xref: /linux/fs/jbd2/journal.c (revision 4fd18fc38757217c746aa063ba9e4729814dc737)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * linux/fs/jbd2/journal.c
4  *
5  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6  *
7  * Copyright 1998 Red Hat corp --- All Rights Reserved
8  *
9  * Generic filesystem journal-writing code; part of the ext2fs
10  * journaling system.
11  *
12  * This file manages journals: areas of disk reserved for logging
13  * transactional updates.  This includes the kernel journaling thread
14  * which is responsible for scheduling updates to the log.
15  *
16  * We do not actually manage the physical storage of the journal in this
17  * file: that is left to a per-journal policy function, which allows us
18  * to store the journal within a filesystem-specified area for ext2
19  * journaling (ext2 can use a reserved inode for storing the log).
20  */
21 
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/fs.h>
25 #include <linux/jbd2.h>
26 #include <linux/errno.h>
27 #include <linux/slab.h>
28 #include <linux/init.h>
29 #include <linux/mm.h>
30 #include <linux/freezer.h>
31 #include <linux/pagemap.h>
32 #include <linux/kthread.h>
33 #include <linux/poison.h>
34 #include <linux/proc_fs.h>
35 #include <linux/seq_file.h>
36 #include <linux/math64.h>
37 #include <linux/hash.h>
38 #include <linux/log2.h>
39 #include <linux/vmalloc.h>
40 #include <linux/backing-dev.h>
41 #include <linux/bitops.h>
42 #include <linux/ratelimit.h>
43 #include <linux/sched/mm.h>
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/jbd2.h>
47 
48 #include <linux/uaccess.h>
49 #include <asm/page.h>
50 
51 #ifdef CONFIG_JBD2_DEBUG
52 ushort jbd2_journal_enable_debug __read_mostly;
53 EXPORT_SYMBOL(jbd2_journal_enable_debug);
54 
55 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
56 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
57 #endif
58 
59 EXPORT_SYMBOL(jbd2_journal_extend);
60 EXPORT_SYMBOL(jbd2_journal_stop);
61 EXPORT_SYMBOL(jbd2_journal_lock_updates);
62 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
63 EXPORT_SYMBOL(jbd2_journal_get_write_access);
64 EXPORT_SYMBOL(jbd2_journal_get_create_access);
65 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
66 EXPORT_SYMBOL(jbd2_journal_set_triggers);
67 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
68 EXPORT_SYMBOL(jbd2_journal_forget);
69 EXPORT_SYMBOL(jbd2_journal_flush);
70 EXPORT_SYMBOL(jbd2_journal_revoke);
71 
72 EXPORT_SYMBOL(jbd2_journal_init_dev);
73 EXPORT_SYMBOL(jbd2_journal_init_inode);
74 EXPORT_SYMBOL(jbd2_journal_check_used_features);
75 EXPORT_SYMBOL(jbd2_journal_check_available_features);
76 EXPORT_SYMBOL(jbd2_journal_set_features);
77 EXPORT_SYMBOL(jbd2_journal_load);
78 EXPORT_SYMBOL(jbd2_journal_destroy);
79 EXPORT_SYMBOL(jbd2_journal_abort);
80 EXPORT_SYMBOL(jbd2_journal_errno);
81 EXPORT_SYMBOL(jbd2_journal_ack_err);
82 EXPORT_SYMBOL(jbd2_journal_clear_err);
83 EXPORT_SYMBOL(jbd2_log_wait_commit);
84 EXPORT_SYMBOL(jbd2_log_start_commit);
85 EXPORT_SYMBOL(jbd2_journal_start_commit);
86 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
87 EXPORT_SYMBOL(jbd2_journal_wipe);
88 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
89 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
90 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
91 EXPORT_SYMBOL(jbd2_journal_force_commit);
92 EXPORT_SYMBOL(jbd2_journal_inode_ranged_write);
93 EXPORT_SYMBOL(jbd2_journal_inode_ranged_wait);
94 EXPORT_SYMBOL(jbd2_journal_submit_inode_data_buffers);
95 EXPORT_SYMBOL(jbd2_journal_finish_inode_data_buffers);
96 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
97 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
98 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
99 EXPORT_SYMBOL(jbd2_inode_cache);
100 
101 static int jbd2_journal_create_slab(size_t slab_size);
102 
103 #ifdef CONFIG_JBD2_DEBUG
104 void __jbd2_debug(int level, const char *file, const char *func,
105 		  unsigned int line, const char *fmt, ...)
106 {
107 	struct va_format vaf;
108 	va_list args;
109 
110 	if (level > jbd2_journal_enable_debug)
111 		return;
112 	va_start(args, fmt);
113 	vaf.fmt = fmt;
114 	vaf.va = &args;
115 	printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf);
116 	va_end(args);
117 }
118 EXPORT_SYMBOL(__jbd2_debug);
119 #endif
120 
121 /* Checksumming functions */
122 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
123 {
124 	if (!jbd2_journal_has_csum_v2or3_feature(j))
125 		return 1;
126 
127 	return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
128 }
129 
130 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
131 {
132 	__u32 csum;
133 	__be32 old_csum;
134 
135 	old_csum = sb->s_checksum;
136 	sb->s_checksum = 0;
137 	csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
138 	sb->s_checksum = old_csum;
139 
140 	return cpu_to_be32(csum);
141 }
142 
143 /*
144  * Helper function used to manage commit timeouts
145  */
146 
147 static void commit_timeout(struct timer_list *t)
148 {
149 	journal_t *journal = from_timer(journal, t, j_commit_timer);
150 
151 	wake_up_process(journal->j_task);
152 }
153 
154 /*
155  * kjournald2: The main thread function used to manage a logging device
156  * journal.
157  *
158  * This kernel thread is responsible for two things:
159  *
160  * 1) COMMIT:  Every so often we need to commit the current state of the
161  *    filesystem to disk.  The journal thread is responsible for writing
162  *    all of the metadata buffers to disk. If a fast commit is ongoing
163  *    journal thread waits until it's done and then continues from
164  *    there on.
165  *
166  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
167  *    of the data in that part of the log has been rewritten elsewhere on
168  *    the disk.  Flushing these old buffers to reclaim space in the log is
169  *    known as checkpointing, and this thread is responsible for that job.
170  */
171 
172 static int kjournald2(void *arg)
173 {
174 	journal_t *journal = arg;
175 	transaction_t *transaction;
176 
177 	/*
178 	 * Set up an interval timer which can be used to trigger a commit wakeup
179 	 * after the commit interval expires
180 	 */
181 	timer_setup(&journal->j_commit_timer, commit_timeout, 0);
182 
183 	set_freezable();
184 
185 	/* Record that the journal thread is running */
186 	journal->j_task = current;
187 	wake_up(&journal->j_wait_done_commit);
188 
189 	/*
190 	 * Make sure that no allocations from this kernel thread will ever
191 	 * recurse to the fs layer because we are responsible for the
192 	 * transaction commit and any fs involvement might get stuck waiting for
193 	 * the trasn. commit.
194 	 */
195 	memalloc_nofs_save();
196 
197 	/*
198 	 * And now, wait forever for commit wakeup events.
199 	 */
200 	write_lock(&journal->j_state_lock);
201 
202 loop:
203 	if (journal->j_flags & JBD2_UNMOUNT)
204 		goto end_loop;
205 
206 	jbd_debug(1, "commit_sequence=%u, commit_request=%u\n",
207 		journal->j_commit_sequence, journal->j_commit_request);
208 
209 	if (journal->j_commit_sequence != journal->j_commit_request) {
210 		jbd_debug(1, "OK, requests differ\n");
211 		write_unlock(&journal->j_state_lock);
212 		del_timer_sync(&journal->j_commit_timer);
213 		jbd2_journal_commit_transaction(journal);
214 		write_lock(&journal->j_state_lock);
215 		goto loop;
216 	}
217 
218 	wake_up(&journal->j_wait_done_commit);
219 	if (freezing(current)) {
220 		/*
221 		 * The simpler the better. Flushing journal isn't a
222 		 * good idea, because that depends on threads that may
223 		 * be already stopped.
224 		 */
225 		jbd_debug(1, "Now suspending kjournald2\n");
226 		write_unlock(&journal->j_state_lock);
227 		try_to_freeze();
228 		write_lock(&journal->j_state_lock);
229 	} else {
230 		/*
231 		 * We assume on resume that commits are already there,
232 		 * so we don't sleep
233 		 */
234 		DEFINE_WAIT(wait);
235 		int should_sleep = 1;
236 
237 		prepare_to_wait(&journal->j_wait_commit, &wait,
238 				TASK_INTERRUPTIBLE);
239 		if (journal->j_commit_sequence != journal->j_commit_request)
240 			should_sleep = 0;
241 		transaction = journal->j_running_transaction;
242 		if (transaction && time_after_eq(jiffies,
243 						transaction->t_expires))
244 			should_sleep = 0;
245 		if (journal->j_flags & JBD2_UNMOUNT)
246 			should_sleep = 0;
247 		if (should_sleep) {
248 			write_unlock(&journal->j_state_lock);
249 			schedule();
250 			write_lock(&journal->j_state_lock);
251 		}
252 		finish_wait(&journal->j_wait_commit, &wait);
253 	}
254 
255 	jbd_debug(1, "kjournald2 wakes\n");
256 
257 	/*
258 	 * Were we woken up by a commit wakeup event?
259 	 */
260 	transaction = journal->j_running_transaction;
261 	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
262 		journal->j_commit_request = transaction->t_tid;
263 		jbd_debug(1, "woke because of timeout\n");
264 	}
265 	goto loop;
266 
267 end_loop:
268 	del_timer_sync(&journal->j_commit_timer);
269 	journal->j_task = NULL;
270 	wake_up(&journal->j_wait_done_commit);
271 	jbd_debug(1, "Journal thread exiting.\n");
272 	write_unlock(&journal->j_state_lock);
273 	return 0;
274 }
275 
276 static int jbd2_journal_start_thread(journal_t *journal)
277 {
278 	struct task_struct *t;
279 
280 	t = kthread_run(kjournald2, journal, "jbd2/%s",
281 			journal->j_devname);
282 	if (IS_ERR(t))
283 		return PTR_ERR(t);
284 
285 	wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
286 	return 0;
287 }
288 
289 static void journal_kill_thread(journal_t *journal)
290 {
291 	write_lock(&journal->j_state_lock);
292 	journal->j_flags |= JBD2_UNMOUNT;
293 
294 	while (journal->j_task) {
295 		write_unlock(&journal->j_state_lock);
296 		wake_up(&journal->j_wait_commit);
297 		wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
298 		write_lock(&journal->j_state_lock);
299 	}
300 	write_unlock(&journal->j_state_lock);
301 }
302 
303 /*
304  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
305  *
306  * Writes a metadata buffer to a given disk block.  The actual IO is not
307  * performed but a new buffer_head is constructed which labels the data
308  * to be written with the correct destination disk block.
309  *
310  * Any magic-number escaping which needs to be done will cause a
311  * copy-out here.  If the buffer happens to start with the
312  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
313  * magic number is only written to the log for descripter blocks.  In
314  * this case, we copy the data and replace the first word with 0, and we
315  * return a result code which indicates that this buffer needs to be
316  * marked as an escaped buffer in the corresponding log descriptor
317  * block.  The missing word can then be restored when the block is read
318  * during recovery.
319  *
320  * If the source buffer has already been modified by a new transaction
321  * since we took the last commit snapshot, we use the frozen copy of
322  * that data for IO. If we end up using the existing buffer_head's data
323  * for the write, then we have to make sure nobody modifies it while the
324  * IO is in progress. do_get_write_access() handles this.
325  *
326  * The function returns a pointer to the buffer_head to be used for IO.
327  *
328  *
329  * Return value:
330  *  <0: Error
331  * >=0: Finished OK
332  *
333  * On success:
334  * Bit 0 set == escape performed on the data
335  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
336  */
337 
338 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
339 				  struct journal_head  *jh_in,
340 				  struct buffer_head **bh_out,
341 				  sector_t blocknr)
342 {
343 	int need_copy_out = 0;
344 	int done_copy_out = 0;
345 	int do_escape = 0;
346 	char *mapped_data;
347 	struct buffer_head *new_bh;
348 	struct page *new_page;
349 	unsigned int new_offset;
350 	struct buffer_head *bh_in = jh2bh(jh_in);
351 	journal_t *journal = transaction->t_journal;
352 
353 	/*
354 	 * The buffer really shouldn't be locked: only the current committing
355 	 * transaction is allowed to write it, so nobody else is allowed
356 	 * to do any IO.
357 	 *
358 	 * akpm: except if we're journalling data, and write() output is
359 	 * also part of a shared mapping, and another thread has
360 	 * decided to launch a writepage() against this buffer.
361 	 */
362 	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
363 
364 	new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
365 
366 	/* keep subsequent assertions sane */
367 	atomic_set(&new_bh->b_count, 1);
368 
369 	spin_lock(&jh_in->b_state_lock);
370 repeat:
371 	/*
372 	 * If a new transaction has already done a buffer copy-out, then
373 	 * we use that version of the data for the commit.
374 	 */
375 	if (jh_in->b_frozen_data) {
376 		done_copy_out = 1;
377 		new_page = virt_to_page(jh_in->b_frozen_data);
378 		new_offset = offset_in_page(jh_in->b_frozen_data);
379 	} else {
380 		new_page = jh2bh(jh_in)->b_page;
381 		new_offset = offset_in_page(jh2bh(jh_in)->b_data);
382 	}
383 
384 	mapped_data = kmap_atomic(new_page);
385 	/*
386 	 * Fire data frozen trigger if data already wasn't frozen.  Do this
387 	 * before checking for escaping, as the trigger may modify the magic
388 	 * offset.  If a copy-out happens afterwards, it will have the correct
389 	 * data in the buffer.
390 	 */
391 	if (!done_copy_out)
392 		jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
393 					   jh_in->b_triggers);
394 
395 	/*
396 	 * Check for escaping
397 	 */
398 	if (*((__be32 *)(mapped_data + new_offset)) ==
399 				cpu_to_be32(JBD2_MAGIC_NUMBER)) {
400 		need_copy_out = 1;
401 		do_escape = 1;
402 	}
403 	kunmap_atomic(mapped_data);
404 
405 	/*
406 	 * Do we need to do a data copy?
407 	 */
408 	if (need_copy_out && !done_copy_out) {
409 		char *tmp;
410 
411 		spin_unlock(&jh_in->b_state_lock);
412 		tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
413 		if (!tmp) {
414 			brelse(new_bh);
415 			return -ENOMEM;
416 		}
417 		spin_lock(&jh_in->b_state_lock);
418 		if (jh_in->b_frozen_data) {
419 			jbd2_free(tmp, bh_in->b_size);
420 			goto repeat;
421 		}
422 
423 		jh_in->b_frozen_data = tmp;
424 		mapped_data = kmap_atomic(new_page);
425 		memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
426 		kunmap_atomic(mapped_data);
427 
428 		new_page = virt_to_page(tmp);
429 		new_offset = offset_in_page(tmp);
430 		done_copy_out = 1;
431 
432 		/*
433 		 * This isn't strictly necessary, as we're using frozen
434 		 * data for the escaping, but it keeps consistency with
435 		 * b_frozen_data usage.
436 		 */
437 		jh_in->b_frozen_triggers = jh_in->b_triggers;
438 	}
439 
440 	/*
441 	 * Did we need to do an escaping?  Now we've done all the
442 	 * copying, we can finally do so.
443 	 */
444 	if (do_escape) {
445 		mapped_data = kmap_atomic(new_page);
446 		*((unsigned int *)(mapped_data + new_offset)) = 0;
447 		kunmap_atomic(mapped_data);
448 	}
449 
450 	set_bh_page(new_bh, new_page, new_offset);
451 	new_bh->b_size = bh_in->b_size;
452 	new_bh->b_bdev = journal->j_dev;
453 	new_bh->b_blocknr = blocknr;
454 	new_bh->b_private = bh_in;
455 	set_buffer_mapped(new_bh);
456 	set_buffer_dirty(new_bh);
457 
458 	*bh_out = new_bh;
459 
460 	/*
461 	 * The to-be-written buffer needs to get moved to the io queue,
462 	 * and the original buffer whose contents we are shadowing or
463 	 * copying is moved to the transaction's shadow queue.
464 	 */
465 	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
466 	spin_lock(&journal->j_list_lock);
467 	__jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
468 	spin_unlock(&journal->j_list_lock);
469 	set_buffer_shadow(bh_in);
470 	spin_unlock(&jh_in->b_state_lock);
471 
472 	return do_escape | (done_copy_out << 1);
473 }
474 
475 /*
476  * Allocation code for the journal file.  Manage the space left in the
477  * journal, so that we can begin checkpointing when appropriate.
478  */
479 
480 /*
481  * Called with j_state_lock locked for writing.
482  * Returns true if a transaction commit was started.
483  */
484 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
485 {
486 	/* Return if the txn has already requested to be committed */
487 	if (journal->j_commit_request == target)
488 		return 0;
489 
490 	/*
491 	 * The only transaction we can possibly wait upon is the
492 	 * currently running transaction (if it exists).  Otherwise,
493 	 * the target tid must be an old one.
494 	 */
495 	if (journal->j_running_transaction &&
496 	    journal->j_running_transaction->t_tid == target) {
497 		/*
498 		 * We want a new commit: OK, mark the request and wakeup the
499 		 * commit thread.  We do _not_ do the commit ourselves.
500 		 */
501 
502 		journal->j_commit_request = target;
503 		jbd_debug(1, "JBD2: requesting commit %u/%u\n",
504 			  journal->j_commit_request,
505 			  journal->j_commit_sequence);
506 		journal->j_running_transaction->t_requested = jiffies;
507 		wake_up(&journal->j_wait_commit);
508 		return 1;
509 	} else if (!tid_geq(journal->j_commit_request, target))
510 		/* This should never happen, but if it does, preserve
511 		   the evidence before kjournald goes into a loop and
512 		   increments j_commit_sequence beyond all recognition. */
513 		WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
514 			  journal->j_commit_request,
515 			  journal->j_commit_sequence,
516 			  target, journal->j_running_transaction ?
517 			  journal->j_running_transaction->t_tid : 0);
518 	return 0;
519 }
520 
521 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
522 {
523 	int ret;
524 
525 	write_lock(&journal->j_state_lock);
526 	ret = __jbd2_log_start_commit(journal, tid);
527 	write_unlock(&journal->j_state_lock);
528 	return ret;
529 }
530 
531 /*
532  * Force and wait any uncommitted transactions.  We can only force the running
533  * transaction if we don't have an active handle, otherwise, we will deadlock.
534  * Returns: <0 in case of error,
535  *           0 if nothing to commit,
536  *           1 if transaction was successfully committed.
537  */
538 static int __jbd2_journal_force_commit(journal_t *journal)
539 {
540 	transaction_t *transaction = NULL;
541 	tid_t tid;
542 	int need_to_start = 0, ret = 0;
543 
544 	read_lock(&journal->j_state_lock);
545 	if (journal->j_running_transaction && !current->journal_info) {
546 		transaction = journal->j_running_transaction;
547 		if (!tid_geq(journal->j_commit_request, transaction->t_tid))
548 			need_to_start = 1;
549 	} else if (journal->j_committing_transaction)
550 		transaction = journal->j_committing_transaction;
551 
552 	if (!transaction) {
553 		/* Nothing to commit */
554 		read_unlock(&journal->j_state_lock);
555 		return 0;
556 	}
557 	tid = transaction->t_tid;
558 	read_unlock(&journal->j_state_lock);
559 	if (need_to_start)
560 		jbd2_log_start_commit(journal, tid);
561 	ret = jbd2_log_wait_commit(journal, tid);
562 	if (!ret)
563 		ret = 1;
564 
565 	return ret;
566 }
567 
568 /**
569  * jbd2_journal_force_commit_nested - Force and wait upon a commit if the
570  * calling process is not within transaction.
571  *
572  * @journal: journal to force
573  * Returns true if progress was made.
574  *
575  * This is used for forcing out undo-protected data which contains
576  * bitmaps, when the fs is running out of space.
577  */
578 int jbd2_journal_force_commit_nested(journal_t *journal)
579 {
580 	int ret;
581 
582 	ret = __jbd2_journal_force_commit(journal);
583 	return ret > 0;
584 }
585 
586 /**
587  * jbd2_journal_force_commit() - force any uncommitted transactions
588  * @journal: journal to force
589  *
590  * Caller want unconditional commit. We can only force the running transaction
591  * if we don't have an active handle, otherwise, we will deadlock.
592  */
593 int jbd2_journal_force_commit(journal_t *journal)
594 {
595 	int ret;
596 
597 	J_ASSERT(!current->journal_info);
598 	ret = __jbd2_journal_force_commit(journal);
599 	if (ret > 0)
600 		ret = 0;
601 	return ret;
602 }
603 
604 /*
605  * Start a commit of the current running transaction (if any).  Returns true
606  * if a transaction is going to be committed (or is currently already
607  * committing), and fills its tid in at *ptid
608  */
609 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
610 {
611 	int ret = 0;
612 
613 	write_lock(&journal->j_state_lock);
614 	if (journal->j_running_transaction) {
615 		tid_t tid = journal->j_running_transaction->t_tid;
616 
617 		__jbd2_log_start_commit(journal, tid);
618 		/* There's a running transaction and we've just made sure
619 		 * it's commit has been scheduled. */
620 		if (ptid)
621 			*ptid = tid;
622 		ret = 1;
623 	} else if (journal->j_committing_transaction) {
624 		/*
625 		 * If commit has been started, then we have to wait for
626 		 * completion of that transaction.
627 		 */
628 		if (ptid)
629 			*ptid = journal->j_committing_transaction->t_tid;
630 		ret = 1;
631 	}
632 	write_unlock(&journal->j_state_lock);
633 	return ret;
634 }
635 
636 /*
637  * Return 1 if a given transaction has not yet sent barrier request
638  * connected with a transaction commit. If 0 is returned, transaction
639  * may or may not have sent the barrier. Used to avoid sending barrier
640  * twice in common cases.
641  */
642 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
643 {
644 	int ret = 0;
645 	transaction_t *commit_trans;
646 
647 	if (!(journal->j_flags & JBD2_BARRIER))
648 		return 0;
649 	read_lock(&journal->j_state_lock);
650 	/* Transaction already committed? */
651 	if (tid_geq(journal->j_commit_sequence, tid))
652 		goto out;
653 	commit_trans = journal->j_committing_transaction;
654 	if (!commit_trans || commit_trans->t_tid != tid) {
655 		ret = 1;
656 		goto out;
657 	}
658 	/*
659 	 * Transaction is being committed and we already proceeded to
660 	 * submitting a flush to fs partition?
661 	 */
662 	if (journal->j_fs_dev != journal->j_dev) {
663 		if (!commit_trans->t_need_data_flush ||
664 		    commit_trans->t_state >= T_COMMIT_DFLUSH)
665 			goto out;
666 	} else {
667 		if (commit_trans->t_state >= T_COMMIT_JFLUSH)
668 			goto out;
669 	}
670 	ret = 1;
671 out:
672 	read_unlock(&journal->j_state_lock);
673 	return ret;
674 }
675 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
676 
677 /*
678  * Wait for a specified commit to complete.
679  * The caller may not hold the journal lock.
680  */
681 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
682 {
683 	int err = 0;
684 
685 	read_lock(&journal->j_state_lock);
686 #ifdef CONFIG_PROVE_LOCKING
687 	/*
688 	 * Some callers make sure transaction is already committing and in that
689 	 * case we cannot block on open handles anymore. So don't warn in that
690 	 * case.
691 	 */
692 	if (tid_gt(tid, journal->j_commit_sequence) &&
693 	    (!journal->j_committing_transaction ||
694 	     journal->j_committing_transaction->t_tid != tid)) {
695 		read_unlock(&journal->j_state_lock);
696 		jbd2_might_wait_for_commit(journal);
697 		read_lock(&journal->j_state_lock);
698 	}
699 #endif
700 #ifdef CONFIG_JBD2_DEBUG
701 	if (!tid_geq(journal->j_commit_request, tid)) {
702 		printk(KERN_ERR
703 		       "%s: error: j_commit_request=%u, tid=%u\n",
704 		       __func__, journal->j_commit_request, tid);
705 	}
706 #endif
707 	while (tid_gt(tid, journal->j_commit_sequence)) {
708 		jbd_debug(1, "JBD2: want %u, j_commit_sequence=%u\n",
709 				  tid, journal->j_commit_sequence);
710 		read_unlock(&journal->j_state_lock);
711 		wake_up(&journal->j_wait_commit);
712 		wait_event(journal->j_wait_done_commit,
713 				!tid_gt(tid, journal->j_commit_sequence));
714 		read_lock(&journal->j_state_lock);
715 	}
716 	read_unlock(&journal->j_state_lock);
717 
718 	if (unlikely(is_journal_aborted(journal)))
719 		err = -EIO;
720 	return err;
721 }
722 
723 /*
724  * Start a fast commit. If there's an ongoing fast or full commit wait for
725  * it to complete. Returns 0 if a new fast commit was started. Returns -EALREADY
726  * if a fast commit is not needed, either because there's an already a commit
727  * going on or this tid has already been committed. Returns -EINVAL if no jbd2
728  * commit has yet been performed.
729  */
730 int jbd2_fc_begin_commit(journal_t *journal, tid_t tid)
731 {
732 	if (unlikely(is_journal_aborted(journal)))
733 		return -EIO;
734 	/*
735 	 * Fast commits only allowed if at least one full commit has
736 	 * been processed.
737 	 */
738 	if (!journal->j_stats.ts_tid)
739 		return -EINVAL;
740 
741 	write_lock(&journal->j_state_lock);
742 	if (tid <= journal->j_commit_sequence) {
743 		write_unlock(&journal->j_state_lock);
744 		return -EALREADY;
745 	}
746 
747 	if (journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
748 	    (journal->j_flags & JBD2_FAST_COMMIT_ONGOING)) {
749 		DEFINE_WAIT(wait);
750 
751 		prepare_to_wait(&journal->j_fc_wait, &wait,
752 				TASK_UNINTERRUPTIBLE);
753 		write_unlock(&journal->j_state_lock);
754 		schedule();
755 		finish_wait(&journal->j_fc_wait, &wait);
756 		return -EALREADY;
757 	}
758 	journal->j_flags |= JBD2_FAST_COMMIT_ONGOING;
759 	write_unlock(&journal->j_state_lock);
760 
761 	return 0;
762 }
763 EXPORT_SYMBOL(jbd2_fc_begin_commit);
764 
765 /*
766  * Stop a fast commit. If fallback is set, this function starts commit of
767  * TID tid before any other fast commit can start.
768  */
769 static int __jbd2_fc_end_commit(journal_t *journal, tid_t tid, bool fallback)
770 {
771 	if (journal->j_fc_cleanup_callback)
772 		journal->j_fc_cleanup_callback(journal, 0);
773 	write_lock(&journal->j_state_lock);
774 	journal->j_flags &= ~JBD2_FAST_COMMIT_ONGOING;
775 	if (fallback)
776 		journal->j_flags |= JBD2_FULL_COMMIT_ONGOING;
777 	write_unlock(&journal->j_state_lock);
778 	wake_up(&journal->j_fc_wait);
779 	if (fallback)
780 		return jbd2_complete_transaction(journal, tid);
781 	return 0;
782 }
783 
784 int jbd2_fc_end_commit(journal_t *journal)
785 {
786 	return __jbd2_fc_end_commit(journal, 0, false);
787 }
788 EXPORT_SYMBOL(jbd2_fc_end_commit);
789 
790 int jbd2_fc_end_commit_fallback(journal_t *journal)
791 {
792 	tid_t tid;
793 
794 	read_lock(&journal->j_state_lock);
795 	tid = journal->j_running_transaction ?
796 		journal->j_running_transaction->t_tid : 0;
797 	read_unlock(&journal->j_state_lock);
798 	return __jbd2_fc_end_commit(journal, tid, true);
799 }
800 EXPORT_SYMBOL(jbd2_fc_end_commit_fallback);
801 
802 /* Return 1 when transaction with given tid has already committed. */
803 int jbd2_transaction_committed(journal_t *journal, tid_t tid)
804 {
805 	int ret = 1;
806 
807 	read_lock(&journal->j_state_lock);
808 	if (journal->j_running_transaction &&
809 	    journal->j_running_transaction->t_tid == tid)
810 		ret = 0;
811 	if (journal->j_committing_transaction &&
812 	    journal->j_committing_transaction->t_tid == tid)
813 		ret = 0;
814 	read_unlock(&journal->j_state_lock);
815 	return ret;
816 }
817 EXPORT_SYMBOL(jbd2_transaction_committed);
818 
819 /*
820  * When this function returns the transaction corresponding to tid
821  * will be completed.  If the transaction has currently running, start
822  * committing that transaction before waiting for it to complete.  If
823  * the transaction id is stale, it is by definition already completed,
824  * so just return SUCCESS.
825  */
826 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
827 {
828 	int	need_to_wait = 1;
829 
830 	read_lock(&journal->j_state_lock);
831 	if (journal->j_running_transaction &&
832 	    journal->j_running_transaction->t_tid == tid) {
833 		if (journal->j_commit_request != tid) {
834 			/* transaction not yet started, so request it */
835 			read_unlock(&journal->j_state_lock);
836 			jbd2_log_start_commit(journal, tid);
837 			goto wait_commit;
838 		}
839 	} else if (!(journal->j_committing_transaction &&
840 		     journal->j_committing_transaction->t_tid == tid))
841 		need_to_wait = 0;
842 	read_unlock(&journal->j_state_lock);
843 	if (!need_to_wait)
844 		return 0;
845 wait_commit:
846 	return jbd2_log_wait_commit(journal, tid);
847 }
848 EXPORT_SYMBOL(jbd2_complete_transaction);
849 
850 /*
851  * Log buffer allocation routines:
852  */
853 
854 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
855 {
856 	unsigned long blocknr;
857 
858 	write_lock(&journal->j_state_lock);
859 	J_ASSERT(journal->j_free > 1);
860 
861 	blocknr = journal->j_head;
862 	journal->j_head++;
863 	journal->j_free--;
864 	if (journal->j_head == journal->j_last)
865 		journal->j_head = journal->j_first;
866 	write_unlock(&journal->j_state_lock);
867 	return jbd2_journal_bmap(journal, blocknr, retp);
868 }
869 
870 /* Map one fast commit buffer for use by the file system */
871 int jbd2_fc_get_buf(journal_t *journal, struct buffer_head **bh_out)
872 {
873 	unsigned long long pblock;
874 	unsigned long blocknr;
875 	int ret = 0;
876 	struct buffer_head *bh;
877 	int fc_off;
878 
879 	*bh_out = NULL;
880 
881 	if (journal->j_fc_off + journal->j_fc_first < journal->j_fc_last) {
882 		fc_off = journal->j_fc_off;
883 		blocknr = journal->j_fc_first + fc_off;
884 		journal->j_fc_off++;
885 	} else {
886 		ret = -EINVAL;
887 	}
888 
889 	if (ret)
890 		return ret;
891 
892 	ret = jbd2_journal_bmap(journal, blocknr, &pblock);
893 	if (ret)
894 		return ret;
895 
896 	bh = __getblk(journal->j_dev, pblock, journal->j_blocksize);
897 	if (!bh)
898 		return -ENOMEM;
899 
900 
901 	journal->j_fc_wbuf[fc_off] = bh;
902 
903 	*bh_out = bh;
904 
905 	return 0;
906 }
907 EXPORT_SYMBOL(jbd2_fc_get_buf);
908 
909 /*
910  * Wait on fast commit buffers that were allocated by jbd2_fc_get_buf
911  * for completion.
912  */
913 int jbd2_fc_wait_bufs(journal_t *journal, int num_blks)
914 {
915 	struct buffer_head *bh;
916 	int i, j_fc_off;
917 
918 	j_fc_off = journal->j_fc_off;
919 
920 	/*
921 	 * Wait in reverse order to minimize chances of us being woken up before
922 	 * all IOs have completed
923 	 */
924 	for (i = j_fc_off - 1; i >= j_fc_off - num_blks; i--) {
925 		bh = journal->j_fc_wbuf[i];
926 		wait_on_buffer(bh);
927 		put_bh(bh);
928 		journal->j_fc_wbuf[i] = NULL;
929 		if (unlikely(!buffer_uptodate(bh)))
930 			return -EIO;
931 	}
932 
933 	return 0;
934 }
935 EXPORT_SYMBOL(jbd2_fc_wait_bufs);
936 
937 /*
938  * Wait on fast commit buffers that were allocated by jbd2_fc_get_buf
939  * for completion.
940  */
941 int jbd2_fc_release_bufs(journal_t *journal)
942 {
943 	struct buffer_head *bh;
944 	int i, j_fc_off;
945 
946 	j_fc_off = journal->j_fc_off;
947 
948 	/*
949 	 * Wait in reverse order to minimize chances of us being woken up before
950 	 * all IOs have completed
951 	 */
952 	for (i = j_fc_off - 1; i >= 0; i--) {
953 		bh = journal->j_fc_wbuf[i];
954 		if (!bh)
955 			break;
956 		put_bh(bh);
957 		journal->j_fc_wbuf[i] = NULL;
958 	}
959 
960 	return 0;
961 }
962 EXPORT_SYMBOL(jbd2_fc_release_bufs);
963 
964 /*
965  * Conversion of logical to physical block numbers for the journal
966  *
967  * On external journals the journal blocks are identity-mapped, so
968  * this is a no-op.  If needed, we can use j_blk_offset - everything is
969  * ready.
970  */
971 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
972 		 unsigned long long *retp)
973 {
974 	int err = 0;
975 	unsigned long long ret;
976 	sector_t block = 0;
977 
978 	if (journal->j_inode) {
979 		block = blocknr;
980 		ret = bmap(journal->j_inode, &block);
981 
982 		if (ret || !block) {
983 			printk(KERN_ALERT "%s: journal block not found "
984 					"at offset %lu on %s\n",
985 			       __func__, blocknr, journal->j_devname);
986 			err = -EIO;
987 			jbd2_journal_abort(journal, err);
988 		} else {
989 			*retp = block;
990 		}
991 
992 	} else {
993 		*retp = blocknr; /* +journal->j_blk_offset */
994 	}
995 	return err;
996 }
997 
998 /*
999  * We play buffer_head aliasing tricks to write data/metadata blocks to
1000  * the journal without copying their contents, but for journal
1001  * descriptor blocks we do need to generate bona fide buffers.
1002  *
1003  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
1004  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
1005  * But we don't bother doing that, so there will be coherency problems with
1006  * mmaps of blockdevs which hold live JBD-controlled filesystems.
1007  */
1008 struct buffer_head *
1009 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
1010 {
1011 	journal_t *journal = transaction->t_journal;
1012 	struct buffer_head *bh;
1013 	unsigned long long blocknr;
1014 	journal_header_t *header;
1015 	int err;
1016 
1017 	err = jbd2_journal_next_log_block(journal, &blocknr);
1018 
1019 	if (err)
1020 		return NULL;
1021 
1022 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
1023 	if (!bh)
1024 		return NULL;
1025 	atomic_dec(&transaction->t_outstanding_credits);
1026 	lock_buffer(bh);
1027 	memset(bh->b_data, 0, journal->j_blocksize);
1028 	header = (journal_header_t *)bh->b_data;
1029 	header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
1030 	header->h_blocktype = cpu_to_be32(type);
1031 	header->h_sequence = cpu_to_be32(transaction->t_tid);
1032 	set_buffer_uptodate(bh);
1033 	unlock_buffer(bh);
1034 	BUFFER_TRACE(bh, "return this buffer");
1035 	return bh;
1036 }
1037 
1038 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
1039 {
1040 	struct jbd2_journal_block_tail *tail;
1041 	__u32 csum;
1042 
1043 	if (!jbd2_journal_has_csum_v2or3(j))
1044 		return;
1045 
1046 	tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
1047 			sizeof(struct jbd2_journal_block_tail));
1048 	tail->t_checksum = 0;
1049 	csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
1050 	tail->t_checksum = cpu_to_be32(csum);
1051 }
1052 
1053 /*
1054  * Return tid of the oldest transaction in the journal and block in the journal
1055  * where the transaction starts.
1056  *
1057  * If the journal is now empty, return which will be the next transaction ID
1058  * we will write and where will that transaction start.
1059  *
1060  * The return value is 0 if journal tail cannot be pushed any further, 1 if
1061  * it can.
1062  */
1063 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
1064 			      unsigned long *block)
1065 {
1066 	transaction_t *transaction;
1067 	int ret;
1068 
1069 	read_lock(&journal->j_state_lock);
1070 	spin_lock(&journal->j_list_lock);
1071 	transaction = journal->j_checkpoint_transactions;
1072 	if (transaction) {
1073 		*tid = transaction->t_tid;
1074 		*block = transaction->t_log_start;
1075 	} else if ((transaction = journal->j_committing_transaction) != NULL) {
1076 		*tid = transaction->t_tid;
1077 		*block = transaction->t_log_start;
1078 	} else if ((transaction = journal->j_running_transaction) != NULL) {
1079 		*tid = transaction->t_tid;
1080 		*block = journal->j_head;
1081 	} else {
1082 		*tid = journal->j_transaction_sequence;
1083 		*block = journal->j_head;
1084 	}
1085 	ret = tid_gt(*tid, journal->j_tail_sequence);
1086 	spin_unlock(&journal->j_list_lock);
1087 	read_unlock(&journal->j_state_lock);
1088 
1089 	return ret;
1090 }
1091 
1092 /*
1093  * Update information in journal structure and in on disk journal superblock
1094  * about log tail. This function does not check whether information passed in
1095  * really pushes log tail further. It's responsibility of the caller to make
1096  * sure provided log tail information is valid (e.g. by holding
1097  * j_checkpoint_mutex all the time between computing log tail and calling this
1098  * function as is the case with jbd2_cleanup_journal_tail()).
1099  *
1100  * Requires j_checkpoint_mutex
1101  */
1102 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
1103 {
1104 	unsigned long freed;
1105 	int ret;
1106 
1107 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1108 
1109 	/*
1110 	 * We cannot afford for write to remain in drive's caches since as
1111 	 * soon as we update j_tail, next transaction can start reusing journal
1112 	 * space and if we lose sb update during power failure we'd replay
1113 	 * old transaction with possibly newly overwritten data.
1114 	 */
1115 	ret = jbd2_journal_update_sb_log_tail(journal, tid, block,
1116 					      REQ_SYNC | REQ_FUA);
1117 	if (ret)
1118 		goto out;
1119 
1120 	write_lock(&journal->j_state_lock);
1121 	freed = block - journal->j_tail;
1122 	if (block < journal->j_tail)
1123 		freed += journal->j_last - journal->j_first;
1124 
1125 	trace_jbd2_update_log_tail(journal, tid, block, freed);
1126 	jbd_debug(1,
1127 		  "Cleaning journal tail from %u to %u (offset %lu), "
1128 		  "freeing %lu\n",
1129 		  journal->j_tail_sequence, tid, block, freed);
1130 
1131 	journal->j_free += freed;
1132 	journal->j_tail_sequence = tid;
1133 	journal->j_tail = block;
1134 	write_unlock(&journal->j_state_lock);
1135 
1136 out:
1137 	return ret;
1138 }
1139 
1140 /*
1141  * This is a variation of __jbd2_update_log_tail which checks for validity of
1142  * provided log tail and locks j_checkpoint_mutex. So it is safe against races
1143  * with other threads updating log tail.
1144  */
1145 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
1146 {
1147 	mutex_lock_io(&journal->j_checkpoint_mutex);
1148 	if (tid_gt(tid, journal->j_tail_sequence))
1149 		__jbd2_update_log_tail(journal, tid, block);
1150 	mutex_unlock(&journal->j_checkpoint_mutex);
1151 }
1152 
1153 struct jbd2_stats_proc_session {
1154 	journal_t *journal;
1155 	struct transaction_stats_s *stats;
1156 	int start;
1157 	int max;
1158 };
1159 
1160 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
1161 {
1162 	return *pos ? NULL : SEQ_START_TOKEN;
1163 }
1164 
1165 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
1166 {
1167 	(*pos)++;
1168 	return NULL;
1169 }
1170 
1171 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
1172 {
1173 	struct jbd2_stats_proc_session *s = seq->private;
1174 
1175 	if (v != SEQ_START_TOKEN)
1176 		return 0;
1177 	seq_printf(seq, "%lu transactions (%lu requested), "
1178 		   "each up to %u blocks\n",
1179 		   s->stats->ts_tid, s->stats->ts_requested,
1180 		   s->journal->j_max_transaction_buffers);
1181 	if (s->stats->ts_tid == 0)
1182 		return 0;
1183 	seq_printf(seq, "average: \n  %ums waiting for transaction\n",
1184 	    jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
1185 	seq_printf(seq, "  %ums request delay\n",
1186 	    (s->stats->ts_requested == 0) ? 0 :
1187 	    jiffies_to_msecs(s->stats->run.rs_request_delay /
1188 			     s->stats->ts_requested));
1189 	seq_printf(seq, "  %ums running transaction\n",
1190 	    jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
1191 	seq_printf(seq, "  %ums transaction was being locked\n",
1192 	    jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1193 	seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
1194 	    jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1195 	seq_printf(seq, "  %ums logging transaction\n",
1196 	    jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1197 	seq_printf(seq, "  %lluus average transaction commit time\n",
1198 		   div_u64(s->journal->j_average_commit_time, 1000));
1199 	seq_printf(seq, "  %lu handles per transaction\n",
1200 	    s->stats->run.rs_handle_count / s->stats->ts_tid);
1201 	seq_printf(seq, "  %lu blocks per transaction\n",
1202 	    s->stats->run.rs_blocks / s->stats->ts_tid);
1203 	seq_printf(seq, "  %lu logged blocks per transaction\n",
1204 	    s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1205 	return 0;
1206 }
1207 
1208 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1209 {
1210 }
1211 
1212 static const struct seq_operations jbd2_seq_info_ops = {
1213 	.start  = jbd2_seq_info_start,
1214 	.next   = jbd2_seq_info_next,
1215 	.stop   = jbd2_seq_info_stop,
1216 	.show   = jbd2_seq_info_show,
1217 };
1218 
1219 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1220 {
1221 	journal_t *journal = PDE_DATA(inode);
1222 	struct jbd2_stats_proc_session *s;
1223 	int rc, size;
1224 
1225 	s = kmalloc(sizeof(*s), GFP_KERNEL);
1226 	if (s == NULL)
1227 		return -ENOMEM;
1228 	size = sizeof(struct transaction_stats_s);
1229 	s->stats = kmalloc(size, GFP_KERNEL);
1230 	if (s->stats == NULL) {
1231 		kfree(s);
1232 		return -ENOMEM;
1233 	}
1234 	spin_lock(&journal->j_history_lock);
1235 	memcpy(s->stats, &journal->j_stats, size);
1236 	s->journal = journal;
1237 	spin_unlock(&journal->j_history_lock);
1238 
1239 	rc = seq_open(file, &jbd2_seq_info_ops);
1240 	if (rc == 0) {
1241 		struct seq_file *m = file->private_data;
1242 		m->private = s;
1243 	} else {
1244 		kfree(s->stats);
1245 		kfree(s);
1246 	}
1247 	return rc;
1248 
1249 }
1250 
1251 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1252 {
1253 	struct seq_file *seq = file->private_data;
1254 	struct jbd2_stats_proc_session *s = seq->private;
1255 	kfree(s->stats);
1256 	kfree(s);
1257 	return seq_release(inode, file);
1258 }
1259 
1260 static const struct proc_ops jbd2_info_proc_ops = {
1261 	.proc_open	= jbd2_seq_info_open,
1262 	.proc_read	= seq_read,
1263 	.proc_lseek	= seq_lseek,
1264 	.proc_release	= jbd2_seq_info_release,
1265 };
1266 
1267 static struct proc_dir_entry *proc_jbd2_stats;
1268 
1269 static void jbd2_stats_proc_init(journal_t *journal)
1270 {
1271 	journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1272 	if (journal->j_proc_entry) {
1273 		proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1274 				 &jbd2_info_proc_ops, journal);
1275 	}
1276 }
1277 
1278 static void jbd2_stats_proc_exit(journal_t *journal)
1279 {
1280 	remove_proc_entry("info", journal->j_proc_entry);
1281 	remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1282 }
1283 
1284 /* Minimum size of descriptor tag */
1285 static int jbd2_min_tag_size(void)
1286 {
1287 	/*
1288 	 * Tag with 32-bit block numbers does not use last four bytes of the
1289 	 * structure
1290 	 */
1291 	return sizeof(journal_block_tag_t) - 4;
1292 }
1293 
1294 /*
1295  * Management for journal control blocks: functions to create and
1296  * destroy journal_t structures, and to initialise and read existing
1297  * journal blocks from disk.  */
1298 
1299 /* First: create and setup a journal_t object in memory.  We initialise
1300  * very few fields yet: that has to wait until we have created the
1301  * journal structures from from scratch, or loaded them from disk. */
1302 
1303 static journal_t *journal_init_common(struct block_device *bdev,
1304 			struct block_device *fs_dev,
1305 			unsigned long long start, int len, int blocksize)
1306 {
1307 	static struct lock_class_key jbd2_trans_commit_key;
1308 	journal_t *journal;
1309 	int err;
1310 	struct buffer_head *bh;
1311 	int n;
1312 
1313 	journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1314 	if (!journal)
1315 		return NULL;
1316 
1317 	init_waitqueue_head(&journal->j_wait_transaction_locked);
1318 	init_waitqueue_head(&journal->j_wait_done_commit);
1319 	init_waitqueue_head(&journal->j_wait_commit);
1320 	init_waitqueue_head(&journal->j_wait_updates);
1321 	init_waitqueue_head(&journal->j_wait_reserved);
1322 	init_waitqueue_head(&journal->j_fc_wait);
1323 	mutex_init(&journal->j_abort_mutex);
1324 	mutex_init(&journal->j_barrier);
1325 	mutex_init(&journal->j_checkpoint_mutex);
1326 	spin_lock_init(&journal->j_revoke_lock);
1327 	spin_lock_init(&journal->j_list_lock);
1328 	rwlock_init(&journal->j_state_lock);
1329 
1330 	journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1331 	journal->j_min_batch_time = 0;
1332 	journal->j_max_batch_time = 15000; /* 15ms */
1333 	atomic_set(&journal->j_reserved_credits, 0);
1334 
1335 	/* The journal is marked for error until we succeed with recovery! */
1336 	journal->j_flags = JBD2_ABORT;
1337 
1338 	/* Set up a default-sized revoke table for the new mount. */
1339 	err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1340 	if (err)
1341 		goto err_cleanup;
1342 
1343 	spin_lock_init(&journal->j_history_lock);
1344 
1345 	lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1346 			 &jbd2_trans_commit_key, 0);
1347 
1348 	/* journal descriptor can store up to n blocks -bzzz */
1349 	journal->j_blocksize = blocksize;
1350 	journal->j_dev = bdev;
1351 	journal->j_fs_dev = fs_dev;
1352 	journal->j_blk_offset = start;
1353 	journal->j_total_len = len;
1354 	/* We need enough buffers to write out full descriptor block. */
1355 	n = journal->j_blocksize / jbd2_min_tag_size();
1356 	journal->j_wbufsize = n;
1357 	journal->j_fc_wbuf = NULL;
1358 	journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1359 					GFP_KERNEL);
1360 	if (!journal->j_wbuf)
1361 		goto err_cleanup;
1362 
1363 	bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize);
1364 	if (!bh) {
1365 		pr_err("%s: Cannot get buffer for journal superblock\n",
1366 			__func__);
1367 		goto err_cleanup;
1368 	}
1369 	journal->j_sb_buffer = bh;
1370 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
1371 
1372 	return journal;
1373 
1374 err_cleanup:
1375 	kfree(journal->j_wbuf);
1376 	jbd2_journal_destroy_revoke(journal);
1377 	kfree(journal);
1378 	return NULL;
1379 }
1380 
1381 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1382  *
1383  * Create a journal structure assigned some fixed set of disk blocks to
1384  * the journal.  We don't actually touch those disk blocks yet, but we
1385  * need to set up all of the mapping information to tell the journaling
1386  * system where the journal blocks are.
1387  *
1388  */
1389 
1390 /**
1391  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1392  *  @bdev: Block device on which to create the journal
1393  *  @fs_dev: Device which hold journalled filesystem for this journal.
1394  *  @start: Block nr Start of journal.
1395  *  @len:  Length of the journal in blocks.
1396  *  @blocksize: blocksize of journalling device
1397  *
1398  *  Returns: a newly created journal_t *
1399  *
1400  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1401  *  range of blocks on an arbitrary block device.
1402  *
1403  */
1404 journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1405 			struct block_device *fs_dev,
1406 			unsigned long long start, int len, int blocksize)
1407 {
1408 	journal_t *journal;
1409 
1410 	journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1411 	if (!journal)
1412 		return NULL;
1413 
1414 	bdevname(journal->j_dev, journal->j_devname);
1415 	strreplace(journal->j_devname, '/', '!');
1416 	jbd2_stats_proc_init(journal);
1417 
1418 	return journal;
1419 }
1420 
1421 /**
1422  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1423  *  @inode: An inode to create the journal in
1424  *
1425  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1426  * the journal.  The inode must exist already, must support bmap() and
1427  * must have all data blocks preallocated.
1428  */
1429 journal_t *jbd2_journal_init_inode(struct inode *inode)
1430 {
1431 	journal_t *journal;
1432 	sector_t blocknr;
1433 	char *p;
1434 	int err = 0;
1435 
1436 	blocknr = 0;
1437 	err = bmap(inode, &blocknr);
1438 
1439 	if (err || !blocknr) {
1440 		pr_err("%s: Cannot locate journal superblock\n",
1441 			__func__);
1442 		return NULL;
1443 	}
1444 
1445 	jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1446 		  inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1447 		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1448 
1449 	journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1450 			blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1451 			inode->i_sb->s_blocksize);
1452 	if (!journal)
1453 		return NULL;
1454 
1455 	journal->j_inode = inode;
1456 	bdevname(journal->j_dev, journal->j_devname);
1457 	p = strreplace(journal->j_devname, '/', '!');
1458 	sprintf(p, "-%lu", journal->j_inode->i_ino);
1459 	jbd2_stats_proc_init(journal);
1460 
1461 	return journal;
1462 }
1463 
1464 /*
1465  * If the journal init or create aborts, we need to mark the journal
1466  * superblock as being NULL to prevent the journal destroy from writing
1467  * back a bogus superblock.
1468  */
1469 static void journal_fail_superblock(journal_t *journal)
1470 {
1471 	struct buffer_head *bh = journal->j_sb_buffer;
1472 	brelse(bh);
1473 	journal->j_sb_buffer = NULL;
1474 }
1475 
1476 /*
1477  * Given a journal_t structure, initialise the various fields for
1478  * startup of a new journaling session.  We use this both when creating
1479  * a journal, and after recovering an old journal to reset it for
1480  * subsequent use.
1481  */
1482 
1483 static int journal_reset(journal_t *journal)
1484 {
1485 	journal_superblock_t *sb = journal->j_superblock;
1486 	unsigned long long first, last;
1487 
1488 	first = be32_to_cpu(sb->s_first);
1489 	last = be32_to_cpu(sb->s_maxlen);
1490 	if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1491 		printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1492 		       first, last);
1493 		journal_fail_superblock(journal);
1494 		return -EINVAL;
1495 	}
1496 
1497 	journal->j_first = first;
1498 	journal->j_last = last;
1499 
1500 	journal->j_head = journal->j_first;
1501 	journal->j_tail = journal->j_first;
1502 	journal->j_free = journal->j_last - journal->j_first;
1503 
1504 	journal->j_tail_sequence = journal->j_transaction_sequence;
1505 	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1506 	journal->j_commit_request = journal->j_commit_sequence;
1507 
1508 	journal->j_max_transaction_buffers = jbd2_journal_get_max_txn_bufs(journal);
1509 
1510 	/*
1511 	 * Now that journal recovery is done, turn fast commits off here. This
1512 	 * way, if fast commit was enabled before the crash but if now FS has
1513 	 * disabled it, we don't enable fast commits.
1514 	 */
1515 	jbd2_clear_feature_fast_commit(journal);
1516 
1517 	/*
1518 	 * As a special case, if the on-disk copy is already marked as needing
1519 	 * no recovery (s_start == 0), then we can safely defer the superblock
1520 	 * update until the next commit by setting JBD2_FLUSHED.  This avoids
1521 	 * attempting a write to a potential-readonly device.
1522 	 */
1523 	if (sb->s_start == 0) {
1524 		jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1525 			"(start %ld, seq %u, errno %d)\n",
1526 			journal->j_tail, journal->j_tail_sequence,
1527 			journal->j_errno);
1528 		journal->j_flags |= JBD2_FLUSHED;
1529 	} else {
1530 		/* Lock here to make assertions happy... */
1531 		mutex_lock_io(&journal->j_checkpoint_mutex);
1532 		/*
1533 		 * Update log tail information. We use REQ_FUA since new
1534 		 * transaction will start reusing journal space and so we
1535 		 * must make sure information about current log tail is on
1536 		 * disk before that.
1537 		 */
1538 		jbd2_journal_update_sb_log_tail(journal,
1539 						journal->j_tail_sequence,
1540 						journal->j_tail,
1541 						REQ_SYNC | REQ_FUA);
1542 		mutex_unlock(&journal->j_checkpoint_mutex);
1543 	}
1544 	return jbd2_journal_start_thread(journal);
1545 }
1546 
1547 /*
1548  * This function expects that the caller will have locked the journal
1549  * buffer head, and will return with it unlocked
1550  */
1551 static int jbd2_write_superblock(journal_t *journal, int write_flags)
1552 {
1553 	struct buffer_head *bh = journal->j_sb_buffer;
1554 	journal_superblock_t *sb = journal->j_superblock;
1555 	int ret;
1556 
1557 	/* Buffer got discarded which means block device got invalidated */
1558 	if (!buffer_mapped(bh)) {
1559 		unlock_buffer(bh);
1560 		return -EIO;
1561 	}
1562 
1563 	trace_jbd2_write_superblock(journal, write_flags);
1564 	if (!(journal->j_flags & JBD2_BARRIER))
1565 		write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1566 	if (buffer_write_io_error(bh)) {
1567 		/*
1568 		 * Oh, dear.  A previous attempt to write the journal
1569 		 * superblock failed.  This could happen because the
1570 		 * USB device was yanked out.  Or it could happen to
1571 		 * be a transient write error and maybe the block will
1572 		 * be remapped.  Nothing we can do but to retry the
1573 		 * write and hope for the best.
1574 		 */
1575 		printk(KERN_ERR "JBD2: previous I/O error detected "
1576 		       "for journal superblock update for %s.\n",
1577 		       journal->j_devname);
1578 		clear_buffer_write_io_error(bh);
1579 		set_buffer_uptodate(bh);
1580 	}
1581 	if (jbd2_journal_has_csum_v2or3(journal))
1582 		sb->s_checksum = jbd2_superblock_csum(journal, sb);
1583 	get_bh(bh);
1584 	bh->b_end_io = end_buffer_write_sync;
1585 	ret = submit_bh(REQ_OP_WRITE, write_flags, bh);
1586 	wait_on_buffer(bh);
1587 	if (buffer_write_io_error(bh)) {
1588 		clear_buffer_write_io_error(bh);
1589 		set_buffer_uptodate(bh);
1590 		ret = -EIO;
1591 	}
1592 	if (ret) {
1593 		printk(KERN_ERR "JBD2: Error %d detected when updating "
1594 		       "journal superblock for %s.\n", ret,
1595 		       journal->j_devname);
1596 		if (!is_journal_aborted(journal))
1597 			jbd2_journal_abort(journal, ret);
1598 	}
1599 
1600 	return ret;
1601 }
1602 
1603 /**
1604  * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1605  * @journal: The journal to update.
1606  * @tail_tid: TID of the new transaction at the tail of the log
1607  * @tail_block: The first block of the transaction at the tail of the log
1608  * @write_op: With which operation should we write the journal sb
1609  *
1610  * Update a journal's superblock information about log tail and write it to
1611  * disk, waiting for the IO to complete.
1612  */
1613 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1614 				     unsigned long tail_block, int write_op)
1615 {
1616 	journal_superblock_t *sb = journal->j_superblock;
1617 	int ret;
1618 
1619 	if (is_journal_aborted(journal))
1620 		return -EIO;
1621 
1622 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1623 	jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1624 		  tail_block, tail_tid);
1625 
1626 	lock_buffer(journal->j_sb_buffer);
1627 	sb->s_sequence = cpu_to_be32(tail_tid);
1628 	sb->s_start    = cpu_to_be32(tail_block);
1629 
1630 	ret = jbd2_write_superblock(journal, write_op);
1631 	if (ret)
1632 		goto out;
1633 
1634 	/* Log is no longer empty */
1635 	write_lock(&journal->j_state_lock);
1636 	WARN_ON(!sb->s_sequence);
1637 	journal->j_flags &= ~JBD2_FLUSHED;
1638 	write_unlock(&journal->j_state_lock);
1639 
1640 out:
1641 	return ret;
1642 }
1643 
1644 /**
1645  * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1646  * @journal: The journal to update.
1647  * @write_op: With which operation should we write the journal sb
1648  *
1649  * Update a journal's dynamic superblock fields to show that journal is empty.
1650  * Write updated superblock to disk waiting for IO to complete.
1651  */
1652 static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1653 {
1654 	journal_superblock_t *sb = journal->j_superblock;
1655 	bool had_fast_commit = false;
1656 
1657 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1658 	lock_buffer(journal->j_sb_buffer);
1659 	if (sb->s_start == 0) {		/* Is it already empty? */
1660 		unlock_buffer(journal->j_sb_buffer);
1661 		return;
1662 	}
1663 
1664 	jbd_debug(1, "JBD2: Marking journal as empty (seq %u)\n",
1665 		  journal->j_tail_sequence);
1666 
1667 	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1668 	sb->s_start    = cpu_to_be32(0);
1669 	if (jbd2_has_feature_fast_commit(journal)) {
1670 		/*
1671 		 * When journal is clean, no need to commit fast commit flag and
1672 		 * make file system incompatible with older kernels.
1673 		 */
1674 		jbd2_clear_feature_fast_commit(journal);
1675 		had_fast_commit = true;
1676 	}
1677 
1678 	jbd2_write_superblock(journal, write_op);
1679 
1680 	if (had_fast_commit)
1681 		jbd2_set_feature_fast_commit(journal);
1682 
1683 	/* Log is no longer empty */
1684 	write_lock(&journal->j_state_lock);
1685 	journal->j_flags |= JBD2_FLUSHED;
1686 	write_unlock(&journal->j_state_lock);
1687 }
1688 
1689 
1690 /**
1691  * jbd2_journal_update_sb_errno() - Update error in the journal.
1692  * @journal: The journal to update.
1693  *
1694  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1695  * to complete.
1696  */
1697 void jbd2_journal_update_sb_errno(journal_t *journal)
1698 {
1699 	journal_superblock_t *sb = journal->j_superblock;
1700 	int errcode;
1701 
1702 	lock_buffer(journal->j_sb_buffer);
1703 	errcode = journal->j_errno;
1704 	if (errcode == -ESHUTDOWN)
1705 		errcode = 0;
1706 	jbd_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode);
1707 	sb->s_errno    = cpu_to_be32(errcode);
1708 
1709 	jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA);
1710 }
1711 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1712 
1713 static int journal_revoke_records_per_block(journal_t *journal)
1714 {
1715 	int record_size;
1716 	int space = journal->j_blocksize - sizeof(jbd2_journal_revoke_header_t);
1717 
1718 	if (jbd2_has_feature_64bit(journal))
1719 		record_size = 8;
1720 	else
1721 		record_size = 4;
1722 
1723 	if (jbd2_journal_has_csum_v2or3(journal))
1724 		space -= sizeof(struct jbd2_journal_block_tail);
1725 	return space / record_size;
1726 }
1727 
1728 /*
1729  * Read the superblock for a given journal, performing initial
1730  * validation of the format.
1731  */
1732 static int journal_get_superblock(journal_t *journal)
1733 {
1734 	struct buffer_head *bh;
1735 	journal_superblock_t *sb;
1736 	int err = -EIO;
1737 
1738 	bh = journal->j_sb_buffer;
1739 
1740 	J_ASSERT(bh != NULL);
1741 	if (!buffer_uptodate(bh)) {
1742 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1743 		wait_on_buffer(bh);
1744 		if (!buffer_uptodate(bh)) {
1745 			printk(KERN_ERR
1746 				"JBD2: IO error reading journal superblock\n");
1747 			goto out;
1748 		}
1749 	}
1750 
1751 	if (buffer_verified(bh))
1752 		return 0;
1753 
1754 	sb = journal->j_superblock;
1755 
1756 	err = -EINVAL;
1757 
1758 	if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1759 	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1760 		printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1761 		goto out;
1762 	}
1763 
1764 	switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1765 	case JBD2_SUPERBLOCK_V1:
1766 		journal->j_format_version = 1;
1767 		break;
1768 	case JBD2_SUPERBLOCK_V2:
1769 		journal->j_format_version = 2;
1770 		break;
1771 	default:
1772 		printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1773 		goto out;
1774 	}
1775 
1776 	if (be32_to_cpu(sb->s_maxlen) < journal->j_total_len)
1777 		journal->j_total_len = be32_to_cpu(sb->s_maxlen);
1778 	else if (be32_to_cpu(sb->s_maxlen) > journal->j_total_len) {
1779 		printk(KERN_WARNING "JBD2: journal file too short\n");
1780 		goto out;
1781 	}
1782 
1783 	if (be32_to_cpu(sb->s_first) == 0 ||
1784 	    be32_to_cpu(sb->s_first) >= journal->j_total_len) {
1785 		printk(KERN_WARNING
1786 			"JBD2: Invalid start block of journal: %u\n",
1787 			be32_to_cpu(sb->s_first));
1788 		goto out;
1789 	}
1790 
1791 	if (jbd2_has_feature_csum2(journal) &&
1792 	    jbd2_has_feature_csum3(journal)) {
1793 		/* Can't have checksum v2 and v3 at the same time! */
1794 		printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1795 		       "at the same time!\n");
1796 		goto out;
1797 	}
1798 
1799 	if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1800 	    jbd2_has_feature_checksum(journal)) {
1801 		/* Can't have checksum v1 and v2 on at the same time! */
1802 		printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1803 		       "at the same time!\n");
1804 		goto out;
1805 	}
1806 
1807 	if (!jbd2_verify_csum_type(journal, sb)) {
1808 		printk(KERN_ERR "JBD2: Unknown checksum type\n");
1809 		goto out;
1810 	}
1811 
1812 	/* Load the checksum driver */
1813 	if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1814 		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1815 		if (IS_ERR(journal->j_chksum_driver)) {
1816 			printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1817 			err = PTR_ERR(journal->j_chksum_driver);
1818 			journal->j_chksum_driver = NULL;
1819 			goto out;
1820 		}
1821 	}
1822 
1823 	if (jbd2_journal_has_csum_v2or3(journal)) {
1824 		/* Check superblock checksum */
1825 		if (sb->s_checksum != jbd2_superblock_csum(journal, sb)) {
1826 			printk(KERN_ERR "JBD2: journal checksum error\n");
1827 			err = -EFSBADCRC;
1828 			goto out;
1829 		}
1830 
1831 		/* Precompute checksum seed for all metadata */
1832 		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1833 						   sizeof(sb->s_uuid));
1834 	}
1835 
1836 	journal->j_revoke_records_per_block =
1837 				journal_revoke_records_per_block(journal);
1838 	set_buffer_verified(bh);
1839 
1840 	return 0;
1841 
1842 out:
1843 	journal_fail_superblock(journal);
1844 	return err;
1845 }
1846 
1847 /*
1848  * Load the on-disk journal superblock and read the key fields into the
1849  * journal_t.
1850  */
1851 
1852 static int load_superblock(journal_t *journal)
1853 {
1854 	int err;
1855 	journal_superblock_t *sb;
1856 	int num_fc_blocks;
1857 
1858 	err = journal_get_superblock(journal);
1859 	if (err)
1860 		return err;
1861 
1862 	sb = journal->j_superblock;
1863 
1864 	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1865 	journal->j_tail = be32_to_cpu(sb->s_start);
1866 	journal->j_first = be32_to_cpu(sb->s_first);
1867 	journal->j_errno = be32_to_cpu(sb->s_errno);
1868 	journal->j_last = be32_to_cpu(sb->s_maxlen);
1869 
1870 	if (jbd2_has_feature_fast_commit(journal)) {
1871 		journal->j_fc_last = be32_to_cpu(sb->s_maxlen);
1872 		num_fc_blocks = jbd2_journal_get_num_fc_blks(sb);
1873 		if (journal->j_last - num_fc_blocks >= JBD2_MIN_JOURNAL_BLOCKS)
1874 			journal->j_last = journal->j_fc_last - num_fc_blocks;
1875 		journal->j_fc_first = journal->j_last + 1;
1876 		journal->j_fc_off = 0;
1877 	}
1878 
1879 	return 0;
1880 }
1881 
1882 
1883 /**
1884  * jbd2_journal_load() - Read journal from disk.
1885  * @journal: Journal to act on.
1886  *
1887  * Given a journal_t structure which tells us which disk blocks contain
1888  * a journal, read the journal from disk to initialise the in-memory
1889  * structures.
1890  */
1891 int jbd2_journal_load(journal_t *journal)
1892 {
1893 	int err;
1894 	journal_superblock_t *sb;
1895 
1896 	err = load_superblock(journal);
1897 	if (err)
1898 		return err;
1899 
1900 	sb = journal->j_superblock;
1901 	/* If this is a V2 superblock, then we have to check the
1902 	 * features flags on it. */
1903 
1904 	if (journal->j_format_version >= 2) {
1905 		if ((sb->s_feature_ro_compat &
1906 		     ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1907 		    (sb->s_feature_incompat &
1908 		     ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1909 			printk(KERN_WARNING
1910 				"JBD2: Unrecognised features on journal\n");
1911 			return -EINVAL;
1912 		}
1913 	}
1914 
1915 	/*
1916 	 * Create a slab for this blocksize
1917 	 */
1918 	err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1919 	if (err)
1920 		return err;
1921 
1922 	/* Let the recovery code check whether it needs to recover any
1923 	 * data from the journal. */
1924 	if (jbd2_journal_recover(journal))
1925 		goto recovery_error;
1926 
1927 	if (journal->j_failed_commit) {
1928 		printk(KERN_ERR "JBD2: journal transaction %u on %s "
1929 		       "is corrupt.\n", journal->j_failed_commit,
1930 		       journal->j_devname);
1931 		return -EFSCORRUPTED;
1932 	}
1933 	/*
1934 	 * clear JBD2_ABORT flag initialized in journal_init_common
1935 	 * here to update log tail information with the newest seq.
1936 	 */
1937 	journal->j_flags &= ~JBD2_ABORT;
1938 
1939 	/* OK, we've finished with the dynamic journal bits:
1940 	 * reinitialise the dynamic contents of the superblock in memory
1941 	 * and reset them on disk. */
1942 	if (journal_reset(journal))
1943 		goto recovery_error;
1944 
1945 	journal->j_flags |= JBD2_LOADED;
1946 	return 0;
1947 
1948 recovery_error:
1949 	printk(KERN_WARNING "JBD2: recovery failed\n");
1950 	return -EIO;
1951 }
1952 
1953 /**
1954  * jbd2_journal_destroy() - Release a journal_t structure.
1955  * @journal: Journal to act on.
1956  *
1957  * Release a journal_t structure once it is no longer in use by the
1958  * journaled object.
1959  * Return <0 if we couldn't clean up the journal.
1960  */
1961 int jbd2_journal_destroy(journal_t *journal)
1962 {
1963 	int err = 0;
1964 
1965 	/* Wait for the commit thread to wake up and die. */
1966 	journal_kill_thread(journal);
1967 
1968 	/* Force a final log commit */
1969 	if (journal->j_running_transaction)
1970 		jbd2_journal_commit_transaction(journal);
1971 
1972 	/* Force any old transactions to disk */
1973 
1974 	/* Totally anal locking here... */
1975 	spin_lock(&journal->j_list_lock);
1976 	while (journal->j_checkpoint_transactions != NULL) {
1977 		spin_unlock(&journal->j_list_lock);
1978 		mutex_lock_io(&journal->j_checkpoint_mutex);
1979 		err = jbd2_log_do_checkpoint(journal);
1980 		mutex_unlock(&journal->j_checkpoint_mutex);
1981 		/*
1982 		 * If checkpointing failed, just free the buffers to avoid
1983 		 * looping forever
1984 		 */
1985 		if (err) {
1986 			jbd2_journal_destroy_checkpoint(journal);
1987 			spin_lock(&journal->j_list_lock);
1988 			break;
1989 		}
1990 		spin_lock(&journal->j_list_lock);
1991 	}
1992 
1993 	J_ASSERT(journal->j_running_transaction == NULL);
1994 	J_ASSERT(journal->j_committing_transaction == NULL);
1995 	J_ASSERT(journal->j_checkpoint_transactions == NULL);
1996 	spin_unlock(&journal->j_list_lock);
1997 
1998 	if (journal->j_sb_buffer) {
1999 		if (!is_journal_aborted(journal)) {
2000 			mutex_lock_io(&journal->j_checkpoint_mutex);
2001 
2002 			write_lock(&journal->j_state_lock);
2003 			journal->j_tail_sequence =
2004 				++journal->j_transaction_sequence;
2005 			write_unlock(&journal->j_state_lock);
2006 
2007 			jbd2_mark_journal_empty(journal,
2008 					REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
2009 			mutex_unlock(&journal->j_checkpoint_mutex);
2010 		} else
2011 			err = -EIO;
2012 		brelse(journal->j_sb_buffer);
2013 	}
2014 
2015 	if (journal->j_proc_entry)
2016 		jbd2_stats_proc_exit(journal);
2017 	iput(journal->j_inode);
2018 	if (journal->j_revoke)
2019 		jbd2_journal_destroy_revoke(journal);
2020 	if (journal->j_chksum_driver)
2021 		crypto_free_shash(journal->j_chksum_driver);
2022 	kfree(journal->j_fc_wbuf);
2023 	kfree(journal->j_wbuf);
2024 	kfree(journal);
2025 
2026 	return err;
2027 }
2028 
2029 
2030 /**
2031  * jbd2_journal_check_used_features() - Check if features specified are used.
2032  * @journal: Journal to check.
2033  * @compat: bitmask of compatible features
2034  * @ro: bitmask of features that force read-only mount
2035  * @incompat: bitmask of incompatible features
2036  *
2037  * Check whether the journal uses all of a given set of
2038  * features.  Return true (non-zero) if it does.
2039  **/
2040 
2041 int jbd2_journal_check_used_features(journal_t *journal, unsigned long compat,
2042 				 unsigned long ro, unsigned long incompat)
2043 {
2044 	journal_superblock_t *sb;
2045 
2046 	if (!compat && !ro && !incompat)
2047 		return 1;
2048 	/* Load journal superblock if it is not loaded yet. */
2049 	if (journal->j_format_version == 0 &&
2050 	    journal_get_superblock(journal) != 0)
2051 		return 0;
2052 	if (journal->j_format_version == 1)
2053 		return 0;
2054 
2055 	sb = journal->j_superblock;
2056 
2057 	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
2058 	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
2059 	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
2060 		return 1;
2061 
2062 	return 0;
2063 }
2064 
2065 /**
2066  * jbd2_journal_check_available_features() - Check feature set in journalling layer
2067  * @journal: Journal to check.
2068  * @compat: bitmask of compatible features
2069  * @ro: bitmask of features that force read-only mount
2070  * @incompat: bitmask of incompatible features
2071  *
2072  * Check whether the journaling code supports the use of
2073  * all of a given set of features on this journal.  Return true
2074  * (non-zero) if it can. */
2075 
2076 int jbd2_journal_check_available_features(journal_t *journal, unsigned long compat,
2077 				      unsigned long ro, unsigned long incompat)
2078 {
2079 	if (!compat && !ro && !incompat)
2080 		return 1;
2081 
2082 	/* We can support any known requested features iff the
2083 	 * superblock is in version 2.  Otherwise we fail to support any
2084 	 * extended sb features. */
2085 
2086 	if (journal->j_format_version != 2)
2087 		return 0;
2088 
2089 	if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
2090 	    (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
2091 	    (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
2092 		return 1;
2093 
2094 	return 0;
2095 }
2096 
2097 static int
2098 jbd2_journal_initialize_fast_commit(journal_t *journal)
2099 {
2100 	journal_superblock_t *sb = journal->j_superblock;
2101 	unsigned long long num_fc_blks;
2102 
2103 	num_fc_blks = jbd2_journal_get_num_fc_blks(sb);
2104 	if (journal->j_last - num_fc_blks < JBD2_MIN_JOURNAL_BLOCKS)
2105 		return -ENOSPC;
2106 
2107 	/* Are we called twice? */
2108 	WARN_ON(journal->j_fc_wbuf != NULL);
2109 	journal->j_fc_wbuf = kmalloc_array(num_fc_blks,
2110 				sizeof(struct buffer_head *), GFP_KERNEL);
2111 	if (!journal->j_fc_wbuf)
2112 		return -ENOMEM;
2113 
2114 	journal->j_fc_wbufsize = num_fc_blks;
2115 	journal->j_fc_last = journal->j_last;
2116 	journal->j_last = journal->j_fc_last - num_fc_blks;
2117 	journal->j_fc_first = journal->j_last + 1;
2118 	journal->j_fc_off = 0;
2119 	journal->j_free = journal->j_last - journal->j_first;
2120 	journal->j_max_transaction_buffers =
2121 		jbd2_journal_get_max_txn_bufs(journal);
2122 
2123 	return 0;
2124 }
2125 
2126 /**
2127  * jbd2_journal_set_features() - Mark a given journal feature in the superblock
2128  * @journal: Journal to act on.
2129  * @compat: bitmask of compatible features
2130  * @ro: bitmask of features that force read-only mount
2131  * @incompat: bitmask of incompatible features
2132  *
2133  * Mark a given journal feature as present on the
2134  * superblock.  Returns true if the requested features could be set.
2135  *
2136  */
2137 
2138 int jbd2_journal_set_features(journal_t *journal, unsigned long compat,
2139 			  unsigned long ro, unsigned long incompat)
2140 {
2141 #define INCOMPAT_FEATURE_ON(f) \
2142 		((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
2143 #define COMPAT_FEATURE_ON(f) \
2144 		((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
2145 	journal_superblock_t *sb;
2146 
2147 	if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
2148 		return 1;
2149 
2150 	if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
2151 		return 0;
2152 
2153 	/* If enabling v2 checksums, turn on v3 instead */
2154 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
2155 		incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
2156 		incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
2157 	}
2158 
2159 	/* Asking for checksumming v3 and v1?  Only give them v3. */
2160 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
2161 	    compat & JBD2_FEATURE_COMPAT_CHECKSUM)
2162 		compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
2163 
2164 	jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
2165 		  compat, ro, incompat);
2166 
2167 	sb = journal->j_superblock;
2168 
2169 	if (incompat & JBD2_FEATURE_INCOMPAT_FAST_COMMIT) {
2170 		if (jbd2_journal_initialize_fast_commit(journal)) {
2171 			pr_err("JBD2: Cannot enable fast commits.\n");
2172 			return 0;
2173 		}
2174 	}
2175 
2176 	/* Load the checksum driver if necessary */
2177 	if ((journal->j_chksum_driver == NULL) &&
2178 	    INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
2179 		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
2180 		if (IS_ERR(journal->j_chksum_driver)) {
2181 			printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
2182 			journal->j_chksum_driver = NULL;
2183 			return 0;
2184 		}
2185 		/* Precompute checksum seed for all metadata */
2186 		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
2187 						   sizeof(sb->s_uuid));
2188 	}
2189 
2190 	lock_buffer(journal->j_sb_buffer);
2191 
2192 	/* If enabling v3 checksums, update superblock */
2193 	if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
2194 		sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
2195 		sb->s_feature_compat &=
2196 			~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
2197 	}
2198 
2199 	/* If enabling v1 checksums, downgrade superblock */
2200 	if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
2201 		sb->s_feature_incompat &=
2202 			~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
2203 				     JBD2_FEATURE_INCOMPAT_CSUM_V3);
2204 
2205 	sb->s_feature_compat    |= cpu_to_be32(compat);
2206 	sb->s_feature_ro_compat |= cpu_to_be32(ro);
2207 	sb->s_feature_incompat  |= cpu_to_be32(incompat);
2208 	unlock_buffer(journal->j_sb_buffer);
2209 	journal->j_revoke_records_per_block =
2210 				journal_revoke_records_per_block(journal);
2211 
2212 	return 1;
2213 #undef COMPAT_FEATURE_ON
2214 #undef INCOMPAT_FEATURE_ON
2215 }
2216 
2217 /*
2218  * jbd2_journal_clear_features() - Clear a given journal feature in the
2219  * 				    superblock
2220  * @journal: Journal to act on.
2221  * @compat: bitmask of compatible features
2222  * @ro: bitmask of features that force read-only mount
2223  * @incompat: bitmask of incompatible features
2224  *
2225  * Clear a given journal feature as present on the
2226  * superblock.
2227  */
2228 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
2229 				unsigned long ro, unsigned long incompat)
2230 {
2231 	journal_superblock_t *sb;
2232 
2233 	jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
2234 		  compat, ro, incompat);
2235 
2236 	sb = journal->j_superblock;
2237 
2238 	sb->s_feature_compat    &= ~cpu_to_be32(compat);
2239 	sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
2240 	sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
2241 	journal->j_revoke_records_per_block =
2242 				journal_revoke_records_per_block(journal);
2243 }
2244 EXPORT_SYMBOL(jbd2_journal_clear_features);
2245 
2246 /**
2247  * jbd2_journal_flush() - Flush journal
2248  * @journal: Journal to act on.
2249  *
2250  * Flush all data for a given journal to disk and empty the journal.
2251  * Filesystems can use this when remounting readonly to ensure that
2252  * recovery does not need to happen on remount.
2253  */
2254 
2255 int jbd2_journal_flush(journal_t *journal)
2256 {
2257 	int err = 0;
2258 	transaction_t *transaction = NULL;
2259 
2260 	write_lock(&journal->j_state_lock);
2261 
2262 	/* Force everything buffered to the log... */
2263 	if (journal->j_running_transaction) {
2264 		transaction = journal->j_running_transaction;
2265 		__jbd2_log_start_commit(journal, transaction->t_tid);
2266 	} else if (journal->j_committing_transaction)
2267 		transaction = journal->j_committing_transaction;
2268 
2269 	/* Wait for the log commit to complete... */
2270 	if (transaction) {
2271 		tid_t tid = transaction->t_tid;
2272 
2273 		write_unlock(&journal->j_state_lock);
2274 		jbd2_log_wait_commit(journal, tid);
2275 	} else {
2276 		write_unlock(&journal->j_state_lock);
2277 	}
2278 
2279 	/* ...and flush everything in the log out to disk. */
2280 	spin_lock(&journal->j_list_lock);
2281 	while (!err && journal->j_checkpoint_transactions != NULL) {
2282 		spin_unlock(&journal->j_list_lock);
2283 		mutex_lock_io(&journal->j_checkpoint_mutex);
2284 		err = jbd2_log_do_checkpoint(journal);
2285 		mutex_unlock(&journal->j_checkpoint_mutex);
2286 		spin_lock(&journal->j_list_lock);
2287 	}
2288 	spin_unlock(&journal->j_list_lock);
2289 
2290 	if (is_journal_aborted(journal))
2291 		return -EIO;
2292 
2293 	mutex_lock_io(&journal->j_checkpoint_mutex);
2294 	if (!err) {
2295 		err = jbd2_cleanup_journal_tail(journal);
2296 		if (err < 0) {
2297 			mutex_unlock(&journal->j_checkpoint_mutex);
2298 			goto out;
2299 		}
2300 		err = 0;
2301 	}
2302 
2303 	/* Finally, mark the journal as really needing no recovery.
2304 	 * This sets s_start==0 in the underlying superblock, which is
2305 	 * the magic code for a fully-recovered superblock.  Any future
2306 	 * commits of data to the journal will restore the current
2307 	 * s_start value. */
2308 	jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2309 	mutex_unlock(&journal->j_checkpoint_mutex);
2310 	write_lock(&journal->j_state_lock);
2311 	J_ASSERT(!journal->j_running_transaction);
2312 	J_ASSERT(!journal->j_committing_transaction);
2313 	J_ASSERT(!journal->j_checkpoint_transactions);
2314 	J_ASSERT(journal->j_head == journal->j_tail);
2315 	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2316 	write_unlock(&journal->j_state_lock);
2317 out:
2318 	return err;
2319 }
2320 
2321 /**
2322  * jbd2_journal_wipe() - Wipe journal contents
2323  * @journal: Journal to act on.
2324  * @write: flag (see below)
2325  *
2326  * Wipe out all of the contents of a journal, safely.  This will produce
2327  * a warning if the journal contains any valid recovery information.
2328  * Must be called between journal_init_*() and jbd2_journal_load().
2329  *
2330  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2331  * we merely suppress recovery.
2332  */
2333 
2334 int jbd2_journal_wipe(journal_t *journal, int write)
2335 {
2336 	int err = 0;
2337 
2338 	J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2339 
2340 	err = load_superblock(journal);
2341 	if (err)
2342 		return err;
2343 
2344 	if (!journal->j_tail)
2345 		goto no_recovery;
2346 
2347 	printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2348 		write ? "Clearing" : "Ignoring");
2349 
2350 	err = jbd2_journal_skip_recovery(journal);
2351 	if (write) {
2352 		/* Lock to make assertions happy... */
2353 		mutex_lock_io(&journal->j_checkpoint_mutex);
2354 		jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2355 		mutex_unlock(&journal->j_checkpoint_mutex);
2356 	}
2357 
2358  no_recovery:
2359 	return err;
2360 }
2361 
2362 /**
2363  * jbd2_journal_abort () - Shutdown the journal immediately.
2364  * @journal: the journal to shutdown.
2365  * @errno:   an error number to record in the journal indicating
2366  *           the reason for the shutdown.
2367  *
2368  * Perform a complete, immediate shutdown of the ENTIRE
2369  * journal (not of a single transaction).  This operation cannot be
2370  * undone without closing and reopening the journal.
2371  *
2372  * The jbd2_journal_abort function is intended to support higher level error
2373  * recovery mechanisms such as the ext2/ext3 remount-readonly error
2374  * mode.
2375  *
2376  * Journal abort has very specific semantics.  Any existing dirty,
2377  * unjournaled buffers in the main filesystem will still be written to
2378  * disk by bdflush, but the journaling mechanism will be suspended
2379  * immediately and no further transaction commits will be honoured.
2380  *
2381  * Any dirty, journaled buffers will be written back to disk without
2382  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2383  * filesystem, but we _do_ attempt to leave as much data as possible
2384  * behind for fsck to use for cleanup.
2385  *
2386  * Any attempt to get a new transaction handle on a journal which is in
2387  * ABORT state will just result in an -EROFS error return.  A
2388  * jbd2_journal_stop on an existing handle will return -EIO if we have
2389  * entered abort state during the update.
2390  *
2391  * Recursive transactions are not disturbed by journal abort until the
2392  * final jbd2_journal_stop, which will receive the -EIO error.
2393  *
2394  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2395  * which will be recorded (if possible) in the journal superblock.  This
2396  * allows a client to record failure conditions in the middle of a
2397  * transaction without having to complete the transaction to record the
2398  * failure to disk.  ext3_error, for example, now uses this
2399  * functionality.
2400  *
2401  */
2402 
2403 void jbd2_journal_abort(journal_t *journal, int errno)
2404 {
2405 	transaction_t *transaction;
2406 
2407 	/*
2408 	 * Lock the aborting procedure until everything is done, this avoid
2409 	 * races between filesystem's error handling flow (e.g. ext4_abort()),
2410 	 * ensure panic after the error info is written into journal's
2411 	 * superblock.
2412 	 */
2413 	mutex_lock(&journal->j_abort_mutex);
2414 	/*
2415 	 * ESHUTDOWN always takes precedence because a file system check
2416 	 * caused by any other journal abort error is not required after
2417 	 * a shutdown triggered.
2418 	 */
2419 	write_lock(&journal->j_state_lock);
2420 	if (journal->j_flags & JBD2_ABORT) {
2421 		int old_errno = journal->j_errno;
2422 
2423 		write_unlock(&journal->j_state_lock);
2424 		if (old_errno != -ESHUTDOWN && errno == -ESHUTDOWN) {
2425 			journal->j_errno = errno;
2426 			jbd2_journal_update_sb_errno(journal);
2427 		}
2428 		mutex_unlock(&journal->j_abort_mutex);
2429 		return;
2430 	}
2431 
2432 	/*
2433 	 * Mark the abort as occurred and start current running transaction
2434 	 * to release all journaled buffer.
2435 	 */
2436 	pr_err("Aborting journal on device %s.\n", journal->j_devname);
2437 
2438 	journal->j_flags |= JBD2_ABORT;
2439 	journal->j_errno = errno;
2440 	transaction = journal->j_running_transaction;
2441 	if (transaction)
2442 		__jbd2_log_start_commit(journal, transaction->t_tid);
2443 	write_unlock(&journal->j_state_lock);
2444 
2445 	/*
2446 	 * Record errno to the journal super block, so that fsck and jbd2
2447 	 * layer could realise that a filesystem check is needed.
2448 	 */
2449 	jbd2_journal_update_sb_errno(journal);
2450 	mutex_unlock(&journal->j_abort_mutex);
2451 }
2452 
2453 /**
2454  * jbd2_journal_errno() - returns the journal's error state.
2455  * @journal: journal to examine.
2456  *
2457  * This is the errno number set with jbd2_journal_abort(), the last
2458  * time the journal was mounted - if the journal was stopped
2459  * without calling abort this will be 0.
2460  *
2461  * If the journal has been aborted on this mount time -EROFS will
2462  * be returned.
2463  */
2464 int jbd2_journal_errno(journal_t *journal)
2465 {
2466 	int err;
2467 
2468 	read_lock(&journal->j_state_lock);
2469 	if (journal->j_flags & JBD2_ABORT)
2470 		err = -EROFS;
2471 	else
2472 		err = journal->j_errno;
2473 	read_unlock(&journal->j_state_lock);
2474 	return err;
2475 }
2476 
2477 /**
2478  * jbd2_journal_clear_err() - clears the journal's error state
2479  * @journal: journal to act on.
2480  *
2481  * An error must be cleared or acked to take a FS out of readonly
2482  * mode.
2483  */
2484 int jbd2_journal_clear_err(journal_t *journal)
2485 {
2486 	int err = 0;
2487 
2488 	write_lock(&journal->j_state_lock);
2489 	if (journal->j_flags & JBD2_ABORT)
2490 		err = -EROFS;
2491 	else
2492 		journal->j_errno = 0;
2493 	write_unlock(&journal->j_state_lock);
2494 	return err;
2495 }
2496 
2497 /**
2498  * jbd2_journal_ack_err() - Ack journal err.
2499  * @journal: journal to act on.
2500  *
2501  * An error must be cleared or acked to take a FS out of readonly
2502  * mode.
2503  */
2504 void jbd2_journal_ack_err(journal_t *journal)
2505 {
2506 	write_lock(&journal->j_state_lock);
2507 	if (journal->j_errno)
2508 		journal->j_flags |= JBD2_ACK_ERR;
2509 	write_unlock(&journal->j_state_lock);
2510 }
2511 
2512 int jbd2_journal_blocks_per_page(struct inode *inode)
2513 {
2514 	return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2515 }
2516 
2517 /*
2518  * helper functions to deal with 32 or 64bit block numbers.
2519  */
2520 size_t journal_tag_bytes(journal_t *journal)
2521 {
2522 	size_t sz;
2523 
2524 	if (jbd2_has_feature_csum3(journal))
2525 		return sizeof(journal_block_tag3_t);
2526 
2527 	sz = sizeof(journal_block_tag_t);
2528 
2529 	if (jbd2_has_feature_csum2(journal))
2530 		sz += sizeof(__u16);
2531 
2532 	if (jbd2_has_feature_64bit(journal))
2533 		return sz;
2534 	else
2535 		return sz - sizeof(__u32);
2536 }
2537 
2538 /*
2539  * JBD memory management
2540  *
2541  * These functions are used to allocate block-sized chunks of memory
2542  * used for making copies of buffer_head data.  Very often it will be
2543  * page-sized chunks of data, but sometimes it will be in
2544  * sub-page-size chunks.  (For example, 16k pages on Power systems
2545  * with a 4k block file system.)  For blocks smaller than a page, we
2546  * use a SLAB allocator.  There are slab caches for each block size,
2547  * which are allocated at mount time, if necessary, and we only free
2548  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2549  * this reason we don't need to a mutex to protect access to
2550  * jbd2_slab[] allocating or releasing memory; only in
2551  * jbd2_journal_create_slab().
2552  */
2553 #define JBD2_MAX_SLABS 8
2554 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2555 
2556 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2557 	"jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2558 	"jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2559 };
2560 
2561 
2562 static void jbd2_journal_destroy_slabs(void)
2563 {
2564 	int i;
2565 
2566 	for (i = 0; i < JBD2_MAX_SLABS; i++) {
2567 		kmem_cache_destroy(jbd2_slab[i]);
2568 		jbd2_slab[i] = NULL;
2569 	}
2570 }
2571 
2572 static int jbd2_journal_create_slab(size_t size)
2573 {
2574 	static DEFINE_MUTEX(jbd2_slab_create_mutex);
2575 	int i = order_base_2(size) - 10;
2576 	size_t slab_size;
2577 
2578 	if (size == PAGE_SIZE)
2579 		return 0;
2580 
2581 	if (i >= JBD2_MAX_SLABS)
2582 		return -EINVAL;
2583 
2584 	if (unlikely(i < 0))
2585 		i = 0;
2586 	mutex_lock(&jbd2_slab_create_mutex);
2587 	if (jbd2_slab[i]) {
2588 		mutex_unlock(&jbd2_slab_create_mutex);
2589 		return 0;	/* Already created */
2590 	}
2591 
2592 	slab_size = 1 << (i+10);
2593 	jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2594 					 slab_size, 0, NULL);
2595 	mutex_unlock(&jbd2_slab_create_mutex);
2596 	if (!jbd2_slab[i]) {
2597 		printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2598 		return -ENOMEM;
2599 	}
2600 	return 0;
2601 }
2602 
2603 static struct kmem_cache *get_slab(size_t size)
2604 {
2605 	int i = order_base_2(size) - 10;
2606 
2607 	BUG_ON(i >= JBD2_MAX_SLABS);
2608 	if (unlikely(i < 0))
2609 		i = 0;
2610 	BUG_ON(jbd2_slab[i] == NULL);
2611 	return jbd2_slab[i];
2612 }
2613 
2614 void *jbd2_alloc(size_t size, gfp_t flags)
2615 {
2616 	void *ptr;
2617 
2618 	BUG_ON(size & (size-1)); /* Must be a power of 2 */
2619 
2620 	if (size < PAGE_SIZE)
2621 		ptr = kmem_cache_alloc(get_slab(size), flags);
2622 	else
2623 		ptr = (void *)__get_free_pages(flags, get_order(size));
2624 
2625 	/* Check alignment; SLUB has gotten this wrong in the past,
2626 	 * and this can lead to user data corruption! */
2627 	BUG_ON(((unsigned long) ptr) & (size-1));
2628 
2629 	return ptr;
2630 }
2631 
2632 void jbd2_free(void *ptr, size_t size)
2633 {
2634 	if (size < PAGE_SIZE)
2635 		kmem_cache_free(get_slab(size), ptr);
2636 	else
2637 		free_pages((unsigned long)ptr, get_order(size));
2638 };
2639 
2640 /*
2641  * Journal_head storage management
2642  */
2643 static struct kmem_cache *jbd2_journal_head_cache;
2644 #ifdef CONFIG_JBD2_DEBUG
2645 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2646 #endif
2647 
2648 static int __init jbd2_journal_init_journal_head_cache(void)
2649 {
2650 	J_ASSERT(!jbd2_journal_head_cache);
2651 	jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2652 				sizeof(struct journal_head),
2653 				0,		/* offset */
2654 				SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU,
2655 				NULL);		/* ctor */
2656 	if (!jbd2_journal_head_cache) {
2657 		printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2658 		return -ENOMEM;
2659 	}
2660 	return 0;
2661 }
2662 
2663 static void jbd2_journal_destroy_journal_head_cache(void)
2664 {
2665 	kmem_cache_destroy(jbd2_journal_head_cache);
2666 	jbd2_journal_head_cache = NULL;
2667 }
2668 
2669 /*
2670  * journal_head splicing and dicing
2671  */
2672 static struct journal_head *journal_alloc_journal_head(void)
2673 {
2674 	struct journal_head *ret;
2675 
2676 #ifdef CONFIG_JBD2_DEBUG
2677 	atomic_inc(&nr_journal_heads);
2678 #endif
2679 	ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2680 	if (!ret) {
2681 		jbd_debug(1, "out of memory for journal_head\n");
2682 		pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2683 		ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2684 				GFP_NOFS | __GFP_NOFAIL);
2685 	}
2686 	if (ret)
2687 		spin_lock_init(&ret->b_state_lock);
2688 	return ret;
2689 }
2690 
2691 static void journal_free_journal_head(struct journal_head *jh)
2692 {
2693 #ifdef CONFIG_JBD2_DEBUG
2694 	atomic_dec(&nr_journal_heads);
2695 	memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2696 #endif
2697 	kmem_cache_free(jbd2_journal_head_cache, jh);
2698 }
2699 
2700 /*
2701  * A journal_head is attached to a buffer_head whenever JBD has an
2702  * interest in the buffer.
2703  *
2704  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2705  * is set.  This bit is tested in core kernel code where we need to take
2706  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2707  * there.
2708  *
2709  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2710  *
2711  * When a buffer has its BH_JBD bit set it is immune from being released by
2712  * core kernel code, mainly via ->b_count.
2713  *
2714  * A journal_head is detached from its buffer_head when the journal_head's
2715  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2716  * transaction (b_cp_transaction) hold their references to b_jcount.
2717  *
2718  * Various places in the kernel want to attach a journal_head to a buffer_head
2719  * _before_ attaching the journal_head to a transaction.  To protect the
2720  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2721  * journal_head's b_jcount refcount by one.  The caller must call
2722  * jbd2_journal_put_journal_head() to undo this.
2723  *
2724  * So the typical usage would be:
2725  *
2726  *	(Attach a journal_head if needed.  Increments b_jcount)
2727  *	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2728  *	...
2729  *      (Get another reference for transaction)
2730  *	jbd2_journal_grab_journal_head(bh);
2731  *	jh->b_transaction = xxx;
2732  *	(Put original reference)
2733  *	jbd2_journal_put_journal_head(jh);
2734  */
2735 
2736 /*
2737  * Give a buffer_head a journal_head.
2738  *
2739  * May sleep.
2740  */
2741 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2742 {
2743 	struct journal_head *jh;
2744 	struct journal_head *new_jh = NULL;
2745 
2746 repeat:
2747 	if (!buffer_jbd(bh))
2748 		new_jh = journal_alloc_journal_head();
2749 
2750 	jbd_lock_bh_journal_head(bh);
2751 	if (buffer_jbd(bh)) {
2752 		jh = bh2jh(bh);
2753 	} else {
2754 		J_ASSERT_BH(bh,
2755 			(atomic_read(&bh->b_count) > 0) ||
2756 			(bh->b_page && bh->b_page->mapping));
2757 
2758 		if (!new_jh) {
2759 			jbd_unlock_bh_journal_head(bh);
2760 			goto repeat;
2761 		}
2762 
2763 		jh = new_jh;
2764 		new_jh = NULL;		/* We consumed it */
2765 		set_buffer_jbd(bh);
2766 		bh->b_private = jh;
2767 		jh->b_bh = bh;
2768 		get_bh(bh);
2769 		BUFFER_TRACE(bh, "added journal_head");
2770 	}
2771 	jh->b_jcount++;
2772 	jbd_unlock_bh_journal_head(bh);
2773 	if (new_jh)
2774 		journal_free_journal_head(new_jh);
2775 	return bh->b_private;
2776 }
2777 
2778 /*
2779  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2780  * having a journal_head, return NULL
2781  */
2782 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2783 {
2784 	struct journal_head *jh = NULL;
2785 
2786 	jbd_lock_bh_journal_head(bh);
2787 	if (buffer_jbd(bh)) {
2788 		jh = bh2jh(bh);
2789 		jh->b_jcount++;
2790 	}
2791 	jbd_unlock_bh_journal_head(bh);
2792 	return jh;
2793 }
2794 
2795 static void __journal_remove_journal_head(struct buffer_head *bh)
2796 {
2797 	struct journal_head *jh = bh2jh(bh);
2798 
2799 	J_ASSERT_JH(jh, jh->b_transaction == NULL);
2800 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2801 	J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2802 	J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2803 	J_ASSERT_BH(bh, buffer_jbd(bh));
2804 	J_ASSERT_BH(bh, jh2bh(jh) == bh);
2805 	BUFFER_TRACE(bh, "remove journal_head");
2806 
2807 	/* Unlink before dropping the lock */
2808 	bh->b_private = NULL;
2809 	jh->b_bh = NULL;	/* debug, really */
2810 	clear_buffer_jbd(bh);
2811 }
2812 
2813 static void journal_release_journal_head(struct journal_head *jh, size_t b_size)
2814 {
2815 	if (jh->b_frozen_data) {
2816 		printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2817 		jbd2_free(jh->b_frozen_data, b_size);
2818 	}
2819 	if (jh->b_committed_data) {
2820 		printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2821 		jbd2_free(jh->b_committed_data, b_size);
2822 	}
2823 	journal_free_journal_head(jh);
2824 }
2825 
2826 /*
2827  * Drop a reference on the passed journal_head.  If it fell to zero then
2828  * release the journal_head from the buffer_head.
2829  */
2830 void jbd2_journal_put_journal_head(struct journal_head *jh)
2831 {
2832 	struct buffer_head *bh = jh2bh(jh);
2833 
2834 	jbd_lock_bh_journal_head(bh);
2835 	J_ASSERT_JH(jh, jh->b_jcount > 0);
2836 	--jh->b_jcount;
2837 	if (!jh->b_jcount) {
2838 		__journal_remove_journal_head(bh);
2839 		jbd_unlock_bh_journal_head(bh);
2840 		journal_release_journal_head(jh, bh->b_size);
2841 		__brelse(bh);
2842 	} else {
2843 		jbd_unlock_bh_journal_head(bh);
2844 	}
2845 }
2846 
2847 /*
2848  * Initialize jbd inode head
2849  */
2850 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2851 {
2852 	jinode->i_transaction = NULL;
2853 	jinode->i_next_transaction = NULL;
2854 	jinode->i_vfs_inode = inode;
2855 	jinode->i_flags = 0;
2856 	jinode->i_dirty_start = 0;
2857 	jinode->i_dirty_end = 0;
2858 	INIT_LIST_HEAD(&jinode->i_list);
2859 }
2860 
2861 /*
2862  * Function to be called before we start removing inode from memory (i.e.,
2863  * clear_inode() is a fine place to be called from). It removes inode from
2864  * transaction's lists.
2865  */
2866 void jbd2_journal_release_jbd_inode(journal_t *journal,
2867 				    struct jbd2_inode *jinode)
2868 {
2869 	if (!journal)
2870 		return;
2871 restart:
2872 	spin_lock(&journal->j_list_lock);
2873 	/* Is commit writing out inode - we have to wait */
2874 	if (jinode->i_flags & JI_COMMIT_RUNNING) {
2875 		wait_queue_head_t *wq;
2876 		DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2877 		wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2878 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2879 		spin_unlock(&journal->j_list_lock);
2880 		schedule();
2881 		finish_wait(wq, &wait.wq_entry);
2882 		goto restart;
2883 	}
2884 
2885 	if (jinode->i_transaction) {
2886 		list_del(&jinode->i_list);
2887 		jinode->i_transaction = NULL;
2888 	}
2889 	spin_unlock(&journal->j_list_lock);
2890 }
2891 
2892 
2893 #ifdef CONFIG_PROC_FS
2894 
2895 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2896 
2897 static void __init jbd2_create_jbd_stats_proc_entry(void)
2898 {
2899 	proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2900 }
2901 
2902 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2903 {
2904 	if (proc_jbd2_stats)
2905 		remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2906 }
2907 
2908 #else
2909 
2910 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2911 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2912 
2913 #endif
2914 
2915 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2916 
2917 static int __init jbd2_journal_init_inode_cache(void)
2918 {
2919 	J_ASSERT(!jbd2_inode_cache);
2920 	jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2921 	if (!jbd2_inode_cache) {
2922 		pr_emerg("JBD2: failed to create inode cache\n");
2923 		return -ENOMEM;
2924 	}
2925 	return 0;
2926 }
2927 
2928 static int __init jbd2_journal_init_handle_cache(void)
2929 {
2930 	J_ASSERT(!jbd2_handle_cache);
2931 	jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2932 	if (!jbd2_handle_cache) {
2933 		printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2934 		return -ENOMEM;
2935 	}
2936 	return 0;
2937 }
2938 
2939 static void jbd2_journal_destroy_inode_cache(void)
2940 {
2941 	kmem_cache_destroy(jbd2_inode_cache);
2942 	jbd2_inode_cache = NULL;
2943 }
2944 
2945 static void jbd2_journal_destroy_handle_cache(void)
2946 {
2947 	kmem_cache_destroy(jbd2_handle_cache);
2948 	jbd2_handle_cache = NULL;
2949 }
2950 
2951 /*
2952  * Module startup and shutdown
2953  */
2954 
2955 static int __init journal_init_caches(void)
2956 {
2957 	int ret;
2958 
2959 	ret = jbd2_journal_init_revoke_record_cache();
2960 	if (ret == 0)
2961 		ret = jbd2_journal_init_revoke_table_cache();
2962 	if (ret == 0)
2963 		ret = jbd2_journal_init_journal_head_cache();
2964 	if (ret == 0)
2965 		ret = jbd2_journal_init_handle_cache();
2966 	if (ret == 0)
2967 		ret = jbd2_journal_init_inode_cache();
2968 	if (ret == 0)
2969 		ret = jbd2_journal_init_transaction_cache();
2970 	return ret;
2971 }
2972 
2973 static void jbd2_journal_destroy_caches(void)
2974 {
2975 	jbd2_journal_destroy_revoke_record_cache();
2976 	jbd2_journal_destroy_revoke_table_cache();
2977 	jbd2_journal_destroy_journal_head_cache();
2978 	jbd2_journal_destroy_handle_cache();
2979 	jbd2_journal_destroy_inode_cache();
2980 	jbd2_journal_destroy_transaction_cache();
2981 	jbd2_journal_destroy_slabs();
2982 }
2983 
2984 static int __init journal_init(void)
2985 {
2986 	int ret;
2987 
2988 	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2989 
2990 	ret = journal_init_caches();
2991 	if (ret == 0) {
2992 		jbd2_create_jbd_stats_proc_entry();
2993 	} else {
2994 		jbd2_journal_destroy_caches();
2995 	}
2996 	return ret;
2997 }
2998 
2999 static void __exit journal_exit(void)
3000 {
3001 #ifdef CONFIG_JBD2_DEBUG
3002 	int n = atomic_read(&nr_journal_heads);
3003 	if (n)
3004 		printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
3005 #endif
3006 	jbd2_remove_jbd_stats_proc_entry();
3007 	jbd2_journal_destroy_caches();
3008 }
3009 
3010 MODULE_LICENSE("GPL");
3011 module_init(journal_init);
3012 module_exit(journal_exit);
3013 
3014