xref: /linux/fs/jbd2/journal.c (revision 5bdef865eb358b6f3760e25e591ae115e9eeddef)
1 /*
2  * linux/fs/jbd2/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24 
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/debugfs.h>
39 #include <linux/seq_file.h>
40 #include <linux/math64.h>
41 #include <linux/hash.h>
42 
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/jbd2.h>
45 
46 #include <asm/uaccess.h>
47 #include <asm/page.h>
48 
49 EXPORT_SYMBOL(jbd2_journal_start);
50 EXPORT_SYMBOL(jbd2_journal_restart);
51 EXPORT_SYMBOL(jbd2_journal_extend);
52 EXPORT_SYMBOL(jbd2_journal_stop);
53 EXPORT_SYMBOL(jbd2_journal_lock_updates);
54 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
55 EXPORT_SYMBOL(jbd2_journal_get_write_access);
56 EXPORT_SYMBOL(jbd2_journal_get_create_access);
57 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
58 EXPORT_SYMBOL(jbd2_journal_set_triggers);
59 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
60 EXPORT_SYMBOL(jbd2_journal_release_buffer);
61 EXPORT_SYMBOL(jbd2_journal_forget);
62 #if 0
63 EXPORT_SYMBOL(journal_sync_buffer);
64 #endif
65 EXPORT_SYMBOL(jbd2_journal_flush);
66 EXPORT_SYMBOL(jbd2_journal_revoke);
67 
68 EXPORT_SYMBOL(jbd2_journal_init_dev);
69 EXPORT_SYMBOL(jbd2_journal_init_inode);
70 EXPORT_SYMBOL(jbd2_journal_update_format);
71 EXPORT_SYMBOL(jbd2_journal_check_used_features);
72 EXPORT_SYMBOL(jbd2_journal_check_available_features);
73 EXPORT_SYMBOL(jbd2_journal_set_features);
74 EXPORT_SYMBOL(jbd2_journal_load);
75 EXPORT_SYMBOL(jbd2_journal_destroy);
76 EXPORT_SYMBOL(jbd2_journal_abort);
77 EXPORT_SYMBOL(jbd2_journal_errno);
78 EXPORT_SYMBOL(jbd2_journal_ack_err);
79 EXPORT_SYMBOL(jbd2_journal_clear_err);
80 EXPORT_SYMBOL(jbd2_log_wait_commit);
81 EXPORT_SYMBOL(jbd2_journal_start_commit);
82 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
83 EXPORT_SYMBOL(jbd2_journal_wipe);
84 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
85 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
86 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
87 EXPORT_SYMBOL(jbd2_journal_force_commit);
88 EXPORT_SYMBOL(jbd2_journal_file_inode);
89 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
90 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
91 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
92 
93 static int journal_convert_superblock_v1(journal_t *, journal_superblock_t *);
94 static void __journal_abort_soft (journal_t *journal, int errno);
95 
96 /*
97  * Helper function used to manage commit timeouts
98  */
99 
100 static void commit_timeout(unsigned long __data)
101 {
102 	struct task_struct * p = (struct task_struct *) __data;
103 
104 	wake_up_process(p);
105 }
106 
107 /*
108  * kjournald2: The main thread function used to manage a logging device
109  * journal.
110  *
111  * This kernel thread is responsible for two things:
112  *
113  * 1) COMMIT:  Every so often we need to commit the current state of the
114  *    filesystem to disk.  The journal thread is responsible for writing
115  *    all of the metadata buffers to disk.
116  *
117  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
118  *    of the data in that part of the log has been rewritten elsewhere on
119  *    the disk.  Flushing these old buffers to reclaim space in the log is
120  *    known as checkpointing, and this thread is responsible for that job.
121  */
122 
123 static int kjournald2(void *arg)
124 {
125 	journal_t *journal = arg;
126 	transaction_t *transaction;
127 
128 	/*
129 	 * Set up an interval timer which can be used to trigger a commit wakeup
130 	 * after the commit interval expires
131 	 */
132 	setup_timer(&journal->j_commit_timer, commit_timeout,
133 			(unsigned long)current);
134 
135 	/* Record that the journal thread is running */
136 	journal->j_task = current;
137 	wake_up(&journal->j_wait_done_commit);
138 
139 	printk(KERN_INFO "kjournald2 starting: pid %d, dev %s, "
140 	       "commit interval %ld seconds\n", current->pid,
141 	       journal->j_devname, journal->j_commit_interval / HZ);
142 
143 	/*
144 	 * And now, wait forever for commit wakeup events.
145 	 */
146 	spin_lock(&journal->j_state_lock);
147 
148 loop:
149 	if (journal->j_flags & JBD2_UNMOUNT)
150 		goto end_loop;
151 
152 	jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
153 		journal->j_commit_sequence, journal->j_commit_request);
154 
155 	if (journal->j_commit_sequence != journal->j_commit_request) {
156 		jbd_debug(1, "OK, requests differ\n");
157 		spin_unlock(&journal->j_state_lock);
158 		del_timer_sync(&journal->j_commit_timer);
159 		jbd2_journal_commit_transaction(journal);
160 		spin_lock(&journal->j_state_lock);
161 		goto loop;
162 	}
163 
164 	wake_up(&journal->j_wait_done_commit);
165 	if (freezing(current)) {
166 		/*
167 		 * The simpler the better. Flushing journal isn't a
168 		 * good idea, because that depends on threads that may
169 		 * be already stopped.
170 		 */
171 		jbd_debug(1, "Now suspending kjournald2\n");
172 		spin_unlock(&journal->j_state_lock);
173 		refrigerator();
174 		spin_lock(&journal->j_state_lock);
175 	} else {
176 		/*
177 		 * We assume on resume that commits are already there,
178 		 * so we don't sleep
179 		 */
180 		DEFINE_WAIT(wait);
181 		int should_sleep = 1;
182 
183 		prepare_to_wait(&journal->j_wait_commit, &wait,
184 				TASK_INTERRUPTIBLE);
185 		if (journal->j_commit_sequence != journal->j_commit_request)
186 			should_sleep = 0;
187 		transaction = journal->j_running_transaction;
188 		if (transaction && time_after_eq(jiffies,
189 						transaction->t_expires))
190 			should_sleep = 0;
191 		if (journal->j_flags & JBD2_UNMOUNT)
192 			should_sleep = 0;
193 		if (should_sleep) {
194 			spin_unlock(&journal->j_state_lock);
195 			schedule();
196 			spin_lock(&journal->j_state_lock);
197 		}
198 		finish_wait(&journal->j_wait_commit, &wait);
199 	}
200 
201 	jbd_debug(1, "kjournald2 wakes\n");
202 
203 	/*
204 	 * Were we woken up by a commit wakeup event?
205 	 */
206 	transaction = journal->j_running_transaction;
207 	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
208 		journal->j_commit_request = transaction->t_tid;
209 		jbd_debug(1, "woke because of timeout\n");
210 	}
211 	goto loop;
212 
213 end_loop:
214 	spin_unlock(&journal->j_state_lock);
215 	del_timer_sync(&journal->j_commit_timer);
216 	journal->j_task = NULL;
217 	wake_up(&journal->j_wait_done_commit);
218 	jbd_debug(1, "Journal thread exiting.\n");
219 	return 0;
220 }
221 
222 static int jbd2_journal_start_thread(journal_t *journal)
223 {
224 	struct task_struct *t;
225 
226 	t = kthread_run(kjournald2, journal, "kjournald2");
227 	if (IS_ERR(t))
228 		return PTR_ERR(t);
229 
230 	wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
231 	return 0;
232 }
233 
234 static void journal_kill_thread(journal_t *journal)
235 {
236 	spin_lock(&journal->j_state_lock);
237 	journal->j_flags |= JBD2_UNMOUNT;
238 
239 	while (journal->j_task) {
240 		wake_up(&journal->j_wait_commit);
241 		spin_unlock(&journal->j_state_lock);
242 		wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
243 		spin_lock(&journal->j_state_lock);
244 	}
245 	spin_unlock(&journal->j_state_lock);
246 }
247 
248 /*
249  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
250  *
251  * Writes a metadata buffer to a given disk block.  The actual IO is not
252  * performed but a new buffer_head is constructed which labels the data
253  * to be written with the correct destination disk block.
254  *
255  * Any magic-number escaping which needs to be done will cause a
256  * copy-out here.  If the buffer happens to start with the
257  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
258  * magic number is only written to the log for descripter blocks.  In
259  * this case, we copy the data and replace the first word with 0, and we
260  * return a result code which indicates that this buffer needs to be
261  * marked as an escaped buffer in the corresponding log descriptor
262  * block.  The missing word can then be restored when the block is read
263  * during recovery.
264  *
265  * If the source buffer has already been modified by a new transaction
266  * since we took the last commit snapshot, we use the frozen copy of
267  * that data for IO.  If we end up using the existing buffer_head's data
268  * for the write, then we *have* to lock the buffer to prevent anyone
269  * else from using and possibly modifying it while the IO is in
270  * progress.
271  *
272  * The function returns a pointer to the buffer_heads to be used for IO.
273  *
274  * We assume that the journal has already been locked in this function.
275  *
276  * Return value:
277  *  <0: Error
278  * >=0: Finished OK
279  *
280  * On success:
281  * Bit 0 set == escape performed on the data
282  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
283  */
284 
285 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
286 				  struct journal_head  *jh_in,
287 				  struct journal_head **jh_out,
288 				  unsigned long long blocknr)
289 {
290 	int need_copy_out = 0;
291 	int done_copy_out = 0;
292 	int do_escape = 0;
293 	char *mapped_data;
294 	struct buffer_head *new_bh;
295 	struct journal_head *new_jh;
296 	struct page *new_page;
297 	unsigned int new_offset;
298 	struct buffer_head *bh_in = jh2bh(jh_in);
299 	struct jbd2_buffer_trigger_type *triggers;
300 	journal_t *journal = transaction->t_journal;
301 
302 	/*
303 	 * The buffer really shouldn't be locked: only the current committing
304 	 * transaction is allowed to write it, so nobody else is allowed
305 	 * to do any IO.
306 	 *
307 	 * akpm: except if we're journalling data, and write() output is
308 	 * also part of a shared mapping, and another thread has
309 	 * decided to launch a writepage() against this buffer.
310 	 */
311 	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
312 
313 	new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
314 	/* keep subsequent assertions sane */
315 	new_bh->b_state = 0;
316 	init_buffer(new_bh, NULL, NULL);
317 	atomic_set(&new_bh->b_count, 1);
318 	new_jh = jbd2_journal_add_journal_head(new_bh);	/* This sleeps */
319 
320 	/*
321 	 * If a new transaction has already done a buffer copy-out, then
322 	 * we use that version of the data for the commit.
323 	 */
324 	jbd_lock_bh_state(bh_in);
325 repeat:
326 	if (jh_in->b_frozen_data) {
327 		done_copy_out = 1;
328 		new_page = virt_to_page(jh_in->b_frozen_data);
329 		new_offset = offset_in_page(jh_in->b_frozen_data);
330 		triggers = jh_in->b_frozen_triggers;
331 	} else {
332 		new_page = jh2bh(jh_in)->b_page;
333 		new_offset = offset_in_page(jh2bh(jh_in)->b_data);
334 		triggers = jh_in->b_triggers;
335 	}
336 
337 	mapped_data = kmap_atomic(new_page, KM_USER0);
338 	/*
339 	 * Fire any commit trigger.  Do this before checking for escaping,
340 	 * as the trigger may modify the magic offset.  If a copy-out
341 	 * happens afterwards, it will have the correct data in the buffer.
342 	 */
343 	jbd2_buffer_commit_trigger(jh_in, mapped_data + new_offset,
344 				   triggers);
345 
346 	/*
347 	 * Check for escaping
348 	 */
349 	if (*((__be32 *)(mapped_data + new_offset)) ==
350 				cpu_to_be32(JBD2_MAGIC_NUMBER)) {
351 		need_copy_out = 1;
352 		do_escape = 1;
353 	}
354 	kunmap_atomic(mapped_data, KM_USER0);
355 
356 	/*
357 	 * Do we need to do a data copy?
358 	 */
359 	if (need_copy_out && !done_copy_out) {
360 		char *tmp;
361 
362 		jbd_unlock_bh_state(bh_in);
363 		tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
364 		jbd_lock_bh_state(bh_in);
365 		if (jh_in->b_frozen_data) {
366 			jbd2_free(tmp, bh_in->b_size);
367 			goto repeat;
368 		}
369 
370 		jh_in->b_frozen_data = tmp;
371 		mapped_data = kmap_atomic(new_page, KM_USER0);
372 		memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
373 		kunmap_atomic(mapped_data, KM_USER0);
374 
375 		new_page = virt_to_page(tmp);
376 		new_offset = offset_in_page(tmp);
377 		done_copy_out = 1;
378 
379 		/*
380 		 * This isn't strictly necessary, as we're using frozen
381 		 * data for the escaping, but it keeps consistency with
382 		 * b_frozen_data usage.
383 		 */
384 		jh_in->b_frozen_triggers = jh_in->b_triggers;
385 	}
386 
387 	/*
388 	 * Did we need to do an escaping?  Now we've done all the
389 	 * copying, we can finally do so.
390 	 */
391 	if (do_escape) {
392 		mapped_data = kmap_atomic(new_page, KM_USER0);
393 		*((unsigned int *)(mapped_data + new_offset)) = 0;
394 		kunmap_atomic(mapped_data, KM_USER0);
395 	}
396 
397 	set_bh_page(new_bh, new_page, new_offset);
398 	new_jh->b_transaction = NULL;
399 	new_bh->b_size = jh2bh(jh_in)->b_size;
400 	new_bh->b_bdev = transaction->t_journal->j_dev;
401 	new_bh->b_blocknr = blocknr;
402 	set_buffer_mapped(new_bh);
403 	set_buffer_dirty(new_bh);
404 
405 	*jh_out = new_jh;
406 
407 	/*
408 	 * The to-be-written buffer needs to get moved to the io queue,
409 	 * and the original buffer whose contents we are shadowing or
410 	 * copying is moved to the transaction's shadow queue.
411 	 */
412 	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
413 	spin_lock(&journal->j_list_lock);
414 	__jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
415 	spin_unlock(&journal->j_list_lock);
416 	jbd_unlock_bh_state(bh_in);
417 
418 	JBUFFER_TRACE(new_jh, "file as BJ_IO");
419 	jbd2_journal_file_buffer(new_jh, transaction, BJ_IO);
420 
421 	return do_escape | (done_copy_out << 1);
422 }
423 
424 /*
425  * Allocation code for the journal file.  Manage the space left in the
426  * journal, so that we can begin checkpointing when appropriate.
427  */
428 
429 /*
430  * __jbd2_log_space_left: Return the number of free blocks left in the journal.
431  *
432  * Called with the journal already locked.
433  *
434  * Called under j_state_lock
435  */
436 
437 int __jbd2_log_space_left(journal_t *journal)
438 {
439 	int left = journal->j_free;
440 
441 	assert_spin_locked(&journal->j_state_lock);
442 
443 	/*
444 	 * Be pessimistic here about the number of those free blocks which
445 	 * might be required for log descriptor control blocks.
446 	 */
447 
448 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
449 
450 	left -= MIN_LOG_RESERVED_BLOCKS;
451 
452 	if (left <= 0)
453 		return 0;
454 	left -= (left >> 3);
455 	return left;
456 }
457 
458 /*
459  * Called under j_state_lock.  Returns true if a transaction commit was started.
460  */
461 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
462 {
463 	/*
464 	 * Are we already doing a recent enough commit?
465 	 */
466 	if (!tid_geq(journal->j_commit_request, target)) {
467 		/*
468 		 * We want a new commit: OK, mark the request and wakup the
469 		 * commit thread.  We do _not_ do the commit ourselves.
470 		 */
471 
472 		journal->j_commit_request = target;
473 		jbd_debug(1, "JBD: requesting commit %d/%d\n",
474 			  journal->j_commit_request,
475 			  journal->j_commit_sequence);
476 		wake_up(&journal->j_wait_commit);
477 		return 1;
478 	}
479 	return 0;
480 }
481 
482 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
483 {
484 	int ret;
485 
486 	spin_lock(&journal->j_state_lock);
487 	ret = __jbd2_log_start_commit(journal, tid);
488 	spin_unlock(&journal->j_state_lock);
489 	return ret;
490 }
491 
492 /*
493  * Force and wait upon a commit if the calling process is not within
494  * transaction.  This is used for forcing out undo-protected data which contains
495  * bitmaps, when the fs is running out of space.
496  *
497  * We can only force the running transaction if we don't have an active handle;
498  * otherwise, we will deadlock.
499  *
500  * Returns true if a transaction was started.
501  */
502 int jbd2_journal_force_commit_nested(journal_t *journal)
503 {
504 	transaction_t *transaction = NULL;
505 	tid_t tid;
506 
507 	spin_lock(&journal->j_state_lock);
508 	if (journal->j_running_transaction && !current->journal_info) {
509 		transaction = journal->j_running_transaction;
510 		__jbd2_log_start_commit(journal, transaction->t_tid);
511 	} else if (journal->j_committing_transaction)
512 		transaction = journal->j_committing_transaction;
513 
514 	if (!transaction) {
515 		spin_unlock(&journal->j_state_lock);
516 		return 0;	/* Nothing to retry */
517 	}
518 
519 	tid = transaction->t_tid;
520 	spin_unlock(&journal->j_state_lock);
521 	jbd2_log_wait_commit(journal, tid);
522 	return 1;
523 }
524 
525 /*
526  * Start a commit of the current running transaction (if any).  Returns true
527  * if a transaction is going to be committed (or is currently already
528  * committing), and fills its tid in at *ptid
529  */
530 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
531 {
532 	int ret = 0;
533 
534 	spin_lock(&journal->j_state_lock);
535 	if (journal->j_running_transaction) {
536 		tid_t tid = journal->j_running_transaction->t_tid;
537 
538 		__jbd2_log_start_commit(journal, tid);
539 		/* There's a running transaction and we've just made sure
540 		 * it's commit has been scheduled. */
541 		if (ptid)
542 			*ptid = tid;
543 		ret = 1;
544 	} else if (journal->j_committing_transaction) {
545 		/*
546 		 * If ext3_write_super() recently started a commit, then we
547 		 * have to wait for completion of that transaction
548 		 */
549 		if (ptid)
550 			*ptid = journal->j_committing_transaction->t_tid;
551 		ret = 1;
552 	}
553 	spin_unlock(&journal->j_state_lock);
554 	return ret;
555 }
556 
557 /*
558  * Wait for a specified commit to complete.
559  * The caller may not hold the journal lock.
560  */
561 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
562 {
563 	int err = 0;
564 
565 #ifdef CONFIG_JBD2_DEBUG
566 	spin_lock(&journal->j_state_lock);
567 	if (!tid_geq(journal->j_commit_request, tid)) {
568 		printk(KERN_EMERG
569 		       "%s: error: j_commit_request=%d, tid=%d\n",
570 		       __func__, journal->j_commit_request, tid);
571 	}
572 	spin_unlock(&journal->j_state_lock);
573 #endif
574 	spin_lock(&journal->j_state_lock);
575 	while (tid_gt(tid, journal->j_commit_sequence)) {
576 		jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n",
577 				  tid, journal->j_commit_sequence);
578 		wake_up(&journal->j_wait_commit);
579 		spin_unlock(&journal->j_state_lock);
580 		wait_event(journal->j_wait_done_commit,
581 				!tid_gt(tid, journal->j_commit_sequence));
582 		spin_lock(&journal->j_state_lock);
583 	}
584 	spin_unlock(&journal->j_state_lock);
585 
586 	if (unlikely(is_journal_aborted(journal))) {
587 		printk(KERN_EMERG "journal commit I/O error\n");
588 		err = -EIO;
589 	}
590 	return err;
591 }
592 
593 /*
594  * Log buffer allocation routines:
595  */
596 
597 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
598 {
599 	unsigned long blocknr;
600 
601 	spin_lock(&journal->j_state_lock);
602 	J_ASSERT(journal->j_free > 1);
603 
604 	blocknr = journal->j_head;
605 	journal->j_head++;
606 	journal->j_free--;
607 	if (journal->j_head == journal->j_last)
608 		journal->j_head = journal->j_first;
609 	spin_unlock(&journal->j_state_lock);
610 	return jbd2_journal_bmap(journal, blocknr, retp);
611 }
612 
613 /*
614  * Conversion of logical to physical block numbers for the journal
615  *
616  * On external journals the journal blocks are identity-mapped, so
617  * this is a no-op.  If needed, we can use j_blk_offset - everything is
618  * ready.
619  */
620 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
621 		 unsigned long long *retp)
622 {
623 	int err = 0;
624 	unsigned long long ret;
625 
626 	if (journal->j_inode) {
627 		ret = bmap(journal->j_inode, blocknr);
628 		if (ret)
629 			*retp = ret;
630 		else {
631 			printk(KERN_ALERT "%s: journal block not found "
632 					"at offset %lu on %s\n",
633 			       __func__, blocknr, journal->j_devname);
634 			err = -EIO;
635 			__journal_abort_soft(journal, err);
636 		}
637 	} else {
638 		*retp = blocknr; /* +journal->j_blk_offset */
639 	}
640 	return err;
641 }
642 
643 /*
644  * We play buffer_head aliasing tricks to write data/metadata blocks to
645  * the journal without copying their contents, but for journal
646  * descriptor blocks we do need to generate bona fide buffers.
647  *
648  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
649  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
650  * But we don't bother doing that, so there will be coherency problems with
651  * mmaps of blockdevs which hold live JBD-controlled filesystems.
652  */
653 struct journal_head *jbd2_journal_get_descriptor_buffer(journal_t *journal)
654 {
655 	struct buffer_head *bh;
656 	unsigned long long blocknr;
657 	int err;
658 
659 	err = jbd2_journal_next_log_block(journal, &blocknr);
660 
661 	if (err)
662 		return NULL;
663 
664 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
665 	if (!bh)
666 		return NULL;
667 	lock_buffer(bh);
668 	memset(bh->b_data, 0, journal->j_blocksize);
669 	set_buffer_uptodate(bh);
670 	unlock_buffer(bh);
671 	BUFFER_TRACE(bh, "return this buffer");
672 	return jbd2_journal_add_journal_head(bh);
673 }
674 
675 struct jbd2_stats_proc_session {
676 	journal_t *journal;
677 	struct transaction_stats_s *stats;
678 	int start;
679 	int max;
680 };
681 
682 static void *jbd2_history_skip_empty(struct jbd2_stats_proc_session *s,
683 					struct transaction_stats_s *ts,
684 					int first)
685 {
686 	if (ts == s->stats + s->max)
687 		ts = s->stats;
688 	if (!first && ts == s->stats + s->start)
689 		return NULL;
690 	while (ts->ts_type == 0) {
691 		ts++;
692 		if (ts == s->stats + s->max)
693 			ts = s->stats;
694 		if (ts == s->stats + s->start)
695 			return NULL;
696 	}
697 	return ts;
698 
699 }
700 
701 static void *jbd2_seq_history_start(struct seq_file *seq, loff_t *pos)
702 {
703 	struct jbd2_stats_proc_session *s = seq->private;
704 	struct transaction_stats_s *ts;
705 	int l = *pos;
706 
707 	if (l == 0)
708 		return SEQ_START_TOKEN;
709 	ts = jbd2_history_skip_empty(s, s->stats + s->start, 1);
710 	if (!ts)
711 		return NULL;
712 	l--;
713 	while (l) {
714 		ts = jbd2_history_skip_empty(s, ++ts, 0);
715 		if (!ts)
716 			break;
717 		l--;
718 	}
719 	return ts;
720 }
721 
722 static void *jbd2_seq_history_next(struct seq_file *seq, void *v, loff_t *pos)
723 {
724 	struct jbd2_stats_proc_session *s = seq->private;
725 	struct transaction_stats_s *ts = v;
726 
727 	++*pos;
728 	if (v == SEQ_START_TOKEN)
729 		return jbd2_history_skip_empty(s, s->stats + s->start, 1);
730 	else
731 		return jbd2_history_skip_empty(s, ++ts, 0);
732 }
733 
734 static int jbd2_seq_history_show(struct seq_file *seq, void *v)
735 {
736 	struct transaction_stats_s *ts = v;
737 	if (v == SEQ_START_TOKEN) {
738 		seq_printf(seq, "%-4s %-5s %-5s %-5s %-5s %-5s %-5s %-6s %-5s "
739 				"%-5s %-5s %-5s %-5s %-5s\n", "R/C", "tid",
740 				"wait", "run", "lock", "flush", "log", "hndls",
741 				"block", "inlog", "ctime", "write", "drop",
742 				"close");
743 		return 0;
744 	}
745 	if (ts->ts_type == JBD2_STATS_RUN)
746 		seq_printf(seq, "%-4s %-5lu %-5u %-5u %-5u %-5u %-5u "
747 				"%-6lu %-5lu %-5lu\n", "R", ts->ts_tid,
748 				jiffies_to_msecs(ts->u.run.rs_wait),
749 				jiffies_to_msecs(ts->u.run.rs_running),
750 				jiffies_to_msecs(ts->u.run.rs_locked),
751 				jiffies_to_msecs(ts->u.run.rs_flushing),
752 				jiffies_to_msecs(ts->u.run.rs_logging),
753 				ts->u.run.rs_handle_count,
754 				ts->u.run.rs_blocks,
755 				ts->u.run.rs_blocks_logged);
756 	else if (ts->ts_type == JBD2_STATS_CHECKPOINT)
757 		seq_printf(seq, "%-4s %-5lu %48s %-5u %-5lu %-5lu %-5lu\n",
758 				"C", ts->ts_tid, " ",
759 				jiffies_to_msecs(ts->u.chp.cs_chp_time),
760 				ts->u.chp.cs_written, ts->u.chp.cs_dropped,
761 				ts->u.chp.cs_forced_to_close);
762 	else
763 		J_ASSERT(0);
764 	return 0;
765 }
766 
767 static void jbd2_seq_history_stop(struct seq_file *seq, void *v)
768 {
769 }
770 
771 static struct seq_operations jbd2_seq_history_ops = {
772 	.start  = jbd2_seq_history_start,
773 	.next   = jbd2_seq_history_next,
774 	.stop   = jbd2_seq_history_stop,
775 	.show   = jbd2_seq_history_show,
776 };
777 
778 static int jbd2_seq_history_open(struct inode *inode, struct file *file)
779 {
780 	journal_t *journal = PDE(inode)->data;
781 	struct jbd2_stats_proc_session *s;
782 	int rc, size;
783 
784 	s = kmalloc(sizeof(*s), GFP_KERNEL);
785 	if (s == NULL)
786 		return -ENOMEM;
787 	size = sizeof(struct transaction_stats_s) * journal->j_history_max;
788 	s->stats = kmalloc(size, GFP_KERNEL);
789 	if (s->stats == NULL) {
790 		kfree(s);
791 		return -ENOMEM;
792 	}
793 	spin_lock(&journal->j_history_lock);
794 	memcpy(s->stats, journal->j_history, size);
795 	s->max = journal->j_history_max;
796 	s->start = journal->j_history_cur % s->max;
797 	spin_unlock(&journal->j_history_lock);
798 
799 	rc = seq_open(file, &jbd2_seq_history_ops);
800 	if (rc == 0) {
801 		struct seq_file *m = file->private_data;
802 		m->private = s;
803 	} else {
804 		kfree(s->stats);
805 		kfree(s);
806 	}
807 	return rc;
808 
809 }
810 
811 static int jbd2_seq_history_release(struct inode *inode, struct file *file)
812 {
813 	struct seq_file *seq = file->private_data;
814 	struct jbd2_stats_proc_session *s = seq->private;
815 
816 	kfree(s->stats);
817 	kfree(s);
818 	return seq_release(inode, file);
819 }
820 
821 static struct file_operations jbd2_seq_history_fops = {
822 	.owner		= THIS_MODULE,
823 	.open           = jbd2_seq_history_open,
824 	.read           = seq_read,
825 	.llseek         = seq_lseek,
826 	.release        = jbd2_seq_history_release,
827 };
828 
829 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
830 {
831 	return *pos ? NULL : SEQ_START_TOKEN;
832 }
833 
834 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
835 {
836 	return NULL;
837 }
838 
839 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
840 {
841 	struct jbd2_stats_proc_session *s = seq->private;
842 
843 	if (v != SEQ_START_TOKEN)
844 		return 0;
845 	seq_printf(seq, "%lu transaction, each upto %u blocks\n",
846 			s->stats->ts_tid,
847 			s->journal->j_max_transaction_buffers);
848 	if (s->stats->ts_tid == 0)
849 		return 0;
850 	seq_printf(seq, "average: \n  %ums waiting for transaction\n",
851 	    jiffies_to_msecs(s->stats->u.run.rs_wait / s->stats->ts_tid));
852 	seq_printf(seq, "  %ums running transaction\n",
853 	    jiffies_to_msecs(s->stats->u.run.rs_running / s->stats->ts_tid));
854 	seq_printf(seq, "  %ums transaction was being locked\n",
855 	    jiffies_to_msecs(s->stats->u.run.rs_locked / s->stats->ts_tid));
856 	seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
857 	    jiffies_to_msecs(s->stats->u.run.rs_flushing / s->stats->ts_tid));
858 	seq_printf(seq, "  %ums logging transaction\n",
859 	    jiffies_to_msecs(s->stats->u.run.rs_logging / s->stats->ts_tid));
860 	seq_printf(seq, "  %lluus average transaction commit time\n",
861 		   div_u64(s->journal->j_average_commit_time, 1000));
862 	seq_printf(seq, "  %lu handles per transaction\n",
863 	    s->stats->u.run.rs_handle_count / s->stats->ts_tid);
864 	seq_printf(seq, "  %lu blocks per transaction\n",
865 	    s->stats->u.run.rs_blocks / s->stats->ts_tid);
866 	seq_printf(seq, "  %lu logged blocks per transaction\n",
867 	    s->stats->u.run.rs_blocks_logged / s->stats->ts_tid);
868 	return 0;
869 }
870 
871 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
872 {
873 }
874 
875 static struct seq_operations jbd2_seq_info_ops = {
876 	.start  = jbd2_seq_info_start,
877 	.next   = jbd2_seq_info_next,
878 	.stop   = jbd2_seq_info_stop,
879 	.show   = jbd2_seq_info_show,
880 };
881 
882 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
883 {
884 	journal_t *journal = PDE(inode)->data;
885 	struct jbd2_stats_proc_session *s;
886 	int rc, size;
887 
888 	s = kmalloc(sizeof(*s), GFP_KERNEL);
889 	if (s == NULL)
890 		return -ENOMEM;
891 	size = sizeof(struct transaction_stats_s);
892 	s->stats = kmalloc(size, GFP_KERNEL);
893 	if (s->stats == NULL) {
894 		kfree(s);
895 		return -ENOMEM;
896 	}
897 	spin_lock(&journal->j_history_lock);
898 	memcpy(s->stats, &journal->j_stats, size);
899 	s->journal = journal;
900 	spin_unlock(&journal->j_history_lock);
901 
902 	rc = seq_open(file, &jbd2_seq_info_ops);
903 	if (rc == 0) {
904 		struct seq_file *m = file->private_data;
905 		m->private = s;
906 	} else {
907 		kfree(s->stats);
908 		kfree(s);
909 	}
910 	return rc;
911 
912 }
913 
914 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
915 {
916 	struct seq_file *seq = file->private_data;
917 	struct jbd2_stats_proc_session *s = seq->private;
918 	kfree(s->stats);
919 	kfree(s);
920 	return seq_release(inode, file);
921 }
922 
923 static struct file_operations jbd2_seq_info_fops = {
924 	.owner		= THIS_MODULE,
925 	.open           = jbd2_seq_info_open,
926 	.read           = seq_read,
927 	.llseek         = seq_lseek,
928 	.release        = jbd2_seq_info_release,
929 };
930 
931 static struct proc_dir_entry *proc_jbd2_stats;
932 
933 static void jbd2_stats_proc_init(journal_t *journal)
934 {
935 	journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
936 	if (journal->j_proc_entry) {
937 		proc_create_data("history", S_IRUGO, journal->j_proc_entry,
938 				 &jbd2_seq_history_fops, journal);
939 		proc_create_data("info", S_IRUGO, journal->j_proc_entry,
940 				 &jbd2_seq_info_fops, journal);
941 	}
942 }
943 
944 static void jbd2_stats_proc_exit(journal_t *journal)
945 {
946 	remove_proc_entry("info", journal->j_proc_entry);
947 	remove_proc_entry("history", journal->j_proc_entry);
948 	remove_proc_entry(journal->j_devname, proc_jbd2_stats);
949 }
950 
951 static void journal_init_stats(journal_t *journal)
952 {
953 	int size;
954 
955 	if (!proc_jbd2_stats)
956 		return;
957 
958 	journal->j_history_max = 100;
959 	size = sizeof(struct transaction_stats_s) * journal->j_history_max;
960 	journal->j_history = kzalloc(size, GFP_KERNEL);
961 	if (!journal->j_history) {
962 		journal->j_history_max = 0;
963 		return;
964 	}
965 	spin_lock_init(&journal->j_history_lock);
966 }
967 
968 /*
969  * Management for journal control blocks: functions to create and
970  * destroy journal_t structures, and to initialise and read existing
971  * journal blocks from disk.  */
972 
973 /* First: create and setup a journal_t object in memory.  We initialise
974  * very few fields yet: that has to wait until we have created the
975  * journal structures from from scratch, or loaded them from disk. */
976 
977 static journal_t * journal_init_common (void)
978 {
979 	journal_t *journal;
980 	int err;
981 
982 	journal = kzalloc(sizeof(*journal), GFP_KERNEL|__GFP_NOFAIL);
983 	if (!journal)
984 		goto fail;
985 
986 	init_waitqueue_head(&journal->j_wait_transaction_locked);
987 	init_waitqueue_head(&journal->j_wait_logspace);
988 	init_waitqueue_head(&journal->j_wait_done_commit);
989 	init_waitqueue_head(&journal->j_wait_checkpoint);
990 	init_waitqueue_head(&journal->j_wait_commit);
991 	init_waitqueue_head(&journal->j_wait_updates);
992 	mutex_init(&journal->j_barrier);
993 	mutex_init(&journal->j_checkpoint_mutex);
994 	spin_lock_init(&journal->j_revoke_lock);
995 	spin_lock_init(&journal->j_list_lock);
996 	spin_lock_init(&journal->j_state_lock);
997 
998 	journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
999 	journal->j_min_batch_time = 0;
1000 	journal->j_max_batch_time = 15000; /* 15ms */
1001 
1002 	/* The journal is marked for error until we succeed with recovery! */
1003 	journal->j_flags = JBD2_ABORT;
1004 
1005 	/* Set up a default-sized revoke table for the new mount. */
1006 	err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1007 	if (err) {
1008 		kfree(journal);
1009 		goto fail;
1010 	}
1011 
1012 	journal_init_stats(journal);
1013 
1014 	return journal;
1015 fail:
1016 	return NULL;
1017 }
1018 
1019 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1020  *
1021  * Create a journal structure assigned some fixed set of disk blocks to
1022  * the journal.  We don't actually touch those disk blocks yet, but we
1023  * need to set up all of the mapping information to tell the journaling
1024  * system where the journal blocks are.
1025  *
1026  */
1027 
1028 /**
1029  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1030  *  @bdev: Block device on which to create the journal
1031  *  @fs_dev: Device which hold journalled filesystem for this journal.
1032  *  @start: Block nr Start of journal.
1033  *  @len:  Length of the journal in blocks.
1034  *  @blocksize: blocksize of journalling device
1035  *
1036  *  Returns: a newly created journal_t *
1037  *
1038  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1039  *  range of blocks on an arbitrary block device.
1040  *
1041  */
1042 journal_t * jbd2_journal_init_dev(struct block_device *bdev,
1043 			struct block_device *fs_dev,
1044 			unsigned long long start, int len, int blocksize)
1045 {
1046 	journal_t *journal = journal_init_common();
1047 	struct buffer_head *bh;
1048 	char *p;
1049 	int n;
1050 
1051 	if (!journal)
1052 		return NULL;
1053 
1054 	/* journal descriptor can store up to n blocks -bzzz */
1055 	journal->j_blocksize = blocksize;
1056 	jbd2_stats_proc_init(journal);
1057 	n = journal->j_blocksize / sizeof(journal_block_tag_t);
1058 	journal->j_wbufsize = n;
1059 	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1060 	if (!journal->j_wbuf) {
1061 		printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n",
1062 			__func__);
1063 		goto out_err;
1064 	}
1065 	journal->j_dev = bdev;
1066 	journal->j_fs_dev = fs_dev;
1067 	journal->j_blk_offset = start;
1068 	journal->j_maxlen = len;
1069 	bdevname(journal->j_dev, journal->j_devname);
1070 	p = journal->j_devname;
1071 	while ((p = strchr(p, '/')))
1072 		*p = '!';
1073 
1074 	bh = __getblk(journal->j_dev, start, journal->j_blocksize);
1075 	if (!bh) {
1076 		printk(KERN_ERR
1077 		       "%s: Cannot get buffer for journal superblock\n",
1078 		       __func__);
1079 		goto out_err;
1080 	}
1081 	journal->j_sb_buffer = bh;
1082 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
1083 
1084 	return journal;
1085 out_err:
1086 	jbd2_stats_proc_exit(journal);
1087 	kfree(journal);
1088 	return NULL;
1089 }
1090 
1091 /**
1092  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1093  *  @inode: An inode to create the journal in
1094  *
1095  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1096  * the journal.  The inode must exist already, must support bmap() and
1097  * must have all data blocks preallocated.
1098  */
1099 journal_t * jbd2_journal_init_inode (struct inode *inode)
1100 {
1101 	struct buffer_head *bh;
1102 	journal_t *journal = journal_init_common();
1103 	char *p;
1104 	int err;
1105 	int n;
1106 	unsigned long long blocknr;
1107 
1108 	if (!journal)
1109 		return NULL;
1110 
1111 	journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
1112 	journal->j_inode = inode;
1113 	bdevname(journal->j_dev, journal->j_devname);
1114 	p = journal->j_devname;
1115 	while ((p = strchr(p, '/')))
1116 		*p = '!';
1117 	p = journal->j_devname + strlen(journal->j_devname);
1118 	sprintf(p, ":%lu", journal->j_inode->i_ino);
1119 	jbd_debug(1,
1120 		  "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
1121 		  journal, inode->i_sb->s_id, inode->i_ino,
1122 		  (long long) inode->i_size,
1123 		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1124 
1125 	journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
1126 	journal->j_blocksize = inode->i_sb->s_blocksize;
1127 	jbd2_stats_proc_init(journal);
1128 
1129 	/* journal descriptor can store up to n blocks -bzzz */
1130 	n = journal->j_blocksize / sizeof(journal_block_tag_t);
1131 	journal->j_wbufsize = n;
1132 	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1133 	if (!journal->j_wbuf) {
1134 		printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n",
1135 			__func__);
1136 		goto out_err;
1137 	}
1138 
1139 	err = jbd2_journal_bmap(journal, 0, &blocknr);
1140 	/* If that failed, give up */
1141 	if (err) {
1142 		printk(KERN_ERR "%s: Cannnot locate journal superblock\n",
1143 		       __func__);
1144 		goto out_err;
1145 	}
1146 
1147 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
1148 	if (!bh) {
1149 		printk(KERN_ERR
1150 		       "%s: Cannot get buffer for journal superblock\n",
1151 		       __func__);
1152 		goto out_err;
1153 	}
1154 	journal->j_sb_buffer = bh;
1155 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
1156 
1157 	return journal;
1158 out_err:
1159 	jbd2_stats_proc_exit(journal);
1160 	kfree(journal);
1161 	return NULL;
1162 }
1163 
1164 /*
1165  * If the journal init or create aborts, we need to mark the journal
1166  * superblock as being NULL to prevent the journal destroy from writing
1167  * back a bogus superblock.
1168  */
1169 static void journal_fail_superblock (journal_t *journal)
1170 {
1171 	struct buffer_head *bh = journal->j_sb_buffer;
1172 	brelse(bh);
1173 	journal->j_sb_buffer = NULL;
1174 }
1175 
1176 /*
1177  * Given a journal_t structure, initialise the various fields for
1178  * startup of a new journaling session.  We use this both when creating
1179  * a journal, and after recovering an old journal to reset it for
1180  * subsequent use.
1181  */
1182 
1183 static int journal_reset(journal_t *journal)
1184 {
1185 	journal_superblock_t *sb = journal->j_superblock;
1186 	unsigned long long first, last;
1187 
1188 	first = be32_to_cpu(sb->s_first);
1189 	last = be32_to_cpu(sb->s_maxlen);
1190 
1191 	journal->j_first = first;
1192 	journal->j_last = last;
1193 
1194 	journal->j_head = first;
1195 	journal->j_tail = first;
1196 	journal->j_free = last - first;
1197 
1198 	journal->j_tail_sequence = journal->j_transaction_sequence;
1199 	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1200 	journal->j_commit_request = journal->j_commit_sequence;
1201 
1202 	journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1203 
1204 	/* Add the dynamic fields and write it to disk. */
1205 	jbd2_journal_update_superblock(journal, 1);
1206 	return jbd2_journal_start_thread(journal);
1207 }
1208 
1209 /**
1210  * void jbd2_journal_update_superblock() - Update journal sb on disk.
1211  * @journal: The journal to update.
1212  * @wait: Set to '0' if you don't want to wait for IO completion.
1213  *
1214  * Update a journal's dynamic superblock fields and write it to disk,
1215  * optionally waiting for the IO to complete.
1216  */
1217 void jbd2_journal_update_superblock(journal_t *journal, int wait)
1218 {
1219 	journal_superblock_t *sb = journal->j_superblock;
1220 	struct buffer_head *bh = journal->j_sb_buffer;
1221 
1222 	/*
1223 	 * As a special case, if the on-disk copy is already marked as needing
1224 	 * no recovery (s_start == 0) and there are no outstanding transactions
1225 	 * in the filesystem, then we can safely defer the superblock update
1226 	 * until the next commit by setting JBD2_FLUSHED.  This avoids
1227 	 * attempting a write to a potential-readonly device.
1228 	 */
1229 	if (sb->s_start == 0 && journal->j_tail_sequence ==
1230 				journal->j_transaction_sequence) {
1231 		jbd_debug(1,"JBD: Skipping superblock update on recovered sb "
1232 			"(start %ld, seq %d, errno %d)\n",
1233 			journal->j_tail, journal->j_tail_sequence,
1234 			journal->j_errno);
1235 		goto out;
1236 	}
1237 
1238 	if (buffer_write_io_error(bh)) {
1239 		/*
1240 		 * Oh, dear.  A previous attempt to write the journal
1241 		 * superblock failed.  This could happen because the
1242 		 * USB device was yanked out.  Or it could happen to
1243 		 * be a transient write error and maybe the block will
1244 		 * be remapped.  Nothing we can do but to retry the
1245 		 * write and hope for the best.
1246 		 */
1247 		printk(KERN_ERR "JBD2: previous I/O error detected "
1248 		       "for journal superblock update for %s.\n",
1249 		       journal->j_devname);
1250 		clear_buffer_write_io_error(bh);
1251 		set_buffer_uptodate(bh);
1252 	}
1253 
1254 	spin_lock(&journal->j_state_lock);
1255 	jbd_debug(1,"JBD: updating superblock (start %ld, seq %d, errno %d)\n",
1256 		  journal->j_tail, journal->j_tail_sequence, journal->j_errno);
1257 
1258 	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1259 	sb->s_start    = cpu_to_be32(journal->j_tail);
1260 	sb->s_errno    = cpu_to_be32(journal->j_errno);
1261 	spin_unlock(&journal->j_state_lock);
1262 
1263 	BUFFER_TRACE(bh, "marking dirty");
1264 	mark_buffer_dirty(bh);
1265 	if (wait) {
1266 		sync_dirty_buffer(bh);
1267 		if (buffer_write_io_error(bh)) {
1268 			printk(KERN_ERR "JBD2: I/O error detected "
1269 			       "when updating journal superblock for %s.\n",
1270 			       journal->j_devname);
1271 			clear_buffer_write_io_error(bh);
1272 			set_buffer_uptodate(bh);
1273 		}
1274 	} else
1275 		ll_rw_block(SWRITE, 1, &bh);
1276 
1277 out:
1278 	/* If we have just flushed the log (by marking s_start==0), then
1279 	 * any future commit will have to be careful to update the
1280 	 * superblock again to re-record the true start of the log. */
1281 
1282 	spin_lock(&journal->j_state_lock);
1283 	if (sb->s_start)
1284 		journal->j_flags &= ~JBD2_FLUSHED;
1285 	else
1286 		journal->j_flags |= JBD2_FLUSHED;
1287 	spin_unlock(&journal->j_state_lock);
1288 }
1289 
1290 /*
1291  * Read the superblock for a given journal, performing initial
1292  * validation of the format.
1293  */
1294 
1295 static int journal_get_superblock(journal_t *journal)
1296 {
1297 	struct buffer_head *bh;
1298 	journal_superblock_t *sb;
1299 	int err = -EIO;
1300 
1301 	bh = journal->j_sb_buffer;
1302 
1303 	J_ASSERT(bh != NULL);
1304 	if (!buffer_uptodate(bh)) {
1305 		ll_rw_block(READ, 1, &bh);
1306 		wait_on_buffer(bh);
1307 		if (!buffer_uptodate(bh)) {
1308 			printk (KERN_ERR
1309 				"JBD: IO error reading journal superblock\n");
1310 			goto out;
1311 		}
1312 	}
1313 
1314 	sb = journal->j_superblock;
1315 
1316 	err = -EINVAL;
1317 
1318 	if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1319 	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1320 		printk(KERN_WARNING "JBD: no valid journal superblock found\n");
1321 		goto out;
1322 	}
1323 
1324 	switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1325 	case JBD2_SUPERBLOCK_V1:
1326 		journal->j_format_version = 1;
1327 		break;
1328 	case JBD2_SUPERBLOCK_V2:
1329 		journal->j_format_version = 2;
1330 		break;
1331 	default:
1332 		printk(KERN_WARNING "JBD: unrecognised superblock format ID\n");
1333 		goto out;
1334 	}
1335 
1336 	if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1337 		journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1338 	else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1339 		printk (KERN_WARNING "JBD: journal file too short\n");
1340 		goto out;
1341 	}
1342 
1343 	return 0;
1344 
1345 out:
1346 	journal_fail_superblock(journal);
1347 	return err;
1348 }
1349 
1350 /*
1351  * Load the on-disk journal superblock and read the key fields into the
1352  * journal_t.
1353  */
1354 
1355 static int load_superblock(journal_t *journal)
1356 {
1357 	int err;
1358 	journal_superblock_t *sb;
1359 
1360 	err = journal_get_superblock(journal);
1361 	if (err)
1362 		return err;
1363 
1364 	sb = journal->j_superblock;
1365 
1366 	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1367 	journal->j_tail = be32_to_cpu(sb->s_start);
1368 	journal->j_first = be32_to_cpu(sb->s_first);
1369 	journal->j_last = be32_to_cpu(sb->s_maxlen);
1370 	journal->j_errno = be32_to_cpu(sb->s_errno);
1371 
1372 	return 0;
1373 }
1374 
1375 
1376 /**
1377  * int jbd2_journal_load() - Read journal from disk.
1378  * @journal: Journal to act on.
1379  *
1380  * Given a journal_t structure which tells us which disk blocks contain
1381  * a journal, read the journal from disk to initialise the in-memory
1382  * structures.
1383  */
1384 int jbd2_journal_load(journal_t *journal)
1385 {
1386 	int err;
1387 	journal_superblock_t *sb;
1388 
1389 	err = load_superblock(journal);
1390 	if (err)
1391 		return err;
1392 
1393 	sb = journal->j_superblock;
1394 	/* If this is a V2 superblock, then we have to check the
1395 	 * features flags on it. */
1396 
1397 	if (journal->j_format_version >= 2) {
1398 		if ((sb->s_feature_ro_compat &
1399 		     ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1400 		    (sb->s_feature_incompat &
1401 		     ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1402 			printk (KERN_WARNING
1403 				"JBD: Unrecognised features on journal\n");
1404 			return -EINVAL;
1405 		}
1406 	}
1407 
1408 	/* Let the recovery code check whether it needs to recover any
1409 	 * data from the journal. */
1410 	if (jbd2_journal_recover(journal))
1411 		goto recovery_error;
1412 
1413 	/* OK, we've finished with the dynamic journal bits:
1414 	 * reinitialise the dynamic contents of the superblock in memory
1415 	 * and reset them on disk. */
1416 	if (journal_reset(journal))
1417 		goto recovery_error;
1418 
1419 	journal->j_flags &= ~JBD2_ABORT;
1420 	journal->j_flags |= JBD2_LOADED;
1421 	return 0;
1422 
1423 recovery_error:
1424 	printk (KERN_WARNING "JBD: recovery failed\n");
1425 	return -EIO;
1426 }
1427 
1428 /**
1429  * void jbd2_journal_destroy() - Release a journal_t structure.
1430  * @journal: Journal to act on.
1431  *
1432  * Release a journal_t structure once it is no longer in use by the
1433  * journaled object.
1434  * Return <0 if we couldn't clean up the journal.
1435  */
1436 int jbd2_journal_destroy(journal_t *journal)
1437 {
1438 	int err = 0;
1439 
1440 	/* Wait for the commit thread to wake up and die. */
1441 	journal_kill_thread(journal);
1442 
1443 	/* Force a final log commit */
1444 	if (journal->j_running_transaction)
1445 		jbd2_journal_commit_transaction(journal);
1446 
1447 	/* Force any old transactions to disk */
1448 
1449 	/* Totally anal locking here... */
1450 	spin_lock(&journal->j_list_lock);
1451 	while (journal->j_checkpoint_transactions != NULL) {
1452 		spin_unlock(&journal->j_list_lock);
1453 		mutex_lock(&journal->j_checkpoint_mutex);
1454 		jbd2_log_do_checkpoint(journal);
1455 		mutex_unlock(&journal->j_checkpoint_mutex);
1456 		spin_lock(&journal->j_list_lock);
1457 	}
1458 
1459 	J_ASSERT(journal->j_running_transaction == NULL);
1460 	J_ASSERT(journal->j_committing_transaction == NULL);
1461 	J_ASSERT(journal->j_checkpoint_transactions == NULL);
1462 	spin_unlock(&journal->j_list_lock);
1463 
1464 	if (journal->j_sb_buffer) {
1465 		if (!is_journal_aborted(journal)) {
1466 			/* We can now mark the journal as empty. */
1467 			journal->j_tail = 0;
1468 			journal->j_tail_sequence =
1469 				++journal->j_transaction_sequence;
1470 			jbd2_journal_update_superblock(journal, 1);
1471 		} else {
1472 			err = -EIO;
1473 		}
1474 		brelse(journal->j_sb_buffer);
1475 	}
1476 
1477 	if (journal->j_proc_entry)
1478 		jbd2_stats_proc_exit(journal);
1479 	if (journal->j_inode)
1480 		iput(journal->j_inode);
1481 	if (journal->j_revoke)
1482 		jbd2_journal_destroy_revoke(journal);
1483 	kfree(journal->j_wbuf);
1484 	kfree(journal);
1485 
1486 	return err;
1487 }
1488 
1489 
1490 /**
1491  *int jbd2_journal_check_used_features () - Check if features specified are used.
1492  * @journal: Journal to check.
1493  * @compat: bitmask of compatible features
1494  * @ro: bitmask of features that force read-only mount
1495  * @incompat: bitmask of incompatible features
1496  *
1497  * Check whether the journal uses all of a given set of
1498  * features.  Return true (non-zero) if it does.
1499  **/
1500 
1501 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1502 				 unsigned long ro, unsigned long incompat)
1503 {
1504 	journal_superblock_t *sb;
1505 
1506 	if (!compat && !ro && !incompat)
1507 		return 1;
1508 	if (journal->j_format_version == 1)
1509 		return 0;
1510 
1511 	sb = journal->j_superblock;
1512 
1513 	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1514 	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1515 	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1516 		return 1;
1517 
1518 	return 0;
1519 }
1520 
1521 /**
1522  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1523  * @journal: Journal to check.
1524  * @compat: bitmask of compatible features
1525  * @ro: bitmask of features that force read-only mount
1526  * @incompat: bitmask of incompatible features
1527  *
1528  * Check whether the journaling code supports the use of
1529  * all of a given set of features on this journal.  Return true
1530  * (non-zero) if it can. */
1531 
1532 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1533 				      unsigned long ro, unsigned long incompat)
1534 {
1535 	journal_superblock_t *sb;
1536 
1537 	if (!compat && !ro && !incompat)
1538 		return 1;
1539 
1540 	sb = journal->j_superblock;
1541 
1542 	/* We can support any known requested features iff the
1543 	 * superblock is in version 2.  Otherwise we fail to support any
1544 	 * extended sb features. */
1545 
1546 	if (journal->j_format_version != 2)
1547 		return 0;
1548 
1549 	if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1550 	    (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1551 	    (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1552 		return 1;
1553 
1554 	return 0;
1555 }
1556 
1557 /**
1558  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1559  * @journal: Journal to act on.
1560  * @compat: bitmask of compatible features
1561  * @ro: bitmask of features that force read-only mount
1562  * @incompat: bitmask of incompatible features
1563  *
1564  * Mark a given journal feature as present on the
1565  * superblock.  Returns true if the requested features could be set.
1566  *
1567  */
1568 
1569 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1570 			  unsigned long ro, unsigned long incompat)
1571 {
1572 	journal_superblock_t *sb;
1573 
1574 	if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1575 		return 1;
1576 
1577 	if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1578 		return 0;
1579 
1580 	jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1581 		  compat, ro, incompat);
1582 
1583 	sb = journal->j_superblock;
1584 
1585 	sb->s_feature_compat    |= cpu_to_be32(compat);
1586 	sb->s_feature_ro_compat |= cpu_to_be32(ro);
1587 	sb->s_feature_incompat  |= cpu_to_be32(incompat);
1588 
1589 	return 1;
1590 }
1591 
1592 /*
1593  * jbd2_journal_clear_features () - Clear a given journal feature in the
1594  * 				    superblock
1595  * @journal: Journal to act on.
1596  * @compat: bitmask of compatible features
1597  * @ro: bitmask of features that force read-only mount
1598  * @incompat: bitmask of incompatible features
1599  *
1600  * Clear a given journal feature as present on the
1601  * superblock.
1602  */
1603 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1604 				unsigned long ro, unsigned long incompat)
1605 {
1606 	journal_superblock_t *sb;
1607 
1608 	jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1609 		  compat, ro, incompat);
1610 
1611 	sb = journal->j_superblock;
1612 
1613 	sb->s_feature_compat    &= ~cpu_to_be32(compat);
1614 	sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1615 	sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1616 }
1617 EXPORT_SYMBOL(jbd2_journal_clear_features);
1618 
1619 /**
1620  * int jbd2_journal_update_format () - Update on-disk journal structure.
1621  * @journal: Journal to act on.
1622  *
1623  * Given an initialised but unloaded journal struct, poke about in the
1624  * on-disk structure to update it to the most recent supported version.
1625  */
1626 int jbd2_journal_update_format (journal_t *journal)
1627 {
1628 	journal_superblock_t *sb;
1629 	int err;
1630 
1631 	err = journal_get_superblock(journal);
1632 	if (err)
1633 		return err;
1634 
1635 	sb = journal->j_superblock;
1636 
1637 	switch (be32_to_cpu(sb->s_header.h_blocktype)) {
1638 	case JBD2_SUPERBLOCK_V2:
1639 		return 0;
1640 	case JBD2_SUPERBLOCK_V1:
1641 		return journal_convert_superblock_v1(journal, sb);
1642 	default:
1643 		break;
1644 	}
1645 	return -EINVAL;
1646 }
1647 
1648 static int journal_convert_superblock_v1(journal_t *journal,
1649 					 journal_superblock_t *sb)
1650 {
1651 	int offset, blocksize;
1652 	struct buffer_head *bh;
1653 
1654 	printk(KERN_WARNING
1655 		"JBD: Converting superblock from version 1 to 2.\n");
1656 
1657 	/* Pre-initialise new fields to zero */
1658 	offset = ((char *) &(sb->s_feature_compat)) - ((char *) sb);
1659 	blocksize = be32_to_cpu(sb->s_blocksize);
1660 	memset(&sb->s_feature_compat, 0, blocksize-offset);
1661 
1662 	sb->s_nr_users = cpu_to_be32(1);
1663 	sb->s_header.h_blocktype = cpu_to_be32(JBD2_SUPERBLOCK_V2);
1664 	journal->j_format_version = 2;
1665 
1666 	bh = journal->j_sb_buffer;
1667 	BUFFER_TRACE(bh, "marking dirty");
1668 	mark_buffer_dirty(bh);
1669 	sync_dirty_buffer(bh);
1670 	return 0;
1671 }
1672 
1673 
1674 /**
1675  * int jbd2_journal_flush () - Flush journal
1676  * @journal: Journal to act on.
1677  *
1678  * Flush all data for a given journal to disk and empty the journal.
1679  * Filesystems can use this when remounting readonly to ensure that
1680  * recovery does not need to happen on remount.
1681  */
1682 
1683 int jbd2_journal_flush(journal_t *journal)
1684 {
1685 	int err = 0;
1686 	transaction_t *transaction = NULL;
1687 	unsigned long old_tail;
1688 
1689 	spin_lock(&journal->j_state_lock);
1690 
1691 	/* Force everything buffered to the log... */
1692 	if (journal->j_running_transaction) {
1693 		transaction = journal->j_running_transaction;
1694 		__jbd2_log_start_commit(journal, transaction->t_tid);
1695 	} else if (journal->j_committing_transaction)
1696 		transaction = journal->j_committing_transaction;
1697 
1698 	/* Wait for the log commit to complete... */
1699 	if (transaction) {
1700 		tid_t tid = transaction->t_tid;
1701 
1702 		spin_unlock(&journal->j_state_lock);
1703 		jbd2_log_wait_commit(journal, tid);
1704 	} else {
1705 		spin_unlock(&journal->j_state_lock);
1706 	}
1707 
1708 	/* ...and flush everything in the log out to disk. */
1709 	spin_lock(&journal->j_list_lock);
1710 	while (!err && journal->j_checkpoint_transactions != NULL) {
1711 		spin_unlock(&journal->j_list_lock);
1712 		mutex_lock(&journal->j_checkpoint_mutex);
1713 		err = jbd2_log_do_checkpoint(journal);
1714 		mutex_unlock(&journal->j_checkpoint_mutex);
1715 		spin_lock(&journal->j_list_lock);
1716 	}
1717 	spin_unlock(&journal->j_list_lock);
1718 
1719 	if (is_journal_aborted(journal))
1720 		return -EIO;
1721 
1722 	jbd2_cleanup_journal_tail(journal);
1723 
1724 	/* Finally, mark the journal as really needing no recovery.
1725 	 * This sets s_start==0 in the underlying superblock, which is
1726 	 * the magic code for a fully-recovered superblock.  Any future
1727 	 * commits of data to the journal will restore the current
1728 	 * s_start value. */
1729 	spin_lock(&journal->j_state_lock);
1730 	old_tail = journal->j_tail;
1731 	journal->j_tail = 0;
1732 	spin_unlock(&journal->j_state_lock);
1733 	jbd2_journal_update_superblock(journal, 1);
1734 	spin_lock(&journal->j_state_lock);
1735 	journal->j_tail = old_tail;
1736 
1737 	J_ASSERT(!journal->j_running_transaction);
1738 	J_ASSERT(!journal->j_committing_transaction);
1739 	J_ASSERT(!journal->j_checkpoint_transactions);
1740 	J_ASSERT(journal->j_head == journal->j_tail);
1741 	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1742 	spin_unlock(&journal->j_state_lock);
1743 	return 0;
1744 }
1745 
1746 /**
1747  * int jbd2_journal_wipe() - Wipe journal contents
1748  * @journal: Journal to act on.
1749  * @write: flag (see below)
1750  *
1751  * Wipe out all of the contents of a journal, safely.  This will produce
1752  * a warning if the journal contains any valid recovery information.
1753  * Must be called between journal_init_*() and jbd2_journal_load().
1754  *
1755  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1756  * we merely suppress recovery.
1757  */
1758 
1759 int jbd2_journal_wipe(journal_t *journal, int write)
1760 {
1761 	journal_superblock_t *sb;
1762 	int err = 0;
1763 
1764 	J_ASSERT (!(journal->j_flags & JBD2_LOADED));
1765 
1766 	err = load_superblock(journal);
1767 	if (err)
1768 		return err;
1769 
1770 	sb = journal->j_superblock;
1771 
1772 	if (!journal->j_tail)
1773 		goto no_recovery;
1774 
1775 	printk (KERN_WARNING "JBD: %s recovery information on journal\n",
1776 		write ? "Clearing" : "Ignoring");
1777 
1778 	err = jbd2_journal_skip_recovery(journal);
1779 	if (write)
1780 		jbd2_journal_update_superblock(journal, 1);
1781 
1782  no_recovery:
1783 	return err;
1784 }
1785 
1786 /*
1787  * Journal abort has very specific semantics, which we describe
1788  * for journal abort.
1789  *
1790  * Two internal functions, which provide abort to the jbd layer
1791  * itself are here.
1792  */
1793 
1794 /*
1795  * Quick version for internal journal use (doesn't lock the journal).
1796  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1797  * and don't attempt to make any other journal updates.
1798  */
1799 void __jbd2_journal_abort_hard(journal_t *journal)
1800 {
1801 	transaction_t *transaction;
1802 
1803 	if (journal->j_flags & JBD2_ABORT)
1804 		return;
1805 
1806 	printk(KERN_ERR "Aborting journal on device %s.\n",
1807 	       journal->j_devname);
1808 
1809 	spin_lock(&journal->j_state_lock);
1810 	journal->j_flags |= JBD2_ABORT;
1811 	transaction = journal->j_running_transaction;
1812 	if (transaction)
1813 		__jbd2_log_start_commit(journal, transaction->t_tid);
1814 	spin_unlock(&journal->j_state_lock);
1815 }
1816 
1817 /* Soft abort: record the abort error status in the journal superblock,
1818  * but don't do any other IO. */
1819 static void __journal_abort_soft (journal_t *journal, int errno)
1820 {
1821 	if (journal->j_flags & JBD2_ABORT)
1822 		return;
1823 
1824 	if (!journal->j_errno)
1825 		journal->j_errno = errno;
1826 
1827 	__jbd2_journal_abort_hard(journal);
1828 
1829 	if (errno)
1830 		jbd2_journal_update_superblock(journal, 1);
1831 }
1832 
1833 /**
1834  * void jbd2_journal_abort () - Shutdown the journal immediately.
1835  * @journal: the journal to shutdown.
1836  * @errno:   an error number to record in the journal indicating
1837  *           the reason for the shutdown.
1838  *
1839  * Perform a complete, immediate shutdown of the ENTIRE
1840  * journal (not of a single transaction).  This operation cannot be
1841  * undone without closing and reopening the journal.
1842  *
1843  * The jbd2_journal_abort function is intended to support higher level error
1844  * recovery mechanisms such as the ext2/ext3 remount-readonly error
1845  * mode.
1846  *
1847  * Journal abort has very specific semantics.  Any existing dirty,
1848  * unjournaled buffers in the main filesystem will still be written to
1849  * disk by bdflush, but the journaling mechanism will be suspended
1850  * immediately and no further transaction commits will be honoured.
1851  *
1852  * Any dirty, journaled buffers will be written back to disk without
1853  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
1854  * filesystem, but we _do_ attempt to leave as much data as possible
1855  * behind for fsck to use for cleanup.
1856  *
1857  * Any attempt to get a new transaction handle on a journal which is in
1858  * ABORT state will just result in an -EROFS error return.  A
1859  * jbd2_journal_stop on an existing handle will return -EIO if we have
1860  * entered abort state during the update.
1861  *
1862  * Recursive transactions are not disturbed by journal abort until the
1863  * final jbd2_journal_stop, which will receive the -EIO error.
1864  *
1865  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
1866  * which will be recorded (if possible) in the journal superblock.  This
1867  * allows a client to record failure conditions in the middle of a
1868  * transaction without having to complete the transaction to record the
1869  * failure to disk.  ext3_error, for example, now uses this
1870  * functionality.
1871  *
1872  * Errors which originate from within the journaling layer will NOT
1873  * supply an errno; a null errno implies that absolutely no further
1874  * writes are done to the journal (unless there are any already in
1875  * progress).
1876  *
1877  */
1878 
1879 void jbd2_journal_abort(journal_t *journal, int errno)
1880 {
1881 	__journal_abort_soft(journal, errno);
1882 }
1883 
1884 /**
1885  * int jbd2_journal_errno () - returns the journal's error state.
1886  * @journal: journal to examine.
1887  *
1888  * This is the errno number set with jbd2_journal_abort(), the last
1889  * time the journal was mounted - if the journal was stopped
1890  * without calling abort this will be 0.
1891  *
1892  * If the journal has been aborted on this mount time -EROFS will
1893  * be returned.
1894  */
1895 int jbd2_journal_errno(journal_t *journal)
1896 {
1897 	int err;
1898 
1899 	spin_lock(&journal->j_state_lock);
1900 	if (journal->j_flags & JBD2_ABORT)
1901 		err = -EROFS;
1902 	else
1903 		err = journal->j_errno;
1904 	spin_unlock(&journal->j_state_lock);
1905 	return err;
1906 }
1907 
1908 /**
1909  * int jbd2_journal_clear_err () - clears the journal's error state
1910  * @journal: journal to act on.
1911  *
1912  * An error must be cleared or acked to take a FS out of readonly
1913  * mode.
1914  */
1915 int jbd2_journal_clear_err(journal_t *journal)
1916 {
1917 	int err = 0;
1918 
1919 	spin_lock(&journal->j_state_lock);
1920 	if (journal->j_flags & JBD2_ABORT)
1921 		err = -EROFS;
1922 	else
1923 		journal->j_errno = 0;
1924 	spin_unlock(&journal->j_state_lock);
1925 	return err;
1926 }
1927 
1928 /**
1929  * void jbd2_journal_ack_err() - Ack journal err.
1930  * @journal: journal to act on.
1931  *
1932  * An error must be cleared or acked to take a FS out of readonly
1933  * mode.
1934  */
1935 void jbd2_journal_ack_err(journal_t *journal)
1936 {
1937 	spin_lock(&journal->j_state_lock);
1938 	if (journal->j_errno)
1939 		journal->j_flags |= JBD2_ACK_ERR;
1940 	spin_unlock(&journal->j_state_lock);
1941 }
1942 
1943 int jbd2_journal_blocks_per_page(struct inode *inode)
1944 {
1945 	return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1946 }
1947 
1948 /*
1949  * helper functions to deal with 32 or 64bit block numbers.
1950  */
1951 size_t journal_tag_bytes(journal_t *journal)
1952 {
1953 	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT))
1954 		return JBD2_TAG_SIZE64;
1955 	else
1956 		return JBD2_TAG_SIZE32;
1957 }
1958 
1959 /*
1960  * Journal_head storage management
1961  */
1962 static struct kmem_cache *jbd2_journal_head_cache;
1963 #ifdef CONFIG_JBD2_DEBUG
1964 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
1965 #endif
1966 
1967 static int journal_init_jbd2_journal_head_cache(void)
1968 {
1969 	int retval;
1970 
1971 	J_ASSERT(jbd2_journal_head_cache == NULL);
1972 	jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
1973 				sizeof(struct journal_head),
1974 				0,		/* offset */
1975 				SLAB_TEMPORARY,	/* flags */
1976 				NULL);		/* ctor */
1977 	retval = 0;
1978 	if (!jbd2_journal_head_cache) {
1979 		retval = -ENOMEM;
1980 		printk(KERN_EMERG "JBD: no memory for journal_head cache\n");
1981 	}
1982 	return retval;
1983 }
1984 
1985 static void jbd2_journal_destroy_jbd2_journal_head_cache(void)
1986 {
1987 	if (jbd2_journal_head_cache) {
1988 		kmem_cache_destroy(jbd2_journal_head_cache);
1989 		jbd2_journal_head_cache = NULL;
1990 	}
1991 }
1992 
1993 /*
1994  * journal_head splicing and dicing
1995  */
1996 static struct journal_head *journal_alloc_journal_head(void)
1997 {
1998 	struct journal_head *ret;
1999 	static unsigned long last_warning;
2000 
2001 #ifdef CONFIG_JBD2_DEBUG
2002 	atomic_inc(&nr_journal_heads);
2003 #endif
2004 	ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
2005 	if (!ret) {
2006 		jbd_debug(1, "out of memory for journal_head\n");
2007 		if (time_after(jiffies, last_warning + 5*HZ)) {
2008 			printk(KERN_NOTICE "ENOMEM in %s, retrying.\n",
2009 			       __func__);
2010 			last_warning = jiffies;
2011 		}
2012 		while (!ret) {
2013 			yield();
2014 			ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
2015 		}
2016 	}
2017 	return ret;
2018 }
2019 
2020 static void journal_free_journal_head(struct journal_head *jh)
2021 {
2022 #ifdef CONFIG_JBD2_DEBUG
2023 	atomic_dec(&nr_journal_heads);
2024 	memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2025 #endif
2026 	kmem_cache_free(jbd2_journal_head_cache, jh);
2027 }
2028 
2029 /*
2030  * A journal_head is attached to a buffer_head whenever JBD has an
2031  * interest in the buffer.
2032  *
2033  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2034  * is set.  This bit is tested in core kernel code where we need to take
2035  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2036  * there.
2037  *
2038  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2039  *
2040  * When a buffer has its BH_JBD bit set it is immune from being released by
2041  * core kernel code, mainly via ->b_count.
2042  *
2043  * A journal_head may be detached from its buffer_head when the journal_head's
2044  * b_transaction, b_cp_transaction and b_next_transaction pointers are NULL.
2045  * Various places in JBD call jbd2_journal_remove_journal_head() to indicate that the
2046  * journal_head can be dropped if needed.
2047  *
2048  * Various places in the kernel want to attach a journal_head to a buffer_head
2049  * _before_ attaching the journal_head to a transaction.  To protect the
2050  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2051  * journal_head's b_jcount refcount by one.  The caller must call
2052  * jbd2_journal_put_journal_head() to undo this.
2053  *
2054  * So the typical usage would be:
2055  *
2056  *	(Attach a journal_head if needed.  Increments b_jcount)
2057  *	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2058  *	...
2059  *	jh->b_transaction = xxx;
2060  *	jbd2_journal_put_journal_head(jh);
2061  *
2062  * Now, the journal_head's b_jcount is zero, but it is safe from being released
2063  * because it has a non-zero b_transaction.
2064  */
2065 
2066 /*
2067  * Give a buffer_head a journal_head.
2068  *
2069  * Doesn't need the journal lock.
2070  * May sleep.
2071  */
2072 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2073 {
2074 	struct journal_head *jh;
2075 	struct journal_head *new_jh = NULL;
2076 
2077 repeat:
2078 	if (!buffer_jbd(bh)) {
2079 		new_jh = journal_alloc_journal_head();
2080 		memset(new_jh, 0, sizeof(*new_jh));
2081 	}
2082 
2083 	jbd_lock_bh_journal_head(bh);
2084 	if (buffer_jbd(bh)) {
2085 		jh = bh2jh(bh);
2086 	} else {
2087 		J_ASSERT_BH(bh,
2088 			(atomic_read(&bh->b_count) > 0) ||
2089 			(bh->b_page && bh->b_page->mapping));
2090 
2091 		if (!new_jh) {
2092 			jbd_unlock_bh_journal_head(bh);
2093 			goto repeat;
2094 		}
2095 
2096 		jh = new_jh;
2097 		new_jh = NULL;		/* We consumed it */
2098 		set_buffer_jbd(bh);
2099 		bh->b_private = jh;
2100 		jh->b_bh = bh;
2101 		get_bh(bh);
2102 		BUFFER_TRACE(bh, "added journal_head");
2103 	}
2104 	jh->b_jcount++;
2105 	jbd_unlock_bh_journal_head(bh);
2106 	if (new_jh)
2107 		journal_free_journal_head(new_jh);
2108 	return bh->b_private;
2109 }
2110 
2111 /*
2112  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2113  * having a journal_head, return NULL
2114  */
2115 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2116 {
2117 	struct journal_head *jh = NULL;
2118 
2119 	jbd_lock_bh_journal_head(bh);
2120 	if (buffer_jbd(bh)) {
2121 		jh = bh2jh(bh);
2122 		jh->b_jcount++;
2123 	}
2124 	jbd_unlock_bh_journal_head(bh);
2125 	return jh;
2126 }
2127 
2128 static void __journal_remove_journal_head(struct buffer_head *bh)
2129 {
2130 	struct journal_head *jh = bh2jh(bh);
2131 
2132 	J_ASSERT_JH(jh, jh->b_jcount >= 0);
2133 
2134 	get_bh(bh);
2135 	if (jh->b_jcount == 0) {
2136 		if (jh->b_transaction == NULL &&
2137 				jh->b_next_transaction == NULL &&
2138 				jh->b_cp_transaction == NULL) {
2139 			J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2140 			J_ASSERT_BH(bh, buffer_jbd(bh));
2141 			J_ASSERT_BH(bh, jh2bh(jh) == bh);
2142 			BUFFER_TRACE(bh, "remove journal_head");
2143 			if (jh->b_frozen_data) {
2144 				printk(KERN_WARNING "%s: freeing "
2145 						"b_frozen_data\n",
2146 						__func__);
2147 				jbd2_free(jh->b_frozen_data, bh->b_size);
2148 			}
2149 			if (jh->b_committed_data) {
2150 				printk(KERN_WARNING "%s: freeing "
2151 						"b_committed_data\n",
2152 						__func__);
2153 				jbd2_free(jh->b_committed_data, bh->b_size);
2154 			}
2155 			bh->b_private = NULL;
2156 			jh->b_bh = NULL;	/* debug, really */
2157 			clear_buffer_jbd(bh);
2158 			__brelse(bh);
2159 			journal_free_journal_head(jh);
2160 		} else {
2161 			BUFFER_TRACE(bh, "journal_head was locked");
2162 		}
2163 	}
2164 }
2165 
2166 /*
2167  * jbd2_journal_remove_journal_head(): if the buffer isn't attached to a transaction
2168  * and has a zero b_jcount then remove and release its journal_head.   If we did
2169  * see that the buffer is not used by any transaction we also "logically"
2170  * decrement ->b_count.
2171  *
2172  * We in fact take an additional increment on ->b_count as a convenience,
2173  * because the caller usually wants to do additional things with the bh
2174  * after calling here.
2175  * The caller of jbd2_journal_remove_journal_head() *must* run __brelse(bh) at some
2176  * time.  Once the caller has run __brelse(), the buffer is eligible for
2177  * reaping by try_to_free_buffers().
2178  */
2179 void jbd2_journal_remove_journal_head(struct buffer_head *bh)
2180 {
2181 	jbd_lock_bh_journal_head(bh);
2182 	__journal_remove_journal_head(bh);
2183 	jbd_unlock_bh_journal_head(bh);
2184 }
2185 
2186 /*
2187  * Drop a reference on the passed journal_head.  If it fell to zero then try to
2188  * release the journal_head from the buffer_head.
2189  */
2190 void jbd2_journal_put_journal_head(struct journal_head *jh)
2191 {
2192 	struct buffer_head *bh = jh2bh(jh);
2193 
2194 	jbd_lock_bh_journal_head(bh);
2195 	J_ASSERT_JH(jh, jh->b_jcount > 0);
2196 	--jh->b_jcount;
2197 	if (!jh->b_jcount && !jh->b_transaction) {
2198 		__journal_remove_journal_head(bh);
2199 		__brelse(bh);
2200 	}
2201 	jbd_unlock_bh_journal_head(bh);
2202 }
2203 
2204 /*
2205  * Initialize jbd inode head
2206  */
2207 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2208 {
2209 	jinode->i_transaction = NULL;
2210 	jinode->i_next_transaction = NULL;
2211 	jinode->i_vfs_inode = inode;
2212 	jinode->i_flags = 0;
2213 	INIT_LIST_HEAD(&jinode->i_list);
2214 }
2215 
2216 /*
2217  * Function to be called before we start removing inode from memory (i.e.,
2218  * clear_inode() is a fine place to be called from). It removes inode from
2219  * transaction's lists.
2220  */
2221 void jbd2_journal_release_jbd_inode(journal_t *journal,
2222 				    struct jbd2_inode *jinode)
2223 {
2224 	int writeout = 0;
2225 
2226 	if (!journal)
2227 		return;
2228 restart:
2229 	spin_lock(&journal->j_list_lock);
2230 	/* Is commit writing out inode - we have to wait */
2231 	if (jinode->i_flags & JI_COMMIT_RUNNING) {
2232 		wait_queue_head_t *wq;
2233 		DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2234 		wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2235 		prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2236 		spin_unlock(&journal->j_list_lock);
2237 		schedule();
2238 		finish_wait(wq, &wait.wait);
2239 		goto restart;
2240 	}
2241 
2242 	/* Do we need to wait for data writeback? */
2243 	if (journal->j_committing_transaction == jinode->i_transaction)
2244 		writeout = 1;
2245 	if (jinode->i_transaction) {
2246 		list_del(&jinode->i_list);
2247 		jinode->i_transaction = NULL;
2248 	}
2249 	spin_unlock(&journal->j_list_lock);
2250 }
2251 
2252 /*
2253  * debugfs tunables
2254  */
2255 #ifdef CONFIG_JBD2_DEBUG
2256 u8 jbd2_journal_enable_debug __read_mostly;
2257 EXPORT_SYMBOL(jbd2_journal_enable_debug);
2258 
2259 #define JBD2_DEBUG_NAME "jbd2-debug"
2260 
2261 static struct dentry *jbd2_debugfs_dir;
2262 static struct dentry *jbd2_debug;
2263 
2264 static void __init jbd2_create_debugfs_entry(void)
2265 {
2266 	jbd2_debugfs_dir = debugfs_create_dir("jbd2", NULL);
2267 	if (jbd2_debugfs_dir)
2268 		jbd2_debug = debugfs_create_u8(JBD2_DEBUG_NAME, S_IRUGO,
2269 					       jbd2_debugfs_dir,
2270 					       &jbd2_journal_enable_debug);
2271 }
2272 
2273 static void __exit jbd2_remove_debugfs_entry(void)
2274 {
2275 	debugfs_remove(jbd2_debug);
2276 	debugfs_remove(jbd2_debugfs_dir);
2277 }
2278 
2279 #else
2280 
2281 static void __init jbd2_create_debugfs_entry(void)
2282 {
2283 }
2284 
2285 static void __exit jbd2_remove_debugfs_entry(void)
2286 {
2287 }
2288 
2289 #endif
2290 
2291 #ifdef CONFIG_PROC_FS
2292 
2293 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2294 
2295 static void __init jbd2_create_jbd_stats_proc_entry(void)
2296 {
2297 	proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2298 }
2299 
2300 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2301 {
2302 	if (proc_jbd2_stats)
2303 		remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2304 }
2305 
2306 #else
2307 
2308 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2309 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2310 
2311 #endif
2312 
2313 struct kmem_cache *jbd2_handle_cache;
2314 
2315 static int __init journal_init_handle_cache(void)
2316 {
2317 	jbd2_handle_cache = kmem_cache_create("jbd2_journal_handle",
2318 				sizeof(handle_t),
2319 				0,		/* offset */
2320 				SLAB_TEMPORARY,	/* flags */
2321 				NULL);		/* ctor */
2322 	if (jbd2_handle_cache == NULL) {
2323 		printk(KERN_EMERG "JBD: failed to create handle cache\n");
2324 		return -ENOMEM;
2325 	}
2326 	return 0;
2327 }
2328 
2329 static void jbd2_journal_destroy_handle_cache(void)
2330 {
2331 	if (jbd2_handle_cache)
2332 		kmem_cache_destroy(jbd2_handle_cache);
2333 }
2334 
2335 /*
2336  * Module startup and shutdown
2337  */
2338 
2339 static int __init journal_init_caches(void)
2340 {
2341 	int ret;
2342 
2343 	ret = jbd2_journal_init_revoke_caches();
2344 	if (ret == 0)
2345 		ret = journal_init_jbd2_journal_head_cache();
2346 	if (ret == 0)
2347 		ret = journal_init_handle_cache();
2348 	return ret;
2349 }
2350 
2351 static void jbd2_journal_destroy_caches(void)
2352 {
2353 	jbd2_journal_destroy_revoke_caches();
2354 	jbd2_journal_destroy_jbd2_journal_head_cache();
2355 	jbd2_journal_destroy_handle_cache();
2356 }
2357 
2358 static int __init journal_init(void)
2359 {
2360 	int ret;
2361 
2362 	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2363 
2364 	ret = journal_init_caches();
2365 	if (ret == 0) {
2366 		jbd2_create_debugfs_entry();
2367 		jbd2_create_jbd_stats_proc_entry();
2368 	} else {
2369 		jbd2_journal_destroy_caches();
2370 	}
2371 	return ret;
2372 }
2373 
2374 static void __exit journal_exit(void)
2375 {
2376 #ifdef CONFIG_JBD2_DEBUG
2377 	int n = atomic_read(&nr_journal_heads);
2378 	if (n)
2379 		printk(KERN_EMERG "JBD: leaked %d journal_heads!\n", n);
2380 #endif
2381 	jbd2_remove_debugfs_entry();
2382 	jbd2_remove_jbd_stats_proc_entry();
2383 	jbd2_journal_destroy_caches();
2384 }
2385 
2386 /*
2387  * jbd2_dev_to_name is a utility function used by the jbd2 and ext4
2388  * tracing infrastructure to map a dev_t to a device name.
2389  *
2390  * The caller should use rcu_read_lock() in order to make sure the
2391  * device name stays valid until its done with it.  We use
2392  * rcu_read_lock() as well to make sure we're safe in case the caller
2393  * gets sloppy, and because rcu_read_lock() is cheap and can be safely
2394  * nested.
2395  */
2396 struct devname_cache {
2397 	struct rcu_head	rcu;
2398 	dev_t		device;
2399 	char		devname[BDEVNAME_SIZE];
2400 };
2401 #define CACHE_SIZE_BITS 6
2402 static struct devname_cache *devcache[1 << CACHE_SIZE_BITS];
2403 static DEFINE_SPINLOCK(devname_cache_lock);
2404 
2405 static void free_devcache(struct rcu_head *rcu)
2406 {
2407 	kfree(rcu);
2408 }
2409 
2410 const char *jbd2_dev_to_name(dev_t device)
2411 {
2412 	int	i = hash_32(device, CACHE_SIZE_BITS);
2413 	char	*ret;
2414 	struct block_device *bd;
2415 	static struct devname_cache *new_dev;
2416 
2417 	rcu_read_lock();
2418 	if (devcache[i] && devcache[i]->device == device) {
2419 		ret = devcache[i]->devname;
2420 		rcu_read_unlock();
2421 		return ret;
2422 	}
2423 	rcu_read_unlock();
2424 
2425 	new_dev = kmalloc(sizeof(struct devname_cache), GFP_KERNEL);
2426 	if (!new_dev)
2427 		return "NODEV-ALLOCFAILURE"; /* Something non-NULL */
2428 	spin_lock(&devname_cache_lock);
2429 	if (devcache[i]) {
2430 		if (devcache[i]->device == device) {
2431 			kfree(new_dev);
2432 			ret = devcache[i]->devname;
2433 			spin_unlock(&devname_cache_lock);
2434 			return ret;
2435 		}
2436 		call_rcu(&devcache[i]->rcu, free_devcache);
2437 	}
2438 	devcache[i] = new_dev;
2439 	devcache[i]->device = device;
2440 	bd = bdget(device);
2441 	if (bd) {
2442 		bdevname(bd, devcache[i]->devname);
2443 		bdput(bd);
2444 	} else
2445 		__bdevname(device, devcache[i]->devname);
2446 	ret = devcache[i]->devname;
2447 	spin_unlock(&devname_cache_lock);
2448 	return ret;
2449 }
2450 EXPORT_SYMBOL(jbd2_dev_to_name);
2451 
2452 MODULE_LICENSE("GPL");
2453 module_init(journal_init);
2454 module_exit(journal_exit);
2455 
2456