1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * linux/fs/jbd2/journal.c 4 * 5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 6 * 7 * Copyright 1998 Red Hat corp --- All Rights Reserved 8 * 9 * Generic filesystem journal-writing code; part of the ext2fs 10 * journaling system. 11 * 12 * This file manages journals: areas of disk reserved for logging 13 * transactional updates. This includes the kernel journaling thread 14 * which is responsible for scheduling updates to the log. 15 * 16 * We do not actually manage the physical storage of the journal in this 17 * file: that is left to a per-journal policy function, which allows us 18 * to store the journal within a filesystem-specified area for ext2 19 * journaling (ext2 can use a reserved inode for storing the log). 20 */ 21 22 #include <linux/module.h> 23 #include <linux/time.h> 24 #include <linux/fs.h> 25 #include <linux/jbd2.h> 26 #include <linux/errno.h> 27 #include <linux/slab.h> 28 #include <linux/init.h> 29 #include <linux/mm.h> 30 #include <linux/freezer.h> 31 #include <linux/pagemap.h> 32 #include <linux/kthread.h> 33 #include <linux/poison.h> 34 #include <linux/proc_fs.h> 35 #include <linux/seq_file.h> 36 #include <linux/math64.h> 37 #include <linux/hash.h> 38 #include <linux/log2.h> 39 #include <linux/vmalloc.h> 40 #include <linux/backing-dev.h> 41 #include <linux/bitops.h> 42 #include <linux/ratelimit.h> 43 #include <linux/sched/mm.h> 44 45 #define CREATE_TRACE_POINTS 46 #include <trace/events/jbd2.h> 47 48 #include <linux/uaccess.h> 49 #include <asm/page.h> 50 51 #ifdef CONFIG_JBD2_DEBUG 52 static ushort jbd2_journal_enable_debug __read_mostly; 53 54 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644); 55 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2"); 56 #endif 57 58 EXPORT_SYMBOL(jbd2_journal_extend); 59 EXPORT_SYMBOL(jbd2_journal_stop); 60 EXPORT_SYMBOL(jbd2_journal_lock_updates); 61 EXPORT_SYMBOL(jbd2_journal_unlock_updates); 62 EXPORT_SYMBOL(jbd2_journal_get_write_access); 63 EXPORT_SYMBOL(jbd2_journal_get_create_access); 64 EXPORT_SYMBOL(jbd2_journal_get_undo_access); 65 EXPORT_SYMBOL(jbd2_journal_set_triggers); 66 EXPORT_SYMBOL(jbd2_journal_dirty_metadata); 67 EXPORT_SYMBOL(jbd2_journal_forget); 68 EXPORT_SYMBOL(jbd2_journal_flush); 69 EXPORT_SYMBOL(jbd2_journal_revoke); 70 71 EXPORT_SYMBOL(jbd2_journal_init_dev); 72 EXPORT_SYMBOL(jbd2_journal_init_inode); 73 EXPORT_SYMBOL(jbd2_journal_check_used_features); 74 EXPORT_SYMBOL(jbd2_journal_check_available_features); 75 EXPORT_SYMBOL(jbd2_journal_set_features); 76 EXPORT_SYMBOL(jbd2_journal_load); 77 EXPORT_SYMBOL(jbd2_journal_destroy); 78 EXPORT_SYMBOL(jbd2_journal_abort); 79 EXPORT_SYMBOL(jbd2_journal_errno); 80 EXPORT_SYMBOL(jbd2_journal_ack_err); 81 EXPORT_SYMBOL(jbd2_journal_clear_err); 82 EXPORT_SYMBOL(jbd2_log_wait_commit); 83 EXPORT_SYMBOL(jbd2_journal_start_commit); 84 EXPORT_SYMBOL(jbd2_journal_force_commit_nested); 85 EXPORT_SYMBOL(jbd2_journal_wipe); 86 EXPORT_SYMBOL(jbd2_journal_blocks_per_page); 87 EXPORT_SYMBOL(jbd2_journal_invalidate_folio); 88 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers); 89 EXPORT_SYMBOL(jbd2_journal_force_commit); 90 EXPORT_SYMBOL(jbd2_journal_inode_ranged_write); 91 EXPORT_SYMBOL(jbd2_journal_inode_ranged_wait); 92 EXPORT_SYMBOL(jbd2_journal_finish_inode_data_buffers); 93 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode); 94 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode); 95 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate); 96 EXPORT_SYMBOL(jbd2_inode_cache); 97 98 static int jbd2_journal_create_slab(size_t slab_size); 99 100 #ifdef CONFIG_JBD2_DEBUG 101 void __jbd2_debug(int level, const char *file, const char *func, 102 unsigned int line, const char *fmt, ...) 103 { 104 struct va_format vaf; 105 va_list args; 106 107 if (level > jbd2_journal_enable_debug) 108 return; 109 va_start(args, fmt); 110 vaf.fmt = fmt; 111 vaf.va = &args; 112 printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf); 113 va_end(args); 114 } 115 #endif 116 117 /* Checksumming functions */ 118 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb) 119 { 120 __u32 csum; 121 __be32 old_csum; 122 123 old_csum = sb->s_checksum; 124 sb->s_checksum = 0; 125 csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t)); 126 sb->s_checksum = old_csum; 127 128 return cpu_to_be32(csum); 129 } 130 131 /* 132 * Helper function used to manage commit timeouts 133 */ 134 135 static void commit_timeout(struct timer_list *t) 136 { 137 journal_t *journal = from_timer(journal, t, j_commit_timer); 138 139 wake_up_process(journal->j_task); 140 } 141 142 /* 143 * kjournald2: The main thread function used to manage a logging device 144 * journal. 145 * 146 * This kernel thread is responsible for two things: 147 * 148 * 1) COMMIT: Every so often we need to commit the current state of the 149 * filesystem to disk. The journal thread is responsible for writing 150 * all of the metadata buffers to disk. If a fast commit is ongoing 151 * journal thread waits until it's done and then continues from 152 * there on. 153 * 154 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all 155 * of the data in that part of the log has been rewritten elsewhere on 156 * the disk. Flushing these old buffers to reclaim space in the log is 157 * known as checkpointing, and this thread is responsible for that job. 158 */ 159 160 static int kjournald2(void *arg) 161 { 162 journal_t *journal = arg; 163 transaction_t *transaction; 164 165 /* 166 * Set up an interval timer which can be used to trigger a commit wakeup 167 * after the commit interval expires 168 */ 169 timer_setup(&journal->j_commit_timer, commit_timeout, 0); 170 171 set_freezable(); 172 173 /* Record that the journal thread is running */ 174 journal->j_task = current; 175 wake_up(&journal->j_wait_done_commit); 176 177 /* 178 * Make sure that no allocations from this kernel thread will ever 179 * recurse to the fs layer because we are responsible for the 180 * transaction commit and any fs involvement might get stuck waiting for 181 * the trasn. commit. 182 */ 183 memalloc_nofs_save(); 184 185 /* 186 * And now, wait forever for commit wakeup events. 187 */ 188 write_lock(&journal->j_state_lock); 189 190 loop: 191 if (journal->j_flags & JBD2_UNMOUNT) 192 goto end_loop; 193 194 jbd2_debug(1, "commit_sequence=%u, commit_request=%u\n", 195 journal->j_commit_sequence, journal->j_commit_request); 196 197 if (journal->j_commit_sequence != journal->j_commit_request) { 198 jbd2_debug(1, "OK, requests differ\n"); 199 write_unlock(&journal->j_state_lock); 200 del_timer_sync(&journal->j_commit_timer); 201 jbd2_journal_commit_transaction(journal); 202 write_lock(&journal->j_state_lock); 203 goto loop; 204 } 205 206 wake_up(&journal->j_wait_done_commit); 207 if (freezing(current)) { 208 /* 209 * The simpler the better. Flushing journal isn't a 210 * good idea, because that depends on threads that may 211 * be already stopped. 212 */ 213 jbd2_debug(1, "Now suspending kjournald2\n"); 214 write_unlock(&journal->j_state_lock); 215 try_to_freeze(); 216 write_lock(&journal->j_state_lock); 217 } else { 218 /* 219 * We assume on resume that commits are already there, 220 * so we don't sleep 221 */ 222 DEFINE_WAIT(wait); 223 int should_sleep = 1; 224 225 prepare_to_wait(&journal->j_wait_commit, &wait, 226 TASK_INTERRUPTIBLE); 227 if (journal->j_commit_sequence != journal->j_commit_request) 228 should_sleep = 0; 229 transaction = journal->j_running_transaction; 230 if (transaction && time_after_eq(jiffies, 231 transaction->t_expires)) 232 should_sleep = 0; 233 if (journal->j_flags & JBD2_UNMOUNT) 234 should_sleep = 0; 235 if (should_sleep) { 236 write_unlock(&journal->j_state_lock); 237 schedule(); 238 write_lock(&journal->j_state_lock); 239 } 240 finish_wait(&journal->j_wait_commit, &wait); 241 } 242 243 jbd2_debug(1, "kjournald2 wakes\n"); 244 245 /* 246 * Were we woken up by a commit wakeup event? 247 */ 248 transaction = journal->j_running_transaction; 249 if (transaction && time_after_eq(jiffies, transaction->t_expires)) { 250 journal->j_commit_request = transaction->t_tid; 251 jbd2_debug(1, "woke because of timeout\n"); 252 } 253 goto loop; 254 255 end_loop: 256 del_timer_sync(&journal->j_commit_timer); 257 journal->j_task = NULL; 258 wake_up(&journal->j_wait_done_commit); 259 jbd2_debug(1, "Journal thread exiting.\n"); 260 write_unlock(&journal->j_state_lock); 261 return 0; 262 } 263 264 static int jbd2_journal_start_thread(journal_t *journal) 265 { 266 struct task_struct *t; 267 268 t = kthread_run(kjournald2, journal, "jbd2/%s", 269 journal->j_devname); 270 if (IS_ERR(t)) 271 return PTR_ERR(t); 272 273 wait_event(journal->j_wait_done_commit, journal->j_task != NULL); 274 return 0; 275 } 276 277 static void journal_kill_thread(journal_t *journal) 278 { 279 write_lock(&journal->j_state_lock); 280 journal->j_flags |= JBD2_UNMOUNT; 281 282 while (journal->j_task) { 283 write_unlock(&journal->j_state_lock); 284 wake_up(&journal->j_wait_commit); 285 wait_event(journal->j_wait_done_commit, journal->j_task == NULL); 286 write_lock(&journal->j_state_lock); 287 } 288 write_unlock(&journal->j_state_lock); 289 } 290 291 /* 292 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal. 293 * 294 * Writes a metadata buffer to a given disk block. The actual IO is not 295 * performed but a new buffer_head is constructed which labels the data 296 * to be written with the correct destination disk block. 297 * 298 * Any magic-number escaping which needs to be done will cause a 299 * copy-out here. If the buffer happens to start with the 300 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the 301 * magic number is only written to the log for descripter blocks. In 302 * this case, we copy the data and replace the first word with 0, and we 303 * return a result code which indicates that this buffer needs to be 304 * marked as an escaped buffer in the corresponding log descriptor 305 * block. The missing word can then be restored when the block is read 306 * during recovery. 307 * 308 * If the source buffer has already been modified by a new transaction 309 * since we took the last commit snapshot, we use the frozen copy of 310 * that data for IO. If we end up using the existing buffer_head's data 311 * for the write, then we have to make sure nobody modifies it while the 312 * IO is in progress. do_get_write_access() handles this. 313 * 314 * The function returns a pointer to the buffer_head to be used for IO. 315 * 316 * 317 * Return value: 318 * <0: Error 319 * >=0: Finished OK 320 * 321 * On success: 322 * Bit 0 set == escape performed on the data 323 * Bit 1 set == buffer copy-out performed (kfree the data after IO) 324 */ 325 326 int jbd2_journal_write_metadata_buffer(transaction_t *transaction, 327 struct journal_head *jh_in, 328 struct buffer_head **bh_out, 329 sector_t blocknr) 330 { 331 int need_copy_out = 0; 332 int done_copy_out = 0; 333 int do_escape = 0; 334 char *mapped_data; 335 struct buffer_head *new_bh; 336 struct folio *new_folio; 337 unsigned int new_offset; 338 struct buffer_head *bh_in = jh2bh(jh_in); 339 journal_t *journal = transaction->t_journal; 340 341 /* 342 * The buffer really shouldn't be locked: only the current committing 343 * transaction is allowed to write it, so nobody else is allowed 344 * to do any IO. 345 * 346 * akpm: except if we're journalling data, and write() output is 347 * also part of a shared mapping, and another thread has 348 * decided to launch a writepage() against this buffer. 349 */ 350 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in)); 351 352 new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL); 353 354 /* keep subsequent assertions sane */ 355 atomic_set(&new_bh->b_count, 1); 356 357 spin_lock(&jh_in->b_state_lock); 358 repeat: 359 /* 360 * If a new transaction has already done a buffer copy-out, then 361 * we use that version of the data for the commit. 362 */ 363 if (jh_in->b_frozen_data) { 364 done_copy_out = 1; 365 new_folio = virt_to_folio(jh_in->b_frozen_data); 366 new_offset = offset_in_folio(new_folio, jh_in->b_frozen_data); 367 } else { 368 new_folio = jh2bh(jh_in)->b_folio; 369 new_offset = offset_in_folio(new_folio, jh2bh(jh_in)->b_data); 370 } 371 372 mapped_data = kmap_local_folio(new_folio, new_offset); 373 /* 374 * Fire data frozen trigger if data already wasn't frozen. Do this 375 * before checking for escaping, as the trigger may modify the magic 376 * offset. If a copy-out happens afterwards, it will have the correct 377 * data in the buffer. 378 */ 379 if (!done_copy_out) 380 jbd2_buffer_frozen_trigger(jh_in, mapped_data, 381 jh_in->b_triggers); 382 383 /* 384 * Check for escaping 385 */ 386 if (*((__be32 *)mapped_data) == cpu_to_be32(JBD2_MAGIC_NUMBER)) { 387 need_copy_out = 1; 388 do_escape = 1; 389 } 390 kunmap_local(mapped_data); 391 392 /* 393 * Do we need to do a data copy? 394 */ 395 if (need_copy_out && !done_copy_out) { 396 char *tmp; 397 398 spin_unlock(&jh_in->b_state_lock); 399 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS); 400 if (!tmp) { 401 brelse(new_bh); 402 return -ENOMEM; 403 } 404 spin_lock(&jh_in->b_state_lock); 405 if (jh_in->b_frozen_data) { 406 jbd2_free(tmp, bh_in->b_size); 407 goto repeat; 408 } 409 410 jh_in->b_frozen_data = tmp; 411 memcpy_from_folio(tmp, new_folio, new_offset, bh_in->b_size); 412 413 new_folio = virt_to_folio(tmp); 414 new_offset = offset_in_folio(new_folio, tmp); 415 done_copy_out = 1; 416 417 /* 418 * This isn't strictly necessary, as we're using frozen 419 * data for the escaping, but it keeps consistency with 420 * b_frozen_data usage. 421 */ 422 jh_in->b_frozen_triggers = jh_in->b_triggers; 423 } 424 425 /* 426 * Did we need to do an escaping? Now we've done all the 427 * copying, we can finally do so. 428 */ 429 if (do_escape) { 430 mapped_data = kmap_local_folio(new_folio, new_offset); 431 *((unsigned int *)mapped_data) = 0; 432 kunmap_local(mapped_data); 433 } 434 435 folio_set_bh(new_bh, new_folio, new_offset); 436 new_bh->b_size = bh_in->b_size; 437 new_bh->b_bdev = journal->j_dev; 438 new_bh->b_blocknr = blocknr; 439 new_bh->b_private = bh_in; 440 set_buffer_mapped(new_bh); 441 set_buffer_dirty(new_bh); 442 443 *bh_out = new_bh; 444 445 /* 446 * The to-be-written buffer needs to get moved to the io queue, 447 * and the original buffer whose contents we are shadowing or 448 * copying is moved to the transaction's shadow queue. 449 */ 450 JBUFFER_TRACE(jh_in, "file as BJ_Shadow"); 451 spin_lock(&journal->j_list_lock); 452 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow); 453 spin_unlock(&journal->j_list_lock); 454 set_buffer_shadow(bh_in); 455 spin_unlock(&jh_in->b_state_lock); 456 457 return do_escape | (done_copy_out << 1); 458 } 459 460 /* 461 * Allocation code for the journal file. Manage the space left in the 462 * journal, so that we can begin checkpointing when appropriate. 463 */ 464 465 /* 466 * Called with j_state_lock locked for writing. 467 * Returns true if a transaction commit was started. 468 */ 469 static int __jbd2_log_start_commit(journal_t *journal, tid_t target) 470 { 471 /* Return if the txn has already requested to be committed */ 472 if (journal->j_commit_request == target) 473 return 0; 474 475 /* 476 * The only transaction we can possibly wait upon is the 477 * currently running transaction (if it exists). Otherwise, 478 * the target tid must be an old one. 479 */ 480 if (journal->j_running_transaction && 481 journal->j_running_transaction->t_tid == target) { 482 /* 483 * We want a new commit: OK, mark the request and wakeup the 484 * commit thread. We do _not_ do the commit ourselves. 485 */ 486 487 journal->j_commit_request = target; 488 jbd2_debug(1, "JBD2: requesting commit %u/%u\n", 489 journal->j_commit_request, 490 journal->j_commit_sequence); 491 journal->j_running_transaction->t_requested = jiffies; 492 wake_up(&journal->j_wait_commit); 493 return 1; 494 } else if (!tid_geq(journal->j_commit_request, target)) 495 /* This should never happen, but if it does, preserve 496 the evidence before kjournald goes into a loop and 497 increments j_commit_sequence beyond all recognition. */ 498 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n", 499 journal->j_commit_request, 500 journal->j_commit_sequence, 501 target, journal->j_running_transaction ? 502 journal->j_running_transaction->t_tid : 0); 503 return 0; 504 } 505 506 int jbd2_log_start_commit(journal_t *journal, tid_t tid) 507 { 508 int ret; 509 510 write_lock(&journal->j_state_lock); 511 ret = __jbd2_log_start_commit(journal, tid); 512 write_unlock(&journal->j_state_lock); 513 return ret; 514 } 515 516 /* 517 * Force and wait any uncommitted transactions. We can only force the running 518 * transaction if we don't have an active handle, otherwise, we will deadlock. 519 * Returns: <0 in case of error, 520 * 0 if nothing to commit, 521 * 1 if transaction was successfully committed. 522 */ 523 static int __jbd2_journal_force_commit(journal_t *journal) 524 { 525 transaction_t *transaction = NULL; 526 tid_t tid; 527 int need_to_start = 0, ret = 0; 528 529 read_lock(&journal->j_state_lock); 530 if (journal->j_running_transaction && !current->journal_info) { 531 transaction = journal->j_running_transaction; 532 if (!tid_geq(journal->j_commit_request, transaction->t_tid)) 533 need_to_start = 1; 534 } else if (journal->j_committing_transaction) 535 transaction = journal->j_committing_transaction; 536 537 if (!transaction) { 538 /* Nothing to commit */ 539 read_unlock(&journal->j_state_lock); 540 return 0; 541 } 542 tid = transaction->t_tid; 543 read_unlock(&journal->j_state_lock); 544 if (need_to_start) 545 jbd2_log_start_commit(journal, tid); 546 ret = jbd2_log_wait_commit(journal, tid); 547 if (!ret) 548 ret = 1; 549 550 return ret; 551 } 552 553 /** 554 * jbd2_journal_force_commit_nested - Force and wait upon a commit if the 555 * calling process is not within transaction. 556 * 557 * @journal: journal to force 558 * Returns true if progress was made. 559 * 560 * This is used for forcing out undo-protected data which contains 561 * bitmaps, when the fs is running out of space. 562 */ 563 int jbd2_journal_force_commit_nested(journal_t *journal) 564 { 565 int ret; 566 567 ret = __jbd2_journal_force_commit(journal); 568 return ret > 0; 569 } 570 571 /** 572 * jbd2_journal_force_commit() - force any uncommitted transactions 573 * @journal: journal to force 574 * 575 * Caller want unconditional commit. We can only force the running transaction 576 * if we don't have an active handle, otherwise, we will deadlock. 577 */ 578 int jbd2_journal_force_commit(journal_t *journal) 579 { 580 int ret; 581 582 J_ASSERT(!current->journal_info); 583 ret = __jbd2_journal_force_commit(journal); 584 if (ret > 0) 585 ret = 0; 586 return ret; 587 } 588 589 /* 590 * Start a commit of the current running transaction (if any). Returns true 591 * if a transaction is going to be committed (or is currently already 592 * committing), and fills its tid in at *ptid 593 */ 594 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid) 595 { 596 int ret = 0; 597 598 write_lock(&journal->j_state_lock); 599 if (journal->j_running_transaction) { 600 tid_t tid = journal->j_running_transaction->t_tid; 601 602 __jbd2_log_start_commit(journal, tid); 603 /* There's a running transaction and we've just made sure 604 * it's commit has been scheduled. */ 605 if (ptid) 606 *ptid = tid; 607 ret = 1; 608 } else if (journal->j_committing_transaction) { 609 /* 610 * If commit has been started, then we have to wait for 611 * completion of that transaction. 612 */ 613 if (ptid) 614 *ptid = journal->j_committing_transaction->t_tid; 615 ret = 1; 616 } 617 write_unlock(&journal->j_state_lock); 618 return ret; 619 } 620 621 /* 622 * Return 1 if a given transaction has not yet sent barrier request 623 * connected with a transaction commit. If 0 is returned, transaction 624 * may or may not have sent the barrier. Used to avoid sending barrier 625 * twice in common cases. 626 */ 627 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid) 628 { 629 int ret = 0; 630 transaction_t *commit_trans; 631 632 if (!(journal->j_flags & JBD2_BARRIER)) 633 return 0; 634 read_lock(&journal->j_state_lock); 635 /* Transaction already committed? */ 636 if (tid_geq(journal->j_commit_sequence, tid)) 637 goto out; 638 commit_trans = journal->j_committing_transaction; 639 if (!commit_trans || commit_trans->t_tid != tid) { 640 ret = 1; 641 goto out; 642 } 643 /* 644 * Transaction is being committed and we already proceeded to 645 * submitting a flush to fs partition? 646 */ 647 if (journal->j_fs_dev != journal->j_dev) { 648 if (!commit_trans->t_need_data_flush || 649 commit_trans->t_state >= T_COMMIT_DFLUSH) 650 goto out; 651 } else { 652 if (commit_trans->t_state >= T_COMMIT_JFLUSH) 653 goto out; 654 } 655 ret = 1; 656 out: 657 read_unlock(&journal->j_state_lock); 658 return ret; 659 } 660 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier); 661 662 /* 663 * Wait for a specified commit to complete. 664 * The caller may not hold the journal lock. 665 */ 666 int jbd2_log_wait_commit(journal_t *journal, tid_t tid) 667 { 668 int err = 0; 669 670 read_lock(&journal->j_state_lock); 671 #ifdef CONFIG_PROVE_LOCKING 672 /* 673 * Some callers make sure transaction is already committing and in that 674 * case we cannot block on open handles anymore. So don't warn in that 675 * case. 676 */ 677 if (tid_gt(tid, journal->j_commit_sequence) && 678 (!journal->j_committing_transaction || 679 journal->j_committing_transaction->t_tid != tid)) { 680 read_unlock(&journal->j_state_lock); 681 jbd2_might_wait_for_commit(journal); 682 read_lock(&journal->j_state_lock); 683 } 684 #endif 685 #ifdef CONFIG_JBD2_DEBUG 686 if (!tid_geq(journal->j_commit_request, tid)) { 687 printk(KERN_ERR 688 "%s: error: j_commit_request=%u, tid=%u\n", 689 __func__, journal->j_commit_request, tid); 690 } 691 #endif 692 while (tid_gt(tid, journal->j_commit_sequence)) { 693 jbd2_debug(1, "JBD2: want %u, j_commit_sequence=%u\n", 694 tid, journal->j_commit_sequence); 695 read_unlock(&journal->j_state_lock); 696 wake_up(&journal->j_wait_commit); 697 wait_event(journal->j_wait_done_commit, 698 !tid_gt(tid, journal->j_commit_sequence)); 699 read_lock(&journal->j_state_lock); 700 } 701 read_unlock(&journal->j_state_lock); 702 703 if (unlikely(is_journal_aborted(journal))) 704 err = -EIO; 705 return err; 706 } 707 708 /* 709 * Start a fast commit. If there's an ongoing fast or full commit wait for 710 * it to complete. Returns 0 if a new fast commit was started. Returns -EALREADY 711 * if a fast commit is not needed, either because there's an already a commit 712 * going on or this tid has already been committed. Returns -EINVAL if no jbd2 713 * commit has yet been performed. 714 */ 715 int jbd2_fc_begin_commit(journal_t *journal, tid_t tid) 716 { 717 if (unlikely(is_journal_aborted(journal))) 718 return -EIO; 719 /* 720 * Fast commits only allowed if at least one full commit has 721 * been processed. 722 */ 723 if (!journal->j_stats.ts_tid) 724 return -EINVAL; 725 726 write_lock(&journal->j_state_lock); 727 if (tid <= journal->j_commit_sequence) { 728 write_unlock(&journal->j_state_lock); 729 return -EALREADY; 730 } 731 732 if (journal->j_flags & JBD2_FULL_COMMIT_ONGOING || 733 (journal->j_flags & JBD2_FAST_COMMIT_ONGOING)) { 734 DEFINE_WAIT(wait); 735 736 prepare_to_wait(&journal->j_fc_wait, &wait, 737 TASK_UNINTERRUPTIBLE); 738 write_unlock(&journal->j_state_lock); 739 schedule(); 740 finish_wait(&journal->j_fc_wait, &wait); 741 return -EALREADY; 742 } 743 journal->j_flags |= JBD2_FAST_COMMIT_ONGOING; 744 write_unlock(&journal->j_state_lock); 745 jbd2_journal_lock_updates(journal); 746 747 return 0; 748 } 749 EXPORT_SYMBOL(jbd2_fc_begin_commit); 750 751 /* 752 * Stop a fast commit. If fallback is set, this function starts commit of 753 * TID tid before any other fast commit can start. 754 */ 755 static int __jbd2_fc_end_commit(journal_t *journal, tid_t tid, bool fallback) 756 { 757 jbd2_journal_unlock_updates(journal); 758 if (journal->j_fc_cleanup_callback) 759 journal->j_fc_cleanup_callback(journal, 0, tid); 760 write_lock(&journal->j_state_lock); 761 journal->j_flags &= ~JBD2_FAST_COMMIT_ONGOING; 762 if (fallback) 763 journal->j_flags |= JBD2_FULL_COMMIT_ONGOING; 764 write_unlock(&journal->j_state_lock); 765 wake_up(&journal->j_fc_wait); 766 if (fallback) 767 return jbd2_complete_transaction(journal, tid); 768 return 0; 769 } 770 771 int jbd2_fc_end_commit(journal_t *journal) 772 { 773 return __jbd2_fc_end_commit(journal, 0, false); 774 } 775 EXPORT_SYMBOL(jbd2_fc_end_commit); 776 777 int jbd2_fc_end_commit_fallback(journal_t *journal) 778 { 779 tid_t tid; 780 781 read_lock(&journal->j_state_lock); 782 tid = journal->j_running_transaction ? 783 journal->j_running_transaction->t_tid : 0; 784 read_unlock(&journal->j_state_lock); 785 return __jbd2_fc_end_commit(journal, tid, true); 786 } 787 EXPORT_SYMBOL(jbd2_fc_end_commit_fallback); 788 789 /* Return 1 when transaction with given tid has already committed. */ 790 int jbd2_transaction_committed(journal_t *journal, tid_t tid) 791 { 792 int ret = 1; 793 794 read_lock(&journal->j_state_lock); 795 if (journal->j_running_transaction && 796 journal->j_running_transaction->t_tid == tid) 797 ret = 0; 798 if (journal->j_committing_transaction && 799 journal->j_committing_transaction->t_tid == tid) 800 ret = 0; 801 read_unlock(&journal->j_state_lock); 802 return ret; 803 } 804 EXPORT_SYMBOL(jbd2_transaction_committed); 805 806 /* 807 * When this function returns the transaction corresponding to tid 808 * will be completed. If the transaction has currently running, start 809 * committing that transaction before waiting for it to complete. If 810 * the transaction id is stale, it is by definition already completed, 811 * so just return SUCCESS. 812 */ 813 int jbd2_complete_transaction(journal_t *journal, tid_t tid) 814 { 815 int need_to_wait = 1; 816 817 read_lock(&journal->j_state_lock); 818 if (journal->j_running_transaction && 819 journal->j_running_transaction->t_tid == tid) { 820 if (journal->j_commit_request != tid) { 821 /* transaction not yet started, so request it */ 822 read_unlock(&journal->j_state_lock); 823 jbd2_log_start_commit(journal, tid); 824 goto wait_commit; 825 } 826 } else if (!(journal->j_committing_transaction && 827 journal->j_committing_transaction->t_tid == tid)) 828 need_to_wait = 0; 829 read_unlock(&journal->j_state_lock); 830 if (!need_to_wait) 831 return 0; 832 wait_commit: 833 return jbd2_log_wait_commit(journal, tid); 834 } 835 EXPORT_SYMBOL(jbd2_complete_transaction); 836 837 /* 838 * Log buffer allocation routines: 839 */ 840 841 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp) 842 { 843 unsigned long blocknr; 844 845 write_lock(&journal->j_state_lock); 846 J_ASSERT(journal->j_free > 1); 847 848 blocknr = journal->j_head; 849 journal->j_head++; 850 journal->j_free--; 851 if (journal->j_head == journal->j_last) 852 journal->j_head = journal->j_first; 853 write_unlock(&journal->j_state_lock); 854 return jbd2_journal_bmap(journal, blocknr, retp); 855 } 856 857 /* Map one fast commit buffer for use by the file system */ 858 int jbd2_fc_get_buf(journal_t *journal, struct buffer_head **bh_out) 859 { 860 unsigned long long pblock; 861 unsigned long blocknr; 862 int ret = 0; 863 struct buffer_head *bh; 864 int fc_off; 865 866 *bh_out = NULL; 867 868 if (journal->j_fc_off + journal->j_fc_first < journal->j_fc_last) { 869 fc_off = journal->j_fc_off; 870 blocknr = journal->j_fc_first + fc_off; 871 journal->j_fc_off++; 872 } else { 873 ret = -EINVAL; 874 } 875 876 if (ret) 877 return ret; 878 879 ret = jbd2_journal_bmap(journal, blocknr, &pblock); 880 if (ret) 881 return ret; 882 883 bh = __getblk(journal->j_dev, pblock, journal->j_blocksize); 884 if (!bh) 885 return -ENOMEM; 886 887 888 journal->j_fc_wbuf[fc_off] = bh; 889 890 *bh_out = bh; 891 892 return 0; 893 } 894 EXPORT_SYMBOL(jbd2_fc_get_buf); 895 896 /* 897 * Wait on fast commit buffers that were allocated by jbd2_fc_get_buf 898 * for completion. 899 */ 900 int jbd2_fc_wait_bufs(journal_t *journal, int num_blks) 901 { 902 struct buffer_head *bh; 903 int i, j_fc_off; 904 905 j_fc_off = journal->j_fc_off; 906 907 /* 908 * Wait in reverse order to minimize chances of us being woken up before 909 * all IOs have completed 910 */ 911 for (i = j_fc_off - 1; i >= j_fc_off - num_blks; i--) { 912 bh = journal->j_fc_wbuf[i]; 913 wait_on_buffer(bh); 914 /* 915 * Update j_fc_off so jbd2_fc_release_bufs can release remain 916 * buffer head. 917 */ 918 if (unlikely(!buffer_uptodate(bh))) { 919 journal->j_fc_off = i + 1; 920 return -EIO; 921 } 922 put_bh(bh); 923 journal->j_fc_wbuf[i] = NULL; 924 } 925 926 return 0; 927 } 928 EXPORT_SYMBOL(jbd2_fc_wait_bufs); 929 930 int jbd2_fc_release_bufs(journal_t *journal) 931 { 932 struct buffer_head *bh; 933 int i, j_fc_off; 934 935 j_fc_off = journal->j_fc_off; 936 937 for (i = j_fc_off - 1; i >= 0; i--) { 938 bh = journal->j_fc_wbuf[i]; 939 if (!bh) 940 break; 941 put_bh(bh); 942 journal->j_fc_wbuf[i] = NULL; 943 } 944 945 return 0; 946 } 947 EXPORT_SYMBOL(jbd2_fc_release_bufs); 948 949 /* 950 * Conversion of logical to physical block numbers for the journal 951 * 952 * On external journals the journal blocks are identity-mapped, so 953 * this is a no-op. If needed, we can use j_blk_offset - everything is 954 * ready. 955 */ 956 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr, 957 unsigned long long *retp) 958 { 959 int err = 0; 960 unsigned long long ret; 961 sector_t block = blocknr; 962 963 if (journal->j_bmap) { 964 err = journal->j_bmap(journal, &block); 965 if (err == 0) 966 *retp = block; 967 } else if (journal->j_inode) { 968 ret = bmap(journal->j_inode, &block); 969 970 if (ret || !block) { 971 printk(KERN_ALERT "%s: journal block not found " 972 "at offset %lu on %s\n", 973 __func__, blocknr, journal->j_devname); 974 err = -EIO; 975 jbd2_journal_abort(journal, err); 976 } else { 977 *retp = block; 978 } 979 980 } else { 981 *retp = blocknr; /* +journal->j_blk_offset */ 982 } 983 return err; 984 } 985 986 /* 987 * We play buffer_head aliasing tricks to write data/metadata blocks to 988 * the journal without copying their contents, but for journal 989 * descriptor blocks we do need to generate bona fide buffers. 990 * 991 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying 992 * the buffer's contents they really should run flush_dcache_page(bh->b_page). 993 * But we don't bother doing that, so there will be coherency problems with 994 * mmaps of blockdevs which hold live JBD-controlled filesystems. 995 */ 996 struct buffer_head * 997 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type) 998 { 999 journal_t *journal = transaction->t_journal; 1000 struct buffer_head *bh; 1001 unsigned long long blocknr; 1002 journal_header_t *header; 1003 int err; 1004 1005 err = jbd2_journal_next_log_block(journal, &blocknr); 1006 1007 if (err) 1008 return NULL; 1009 1010 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize); 1011 if (!bh) 1012 return NULL; 1013 atomic_dec(&transaction->t_outstanding_credits); 1014 lock_buffer(bh); 1015 memset(bh->b_data, 0, journal->j_blocksize); 1016 header = (journal_header_t *)bh->b_data; 1017 header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER); 1018 header->h_blocktype = cpu_to_be32(type); 1019 header->h_sequence = cpu_to_be32(transaction->t_tid); 1020 set_buffer_uptodate(bh); 1021 unlock_buffer(bh); 1022 BUFFER_TRACE(bh, "return this buffer"); 1023 return bh; 1024 } 1025 1026 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh) 1027 { 1028 struct jbd2_journal_block_tail *tail; 1029 __u32 csum; 1030 1031 if (!jbd2_journal_has_csum_v2or3(j)) 1032 return; 1033 1034 tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize - 1035 sizeof(struct jbd2_journal_block_tail)); 1036 tail->t_checksum = 0; 1037 csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize); 1038 tail->t_checksum = cpu_to_be32(csum); 1039 } 1040 1041 /* 1042 * Return tid of the oldest transaction in the journal and block in the journal 1043 * where the transaction starts. 1044 * 1045 * If the journal is now empty, return which will be the next transaction ID 1046 * we will write and where will that transaction start. 1047 * 1048 * The return value is 0 if journal tail cannot be pushed any further, 1 if 1049 * it can. 1050 */ 1051 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid, 1052 unsigned long *block) 1053 { 1054 transaction_t *transaction; 1055 int ret; 1056 1057 read_lock(&journal->j_state_lock); 1058 spin_lock(&journal->j_list_lock); 1059 transaction = journal->j_checkpoint_transactions; 1060 if (transaction) { 1061 *tid = transaction->t_tid; 1062 *block = transaction->t_log_start; 1063 } else if ((transaction = journal->j_committing_transaction) != NULL) { 1064 *tid = transaction->t_tid; 1065 *block = transaction->t_log_start; 1066 } else if ((transaction = journal->j_running_transaction) != NULL) { 1067 *tid = transaction->t_tid; 1068 *block = journal->j_head; 1069 } else { 1070 *tid = journal->j_transaction_sequence; 1071 *block = journal->j_head; 1072 } 1073 ret = tid_gt(*tid, journal->j_tail_sequence); 1074 spin_unlock(&journal->j_list_lock); 1075 read_unlock(&journal->j_state_lock); 1076 1077 return ret; 1078 } 1079 1080 /* 1081 * Update information in journal structure and in on disk journal superblock 1082 * about log tail. This function does not check whether information passed in 1083 * really pushes log tail further. It's responsibility of the caller to make 1084 * sure provided log tail information is valid (e.g. by holding 1085 * j_checkpoint_mutex all the time between computing log tail and calling this 1086 * function as is the case with jbd2_cleanup_journal_tail()). 1087 * 1088 * Requires j_checkpoint_mutex 1089 */ 1090 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block) 1091 { 1092 unsigned long freed; 1093 int ret; 1094 1095 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1096 1097 /* 1098 * We cannot afford for write to remain in drive's caches since as 1099 * soon as we update j_tail, next transaction can start reusing journal 1100 * space and if we lose sb update during power failure we'd replay 1101 * old transaction with possibly newly overwritten data. 1102 */ 1103 ret = jbd2_journal_update_sb_log_tail(journal, tid, block, 1104 REQ_SYNC | REQ_FUA); 1105 if (ret) 1106 goto out; 1107 1108 write_lock(&journal->j_state_lock); 1109 freed = block - journal->j_tail; 1110 if (block < journal->j_tail) 1111 freed += journal->j_last - journal->j_first; 1112 1113 trace_jbd2_update_log_tail(journal, tid, block, freed); 1114 jbd2_debug(1, 1115 "Cleaning journal tail from %u to %u (offset %lu), " 1116 "freeing %lu\n", 1117 journal->j_tail_sequence, tid, block, freed); 1118 1119 journal->j_free += freed; 1120 journal->j_tail_sequence = tid; 1121 journal->j_tail = block; 1122 write_unlock(&journal->j_state_lock); 1123 1124 out: 1125 return ret; 1126 } 1127 1128 /* 1129 * This is a variation of __jbd2_update_log_tail which checks for validity of 1130 * provided log tail and locks j_checkpoint_mutex. So it is safe against races 1131 * with other threads updating log tail. 1132 */ 1133 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block) 1134 { 1135 mutex_lock_io(&journal->j_checkpoint_mutex); 1136 if (tid_gt(tid, journal->j_tail_sequence)) 1137 __jbd2_update_log_tail(journal, tid, block); 1138 mutex_unlock(&journal->j_checkpoint_mutex); 1139 } 1140 1141 struct jbd2_stats_proc_session { 1142 journal_t *journal; 1143 struct transaction_stats_s *stats; 1144 int start; 1145 int max; 1146 }; 1147 1148 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos) 1149 { 1150 return *pos ? NULL : SEQ_START_TOKEN; 1151 } 1152 1153 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos) 1154 { 1155 (*pos)++; 1156 return NULL; 1157 } 1158 1159 static int jbd2_seq_info_show(struct seq_file *seq, void *v) 1160 { 1161 struct jbd2_stats_proc_session *s = seq->private; 1162 1163 if (v != SEQ_START_TOKEN) 1164 return 0; 1165 seq_printf(seq, "%lu transactions (%lu requested), " 1166 "each up to %u blocks\n", 1167 s->stats->ts_tid, s->stats->ts_requested, 1168 s->journal->j_max_transaction_buffers); 1169 if (s->stats->ts_tid == 0) 1170 return 0; 1171 seq_printf(seq, "average: \n %ums waiting for transaction\n", 1172 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid)); 1173 seq_printf(seq, " %ums request delay\n", 1174 (s->stats->ts_requested == 0) ? 0 : 1175 jiffies_to_msecs(s->stats->run.rs_request_delay / 1176 s->stats->ts_requested)); 1177 seq_printf(seq, " %ums running transaction\n", 1178 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid)); 1179 seq_printf(seq, " %ums transaction was being locked\n", 1180 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid)); 1181 seq_printf(seq, " %ums flushing data (in ordered mode)\n", 1182 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid)); 1183 seq_printf(seq, " %ums logging transaction\n", 1184 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid)); 1185 seq_printf(seq, " %lluus average transaction commit time\n", 1186 div_u64(s->journal->j_average_commit_time, 1000)); 1187 seq_printf(seq, " %lu handles per transaction\n", 1188 s->stats->run.rs_handle_count / s->stats->ts_tid); 1189 seq_printf(seq, " %lu blocks per transaction\n", 1190 s->stats->run.rs_blocks / s->stats->ts_tid); 1191 seq_printf(seq, " %lu logged blocks per transaction\n", 1192 s->stats->run.rs_blocks_logged / s->stats->ts_tid); 1193 return 0; 1194 } 1195 1196 static void jbd2_seq_info_stop(struct seq_file *seq, void *v) 1197 { 1198 } 1199 1200 static const struct seq_operations jbd2_seq_info_ops = { 1201 .start = jbd2_seq_info_start, 1202 .next = jbd2_seq_info_next, 1203 .stop = jbd2_seq_info_stop, 1204 .show = jbd2_seq_info_show, 1205 }; 1206 1207 static int jbd2_seq_info_open(struct inode *inode, struct file *file) 1208 { 1209 journal_t *journal = pde_data(inode); 1210 struct jbd2_stats_proc_session *s; 1211 int rc, size; 1212 1213 s = kmalloc(sizeof(*s), GFP_KERNEL); 1214 if (s == NULL) 1215 return -ENOMEM; 1216 size = sizeof(struct transaction_stats_s); 1217 s->stats = kmalloc(size, GFP_KERNEL); 1218 if (s->stats == NULL) { 1219 kfree(s); 1220 return -ENOMEM; 1221 } 1222 spin_lock(&journal->j_history_lock); 1223 memcpy(s->stats, &journal->j_stats, size); 1224 s->journal = journal; 1225 spin_unlock(&journal->j_history_lock); 1226 1227 rc = seq_open(file, &jbd2_seq_info_ops); 1228 if (rc == 0) { 1229 struct seq_file *m = file->private_data; 1230 m->private = s; 1231 } else { 1232 kfree(s->stats); 1233 kfree(s); 1234 } 1235 return rc; 1236 1237 } 1238 1239 static int jbd2_seq_info_release(struct inode *inode, struct file *file) 1240 { 1241 struct seq_file *seq = file->private_data; 1242 struct jbd2_stats_proc_session *s = seq->private; 1243 kfree(s->stats); 1244 kfree(s); 1245 return seq_release(inode, file); 1246 } 1247 1248 static const struct proc_ops jbd2_info_proc_ops = { 1249 .proc_open = jbd2_seq_info_open, 1250 .proc_read = seq_read, 1251 .proc_lseek = seq_lseek, 1252 .proc_release = jbd2_seq_info_release, 1253 }; 1254 1255 static struct proc_dir_entry *proc_jbd2_stats; 1256 1257 static void jbd2_stats_proc_init(journal_t *journal) 1258 { 1259 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats); 1260 if (journal->j_proc_entry) { 1261 proc_create_data("info", S_IRUGO, journal->j_proc_entry, 1262 &jbd2_info_proc_ops, journal); 1263 } 1264 } 1265 1266 static void jbd2_stats_proc_exit(journal_t *journal) 1267 { 1268 remove_proc_entry("info", journal->j_proc_entry); 1269 remove_proc_entry(journal->j_devname, proc_jbd2_stats); 1270 } 1271 1272 /* Minimum size of descriptor tag */ 1273 static int jbd2_min_tag_size(void) 1274 { 1275 /* 1276 * Tag with 32-bit block numbers does not use last four bytes of the 1277 * structure 1278 */ 1279 return sizeof(journal_block_tag_t) - 4; 1280 } 1281 1282 /** 1283 * jbd2_journal_shrink_scan() 1284 * @shrink: shrinker to work on 1285 * @sc: reclaim request to process 1286 * 1287 * Scan the checkpointed buffer on the checkpoint list and release the 1288 * journal_head. 1289 */ 1290 static unsigned long jbd2_journal_shrink_scan(struct shrinker *shrink, 1291 struct shrink_control *sc) 1292 { 1293 journal_t *journal = container_of(shrink, journal_t, j_shrinker); 1294 unsigned long nr_to_scan = sc->nr_to_scan; 1295 unsigned long nr_shrunk; 1296 unsigned long count; 1297 1298 count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count); 1299 trace_jbd2_shrink_scan_enter(journal, sc->nr_to_scan, count); 1300 1301 nr_shrunk = jbd2_journal_shrink_checkpoint_list(journal, &nr_to_scan); 1302 1303 count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count); 1304 trace_jbd2_shrink_scan_exit(journal, nr_to_scan, nr_shrunk, count); 1305 1306 return nr_shrunk; 1307 } 1308 1309 /** 1310 * jbd2_journal_shrink_count() 1311 * @shrink: shrinker to work on 1312 * @sc: reclaim request to process 1313 * 1314 * Count the number of checkpoint buffers on the checkpoint list. 1315 */ 1316 static unsigned long jbd2_journal_shrink_count(struct shrinker *shrink, 1317 struct shrink_control *sc) 1318 { 1319 journal_t *journal = container_of(shrink, journal_t, j_shrinker); 1320 unsigned long count; 1321 1322 count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count); 1323 trace_jbd2_shrink_count(journal, sc->nr_to_scan, count); 1324 1325 return count; 1326 } 1327 1328 /* 1329 * If the journal init or create aborts, we need to mark the journal 1330 * superblock as being NULL to prevent the journal destroy from writing 1331 * back a bogus superblock. 1332 */ 1333 static void journal_fail_superblock(journal_t *journal) 1334 { 1335 struct buffer_head *bh = journal->j_sb_buffer; 1336 brelse(bh); 1337 journal->j_sb_buffer = NULL; 1338 } 1339 1340 /* 1341 * Check the superblock for a given journal, performing initial 1342 * validation of the format. 1343 */ 1344 static int journal_check_superblock(journal_t *journal) 1345 { 1346 journal_superblock_t *sb = journal->j_superblock; 1347 int num_fc_blks; 1348 int err = -EINVAL; 1349 1350 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) || 1351 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) { 1352 printk(KERN_WARNING "JBD2: no valid journal superblock found\n"); 1353 return err; 1354 } 1355 1356 if (be32_to_cpu(sb->s_header.h_blocktype) != JBD2_SUPERBLOCK_V1 && 1357 be32_to_cpu(sb->s_header.h_blocktype) != JBD2_SUPERBLOCK_V2) { 1358 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n"); 1359 return err; 1360 } 1361 1362 if (be32_to_cpu(sb->s_maxlen) > journal->j_total_len) { 1363 printk(KERN_WARNING "JBD2: journal file too short\n"); 1364 return err; 1365 } 1366 1367 if (be32_to_cpu(sb->s_first) == 0 || 1368 be32_to_cpu(sb->s_first) >= journal->j_total_len) { 1369 printk(KERN_WARNING 1370 "JBD2: Invalid start block of journal: %u\n", 1371 be32_to_cpu(sb->s_first)); 1372 return err; 1373 } 1374 1375 /* 1376 * If this is a V2 superblock, then we have to check the 1377 * features flags on it. 1378 */ 1379 if (!jbd2_format_support_feature(journal)) 1380 return 0; 1381 1382 if ((sb->s_feature_ro_compat & 1383 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) || 1384 (sb->s_feature_incompat & 1385 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) { 1386 printk(KERN_WARNING "JBD2: Unrecognised features on journal\n"); 1387 return err; 1388 } 1389 1390 num_fc_blks = jbd2_has_feature_fast_commit(journal) ? 1391 jbd2_journal_get_num_fc_blks(sb) : 0; 1392 if (be32_to_cpu(sb->s_maxlen) < JBD2_MIN_JOURNAL_BLOCKS || 1393 be32_to_cpu(sb->s_maxlen) - JBD2_MIN_JOURNAL_BLOCKS < num_fc_blks) { 1394 printk(KERN_ERR "JBD2: journal file too short %u,%d\n", 1395 be32_to_cpu(sb->s_maxlen), num_fc_blks); 1396 return err; 1397 } 1398 1399 if (jbd2_has_feature_csum2(journal) && 1400 jbd2_has_feature_csum3(journal)) { 1401 /* Can't have checksum v2 and v3 at the same time! */ 1402 printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 " 1403 "at the same time!\n"); 1404 return err; 1405 } 1406 1407 if (jbd2_journal_has_csum_v2or3_feature(journal) && 1408 jbd2_has_feature_checksum(journal)) { 1409 /* Can't have checksum v1 and v2 on at the same time! */ 1410 printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 " 1411 "at the same time!\n"); 1412 return err; 1413 } 1414 1415 /* Load the checksum driver */ 1416 if (jbd2_journal_has_csum_v2or3_feature(journal)) { 1417 if (sb->s_checksum_type != JBD2_CRC32C_CHKSUM) { 1418 printk(KERN_ERR "JBD2: Unknown checksum type\n"); 1419 return err; 1420 } 1421 1422 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 1423 if (IS_ERR(journal->j_chksum_driver)) { 1424 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n"); 1425 err = PTR_ERR(journal->j_chksum_driver); 1426 journal->j_chksum_driver = NULL; 1427 return err; 1428 } 1429 /* Check superblock checksum */ 1430 if (sb->s_checksum != jbd2_superblock_csum(journal, sb)) { 1431 printk(KERN_ERR "JBD2: journal checksum error\n"); 1432 err = -EFSBADCRC; 1433 return err; 1434 } 1435 } 1436 1437 return 0; 1438 } 1439 1440 static int journal_revoke_records_per_block(journal_t *journal) 1441 { 1442 int record_size; 1443 int space = journal->j_blocksize - sizeof(jbd2_journal_revoke_header_t); 1444 1445 if (jbd2_has_feature_64bit(journal)) 1446 record_size = 8; 1447 else 1448 record_size = 4; 1449 1450 if (jbd2_journal_has_csum_v2or3(journal)) 1451 space -= sizeof(struct jbd2_journal_block_tail); 1452 return space / record_size; 1453 } 1454 1455 /* 1456 * Load the on-disk journal superblock and read the key fields into the 1457 * journal_t. 1458 */ 1459 static int journal_load_superblock(journal_t *journal) 1460 { 1461 int err; 1462 struct buffer_head *bh; 1463 journal_superblock_t *sb; 1464 1465 bh = getblk_unmovable(journal->j_dev, journal->j_blk_offset, 1466 journal->j_blocksize); 1467 if (bh) 1468 err = bh_read(bh, 0); 1469 if (!bh || err < 0) { 1470 pr_err("%s: Cannot read journal superblock\n", __func__); 1471 brelse(bh); 1472 return -EIO; 1473 } 1474 1475 journal->j_sb_buffer = bh; 1476 sb = (journal_superblock_t *)bh->b_data; 1477 journal->j_superblock = sb; 1478 err = journal_check_superblock(journal); 1479 if (err) { 1480 journal_fail_superblock(journal); 1481 return err; 1482 } 1483 1484 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence); 1485 journal->j_tail = be32_to_cpu(sb->s_start); 1486 journal->j_first = be32_to_cpu(sb->s_first); 1487 journal->j_errno = be32_to_cpu(sb->s_errno); 1488 journal->j_last = be32_to_cpu(sb->s_maxlen); 1489 1490 if (be32_to_cpu(sb->s_maxlen) < journal->j_total_len) 1491 journal->j_total_len = be32_to_cpu(sb->s_maxlen); 1492 /* Precompute checksum seed for all metadata */ 1493 if (jbd2_journal_has_csum_v2or3(journal)) 1494 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid, 1495 sizeof(sb->s_uuid)); 1496 journal->j_revoke_records_per_block = 1497 journal_revoke_records_per_block(journal); 1498 1499 if (jbd2_has_feature_fast_commit(journal)) { 1500 journal->j_fc_last = be32_to_cpu(sb->s_maxlen); 1501 journal->j_last = journal->j_fc_last - 1502 jbd2_journal_get_num_fc_blks(sb); 1503 journal->j_fc_first = journal->j_last + 1; 1504 journal->j_fc_off = 0; 1505 } 1506 1507 return 0; 1508 } 1509 1510 1511 /* 1512 * Management for journal control blocks: functions to create and 1513 * destroy journal_t structures, and to initialise and read existing 1514 * journal blocks from disk. */ 1515 1516 /* First: create and setup a journal_t object in memory. We initialise 1517 * very few fields yet: that has to wait until we have created the 1518 * journal structures from from scratch, or loaded them from disk. */ 1519 1520 static journal_t *journal_init_common(struct block_device *bdev, 1521 struct block_device *fs_dev, 1522 unsigned long long start, int len, int blocksize) 1523 { 1524 static struct lock_class_key jbd2_trans_commit_key; 1525 journal_t *journal; 1526 int err; 1527 int n; 1528 1529 journal = kzalloc(sizeof(*journal), GFP_KERNEL); 1530 if (!journal) 1531 return ERR_PTR(-ENOMEM); 1532 1533 journal->j_blocksize = blocksize; 1534 journal->j_dev = bdev; 1535 journal->j_fs_dev = fs_dev; 1536 journal->j_blk_offset = start; 1537 journal->j_total_len = len; 1538 1539 err = journal_load_superblock(journal); 1540 if (err) 1541 goto err_cleanup; 1542 1543 init_waitqueue_head(&journal->j_wait_transaction_locked); 1544 init_waitqueue_head(&journal->j_wait_done_commit); 1545 init_waitqueue_head(&journal->j_wait_commit); 1546 init_waitqueue_head(&journal->j_wait_updates); 1547 init_waitqueue_head(&journal->j_wait_reserved); 1548 init_waitqueue_head(&journal->j_fc_wait); 1549 mutex_init(&journal->j_abort_mutex); 1550 mutex_init(&journal->j_barrier); 1551 mutex_init(&journal->j_checkpoint_mutex); 1552 spin_lock_init(&journal->j_revoke_lock); 1553 spin_lock_init(&journal->j_list_lock); 1554 spin_lock_init(&journal->j_history_lock); 1555 rwlock_init(&journal->j_state_lock); 1556 1557 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE); 1558 journal->j_min_batch_time = 0; 1559 journal->j_max_batch_time = 15000; /* 15ms */ 1560 atomic_set(&journal->j_reserved_credits, 0); 1561 lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle", 1562 &jbd2_trans_commit_key, 0); 1563 1564 /* The journal is marked for error until we succeed with recovery! */ 1565 journal->j_flags = JBD2_ABORT; 1566 1567 /* Set up a default-sized revoke table for the new mount. */ 1568 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH); 1569 if (err) 1570 goto err_cleanup; 1571 1572 /* 1573 * journal descriptor can store up to n blocks, we need enough 1574 * buffers to write out full descriptor block. 1575 */ 1576 err = -ENOMEM; 1577 n = journal->j_blocksize / jbd2_min_tag_size(); 1578 journal->j_wbufsize = n; 1579 journal->j_fc_wbuf = NULL; 1580 journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *), 1581 GFP_KERNEL); 1582 if (!journal->j_wbuf) 1583 goto err_cleanup; 1584 1585 err = percpu_counter_init(&journal->j_checkpoint_jh_count, 0, 1586 GFP_KERNEL); 1587 if (err) 1588 goto err_cleanup; 1589 1590 journal->j_shrink_transaction = NULL; 1591 journal->j_shrinker.scan_objects = jbd2_journal_shrink_scan; 1592 journal->j_shrinker.count_objects = jbd2_journal_shrink_count; 1593 journal->j_shrinker.seeks = DEFAULT_SEEKS; 1594 journal->j_shrinker.batch = journal->j_max_transaction_buffers; 1595 err = register_shrinker(&journal->j_shrinker, "jbd2-journal:(%u:%u)", 1596 MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev)); 1597 if (err) 1598 goto err_cleanup; 1599 1600 return journal; 1601 1602 err_cleanup: 1603 percpu_counter_destroy(&journal->j_checkpoint_jh_count); 1604 kfree(journal->j_wbuf); 1605 jbd2_journal_destroy_revoke(journal); 1606 journal_fail_superblock(journal); 1607 kfree(journal); 1608 return ERR_PTR(err); 1609 } 1610 1611 /* jbd2_journal_init_dev and jbd2_journal_init_inode: 1612 * 1613 * Create a journal structure assigned some fixed set of disk blocks to 1614 * the journal. We don't actually touch those disk blocks yet, but we 1615 * need to set up all of the mapping information to tell the journaling 1616 * system where the journal blocks are. 1617 * 1618 */ 1619 1620 /** 1621 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure 1622 * @bdev: Block device on which to create the journal 1623 * @fs_dev: Device which hold journalled filesystem for this journal. 1624 * @start: Block nr Start of journal. 1625 * @len: Length of the journal in blocks. 1626 * @blocksize: blocksize of journalling device 1627 * 1628 * Returns: a newly created journal_t * 1629 * 1630 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous 1631 * range of blocks on an arbitrary block device. 1632 * 1633 */ 1634 journal_t *jbd2_journal_init_dev(struct block_device *bdev, 1635 struct block_device *fs_dev, 1636 unsigned long long start, int len, int blocksize) 1637 { 1638 journal_t *journal; 1639 1640 journal = journal_init_common(bdev, fs_dev, start, len, blocksize); 1641 if (IS_ERR(journal)) 1642 return ERR_CAST(journal); 1643 1644 snprintf(journal->j_devname, sizeof(journal->j_devname), 1645 "%pg", journal->j_dev); 1646 strreplace(journal->j_devname, '/', '!'); 1647 jbd2_stats_proc_init(journal); 1648 1649 return journal; 1650 } 1651 1652 /** 1653 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode. 1654 * @inode: An inode to create the journal in 1655 * 1656 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as 1657 * the journal. The inode must exist already, must support bmap() and 1658 * must have all data blocks preallocated. 1659 */ 1660 journal_t *jbd2_journal_init_inode(struct inode *inode) 1661 { 1662 journal_t *journal; 1663 sector_t blocknr; 1664 int err = 0; 1665 1666 blocknr = 0; 1667 err = bmap(inode, &blocknr); 1668 if (err || !blocknr) { 1669 pr_err("%s: Cannot locate journal superblock\n", __func__); 1670 return err ? ERR_PTR(err) : ERR_PTR(-EINVAL); 1671 } 1672 1673 jbd2_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n", 1674 inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size, 1675 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize); 1676 1677 journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev, 1678 blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits, 1679 inode->i_sb->s_blocksize); 1680 if (IS_ERR(journal)) 1681 return ERR_CAST(journal); 1682 1683 journal->j_inode = inode; 1684 snprintf(journal->j_devname, sizeof(journal->j_devname), 1685 "%pg-%lu", journal->j_dev, journal->j_inode->i_ino); 1686 strreplace(journal->j_devname, '/', '!'); 1687 jbd2_stats_proc_init(journal); 1688 1689 return journal; 1690 } 1691 1692 /* 1693 * Given a journal_t structure, initialise the various fields for 1694 * startup of a new journaling session. We use this both when creating 1695 * a journal, and after recovering an old journal to reset it for 1696 * subsequent use. 1697 */ 1698 1699 static int journal_reset(journal_t *journal) 1700 { 1701 journal_superblock_t *sb = journal->j_superblock; 1702 unsigned long long first, last; 1703 1704 first = be32_to_cpu(sb->s_first); 1705 last = be32_to_cpu(sb->s_maxlen); 1706 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) { 1707 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n", 1708 first, last); 1709 journal_fail_superblock(journal); 1710 return -EINVAL; 1711 } 1712 1713 journal->j_first = first; 1714 journal->j_last = last; 1715 1716 if (journal->j_head != 0 && journal->j_flags & JBD2_CYCLE_RECORD) { 1717 /* 1718 * Disable the cycled recording mode if the journal head block 1719 * number is not correct. 1720 */ 1721 if (journal->j_head < first || journal->j_head >= last) { 1722 printk(KERN_WARNING "JBD2: Incorrect Journal head block %lu, " 1723 "disable journal_cycle_record\n", 1724 journal->j_head); 1725 journal->j_head = journal->j_first; 1726 } 1727 } else { 1728 journal->j_head = journal->j_first; 1729 } 1730 journal->j_tail = journal->j_head; 1731 journal->j_free = journal->j_last - journal->j_first; 1732 1733 journal->j_tail_sequence = journal->j_transaction_sequence; 1734 journal->j_commit_sequence = journal->j_transaction_sequence - 1; 1735 journal->j_commit_request = journal->j_commit_sequence; 1736 1737 journal->j_max_transaction_buffers = jbd2_journal_get_max_txn_bufs(journal); 1738 1739 /* 1740 * Now that journal recovery is done, turn fast commits off here. This 1741 * way, if fast commit was enabled before the crash but if now FS has 1742 * disabled it, we don't enable fast commits. 1743 */ 1744 jbd2_clear_feature_fast_commit(journal); 1745 1746 /* 1747 * As a special case, if the on-disk copy is already marked as needing 1748 * no recovery (s_start == 0), then we can safely defer the superblock 1749 * update until the next commit by setting JBD2_FLUSHED. This avoids 1750 * attempting a write to a potential-readonly device. 1751 */ 1752 if (sb->s_start == 0) { 1753 jbd2_debug(1, "JBD2: Skipping superblock update on recovered sb " 1754 "(start %ld, seq %u, errno %d)\n", 1755 journal->j_tail, journal->j_tail_sequence, 1756 journal->j_errno); 1757 journal->j_flags |= JBD2_FLUSHED; 1758 } else { 1759 /* Lock here to make assertions happy... */ 1760 mutex_lock_io(&journal->j_checkpoint_mutex); 1761 /* 1762 * Update log tail information. We use REQ_FUA since new 1763 * transaction will start reusing journal space and so we 1764 * must make sure information about current log tail is on 1765 * disk before that. 1766 */ 1767 jbd2_journal_update_sb_log_tail(journal, 1768 journal->j_tail_sequence, 1769 journal->j_tail, 1770 REQ_SYNC | REQ_FUA); 1771 mutex_unlock(&journal->j_checkpoint_mutex); 1772 } 1773 return jbd2_journal_start_thread(journal); 1774 } 1775 1776 /* 1777 * This function expects that the caller will have locked the journal 1778 * buffer head, and will return with it unlocked 1779 */ 1780 static int jbd2_write_superblock(journal_t *journal, blk_opf_t write_flags) 1781 { 1782 struct buffer_head *bh = journal->j_sb_buffer; 1783 journal_superblock_t *sb = journal->j_superblock; 1784 int ret = 0; 1785 1786 /* Buffer got discarded which means block device got invalidated */ 1787 if (!buffer_mapped(bh)) { 1788 unlock_buffer(bh); 1789 return -EIO; 1790 } 1791 1792 trace_jbd2_write_superblock(journal, write_flags); 1793 if (!(journal->j_flags & JBD2_BARRIER)) 1794 write_flags &= ~(REQ_FUA | REQ_PREFLUSH); 1795 if (buffer_write_io_error(bh)) { 1796 /* 1797 * Oh, dear. A previous attempt to write the journal 1798 * superblock failed. This could happen because the 1799 * USB device was yanked out. Or it could happen to 1800 * be a transient write error and maybe the block will 1801 * be remapped. Nothing we can do but to retry the 1802 * write and hope for the best. 1803 */ 1804 printk(KERN_ERR "JBD2: previous I/O error detected " 1805 "for journal superblock update for %s.\n", 1806 journal->j_devname); 1807 clear_buffer_write_io_error(bh); 1808 set_buffer_uptodate(bh); 1809 } 1810 if (jbd2_journal_has_csum_v2or3(journal)) 1811 sb->s_checksum = jbd2_superblock_csum(journal, sb); 1812 get_bh(bh); 1813 bh->b_end_io = end_buffer_write_sync; 1814 submit_bh(REQ_OP_WRITE | write_flags, bh); 1815 wait_on_buffer(bh); 1816 if (buffer_write_io_error(bh)) { 1817 clear_buffer_write_io_error(bh); 1818 set_buffer_uptodate(bh); 1819 ret = -EIO; 1820 } 1821 if (ret) { 1822 printk(KERN_ERR "JBD2: I/O error when updating journal superblock for %s.\n", 1823 journal->j_devname); 1824 if (!is_journal_aborted(journal)) 1825 jbd2_journal_abort(journal, ret); 1826 } 1827 1828 return ret; 1829 } 1830 1831 /** 1832 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk. 1833 * @journal: The journal to update. 1834 * @tail_tid: TID of the new transaction at the tail of the log 1835 * @tail_block: The first block of the transaction at the tail of the log 1836 * @write_flags: Flags for the journal sb write operation 1837 * 1838 * Update a journal's superblock information about log tail and write it to 1839 * disk, waiting for the IO to complete. 1840 */ 1841 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid, 1842 unsigned long tail_block, 1843 blk_opf_t write_flags) 1844 { 1845 journal_superblock_t *sb = journal->j_superblock; 1846 int ret; 1847 1848 if (is_journal_aborted(journal)) 1849 return -EIO; 1850 if (test_bit(JBD2_CHECKPOINT_IO_ERROR, &journal->j_atomic_flags)) { 1851 jbd2_journal_abort(journal, -EIO); 1852 return -EIO; 1853 } 1854 1855 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1856 jbd2_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n", 1857 tail_block, tail_tid); 1858 1859 lock_buffer(journal->j_sb_buffer); 1860 sb->s_sequence = cpu_to_be32(tail_tid); 1861 sb->s_start = cpu_to_be32(tail_block); 1862 1863 ret = jbd2_write_superblock(journal, write_flags); 1864 if (ret) 1865 goto out; 1866 1867 /* Log is no longer empty */ 1868 write_lock(&journal->j_state_lock); 1869 WARN_ON(!sb->s_sequence); 1870 journal->j_flags &= ~JBD2_FLUSHED; 1871 write_unlock(&journal->j_state_lock); 1872 1873 out: 1874 return ret; 1875 } 1876 1877 /** 1878 * jbd2_mark_journal_empty() - Mark on disk journal as empty. 1879 * @journal: The journal to update. 1880 * @write_flags: Flags for the journal sb write operation 1881 * 1882 * Update a journal's dynamic superblock fields to show that journal is empty. 1883 * Write updated superblock to disk waiting for IO to complete. 1884 */ 1885 static void jbd2_mark_journal_empty(journal_t *journal, blk_opf_t write_flags) 1886 { 1887 journal_superblock_t *sb = journal->j_superblock; 1888 bool had_fast_commit = false; 1889 1890 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1891 lock_buffer(journal->j_sb_buffer); 1892 if (sb->s_start == 0) { /* Is it already empty? */ 1893 unlock_buffer(journal->j_sb_buffer); 1894 return; 1895 } 1896 1897 jbd2_debug(1, "JBD2: Marking journal as empty (seq %u)\n", 1898 journal->j_tail_sequence); 1899 1900 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence); 1901 sb->s_start = cpu_to_be32(0); 1902 sb->s_head = cpu_to_be32(journal->j_head); 1903 if (jbd2_has_feature_fast_commit(journal)) { 1904 /* 1905 * When journal is clean, no need to commit fast commit flag and 1906 * make file system incompatible with older kernels. 1907 */ 1908 jbd2_clear_feature_fast_commit(journal); 1909 had_fast_commit = true; 1910 } 1911 1912 jbd2_write_superblock(journal, write_flags); 1913 1914 if (had_fast_commit) 1915 jbd2_set_feature_fast_commit(journal); 1916 1917 /* Log is no longer empty */ 1918 write_lock(&journal->j_state_lock); 1919 journal->j_flags |= JBD2_FLUSHED; 1920 write_unlock(&journal->j_state_lock); 1921 } 1922 1923 /** 1924 * __jbd2_journal_erase() - Discard or zeroout journal blocks (excluding superblock) 1925 * @journal: The journal to erase. 1926 * @flags: A discard/zeroout request is sent for each physically contigous 1927 * region of the journal. Either JBD2_JOURNAL_FLUSH_DISCARD or 1928 * JBD2_JOURNAL_FLUSH_ZEROOUT must be set to determine which operation 1929 * to perform. 1930 * 1931 * Note: JBD2_JOURNAL_FLUSH_ZEROOUT attempts to use hardware offload. Zeroes 1932 * will be explicitly written if no hardware offload is available, see 1933 * blkdev_issue_zeroout for more details. 1934 */ 1935 static int __jbd2_journal_erase(journal_t *journal, unsigned int flags) 1936 { 1937 int err = 0; 1938 unsigned long block, log_offset; /* logical */ 1939 unsigned long long phys_block, block_start, block_stop; /* physical */ 1940 loff_t byte_start, byte_stop, byte_count; 1941 1942 /* flags must be set to either discard or zeroout */ 1943 if ((flags & ~JBD2_JOURNAL_FLUSH_VALID) || !flags || 1944 ((flags & JBD2_JOURNAL_FLUSH_DISCARD) && 1945 (flags & JBD2_JOURNAL_FLUSH_ZEROOUT))) 1946 return -EINVAL; 1947 1948 if ((flags & JBD2_JOURNAL_FLUSH_DISCARD) && 1949 !bdev_max_discard_sectors(journal->j_dev)) 1950 return -EOPNOTSUPP; 1951 1952 /* 1953 * lookup block mapping and issue discard/zeroout for each 1954 * contiguous region 1955 */ 1956 log_offset = be32_to_cpu(journal->j_superblock->s_first); 1957 block_start = ~0ULL; 1958 for (block = log_offset; block < journal->j_total_len; block++) { 1959 err = jbd2_journal_bmap(journal, block, &phys_block); 1960 if (err) { 1961 pr_err("JBD2: bad block at offset %lu", block); 1962 return err; 1963 } 1964 1965 if (block_start == ~0ULL) { 1966 block_start = phys_block; 1967 block_stop = block_start - 1; 1968 } 1969 1970 /* 1971 * last block not contiguous with current block, 1972 * process last contiguous region and return to this block on 1973 * next loop 1974 */ 1975 if (phys_block != block_stop + 1) { 1976 block--; 1977 } else { 1978 block_stop++; 1979 /* 1980 * if this isn't the last block of journal, 1981 * no need to process now because next block may also 1982 * be part of this contiguous region 1983 */ 1984 if (block != journal->j_total_len - 1) 1985 continue; 1986 } 1987 1988 /* 1989 * end of contiguous region or this is last block of journal, 1990 * take care of the region 1991 */ 1992 byte_start = block_start * journal->j_blocksize; 1993 byte_stop = block_stop * journal->j_blocksize; 1994 byte_count = (block_stop - block_start + 1) * 1995 journal->j_blocksize; 1996 1997 truncate_inode_pages_range(journal->j_dev->bd_inode->i_mapping, 1998 byte_start, byte_stop); 1999 2000 if (flags & JBD2_JOURNAL_FLUSH_DISCARD) { 2001 err = blkdev_issue_discard(journal->j_dev, 2002 byte_start >> SECTOR_SHIFT, 2003 byte_count >> SECTOR_SHIFT, 2004 GFP_NOFS); 2005 } else if (flags & JBD2_JOURNAL_FLUSH_ZEROOUT) { 2006 err = blkdev_issue_zeroout(journal->j_dev, 2007 byte_start >> SECTOR_SHIFT, 2008 byte_count >> SECTOR_SHIFT, 2009 GFP_NOFS, 0); 2010 } 2011 2012 if (unlikely(err != 0)) { 2013 pr_err("JBD2: (error %d) unable to wipe journal at physical blocks %llu - %llu", 2014 err, block_start, block_stop); 2015 return err; 2016 } 2017 2018 /* reset start and stop after processing a region */ 2019 block_start = ~0ULL; 2020 } 2021 2022 return blkdev_issue_flush(journal->j_dev); 2023 } 2024 2025 /** 2026 * jbd2_journal_update_sb_errno() - Update error in the journal. 2027 * @journal: The journal to update. 2028 * 2029 * Update a journal's errno. Write updated superblock to disk waiting for IO 2030 * to complete. 2031 */ 2032 void jbd2_journal_update_sb_errno(journal_t *journal) 2033 { 2034 journal_superblock_t *sb = journal->j_superblock; 2035 int errcode; 2036 2037 lock_buffer(journal->j_sb_buffer); 2038 errcode = journal->j_errno; 2039 if (errcode == -ESHUTDOWN) 2040 errcode = 0; 2041 jbd2_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode); 2042 sb->s_errno = cpu_to_be32(errcode); 2043 2044 jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA); 2045 } 2046 EXPORT_SYMBOL(jbd2_journal_update_sb_errno); 2047 2048 /** 2049 * jbd2_journal_load() - Read journal from disk. 2050 * @journal: Journal to act on. 2051 * 2052 * Given a journal_t structure which tells us which disk blocks contain 2053 * a journal, read the journal from disk to initialise the in-memory 2054 * structures. 2055 */ 2056 int jbd2_journal_load(journal_t *journal) 2057 { 2058 int err; 2059 journal_superblock_t *sb = journal->j_superblock; 2060 2061 /* 2062 * Create a slab for this blocksize 2063 */ 2064 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize)); 2065 if (err) 2066 return err; 2067 2068 /* Let the recovery code check whether it needs to recover any 2069 * data from the journal. */ 2070 err = jbd2_journal_recover(journal); 2071 if (err) { 2072 pr_warn("JBD2: journal recovery failed\n"); 2073 return err; 2074 } 2075 2076 if (journal->j_failed_commit) { 2077 printk(KERN_ERR "JBD2: journal transaction %u on %s " 2078 "is corrupt.\n", journal->j_failed_commit, 2079 journal->j_devname); 2080 return -EFSCORRUPTED; 2081 } 2082 /* 2083 * clear JBD2_ABORT flag initialized in journal_init_common 2084 * here to update log tail information with the newest seq. 2085 */ 2086 journal->j_flags &= ~JBD2_ABORT; 2087 2088 /* OK, we've finished with the dynamic journal bits: 2089 * reinitialise the dynamic contents of the superblock in memory 2090 * and reset them on disk. */ 2091 err = journal_reset(journal); 2092 if (err) { 2093 pr_warn("JBD2: journal reset failed\n"); 2094 return err; 2095 } 2096 2097 journal->j_flags |= JBD2_LOADED; 2098 return 0; 2099 } 2100 2101 /** 2102 * jbd2_journal_destroy() - Release a journal_t structure. 2103 * @journal: Journal to act on. 2104 * 2105 * Release a journal_t structure once it is no longer in use by the 2106 * journaled object. 2107 * Return <0 if we couldn't clean up the journal. 2108 */ 2109 int jbd2_journal_destroy(journal_t *journal) 2110 { 2111 int err = 0; 2112 2113 /* Wait for the commit thread to wake up and die. */ 2114 journal_kill_thread(journal); 2115 2116 /* Force a final log commit */ 2117 if (journal->j_running_transaction) 2118 jbd2_journal_commit_transaction(journal); 2119 2120 /* Force any old transactions to disk */ 2121 2122 /* Totally anal locking here... */ 2123 spin_lock(&journal->j_list_lock); 2124 while (journal->j_checkpoint_transactions != NULL) { 2125 spin_unlock(&journal->j_list_lock); 2126 mutex_lock_io(&journal->j_checkpoint_mutex); 2127 err = jbd2_log_do_checkpoint(journal); 2128 mutex_unlock(&journal->j_checkpoint_mutex); 2129 /* 2130 * If checkpointing failed, just free the buffers to avoid 2131 * looping forever 2132 */ 2133 if (err) { 2134 jbd2_journal_destroy_checkpoint(journal); 2135 spin_lock(&journal->j_list_lock); 2136 break; 2137 } 2138 spin_lock(&journal->j_list_lock); 2139 } 2140 2141 J_ASSERT(journal->j_running_transaction == NULL); 2142 J_ASSERT(journal->j_committing_transaction == NULL); 2143 J_ASSERT(journal->j_checkpoint_transactions == NULL); 2144 spin_unlock(&journal->j_list_lock); 2145 2146 /* 2147 * OK, all checkpoint transactions have been checked, now check the 2148 * write out io error flag and abort the journal if some buffer failed 2149 * to write back to the original location, otherwise the filesystem 2150 * may become inconsistent. 2151 */ 2152 if (!is_journal_aborted(journal) && 2153 test_bit(JBD2_CHECKPOINT_IO_ERROR, &journal->j_atomic_flags)) 2154 jbd2_journal_abort(journal, -EIO); 2155 2156 if (journal->j_sb_buffer) { 2157 if (!is_journal_aborted(journal)) { 2158 mutex_lock_io(&journal->j_checkpoint_mutex); 2159 2160 write_lock(&journal->j_state_lock); 2161 journal->j_tail_sequence = 2162 ++journal->j_transaction_sequence; 2163 write_unlock(&journal->j_state_lock); 2164 2165 jbd2_mark_journal_empty(journal, 2166 REQ_SYNC | REQ_PREFLUSH | REQ_FUA); 2167 mutex_unlock(&journal->j_checkpoint_mutex); 2168 } else 2169 err = -EIO; 2170 brelse(journal->j_sb_buffer); 2171 } 2172 2173 if (journal->j_shrinker.flags & SHRINKER_REGISTERED) { 2174 percpu_counter_destroy(&journal->j_checkpoint_jh_count); 2175 unregister_shrinker(&journal->j_shrinker); 2176 } 2177 if (journal->j_proc_entry) 2178 jbd2_stats_proc_exit(journal); 2179 iput(journal->j_inode); 2180 if (journal->j_revoke) 2181 jbd2_journal_destroy_revoke(journal); 2182 if (journal->j_chksum_driver) 2183 crypto_free_shash(journal->j_chksum_driver); 2184 kfree(journal->j_fc_wbuf); 2185 kfree(journal->j_wbuf); 2186 kfree(journal); 2187 2188 return err; 2189 } 2190 2191 2192 /** 2193 * jbd2_journal_check_used_features() - Check if features specified are used. 2194 * @journal: Journal to check. 2195 * @compat: bitmask of compatible features 2196 * @ro: bitmask of features that force read-only mount 2197 * @incompat: bitmask of incompatible features 2198 * 2199 * Check whether the journal uses all of a given set of 2200 * features. Return true (non-zero) if it does. 2201 **/ 2202 2203 int jbd2_journal_check_used_features(journal_t *journal, unsigned long compat, 2204 unsigned long ro, unsigned long incompat) 2205 { 2206 journal_superblock_t *sb; 2207 2208 if (!compat && !ro && !incompat) 2209 return 1; 2210 if (!jbd2_format_support_feature(journal)) 2211 return 0; 2212 2213 sb = journal->j_superblock; 2214 2215 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) && 2216 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) && 2217 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat)) 2218 return 1; 2219 2220 return 0; 2221 } 2222 2223 /** 2224 * jbd2_journal_check_available_features() - Check feature set in journalling layer 2225 * @journal: Journal to check. 2226 * @compat: bitmask of compatible features 2227 * @ro: bitmask of features that force read-only mount 2228 * @incompat: bitmask of incompatible features 2229 * 2230 * Check whether the journaling code supports the use of 2231 * all of a given set of features on this journal. Return true 2232 * (non-zero) if it can. */ 2233 2234 int jbd2_journal_check_available_features(journal_t *journal, unsigned long compat, 2235 unsigned long ro, unsigned long incompat) 2236 { 2237 if (!compat && !ro && !incompat) 2238 return 1; 2239 2240 if (!jbd2_format_support_feature(journal)) 2241 return 0; 2242 2243 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat && 2244 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro && 2245 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat) 2246 return 1; 2247 2248 return 0; 2249 } 2250 2251 static int 2252 jbd2_journal_initialize_fast_commit(journal_t *journal) 2253 { 2254 journal_superblock_t *sb = journal->j_superblock; 2255 unsigned long long num_fc_blks; 2256 2257 num_fc_blks = jbd2_journal_get_num_fc_blks(sb); 2258 if (journal->j_last - num_fc_blks < JBD2_MIN_JOURNAL_BLOCKS) 2259 return -ENOSPC; 2260 2261 /* Are we called twice? */ 2262 WARN_ON(journal->j_fc_wbuf != NULL); 2263 journal->j_fc_wbuf = kmalloc_array(num_fc_blks, 2264 sizeof(struct buffer_head *), GFP_KERNEL); 2265 if (!journal->j_fc_wbuf) 2266 return -ENOMEM; 2267 2268 journal->j_fc_wbufsize = num_fc_blks; 2269 journal->j_fc_last = journal->j_last; 2270 journal->j_last = journal->j_fc_last - num_fc_blks; 2271 journal->j_fc_first = journal->j_last + 1; 2272 journal->j_fc_off = 0; 2273 journal->j_free = journal->j_last - journal->j_first; 2274 journal->j_max_transaction_buffers = 2275 jbd2_journal_get_max_txn_bufs(journal); 2276 2277 return 0; 2278 } 2279 2280 /** 2281 * jbd2_journal_set_features() - Mark a given journal feature in the superblock 2282 * @journal: Journal to act on. 2283 * @compat: bitmask of compatible features 2284 * @ro: bitmask of features that force read-only mount 2285 * @incompat: bitmask of incompatible features 2286 * 2287 * Mark a given journal feature as present on the 2288 * superblock. Returns true if the requested features could be set. 2289 * 2290 */ 2291 2292 int jbd2_journal_set_features(journal_t *journal, unsigned long compat, 2293 unsigned long ro, unsigned long incompat) 2294 { 2295 #define INCOMPAT_FEATURE_ON(f) \ 2296 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f))) 2297 #define COMPAT_FEATURE_ON(f) \ 2298 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f))) 2299 journal_superblock_t *sb; 2300 2301 if (jbd2_journal_check_used_features(journal, compat, ro, incompat)) 2302 return 1; 2303 2304 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat)) 2305 return 0; 2306 2307 /* If enabling v2 checksums, turn on v3 instead */ 2308 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) { 2309 incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2; 2310 incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3; 2311 } 2312 2313 /* Asking for checksumming v3 and v1? Only give them v3. */ 2314 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 && 2315 compat & JBD2_FEATURE_COMPAT_CHECKSUM) 2316 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM; 2317 2318 jbd2_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n", 2319 compat, ro, incompat); 2320 2321 sb = journal->j_superblock; 2322 2323 if (incompat & JBD2_FEATURE_INCOMPAT_FAST_COMMIT) { 2324 if (jbd2_journal_initialize_fast_commit(journal)) { 2325 pr_err("JBD2: Cannot enable fast commits.\n"); 2326 return 0; 2327 } 2328 } 2329 2330 /* Load the checksum driver if necessary */ 2331 if ((journal->j_chksum_driver == NULL) && 2332 INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) { 2333 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 2334 if (IS_ERR(journal->j_chksum_driver)) { 2335 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n"); 2336 journal->j_chksum_driver = NULL; 2337 return 0; 2338 } 2339 /* Precompute checksum seed for all metadata */ 2340 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid, 2341 sizeof(sb->s_uuid)); 2342 } 2343 2344 lock_buffer(journal->j_sb_buffer); 2345 2346 /* If enabling v3 checksums, update superblock */ 2347 if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) { 2348 sb->s_checksum_type = JBD2_CRC32C_CHKSUM; 2349 sb->s_feature_compat &= 2350 ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM); 2351 } 2352 2353 /* If enabling v1 checksums, downgrade superblock */ 2354 if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM)) 2355 sb->s_feature_incompat &= 2356 ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 | 2357 JBD2_FEATURE_INCOMPAT_CSUM_V3); 2358 2359 sb->s_feature_compat |= cpu_to_be32(compat); 2360 sb->s_feature_ro_compat |= cpu_to_be32(ro); 2361 sb->s_feature_incompat |= cpu_to_be32(incompat); 2362 unlock_buffer(journal->j_sb_buffer); 2363 journal->j_revoke_records_per_block = 2364 journal_revoke_records_per_block(journal); 2365 2366 return 1; 2367 #undef COMPAT_FEATURE_ON 2368 #undef INCOMPAT_FEATURE_ON 2369 } 2370 2371 /* 2372 * jbd2_journal_clear_features() - Clear a given journal feature in the 2373 * superblock 2374 * @journal: Journal to act on. 2375 * @compat: bitmask of compatible features 2376 * @ro: bitmask of features that force read-only mount 2377 * @incompat: bitmask of incompatible features 2378 * 2379 * Clear a given journal feature as present on the 2380 * superblock. 2381 */ 2382 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat, 2383 unsigned long ro, unsigned long incompat) 2384 { 2385 journal_superblock_t *sb; 2386 2387 jbd2_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n", 2388 compat, ro, incompat); 2389 2390 sb = journal->j_superblock; 2391 2392 sb->s_feature_compat &= ~cpu_to_be32(compat); 2393 sb->s_feature_ro_compat &= ~cpu_to_be32(ro); 2394 sb->s_feature_incompat &= ~cpu_to_be32(incompat); 2395 journal->j_revoke_records_per_block = 2396 journal_revoke_records_per_block(journal); 2397 } 2398 EXPORT_SYMBOL(jbd2_journal_clear_features); 2399 2400 /** 2401 * jbd2_journal_flush() - Flush journal 2402 * @journal: Journal to act on. 2403 * @flags: optional operation on the journal blocks after the flush (see below) 2404 * 2405 * Flush all data for a given journal to disk and empty the journal. 2406 * Filesystems can use this when remounting readonly to ensure that 2407 * recovery does not need to happen on remount. Optionally, a discard or zeroout 2408 * can be issued on the journal blocks after flushing. 2409 * 2410 * flags: 2411 * JBD2_JOURNAL_FLUSH_DISCARD: issues discards for the journal blocks 2412 * JBD2_JOURNAL_FLUSH_ZEROOUT: issues zeroouts for the journal blocks 2413 */ 2414 int jbd2_journal_flush(journal_t *journal, unsigned int flags) 2415 { 2416 int err = 0; 2417 transaction_t *transaction = NULL; 2418 2419 write_lock(&journal->j_state_lock); 2420 2421 /* Force everything buffered to the log... */ 2422 if (journal->j_running_transaction) { 2423 transaction = journal->j_running_transaction; 2424 __jbd2_log_start_commit(journal, transaction->t_tid); 2425 } else if (journal->j_committing_transaction) 2426 transaction = journal->j_committing_transaction; 2427 2428 /* Wait for the log commit to complete... */ 2429 if (transaction) { 2430 tid_t tid = transaction->t_tid; 2431 2432 write_unlock(&journal->j_state_lock); 2433 jbd2_log_wait_commit(journal, tid); 2434 } else { 2435 write_unlock(&journal->j_state_lock); 2436 } 2437 2438 /* ...and flush everything in the log out to disk. */ 2439 spin_lock(&journal->j_list_lock); 2440 while (!err && journal->j_checkpoint_transactions != NULL) { 2441 spin_unlock(&journal->j_list_lock); 2442 mutex_lock_io(&journal->j_checkpoint_mutex); 2443 err = jbd2_log_do_checkpoint(journal); 2444 mutex_unlock(&journal->j_checkpoint_mutex); 2445 spin_lock(&journal->j_list_lock); 2446 } 2447 spin_unlock(&journal->j_list_lock); 2448 2449 if (is_journal_aborted(journal)) 2450 return -EIO; 2451 2452 mutex_lock_io(&journal->j_checkpoint_mutex); 2453 if (!err) { 2454 err = jbd2_cleanup_journal_tail(journal); 2455 if (err < 0) { 2456 mutex_unlock(&journal->j_checkpoint_mutex); 2457 goto out; 2458 } 2459 err = 0; 2460 } 2461 2462 /* Finally, mark the journal as really needing no recovery. 2463 * This sets s_start==0 in the underlying superblock, which is 2464 * the magic code for a fully-recovered superblock. Any future 2465 * commits of data to the journal will restore the current 2466 * s_start value. */ 2467 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA); 2468 2469 if (flags) 2470 err = __jbd2_journal_erase(journal, flags); 2471 2472 mutex_unlock(&journal->j_checkpoint_mutex); 2473 write_lock(&journal->j_state_lock); 2474 J_ASSERT(!journal->j_running_transaction); 2475 J_ASSERT(!journal->j_committing_transaction); 2476 J_ASSERT(!journal->j_checkpoint_transactions); 2477 J_ASSERT(journal->j_head == journal->j_tail); 2478 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence); 2479 write_unlock(&journal->j_state_lock); 2480 out: 2481 return err; 2482 } 2483 2484 /** 2485 * jbd2_journal_wipe() - Wipe journal contents 2486 * @journal: Journal to act on. 2487 * @write: flag (see below) 2488 * 2489 * Wipe out all of the contents of a journal, safely. This will produce 2490 * a warning if the journal contains any valid recovery information. 2491 * Must be called between journal_init_*() and jbd2_journal_load(). 2492 * 2493 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise 2494 * we merely suppress recovery. 2495 */ 2496 2497 int jbd2_journal_wipe(journal_t *journal, int write) 2498 { 2499 int err; 2500 2501 J_ASSERT (!(journal->j_flags & JBD2_LOADED)); 2502 2503 if (!journal->j_tail) 2504 return 0; 2505 2506 printk(KERN_WARNING "JBD2: %s recovery information on journal\n", 2507 write ? "Clearing" : "Ignoring"); 2508 2509 err = jbd2_journal_skip_recovery(journal); 2510 if (write) { 2511 /* Lock to make assertions happy... */ 2512 mutex_lock_io(&journal->j_checkpoint_mutex); 2513 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA); 2514 mutex_unlock(&journal->j_checkpoint_mutex); 2515 } 2516 2517 return err; 2518 } 2519 2520 /** 2521 * jbd2_journal_abort () - Shutdown the journal immediately. 2522 * @journal: the journal to shutdown. 2523 * @errno: an error number to record in the journal indicating 2524 * the reason for the shutdown. 2525 * 2526 * Perform a complete, immediate shutdown of the ENTIRE 2527 * journal (not of a single transaction). This operation cannot be 2528 * undone without closing and reopening the journal. 2529 * 2530 * The jbd2_journal_abort function is intended to support higher level error 2531 * recovery mechanisms such as the ext2/ext3 remount-readonly error 2532 * mode. 2533 * 2534 * Journal abort has very specific semantics. Any existing dirty, 2535 * unjournaled buffers in the main filesystem will still be written to 2536 * disk by bdflush, but the journaling mechanism will be suspended 2537 * immediately and no further transaction commits will be honoured. 2538 * 2539 * Any dirty, journaled buffers will be written back to disk without 2540 * hitting the journal. Atomicity cannot be guaranteed on an aborted 2541 * filesystem, but we _do_ attempt to leave as much data as possible 2542 * behind for fsck to use for cleanup. 2543 * 2544 * Any attempt to get a new transaction handle on a journal which is in 2545 * ABORT state will just result in an -EROFS error return. A 2546 * jbd2_journal_stop on an existing handle will return -EIO if we have 2547 * entered abort state during the update. 2548 * 2549 * Recursive transactions are not disturbed by journal abort until the 2550 * final jbd2_journal_stop, which will receive the -EIO error. 2551 * 2552 * Finally, the jbd2_journal_abort call allows the caller to supply an errno 2553 * which will be recorded (if possible) in the journal superblock. This 2554 * allows a client to record failure conditions in the middle of a 2555 * transaction without having to complete the transaction to record the 2556 * failure to disk. ext3_error, for example, now uses this 2557 * functionality. 2558 * 2559 */ 2560 2561 void jbd2_journal_abort(journal_t *journal, int errno) 2562 { 2563 transaction_t *transaction; 2564 2565 /* 2566 * Lock the aborting procedure until everything is done, this avoid 2567 * races between filesystem's error handling flow (e.g. ext4_abort()), 2568 * ensure panic after the error info is written into journal's 2569 * superblock. 2570 */ 2571 mutex_lock(&journal->j_abort_mutex); 2572 /* 2573 * ESHUTDOWN always takes precedence because a file system check 2574 * caused by any other journal abort error is not required after 2575 * a shutdown triggered. 2576 */ 2577 write_lock(&journal->j_state_lock); 2578 if (journal->j_flags & JBD2_ABORT) { 2579 int old_errno = journal->j_errno; 2580 2581 write_unlock(&journal->j_state_lock); 2582 if (old_errno != -ESHUTDOWN && errno == -ESHUTDOWN) { 2583 journal->j_errno = errno; 2584 jbd2_journal_update_sb_errno(journal); 2585 } 2586 mutex_unlock(&journal->j_abort_mutex); 2587 return; 2588 } 2589 2590 /* 2591 * Mark the abort as occurred and start current running transaction 2592 * to release all journaled buffer. 2593 */ 2594 pr_err("Aborting journal on device %s.\n", journal->j_devname); 2595 2596 journal->j_flags |= JBD2_ABORT; 2597 journal->j_errno = errno; 2598 transaction = journal->j_running_transaction; 2599 if (transaction) 2600 __jbd2_log_start_commit(journal, transaction->t_tid); 2601 write_unlock(&journal->j_state_lock); 2602 2603 /* 2604 * Record errno to the journal super block, so that fsck and jbd2 2605 * layer could realise that a filesystem check is needed. 2606 */ 2607 jbd2_journal_update_sb_errno(journal); 2608 mutex_unlock(&journal->j_abort_mutex); 2609 } 2610 2611 /** 2612 * jbd2_journal_errno() - returns the journal's error state. 2613 * @journal: journal to examine. 2614 * 2615 * This is the errno number set with jbd2_journal_abort(), the last 2616 * time the journal was mounted - if the journal was stopped 2617 * without calling abort this will be 0. 2618 * 2619 * If the journal has been aborted on this mount time -EROFS will 2620 * be returned. 2621 */ 2622 int jbd2_journal_errno(journal_t *journal) 2623 { 2624 int err; 2625 2626 read_lock(&journal->j_state_lock); 2627 if (journal->j_flags & JBD2_ABORT) 2628 err = -EROFS; 2629 else 2630 err = journal->j_errno; 2631 read_unlock(&journal->j_state_lock); 2632 return err; 2633 } 2634 2635 /** 2636 * jbd2_journal_clear_err() - clears the journal's error state 2637 * @journal: journal to act on. 2638 * 2639 * An error must be cleared or acked to take a FS out of readonly 2640 * mode. 2641 */ 2642 int jbd2_journal_clear_err(journal_t *journal) 2643 { 2644 int err = 0; 2645 2646 write_lock(&journal->j_state_lock); 2647 if (journal->j_flags & JBD2_ABORT) 2648 err = -EROFS; 2649 else 2650 journal->j_errno = 0; 2651 write_unlock(&journal->j_state_lock); 2652 return err; 2653 } 2654 2655 /** 2656 * jbd2_journal_ack_err() - Ack journal err. 2657 * @journal: journal to act on. 2658 * 2659 * An error must be cleared or acked to take a FS out of readonly 2660 * mode. 2661 */ 2662 void jbd2_journal_ack_err(journal_t *journal) 2663 { 2664 write_lock(&journal->j_state_lock); 2665 if (journal->j_errno) 2666 journal->j_flags |= JBD2_ACK_ERR; 2667 write_unlock(&journal->j_state_lock); 2668 } 2669 2670 int jbd2_journal_blocks_per_page(struct inode *inode) 2671 { 2672 return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 2673 } 2674 2675 /* 2676 * helper functions to deal with 32 or 64bit block numbers. 2677 */ 2678 size_t journal_tag_bytes(journal_t *journal) 2679 { 2680 size_t sz; 2681 2682 if (jbd2_has_feature_csum3(journal)) 2683 return sizeof(journal_block_tag3_t); 2684 2685 sz = sizeof(journal_block_tag_t); 2686 2687 if (jbd2_has_feature_csum2(journal)) 2688 sz += sizeof(__u16); 2689 2690 if (jbd2_has_feature_64bit(journal)) 2691 return sz; 2692 else 2693 return sz - sizeof(__u32); 2694 } 2695 2696 /* 2697 * JBD memory management 2698 * 2699 * These functions are used to allocate block-sized chunks of memory 2700 * used for making copies of buffer_head data. Very often it will be 2701 * page-sized chunks of data, but sometimes it will be in 2702 * sub-page-size chunks. (For example, 16k pages on Power systems 2703 * with a 4k block file system.) For blocks smaller than a page, we 2704 * use a SLAB allocator. There are slab caches for each block size, 2705 * which are allocated at mount time, if necessary, and we only free 2706 * (all of) the slab caches when/if the jbd2 module is unloaded. For 2707 * this reason we don't need to a mutex to protect access to 2708 * jbd2_slab[] allocating or releasing memory; only in 2709 * jbd2_journal_create_slab(). 2710 */ 2711 #define JBD2_MAX_SLABS 8 2712 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS]; 2713 2714 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = { 2715 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k", 2716 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k" 2717 }; 2718 2719 2720 static void jbd2_journal_destroy_slabs(void) 2721 { 2722 int i; 2723 2724 for (i = 0; i < JBD2_MAX_SLABS; i++) { 2725 kmem_cache_destroy(jbd2_slab[i]); 2726 jbd2_slab[i] = NULL; 2727 } 2728 } 2729 2730 static int jbd2_journal_create_slab(size_t size) 2731 { 2732 static DEFINE_MUTEX(jbd2_slab_create_mutex); 2733 int i = order_base_2(size) - 10; 2734 size_t slab_size; 2735 2736 if (size == PAGE_SIZE) 2737 return 0; 2738 2739 if (i >= JBD2_MAX_SLABS) 2740 return -EINVAL; 2741 2742 if (unlikely(i < 0)) 2743 i = 0; 2744 mutex_lock(&jbd2_slab_create_mutex); 2745 if (jbd2_slab[i]) { 2746 mutex_unlock(&jbd2_slab_create_mutex); 2747 return 0; /* Already created */ 2748 } 2749 2750 slab_size = 1 << (i+10); 2751 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size, 2752 slab_size, 0, NULL); 2753 mutex_unlock(&jbd2_slab_create_mutex); 2754 if (!jbd2_slab[i]) { 2755 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n"); 2756 return -ENOMEM; 2757 } 2758 return 0; 2759 } 2760 2761 static struct kmem_cache *get_slab(size_t size) 2762 { 2763 int i = order_base_2(size) - 10; 2764 2765 BUG_ON(i >= JBD2_MAX_SLABS); 2766 if (unlikely(i < 0)) 2767 i = 0; 2768 BUG_ON(jbd2_slab[i] == NULL); 2769 return jbd2_slab[i]; 2770 } 2771 2772 void *jbd2_alloc(size_t size, gfp_t flags) 2773 { 2774 void *ptr; 2775 2776 BUG_ON(size & (size-1)); /* Must be a power of 2 */ 2777 2778 if (size < PAGE_SIZE) 2779 ptr = kmem_cache_alloc(get_slab(size), flags); 2780 else 2781 ptr = (void *)__get_free_pages(flags, get_order(size)); 2782 2783 /* Check alignment; SLUB has gotten this wrong in the past, 2784 * and this can lead to user data corruption! */ 2785 BUG_ON(((unsigned long) ptr) & (size-1)); 2786 2787 return ptr; 2788 } 2789 2790 void jbd2_free(void *ptr, size_t size) 2791 { 2792 if (size < PAGE_SIZE) 2793 kmem_cache_free(get_slab(size), ptr); 2794 else 2795 free_pages((unsigned long)ptr, get_order(size)); 2796 }; 2797 2798 /* 2799 * Journal_head storage management 2800 */ 2801 static struct kmem_cache *jbd2_journal_head_cache; 2802 #ifdef CONFIG_JBD2_DEBUG 2803 static atomic_t nr_journal_heads = ATOMIC_INIT(0); 2804 #endif 2805 2806 static int __init jbd2_journal_init_journal_head_cache(void) 2807 { 2808 J_ASSERT(!jbd2_journal_head_cache); 2809 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head", 2810 sizeof(struct journal_head), 2811 0, /* offset */ 2812 SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU, 2813 NULL); /* ctor */ 2814 if (!jbd2_journal_head_cache) { 2815 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n"); 2816 return -ENOMEM; 2817 } 2818 return 0; 2819 } 2820 2821 static void jbd2_journal_destroy_journal_head_cache(void) 2822 { 2823 kmem_cache_destroy(jbd2_journal_head_cache); 2824 jbd2_journal_head_cache = NULL; 2825 } 2826 2827 /* 2828 * journal_head splicing and dicing 2829 */ 2830 static struct journal_head *journal_alloc_journal_head(void) 2831 { 2832 struct journal_head *ret; 2833 2834 #ifdef CONFIG_JBD2_DEBUG 2835 atomic_inc(&nr_journal_heads); 2836 #endif 2837 ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS); 2838 if (!ret) { 2839 jbd2_debug(1, "out of memory for journal_head\n"); 2840 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__); 2841 ret = kmem_cache_zalloc(jbd2_journal_head_cache, 2842 GFP_NOFS | __GFP_NOFAIL); 2843 } 2844 if (ret) 2845 spin_lock_init(&ret->b_state_lock); 2846 return ret; 2847 } 2848 2849 static void journal_free_journal_head(struct journal_head *jh) 2850 { 2851 #ifdef CONFIG_JBD2_DEBUG 2852 atomic_dec(&nr_journal_heads); 2853 memset(jh, JBD2_POISON_FREE, sizeof(*jh)); 2854 #endif 2855 kmem_cache_free(jbd2_journal_head_cache, jh); 2856 } 2857 2858 /* 2859 * A journal_head is attached to a buffer_head whenever JBD has an 2860 * interest in the buffer. 2861 * 2862 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit 2863 * is set. This bit is tested in core kernel code where we need to take 2864 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable 2865 * there. 2866 * 2867 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one. 2868 * 2869 * When a buffer has its BH_JBD bit set it is immune from being released by 2870 * core kernel code, mainly via ->b_count. 2871 * 2872 * A journal_head is detached from its buffer_head when the journal_head's 2873 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint 2874 * transaction (b_cp_transaction) hold their references to b_jcount. 2875 * 2876 * Various places in the kernel want to attach a journal_head to a buffer_head 2877 * _before_ attaching the journal_head to a transaction. To protect the 2878 * journal_head in this situation, jbd2_journal_add_journal_head elevates the 2879 * journal_head's b_jcount refcount by one. The caller must call 2880 * jbd2_journal_put_journal_head() to undo this. 2881 * 2882 * So the typical usage would be: 2883 * 2884 * (Attach a journal_head if needed. Increments b_jcount) 2885 * struct journal_head *jh = jbd2_journal_add_journal_head(bh); 2886 * ... 2887 * (Get another reference for transaction) 2888 * jbd2_journal_grab_journal_head(bh); 2889 * jh->b_transaction = xxx; 2890 * (Put original reference) 2891 * jbd2_journal_put_journal_head(jh); 2892 */ 2893 2894 /* 2895 * Give a buffer_head a journal_head. 2896 * 2897 * May sleep. 2898 */ 2899 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh) 2900 { 2901 struct journal_head *jh; 2902 struct journal_head *new_jh = NULL; 2903 2904 repeat: 2905 if (!buffer_jbd(bh)) 2906 new_jh = journal_alloc_journal_head(); 2907 2908 jbd_lock_bh_journal_head(bh); 2909 if (buffer_jbd(bh)) { 2910 jh = bh2jh(bh); 2911 } else { 2912 J_ASSERT_BH(bh, 2913 (atomic_read(&bh->b_count) > 0) || 2914 (bh->b_folio && bh->b_folio->mapping)); 2915 2916 if (!new_jh) { 2917 jbd_unlock_bh_journal_head(bh); 2918 goto repeat; 2919 } 2920 2921 jh = new_jh; 2922 new_jh = NULL; /* We consumed it */ 2923 set_buffer_jbd(bh); 2924 bh->b_private = jh; 2925 jh->b_bh = bh; 2926 get_bh(bh); 2927 BUFFER_TRACE(bh, "added journal_head"); 2928 } 2929 jh->b_jcount++; 2930 jbd_unlock_bh_journal_head(bh); 2931 if (new_jh) 2932 journal_free_journal_head(new_jh); 2933 return bh->b_private; 2934 } 2935 2936 /* 2937 * Grab a ref against this buffer_head's journal_head. If it ended up not 2938 * having a journal_head, return NULL 2939 */ 2940 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh) 2941 { 2942 struct journal_head *jh = NULL; 2943 2944 jbd_lock_bh_journal_head(bh); 2945 if (buffer_jbd(bh)) { 2946 jh = bh2jh(bh); 2947 jh->b_jcount++; 2948 } 2949 jbd_unlock_bh_journal_head(bh); 2950 return jh; 2951 } 2952 EXPORT_SYMBOL(jbd2_journal_grab_journal_head); 2953 2954 static void __journal_remove_journal_head(struct buffer_head *bh) 2955 { 2956 struct journal_head *jh = bh2jh(bh); 2957 2958 J_ASSERT_JH(jh, jh->b_transaction == NULL); 2959 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 2960 J_ASSERT_JH(jh, jh->b_cp_transaction == NULL); 2961 J_ASSERT_JH(jh, jh->b_jlist == BJ_None); 2962 J_ASSERT_BH(bh, buffer_jbd(bh)); 2963 J_ASSERT_BH(bh, jh2bh(jh) == bh); 2964 BUFFER_TRACE(bh, "remove journal_head"); 2965 2966 /* Unlink before dropping the lock */ 2967 bh->b_private = NULL; 2968 jh->b_bh = NULL; /* debug, really */ 2969 clear_buffer_jbd(bh); 2970 } 2971 2972 static void journal_release_journal_head(struct journal_head *jh, size_t b_size) 2973 { 2974 if (jh->b_frozen_data) { 2975 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__); 2976 jbd2_free(jh->b_frozen_data, b_size); 2977 } 2978 if (jh->b_committed_data) { 2979 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__); 2980 jbd2_free(jh->b_committed_data, b_size); 2981 } 2982 journal_free_journal_head(jh); 2983 } 2984 2985 /* 2986 * Drop a reference on the passed journal_head. If it fell to zero then 2987 * release the journal_head from the buffer_head. 2988 */ 2989 void jbd2_journal_put_journal_head(struct journal_head *jh) 2990 { 2991 struct buffer_head *bh = jh2bh(jh); 2992 2993 jbd_lock_bh_journal_head(bh); 2994 J_ASSERT_JH(jh, jh->b_jcount > 0); 2995 --jh->b_jcount; 2996 if (!jh->b_jcount) { 2997 __journal_remove_journal_head(bh); 2998 jbd_unlock_bh_journal_head(bh); 2999 journal_release_journal_head(jh, bh->b_size); 3000 __brelse(bh); 3001 } else { 3002 jbd_unlock_bh_journal_head(bh); 3003 } 3004 } 3005 EXPORT_SYMBOL(jbd2_journal_put_journal_head); 3006 3007 /* 3008 * Initialize jbd inode head 3009 */ 3010 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode) 3011 { 3012 jinode->i_transaction = NULL; 3013 jinode->i_next_transaction = NULL; 3014 jinode->i_vfs_inode = inode; 3015 jinode->i_flags = 0; 3016 jinode->i_dirty_start = 0; 3017 jinode->i_dirty_end = 0; 3018 INIT_LIST_HEAD(&jinode->i_list); 3019 } 3020 3021 /* 3022 * Function to be called before we start removing inode from memory (i.e., 3023 * clear_inode() is a fine place to be called from). It removes inode from 3024 * transaction's lists. 3025 */ 3026 void jbd2_journal_release_jbd_inode(journal_t *journal, 3027 struct jbd2_inode *jinode) 3028 { 3029 if (!journal) 3030 return; 3031 restart: 3032 spin_lock(&journal->j_list_lock); 3033 /* Is commit writing out inode - we have to wait */ 3034 if (jinode->i_flags & JI_COMMIT_RUNNING) { 3035 wait_queue_head_t *wq; 3036 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING); 3037 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING); 3038 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 3039 spin_unlock(&journal->j_list_lock); 3040 schedule(); 3041 finish_wait(wq, &wait.wq_entry); 3042 goto restart; 3043 } 3044 3045 if (jinode->i_transaction) { 3046 list_del(&jinode->i_list); 3047 jinode->i_transaction = NULL; 3048 } 3049 spin_unlock(&journal->j_list_lock); 3050 } 3051 3052 3053 #ifdef CONFIG_PROC_FS 3054 3055 #define JBD2_STATS_PROC_NAME "fs/jbd2" 3056 3057 static void __init jbd2_create_jbd_stats_proc_entry(void) 3058 { 3059 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL); 3060 } 3061 3062 static void __exit jbd2_remove_jbd_stats_proc_entry(void) 3063 { 3064 if (proc_jbd2_stats) 3065 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL); 3066 } 3067 3068 #else 3069 3070 #define jbd2_create_jbd_stats_proc_entry() do {} while (0) 3071 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0) 3072 3073 #endif 3074 3075 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache; 3076 3077 static int __init jbd2_journal_init_inode_cache(void) 3078 { 3079 J_ASSERT(!jbd2_inode_cache); 3080 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0); 3081 if (!jbd2_inode_cache) { 3082 pr_emerg("JBD2: failed to create inode cache\n"); 3083 return -ENOMEM; 3084 } 3085 return 0; 3086 } 3087 3088 static int __init jbd2_journal_init_handle_cache(void) 3089 { 3090 J_ASSERT(!jbd2_handle_cache); 3091 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY); 3092 if (!jbd2_handle_cache) { 3093 printk(KERN_EMERG "JBD2: failed to create handle cache\n"); 3094 return -ENOMEM; 3095 } 3096 return 0; 3097 } 3098 3099 static void jbd2_journal_destroy_inode_cache(void) 3100 { 3101 kmem_cache_destroy(jbd2_inode_cache); 3102 jbd2_inode_cache = NULL; 3103 } 3104 3105 static void jbd2_journal_destroy_handle_cache(void) 3106 { 3107 kmem_cache_destroy(jbd2_handle_cache); 3108 jbd2_handle_cache = NULL; 3109 } 3110 3111 /* 3112 * Module startup and shutdown 3113 */ 3114 3115 static int __init journal_init_caches(void) 3116 { 3117 int ret; 3118 3119 ret = jbd2_journal_init_revoke_record_cache(); 3120 if (ret == 0) 3121 ret = jbd2_journal_init_revoke_table_cache(); 3122 if (ret == 0) 3123 ret = jbd2_journal_init_journal_head_cache(); 3124 if (ret == 0) 3125 ret = jbd2_journal_init_handle_cache(); 3126 if (ret == 0) 3127 ret = jbd2_journal_init_inode_cache(); 3128 if (ret == 0) 3129 ret = jbd2_journal_init_transaction_cache(); 3130 return ret; 3131 } 3132 3133 static void jbd2_journal_destroy_caches(void) 3134 { 3135 jbd2_journal_destroy_revoke_record_cache(); 3136 jbd2_journal_destroy_revoke_table_cache(); 3137 jbd2_journal_destroy_journal_head_cache(); 3138 jbd2_journal_destroy_handle_cache(); 3139 jbd2_journal_destroy_inode_cache(); 3140 jbd2_journal_destroy_transaction_cache(); 3141 jbd2_journal_destroy_slabs(); 3142 } 3143 3144 static int __init journal_init(void) 3145 { 3146 int ret; 3147 3148 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024); 3149 3150 ret = journal_init_caches(); 3151 if (ret == 0) { 3152 jbd2_create_jbd_stats_proc_entry(); 3153 } else { 3154 jbd2_journal_destroy_caches(); 3155 } 3156 return ret; 3157 } 3158 3159 static void __exit journal_exit(void) 3160 { 3161 #ifdef CONFIG_JBD2_DEBUG 3162 int n = atomic_read(&nr_journal_heads); 3163 if (n) 3164 printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n); 3165 #endif 3166 jbd2_remove_jbd_stats_proc_entry(); 3167 jbd2_journal_destroy_caches(); 3168 } 3169 3170 MODULE_LICENSE("GPL"); 3171 module_init(journal_init); 3172 module_exit(journal_exit); 3173 3174