j_state_lock);
703 #ifdef CONFIG_JBD2_DEBUG
704 	if (!tid_geq(journal->j_commit_request, tid)) {
705 		printk(KERN_ERR
706 		       "%s: error: j_commit_request=%d, tid=%d\n",
707 		       __func__, journal->j_commit_request, tid);
708 	}
709 #endif
710 	while (tid_gt(tid, journal->j_commit_sequence)) {
711 		jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
712 				  tid, journal->j_commit_sequence);
713 		read_unlock(&journal->j_state_lock);
714 		wake_up(&journal->j_wait_commit);
715 		wait_event(journal->j_wait_done_commit,
716 				!tid_gt(tid, journal->j_commit_sequence));
717 		read_lock(&journal->j_state_lock);
718 	}
719 	read_unlock(&journal->j_state_lock);
720 
721 	if (unlikely(is_journal_aborted(journal)))
722 		err = -EIO;
723 	return err;
724 }
725 
726 /*
727  * When this function returns the transaction corresponding to tid
728  * will be completed.  If the transaction has currently running, start
729  * committing that transaction before waiting for it to complete.  If
730  * the transaction id is stale, it is by definition already completed,
731  * so just return SUCCESS.
732  */
733 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
734 {
735 	int	need_to_wait = 1;
736 
737 	read_lock(&journal->j_state_lock);
738 	if (journal->j_running_transaction &&
739 	    journal->j_running_transaction->t_tid == tid) {
740 		if (journal->j_commit_request != tid) {
741 			/* transaction not yet started, so request it */
742 			read_unlock(&journal->j_state_lock);
743 			jbd2_log_start_commit(journal, tid);
744 			goto wait_commit;
745 		}
746 	} else if (!(journal->j_committing_transaction &&
747 		     journal->j_committing_transaction->t_tid == tid))
748 		need_to_wait = 0;
749 	read_unlock(&journal->j_state_lock);
750 	if (!need_to_wait)
751 		return 0;
752 wait_commit:
753 	return jbd2_log_wait_commit(journal, tid);
754 }
755 EXPORT_SYMBOL(jbd2_complete_transaction);
756 
757 /*
758  * Log buffer allocation routines:
759  */
760 
761 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
762 {
763 	unsigned long blocknr;
764 
765 	write_lock(&journal->j_state_lock);
766 	J_ASSERT(journal->j_free > 1);
767 
768 	blocknr = journal->j_head;
769 	journal->j_head++;
770 	journal->j_free--;
771 	if (journal->j_head == journal->j_last)
772 		journal->j_head = journal->j_first;
773 	write_unlock(&journal->j_state_lock);
774 	return jbd2_journal_bmap(journal, blocknr, retp);
775 }
776 
777 /*
778  * Conversion of logical to physical block numbers for the journal
779  *
780  * On external journals the journal blocks are identity-mapped, so
781  * this is a no-op.  If needed, we can use j_blk_offset - everything is
782  * ready.
783  */
784 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
785 		 unsigned long long *retp)
786 {
787 	int err = 0;
788 	unsigned long long ret;
789 
790 	if (journal->j_inode) {
791 		ret = bmap(journal->j_inode, blocknr);
792 		if (ret)
793 			*retp = ret;
794 		else {
795 			printk(KERN_ALERT "%s: journal block not found "
796 					"at offset %lu on %s\n",
797 			       __func__, blocknr, journal->j_devname);
798 			err = -EIO;
799 			__journal_abort_soft(journal, err);
800 		}
801 	} else {
802 		*retp = blocknr; /* +journal->j_blk_offset */
803 	}
804 	return err;
805 }
806 
807 /*
808  * We play buffer_head aliasing tricks to write data/metadata blocks to
809  * the journal without copying their contents, but for journal
810  * descriptor blocks we do need to generate bona fide buffers.
811  *
812  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
813  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
814  * But we don't bother doing that, so there will be coherency problems with
815  * mmaps of blockdevs which hold live JBD-controlled filesystems.
816  */
817 struct buffer_head *jbd2_journal_get_descriptor_buffer(journal_t *journal)
818 {
819 	struct buffer_head *bh;
820 	unsigned long long blocknr;
821 	int err;
822 
823 	err = jbd2_journal_next_log_block(journal, &blocknr);
824 
825 	if (err)
826 		return NULL;
827 
828 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
829 	if (!bh)
830 		return NULL;
831 	lock_buffer(bh);
832 	memset(bh->b_data, 0, journal->j_blocksize);
833 	set_buffer_uptodate(bh);
834 	unlock_buffer(bh);
835 	BUFFER_TRACE(bh, "return this buffer");
836 	return bh;
837 }
838 
839 /*
840  * Return tid of the oldest transaction in the journal and block in the journal
841  * where the transaction starts.
842  *
843  * If the journal is now empty, return which will be the next transaction ID
844  * we will write and where will that transaction start.
845  *
846  * The return value is 0 if journal tail cannot be pushed any further, 1 if
847  * it can.
848  */
849 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
850 			      unsigned long *block)
851 {
852 	transaction_t *transaction;
853 	int ret;
854 
855 	read_lock(&journal->j_state_lock);
856 	spin_lock(&journal->j_list_lock);
857 	transaction = journal->j_checkpoint_transactions;
858 	if (transaction) {
859 		*tid = transaction->t_tid;
860 		*block = transaction->t_log_start;
861 	} else if ((transaction = journal->j_committing_transaction) != NULL) {
862 		*tid = transaction->t_tid;
863 		*block = transaction->t_log_start;
864 	} else if ((transaction = journal->j_running_transaction) != NULL) {
865 		*tid = transaction->t_tid;
866 		*block = journal->j_head;
867 	} else {
868 		*tid = journal->j_transaction_sequence;
869 		*block = journal->j_head;
870 	}
871 	ret = tid_gt(*tid, journal->j_tail_sequence);
872 	spin_unlock(&journal->j_list_lock);
873 	read_unlock(&journal->j_state_lock);
874 
875 	return ret;
876 }
877 
878 /*
879  * Update information in journal structure and in on disk journal superblock
880  * about log tail. This function does not check whether information passed in
881  * really pushes log tail further. It's responsibility of the caller to make
882  * sure provided log tail information is valid (e.g. by holding
883  * j_checkpoint_mutex all the time between computing log tail and calling this
884  * function as is the case with jbd2_cleanup_journal_tail()).
885  *
886  * Requires j_checkpoint_mutex
887  */
888 void __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
889 {
890 	unsigned long freed;
891 
892 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
893 
894 	/*
895 	 * We cannot afford for write to remain in drive's caches since as
896 	 * soon as we update j_tail, next transaction can start reusing journal
897 	 * space and if we lose sb update during power failure we'd replay
898 	 * old transaction with possibly newly overwritten data.
899 	 */
900 	jbd2_journal_update_sb_log_tail(journal, tid, block, WRITE_FUA);
901 	write_lock(&journal->j_state_lock);
902 	freed = block - journal->j_tail;
903 	if (block < journal->j_tail)
904 		freed += journal->j_last - journal->j_first;
905 
906 	trace_jbd2_update_log_tail(journal, tid, block, freed);
907 	jbd_debug(1,
908 		  "Cleaning journal tail from %d to %d (offset %lu), "
909 		  "freeing %lu\n",
910 		  journal->j_tail_sequence, tid, block, freed);
911 
912 	journal->j_free += freed;
913 	journal->j_tail_sequence = tid;
914 	journal->j_tail = block;
915 	write_unlock(&journal->j_state_lock);
916 }
917 
918 /*
919  * This is a variaon of __jbd2_update_log_tail which checks for validity of
920  * provided log tail and locks j_checkpoint_mutex. So it is safe against races
921  * with other threads updating log tail.
922  */
923 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
924 {
925 	mutex_lock(&journal->j_checkpoint_mutex);
926 	if (tid_gt(tid, journal->j_tail_sequence))
927 		__jbd2_update_log_tail(journal, tid, block);
928 	mutex_unlock(&journal->j_checkpoint_mutex);
929 }
930 
931 struct jbd2_stats_proc_session {
932 	journal_t *journal;
933 	struct transaction_stats_s *stats;
934 	int start;
935 	int max;
936 };
937 
938 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
939 {
940 	return *pos ? NULL : SEQ_START_TOKEN;
941 }
942 
943 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
944 {
945 	return NULL;
946 }
947 
948 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
949 {
950 	struct jbd2_stats_proc_session *s = seq->private;
951 
952 	if (v != SEQ_START_TOKEN)
953 		return 0;
954 	seq_printf(seq, "%lu transactions (%lu requested), "
955 		   "each up to %u blocks\n",
956 		   s->stats->ts_tid, s->stats->ts_requested,
957 		   s->journal->j_max_transaction_buffers);
958 	if (s->stats->ts_tid == 0)
959 		return 0;
960 	seq_printf(seq, "average: \n  %ums waiting for transaction\n",
961 	    jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
962 	seq_printf(seq, "  %ums request delay\n",
963 	    (s->stats->ts_requested == 0) ? 0 :
964 	    jiffies_to_msecs(s->stats->run.rs_request_delay /
965 			     s->stats->ts_requested));
966 	seq_printf(seq, "  %ums running transaction\n",
967 	    jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
968 	seq_printf(seq, "  %ums transaction was being locked\n",
969 	    jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
970 	seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
971 	    jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
972 	seq_printf(seq, "  %ums logging transaction\n",
973 	    jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
974 	seq_printf(seq, "  %lluus average transaction commit time\n",
975 		   div_u64(s->journal->j_average_commit_time, 1000));
976 	seq_printf(seq, "  %lu handles per transaction\n",
977 	    s->stats->run.rs_handle_count / s->stats->ts_tid);
978 	seq_printf(seq, "  %lu blocks per transaction\n",
979 	    s->stats->run.rs_blocks / s->stats->ts_tid);
980 	seq_printf(seq, "  %lu logged blocks per transaction\n",
981 	    s->stats->run.rs_blocks_logged / s->stats->ts_tid);
982 	return 0;
983 }
984 
985 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
986 {
987 }
988 
989 static const struct seq_operations jbd2_seq_info_ops = {
990 	.start  = jbd2_seq_info_start,
991 	.next   = jbd2_seq_info_next,
992 	.stop   = jbd2_seq_info_stop,
993 	.show   = jbd2_seq_info_show,
994 };
995 
996 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
997 {
998 	journal_t *journal = PDE_DATA(inode);
999 	struct jbd2_stats_proc_session *s;
1000 	int rc, size;
1001 
1002 	s = kmalloc(sizeof(*s), GFP_KERNEL);
1003 	if (s == NULL)
1004 		return -ENOMEM;
1005 	size = sizeof(struct transaction_stats_s);
1006 	s->stats = kmalloc(size, GFP_KERNEL);
1007 	if (s->stats == NULL) {
1008 		kfree(s);
1009 		return -ENOMEM;
1010 	}
1011 	spin_lock(&journal->j_history_lock);
1012 	memcpy(s->stats, &journal->j_stats, size);
1013 	s->journal = journal;
1014 	spin_unlock(&journal->j_history_lock);
1015 
1016 	rc = seq_open(file, &jbd2_seq_info_ops);
1017 	if (rc == 0) {
1018 		struct seq_file *m = file->private_data;
1019 		m->private = s;
1020 	} else {
1021 		kfree(s->stats);
1022 		kfree(s);
1023 	}
1024 	return rc;
1025 
1026 }
1027 
1028 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1029 {
1030 	struct seq_file *seq = file->private_data;
1031 	struct jbd2_stats_proc_session *s = seq->private;
1032 	kfree(s->stats);
1033 	kfree(s);
1034 	return seq_release(inode, file);
1035 }
1036 
1037 static const struct file_operations jbd2_seq_info_fops = {
1038 	.owner		= THIS_MODULE,
1039 	.open           = jbd2_seq_info_open,
1040 	.read           = seq_read,
1041 	.llseek         = seq_lseek,
1042 	.release        = jbd2_seq_info_release,
1043 };
1044 
1045 static struct proc_dir_entry *proc_jbd2_stats;
1046 
1047 static void jbd2_stats_proc_init(journal_t *journal)
1048 {
1049 	journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1050 	if (journal->j_proc_entry) {
1051 		proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1052 				 &jbd2_seq_info_fops, journal);
1053 	}
1054 }
1055 
1056 static void jbd2_stats_proc_exit(journal_t *journal)
1057 {
1058 	remove_proc_entry("info", journal->j_proc_entry);
1059 	remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1060 }
1061 
1062 /*
1063  * Management for journal control blocks: functions to create and
1064  * destroy journal_t structures, and to initialise and read existing
1065  * journal blocks from disk.  */
1066 
1067 /* First: create and setup a journal_t object in memory.  We initialise
1068  * very few fields yet: that has to wait until we have created the
1069  * journal structures from from scratch, or loaded them from disk. */
1070 
1071 static journal_t * journal_init_common (void)
1072 {
1073 	journal_t *journal;
1074 	int err;
1075 
1076 	journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1077 	if (!journal)
1078 		return NULL;
1079 
1080 	init_waitqueue_head(&journal->j_wait_transaction_locked);
1081 	init_waitqueue_head(&journal->j_wait_done_commit);
1082 	init_waitqueue_head(&journal->j_wait_commit);
1083 	init_waitqueue_head(&journal->j_wait_updates);
1084 	init_waitqueue_head(&journal->j_wait_reserved);
1085 	mutex_init(&journal->j_barrier);
1086 	mutex_init(&journal->j_checkpoint_mutex);
1087 	spin_lock_init(&journal->j_revoke_lock);
1088 	spin_lock_init(&journal->j_list_lock);
1089 	rwlock_init(&journal->j_state_lock);
1090 
1091 	journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1092 	journal->j_min_batch_time = 0;
1093 	journal->j_max_batch_time = 15000; /* 15ms */
1094 	atomic_set(&journal->j_reserved_credits, 0);
1095 
1096 	/* The journal is marked for error until we succeed with recovery! */
1097 	journal->j_flags = JBD2_ABORT;
1098 
1099 	/* Set up a default-sized revoke table for the new mount. */
1100 	err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1101 	if (err) {
1102 		kfree(journal);
1103 		return NULL;
1104 	}
1105 
1106 	spin_lock_init(&journal->j_history_lock);
1107 
1108 	return journal;
1109 }
1110 
1111 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1112  *
1113  * Create a journal structure assigned some fixed set of disk blocks to
1114  * the journal.  We don't actually touch those disk blocks yet, but we
1115  * need to set up all of the mapping information to tell the journaling
1116  * system where the journal blocks are.
1117  *
1118  */
1119 
1120 /**
1121  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1122  *  @bdev: Block device on which to create the journal
1123  *  @fs_dev: Device which hold journalled filesystem for this journal.
1124  *  @start: Block nr Start of journal.
1125  *  @len:  Length of the journal in blocks.
1126  *  @blocksize: blocksize of journalling device
1127  *
1128  *  Returns: a newly created journal_t *
1129  *
1130  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1131  *  range of blocks on an arbitrary block device.
1132  *
1133  */
1134 journal_t * jbd2_journal_init_dev(struct block_device *bdev,
1135 			struct block_device *fs_dev,
1136 			unsigned long long start, int len, int blocksize)
1137 {
1138 	journal_t *journal = journal_init_common();
1139 	struct buffer_head *bh;
1140 	char *p;
1141 	int n;
1142 
1143 	if (!journal)
1144 		return NULL;
1145 
1146 	/* journal descriptor can store up to n blocks -bzzz */
1147 	journal->j_blocksize = blocksize;
1148 	journal->j_dev = bdev;
1149 	journal->j_fs_dev = fs_dev;
1150 	journal->j_blk_offset = start;
1151 	journal->j_maxlen = len;
1152 	bdevname(journal->j_dev, journal->j_devname);
1153 	p = journal->j_devname;
1154 	while ((p = strchr(p, '/')))
1155 		*p = '!';
1156 	jbd2_stats_proc_init(journal);
1157 	n = journal->j_blocksize / sizeof(journal_block_tag_t);
1158 	journal->j_wbufsize = n;
1159 	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1160 	if (!journal->j_wbuf) {
1161 		printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1162 			__func__);
1163 		goto out_err;
1164 	}
1165 
1166 	bh = __getblk(journal->j_dev, start, journal->j_blocksize);
1167 	if (!bh) {
1168 		printk(KERN_ERR
1169 		       "%s: Cannot get buffer for journal superblock\n",
1170 		       __func__);
1171 		goto out_err;
1172 	}
1173 	journal->j_sb_buffer = bh;
1174 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
1175 
1176 	return journal;
1177 out_err:
1178 	kfree(journal->j_wbuf);
1179 	jbd2_stats_proc_exit(journal);
1180 	kfree(journal);
1181 	return NULL;
1182 }
1183 
1184 /**
1185  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1186  *  @inode: An inode to create the journal in
1187  *
1188  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1189  * the journal.  The inode must exist already, must support bmap() and
1190  * must have all data blocks preallocated.
1191  */
1192 journal_t * jbd2_journal_init_inode (struct inode *inode)
1193 {
1194 	struct buffer_head *bh;
1195 	journal_t *journal = journal_init_common();
1196 	char *p;
1197 	int err;
1198 	int n;
1199 	unsigned long long blocknr;
1200 
1201 	if (!journal)
1202 		return NULL;
1203 
1204 	journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
1205 	journal->j_inode = inode;
1206 	bdevname(journal->j_dev, journal->j_devname);
1207 	p = journal->j_devname;
1208 	while ((p = strchr(p, '/')))
1209 		*p = '!';
1210 	p = journal->j_devname + strlen(journal->j_devname);
1211 	sprintf(p, "-%lu", journal->j_inode->i_ino);
1212 	jbd_debug(1,
1213 		  "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
1214 		  journal, inode->i_sb->s_id, inode->i_ino,
1215 		  (long long) inode->i_size,
1216 		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1217 
1218 	journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
1219 	journal->j_blocksize = inode->i_sb->s_blocksize;
1220 	jbd2_stats_proc_init(journal);
1221 
1222 	/* journal descriptor can store up to n blocks -bzzz */
1223 	n = journal->j_blocksize / sizeof(journal_block_tag_t);
1224 	journal->j_wbufsize = n;
1225 	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1226 	if (!journal->j_wbuf) {
1227 		printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1228 			__func__);
1229 		goto out_err;
1230 	}
1231 
1232 	err = jbd2_journal_bmap(journal, 0, &blocknr);
1233 	/* If that failed, give up */
1234 	if (err) {
1235 		printk(KERN_ERR "%s: Cannot locate journal superblock\n",
1236 		       __func__);
1237 		goto out_err;
1238 	}
1239 
1240 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
1241 	if (!bh) {
1242 		printk(KERN_ERR
1243 		       "%s: Cannot get buffer for journal superblock\n",
1244 		       __func__);
1245 		goto out_err;
1246 	}
1247 	journal->j_sb_buffer = bh;
1248 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
1249 
1250 	return journal;
1251 out_err:
1252 	kfree(journal->j_wbuf);
1253 	jbd2_stats_proc_exit(journal);
1254 	kfree(journal);
1255 	return NULL;
1256 }
1257 
1258 /*
1259  * If the journal init or create aborts, we need to mark the journal
1260  * superblock as being NULL to prevent the journal destroy from writing
1261  * back a bogus superblock.
1262  */
1263 static void journal_fail_superblock (journal_t *journal)
1264 {
1265 	struct buffer_head *bh = journal->j_sb_buffer;
1266 	brelse(bh);
1267 	journal->j_sb_buffer = NULL;
1268 }
1269 
1270 /*
1271  * Given a journal_t structure, initialise the various fields for
1272  * startup of a new journaling session.  We use this both when creating
1273  * a journal, and after recovering an old journal to reset it for
1274  * subsequent use.
1275  */
1276 
1277 static int journal_reset(journal_t *journal)
1278 {
1279 	journal_superblock_t *sb = journal->j_superblock;
1280 	unsigned long long first, last;
1281 
1282 	first = be32_to_cpu(sb->s_first);
1283 	last = be32_to_cpu(sb->s_maxlen);
1284 	if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1285 		printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1286 		       first, last);
1287 		journal_fail_superblock(journal);
1288 		return -EINVAL;
1289 	}
1290 
1291 	journal->j_first = first;
1292 	journal->j_last = last;
1293 
1294 	journal->j_head = first;
1295 	journal->j_tail = first;
1296 	journal->j_free = last - first;
1297 
1298 	journal->j_tail_sequence = journal->j_transaction_sequence;
1299 	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1300 	journal->j_commit_request = journal->j_commit_sequence;
1301 
1302 	journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1303 
1304 	/*
1305 	 * As a special case, if the on-disk copy is already marked as needing
1306 	 * no recovery (s_start == 0), then we can safely defer the superblock
1307 	 * update until the next commit by setting JBD2_FLUSHED.  This avoids
1308 	 * attempting a write to a potential-readonly device.
1309 	 */
1310 	if (sb->s_start == 0) {
1311 		jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1312 			"(start %ld, seq %d, errno %d)\n",
1313 			journal->j_tail, journal->j_tail_sequence,
1314 			journal->j_errno);
1315 		journal->j_flags |= JBD2_FLUSHED;
1316 	} else {
1317 		/* Lock here to make assertions happy... */
1318 		mutex_lock(&journal->j_checkpoint_mutex);
1319 		/*
1320 		 * Update log tail information. We use WRITE_FUA since new
1321 		 * transaction will start reusing journal space and so we
1322 		 * must make sure information about current log tail is on
1323 		 * disk before that.
1324 		 */
1325 		jbd2_journal_update_sb_log_tail(journal,
1326 						journal->j_tail_sequence,
1327 						journal->j_tail,
1328 						WRITE_FUA);
1329 		mutex_unlock(&journal->j_checkpoint_mutex);
1330 	}
1331 	return jbd2_journal_start_thread(journal);
1332 }
1333 
1334 static void jbd2_write_superblock(journal_t *journal, int write_op)
1335 {
1336 	struct buffer_head *bh = journal->j_sb_buffer;
1337 	journal_superblock_t *sb = journal->j_superblock;
1338 	int ret;
1339 
1340 	trace_jbd2_write_superblock(journal, write_op);
1341 	if (!(journal->j_flags & JBD2_BARRIER))
1342 		write_op &= ~(REQ_FUA | REQ_FLUSH);
1343 	lock_buffer(bh);
1344 	if (buffer_write_io_error(bh)) {
1345 		/*
1346 		 * Oh, dear.  A previous attempt to write the journal
1347 		 * superblock failed.  This could happen because the
1348 		 * USB device was yanked out.  Or it could happen to
1349 		 * be a transient write error and maybe the block will
1350 		 * be remapped.  Nothing we can do but to retry the
1351 		 * write and hope for the best.
1352 		 */
1353 		printk(KERN_ERR "JBD2: previous I/O error detected "
1354 		       "for journal superblock update for %s.\n",
1355 		       journal->j_devname);
1356 		clear_buffer_write_io_error(bh);
1357 		set_buffer_uptodate(bh);
1358 	}
1359 	jbd2_superblock_csum_set(journal, sb);
1360 	get_bh(bh);
1361 	bh->b_end_io = end_buffer_write_sync;
1362 	ret = submit_bh(write_op, bh);
1363 	wait_on_buffer(bh);
1364 	if (buffer_write_io_error(bh)) {
1365 		clear_buffer_write_io_error(bh);
1366 		set_buffer_uptodate(bh);
1367 		ret = -EIO;
1368 	}
1369 	if (ret) {
1370 		printk(KERN_ERR "JBD2: Error %d detected when updating "
1371 		       "journal superblock for %s.\n", ret,
1372 		       journal->j_devname);
1373 	}
1374 }
1375 
1376 /**
1377  * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1378  * @journal: The journal to update.
1379  * @tail_tid: TID of the new transaction at the tail of the log
1380  * @tail_block: The first block of the transaction at the tail of the log
1381  * @write_op: With which operation should we write the journal sb
1382  *
1383  * Update a journal's superblock information about log tail and write it to
1384  * disk, waiting for the IO to complete.
1385  */
1386 void jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1387 				     unsigned long tail_block, int write_op)
1388 {
1389 	journal_superblock_t *sb = journal->j_superblock;
1390 
1391 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1392 	jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1393 		  tail_block, tail_tid);
1394 
1395 	sb->s_sequence = cpu_to_be32(tail_tid);
1396 	sb->s_start    = cpu_to_be32(tail_block);
1397 
1398 	jbd2_write_superblock(journal, write_op);
1399 
1400 	/* Log is no longer empty */
1401 	write_lock(&journal->j_state_lock);
1402 	WARN_ON(!sb->s_sequence);
1403 	journal->j_flags &= ~JBD2_FLUSHED;
1404 	write_unlock(&journal->j_state_lock);
1405 }
1406 
1407 /**
1408  * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1409  * @journal: The journal to update.
1410  *
1411  * Update a journal's dynamic superblock fields to show that journal is empty.
1412  * Write updated superblock to disk waiting for IO to complete.
1413  */
1414 static void jbd2_mark_journal_empty(journal_t *journal)
1415 {
1416 	journal_superblock_t *sb = journal->j_superblock;
1417 
1418 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1419 	read_lock(&journal->j_state_lock);
1420 	/* Is it already empty? */
1421 	if (sb->s_start == 0) {
1422 		read_unlock(&journal->j_state_lock);
1423 		return;
1424 	}
1425 	jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1426 		  journal->j_tail_sequence);
1427 
1428 	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1429 	sb->s_start    = cpu_to_be32(0);
1430 	read_unlock(&journal->j_state_lock);
1431 
1432 	jbd2_write_superblock(journal, WRITE_FUA);
1433 
1434 	/* Log is no longer empty */
1435 	write_lock(&journal->j_state_lock);
1436 	journal->j_flags |= JBD2_FLUSHED;
1437 	write_unlock(&journal->j_state_lock);
1438 }
1439 
1440 
1441 /**
1442  * jbd2_journal_update_sb_errno() - Update error in the journal.
1443  * @journal: The journal to update.
1444  *
1445  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1446  * to complete.
1447  */
1448 void jbd2_journal_update_sb_errno(journal_t *journal)
1449 {
1450 	journal_superblock_t *sb = journal->j_superblock;
1451 
1452 	read_lock(&journal->j_state_lock);
1453 	jbd_debug(1, "JBD2: updating superblock error (errno %d)\n",
1454 		  journal->j_errno);
1455 	sb->s_errno    = cpu_to_be32(journal->j_errno);
1456 	read_unlock(&journal->j_state_lock);
1457 
1458 	jbd2_write_superblock(journal, WRITE_SYNC);
1459 }
1460 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1461 
1462 /*
1463  * Read the superblock for a given journal, performing initial
1464  * validation of the format.
1465  */
1466 static int journal_get_superblock(journal_t *journal)
1467 {
1468 	struct buffer_head *bh;
1469 	journal_superblock_t *sb;
1470 	int err = -EIO;
1471 
1472 	bh = journal->j_sb_buffer;
1473 
1474 	J_ASSERT(bh != NULL);
1475 	if (!buffer_uptodate(bh)) {
1476 		ll_rw_block(READ, 1, &bh);
1477 		wait_on_buffer(bh);
1478 		if (!buffer_uptodate(bh)) {
1479 			printk(KERN_ERR
1480 				"JBD2: IO error reading journal superblock\n");
1481 			goto out;
1482 		}
1483 	}
1484 
1485 	if (buffer_verified(bh))
1486 		return 0;
1487 
1488 	sb = journal->j_superblock;
1489 
1490 	err = -EINVAL;
1491 
1492 	if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1493 	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1494 		printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1495 		goto out;
1496 	}
1497 
1498 	switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1499 	case JBD2_SUPERBLOCK_V1:
1500 		journal->j_format_version = 1;
1501 		break;
1502 	case JBD2_SUPERBLOCK_V2:
1503 		journal->j_format_version = 2;
1504 		break;
1505 	default:
1506 		printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1507 		goto out;
1508 	}
1509 
1510 	if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1511 		journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1512 	else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1513 		printk(KERN_WARNING "JBD2: journal file too short\n");
1514 		goto out;
1515 	}
1516 
1517 	if (be32_to_cpu(sb->s_first) == 0 ||
1518 	    be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1519 		printk(KERN_WARNING
1520 			"JBD2: Invalid start block of journal: %u\n",
1521 			be32_to_cpu(sb->s_first));
1522 		goto out;
1523 	}
1524 
1525 	if (JBD2_HAS_COMPAT_FEATURE(journal, JBD2_FEATURE_COMPAT_CHECKSUM) &&
1526 	    JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
1527 		/* Can't have checksum v1 and v2 on at the same time! */
1528 		printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2 "
1529 		       "at the same time!\n");
1530 		goto out;
1531 	}
1532 
1533 	if (!jbd2_verify_csum_type(journal, sb)) {
1534 		printk(KERN_ERR "JBD2: Unknown checksum type\n");
1535 		goto out;
1536 	}
1537 
1538 	/* Load the checksum driver */
1539 	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
1540 		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1541 		if (IS_ERR(journal->j_chksum_driver)) {
1542 			printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1543 			err = PTR_ERR(journal->j_chksum_driver);
1544 			journal->j_chksum_driver = NULL;
1545 			goto out;
1546 		}
1547 	}
1548 
1549 	/* Check superblock checksum */
1550 	if (!jbd2_superblock_csum_verify(journal, sb)) {
1551 		printk(KERN_ERR "JBD2: journal checksum error\n");
1552 		goto out;
1553 	}
1554 
1555 	/* Precompute checksum seed for all metadata */
1556 	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2))
1557 		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1558 						   sizeof(sb->s_uuid));
1559 
1560 	set_buffer_verified(bh);
1561 
1562 	return 0;
1563 
1564 out:
1565 	journal_fail_superblock(journal);
1566 	return err;
1567 }
1568 
1569 /*
1570  * Load the on-disk journal superblock and read the key fields into the
1571  * journal_t.
1572  */
1573 
1574 static int load_superblock(journal_t *journal)
1575 {
1576 	int err;
1577 	journal_superblock_t *sb;
1578 
1579 	err = journal_get_superblock(journal);
1580 	if (err)
1581 		return err;
1582 
1583 	sb = journal->j_superblock;
1584 
1585 	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1586 	journal->j_tail = be32_to_cpu(sb->s_start);
1587 	journal->j_first = be32_to_cpu(sb->s_first);
1588 	journal->j_last = be32_to_cpu(sb->s_maxlen);
1589 	journal->j_errno = be32_to_cpu(sb->s_errno);
1590 
1591 	return 0;
1592 }
1593 
1594 
1595 /**
1596  * int jbd2_journal_load() - Read journal from disk.
1597  * @journal: Journal to act on.
1598  *
1599  * Given a journal_t structure which tells us which disk blocks contain
1600  * a journal, read the journal from disk to initialise the in-memory
1601  * structures.
1602  */
1603 int jbd2_journal_load(journal_t *journal)
1604 {
1605 	int err;
1606 	journal_superblock_t *sb;
1607 
1608 	err = load_superblock(journal);
1609 	if (err)
1610 		return err;
1611 
1612 	sb = journal->j_superblock;
1613 	/* If this is a V2 superblock, then we have to check the
1614 	 * features flags on it. */
1615 
1616 	if (journal->j_format_version >= 2) {
1617 		if ((sb->s_feature_ro_compat &
1618 		     ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1619 		    (sb->s_feature_incompat &
1620 		     ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1621 			printk(KERN_WARNING
1622 				"JBD2: Unrecognised features on journal\n");
1623 			return -EINVAL;
1624 		}
1625 	}
1626 
1627 	/*
1628 	 * Create a slab for this blocksize
1629 	 */
1630 	err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1631 	if (err)
1632 		return err;
1633 
1634 	/* Let the recovery code check whether it needs to recover any
1635 	 * data from the journal. */
1636 	if (jbd2_journal_recover(journal))
1637 		goto recovery_error;
1638 
1639 	if (journal->j_failed_commit) {
1640 		printk(KERN_ERR "JBD2: journal transaction %u on %s "
1641 		       "is corrupt.\n", journal->j_failed_commit,
1642 		       journal->j_devname);
1643 		return -EIO;
1644 	}
1645 
1646 	/* OK, we've finished with the dynamic journal bits:
1647 	 * reinitialise the dynamic contents of the superblock in memory
1648 	 * and reset them on disk. */
1649 	if (journal_reset(journal))
1650 		goto recovery_error;
1651 
1652 	journal->j_flags &= ~JBD2_ABORT;
1653 	journal->j_flags |= JBD2_LOADED;
1654 	return 0;
1655 
1656 recovery_error:
1657 	printk(KERN_WARNING "JBD2: recovery failed\n");
1658 	return -EIO;
1659 }
1660 
1661 /**
1662  * void jbd2_journal_destroy() - Release a journal_t structure.
1663  * @journal: Journal to act on.
1664  *
1665  * Release a journal_t structure once it is no longer in use by the
1666  * journaled object.
1667  * Return <0 if we couldn't clean up the journal.
1668  */
1669 int jbd2_journal_destroy(journal_t *journal)
1670 {
1671 	int err = 0;
1672 
1673 	/* Wait for the commit thread to wake up and die. */
1674 	journal_kill_thread(journal);
1675 
1676 	/* Force a final log commit */
1677 	if (journal->j_running_transaction)
1678 		jbd2_journal_commit_transaction(journal);
1679 
1680 	/* Force any old transactions to disk */
1681 
1682 	/* Totally anal locking here... */
1683 	spin_lock(&journal->j_list_lock);
1684 	while (journal->j_checkpoint_transactions != NULL) {
1685 		spin_unlock(&journal->j_list_lock);
1686 		mutex_lock(&journal->j_checkpoint_mutex);
1687 		jbd2_log_do_checkpoint(journal);
1688 		mutex_unlock(&journal->j_checkpoint_mutex);
1689 		spin_lock(&journal->j_list_lock);
1690 	}
1691 
1692 	J_ASSERT(journal->j_running_transaction == NULL);
1693 	J_ASSERT(journal->j_committing_transaction == NULL);
1694 	J_ASSERT(journal->j_checkpoint_transactions == NULL);
1695 	spin_unlock(&journal->j_list_lock);
1696 
1697 	if (journal->j_sb_buffer) {
1698 		if (!is_journal_aborted(journal)) {
1699 			mutex_lock(&journal->j_checkpoint_mutex);
1700 			jbd2_mark_journal_empty(journal);
1701 			mutex_unlock(&journal->j_checkpoint_mutex);
1702 		} else
1703 			err = -EIO;
1704 		brelse(journal->j_sb_buffer);
1705 	}
1706 
1707 	if (journal->j_proc_entry)
1708 		jbd2_stats_proc_exit(journal);
1709 	if (journal->j_inode)
1710 		iput(journal->j_inode);
1711 	if (journal->j_revoke)
1712 		jbd2_journal_destroy_revoke(journal);
1713 	if (journal->j_chksum_driver)
1714 		crypto_free_shash(journal->j_chksum_driver);
1715 	kfree(journal->j_wbuf);
1716 	kfree(journal);
1717 
1718 	return err;
1719 }
1720 
1721 
1722 /**
1723  *int jbd2_journal_check_used_features () - Check if features specified are used.
1724  * @journal: Journal to check.
1725  * @compat: bitmask of compatible features
1726  * @ro: bitmask of features that force read-only mount
1727  * @incompat: bitmask of incompatible features
1728  *
1729  * Check whether the journal uses all of a given set of
1730  * features.  Return true (non-zero) if it does.
1731  **/
1732 
1733 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1734 				 unsigned long ro, unsigned long incompat)
1735 {
1736 	journal_superblock_t *sb;
1737 
1738 	if (!compat && !ro && !incompat)
1739 		return 1;
1740 	/* Load journal superblock if it is not loaded yet. */
1741 	if (journal->j_format_version == 0 &&
1742 	    journal_get_superblock(journal) != 0)
1743 		return 0;
1744 	if (journal->j_format_version == 1)
1745 		return 0;
1746 
1747 	sb = journal->j_superblock;
1748 
1749 	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1750 	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1751 	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1752 		return 1;
1753 
1754 	return 0;
1755 }
1756 
1757 /**
1758  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1759  * @journal: Journal to check.
1760  * @compat: bitmask of compatible features
1761  * @ro: bitmask of features that force read-only mount
1762  * @incompat: bitmask of incompatible features
1763  *
1764  * Check whether the journaling code supports the use of
1765  * all of a given set of features on this journal.  Return true
1766  * (non-zero) if it can. */
1767 
1768 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1769 				      unsigned long ro, unsigned long incompat)
1770 {
1771 	if (!compat && !ro && !incompat)
1772 		return 1;
1773 
1774 	/* We can support any known requested features iff the
1775 	 * superblock is in version 2.  Otherwise we fail to support any
1776 	 * extended sb features. */
1777 
1778 	if (journal->j_format_version != 2)
1779 		return 0;
1780 
1781 	if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1782 	    (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1783 	    (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1784 		return 1;
1785 
1786 	return 0;
1787 }
1788 
1789 /**
1790  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1791  * @journal: Journal to act on.
1792  * @compat: bitmask of compatible features
1793  * @ro: bitmask of features that force read-only mount
1794  * @incompat: bitmask of incompatible features
1795  *
1796  * Mark a given journal feature as present on the
1797  * superblock.  Returns true if the requested features could be set.
1798  *
1799  */
1800 
1801 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1802 			  unsigned long ro, unsigned long incompat)
1803 {
1804 #define INCOMPAT_FEATURE_ON(f) \
1805 		((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1806 #define COMPAT_FEATURE_ON(f) \
1807 		((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1808 	journal_superblock_t *sb;
1809 
1810 	if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1811 		return 1;
1812 
1813 	if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1814 		return 0;
1815 
1816 	/* Asking for checksumming v2 and v1?  Only give them v2. */
1817 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2 &&
1818 	    compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1819 		compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1820 
1821 	jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1822 		  compat, ro, incompat);
1823 
1824 	sb = journal->j_superblock;
1825 
1826 	/* If enabling v2 checksums, update superblock */
1827 	if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
1828 		sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1829 		sb->s_feature_compat &=
1830 			~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1831 
1832 		/* Load the checksum driver */
1833 		if (journal->j_chksum_driver == NULL) {
1834 			journal->j_chksum_driver = crypto_alloc_shash("crc32c",
1835 								      0, 0);
1836 			if (IS_ERR(journal->j_chksum_driver)) {
1837 				printk(KERN_ERR "JBD2: Cannot load crc32c "
1838 				       "driver.\n");
1839 				journal->j_chksum_driver = NULL;
1840 				return 0;
1841 			}
1842 		}
1843 
1844 		/* Precompute checksum seed for all metadata */
1845 		if (JBD2_HAS_INCOMPAT_FEATURE(journal,
1846 					      JBD2_FEATURE_INCOMPAT_CSUM_V2))
1847 			journal->j_csum_seed = jbd2_chksum(journal, ~0,
1848 							   sb->s_uuid,
1849 							   sizeof(sb->s_uuid));
1850 	}
1851 
1852 	/* If enabling v1 checksums, downgrade superblock */
1853 	if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1854 		sb->s_feature_incompat &=
1855 			~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2);
1856 
1857 	sb->s_feature_compat    |= cpu_to_be32(compat);
1858 	sb->s_feature_ro_compat |= cpu_to_be32(ro);
1859 	sb->s_feature_incompat  |= cpu_to_be32(incompat);
1860 
1861 	return 1;
1862 #undef COMPAT_FEATURE_ON
1863 #undef INCOMPAT_FEATURE_ON
1864 }
1865 
1866 /*
1867  * jbd2_journal_clear_features () - Clear a given journal feature in the
1868  * 				    superblock
1869  * @journal: Journal to act on.
1870  * @compat: bitmask of compatible features
1871  * @ro: bitmask of features that force read-only mount
1872  * @incompat: bitmask of incompatible features
1873  *
1874  * Clear a given journal feature as present on the
1875  * superblock.
1876  */
1877 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1878 				unsigned long ro, unsigned long incompat)
1879 {
1880 	journal_superblock_t *sb;
1881 
1882 	jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1883 		  compat, ro, incompat);
1884 
1885 	sb = journal->j_superblock;
1886 
1887 	sb->s_feature_compat    &= ~cpu_to_be32(compat);
1888 	sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1889 	sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1890 }
1891 EXPORT_SYMBOL(jbd2_journal_clear_features);
1892 
1893 /**
1894  * int jbd2_journal_flush () - Flush journal
1895  * @journal: Journal to act on.
1896  *
1897  * Flush all data for a given journal to disk and empty the journal.
1898  * Filesystems can use this when remounting readonly to ensure that
1899  * recovery does not need to happen on remount.
1900  */
1901 
1902 int jbd2_journal_flush(journal_t *journal)
1903 {
1904 	int err = 0;
1905 	transaction_t *transaction = NULL;
1906 
1907 	write_lock(&journal->j_state_lock);
1908 
1909 	/* Force everything buffered to the log... */
1910 	if (journal->j_running_transaction) {
1911 		transaction = journal->j_running_transaction;
1912 		__jbd2_log_start_commit(journal, transaction->t_tid);
1913 	} else if (journal->j_committing_transaction)
1914 		transaction = journal->j_committing_transaction;
1915 
1916 	/* Wait for the log commit to complete... */
1917 	if (transaction) {
1918 		tid_t tid = transaction->t_tid;
1919 
1920 		write_unlock(&journal->j_state_lock);
1921 		jbd2_log_wait_commit(journal, tid);
1922 	} else {
1923 		write_unlock(&journal->j_state_lock);
1924 	}
1925 
1926 	/* ...and flush everything in the log out to disk. */
1927 	spin_lock(&journal->j_list_lock);
1928 	while (!err && journal->j_checkpoint_transactions != NULL) {
1929 		spin_unlock(&journal->j_list_lock);
1930 		mutex_lock(&journal->j_checkpoint_mutex);
1931 		err = jbd2_log_do_checkpoint(journal);
1932 		mutex_unlock(&journal->j_checkpoint_mutex);
1933 		spin_lock(&journal->j_list_lock);
1934 	}
1935 	spin_unlock(&journal->j_list_lock);
1936 
1937 	if (is_journal_aborted(journal))
1938 		return -EIO;
1939 
1940 	mutex_lock(&journal->j_checkpoint_mutex);
1941 	jbd2_cleanup_journal_tail(journal);
1942 
1943 	/* Finally, mark the journal as really needing no recovery.
1944 	 * This sets s_start==0 in the underlying superblock, which is
1945 	 * the magic code for a fully-recovered superblock.  Any future
1946 	 * commits of data to the journal will restore the current
1947 	 * s_start value. */
1948 	jbd2_mark_journal_empty(journal);
1949 	mutex_unlock(&journal->j_checkpoint_mutex);
1950 	write_lock(&journal->j_state_lock);
1951 	J_ASSERT(!journal->j_running_transaction);
1952 	J_ASSERT(!journal->j_committing_transaction);
1953 	J_ASSERT(!journal->j_checkpoint_transactions);
1954 	J_ASSERT(journal->j_head == journal->j_tail);
1955 	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1956 	write_unlock(&journal->j_state_lock);
1957 	return 0;
1958 }
1959 
1960 /**
1961  * int jbd2_journal_wipe() - Wipe journal contents
1962  * @journal: Journal to act on.
1963  * @write: flag (see below)
1964  *
1965  * Wipe out all of the contents of a journal, safely.  This will produce
1966  * a warning if the journal contains any valid recovery information.
1967  * Must be called between journal_init_*() and jbd2_journal_load().
1968  *
1969  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1970  * we merely suppress recovery.
1971  */
1972 
1973 int jbd2_journal_wipe(journal_t *journal, int write)
1974 {
1975 	int err = 0;
1976 
1977 	J_ASSERT (!(journal->j_flags & JBD2_LOADED));
1978 
1979 	err = load_superblock(journal);
1980 	if (err)
1981 		return err;
1982 
1983 	if (!journal->j_tail)
1984 		goto no_recovery;
1985 
1986 	printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
1987 		write ? "Clearing" : "Ignoring");
1988 
1989 	err = jbd2_journal_skip_recovery(journal);
1990 	if (write) {
1991 		/* Lock to make assertions happy... */
1992 		mutex_lock(&journal->j_checkpoint_mutex);
1993 		jbd2_mark_journal_empty(journal);
1994 		mutex_unlock(&journal->j_checkpoint_mutex);
1995 	}
1996 
1997  no_recovery:
1998 	return err;
1999 }
2000 
2001 /*
2002  * Journal abort has very specific semantics, which we describe
2003  * for journal abort.
2004  *
2005  * Two internal functions, which provide abort to the jbd layer
2006  * itself are here.
2007  */
2008 
2009 /*
2010  * Quick version for internal journal use (doesn't lock the journal).
2011  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
2012  * and don't attempt to make any other journal updates.
2013  */
2014 void __jbd2_journal_abort_hard(journal_t *journal)
2015 {
2016 	transaction_t *transaction;
2017 
2018 	if (journal->j_flags & JBD2_ABORT)
2019 		return;
2020 
2021 	printk(KERN_ERR "Aborting journal on device %s.\n",
2022 	       journal->j_devname);
2023 
2024 	write_lock(&journal->j_state_lock);
2025 	journal->j_flags |= JBD2_ABORT;
2026 	transaction = journal->j_running_transaction;
2027 	if (transaction)
2028 		__jbd2_log_start_commit(journal, transaction->t_tid);
2029 	write_unlock(&journal->j_state_lock);
2030 }
2031 
2032 /* Soft abort: record the abort error status in the journal superblock,
2033  * but don't do any other IO. */
2034 static void __journal_abort_soft (journal_t *journal, int errno)
2035 {
2036 	if (journal->j_flags & JBD2_ABORT)
2037 		return;
2038 
2039 	if (!journal->j_errno)
2040 		journal->j_errno = errno;
2041 
2042 	__jbd2_journal_abort_hard(journal);
2043 
2044 	if (errno)
2045 		jbd2_journal_update_sb_errno(journal);
2046 }
2047 
2048 /**
2049  * void jbd2_journal_abort () - Shutdown the journal immediately.
2050  * @journal: the journal to shutdown.
2051  * @errno:   an error number to record in the journal indicating
2052  *           the reason for the shutdown.
2053  *
2054  * Perform a complete, immediate shutdown of the ENTIRE
2055  * journal (not of a single transaction).  This operation cannot be
2056  * undone without closing and reopening the journal.
2057  *
2058  * The jbd2_journal_abort function is intended to support higher level error
2059  * recovery mechanisms such as the ext2/ext3 remount-readonly error
2060  * mode.
2061  *
2062  * Journal abort has very specific semantics.  Any existing dirty,
2063  * unjournaled buffers in the main filesystem will still be written to
2064  * disk by bdflush, but the journaling mechanism will be suspended
2065  * immediately and no further transaction commits will be honoured.
2066  *
2067  * Any dirty, journaled buffers will be written back to disk without
2068  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2069  * filesystem, but we _do_ attempt to leave as much data as possible
2070  * behind for fsck to use for cleanup.
2071  *
2072  * Any attempt to get a new transaction handle on a journal which is in
2073  * ABORT state will just result in an -EROFS error return.  A
2074  * jbd2_journal_stop on an existing handle will return -EIO if we have
2075  * entered abort state during the update.
2076  *
2077  * Recursive transactions are not disturbed by journal abort until the
2078  * final jbd2_journal_stop, which will receive the -EIO error.
2079  *
2080  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2081  * which will be recorded (if possible) in the journal superblock.  This
2082  * allows a client to record failure conditions in the middle of a
2083  * transaction without having to complete the transaction to record the
2084  * failure to disk.  ext3_error, for example, now uses this
2085  * functionality.
2086  *
2087  * Errors which originate from within the journaling layer will NOT
2088  * supply an errno; a null errno implies that absolutely no further
2089  * writes are done to the journal (unless there are any already in
2090  * progress).
2091  *
2092  */
2093 
2094 void jbd2_journal_abort(journal_t *journal, int errno)
2095 {
2096 	__journal_abort_soft(journal, errno);
2097 }
2098 
2099 /**
2100  * int jbd2_journal_errno () - returns the journal's error state.
2101  * @journal: journal to examine.
2102  *
2103  * This is the errno number set with jbd2_journal_abort(), the last
2104  * time the journal was mounted - if the journal was stopped
2105  * without calling abort this will be 0.
2106  *
2107  * If the journal has been aborted on this mount time -EROFS will
2108  * be returned.
2109  */
2110 int jbd2_journal_errno(journal_t *journal)
2111 {
2112 	int err;
2113 
2114 	read_lock(&journal->j_state_lock);
2115 	if (journal->j_flags & JBD2_ABORT)
2116 		err = -EROFS;
2117 	else
2118 		err = journal->j_errno;
2119 	read_unlock(&journal->j_state_lock);
2120 	return err;
2121 }
2122 
2123 /**
2124  * int jbd2_journal_clear_err () - clears the journal's error state
2125  * @journal: journal to act on.
2126  *
2127  * An error must be cleared or acked to take a FS out of readonly
2128  * mode.
2129  */
2130 int jbd2_journal_clear_err(journal_t *journal)
2131 {
2132 	int err = 0;
2133 
2134 	write_lock(&journal->j_state_lock);
2135 	if (journal->j_flags & JBD2_ABORT)
2136 		err = -EROFS;
2137 	else
2138 		journal->j_errno = 0;
2139 	write_unlock(&journal->j_state_lock);
2140 	return err;
2141 }
2142 
2143 /**
2144  * void jbd2_journal_ack_err() - Ack journal err.
2145  * @journal: journal to act on.
2146  *
2147  * An error must be cleared or acked to take a FS out of readonly
2148  * mode.
2149  */
2150 void jbd2_journal_ack_err(journal_t *journal)
2151 {
2152 	write_lock(&journal->j_state_lock);
2153 	if (journal->j_errno)
2154 		journal->j_flags |= JBD2_ACK_ERR;
2155 	write_unlock(&journal->j_state_lock);
2156 }
2157 
2158 int jbd2_journal_blocks_per_page(struct inode *inode)
2159 {
2160 	return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
2161 }
2162 
2163 /*
2164  * helper functions to deal with 32 or 64bit block numbers.
2165  */
2166 size_t journal_tag_bytes(journal_t *journal)
2167 {
2168 	journal_block_tag_t tag;
2169 	size_t x = 0;
2170 
2171 	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2))
2172 		x += sizeof(tag.t_checksum);
2173 
2174 	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT))
2175 		return x + JBD2_TAG_SIZE64;
2176 	else
2177 		return x + JBD2_TAG_SIZE32;
2178 }
2179 
2180 /*
2181  * JBD memory management
2182  *
2183  * These functions are used to allocate block-sized chunks of memory
2184  * used for making copies of buffer_head data.  Very often it will be
2185  * page-sized chunks of data, but sometimes it will be in
2186  * sub-page-size chunks.  (For example, 16k pages on Power systems
2187  * with a 4k block file system.)  For blocks smaller than a page, we
2188  * use a SLAB allocator.  There are slab caches for each block size,
2189  * which are allocated at mount time, if necessary, and we only free
2190  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2191  * this reason we don't need to a mutex to protect access to
2192  * jbd2_slab[] allocating or releasing memory; only in
2193  * jbd2_journal_create_slab().
2194  */
2195 #define JBD2_MAX_SLABS 8
2196 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2197 
2198 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2199 	"jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2200 	"jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2201 };
2202 
2203 
2204 static void jbd2_journal_destroy_slabs(void)
2205 {
2206 	int i;
2207 
2208 	for (i = 0; i < JBD2_MAX_SLABS; i++) {
2209 		if (jbd2_slab[i])
2210 			kmem_cache_destroy(jbd2_slab[i]);
2211 		jbd2_slab[i] = NULL;
2212 	}
2213 }
2214 
2215 static int jbd2_journal_create_slab(size_t size)
2216 {
2217 	static DEFINE_MUTEX(jbd2_slab_create_mutex);
2218 	int i = order_base_2(size) - 10;
2219 	size_t slab_size;
2220 
2221 	if (size == PAGE_SIZE)
2222 		return 0;
2223 
2224 	if (i >= JBD2_MAX_SLABS)
2225 		return -EINVAL;
2226 
2227 	if (unlikely(i < 0))
2228 		i = 0;
2229 	mutex_lock(&jbd2_slab_create_mutex);
2230 	if (jbd2_slab[i]) {
2231 		mutex_unlock(&jbd2_slab_create_mutex);
2232 		return 0;	/* Already created */
2233 	}
2234 
2235 	slab_size = 1 << (i+10);
2236 	jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2237 					 slab_size, 0, NULL);
2238 	mutex_unlock(&jbd2_slab_create_mutex);
2239 	if (!jbd2_slab[i]) {
2240 		printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2241 		return -ENOMEM;
2242 	}
2243 	return 0;
2244 }
2245 
2246 static struct kmem_cache *get_slab(size_t size)
2247 {
2248 	int i = order_base_2(size) - 10;
2249 
2250 	BUG_ON(i >= JBD2_MAX_SLABS);
2251 	if (unlikely(i < 0))
2252 		i = 0;
2253 	BUG_ON(jbd2_slab[i] == NULL);
2254 	return jbd2_slab[i];
2255 }
2256 
2257 void *jbd2_alloc(size_t size, gfp_t flags)
2258 {
2259 	void *ptr;
2260 
2261 	BUG_ON(size & (size-1)); /* Must be a power of 2 */
2262 
2263 	flags |= __GFP_REPEAT;
2264 	if (size == PAGE_SIZE)
2265 		ptr = (void *)__get_free_pages(flags, 0);
2266 	else if (size > PAGE_SIZE) {
2267 		int order = get_order(size);
2268 
2269 		if (order < 3)
2270 			ptr = (void *)__get_free_pages(flags, order);
2271 		else
2272 			ptr = vmalloc(size);
2273 	} else
2274 		ptr = kmem_cache_alloc(get_slab(size), flags);
2275 
2276 	/* Check alignment; SLUB has gotten this wrong in the past,
2277 	 * and this can lead to user data corruption! */
2278 	BUG_ON(((unsigned long) ptr) & (size-1));
2279 
2280 	return ptr;
2281 }
2282 
2283 void jbd2_free(void *ptr, size_t size)
2284 {
2285 	if (size == PAGE_SIZE) {
2286 		free_pages((unsigned long)ptr, 0);
2287 		return;
2288 	}
2289 	if (size > PAGE_SIZE) {
2290 		int order = get_order(size);
2291 
2292 		if (order < 3)
2293 			free_pages((unsigned long)ptr, order);
2294 		else
2295 			vfree(ptr);
2296 		return;
2297 	}
2298 	kmem_cache_free(get_slab(size), ptr);
2299 };
2300 
2301 /*
2302  * Journal_head storage management
2303  */
2304 static struct kmem_cache *jbd2_journal_head_cache;
2305 #ifdef CONFIG_JBD2_DEBUG
2306 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2307 #endif
2308 
2309 static int jbd2_journal_init_journal_head_cache(void)
2310 {
2311 	int retval;
2312 
2313 	J_ASSERT(jbd2_journal_head_cache == NULL);
2314 	jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2315 				sizeof(struct journal_head),
2316 				0,		/* offset */
2317 				SLAB_TEMPORARY,	/* flags */
2318 				NULL);		/* ctor */
2319 	retval = 0;
2320 	if (!jbd2_journal_head_cache) {
2321 		retval = -ENOMEM;
2322 		printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2323 	}
2324 	return retval;
2325 }
2326 
2327 static void jbd2_journal_destroy_journal_head_cache(void)
2328 {
2329 	if (jbd2_journal_head_cache) {
2330 		kmem_cache_destroy(jbd2_journal_head_cache);
2331 		jbd2_journal_head_cache = NULL;
2332 	}
2333 }
2334 
2335 /*
2336  * journal_head splicing and dicing
2337  */
2338 static struct journal_head *journal_alloc_journal_head(void)
2339 {
2340 	struct journal_head *ret;
2341 
2342 #ifdef CONFIG_JBD2_DEBUG
2343 	atomic_inc(&nr_journal_heads);
2344 #endif
2345 	ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2346 	if (!ret) {
2347 		jbd_debug(1, "out of memory for journal_head\n");
2348 		pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2349 		while (!ret) {
2350 			yield();
2351 			ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2352 		}
2353 	}
2354 	return ret;
2355 }
2356 
2357 static void journal_free_journal_head(struct journal_head *jh)
2358 {
2359 #ifdef CONFIG_JBD2_DEBUG
2360 	atomic_dec(&nr_journal_heads);
2361 	memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2362 #endif
2363 	kmem_cache_free(jbd2_journal_head_cache, jh);
2364 }
2365 
2366 /*
2367  * A journal_head is attached to a buffer_head whenever JBD has an
2368  * interest in the buffer.
2369  *
2370  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2371  * is set.  This bit is tested in core kernel code where we need to take
2372  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2373  * there.
2374  *
2375  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2376  *
2377  * When a buffer has its BH_JBD bit set it is immune from being released by
2378  * core kernel code, mainly via ->b_count.
2379  *
2380  * A journal_head is detached from its buffer_head when the journal_head's
2381  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2382  * transaction (b_cp_transaction) hold their references to b_jcount.
2383  *
2384  * Various places in the kernel want to attach a journal_head to a buffer_head
2385  * _before_ attaching the journal_head to a transaction.  To protect the
2386  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2387  * journal_head's b_jcount refcount by one.  The caller must call
2388  * jbd2_journal_put_journal_head() to undo this.
2389  *
2390  * So the typical usage would be:
2391  *
2392  *	(Attach a journal_head if needed.  Increments b_jcount)
2393  *	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2394  *	...
2395  *      (Get another reference for transaction)
2396  *	jbd2_journal_grab_journal_head(bh);
2397  *	jh->b_transaction = xxx;
2398  *	(Put original reference)
2399  *	jbd2_journal_put_journal_head(jh);
2400  */
2401 
2402 /*
2403  * Give a buffer_head a journal_head.
2404  *
2405  * May sleep.
2406  */
2407 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2408 {
2409 	struct journal_head *jh;
2410 	struct journal_head *new_jh = NULL;
2411 
2412 repeat:
2413 	if (!buffer_jbd(bh))
2414 		new_jh = journal_alloc_journal_head();
2415 
2416 	jbd_lock_bh_journal_head(bh);
2417 	if (buffer_jbd(bh)) {
2418 		jh = bh2jh(bh);
2419 	} else {
2420 		J_ASSERT_BH(bh,
2421 			(atomic_read(&bh->b_count) > 0) ||
2422 			(bh->b_page && bh->b_page->mapping));
2423 
2424 		if (!new_jh) {
2425 			jbd_unlock_bh_journal_head(bh);
2426 			goto repeat;
2427 		}
2428 
2429 		jh = new_jh;
2430 		new_jh = NULL;		/* We consumed it */
2431 		set_buffer_jbd(bh);
2432 		bh->b_private = jh;
2433 		jh->b_bh = bh;
2434 		get_bh(bh);
2435 		BUFFER_TRACE(bh, "added journal_head");
2436 	}
2437 	jh->b_jcount++;
2438 	jbd_unlock_bh_journal_head(bh);
2439 	if (new_jh)
2440 		journal_free_journal_head(new_jh);
2441 	return bh->b_private;
2442 }
2443 
2444 /*
2445  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2446  * having a journal_head, return NULL
2447  */
2448 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2449 {
2450 	struct journal_head *jh = NULL;
2451 
2452 	jbd_lock_bh_journal_head(bh);
2453 	if (buffer_jbd(bh)) {
2454 		jh = bh2jh(bh);
2455 		jh->b_jcount++;
2456 	}
2457 	jbd_unlock_bh_journal_head(bh);
2458 	return jh;
2459 }
2460 
2461 static void __journal_remove_journal_head(struct buffer_head *bh)
2462 {
2463 	struct journal_head *jh = bh2jh(bh);
2464 
2465 	J_ASSERT_JH(jh, jh->b_jcount >= 0);
2466 	J_ASSERT_JH(jh, jh->b_transaction == NULL);
2467 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2468 	J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2469 	J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2470 	J_ASSERT_BH(bh, buffer_jbd(bh));
2471 	J_ASSERT_BH(bh, jh2bh(jh) == bh);
2472 	BUFFER_TRACE(bh, "remove journal_head");
2473 	if (jh->b_frozen_data) {
2474 		printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2475 		jbd2_free(jh->b_frozen_data, bh->b_size);
2476 	}
2477 	if (jh->b_committed_data) {
2478 		printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2479 		jbd2_free(jh->b_committed_data, bh->b_size);
2480 	}
2481 	bh->b_private = NULL;
2482 	jh->b_bh = NULL;	/* debug, really */
2483 	clear_buffer_jbd(bh);
2484 	journal_free_journal_head(jh);
2485 }
2486 
2487 /*
2488  * Drop a reference on the passed journal_head.  If it fell to zero then
2489  * release the journal_head from the buffer_head.
2490  */
2491 void jbd2_journal_put_journal_head(struct journal_head *jh)
2492 {
2493 	struct buffer_head *bh = jh2bh(jh);
2494 
2495 	jbd_lock_bh_journal_head(bh);
2496 	J_ASSERT_JH(jh, jh->b_jcount > 0);
2497 	--jh->b_jcount;
2498 	if (!jh->b_jcount) {
2499 		__journal_remove_journal_head(bh);
2500 		jbd_unlock_bh_journal_head(bh);
2501 		__brelse(bh);
2502 	} else
2503 		jbd_unlock_bh_journal_head(bh);
2504 }
2505 
2506 /*
2507  * Initialize jbd inode head
2508  */
2509 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2510 {
2511 	jinode->i_transaction = NULL;
2512 	jinode->i_next_transaction = NULL;
2513 	jinode->i_vfs_inode = inode;
2514 	jinode->i_flags = 0;
2515 	INIT_LIST_HEAD(&jinode->i_list);
2516 }
2517 
2518 /*
2519  * Function to be called before we start removing inode from memory (i.e.,
2520  * clear_inode() is a fine place to be called from). It removes inode from
2521  * transaction's lists.
2522  */
2523 void jbd2_journal_release_jbd_inode(journal_t *journal,
2524 				    struct jbd2_inode *jinode)
2525 {
2526 	if (!journal)
2527 		return;
2528 restart:
2529 	spin_lock(&journal->j_list_lock);
2530 	/* Is commit writing out inode - we have to wait */
2531 	if (test_bit(__JI_COMMIT_RUNNING, &jinode->i_flags)) {
2532 		wait_queue_head_t *wq;
2533 		DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2534 		wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2535 		prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2536 		spin_unlock(&journal->j_list_lock);
2537 		schedule();
2538 		finish_wait(wq, &wait.wait);
2539 		goto restart;
2540 	}
2541 
2542 	if (jinode->i_transaction) {
2543 		list_del(&jinode->i_list);
2544 		jinode->i_transaction = NULL;
2545 	}
2546 	spin_unlock(&journal->j_list_lock);
2547 }
2548 
2549 
2550 #ifdef CONFIG_PROC_FS
2551 
2552 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2553 
2554 static void __init jbd2_create_jbd_stats_proc_entry(void)
2555 {
2556 	proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2557 }
2558 
2559 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2560 {
2561 	if (proc_jbd2_stats)
2562 		remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2563 }
2564 
2565 #else
2566 
2567 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2568 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2569 
2570 #endif
2571 
2572 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2573 
2574 static int __init jbd2_journal_init_handle_cache(void)
2575 {
2576 	jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2577 	if (jbd2_handle_cache == NULL) {
2578 		printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2579 		return -ENOMEM;
2580 	}
2581 	jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2582 	if (jbd2_inode_cache == NULL) {
2583 		printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2584 		kmem_cache_destroy(jbd2_handle_cache);
2585 		return -ENOMEM;
2586 	}
2587 	return 0;
2588 }
2589 
2590 static void jbd2_journal_destroy_handle_cache(void)
2591 {
2592 	if (jbd2_handle_cache)
2593 		kmem_cache_destroy(jbd2_handle_cache);
2594 	if (jbd2_inode_cache)
2595 		kmem_cache_destroy(jbd2_inode_cache);
2596 
2597 }
2598 
2599 /*
2600  * Module startup and shutdown
2601  */
2602 
2603 static int __init journal_init_caches(void)
2604 {
2605 	int ret;
2606 
2607 	ret = jbd2_journal_init_revoke_caches();
2608 	if (ret == 0)
2609 		ret = jbd2_journal_init_journal_head_cache();
2610 	if (ret == 0)
2611 		ret = jbd2_journal_init_handle_cache();
2612 	if (ret == 0)
2613 		ret = jbd2_journal_init_transaction_cache();
2614 	return ret;
2615 }
2616 
2617 static void jbd2_journal_destroy_caches(void)
2618 {
2619 	jbd2_journal_destroy_revoke_caches();
2620 	jbd2_journal_destroy_journal_head_cache();
2621 	jbd2_journal_destroy_handle_cache();
2622 	jbd2_journal_destroy_transaction_cache();
2623 	jbd2_journal_destroy_slabs();
2624 }
2625 
2626 static int __init journal_init(void)
2627 {
2628 	int ret;
2629 
2630 	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2631 
2632 	ret = journal_init_caches();
2633 	if (ret == 0) {
2634 		jbd2_create_jbd_stats_proc_entry();
2635 	} else {
2636 		jbd2_journal_destroy_caches();
2637 	}
2638 	return ret;
2639 }
2640 
2641 static void __exit journal_exit(void)
2642 {
2643 #ifdef CONFIG_JBD2_DEBUG
2644 	int n = atomic_read(&nr_journal_heads);
2645 	if (n)
2646 		printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
2647 #endif
2648 	jbd2_remove_jbd_stats_proc_entry();
2649 	jbd2_journal_destroy_caches();
2650 }
2651 
2652 MODULE_LICENSE("GPL");
2653 module_init(journal_init);
2654 module_exit(journal_exit);
2655 
2656