1 /* 2 * linux/fs/jbd2/journal.c 3 * 4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 5 * 6 * Copyright 1998 Red Hat corp --- All Rights Reserved 7 * 8 * This file is part of the Linux kernel and is made available under 9 * the terms of the GNU General Public License, version 2, or at your 10 * option, any later version, incorporated herein by reference. 11 * 12 * Generic filesystem journal-writing code; part of the ext2fs 13 * journaling system. 14 * 15 * This file manages journals: areas of disk reserved for logging 16 * transactional updates. This includes the kernel journaling thread 17 * which is responsible for scheduling updates to the log. 18 * 19 * We do not actually manage the physical storage of the journal in this 20 * file: that is left to a per-journal policy function, which allows us 21 * to store the journal within a filesystem-specified area for ext2 22 * journaling (ext2 can use a reserved inode for storing the log). 23 */ 24 25 #include <linux/module.h> 26 #include <linux/time.h> 27 #include <linux/fs.h> 28 #include <linux/jbd2.h> 29 #include <linux/errno.h> 30 #include <linux/slab.h> 31 #include <linux/init.h> 32 #include <linux/mm.h> 33 #include <linux/freezer.h> 34 #include <linux/pagemap.h> 35 #include <linux/kthread.h> 36 #include <linux/poison.h> 37 #include <linux/proc_fs.h> 38 #include <linux/debugfs.h> 39 #include <linux/seq_file.h> 40 #include <linux/math64.h> 41 #include <linux/hash.h> 42 #include <linux/log2.h> 43 #include <linux/vmalloc.h> 44 #include <linux/backing-dev.h> 45 #include <linux/bitops.h> 46 #include <linux/ratelimit.h> 47 48 #define CREATE_TRACE_POINTS 49 #include <trace/events/jbd2.h> 50 51 #include <asm/uaccess.h> 52 #include <asm/page.h> 53 #include <asm/system.h> 54 55 EXPORT_SYMBOL(jbd2_journal_extend); 56 EXPORT_SYMBOL(jbd2_journal_stop); 57 EXPORT_SYMBOL(jbd2_journal_lock_updates); 58 EXPORT_SYMBOL(jbd2_journal_unlock_updates); 59 EXPORT_SYMBOL(jbd2_journal_get_write_access); 60 EXPORT_SYMBOL(jbd2_journal_get_create_access); 61 EXPORT_SYMBOL(jbd2_journal_get_undo_access); 62 EXPORT_SYMBOL(jbd2_journal_set_triggers); 63 EXPORT_SYMBOL(jbd2_journal_dirty_metadata); 64 EXPORT_SYMBOL(jbd2_journal_release_buffer); 65 EXPORT_SYMBOL(jbd2_journal_forget); 66 #if 0 67 EXPORT_SYMBOL(journal_sync_buffer); 68 #endif 69 EXPORT_SYMBOL(jbd2_journal_flush); 70 EXPORT_SYMBOL(jbd2_journal_revoke); 71 72 EXPORT_SYMBOL(jbd2_journal_init_dev); 73 EXPORT_SYMBOL(jbd2_journal_init_inode); 74 EXPORT_SYMBOL(jbd2_journal_update_format); 75 EXPORT_SYMBOL(jbd2_journal_check_used_features); 76 EXPORT_SYMBOL(jbd2_journal_check_available_features); 77 EXPORT_SYMBOL(jbd2_journal_set_features); 78 EXPORT_SYMBOL(jbd2_journal_load); 79 EXPORT_SYMBOL(jbd2_journal_destroy); 80 EXPORT_SYMBOL(jbd2_journal_abort); 81 EXPORT_SYMBOL(jbd2_journal_errno); 82 EXPORT_SYMBOL(jbd2_journal_ack_err); 83 EXPORT_SYMBOL(jbd2_journal_clear_err); 84 EXPORT_SYMBOL(jbd2_log_wait_commit); 85 EXPORT_SYMBOL(jbd2_log_start_commit); 86 EXPORT_SYMBOL(jbd2_journal_start_commit); 87 EXPORT_SYMBOL(jbd2_journal_force_commit_nested); 88 EXPORT_SYMBOL(jbd2_journal_wipe); 89 EXPORT_SYMBOL(jbd2_journal_blocks_per_page); 90 EXPORT_SYMBOL(jbd2_journal_invalidatepage); 91 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers); 92 EXPORT_SYMBOL(jbd2_journal_force_commit); 93 EXPORT_SYMBOL(jbd2_journal_file_inode); 94 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode); 95 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode); 96 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate); 97 EXPORT_SYMBOL(jbd2_inode_cache); 98 99 static int journal_convert_superblock_v1(journal_t *, journal_superblock_t *); 100 static void __journal_abort_soft (journal_t *journal, int errno); 101 static int jbd2_journal_create_slab(size_t slab_size); 102 103 /* 104 * Helper function used to manage commit timeouts 105 */ 106 107 static void commit_timeout(unsigned long __data) 108 { 109 struct task_struct * p = (struct task_struct *) __data; 110 111 wake_up_process(p); 112 } 113 114 /* 115 * kjournald2: The main thread function used to manage a logging device 116 * journal. 117 * 118 * This kernel thread is responsible for two things: 119 * 120 * 1) COMMIT: Every so often we need to commit the current state of the 121 * filesystem to disk. The journal thread is responsible for writing 122 * all of the metadata buffers to disk. 123 * 124 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all 125 * of the data in that part of the log has been rewritten elsewhere on 126 * the disk. Flushing these old buffers to reclaim space in the log is 127 * known as checkpointing, and this thread is responsible for that job. 128 */ 129 130 static int kjournald2(void *arg) 131 { 132 journal_t *journal = arg; 133 transaction_t *transaction; 134 135 /* 136 * Set up an interval timer which can be used to trigger a commit wakeup 137 * after the commit interval expires 138 */ 139 setup_timer(&journal->j_commit_timer, commit_timeout, 140 (unsigned long)current); 141 142 /* Record that the journal thread is running */ 143 journal->j_task = current; 144 wake_up(&journal->j_wait_done_commit); 145 146 /* 147 * And now, wait forever for commit wakeup events. 148 */ 149 write_lock(&journal->j_state_lock); 150 151 loop: 152 if (journal->j_flags & JBD2_UNMOUNT) 153 goto end_loop; 154 155 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n", 156 journal->j_commit_sequence, journal->j_commit_request); 157 158 if (journal->j_commit_sequence != journal->j_commit_request) { 159 jbd_debug(1, "OK, requests differ\n"); 160 write_unlock(&journal->j_state_lock); 161 del_timer_sync(&journal->j_commit_timer); 162 jbd2_journal_commit_transaction(journal); 163 write_lock(&journal->j_state_lock); 164 goto loop; 165 } 166 167 wake_up(&journal->j_wait_done_commit); 168 if (freezing(current)) { 169 /* 170 * The simpler the better. Flushing journal isn't a 171 * good idea, because that depends on threads that may 172 * be already stopped. 173 */ 174 jbd_debug(1, "Now suspending kjournald2\n"); 175 write_unlock(&journal->j_state_lock); 176 refrigerator(); 177 write_lock(&journal->j_state_lock); 178 } else { 179 /* 180 * We assume on resume that commits are already there, 181 * so we don't sleep 182 */ 183 DEFINE_WAIT(wait); 184 int should_sleep = 1; 185 186 prepare_to_wait(&journal->j_wait_commit, &wait, 187 TASK_INTERRUPTIBLE); 188 if (journal->j_commit_sequence != journal->j_commit_request) 189 should_sleep = 0; 190 transaction = journal->j_running_transaction; 191 if (transaction && time_after_eq(jiffies, 192 transaction->t_expires)) 193 should_sleep = 0; 194 if (journal->j_flags & JBD2_UNMOUNT) 195 should_sleep = 0; 196 if (should_sleep) { 197 write_unlock(&journal->j_state_lock); 198 schedule(); 199 write_lock(&journal->j_state_lock); 200 } 201 finish_wait(&journal->j_wait_commit, &wait); 202 } 203 204 jbd_debug(1, "kjournald2 wakes\n"); 205 206 /* 207 * Were we woken up by a commit wakeup event? 208 */ 209 transaction = journal->j_running_transaction; 210 if (transaction && time_after_eq(jiffies, transaction->t_expires)) { 211 journal->j_commit_request = transaction->t_tid; 212 jbd_debug(1, "woke because of timeout\n"); 213 } 214 goto loop; 215 216 end_loop: 217 write_unlock(&journal->j_state_lock); 218 del_timer_sync(&journal->j_commit_timer); 219 journal->j_task = NULL; 220 wake_up(&journal->j_wait_done_commit); 221 jbd_debug(1, "Journal thread exiting.\n"); 222 return 0; 223 } 224 225 static int jbd2_journal_start_thread(journal_t *journal) 226 { 227 struct task_struct *t; 228 229 t = kthread_run(kjournald2, journal, "jbd2/%s", 230 journal->j_devname); 231 if (IS_ERR(t)) 232 return PTR_ERR(t); 233 234 wait_event(journal->j_wait_done_commit, journal->j_task != NULL); 235 return 0; 236 } 237 238 static void journal_kill_thread(journal_t *journal) 239 { 240 write_lock(&journal->j_state_lock); 241 journal->j_flags |= JBD2_UNMOUNT; 242 243 while (journal->j_task) { 244 wake_up(&journal->j_wait_commit); 245 write_unlock(&journal->j_state_lock); 246 wait_event(journal->j_wait_done_commit, journal->j_task == NULL); 247 write_lock(&journal->j_state_lock); 248 } 249 write_unlock(&journal->j_state_lock); 250 } 251 252 /* 253 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal. 254 * 255 * Writes a metadata buffer to a given disk block. The actual IO is not 256 * performed but a new buffer_head is constructed which labels the data 257 * to be written with the correct destination disk block. 258 * 259 * Any magic-number escaping which needs to be done will cause a 260 * copy-out here. If the buffer happens to start with the 261 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the 262 * magic number is only written to the log for descripter blocks. In 263 * this case, we copy the data and replace the first word with 0, and we 264 * return a result code which indicates that this buffer needs to be 265 * marked as an escaped buffer in the corresponding log descriptor 266 * block. The missing word can then be restored when the block is read 267 * during recovery. 268 * 269 * If the source buffer has already been modified by a new transaction 270 * since we took the last commit snapshot, we use the frozen copy of 271 * that data for IO. If we end up using the existing buffer_head's data 272 * for the write, then we *have* to lock the buffer to prevent anyone 273 * else from using and possibly modifying it while the IO is in 274 * progress. 275 * 276 * The function returns a pointer to the buffer_heads to be used for IO. 277 * 278 * We assume that the journal has already been locked in this function. 279 * 280 * Return value: 281 * <0: Error 282 * >=0: Finished OK 283 * 284 * On success: 285 * Bit 0 set == escape performed on the data 286 * Bit 1 set == buffer copy-out performed (kfree the data after IO) 287 */ 288 289 int jbd2_journal_write_metadata_buffer(transaction_t *transaction, 290 struct journal_head *jh_in, 291 struct journal_head **jh_out, 292 unsigned long long blocknr) 293 { 294 int need_copy_out = 0; 295 int done_copy_out = 0; 296 int do_escape = 0; 297 char *mapped_data; 298 struct buffer_head *new_bh; 299 struct journal_head *new_jh; 300 struct page *new_page; 301 unsigned int new_offset; 302 struct buffer_head *bh_in = jh2bh(jh_in); 303 journal_t *journal = transaction->t_journal; 304 305 /* 306 * The buffer really shouldn't be locked: only the current committing 307 * transaction is allowed to write it, so nobody else is allowed 308 * to do any IO. 309 * 310 * akpm: except if we're journalling data, and write() output is 311 * also part of a shared mapping, and another thread has 312 * decided to launch a writepage() against this buffer. 313 */ 314 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in)); 315 316 retry_alloc: 317 new_bh = alloc_buffer_head(GFP_NOFS); 318 if (!new_bh) { 319 /* 320 * Failure is not an option, but __GFP_NOFAIL is going 321 * away; so we retry ourselves here. 322 */ 323 congestion_wait(BLK_RW_ASYNC, HZ/50); 324 goto retry_alloc; 325 } 326 327 /* keep subsequent assertions sane */ 328 new_bh->b_state = 0; 329 init_buffer(new_bh, NULL, NULL); 330 atomic_set(&new_bh->b_count, 1); 331 new_jh = jbd2_journal_add_journal_head(new_bh); /* This sleeps */ 332 333 /* 334 * If a new transaction has already done a buffer copy-out, then 335 * we use that version of the data for the commit. 336 */ 337 jbd_lock_bh_state(bh_in); 338 repeat: 339 if (jh_in->b_frozen_data) { 340 done_copy_out = 1; 341 new_page = virt_to_page(jh_in->b_frozen_data); 342 new_offset = offset_in_page(jh_in->b_frozen_data); 343 } else { 344 new_page = jh2bh(jh_in)->b_page; 345 new_offset = offset_in_page(jh2bh(jh_in)->b_data); 346 } 347 348 mapped_data = kmap_atomic(new_page, KM_USER0); 349 /* 350 * Fire data frozen trigger if data already wasn't frozen. Do this 351 * before checking for escaping, as the trigger may modify the magic 352 * offset. If a copy-out happens afterwards, it will have the correct 353 * data in the buffer. 354 */ 355 if (!done_copy_out) 356 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset, 357 jh_in->b_triggers); 358 359 /* 360 * Check for escaping 361 */ 362 if (*((__be32 *)(mapped_data + new_offset)) == 363 cpu_to_be32(JBD2_MAGIC_NUMBER)) { 364 need_copy_out = 1; 365 do_escape = 1; 366 } 367 kunmap_atomic(mapped_data, KM_USER0); 368 369 /* 370 * Do we need to do a data copy? 371 */ 372 if (need_copy_out && !done_copy_out) { 373 char *tmp; 374 375 jbd_unlock_bh_state(bh_in); 376 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS); 377 if (!tmp) { 378 jbd2_journal_put_journal_head(new_jh); 379 return -ENOMEM; 380 } 381 jbd_lock_bh_state(bh_in); 382 if (jh_in->b_frozen_data) { 383 jbd2_free(tmp, bh_in->b_size); 384 goto repeat; 385 } 386 387 jh_in->b_frozen_data = tmp; 388 mapped_data = kmap_atomic(new_page, KM_USER0); 389 memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size); 390 kunmap_atomic(mapped_data, KM_USER0); 391 392 new_page = virt_to_page(tmp); 393 new_offset = offset_in_page(tmp); 394 done_copy_out = 1; 395 396 /* 397 * This isn't strictly necessary, as we're using frozen 398 * data for the escaping, but it keeps consistency with 399 * b_frozen_data usage. 400 */ 401 jh_in->b_frozen_triggers = jh_in->b_triggers; 402 } 403 404 /* 405 * Did we need to do an escaping? Now we've done all the 406 * copying, we can finally do so. 407 */ 408 if (do_escape) { 409 mapped_data = kmap_atomic(new_page, KM_USER0); 410 *((unsigned int *)(mapped_data + new_offset)) = 0; 411 kunmap_atomic(mapped_data, KM_USER0); 412 } 413 414 set_bh_page(new_bh, new_page, new_offset); 415 new_jh->b_transaction = NULL; 416 new_bh->b_size = jh2bh(jh_in)->b_size; 417 new_bh->b_bdev = transaction->t_journal->j_dev; 418 new_bh->b_blocknr = blocknr; 419 set_buffer_mapped(new_bh); 420 set_buffer_dirty(new_bh); 421 422 *jh_out = new_jh; 423 424 /* 425 * The to-be-written buffer needs to get moved to the io queue, 426 * and the original buffer whose contents we are shadowing or 427 * copying is moved to the transaction's shadow queue. 428 */ 429 JBUFFER_TRACE(jh_in, "file as BJ_Shadow"); 430 spin_lock(&journal->j_list_lock); 431 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow); 432 spin_unlock(&journal->j_list_lock); 433 jbd_unlock_bh_state(bh_in); 434 435 JBUFFER_TRACE(new_jh, "file as BJ_IO"); 436 jbd2_journal_file_buffer(new_jh, transaction, BJ_IO); 437 438 return do_escape | (done_copy_out << 1); 439 } 440 441 /* 442 * Allocation code for the journal file. Manage the space left in the 443 * journal, so that we can begin checkpointing when appropriate. 444 */ 445 446 /* 447 * __jbd2_log_space_left: Return the number of free blocks left in the journal. 448 * 449 * Called with the journal already locked. 450 * 451 * Called under j_state_lock 452 */ 453 454 int __jbd2_log_space_left(journal_t *journal) 455 { 456 int left = journal->j_free; 457 458 /* assert_spin_locked(&journal->j_state_lock); */ 459 460 /* 461 * Be pessimistic here about the number of those free blocks which 462 * might be required for log descriptor control blocks. 463 */ 464 465 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */ 466 467 left -= MIN_LOG_RESERVED_BLOCKS; 468 469 if (left <= 0) 470 return 0; 471 left -= (left >> 3); 472 return left; 473 } 474 475 /* 476 * Called under j_state_lock. Returns true if a transaction commit was started. 477 */ 478 int __jbd2_log_start_commit(journal_t *journal, tid_t target) 479 { 480 /* 481 * Are we already doing a recent enough commit? 482 */ 483 if (!tid_geq(journal->j_commit_request, target)) { 484 /* 485 * We want a new commit: OK, mark the request and wakeup the 486 * commit thread. We do _not_ do the commit ourselves. 487 */ 488 489 journal->j_commit_request = target; 490 jbd_debug(1, "JBD: requesting commit %d/%d\n", 491 journal->j_commit_request, 492 journal->j_commit_sequence); 493 wake_up(&journal->j_wait_commit); 494 return 1; 495 } 496 return 0; 497 } 498 499 int jbd2_log_start_commit(journal_t *journal, tid_t tid) 500 { 501 int ret; 502 503 write_lock(&journal->j_state_lock); 504 ret = __jbd2_log_start_commit(journal, tid); 505 write_unlock(&journal->j_state_lock); 506 return ret; 507 } 508 509 /* 510 * Force and wait upon a commit if the calling process is not within 511 * transaction. This is used for forcing out undo-protected data which contains 512 * bitmaps, when the fs is running out of space. 513 * 514 * We can only force the running transaction if we don't have an active handle; 515 * otherwise, we will deadlock. 516 * 517 * Returns true if a transaction was started. 518 */ 519 int jbd2_journal_force_commit_nested(journal_t *journal) 520 { 521 transaction_t *transaction = NULL; 522 tid_t tid; 523 524 read_lock(&journal->j_state_lock); 525 if (journal->j_running_transaction && !current->journal_info) { 526 transaction = journal->j_running_transaction; 527 __jbd2_log_start_commit(journal, transaction->t_tid); 528 } else if (journal->j_committing_transaction) 529 transaction = journal->j_committing_transaction; 530 531 if (!transaction) { 532 read_unlock(&journal->j_state_lock); 533 return 0; /* Nothing to retry */ 534 } 535 536 tid = transaction->t_tid; 537 read_unlock(&journal->j_state_lock); 538 jbd2_log_wait_commit(journal, tid); 539 return 1; 540 } 541 542 /* 543 * Start a commit of the current running transaction (if any). Returns true 544 * if a transaction is going to be committed (or is currently already 545 * committing), and fills its tid in at *ptid 546 */ 547 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid) 548 { 549 int ret = 0; 550 551 write_lock(&journal->j_state_lock); 552 if (journal->j_running_transaction) { 553 tid_t tid = journal->j_running_transaction->t_tid; 554 555 __jbd2_log_start_commit(journal, tid); 556 /* There's a running transaction and we've just made sure 557 * it's commit has been scheduled. */ 558 if (ptid) 559 *ptid = tid; 560 ret = 1; 561 } else if (journal->j_committing_transaction) { 562 /* 563 * If ext3_write_super() recently started a commit, then we 564 * have to wait for completion of that transaction 565 */ 566 if (ptid) 567 *ptid = journal->j_committing_transaction->t_tid; 568 ret = 1; 569 } 570 write_unlock(&journal->j_state_lock); 571 return ret; 572 } 573 574 /* 575 * Wait for a specified commit to complete. 576 * The caller may not hold the journal lock. 577 */ 578 int jbd2_log_wait_commit(journal_t *journal, tid_t tid) 579 { 580 int err = 0; 581 582 read_lock(&journal->j_state_lock); 583 #ifdef CONFIG_JBD2_DEBUG 584 if (!tid_geq(journal->j_commit_request, tid)) { 585 printk(KERN_EMERG 586 "%s: error: j_commit_request=%d, tid=%d\n", 587 __func__, journal->j_commit_request, tid); 588 } 589 #endif 590 while (tid_gt(tid, journal->j_commit_sequence)) { 591 jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n", 592 tid, journal->j_commit_sequence); 593 wake_up(&journal->j_wait_commit); 594 read_unlock(&journal->j_state_lock); 595 wait_event(journal->j_wait_done_commit, 596 !tid_gt(tid, journal->j_commit_sequence)); 597 read_lock(&journal->j_state_lock); 598 } 599 read_unlock(&journal->j_state_lock); 600 601 if (unlikely(is_journal_aborted(journal))) { 602 printk(KERN_EMERG "journal commit I/O error\n"); 603 err = -EIO; 604 } 605 return err; 606 } 607 608 /* 609 * Log buffer allocation routines: 610 */ 611 612 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp) 613 { 614 unsigned long blocknr; 615 616 write_lock(&journal->j_state_lock); 617 J_ASSERT(journal->j_free > 1); 618 619 blocknr = journal->j_head; 620 journal->j_head++; 621 journal->j_free--; 622 if (journal->j_head == journal->j_last) 623 journal->j_head = journal->j_first; 624 write_unlock(&journal->j_state_lock); 625 return jbd2_journal_bmap(journal, blocknr, retp); 626 } 627 628 /* 629 * Conversion of logical to physical block numbers for the journal 630 * 631 * On external journals the journal blocks are identity-mapped, so 632 * this is a no-op. If needed, we can use j_blk_offset - everything is 633 * ready. 634 */ 635 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr, 636 unsigned long long *retp) 637 { 638 int err = 0; 639 unsigned long long ret; 640 641 if (journal->j_inode) { 642 ret = bmap(journal->j_inode, blocknr); 643 if (ret) 644 *retp = ret; 645 else { 646 printk(KERN_ALERT "%s: journal block not found " 647 "at offset %lu on %s\n", 648 __func__, blocknr, journal->j_devname); 649 err = -EIO; 650 __journal_abort_soft(journal, err); 651 } 652 } else { 653 *retp = blocknr; /* +journal->j_blk_offset */ 654 } 655 return err; 656 } 657 658 /* 659 * We play buffer_head aliasing tricks to write data/metadata blocks to 660 * the journal without copying their contents, but for journal 661 * descriptor blocks we do need to generate bona fide buffers. 662 * 663 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying 664 * the buffer's contents they really should run flush_dcache_page(bh->b_page). 665 * But we don't bother doing that, so there will be coherency problems with 666 * mmaps of blockdevs which hold live JBD-controlled filesystems. 667 */ 668 struct journal_head *jbd2_journal_get_descriptor_buffer(journal_t *journal) 669 { 670 struct buffer_head *bh; 671 unsigned long long blocknr; 672 int err; 673 674 err = jbd2_journal_next_log_block(journal, &blocknr); 675 676 if (err) 677 return NULL; 678 679 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize); 680 if (!bh) 681 return NULL; 682 lock_buffer(bh); 683 memset(bh->b_data, 0, journal->j_blocksize); 684 set_buffer_uptodate(bh); 685 unlock_buffer(bh); 686 BUFFER_TRACE(bh, "return this buffer"); 687 return jbd2_journal_add_journal_head(bh); 688 } 689 690 struct jbd2_stats_proc_session { 691 journal_t *journal; 692 struct transaction_stats_s *stats; 693 int start; 694 int max; 695 }; 696 697 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos) 698 { 699 return *pos ? NULL : SEQ_START_TOKEN; 700 } 701 702 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos) 703 { 704 return NULL; 705 } 706 707 static int jbd2_seq_info_show(struct seq_file *seq, void *v) 708 { 709 struct jbd2_stats_proc_session *s = seq->private; 710 711 if (v != SEQ_START_TOKEN) 712 return 0; 713 seq_printf(seq, "%lu transaction, each up to %u blocks\n", 714 s->stats->ts_tid, 715 s->journal->j_max_transaction_buffers); 716 if (s->stats->ts_tid == 0) 717 return 0; 718 seq_printf(seq, "average: \n %ums waiting for transaction\n", 719 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid)); 720 seq_printf(seq, " %ums running transaction\n", 721 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid)); 722 seq_printf(seq, " %ums transaction was being locked\n", 723 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid)); 724 seq_printf(seq, " %ums flushing data (in ordered mode)\n", 725 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid)); 726 seq_printf(seq, " %ums logging transaction\n", 727 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid)); 728 seq_printf(seq, " %lluus average transaction commit time\n", 729 div_u64(s->journal->j_average_commit_time, 1000)); 730 seq_printf(seq, " %lu handles per transaction\n", 731 s->stats->run.rs_handle_count / s->stats->ts_tid); 732 seq_printf(seq, " %lu blocks per transaction\n", 733 s->stats->run.rs_blocks / s->stats->ts_tid); 734 seq_printf(seq, " %lu logged blocks per transaction\n", 735 s->stats->run.rs_blocks_logged / s->stats->ts_tid); 736 return 0; 737 } 738 739 static void jbd2_seq_info_stop(struct seq_file *seq, void *v) 740 { 741 } 742 743 static const struct seq_operations jbd2_seq_info_ops = { 744 .start = jbd2_seq_info_start, 745 .next = jbd2_seq_info_next, 746 .stop = jbd2_seq_info_stop, 747 .show = jbd2_seq_info_show, 748 }; 749 750 static int jbd2_seq_info_open(struct inode *inode, struct file *file) 751 { 752 journal_t *journal = PDE(inode)->data; 753 struct jbd2_stats_proc_session *s; 754 int rc, size; 755 756 s = kmalloc(sizeof(*s), GFP_KERNEL); 757 if (s == NULL) 758 return -ENOMEM; 759 size = sizeof(struct transaction_stats_s); 760 s->stats = kmalloc(size, GFP_KERNEL); 761 if (s->stats == NULL) { 762 kfree(s); 763 return -ENOMEM; 764 } 765 spin_lock(&journal->j_history_lock); 766 memcpy(s->stats, &journal->j_stats, size); 767 s->journal = journal; 768 spin_unlock(&journal->j_history_lock); 769 770 rc = seq_open(file, &jbd2_seq_info_ops); 771 if (rc == 0) { 772 struct seq_file *m = file->private_data; 773 m->private = s; 774 } else { 775 kfree(s->stats); 776 kfree(s); 777 } 778 return rc; 779 780 } 781 782 static int jbd2_seq_info_release(struct inode *inode, struct file *file) 783 { 784 struct seq_file *seq = file->private_data; 785 struct jbd2_stats_proc_session *s = seq->private; 786 kfree(s->stats); 787 kfree(s); 788 return seq_release(inode, file); 789 } 790 791 static const struct file_operations jbd2_seq_info_fops = { 792 .owner = THIS_MODULE, 793 .open = jbd2_seq_info_open, 794 .read = seq_read, 795 .llseek = seq_lseek, 796 .release = jbd2_seq_info_release, 797 }; 798 799 static struct proc_dir_entry *proc_jbd2_stats; 800 801 static void jbd2_stats_proc_init(journal_t *journal) 802 { 803 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats); 804 if (journal->j_proc_entry) { 805 proc_create_data("info", S_IRUGO, journal->j_proc_entry, 806 &jbd2_seq_info_fops, journal); 807 } 808 } 809 810 static void jbd2_stats_proc_exit(journal_t *journal) 811 { 812 remove_proc_entry("info", journal->j_proc_entry); 813 remove_proc_entry(journal->j_devname, proc_jbd2_stats); 814 } 815 816 /* 817 * Management for journal control blocks: functions to create and 818 * destroy journal_t structures, and to initialise and read existing 819 * journal blocks from disk. */ 820 821 /* First: create and setup a journal_t object in memory. We initialise 822 * very few fields yet: that has to wait until we have created the 823 * journal structures from from scratch, or loaded them from disk. */ 824 825 static journal_t * journal_init_common (void) 826 { 827 journal_t *journal; 828 int err; 829 830 journal = kzalloc(sizeof(*journal), GFP_KERNEL); 831 if (!journal) 832 return NULL; 833 834 init_waitqueue_head(&journal->j_wait_transaction_locked); 835 init_waitqueue_head(&journal->j_wait_logspace); 836 init_waitqueue_head(&journal->j_wait_done_commit); 837 init_waitqueue_head(&journal->j_wait_checkpoint); 838 init_waitqueue_head(&journal->j_wait_commit); 839 init_waitqueue_head(&journal->j_wait_updates); 840 mutex_init(&journal->j_barrier); 841 mutex_init(&journal->j_checkpoint_mutex); 842 spin_lock_init(&journal->j_revoke_lock); 843 spin_lock_init(&journal->j_list_lock); 844 rwlock_init(&journal->j_state_lock); 845 846 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE); 847 journal->j_min_batch_time = 0; 848 journal->j_max_batch_time = 15000; /* 15ms */ 849 850 /* The journal is marked for error until we succeed with recovery! */ 851 journal->j_flags = JBD2_ABORT; 852 853 /* Set up a default-sized revoke table for the new mount. */ 854 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH); 855 if (err) { 856 kfree(journal); 857 return NULL; 858 } 859 860 spin_lock_init(&journal->j_history_lock); 861 862 return journal; 863 } 864 865 /* jbd2_journal_init_dev and jbd2_journal_init_inode: 866 * 867 * Create a journal structure assigned some fixed set of disk blocks to 868 * the journal. We don't actually touch those disk blocks yet, but we 869 * need to set up all of the mapping information to tell the journaling 870 * system where the journal blocks are. 871 * 872 */ 873 874 /** 875 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure 876 * @bdev: Block device on which to create the journal 877 * @fs_dev: Device which hold journalled filesystem for this journal. 878 * @start: Block nr Start of journal. 879 * @len: Length of the journal in blocks. 880 * @blocksize: blocksize of journalling device 881 * 882 * Returns: a newly created journal_t * 883 * 884 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous 885 * range of blocks on an arbitrary block device. 886 * 887 */ 888 journal_t * jbd2_journal_init_dev(struct block_device *bdev, 889 struct block_device *fs_dev, 890 unsigned long long start, int len, int blocksize) 891 { 892 journal_t *journal = journal_init_common(); 893 struct buffer_head *bh; 894 char *p; 895 int n; 896 897 if (!journal) 898 return NULL; 899 900 /* journal descriptor can store up to n blocks -bzzz */ 901 journal->j_blocksize = blocksize; 902 journal->j_dev = bdev; 903 journal->j_fs_dev = fs_dev; 904 journal->j_blk_offset = start; 905 journal->j_maxlen = len; 906 bdevname(journal->j_dev, journal->j_devname); 907 p = journal->j_devname; 908 while ((p = strchr(p, '/'))) 909 *p = '!'; 910 jbd2_stats_proc_init(journal); 911 n = journal->j_blocksize / sizeof(journal_block_tag_t); 912 journal->j_wbufsize = n; 913 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL); 914 if (!journal->j_wbuf) { 915 printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n", 916 __func__); 917 goto out_err; 918 } 919 920 bh = __getblk(journal->j_dev, start, journal->j_blocksize); 921 if (!bh) { 922 printk(KERN_ERR 923 "%s: Cannot get buffer for journal superblock\n", 924 __func__); 925 goto out_err; 926 } 927 journal->j_sb_buffer = bh; 928 journal->j_superblock = (journal_superblock_t *)bh->b_data; 929 930 return journal; 931 out_err: 932 kfree(journal->j_wbuf); 933 jbd2_stats_proc_exit(journal); 934 kfree(journal); 935 return NULL; 936 } 937 938 /** 939 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode. 940 * @inode: An inode to create the journal in 941 * 942 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as 943 * the journal. The inode must exist already, must support bmap() and 944 * must have all data blocks preallocated. 945 */ 946 journal_t * jbd2_journal_init_inode (struct inode *inode) 947 { 948 struct buffer_head *bh; 949 journal_t *journal = journal_init_common(); 950 char *p; 951 int err; 952 int n; 953 unsigned long long blocknr; 954 955 if (!journal) 956 return NULL; 957 958 journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev; 959 journal->j_inode = inode; 960 bdevname(journal->j_dev, journal->j_devname); 961 p = journal->j_devname; 962 while ((p = strchr(p, '/'))) 963 *p = '!'; 964 p = journal->j_devname + strlen(journal->j_devname); 965 sprintf(p, "-%lu", journal->j_inode->i_ino); 966 jbd_debug(1, 967 "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n", 968 journal, inode->i_sb->s_id, inode->i_ino, 969 (long long) inode->i_size, 970 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize); 971 972 journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits; 973 journal->j_blocksize = inode->i_sb->s_blocksize; 974 jbd2_stats_proc_init(journal); 975 976 /* journal descriptor can store up to n blocks -bzzz */ 977 n = journal->j_blocksize / sizeof(journal_block_tag_t); 978 journal->j_wbufsize = n; 979 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL); 980 if (!journal->j_wbuf) { 981 printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n", 982 __func__); 983 goto out_err; 984 } 985 986 err = jbd2_journal_bmap(journal, 0, &blocknr); 987 /* If that failed, give up */ 988 if (err) { 989 printk(KERN_ERR "%s: Cannnot locate journal superblock\n", 990 __func__); 991 goto out_err; 992 } 993 994 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize); 995 if (!bh) { 996 printk(KERN_ERR 997 "%s: Cannot get buffer for journal superblock\n", 998 __func__); 999 goto out_err; 1000 } 1001 journal->j_sb_buffer = bh; 1002 journal->j_superblock = (journal_superblock_t *)bh->b_data; 1003 1004 return journal; 1005 out_err: 1006 kfree(journal->j_wbuf); 1007 jbd2_stats_proc_exit(journal); 1008 kfree(journal); 1009 return NULL; 1010 } 1011 1012 /* 1013 * If the journal init or create aborts, we need to mark the journal 1014 * superblock as being NULL to prevent the journal destroy from writing 1015 * back a bogus superblock. 1016 */ 1017 static void journal_fail_superblock (journal_t *journal) 1018 { 1019 struct buffer_head *bh = journal->j_sb_buffer; 1020 brelse(bh); 1021 journal->j_sb_buffer = NULL; 1022 } 1023 1024 /* 1025 * Given a journal_t structure, initialise the various fields for 1026 * startup of a new journaling session. We use this both when creating 1027 * a journal, and after recovering an old journal to reset it for 1028 * subsequent use. 1029 */ 1030 1031 static int journal_reset(journal_t *journal) 1032 { 1033 journal_superblock_t *sb = journal->j_superblock; 1034 unsigned long long first, last; 1035 1036 first = be32_to_cpu(sb->s_first); 1037 last = be32_to_cpu(sb->s_maxlen); 1038 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) { 1039 printk(KERN_ERR "JBD: Journal too short (blocks %llu-%llu).\n", 1040 first, last); 1041 journal_fail_superblock(journal); 1042 return -EINVAL; 1043 } 1044 1045 journal->j_first = first; 1046 journal->j_last = last; 1047 1048 journal->j_head = first; 1049 journal->j_tail = first; 1050 journal->j_free = last - first; 1051 1052 journal->j_tail_sequence = journal->j_transaction_sequence; 1053 journal->j_commit_sequence = journal->j_transaction_sequence - 1; 1054 journal->j_commit_request = journal->j_commit_sequence; 1055 1056 journal->j_max_transaction_buffers = journal->j_maxlen / 4; 1057 1058 /* Add the dynamic fields and write it to disk. */ 1059 jbd2_journal_update_superblock(journal, 1); 1060 return jbd2_journal_start_thread(journal); 1061 } 1062 1063 /** 1064 * void jbd2_journal_update_superblock() - Update journal sb on disk. 1065 * @journal: The journal to update. 1066 * @wait: Set to '0' if you don't want to wait for IO completion. 1067 * 1068 * Update a journal's dynamic superblock fields and write it to disk, 1069 * optionally waiting for the IO to complete. 1070 */ 1071 void jbd2_journal_update_superblock(journal_t *journal, int wait) 1072 { 1073 journal_superblock_t *sb = journal->j_superblock; 1074 struct buffer_head *bh = journal->j_sb_buffer; 1075 1076 /* 1077 * As a special case, if the on-disk copy is already marked as needing 1078 * no recovery (s_start == 0) and there are no outstanding transactions 1079 * in the filesystem, then we can safely defer the superblock update 1080 * until the next commit by setting JBD2_FLUSHED. This avoids 1081 * attempting a write to a potential-readonly device. 1082 */ 1083 if (sb->s_start == 0 && journal->j_tail_sequence == 1084 journal->j_transaction_sequence) { 1085 jbd_debug(1,"JBD: Skipping superblock update on recovered sb " 1086 "(start %ld, seq %d, errno %d)\n", 1087 journal->j_tail, journal->j_tail_sequence, 1088 journal->j_errno); 1089 goto out; 1090 } 1091 1092 if (buffer_write_io_error(bh)) { 1093 /* 1094 * Oh, dear. A previous attempt to write the journal 1095 * superblock failed. This could happen because the 1096 * USB device was yanked out. Or it could happen to 1097 * be a transient write error and maybe the block will 1098 * be remapped. Nothing we can do but to retry the 1099 * write and hope for the best. 1100 */ 1101 printk(KERN_ERR "JBD2: previous I/O error detected " 1102 "for journal superblock update for %s.\n", 1103 journal->j_devname); 1104 clear_buffer_write_io_error(bh); 1105 set_buffer_uptodate(bh); 1106 } 1107 1108 read_lock(&journal->j_state_lock); 1109 jbd_debug(1,"JBD: updating superblock (start %ld, seq %d, errno %d)\n", 1110 journal->j_tail, journal->j_tail_sequence, journal->j_errno); 1111 1112 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence); 1113 sb->s_start = cpu_to_be32(journal->j_tail); 1114 sb->s_errno = cpu_to_be32(journal->j_errno); 1115 read_unlock(&journal->j_state_lock); 1116 1117 BUFFER_TRACE(bh, "marking dirty"); 1118 mark_buffer_dirty(bh); 1119 if (wait) { 1120 sync_dirty_buffer(bh); 1121 if (buffer_write_io_error(bh)) { 1122 printk(KERN_ERR "JBD2: I/O error detected " 1123 "when updating journal superblock for %s.\n", 1124 journal->j_devname); 1125 clear_buffer_write_io_error(bh); 1126 set_buffer_uptodate(bh); 1127 } 1128 } else 1129 write_dirty_buffer(bh, WRITE); 1130 1131 out: 1132 /* If we have just flushed the log (by marking s_start==0), then 1133 * any future commit will have to be careful to update the 1134 * superblock again to re-record the true start of the log. */ 1135 1136 write_lock(&journal->j_state_lock); 1137 if (sb->s_start) 1138 journal->j_flags &= ~JBD2_FLUSHED; 1139 else 1140 journal->j_flags |= JBD2_FLUSHED; 1141 write_unlock(&journal->j_state_lock); 1142 } 1143 1144 /* 1145 * Read the superblock for a given journal, performing initial 1146 * validation of the format. 1147 */ 1148 1149 static int journal_get_superblock(journal_t *journal) 1150 { 1151 struct buffer_head *bh; 1152 journal_superblock_t *sb; 1153 int err = -EIO; 1154 1155 bh = journal->j_sb_buffer; 1156 1157 J_ASSERT(bh != NULL); 1158 if (!buffer_uptodate(bh)) { 1159 ll_rw_block(READ, 1, &bh); 1160 wait_on_buffer(bh); 1161 if (!buffer_uptodate(bh)) { 1162 printk (KERN_ERR 1163 "JBD: IO error reading journal superblock\n"); 1164 goto out; 1165 } 1166 } 1167 1168 sb = journal->j_superblock; 1169 1170 err = -EINVAL; 1171 1172 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) || 1173 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) { 1174 printk(KERN_WARNING "JBD: no valid journal superblock found\n"); 1175 goto out; 1176 } 1177 1178 switch(be32_to_cpu(sb->s_header.h_blocktype)) { 1179 case JBD2_SUPERBLOCK_V1: 1180 journal->j_format_version = 1; 1181 break; 1182 case JBD2_SUPERBLOCK_V2: 1183 journal->j_format_version = 2; 1184 break; 1185 default: 1186 printk(KERN_WARNING "JBD: unrecognised superblock format ID\n"); 1187 goto out; 1188 } 1189 1190 if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen) 1191 journal->j_maxlen = be32_to_cpu(sb->s_maxlen); 1192 else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) { 1193 printk (KERN_WARNING "JBD: journal file too short\n"); 1194 goto out; 1195 } 1196 1197 return 0; 1198 1199 out: 1200 journal_fail_superblock(journal); 1201 return err; 1202 } 1203 1204 /* 1205 * Load the on-disk journal superblock and read the key fields into the 1206 * journal_t. 1207 */ 1208 1209 static int load_superblock(journal_t *journal) 1210 { 1211 int err; 1212 journal_superblock_t *sb; 1213 1214 err = journal_get_superblock(journal); 1215 if (err) 1216 return err; 1217 1218 sb = journal->j_superblock; 1219 1220 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence); 1221 journal->j_tail = be32_to_cpu(sb->s_start); 1222 journal->j_first = be32_to_cpu(sb->s_first); 1223 journal->j_last = be32_to_cpu(sb->s_maxlen); 1224 journal->j_errno = be32_to_cpu(sb->s_errno); 1225 1226 return 0; 1227 } 1228 1229 1230 /** 1231 * int jbd2_journal_load() - Read journal from disk. 1232 * @journal: Journal to act on. 1233 * 1234 * Given a journal_t structure which tells us which disk blocks contain 1235 * a journal, read the journal from disk to initialise the in-memory 1236 * structures. 1237 */ 1238 int jbd2_journal_load(journal_t *journal) 1239 { 1240 int err; 1241 journal_superblock_t *sb; 1242 1243 err = load_superblock(journal); 1244 if (err) 1245 return err; 1246 1247 sb = journal->j_superblock; 1248 /* If this is a V2 superblock, then we have to check the 1249 * features flags on it. */ 1250 1251 if (journal->j_format_version >= 2) { 1252 if ((sb->s_feature_ro_compat & 1253 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) || 1254 (sb->s_feature_incompat & 1255 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) { 1256 printk (KERN_WARNING 1257 "JBD: Unrecognised features on journal\n"); 1258 return -EINVAL; 1259 } 1260 } 1261 1262 /* 1263 * Create a slab for this blocksize 1264 */ 1265 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize)); 1266 if (err) 1267 return err; 1268 1269 /* Let the recovery code check whether it needs to recover any 1270 * data from the journal. */ 1271 if (jbd2_journal_recover(journal)) 1272 goto recovery_error; 1273 1274 if (journal->j_failed_commit) { 1275 printk(KERN_ERR "JBD2: journal transaction %u on %s " 1276 "is corrupt.\n", journal->j_failed_commit, 1277 journal->j_devname); 1278 return -EIO; 1279 } 1280 1281 /* OK, we've finished with the dynamic journal bits: 1282 * reinitialise the dynamic contents of the superblock in memory 1283 * and reset them on disk. */ 1284 if (journal_reset(journal)) 1285 goto recovery_error; 1286 1287 journal->j_flags &= ~JBD2_ABORT; 1288 journal->j_flags |= JBD2_LOADED; 1289 return 0; 1290 1291 recovery_error: 1292 printk (KERN_WARNING "JBD: recovery failed\n"); 1293 return -EIO; 1294 } 1295 1296 /** 1297 * void jbd2_journal_destroy() - Release a journal_t structure. 1298 * @journal: Journal to act on. 1299 * 1300 * Release a journal_t structure once it is no longer in use by the 1301 * journaled object. 1302 * Return <0 if we couldn't clean up the journal. 1303 */ 1304 int jbd2_journal_destroy(journal_t *journal) 1305 { 1306 int err = 0; 1307 1308 /* Wait for the commit thread to wake up and die. */ 1309 journal_kill_thread(journal); 1310 1311 /* Force a final log commit */ 1312 if (journal->j_running_transaction) 1313 jbd2_journal_commit_transaction(journal); 1314 1315 /* Force any old transactions to disk */ 1316 1317 /* Totally anal locking here... */ 1318 spin_lock(&journal->j_list_lock); 1319 while (journal->j_checkpoint_transactions != NULL) { 1320 spin_unlock(&journal->j_list_lock); 1321 mutex_lock(&journal->j_checkpoint_mutex); 1322 jbd2_log_do_checkpoint(journal); 1323 mutex_unlock(&journal->j_checkpoint_mutex); 1324 spin_lock(&journal->j_list_lock); 1325 } 1326 1327 J_ASSERT(journal->j_running_transaction == NULL); 1328 J_ASSERT(journal->j_committing_transaction == NULL); 1329 J_ASSERT(journal->j_checkpoint_transactions == NULL); 1330 spin_unlock(&journal->j_list_lock); 1331 1332 if (journal->j_sb_buffer) { 1333 if (!is_journal_aborted(journal)) { 1334 /* We can now mark the journal as empty. */ 1335 journal->j_tail = 0; 1336 journal->j_tail_sequence = 1337 ++journal->j_transaction_sequence; 1338 jbd2_journal_update_superblock(journal, 1); 1339 } else { 1340 err = -EIO; 1341 } 1342 brelse(journal->j_sb_buffer); 1343 } 1344 1345 if (journal->j_proc_entry) 1346 jbd2_stats_proc_exit(journal); 1347 if (journal->j_inode) 1348 iput(journal->j_inode); 1349 if (journal->j_revoke) 1350 jbd2_journal_destroy_revoke(journal); 1351 kfree(journal->j_wbuf); 1352 kfree(journal); 1353 1354 return err; 1355 } 1356 1357 1358 /** 1359 *int jbd2_journal_check_used_features () - Check if features specified are used. 1360 * @journal: Journal to check. 1361 * @compat: bitmask of compatible features 1362 * @ro: bitmask of features that force read-only mount 1363 * @incompat: bitmask of incompatible features 1364 * 1365 * Check whether the journal uses all of a given set of 1366 * features. Return true (non-zero) if it does. 1367 **/ 1368 1369 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat, 1370 unsigned long ro, unsigned long incompat) 1371 { 1372 journal_superblock_t *sb; 1373 1374 if (!compat && !ro && !incompat) 1375 return 1; 1376 /* Load journal superblock if it is not loaded yet. */ 1377 if (journal->j_format_version == 0 && 1378 journal_get_superblock(journal) != 0) 1379 return 0; 1380 if (journal->j_format_version == 1) 1381 return 0; 1382 1383 sb = journal->j_superblock; 1384 1385 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) && 1386 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) && 1387 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat)) 1388 return 1; 1389 1390 return 0; 1391 } 1392 1393 /** 1394 * int jbd2_journal_check_available_features() - Check feature set in journalling layer 1395 * @journal: Journal to check. 1396 * @compat: bitmask of compatible features 1397 * @ro: bitmask of features that force read-only mount 1398 * @incompat: bitmask of incompatible features 1399 * 1400 * Check whether the journaling code supports the use of 1401 * all of a given set of features on this journal. Return true 1402 * (non-zero) if it can. */ 1403 1404 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat, 1405 unsigned long ro, unsigned long incompat) 1406 { 1407 if (!compat && !ro && !incompat) 1408 return 1; 1409 1410 /* We can support any known requested features iff the 1411 * superblock is in version 2. Otherwise we fail to support any 1412 * extended sb features. */ 1413 1414 if (journal->j_format_version != 2) 1415 return 0; 1416 1417 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat && 1418 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro && 1419 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat) 1420 return 1; 1421 1422 return 0; 1423 } 1424 1425 /** 1426 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock 1427 * @journal: Journal to act on. 1428 * @compat: bitmask of compatible features 1429 * @ro: bitmask of features that force read-only mount 1430 * @incompat: bitmask of incompatible features 1431 * 1432 * Mark a given journal feature as present on the 1433 * superblock. Returns true if the requested features could be set. 1434 * 1435 */ 1436 1437 int jbd2_journal_set_features (journal_t *journal, unsigned long compat, 1438 unsigned long ro, unsigned long incompat) 1439 { 1440 journal_superblock_t *sb; 1441 1442 if (jbd2_journal_check_used_features(journal, compat, ro, incompat)) 1443 return 1; 1444 1445 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat)) 1446 return 0; 1447 1448 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n", 1449 compat, ro, incompat); 1450 1451 sb = journal->j_superblock; 1452 1453 sb->s_feature_compat |= cpu_to_be32(compat); 1454 sb->s_feature_ro_compat |= cpu_to_be32(ro); 1455 sb->s_feature_incompat |= cpu_to_be32(incompat); 1456 1457 return 1; 1458 } 1459 1460 /* 1461 * jbd2_journal_clear_features () - Clear a given journal feature in the 1462 * superblock 1463 * @journal: Journal to act on. 1464 * @compat: bitmask of compatible features 1465 * @ro: bitmask of features that force read-only mount 1466 * @incompat: bitmask of incompatible features 1467 * 1468 * Clear a given journal feature as present on the 1469 * superblock. 1470 */ 1471 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat, 1472 unsigned long ro, unsigned long incompat) 1473 { 1474 journal_superblock_t *sb; 1475 1476 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n", 1477 compat, ro, incompat); 1478 1479 sb = journal->j_superblock; 1480 1481 sb->s_feature_compat &= ~cpu_to_be32(compat); 1482 sb->s_feature_ro_compat &= ~cpu_to_be32(ro); 1483 sb->s_feature_incompat &= ~cpu_to_be32(incompat); 1484 } 1485 EXPORT_SYMBOL(jbd2_journal_clear_features); 1486 1487 /** 1488 * int jbd2_journal_update_format () - Update on-disk journal structure. 1489 * @journal: Journal to act on. 1490 * 1491 * Given an initialised but unloaded journal struct, poke about in the 1492 * on-disk structure to update it to the most recent supported version. 1493 */ 1494 int jbd2_journal_update_format (journal_t *journal) 1495 { 1496 journal_superblock_t *sb; 1497 int err; 1498 1499 err = journal_get_superblock(journal); 1500 if (err) 1501 return err; 1502 1503 sb = journal->j_superblock; 1504 1505 switch (be32_to_cpu(sb->s_header.h_blocktype)) { 1506 case JBD2_SUPERBLOCK_V2: 1507 return 0; 1508 case JBD2_SUPERBLOCK_V1: 1509 return journal_convert_superblock_v1(journal, sb); 1510 default: 1511 break; 1512 } 1513 return -EINVAL; 1514 } 1515 1516 static int journal_convert_superblock_v1(journal_t *journal, 1517 journal_superblock_t *sb) 1518 { 1519 int offset, blocksize; 1520 struct buffer_head *bh; 1521 1522 printk(KERN_WARNING 1523 "JBD: Converting superblock from version 1 to 2.\n"); 1524 1525 /* Pre-initialise new fields to zero */ 1526 offset = ((char *) &(sb->s_feature_compat)) - ((char *) sb); 1527 blocksize = be32_to_cpu(sb->s_blocksize); 1528 memset(&sb->s_feature_compat, 0, blocksize-offset); 1529 1530 sb->s_nr_users = cpu_to_be32(1); 1531 sb->s_header.h_blocktype = cpu_to_be32(JBD2_SUPERBLOCK_V2); 1532 journal->j_format_version = 2; 1533 1534 bh = journal->j_sb_buffer; 1535 BUFFER_TRACE(bh, "marking dirty"); 1536 mark_buffer_dirty(bh); 1537 sync_dirty_buffer(bh); 1538 return 0; 1539 } 1540 1541 1542 /** 1543 * int jbd2_journal_flush () - Flush journal 1544 * @journal: Journal to act on. 1545 * 1546 * Flush all data for a given journal to disk and empty the journal. 1547 * Filesystems can use this when remounting readonly to ensure that 1548 * recovery does not need to happen on remount. 1549 */ 1550 1551 int jbd2_journal_flush(journal_t *journal) 1552 { 1553 int err = 0; 1554 transaction_t *transaction = NULL; 1555 unsigned long old_tail; 1556 1557 write_lock(&journal->j_state_lock); 1558 1559 /* Force everything buffered to the log... */ 1560 if (journal->j_running_transaction) { 1561 transaction = journal->j_running_transaction; 1562 __jbd2_log_start_commit(journal, transaction->t_tid); 1563 } else if (journal->j_committing_transaction) 1564 transaction = journal->j_committing_transaction; 1565 1566 /* Wait for the log commit to complete... */ 1567 if (transaction) { 1568 tid_t tid = transaction->t_tid; 1569 1570 write_unlock(&journal->j_state_lock); 1571 jbd2_log_wait_commit(journal, tid); 1572 } else { 1573 write_unlock(&journal->j_state_lock); 1574 } 1575 1576 /* ...and flush everything in the log out to disk. */ 1577 spin_lock(&journal->j_list_lock); 1578 while (!err && journal->j_checkpoint_transactions != NULL) { 1579 spin_unlock(&journal->j_list_lock); 1580 mutex_lock(&journal->j_checkpoint_mutex); 1581 err = jbd2_log_do_checkpoint(journal); 1582 mutex_unlock(&journal->j_checkpoint_mutex); 1583 spin_lock(&journal->j_list_lock); 1584 } 1585 spin_unlock(&journal->j_list_lock); 1586 1587 if (is_journal_aborted(journal)) 1588 return -EIO; 1589 1590 jbd2_cleanup_journal_tail(journal); 1591 1592 /* Finally, mark the journal as really needing no recovery. 1593 * This sets s_start==0 in the underlying superblock, which is 1594 * the magic code for a fully-recovered superblock. Any future 1595 * commits of data to the journal will restore the current 1596 * s_start value. */ 1597 write_lock(&journal->j_state_lock); 1598 old_tail = journal->j_tail; 1599 journal->j_tail = 0; 1600 write_unlock(&journal->j_state_lock); 1601 jbd2_journal_update_superblock(journal, 1); 1602 write_lock(&journal->j_state_lock); 1603 journal->j_tail = old_tail; 1604 1605 J_ASSERT(!journal->j_running_transaction); 1606 J_ASSERT(!journal->j_committing_transaction); 1607 J_ASSERT(!journal->j_checkpoint_transactions); 1608 J_ASSERT(journal->j_head == journal->j_tail); 1609 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence); 1610 write_unlock(&journal->j_state_lock); 1611 return 0; 1612 } 1613 1614 /** 1615 * int jbd2_journal_wipe() - Wipe journal contents 1616 * @journal: Journal to act on. 1617 * @write: flag (see below) 1618 * 1619 * Wipe out all of the contents of a journal, safely. This will produce 1620 * a warning if the journal contains any valid recovery information. 1621 * Must be called between journal_init_*() and jbd2_journal_load(). 1622 * 1623 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise 1624 * we merely suppress recovery. 1625 */ 1626 1627 int jbd2_journal_wipe(journal_t *journal, int write) 1628 { 1629 int err = 0; 1630 1631 J_ASSERT (!(journal->j_flags & JBD2_LOADED)); 1632 1633 err = load_superblock(journal); 1634 if (err) 1635 return err; 1636 1637 if (!journal->j_tail) 1638 goto no_recovery; 1639 1640 printk (KERN_WARNING "JBD: %s recovery information on journal\n", 1641 write ? "Clearing" : "Ignoring"); 1642 1643 err = jbd2_journal_skip_recovery(journal); 1644 if (write) 1645 jbd2_journal_update_superblock(journal, 1); 1646 1647 no_recovery: 1648 return err; 1649 } 1650 1651 /* 1652 * Journal abort has very specific semantics, which we describe 1653 * for journal abort. 1654 * 1655 * Two internal functions, which provide abort to the jbd layer 1656 * itself are here. 1657 */ 1658 1659 /* 1660 * Quick version for internal journal use (doesn't lock the journal). 1661 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else, 1662 * and don't attempt to make any other journal updates. 1663 */ 1664 void __jbd2_journal_abort_hard(journal_t *journal) 1665 { 1666 transaction_t *transaction; 1667 1668 if (journal->j_flags & JBD2_ABORT) 1669 return; 1670 1671 printk(KERN_ERR "Aborting journal on device %s.\n", 1672 journal->j_devname); 1673 1674 write_lock(&journal->j_state_lock); 1675 journal->j_flags |= JBD2_ABORT; 1676 transaction = journal->j_running_transaction; 1677 if (transaction) 1678 __jbd2_log_start_commit(journal, transaction->t_tid); 1679 write_unlock(&journal->j_state_lock); 1680 } 1681 1682 /* Soft abort: record the abort error status in the journal superblock, 1683 * but don't do any other IO. */ 1684 static void __journal_abort_soft (journal_t *journal, int errno) 1685 { 1686 if (journal->j_flags & JBD2_ABORT) 1687 return; 1688 1689 if (!journal->j_errno) 1690 journal->j_errno = errno; 1691 1692 __jbd2_journal_abort_hard(journal); 1693 1694 if (errno) 1695 jbd2_journal_update_superblock(journal, 1); 1696 } 1697 1698 /** 1699 * void jbd2_journal_abort () - Shutdown the journal immediately. 1700 * @journal: the journal to shutdown. 1701 * @errno: an error number to record in the journal indicating 1702 * the reason for the shutdown. 1703 * 1704 * Perform a complete, immediate shutdown of the ENTIRE 1705 * journal (not of a single transaction). This operation cannot be 1706 * undone without closing and reopening the journal. 1707 * 1708 * The jbd2_journal_abort function is intended to support higher level error 1709 * recovery mechanisms such as the ext2/ext3 remount-readonly error 1710 * mode. 1711 * 1712 * Journal abort has very specific semantics. Any existing dirty, 1713 * unjournaled buffers in the main filesystem will still be written to 1714 * disk by bdflush, but the journaling mechanism will be suspended 1715 * immediately and no further transaction commits will be honoured. 1716 * 1717 * Any dirty, journaled buffers will be written back to disk without 1718 * hitting the journal. Atomicity cannot be guaranteed on an aborted 1719 * filesystem, but we _do_ attempt to leave as much data as possible 1720 * behind for fsck to use for cleanup. 1721 * 1722 * Any attempt to get a new transaction handle on a journal which is in 1723 * ABORT state will just result in an -EROFS error return. A 1724 * jbd2_journal_stop on an existing handle will return -EIO if we have 1725 * entered abort state during the update. 1726 * 1727 * Recursive transactions are not disturbed by journal abort until the 1728 * final jbd2_journal_stop, which will receive the -EIO error. 1729 * 1730 * Finally, the jbd2_journal_abort call allows the caller to supply an errno 1731 * which will be recorded (if possible) in the journal superblock. This 1732 * allows a client to record failure conditions in the middle of a 1733 * transaction without having to complete the transaction to record the 1734 * failure to disk. ext3_error, for example, now uses this 1735 * functionality. 1736 * 1737 * Errors which originate from within the journaling layer will NOT 1738 * supply an errno; a null errno implies that absolutely no further 1739 * writes are done to the journal (unless there are any already in 1740 * progress). 1741 * 1742 */ 1743 1744 void jbd2_journal_abort(journal_t *journal, int errno) 1745 { 1746 __journal_abort_soft(journal, errno); 1747 } 1748 1749 /** 1750 * int jbd2_journal_errno () - returns the journal's error state. 1751 * @journal: journal to examine. 1752 * 1753 * This is the errno number set with jbd2_journal_abort(), the last 1754 * time the journal was mounted - if the journal was stopped 1755 * without calling abort this will be 0. 1756 * 1757 * If the journal has been aborted on this mount time -EROFS will 1758 * be returned. 1759 */ 1760 int jbd2_journal_errno(journal_t *journal) 1761 { 1762 int err; 1763 1764 read_lock(&journal->j_state_lock); 1765 if (journal->j_flags & JBD2_ABORT) 1766 err = -EROFS; 1767 else 1768 err = journal->j_errno; 1769 read_unlock(&journal->j_state_lock); 1770 return err; 1771 } 1772 1773 /** 1774 * int jbd2_journal_clear_err () - clears the journal's error state 1775 * @journal: journal to act on. 1776 * 1777 * An error must be cleared or acked to take a FS out of readonly 1778 * mode. 1779 */ 1780 int jbd2_journal_clear_err(journal_t *journal) 1781 { 1782 int err = 0; 1783 1784 write_lock(&journal->j_state_lock); 1785 if (journal->j_flags & JBD2_ABORT) 1786 err = -EROFS; 1787 else 1788 journal->j_errno = 0; 1789 write_unlock(&journal->j_state_lock); 1790 return err; 1791 } 1792 1793 /** 1794 * void jbd2_journal_ack_err() - Ack journal err. 1795 * @journal: journal to act on. 1796 * 1797 * An error must be cleared or acked to take a FS out of readonly 1798 * mode. 1799 */ 1800 void jbd2_journal_ack_err(journal_t *journal) 1801 { 1802 write_lock(&journal->j_state_lock); 1803 if (journal->j_errno) 1804 journal->j_flags |= JBD2_ACK_ERR; 1805 write_unlock(&journal->j_state_lock); 1806 } 1807 1808 int jbd2_journal_blocks_per_page(struct inode *inode) 1809 { 1810 return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 1811 } 1812 1813 /* 1814 * helper functions to deal with 32 or 64bit block numbers. 1815 */ 1816 size_t journal_tag_bytes(journal_t *journal) 1817 { 1818 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT)) 1819 return JBD2_TAG_SIZE64; 1820 else 1821 return JBD2_TAG_SIZE32; 1822 } 1823 1824 /* 1825 * JBD memory management 1826 * 1827 * These functions are used to allocate block-sized chunks of memory 1828 * used for making copies of buffer_head data. Very often it will be 1829 * page-sized chunks of data, but sometimes it will be in 1830 * sub-page-size chunks. (For example, 16k pages on Power systems 1831 * with a 4k block file system.) For blocks smaller than a page, we 1832 * use a SLAB allocator. There are slab caches for each block size, 1833 * which are allocated at mount time, if necessary, and we only free 1834 * (all of) the slab caches when/if the jbd2 module is unloaded. For 1835 * this reason we don't need to a mutex to protect access to 1836 * jbd2_slab[] allocating or releasing memory; only in 1837 * jbd2_journal_create_slab(). 1838 */ 1839 #define JBD2_MAX_SLABS 8 1840 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS]; 1841 1842 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = { 1843 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k", 1844 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k" 1845 }; 1846 1847 1848 static void jbd2_journal_destroy_slabs(void) 1849 { 1850 int i; 1851 1852 for (i = 0; i < JBD2_MAX_SLABS; i++) { 1853 if (jbd2_slab[i]) 1854 kmem_cache_destroy(jbd2_slab[i]); 1855 jbd2_slab[i] = NULL; 1856 } 1857 } 1858 1859 static int jbd2_journal_create_slab(size_t size) 1860 { 1861 static DEFINE_MUTEX(jbd2_slab_create_mutex); 1862 int i = order_base_2(size) - 10; 1863 size_t slab_size; 1864 1865 if (size == PAGE_SIZE) 1866 return 0; 1867 1868 if (i >= JBD2_MAX_SLABS) 1869 return -EINVAL; 1870 1871 if (unlikely(i < 0)) 1872 i = 0; 1873 mutex_lock(&jbd2_slab_create_mutex); 1874 if (jbd2_slab[i]) { 1875 mutex_unlock(&jbd2_slab_create_mutex); 1876 return 0; /* Already created */ 1877 } 1878 1879 slab_size = 1 << (i+10); 1880 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size, 1881 slab_size, 0, NULL); 1882 mutex_unlock(&jbd2_slab_create_mutex); 1883 if (!jbd2_slab[i]) { 1884 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n"); 1885 return -ENOMEM; 1886 } 1887 return 0; 1888 } 1889 1890 static struct kmem_cache *get_slab(size_t size) 1891 { 1892 int i = order_base_2(size) - 10; 1893 1894 BUG_ON(i >= JBD2_MAX_SLABS); 1895 if (unlikely(i < 0)) 1896 i = 0; 1897 BUG_ON(jbd2_slab[i] == NULL); 1898 return jbd2_slab[i]; 1899 } 1900 1901 void *jbd2_alloc(size_t size, gfp_t flags) 1902 { 1903 void *ptr; 1904 1905 BUG_ON(size & (size-1)); /* Must be a power of 2 */ 1906 1907 flags |= __GFP_REPEAT; 1908 if (size == PAGE_SIZE) 1909 ptr = (void *)__get_free_pages(flags, 0); 1910 else if (size > PAGE_SIZE) { 1911 int order = get_order(size); 1912 1913 if (order < 3) 1914 ptr = (void *)__get_free_pages(flags, order); 1915 else 1916 ptr = vmalloc(size); 1917 } else 1918 ptr = kmem_cache_alloc(get_slab(size), flags); 1919 1920 /* Check alignment; SLUB has gotten this wrong in the past, 1921 * and this can lead to user data corruption! */ 1922 BUG_ON(((unsigned long) ptr) & (size-1)); 1923 1924 return ptr; 1925 } 1926 1927 void jbd2_free(void *ptr, size_t size) 1928 { 1929 if (size == PAGE_SIZE) { 1930 free_pages((unsigned long)ptr, 0); 1931 return; 1932 } 1933 if (size > PAGE_SIZE) { 1934 int order = get_order(size); 1935 1936 if (order < 3) 1937 free_pages((unsigned long)ptr, order); 1938 else 1939 vfree(ptr); 1940 return; 1941 } 1942 kmem_cache_free(get_slab(size), ptr); 1943 }; 1944 1945 /* 1946 * Journal_head storage management 1947 */ 1948 static struct kmem_cache *jbd2_journal_head_cache; 1949 #ifdef CONFIG_JBD2_DEBUG 1950 static atomic_t nr_journal_heads = ATOMIC_INIT(0); 1951 #endif 1952 1953 static int journal_init_jbd2_journal_head_cache(void) 1954 { 1955 int retval; 1956 1957 J_ASSERT(jbd2_journal_head_cache == NULL); 1958 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head", 1959 sizeof(struct journal_head), 1960 0, /* offset */ 1961 SLAB_TEMPORARY, /* flags */ 1962 NULL); /* ctor */ 1963 retval = 0; 1964 if (!jbd2_journal_head_cache) { 1965 retval = -ENOMEM; 1966 printk(KERN_EMERG "JBD: no memory for journal_head cache\n"); 1967 } 1968 return retval; 1969 } 1970 1971 static void jbd2_journal_destroy_jbd2_journal_head_cache(void) 1972 { 1973 if (jbd2_journal_head_cache) { 1974 kmem_cache_destroy(jbd2_journal_head_cache); 1975 jbd2_journal_head_cache = NULL; 1976 } 1977 } 1978 1979 /* 1980 * journal_head splicing and dicing 1981 */ 1982 static struct journal_head *journal_alloc_journal_head(void) 1983 { 1984 struct journal_head *ret; 1985 1986 #ifdef CONFIG_JBD2_DEBUG 1987 atomic_inc(&nr_journal_heads); 1988 #endif 1989 ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS); 1990 if (!ret) { 1991 jbd_debug(1, "out of memory for journal_head\n"); 1992 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__); 1993 while (!ret) { 1994 yield(); 1995 ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS); 1996 } 1997 } 1998 return ret; 1999 } 2000 2001 static void journal_free_journal_head(struct journal_head *jh) 2002 { 2003 #ifdef CONFIG_JBD2_DEBUG 2004 atomic_dec(&nr_journal_heads); 2005 memset(jh, JBD2_POISON_FREE, sizeof(*jh)); 2006 #endif 2007 kmem_cache_free(jbd2_journal_head_cache, jh); 2008 } 2009 2010 /* 2011 * A journal_head is attached to a buffer_head whenever JBD has an 2012 * interest in the buffer. 2013 * 2014 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit 2015 * is set. This bit is tested in core kernel code where we need to take 2016 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable 2017 * there. 2018 * 2019 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one. 2020 * 2021 * When a buffer has its BH_JBD bit set it is immune from being released by 2022 * core kernel code, mainly via ->b_count. 2023 * 2024 * A journal_head may be detached from its buffer_head when the journal_head's 2025 * b_transaction, b_cp_transaction and b_next_transaction pointers are NULL. 2026 * Various places in JBD call jbd2_journal_remove_journal_head() to indicate that the 2027 * journal_head can be dropped if needed. 2028 * 2029 * Various places in the kernel want to attach a journal_head to a buffer_head 2030 * _before_ attaching the journal_head to a transaction. To protect the 2031 * journal_head in this situation, jbd2_journal_add_journal_head elevates the 2032 * journal_head's b_jcount refcount by one. The caller must call 2033 * jbd2_journal_put_journal_head() to undo this. 2034 * 2035 * So the typical usage would be: 2036 * 2037 * (Attach a journal_head if needed. Increments b_jcount) 2038 * struct journal_head *jh = jbd2_journal_add_journal_head(bh); 2039 * ... 2040 * jh->b_transaction = xxx; 2041 * jbd2_journal_put_journal_head(jh); 2042 * 2043 * Now, the journal_head's b_jcount is zero, but it is safe from being released 2044 * because it has a non-zero b_transaction. 2045 */ 2046 2047 /* 2048 * Give a buffer_head a journal_head. 2049 * 2050 * Doesn't need the journal lock. 2051 * May sleep. 2052 */ 2053 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh) 2054 { 2055 struct journal_head *jh; 2056 struct journal_head *new_jh = NULL; 2057 2058 repeat: 2059 if (!buffer_jbd(bh)) { 2060 new_jh = journal_alloc_journal_head(); 2061 memset(new_jh, 0, sizeof(*new_jh)); 2062 } 2063 2064 jbd_lock_bh_journal_head(bh); 2065 if (buffer_jbd(bh)) { 2066 jh = bh2jh(bh); 2067 } else { 2068 J_ASSERT_BH(bh, 2069 (atomic_read(&bh->b_count) > 0) || 2070 (bh->b_page && bh->b_page->mapping)); 2071 2072 if (!new_jh) { 2073 jbd_unlock_bh_journal_head(bh); 2074 goto repeat; 2075 } 2076 2077 jh = new_jh; 2078 new_jh = NULL; /* We consumed it */ 2079 set_buffer_jbd(bh); 2080 bh->b_private = jh; 2081 jh->b_bh = bh; 2082 get_bh(bh); 2083 BUFFER_TRACE(bh, "added journal_head"); 2084 } 2085 jh->b_jcount++; 2086 jbd_unlock_bh_journal_head(bh); 2087 if (new_jh) 2088 journal_free_journal_head(new_jh); 2089 return bh->b_private; 2090 } 2091 2092 /* 2093 * Grab a ref against this buffer_head's journal_head. If it ended up not 2094 * having a journal_head, return NULL 2095 */ 2096 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh) 2097 { 2098 struct journal_head *jh = NULL; 2099 2100 jbd_lock_bh_journal_head(bh); 2101 if (buffer_jbd(bh)) { 2102 jh = bh2jh(bh); 2103 jh->b_jcount++; 2104 } 2105 jbd_unlock_bh_journal_head(bh); 2106 return jh; 2107 } 2108 2109 static void __journal_remove_journal_head(struct buffer_head *bh) 2110 { 2111 struct journal_head *jh = bh2jh(bh); 2112 2113 J_ASSERT_JH(jh, jh->b_jcount >= 0); 2114 2115 get_bh(bh); 2116 if (jh->b_jcount == 0) { 2117 if (jh->b_transaction == NULL && 2118 jh->b_next_transaction == NULL && 2119 jh->b_cp_transaction == NULL) { 2120 J_ASSERT_JH(jh, jh->b_jlist == BJ_None); 2121 J_ASSERT_BH(bh, buffer_jbd(bh)); 2122 J_ASSERT_BH(bh, jh2bh(jh) == bh); 2123 BUFFER_TRACE(bh, "remove journal_head"); 2124 if (jh->b_frozen_data) { 2125 printk(KERN_WARNING "%s: freeing " 2126 "b_frozen_data\n", 2127 __func__); 2128 jbd2_free(jh->b_frozen_data, bh->b_size); 2129 } 2130 if (jh->b_committed_data) { 2131 printk(KERN_WARNING "%s: freeing " 2132 "b_committed_data\n", 2133 __func__); 2134 jbd2_free(jh->b_committed_data, bh->b_size); 2135 } 2136 bh->b_private = NULL; 2137 jh->b_bh = NULL; /* debug, really */ 2138 clear_buffer_jbd(bh); 2139 __brelse(bh); 2140 journal_free_journal_head(jh); 2141 } else { 2142 BUFFER_TRACE(bh, "journal_head was locked"); 2143 } 2144 } 2145 } 2146 2147 /* 2148 * jbd2_journal_remove_journal_head(): if the buffer isn't attached to a transaction 2149 * and has a zero b_jcount then remove and release its journal_head. If we did 2150 * see that the buffer is not used by any transaction we also "logically" 2151 * decrement ->b_count. 2152 * 2153 * We in fact take an additional increment on ->b_count as a convenience, 2154 * because the caller usually wants to do additional things with the bh 2155 * after calling here. 2156 * The caller of jbd2_journal_remove_journal_head() *must* run __brelse(bh) at some 2157 * time. Once the caller has run __brelse(), the buffer is eligible for 2158 * reaping by try_to_free_buffers(). 2159 */ 2160 void jbd2_journal_remove_journal_head(struct buffer_head *bh) 2161 { 2162 jbd_lock_bh_journal_head(bh); 2163 __journal_remove_journal_head(bh); 2164 jbd_unlock_bh_journal_head(bh); 2165 } 2166 2167 /* 2168 * Drop a reference on the passed journal_head. If it fell to zero then try to 2169 * release the journal_head from the buffer_head. 2170 */ 2171 void jbd2_journal_put_journal_head(struct journal_head *jh) 2172 { 2173 struct buffer_head *bh = jh2bh(jh); 2174 2175 jbd_lock_bh_journal_head(bh); 2176 J_ASSERT_JH(jh, jh->b_jcount > 0); 2177 --jh->b_jcount; 2178 if (!jh->b_jcount && !jh->b_transaction) { 2179 __journal_remove_journal_head(bh); 2180 __brelse(bh); 2181 } 2182 jbd_unlock_bh_journal_head(bh); 2183 } 2184 2185 /* 2186 * Initialize jbd inode head 2187 */ 2188 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode) 2189 { 2190 jinode->i_transaction = NULL; 2191 jinode->i_next_transaction = NULL; 2192 jinode->i_vfs_inode = inode; 2193 jinode->i_flags = 0; 2194 INIT_LIST_HEAD(&jinode->i_list); 2195 } 2196 2197 /* 2198 * Function to be called before we start removing inode from memory (i.e., 2199 * clear_inode() is a fine place to be called from). It removes inode from 2200 * transaction's lists. 2201 */ 2202 void jbd2_journal_release_jbd_inode(journal_t *journal, 2203 struct jbd2_inode *jinode) 2204 { 2205 if (!journal) 2206 return; 2207 restart: 2208 spin_lock(&journal->j_list_lock); 2209 /* Is commit writing out inode - we have to wait */ 2210 if (test_bit(__JI_COMMIT_RUNNING, &jinode->i_flags)) { 2211 wait_queue_head_t *wq; 2212 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING); 2213 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING); 2214 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 2215 spin_unlock(&journal->j_list_lock); 2216 schedule(); 2217 finish_wait(wq, &wait.wait); 2218 goto restart; 2219 } 2220 2221 if (jinode->i_transaction) { 2222 list_del(&jinode->i_list); 2223 jinode->i_transaction = NULL; 2224 } 2225 spin_unlock(&journal->j_list_lock); 2226 } 2227 2228 /* 2229 * debugfs tunables 2230 */ 2231 #ifdef CONFIG_JBD2_DEBUG 2232 u8 jbd2_journal_enable_debug __read_mostly; 2233 EXPORT_SYMBOL(jbd2_journal_enable_debug); 2234 2235 #define JBD2_DEBUG_NAME "jbd2-debug" 2236 2237 static struct dentry *jbd2_debugfs_dir; 2238 static struct dentry *jbd2_debug; 2239 2240 static void __init jbd2_create_debugfs_entry(void) 2241 { 2242 jbd2_debugfs_dir = debugfs_create_dir("jbd2", NULL); 2243 if (jbd2_debugfs_dir) 2244 jbd2_debug = debugfs_create_u8(JBD2_DEBUG_NAME, 2245 S_IRUGO | S_IWUSR, 2246 jbd2_debugfs_dir, 2247 &jbd2_journal_enable_debug); 2248 } 2249 2250 static void __exit jbd2_remove_debugfs_entry(void) 2251 { 2252 debugfs_remove(jbd2_debug); 2253 debugfs_remove(jbd2_debugfs_dir); 2254 } 2255 2256 #else 2257 2258 static void __init jbd2_create_debugfs_entry(void) 2259 { 2260 } 2261 2262 static void __exit jbd2_remove_debugfs_entry(void) 2263 { 2264 } 2265 2266 #endif 2267 2268 #ifdef CONFIG_PROC_FS 2269 2270 #define JBD2_STATS_PROC_NAME "fs/jbd2" 2271 2272 static void __init jbd2_create_jbd_stats_proc_entry(void) 2273 { 2274 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL); 2275 } 2276 2277 static void __exit jbd2_remove_jbd_stats_proc_entry(void) 2278 { 2279 if (proc_jbd2_stats) 2280 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL); 2281 } 2282 2283 #else 2284 2285 #define jbd2_create_jbd_stats_proc_entry() do {} while (0) 2286 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0) 2287 2288 #endif 2289 2290 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache; 2291 2292 static int __init journal_init_handle_cache(void) 2293 { 2294 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY); 2295 if (jbd2_handle_cache == NULL) { 2296 printk(KERN_EMERG "JBD2: failed to create handle cache\n"); 2297 return -ENOMEM; 2298 } 2299 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0); 2300 if (jbd2_inode_cache == NULL) { 2301 printk(KERN_EMERG "JBD2: failed to create inode cache\n"); 2302 kmem_cache_destroy(jbd2_handle_cache); 2303 return -ENOMEM; 2304 } 2305 return 0; 2306 } 2307 2308 static void jbd2_journal_destroy_handle_cache(void) 2309 { 2310 if (jbd2_handle_cache) 2311 kmem_cache_destroy(jbd2_handle_cache); 2312 if (jbd2_inode_cache) 2313 kmem_cache_destroy(jbd2_inode_cache); 2314 2315 } 2316 2317 /* 2318 * Module startup and shutdown 2319 */ 2320 2321 static int __init journal_init_caches(void) 2322 { 2323 int ret; 2324 2325 ret = jbd2_journal_init_revoke_caches(); 2326 if (ret == 0) 2327 ret = journal_init_jbd2_journal_head_cache(); 2328 if (ret == 0) 2329 ret = journal_init_handle_cache(); 2330 return ret; 2331 } 2332 2333 static void jbd2_journal_destroy_caches(void) 2334 { 2335 jbd2_journal_destroy_revoke_caches(); 2336 jbd2_journal_destroy_jbd2_journal_head_cache(); 2337 jbd2_journal_destroy_handle_cache(); 2338 jbd2_journal_destroy_slabs(); 2339 } 2340 2341 static int __init journal_init(void) 2342 { 2343 int ret; 2344 2345 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024); 2346 2347 ret = journal_init_caches(); 2348 if (ret == 0) { 2349 jbd2_create_debugfs_entry(); 2350 jbd2_create_jbd_stats_proc_entry(); 2351 } else { 2352 jbd2_journal_destroy_caches(); 2353 } 2354 return ret; 2355 } 2356 2357 static void __exit journal_exit(void) 2358 { 2359 #ifdef CONFIG_JBD2_DEBUG 2360 int n = atomic_read(&nr_journal_heads); 2361 if (n) 2362 printk(KERN_EMERG "JBD: leaked %d journal_heads!\n", n); 2363 #endif 2364 jbd2_remove_debugfs_entry(); 2365 jbd2_remove_jbd_stats_proc_entry(); 2366 jbd2_journal_destroy_caches(); 2367 } 2368 2369 /* 2370 * jbd2_dev_to_name is a utility function used by the jbd2 and ext4 2371 * tracing infrastructure to map a dev_t to a device name. 2372 * 2373 * The caller should use rcu_read_lock() in order to make sure the 2374 * device name stays valid until its done with it. We use 2375 * rcu_read_lock() as well to make sure we're safe in case the caller 2376 * gets sloppy, and because rcu_read_lock() is cheap and can be safely 2377 * nested. 2378 */ 2379 struct devname_cache { 2380 struct rcu_head rcu; 2381 dev_t device; 2382 char devname[BDEVNAME_SIZE]; 2383 }; 2384 #define CACHE_SIZE_BITS 6 2385 static struct devname_cache *devcache[1 << CACHE_SIZE_BITS]; 2386 static DEFINE_SPINLOCK(devname_cache_lock); 2387 2388 static void free_devcache(struct rcu_head *rcu) 2389 { 2390 kfree(rcu); 2391 } 2392 2393 const char *jbd2_dev_to_name(dev_t device) 2394 { 2395 int i = hash_32(device, CACHE_SIZE_BITS); 2396 char *ret; 2397 struct block_device *bd; 2398 static struct devname_cache *new_dev; 2399 2400 rcu_read_lock(); 2401 if (devcache[i] && devcache[i]->device == device) { 2402 ret = devcache[i]->devname; 2403 rcu_read_unlock(); 2404 return ret; 2405 } 2406 rcu_read_unlock(); 2407 2408 new_dev = kmalloc(sizeof(struct devname_cache), GFP_KERNEL); 2409 if (!new_dev) 2410 return "NODEV-ALLOCFAILURE"; /* Something non-NULL */ 2411 spin_lock(&devname_cache_lock); 2412 if (devcache[i]) { 2413 if (devcache[i]->device == device) { 2414 kfree(new_dev); 2415 ret = devcache[i]->devname; 2416 spin_unlock(&devname_cache_lock); 2417 return ret; 2418 } 2419 call_rcu(&devcache[i]->rcu, free_devcache); 2420 } 2421 devcache[i] = new_dev; 2422 devcache[i]->device = device; 2423 bd = bdget(device); 2424 if (bd) { 2425 bdevname(bd, devcache[i]->devname); 2426 bdput(bd); 2427 } else 2428 __bdevname(device, devcache[i]->devname); 2429 ret = devcache[i]->devname; 2430 spin_unlock(&devname_cache_lock); 2431 return ret; 2432 } 2433 EXPORT_SYMBOL(jbd2_dev_to_name); 2434 2435 MODULE_LICENSE("GPL"); 2436 module_init(journal_init); 2437 module_exit(journal_exit); 2438 2439