xref: /linux/fs/jbd2/journal.c (revision 34dc1baba215b826e454b8d19e4f24adbeb7d00d)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * linux/fs/jbd2/journal.c
4  *
5  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6  *
7  * Copyright 1998 Red Hat corp --- All Rights Reserved
8  *
9  * Generic filesystem journal-writing code; part of the ext2fs
10  * journaling system.
11  *
12  * This file manages journals: areas of disk reserved for logging
13  * transactional updates.  This includes the kernel journaling thread
14  * which is responsible for scheduling updates to the log.
15  *
16  * We do not actually manage the physical storage of the journal in this
17  * file: that is left to a per-journal policy function, which allows us
18  * to store the journal within a filesystem-specified area for ext2
19  * journaling (ext2 can use a reserved inode for storing the log).
20  */
21 
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/fs.h>
25 #include <linux/jbd2.h>
26 #include <linux/errno.h>
27 #include <linux/slab.h>
28 #include <linux/init.h>
29 #include <linux/mm.h>
30 #include <linux/freezer.h>
31 #include <linux/pagemap.h>
32 #include <linux/kthread.h>
33 #include <linux/poison.h>
34 #include <linux/proc_fs.h>
35 #include <linux/seq_file.h>
36 #include <linux/math64.h>
37 #include <linux/hash.h>
38 #include <linux/log2.h>
39 #include <linux/vmalloc.h>
40 #include <linux/backing-dev.h>
41 #include <linux/bitops.h>
42 #include <linux/ratelimit.h>
43 #include <linux/sched/mm.h>
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/jbd2.h>
47 
48 #include <linux/uaccess.h>
49 #include <asm/page.h>
50 
51 #ifdef CONFIG_JBD2_DEBUG
52 static ushort jbd2_journal_enable_debug __read_mostly;
53 
54 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
55 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
56 #endif
57 
58 EXPORT_SYMBOL(jbd2_journal_extend);
59 EXPORT_SYMBOL(jbd2_journal_stop);
60 EXPORT_SYMBOL(jbd2_journal_lock_updates);
61 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
62 EXPORT_SYMBOL(jbd2_journal_get_write_access);
63 EXPORT_SYMBOL(jbd2_journal_get_create_access);
64 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
65 EXPORT_SYMBOL(jbd2_journal_set_triggers);
66 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
67 EXPORT_SYMBOL(jbd2_journal_forget);
68 EXPORT_SYMBOL(jbd2_journal_flush);
69 EXPORT_SYMBOL(jbd2_journal_revoke);
70 
71 EXPORT_SYMBOL(jbd2_journal_init_dev);
72 EXPORT_SYMBOL(jbd2_journal_init_inode);
73 EXPORT_SYMBOL(jbd2_journal_check_used_features);
74 EXPORT_SYMBOL(jbd2_journal_check_available_features);
75 EXPORT_SYMBOL(jbd2_journal_set_features);
76 EXPORT_SYMBOL(jbd2_journal_load);
77 EXPORT_SYMBOL(jbd2_journal_destroy);
78 EXPORT_SYMBOL(jbd2_journal_abort);
79 EXPORT_SYMBOL(jbd2_journal_errno);
80 EXPORT_SYMBOL(jbd2_journal_ack_err);
81 EXPORT_SYMBOL(jbd2_journal_clear_err);
82 EXPORT_SYMBOL(jbd2_log_wait_commit);
83 EXPORT_SYMBOL(jbd2_journal_start_commit);
84 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
85 EXPORT_SYMBOL(jbd2_journal_wipe);
86 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
87 EXPORT_SYMBOL(jbd2_journal_invalidate_folio);
88 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
89 EXPORT_SYMBOL(jbd2_journal_force_commit);
90 EXPORT_SYMBOL(jbd2_journal_inode_ranged_write);
91 EXPORT_SYMBOL(jbd2_journal_inode_ranged_wait);
92 EXPORT_SYMBOL(jbd2_journal_finish_inode_data_buffers);
93 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
94 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
95 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
96 EXPORT_SYMBOL(jbd2_inode_cache);
97 
98 static int jbd2_journal_create_slab(size_t slab_size);
99 
100 #ifdef CONFIG_JBD2_DEBUG
101 void __jbd2_debug(int level, const char *file, const char *func,
102 		  unsigned int line, const char *fmt, ...)
103 {
104 	struct va_format vaf;
105 	va_list args;
106 
107 	if (level > jbd2_journal_enable_debug)
108 		return;
109 	va_start(args, fmt);
110 	vaf.fmt = fmt;
111 	vaf.va = &args;
112 	printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf);
113 	va_end(args);
114 }
115 #endif
116 
117 /* Checksumming functions */
118 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
119 {
120 	__u32 csum;
121 	__be32 old_csum;
122 
123 	old_csum = sb->s_checksum;
124 	sb->s_checksum = 0;
125 	csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
126 	sb->s_checksum = old_csum;
127 
128 	return cpu_to_be32(csum);
129 }
130 
131 /*
132  * Helper function used to manage commit timeouts
133  */
134 
135 static void commit_timeout(struct timer_list *t)
136 {
137 	journal_t *journal = from_timer(journal, t, j_commit_timer);
138 
139 	wake_up_process(journal->j_task);
140 }
141 
142 /*
143  * kjournald2: The main thread function used to manage a logging device
144  * journal.
145  *
146  * This kernel thread is responsible for two things:
147  *
148  * 1) COMMIT:  Every so often we need to commit the current state of the
149  *    filesystem to disk.  The journal thread is responsible for writing
150  *    all of the metadata buffers to disk. If a fast commit is ongoing
151  *    journal thread waits until it's done and then continues from
152  *    there on.
153  *
154  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
155  *    of the data in that part of the log has been rewritten elsewhere on
156  *    the disk.  Flushing these old buffers to reclaim space in the log is
157  *    known as checkpointing, and this thread is responsible for that job.
158  */
159 
160 static int kjournald2(void *arg)
161 {
162 	journal_t *journal = arg;
163 	transaction_t *transaction;
164 
165 	/*
166 	 * Set up an interval timer which can be used to trigger a commit wakeup
167 	 * after the commit interval expires
168 	 */
169 	timer_setup(&journal->j_commit_timer, commit_timeout, 0);
170 
171 	set_freezable();
172 
173 	/* Record that the journal thread is running */
174 	journal->j_task = current;
175 	wake_up(&journal->j_wait_done_commit);
176 
177 	/*
178 	 * Make sure that no allocations from this kernel thread will ever
179 	 * recurse to the fs layer because we are responsible for the
180 	 * transaction commit and any fs involvement might get stuck waiting for
181 	 * the trasn. commit.
182 	 */
183 	memalloc_nofs_save();
184 
185 	/*
186 	 * And now, wait forever for commit wakeup events.
187 	 */
188 	write_lock(&journal->j_state_lock);
189 
190 loop:
191 	if (journal->j_flags & JBD2_UNMOUNT)
192 		goto end_loop;
193 
194 	jbd2_debug(1, "commit_sequence=%u, commit_request=%u\n",
195 		journal->j_commit_sequence, journal->j_commit_request);
196 
197 	if (journal->j_commit_sequence != journal->j_commit_request) {
198 		jbd2_debug(1, "OK, requests differ\n");
199 		write_unlock(&journal->j_state_lock);
200 		del_timer_sync(&journal->j_commit_timer);
201 		jbd2_journal_commit_transaction(journal);
202 		write_lock(&journal->j_state_lock);
203 		goto loop;
204 	}
205 
206 	wake_up(&journal->j_wait_done_commit);
207 	if (freezing(current)) {
208 		/*
209 		 * The simpler the better. Flushing journal isn't a
210 		 * good idea, because that depends on threads that may
211 		 * be already stopped.
212 		 */
213 		jbd2_debug(1, "Now suspending kjournald2\n");
214 		write_unlock(&journal->j_state_lock);
215 		try_to_freeze();
216 		write_lock(&journal->j_state_lock);
217 	} else {
218 		/*
219 		 * We assume on resume that commits are already there,
220 		 * so we don't sleep
221 		 */
222 		DEFINE_WAIT(wait);
223 		int should_sleep = 1;
224 
225 		prepare_to_wait(&journal->j_wait_commit, &wait,
226 				TASK_INTERRUPTIBLE);
227 		if (journal->j_commit_sequence != journal->j_commit_request)
228 			should_sleep = 0;
229 		transaction = journal->j_running_transaction;
230 		if (transaction && time_after_eq(jiffies,
231 						transaction->t_expires))
232 			should_sleep = 0;
233 		if (journal->j_flags & JBD2_UNMOUNT)
234 			should_sleep = 0;
235 		if (should_sleep) {
236 			write_unlock(&journal->j_state_lock);
237 			schedule();
238 			write_lock(&journal->j_state_lock);
239 		}
240 		finish_wait(&journal->j_wait_commit, &wait);
241 	}
242 
243 	jbd2_debug(1, "kjournald2 wakes\n");
244 
245 	/*
246 	 * Were we woken up by a commit wakeup event?
247 	 */
248 	transaction = journal->j_running_transaction;
249 	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
250 		journal->j_commit_request = transaction->t_tid;
251 		jbd2_debug(1, "woke because of timeout\n");
252 	}
253 	goto loop;
254 
255 end_loop:
256 	del_timer_sync(&journal->j_commit_timer);
257 	journal->j_task = NULL;
258 	wake_up(&journal->j_wait_done_commit);
259 	jbd2_debug(1, "Journal thread exiting.\n");
260 	write_unlock(&journal->j_state_lock);
261 	return 0;
262 }
263 
264 static int jbd2_journal_start_thread(journal_t *journal)
265 {
266 	struct task_struct *t;
267 
268 	t = kthread_run(kjournald2, journal, "jbd2/%s",
269 			journal->j_devname);
270 	if (IS_ERR(t))
271 		return PTR_ERR(t);
272 
273 	wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
274 	return 0;
275 }
276 
277 static void journal_kill_thread(journal_t *journal)
278 {
279 	write_lock(&journal->j_state_lock);
280 	journal->j_flags |= JBD2_UNMOUNT;
281 
282 	while (journal->j_task) {
283 		write_unlock(&journal->j_state_lock);
284 		wake_up(&journal->j_wait_commit);
285 		wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
286 		write_lock(&journal->j_state_lock);
287 	}
288 	write_unlock(&journal->j_state_lock);
289 }
290 
291 /*
292  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
293  *
294  * Writes a metadata buffer to a given disk block.  The actual IO is not
295  * performed but a new buffer_head is constructed which labels the data
296  * to be written with the correct destination disk block.
297  *
298  * Any magic-number escaping which needs to be done will cause a
299  * copy-out here.  If the buffer happens to start with the
300  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
301  * magic number is only written to the log for descripter blocks.  In
302  * this case, we copy the data and replace the first word with 0, and we
303  * return a result code which indicates that this buffer needs to be
304  * marked as an escaped buffer in the corresponding log descriptor
305  * block.  The missing word can then be restored when the block is read
306  * during recovery.
307  *
308  * If the source buffer has already been modified by a new transaction
309  * since we took the last commit snapshot, we use the frozen copy of
310  * that data for IO. If we end up using the existing buffer_head's data
311  * for the write, then we have to make sure nobody modifies it while the
312  * IO is in progress. do_get_write_access() handles this.
313  *
314  * The function returns a pointer to the buffer_head to be used for IO.
315  *
316  *
317  * Return value:
318  *  <0: Error
319  * >=0: Finished OK
320  *
321  * On success:
322  * Bit 0 set == escape performed on the data
323  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
324  */
325 
326 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
327 				  struct journal_head  *jh_in,
328 				  struct buffer_head **bh_out,
329 				  sector_t blocknr)
330 {
331 	int need_copy_out = 0;
332 	int done_copy_out = 0;
333 	int do_escape = 0;
334 	char *mapped_data;
335 	struct buffer_head *new_bh;
336 	struct folio *new_folio;
337 	unsigned int new_offset;
338 	struct buffer_head *bh_in = jh2bh(jh_in);
339 	journal_t *journal = transaction->t_journal;
340 
341 	/*
342 	 * The buffer really shouldn't be locked: only the current committing
343 	 * transaction is allowed to write it, so nobody else is allowed
344 	 * to do any IO.
345 	 *
346 	 * akpm: except if we're journalling data, and write() output is
347 	 * also part of a shared mapping, and another thread has
348 	 * decided to launch a writepage() against this buffer.
349 	 */
350 	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
351 
352 	new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
353 
354 	/* keep subsequent assertions sane */
355 	atomic_set(&new_bh->b_count, 1);
356 
357 	spin_lock(&jh_in->b_state_lock);
358 repeat:
359 	/*
360 	 * If a new transaction has already done a buffer copy-out, then
361 	 * we use that version of the data for the commit.
362 	 */
363 	if (jh_in->b_frozen_data) {
364 		done_copy_out = 1;
365 		new_folio = virt_to_folio(jh_in->b_frozen_data);
366 		new_offset = offset_in_folio(new_folio, jh_in->b_frozen_data);
367 	} else {
368 		new_folio = jh2bh(jh_in)->b_folio;
369 		new_offset = offset_in_folio(new_folio, jh2bh(jh_in)->b_data);
370 	}
371 
372 	mapped_data = kmap_local_folio(new_folio, new_offset);
373 	/*
374 	 * Fire data frozen trigger if data already wasn't frozen.  Do this
375 	 * before checking for escaping, as the trigger may modify the magic
376 	 * offset.  If a copy-out happens afterwards, it will have the correct
377 	 * data in the buffer.
378 	 */
379 	if (!done_copy_out)
380 		jbd2_buffer_frozen_trigger(jh_in, mapped_data,
381 					   jh_in->b_triggers);
382 
383 	/*
384 	 * Check for escaping
385 	 */
386 	if (*((__be32 *)mapped_data) == cpu_to_be32(JBD2_MAGIC_NUMBER)) {
387 		need_copy_out = 1;
388 		do_escape = 1;
389 	}
390 	kunmap_local(mapped_data);
391 
392 	/*
393 	 * Do we need to do a data copy?
394 	 */
395 	if (need_copy_out && !done_copy_out) {
396 		char *tmp;
397 
398 		spin_unlock(&jh_in->b_state_lock);
399 		tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
400 		if (!tmp) {
401 			brelse(new_bh);
402 			return -ENOMEM;
403 		}
404 		spin_lock(&jh_in->b_state_lock);
405 		if (jh_in->b_frozen_data) {
406 			jbd2_free(tmp, bh_in->b_size);
407 			goto repeat;
408 		}
409 
410 		jh_in->b_frozen_data = tmp;
411 		memcpy_from_folio(tmp, new_folio, new_offset, bh_in->b_size);
412 
413 		new_folio = virt_to_folio(tmp);
414 		new_offset = offset_in_folio(new_folio, tmp);
415 		done_copy_out = 1;
416 
417 		/*
418 		 * This isn't strictly necessary, as we're using frozen
419 		 * data for the escaping, but it keeps consistency with
420 		 * b_frozen_data usage.
421 		 */
422 		jh_in->b_frozen_triggers = jh_in->b_triggers;
423 	}
424 
425 	/*
426 	 * Did we need to do an escaping?  Now we've done all the
427 	 * copying, we can finally do so.
428 	 */
429 	if (do_escape) {
430 		mapped_data = kmap_local_folio(new_folio, new_offset);
431 		*((unsigned int *)mapped_data) = 0;
432 		kunmap_local(mapped_data);
433 	}
434 
435 	folio_set_bh(new_bh, new_folio, new_offset);
436 	new_bh->b_size = bh_in->b_size;
437 	new_bh->b_bdev = journal->j_dev;
438 	new_bh->b_blocknr = blocknr;
439 	new_bh->b_private = bh_in;
440 	set_buffer_mapped(new_bh);
441 	set_buffer_dirty(new_bh);
442 
443 	*bh_out = new_bh;
444 
445 	/*
446 	 * The to-be-written buffer needs to get moved to the io queue,
447 	 * and the original buffer whose contents we are shadowing or
448 	 * copying is moved to the transaction's shadow queue.
449 	 */
450 	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
451 	spin_lock(&journal->j_list_lock);
452 	__jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
453 	spin_unlock(&journal->j_list_lock);
454 	set_buffer_shadow(bh_in);
455 	spin_unlock(&jh_in->b_state_lock);
456 
457 	return do_escape | (done_copy_out << 1);
458 }
459 
460 /*
461  * Allocation code for the journal file.  Manage the space left in the
462  * journal, so that we can begin checkpointing when appropriate.
463  */
464 
465 /*
466  * Called with j_state_lock locked for writing.
467  * Returns true if a transaction commit was started.
468  */
469 static int __jbd2_log_start_commit(journal_t *journal, tid_t target)
470 {
471 	/* Return if the txn has already requested to be committed */
472 	if (journal->j_commit_request == target)
473 		return 0;
474 
475 	/*
476 	 * The only transaction we can possibly wait upon is the
477 	 * currently running transaction (if it exists).  Otherwise,
478 	 * the target tid must be an old one.
479 	 */
480 	if (journal->j_running_transaction &&
481 	    journal->j_running_transaction->t_tid == target) {
482 		/*
483 		 * We want a new commit: OK, mark the request and wakeup the
484 		 * commit thread.  We do _not_ do the commit ourselves.
485 		 */
486 
487 		journal->j_commit_request = target;
488 		jbd2_debug(1, "JBD2: requesting commit %u/%u\n",
489 			  journal->j_commit_request,
490 			  journal->j_commit_sequence);
491 		journal->j_running_transaction->t_requested = jiffies;
492 		wake_up(&journal->j_wait_commit);
493 		return 1;
494 	} else if (!tid_geq(journal->j_commit_request, target))
495 		/* This should never happen, but if it does, preserve
496 		   the evidence before kjournald goes into a loop and
497 		   increments j_commit_sequence beyond all recognition. */
498 		WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
499 			  journal->j_commit_request,
500 			  journal->j_commit_sequence,
501 			  target, journal->j_running_transaction ?
502 			  journal->j_running_transaction->t_tid : 0);
503 	return 0;
504 }
505 
506 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
507 {
508 	int ret;
509 
510 	write_lock(&journal->j_state_lock);
511 	ret = __jbd2_log_start_commit(journal, tid);
512 	write_unlock(&journal->j_state_lock);
513 	return ret;
514 }
515 
516 /*
517  * Force and wait any uncommitted transactions.  We can only force the running
518  * transaction if we don't have an active handle, otherwise, we will deadlock.
519  * Returns: <0 in case of error,
520  *           0 if nothing to commit,
521  *           1 if transaction was successfully committed.
522  */
523 static int __jbd2_journal_force_commit(journal_t *journal)
524 {
525 	transaction_t *transaction = NULL;
526 	tid_t tid;
527 	int need_to_start = 0, ret = 0;
528 
529 	read_lock(&journal->j_state_lock);
530 	if (journal->j_running_transaction && !current->journal_info) {
531 		transaction = journal->j_running_transaction;
532 		if (!tid_geq(journal->j_commit_request, transaction->t_tid))
533 			need_to_start = 1;
534 	} else if (journal->j_committing_transaction)
535 		transaction = journal->j_committing_transaction;
536 
537 	if (!transaction) {
538 		/* Nothing to commit */
539 		read_unlock(&journal->j_state_lock);
540 		return 0;
541 	}
542 	tid = transaction->t_tid;
543 	read_unlock(&journal->j_state_lock);
544 	if (need_to_start)
545 		jbd2_log_start_commit(journal, tid);
546 	ret = jbd2_log_wait_commit(journal, tid);
547 	if (!ret)
548 		ret = 1;
549 
550 	return ret;
551 }
552 
553 /**
554  * jbd2_journal_force_commit_nested - Force and wait upon a commit if the
555  * calling process is not within transaction.
556  *
557  * @journal: journal to force
558  * Returns true if progress was made.
559  *
560  * This is used for forcing out undo-protected data which contains
561  * bitmaps, when the fs is running out of space.
562  */
563 int jbd2_journal_force_commit_nested(journal_t *journal)
564 {
565 	int ret;
566 
567 	ret = __jbd2_journal_force_commit(journal);
568 	return ret > 0;
569 }
570 
571 /**
572  * jbd2_journal_force_commit() - force any uncommitted transactions
573  * @journal: journal to force
574  *
575  * Caller want unconditional commit. We can only force the running transaction
576  * if we don't have an active handle, otherwise, we will deadlock.
577  */
578 int jbd2_journal_force_commit(journal_t *journal)
579 {
580 	int ret;
581 
582 	J_ASSERT(!current->journal_info);
583 	ret = __jbd2_journal_force_commit(journal);
584 	if (ret > 0)
585 		ret = 0;
586 	return ret;
587 }
588 
589 /*
590  * Start a commit of the current running transaction (if any).  Returns true
591  * if a transaction is going to be committed (or is currently already
592  * committing), and fills its tid in at *ptid
593  */
594 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
595 {
596 	int ret = 0;
597 
598 	write_lock(&journal->j_state_lock);
599 	if (journal->j_running_transaction) {
600 		tid_t tid = journal->j_running_transaction->t_tid;
601 
602 		__jbd2_log_start_commit(journal, tid);
603 		/* There's a running transaction and we've just made sure
604 		 * it's commit has been scheduled. */
605 		if (ptid)
606 			*ptid = tid;
607 		ret = 1;
608 	} else if (journal->j_committing_transaction) {
609 		/*
610 		 * If commit has been started, then we have to wait for
611 		 * completion of that transaction.
612 		 */
613 		if (ptid)
614 			*ptid = journal->j_committing_transaction->t_tid;
615 		ret = 1;
616 	}
617 	write_unlock(&journal->j_state_lock);
618 	return ret;
619 }
620 
621 /*
622  * Return 1 if a given transaction has not yet sent barrier request
623  * connected with a transaction commit. If 0 is returned, transaction
624  * may or may not have sent the barrier. Used to avoid sending barrier
625  * twice in common cases.
626  */
627 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
628 {
629 	int ret = 0;
630 	transaction_t *commit_trans;
631 
632 	if (!(journal->j_flags & JBD2_BARRIER))
633 		return 0;
634 	read_lock(&journal->j_state_lock);
635 	/* Transaction already committed? */
636 	if (tid_geq(journal->j_commit_sequence, tid))
637 		goto out;
638 	commit_trans = journal->j_committing_transaction;
639 	if (!commit_trans || commit_trans->t_tid != tid) {
640 		ret = 1;
641 		goto out;
642 	}
643 	/*
644 	 * Transaction is being committed and we already proceeded to
645 	 * submitting a flush to fs partition?
646 	 */
647 	if (journal->j_fs_dev != journal->j_dev) {
648 		if (!commit_trans->t_need_data_flush ||
649 		    commit_trans->t_state >= T_COMMIT_DFLUSH)
650 			goto out;
651 	} else {
652 		if (commit_trans->t_state >= T_COMMIT_JFLUSH)
653 			goto out;
654 	}
655 	ret = 1;
656 out:
657 	read_unlock(&journal->j_state_lock);
658 	return ret;
659 }
660 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
661 
662 /*
663  * Wait for a specified commit to complete.
664  * The caller may not hold the journal lock.
665  */
666 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
667 {
668 	int err = 0;
669 
670 	read_lock(&journal->j_state_lock);
671 #ifdef CONFIG_PROVE_LOCKING
672 	/*
673 	 * Some callers make sure transaction is already committing and in that
674 	 * case we cannot block on open handles anymore. So don't warn in that
675 	 * case.
676 	 */
677 	if (tid_gt(tid, journal->j_commit_sequence) &&
678 	    (!journal->j_committing_transaction ||
679 	     journal->j_committing_transaction->t_tid != tid)) {
680 		read_unlock(&journal->j_state_lock);
681 		jbd2_might_wait_for_commit(journal);
682 		read_lock(&journal->j_state_lock);
683 	}
684 #endif
685 #ifdef CONFIG_JBD2_DEBUG
686 	if (!tid_geq(journal->j_commit_request, tid)) {
687 		printk(KERN_ERR
688 		       "%s: error: j_commit_request=%u, tid=%u\n",
689 		       __func__, journal->j_commit_request, tid);
690 	}
691 #endif
692 	while (tid_gt(tid, journal->j_commit_sequence)) {
693 		jbd2_debug(1, "JBD2: want %u, j_commit_sequence=%u\n",
694 				  tid, journal->j_commit_sequence);
695 		read_unlock(&journal->j_state_lock);
696 		wake_up(&journal->j_wait_commit);
697 		wait_event(journal->j_wait_done_commit,
698 				!tid_gt(tid, journal->j_commit_sequence));
699 		read_lock(&journal->j_state_lock);
700 	}
701 	read_unlock(&journal->j_state_lock);
702 
703 	if (unlikely(is_journal_aborted(journal)))
704 		err = -EIO;
705 	return err;
706 }
707 
708 /*
709  * Start a fast commit. If there's an ongoing fast or full commit wait for
710  * it to complete. Returns 0 if a new fast commit was started. Returns -EALREADY
711  * if a fast commit is not needed, either because there's an already a commit
712  * going on or this tid has already been committed. Returns -EINVAL if no jbd2
713  * commit has yet been performed.
714  */
715 int jbd2_fc_begin_commit(journal_t *journal, tid_t tid)
716 {
717 	if (unlikely(is_journal_aborted(journal)))
718 		return -EIO;
719 	/*
720 	 * Fast commits only allowed if at least one full commit has
721 	 * been processed.
722 	 */
723 	if (!journal->j_stats.ts_tid)
724 		return -EINVAL;
725 
726 	write_lock(&journal->j_state_lock);
727 	if (tid <= journal->j_commit_sequence) {
728 		write_unlock(&journal->j_state_lock);
729 		return -EALREADY;
730 	}
731 
732 	if (journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
733 	    (journal->j_flags & JBD2_FAST_COMMIT_ONGOING)) {
734 		DEFINE_WAIT(wait);
735 
736 		prepare_to_wait(&journal->j_fc_wait, &wait,
737 				TASK_UNINTERRUPTIBLE);
738 		write_unlock(&journal->j_state_lock);
739 		schedule();
740 		finish_wait(&journal->j_fc_wait, &wait);
741 		return -EALREADY;
742 	}
743 	journal->j_flags |= JBD2_FAST_COMMIT_ONGOING;
744 	write_unlock(&journal->j_state_lock);
745 	jbd2_journal_lock_updates(journal);
746 
747 	return 0;
748 }
749 EXPORT_SYMBOL(jbd2_fc_begin_commit);
750 
751 /*
752  * Stop a fast commit. If fallback is set, this function starts commit of
753  * TID tid before any other fast commit can start.
754  */
755 static int __jbd2_fc_end_commit(journal_t *journal, tid_t tid, bool fallback)
756 {
757 	jbd2_journal_unlock_updates(journal);
758 	if (journal->j_fc_cleanup_callback)
759 		journal->j_fc_cleanup_callback(journal, 0, tid);
760 	write_lock(&journal->j_state_lock);
761 	journal->j_flags &= ~JBD2_FAST_COMMIT_ONGOING;
762 	if (fallback)
763 		journal->j_flags |= JBD2_FULL_COMMIT_ONGOING;
764 	write_unlock(&journal->j_state_lock);
765 	wake_up(&journal->j_fc_wait);
766 	if (fallback)
767 		return jbd2_complete_transaction(journal, tid);
768 	return 0;
769 }
770 
771 int jbd2_fc_end_commit(journal_t *journal)
772 {
773 	return __jbd2_fc_end_commit(journal, 0, false);
774 }
775 EXPORT_SYMBOL(jbd2_fc_end_commit);
776 
777 int jbd2_fc_end_commit_fallback(journal_t *journal)
778 {
779 	tid_t tid;
780 
781 	read_lock(&journal->j_state_lock);
782 	tid = journal->j_running_transaction ?
783 		journal->j_running_transaction->t_tid : 0;
784 	read_unlock(&journal->j_state_lock);
785 	return __jbd2_fc_end_commit(journal, tid, true);
786 }
787 EXPORT_SYMBOL(jbd2_fc_end_commit_fallback);
788 
789 /* Return 1 when transaction with given tid has already committed. */
790 int jbd2_transaction_committed(journal_t *journal, tid_t tid)
791 {
792 	int ret = 1;
793 
794 	read_lock(&journal->j_state_lock);
795 	if (journal->j_running_transaction &&
796 	    journal->j_running_transaction->t_tid == tid)
797 		ret = 0;
798 	if (journal->j_committing_transaction &&
799 	    journal->j_committing_transaction->t_tid == tid)
800 		ret = 0;
801 	read_unlock(&journal->j_state_lock);
802 	return ret;
803 }
804 EXPORT_SYMBOL(jbd2_transaction_committed);
805 
806 /*
807  * When this function returns the transaction corresponding to tid
808  * will be completed.  If the transaction has currently running, start
809  * committing that transaction before waiting for it to complete.  If
810  * the transaction id is stale, it is by definition already completed,
811  * so just return SUCCESS.
812  */
813 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
814 {
815 	int	need_to_wait = 1;
816 
817 	read_lock(&journal->j_state_lock);
818 	if (journal->j_running_transaction &&
819 	    journal->j_running_transaction->t_tid == tid) {
820 		if (journal->j_commit_request != tid) {
821 			/* transaction not yet started, so request it */
822 			read_unlock(&journal->j_state_lock);
823 			jbd2_log_start_commit(journal, tid);
824 			goto wait_commit;
825 		}
826 	} else if (!(journal->j_committing_transaction &&
827 		     journal->j_committing_transaction->t_tid == tid))
828 		need_to_wait = 0;
829 	read_unlock(&journal->j_state_lock);
830 	if (!need_to_wait)
831 		return 0;
832 wait_commit:
833 	return jbd2_log_wait_commit(journal, tid);
834 }
835 EXPORT_SYMBOL(jbd2_complete_transaction);
836 
837 /*
838  * Log buffer allocation routines:
839  */
840 
841 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
842 {
843 	unsigned long blocknr;
844 
845 	write_lock(&journal->j_state_lock);
846 	J_ASSERT(journal->j_free > 1);
847 
848 	blocknr = journal->j_head;
849 	journal->j_head++;
850 	journal->j_free--;
851 	if (journal->j_head == journal->j_last)
852 		journal->j_head = journal->j_first;
853 	write_unlock(&journal->j_state_lock);
854 	return jbd2_journal_bmap(journal, blocknr, retp);
855 }
856 
857 /* Map one fast commit buffer for use by the file system */
858 int jbd2_fc_get_buf(journal_t *journal, struct buffer_head **bh_out)
859 {
860 	unsigned long long pblock;
861 	unsigned long blocknr;
862 	int ret = 0;
863 	struct buffer_head *bh;
864 	int fc_off;
865 
866 	*bh_out = NULL;
867 
868 	if (journal->j_fc_off + journal->j_fc_first < journal->j_fc_last) {
869 		fc_off = journal->j_fc_off;
870 		blocknr = journal->j_fc_first + fc_off;
871 		journal->j_fc_off++;
872 	} else {
873 		ret = -EINVAL;
874 	}
875 
876 	if (ret)
877 		return ret;
878 
879 	ret = jbd2_journal_bmap(journal, blocknr, &pblock);
880 	if (ret)
881 		return ret;
882 
883 	bh = __getblk(journal->j_dev, pblock, journal->j_blocksize);
884 	if (!bh)
885 		return -ENOMEM;
886 
887 
888 	journal->j_fc_wbuf[fc_off] = bh;
889 
890 	*bh_out = bh;
891 
892 	return 0;
893 }
894 EXPORT_SYMBOL(jbd2_fc_get_buf);
895 
896 /*
897  * Wait on fast commit buffers that were allocated by jbd2_fc_get_buf
898  * for completion.
899  */
900 int jbd2_fc_wait_bufs(journal_t *journal, int num_blks)
901 {
902 	struct buffer_head *bh;
903 	int i, j_fc_off;
904 
905 	j_fc_off = journal->j_fc_off;
906 
907 	/*
908 	 * Wait in reverse order to minimize chances of us being woken up before
909 	 * all IOs have completed
910 	 */
911 	for (i = j_fc_off - 1; i >= j_fc_off - num_blks; i--) {
912 		bh = journal->j_fc_wbuf[i];
913 		wait_on_buffer(bh);
914 		/*
915 		 * Update j_fc_off so jbd2_fc_release_bufs can release remain
916 		 * buffer head.
917 		 */
918 		if (unlikely(!buffer_uptodate(bh))) {
919 			journal->j_fc_off = i + 1;
920 			return -EIO;
921 		}
922 		put_bh(bh);
923 		journal->j_fc_wbuf[i] = NULL;
924 	}
925 
926 	return 0;
927 }
928 EXPORT_SYMBOL(jbd2_fc_wait_bufs);
929 
930 int jbd2_fc_release_bufs(journal_t *journal)
931 {
932 	struct buffer_head *bh;
933 	int i, j_fc_off;
934 
935 	j_fc_off = journal->j_fc_off;
936 
937 	for (i = j_fc_off - 1; i >= 0; i--) {
938 		bh = journal->j_fc_wbuf[i];
939 		if (!bh)
940 			break;
941 		put_bh(bh);
942 		journal->j_fc_wbuf[i] = NULL;
943 	}
944 
945 	return 0;
946 }
947 EXPORT_SYMBOL(jbd2_fc_release_bufs);
948 
949 /*
950  * Conversion of logical to physical block numbers for the journal
951  *
952  * On external journals the journal blocks are identity-mapped, so
953  * this is a no-op.  If needed, we can use j_blk_offset - everything is
954  * ready.
955  */
956 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
957 		 unsigned long long *retp)
958 {
959 	int err = 0;
960 	unsigned long long ret;
961 	sector_t block = blocknr;
962 
963 	if (journal->j_bmap) {
964 		err = journal->j_bmap(journal, &block);
965 		if (err == 0)
966 			*retp = block;
967 	} else if (journal->j_inode) {
968 		ret = bmap(journal->j_inode, &block);
969 
970 		if (ret || !block) {
971 			printk(KERN_ALERT "%s: journal block not found "
972 					"at offset %lu on %s\n",
973 			       __func__, blocknr, journal->j_devname);
974 			err = -EIO;
975 			jbd2_journal_abort(journal, err);
976 		} else {
977 			*retp = block;
978 		}
979 
980 	} else {
981 		*retp = blocknr; /* +journal->j_blk_offset */
982 	}
983 	return err;
984 }
985 
986 /*
987  * We play buffer_head aliasing tricks to write data/metadata blocks to
988  * the journal without copying their contents, but for journal
989  * descriptor blocks we do need to generate bona fide buffers.
990  *
991  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
992  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
993  * But we don't bother doing that, so there will be coherency problems with
994  * mmaps of blockdevs which hold live JBD-controlled filesystems.
995  */
996 struct buffer_head *
997 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
998 {
999 	journal_t *journal = transaction->t_journal;
1000 	struct buffer_head *bh;
1001 	unsigned long long blocknr;
1002 	journal_header_t *header;
1003 	int err;
1004 
1005 	err = jbd2_journal_next_log_block(journal, &blocknr);
1006 
1007 	if (err)
1008 		return NULL;
1009 
1010 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
1011 	if (!bh)
1012 		return NULL;
1013 	atomic_dec(&transaction->t_outstanding_credits);
1014 	lock_buffer(bh);
1015 	memset(bh->b_data, 0, journal->j_blocksize);
1016 	header = (journal_header_t *)bh->b_data;
1017 	header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
1018 	header->h_blocktype = cpu_to_be32(type);
1019 	header->h_sequence = cpu_to_be32(transaction->t_tid);
1020 	set_buffer_uptodate(bh);
1021 	unlock_buffer(bh);
1022 	BUFFER_TRACE(bh, "return this buffer");
1023 	return bh;
1024 }
1025 
1026 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
1027 {
1028 	struct jbd2_journal_block_tail *tail;
1029 	__u32 csum;
1030 
1031 	if (!jbd2_journal_has_csum_v2or3(j))
1032 		return;
1033 
1034 	tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
1035 			sizeof(struct jbd2_journal_block_tail));
1036 	tail->t_checksum = 0;
1037 	csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
1038 	tail->t_checksum = cpu_to_be32(csum);
1039 }
1040 
1041 /*
1042  * Return tid of the oldest transaction in the journal and block in the journal
1043  * where the transaction starts.
1044  *
1045  * If the journal is now empty, return which will be the next transaction ID
1046  * we will write and where will that transaction start.
1047  *
1048  * The return value is 0 if journal tail cannot be pushed any further, 1 if
1049  * it can.
1050  */
1051 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
1052 			      unsigned long *block)
1053 {
1054 	transaction_t *transaction;
1055 	int ret;
1056 
1057 	read_lock(&journal->j_state_lock);
1058 	spin_lock(&journal->j_list_lock);
1059 	transaction = journal->j_checkpoint_transactions;
1060 	if (transaction) {
1061 		*tid = transaction->t_tid;
1062 		*block = transaction->t_log_start;
1063 	} else if ((transaction = journal->j_committing_transaction) != NULL) {
1064 		*tid = transaction->t_tid;
1065 		*block = transaction->t_log_start;
1066 	} else if ((transaction = journal->j_running_transaction) != NULL) {
1067 		*tid = transaction->t_tid;
1068 		*block = journal->j_head;
1069 	} else {
1070 		*tid = journal->j_transaction_sequence;
1071 		*block = journal->j_head;
1072 	}
1073 	ret = tid_gt(*tid, journal->j_tail_sequence);
1074 	spin_unlock(&journal->j_list_lock);
1075 	read_unlock(&journal->j_state_lock);
1076 
1077 	return ret;
1078 }
1079 
1080 /*
1081  * Update information in journal structure and in on disk journal superblock
1082  * about log tail. This function does not check whether information passed in
1083  * really pushes log tail further. It's responsibility of the caller to make
1084  * sure provided log tail information is valid (e.g. by holding
1085  * j_checkpoint_mutex all the time between computing log tail and calling this
1086  * function as is the case with jbd2_cleanup_journal_tail()).
1087  *
1088  * Requires j_checkpoint_mutex
1089  */
1090 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
1091 {
1092 	unsigned long freed;
1093 	int ret;
1094 
1095 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1096 
1097 	/*
1098 	 * We cannot afford for write to remain in drive's caches since as
1099 	 * soon as we update j_tail, next transaction can start reusing journal
1100 	 * space and if we lose sb update during power failure we'd replay
1101 	 * old transaction with possibly newly overwritten data.
1102 	 */
1103 	ret = jbd2_journal_update_sb_log_tail(journal, tid, block,
1104 					      REQ_SYNC | REQ_FUA);
1105 	if (ret)
1106 		goto out;
1107 
1108 	write_lock(&journal->j_state_lock);
1109 	freed = block - journal->j_tail;
1110 	if (block < journal->j_tail)
1111 		freed += journal->j_last - journal->j_first;
1112 
1113 	trace_jbd2_update_log_tail(journal, tid, block, freed);
1114 	jbd2_debug(1,
1115 		  "Cleaning journal tail from %u to %u (offset %lu), "
1116 		  "freeing %lu\n",
1117 		  journal->j_tail_sequence, tid, block, freed);
1118 
1119 	journal->j_free += freed;
1120 	journal->j_tail_sequence = tid;
1121 	journal->j_tail = block;
1122 	write_unlock(&journal->j_state_lock);
1123 
1124 out:
1125 	return ret;
1126 }
1127 
1128 /*
1129  * This is a variation of __jbd2_update_log_tail which checks for validity of
1130  * provided log tail and locks j_checkpoint_mutex. So it is safe against races
1131  * with other threads updating log tail.
1132  */
1133 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
1134 {
1135 	mutex_lock_io(&journal->j_checkpoint_mutex);
1136 	if (tid_gt(tid, journal->j_tail_sequence))
1137 		__jbd2_update_log_tail(journal, tid, block);
1138 	mutex_unlock(&journal->j_checkpoint_mutex);
1139 }
1140 
1141 struct jbd2_stats_proc_session {
1142 	journal_t *journal;
1143 	struct transaction_stats_s *stats;
1144 	int start;
1145 	int max;
1146 };
1147 
1148 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
1149 {
1150 	return *pos ? NULL : SEQ_START_TOKEN;
1151 }
1152 
1153 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
1154 {
1155 	(*pos)++;
1156 	return NULL;
1157 }
1158 
1159 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
1160 {
1161 	struct jbd2_stats_proc_session *s = seq->private;
1162 
1163 	if (v != SEQ_START_TOKEN)
1164 		return 0;
1165 	seq_printf(seq, "%lu transactions (%lu requested), "
1166 		   "each up to %u blocks\n",
1167 		   s->stats->ts_tid, s->stats->ts_requested,
1168 		   s->journal->j_max_transaction_buffers);
1169 	if (s->stats->ts_tid == 0)
1170 		return 0;
1171 	seq_printf(seq, "average: \n  %ums waiting for transaction\n",
1172 	    jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
1173 	seq_printf(seq, "  %ums request delay\n",
1174 	    (s->stats->ts_requested == 0) ? 0 :
1175 	    jiffies_to_msecs(s->stats->run.rs_request_delay /
1176 			     s->stats->ts_requested));
1177 	seq_printf(seq, "  %ums running transaction\n",
1178 	    jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
1179 	seq_printf(seq, "  %ums transaction was being locked\n",
1180 	    jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1181 	seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
1182 	    jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1183 	seq_printf(seq, "  %ums logging transaction\n",
1184 	    jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1185 	seq_printf(seq, "  %lluus average transaction commit time\n",
1186 		   div_u64(s->journal->j_average_commit_time, 1000));
1187 	seq_printf(seq, "  %lu handles per transaction\n",
1188 	    s->stats->run.rs_handle_count / s->stats->ts_tid);
1189 	seq_printf(seq, "  %lu blocks per transaction\n",
1190 	    s->stats->run.rs_blocks / s->stats->ts_tid);
1191 	seq_printf(seq, "  %lu logged blocks per transaction\n",
1192 	    s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1193 	return 0;
1194 }
1195 
1196 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1197 {
1198 }
1199 
1200 static const struct seq_operations jbd2_seq_info_ops = {
1201 	.start  = jbd2_seq_info_start,
1202 	.next   = jbd2_seq_info_next,
1203 	.stop   = jbd2_seq_info_stop,
1204 	.show   = jbd2_seq_info_show,
1205 };
1206 
1207 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1208 {
1209 	journal_t *journal = pde_data(inode);
1210 	struct jbd2_stats_proc_session *s;
1211 	int rc, size;
1212 
1213 	s = kmalloc(sizeof(*s), GFP_KERNEL);
1214 	if (s == NULL)
1215 		return -ENOMEM;
1216 	size = sizeof(struct transaction_stats_s);
1217 	s->stats = kmalloc(size, GFP_KERNEL);
1218 	if (s->stats == NULL) {
1219 		kfree(s);
1220 		return -ENOMEM;
1221 	}
1222 	spin_lock(&journal->j_history_lock);
1223 	memcpy(s->stats, &journal->j_stats, size);
1224 	s->journal = journal;
1225 	spin_unlock(&journal->j_history_lock);
1226 
1227 	rc = seq_open(file, &jbd2_seq_info_ops);
1228 	if (rc == 0) {
1229 		struct seq_file *m = file->private_data;
1230 		m->private = s;
1231 	} else {
1232 		kfree(s->stats);
1233 		kfree(s);
1234 	}
1235 	return rc;
1236 
1237 }
1238 
1239 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1240 {
1241 	struct seq_file *seq = file->private_data;
1242 	struct jbd2_stats_proc_session *s = seq->private;
1243 	kfree(s->stats);
1244 	kfree(s);
1245 	return seq_release(inode, file);
1246 }
1247 
1248 static const struct proc_ops jbd2_info_proc_ops = {
1249 	.proc_open	= jbd2_seq_info_open,
1250 	.proc_read	= seq_read,
1251 	.proc_lseek	= seq_lseek,
1252 	.proc_release	= jbd2_seq_info_release,
1253 };
1254 
1255 static struct proc_dir_entry *proc_jbd2_stats;
1256 
1257 static void jbd2_stats_proc_init(journal_t *journal)
1258 {
1259 	journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1260 	if (journal->j_proc_entry) {
1261 		proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1262 				 &jbd2_info_proc_ops, journal);
1263 	}
1264 }
1265 
1266 static void jbd2_stats_proc_exit(journal_t *journal)
1267 {
1268 	remove_proc_entry("info", journal->j_proc_entry);
1269 	remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1270 }
1271 
1272 /* Minimum size of descriptor tag */
1273 static int jbd2_min_tag_size(void)
1274 {
1275 	/*
1276 	 * Tag with 32-bit block numbers does not use last four bytes of the
1277 	 * structure
1278 	 */
1279 	return sizeof(journal_block_tag_t) - 4;
1280 }
1281 
1282 /**
1283  * jbd2_journal_shrink_scan()
1284  * @shrink: shrinker to work on
1285  * @sc: reclaim request to process
1286  *
1287  * Scan the checkpointed buffer on the checkpoint list and release the
1288  * journal_head.
1289  */
1290 static unsigned long jbd2_journal_shrink_scan(struct shrinker *shrink,
1291 					      struct shrink_control *sc)
1292 {
1293 	journal_t *journal = container_of(shrink, journal_t, j_shrinker);
1294 	unsigned long nr_to_scan = sc->nr_to_scan;
1295 	unsigned long nr_shrunk;
1296 	unsigned long count;
1297 
1298 	count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count);
1299 	trace_jbd2_shrink_scan_enter(journal, sc->nr_to_scan, count);
1300 
1301 	nr_shrunk = jbd2_journal_shrink_checkpoint_list(journal, &nr_to_scan);
1302 
1303 	count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count);
1304 	trace_jbd2_shrink_scan_exit(journal, nr_to_scan, nr_shrunk, count);
1305 
1306 	return nr_shrunk;
1307 }
1308 
1309 /**
1310  * jbd2_journal_shrink_count()
1311  * @shrink: shrinker to work on
1312  * @sc: reclaim request to process
1313  *
1314  * Count the number of checkpoint buffers on the checkpoint list.
1315  */
1316 static unsigned long jbd2_journal_shrink_count(struct shrinker *shrink,
1317 					       struct shrink_control *sc)
1318 {
1319 	journal_t *journal = container_of(shrink, journal_t, j_shrinker);
1320 	unsigned long count;
1321 
1322 	count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count);
1323 	trace_jbd2_shrink_count(journal, sc->nr_to_scan, count);
1324 
1325 	return count;
1326 }
1327 
1328 /*
1329  * If the journal init or create aborts, we need to mark the journal
1330  * superblock as being NULL to prevent the journal destroy from writing
1331  * back a bogus superblock.
1332  */
1333 static void journal_fail_superblock(journal_t *journal)
1334 {
1335 	struct buffer_head *bh = journal->j_sb_buffer;
1336 	brelse(bh);
1337 	journal->j_sb_buffer = NULL;
1338 }
1339 
1340 /*
1341  * Check the superblock for a given journal, performing initial
1342  * validation of the format.
1343  */
1344 static int journal_check_superblock(journal_t *journal)
1345 {
1346 	journal_superblock_t *sb = journal->j_superblock;
1347 	int num_fc_blks;
1348 	int err = -EINVAL;
1349 
1350 	if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1351 	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1352 		printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1353 		return err;
1354 	}
1355 
1356 	if (be32_to_cpu(sb->s_header.h_blocktype) != JBD2_SUPERBLOCK_V1 &&
1357 	    be32_to_cpu(sb->s_header.h_blocktype) != JBD2_SUPERBLOCK_V2) {
1358 		printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1359 		return err;
1360 	}
1361 
1362 	if (be32_to_cpu(sb->s_maxlen) > journal->j_total_len) {
1363 		printk(KERN_WARNING "JBD2: journal file too short\n");
1364 		return err;
1365 	}
1366 
1367 	if (be32_to_cpu(sb->s_first) == 0 ||
1368 	    be32_to_cpu(sb->s_first) >= journal->j_total_len) {
1369 		printk(KERN_WARNING
1370 			"JBD2: Invalid start block of journal: %u\n",
1371 			be32_to_cpu(sb->s_first));
1372 		return err;
1373 	}
1374 
1375 	/*
1376 	 * If this is a V2 superblock, then we have to check the
1377 	 * features flags on it.
1378 	 */
1379 	if (!jbd2_format_support_feature(journal))
1380 		return 0;
1381 
1382 	if ((sb->s_feature_ro_compat &
1383 			~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1384 	    (sb->s_feature_incompat &
1385 			~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1386 		printk(KERN_WARNING "JBD2: Unrecognised features on journal\n");
1387 		return err;
1388 	}
1389 
1390 	num_fc_blks = jbd2_has_feature_fast_commit(journal) ?
1391 				jbd2_journal_get_num_fc_blks(sb) : 0;
1392 	if (be32_to_cpu(sb->s_maxlen) < JBD2_MIN_JOURNAL_BLOCKS ||
1393 	    be32_to_cpu(sb->s_maxlen) - JBD2_MIN_JOURNAL_BLOCKS < num_fc_blks) {
1394 		printk(KERN_ERR "JBD2: journal file too short %u,%d\n",
1395 		       be32_to_cpu(sb->s_maxlen), num_fc_blks);
1396 		return err;
1397 	}
1398 
1399 	if (jbd2_has_feature_csum2(journal) &&
1400 	    jbd2_has_feature_csum3(journal)) {
1401 		/* Can't have checksum v2 and v3 at the same time! */
1402 		printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1403 		       "at the same time!\n");
1404 		return err;
1405 	}
1406 
1407 	if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1408 	    jbd2_has_feature_checksum(journal)) {
1409 		/* Can't have checksum v1 and v2 on at the same time! */
1410 		printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1411 		       "at the same time!\n");
1412 		return err;
1413 	}
1414 
1415 	/* Load the checksum driver */
1416 	if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1417 		if (sb->s_checksum_type != JBD2_CRC32C_CHKSUM) {
1418 			printk(KERN_ERR "JBD2: Unknown checksum type\n");
1419 			return err;
1420 		}
1421 
1422 		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1423 		if (IS_ERR(journal->j_chksum_driver)) {
1424 			printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1425 			err = PTR_ERR(journal->j_chksum_driver);
1426 			journal->j_chksum_driver = NULL;
1427 			return err;
1428 		}
1429 		/* Check superblock checksum */
1430 		if (sb->s_checksum != jbd2_superblock_csum(journal, sb)) {
1431 			printk(KERN_ERR "JBD2: journal checksum error\n");
1432 			err = -EFSBADCRC;
1433 			return err;
1434 		}
1435 	}
1436 
1437 	return 0;
1438 }
1439 
1440 static int journal_revoke_records_per_block(journal_t *journal)
1441 {
1442 	int record_size;
1443 	int space = journal->j_blocksize - sizeof(jbd2_journal_revoke_header_t);
1444 
1445 	if (jbd2_has_feature_64bit(journal))
1446 		record_size = 8;
1447 	else
1448 		record_size = 4;
1449 
1450 	if (jbd2_journal_has_csum_v2or3(journal))
1451 		space -= sizeof(struct jbd2_journal_block_tail);
1452 	return space / record_size;
1453 }
1454 
1455 /*
1456  * Load the on-disk journal superblock and read the key fields into the
1457  * journal_t.
1458  */
1459 static int journal_load_superblock(journal_t *journal)
1460 {
1461 	int err;
1462 	struct buffer_head *bh;
1463 	journal_superblock_t *sb;
1464 
1465 	bh = getblk_unmovable(journal->j_dev, journal->j_blk_offset,
1466 			      journal->j_blocksize);
1467 	if (bh)
1468 		err = bh_read(bh, 0);
1469 	if (!bh || err < 0) {
1470 		pr_err("%s: Cannot read journal superblock\n", __func__);
1471 		brelse(bh);
1472 		return -EIO;
1473 	}
1474 
1475 	journal->j_sb_buffer = bh;
1476 	sb = (journal_superblock_t *)bh->b_data;
1477 	journal->j_superblock = sb;
1478 	err = journal_check_superblock(journal);
1479 	if (err) {
1480 		journal_fail_superblock(journal);
1481 		return err;
1482 	}
1483 
1484 	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1485 	journal->j_tail = be32_to_cpu(sb->s_start);
1486 	journal->j_first = be32_to_cpu(sb->s_first);
1487 	journal->j_errno = be32_to_cpu(sb->s_errno);
1488 	journal->j_last = be32_to_cpu(sb->s_maxlen);
1489 
1490 	if (be32_to_cpu(sb->s_maxlen) < journal->j_total_len)
1491 		journal->j_total_len = be32_to_cpu(sb->s_maxlen);
1492 	/* Precompute checksum seed for all metadata */
1493 	if (jbd2_journal_has_csum_v2or3(journal))
1494 		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1495 						   sizeof(sb->s_uuid));
1496 	journal->j_revoke_records_per_block =
1497 				journal_revoke_records_per_block(journal);
1498 
1499 	if (jbd2_has_feature_fast_commit(journal)) {
1500 		journal->j_fc_last = be32_to_cpu(sb->s_maxlen);
1501 		journal->j_last = journal->j_fc_last -
1502 				  jbd2_journal_get_num_fc_blks(sb);
1503 		journal->j_fc_first = journal->j_last + 1;
1504 		journal->j_fc_off = 0;
1505 	}
1506 
1507 	return 0;
1508 }
1509 
1510 
1511 /*
1512  * Management for journal control blocks: functions to create and
1513  * destroy journal_t structures, and to initialise and read existing
1514  * journal blocks from disk.  */
1515 
1516 /* First: create and setup a journal_t object in memory.  We initialise
1517  * very few fields yet: that has to wait until we have created the
1518  * journal structures from from scratch, or loaded them from disk. */
1519 
1520 static journal_t *journal_init_common(struct block_device *bdev,
1521 			struct block_device *fs_dev,
1522 			unsigned long long start, int len, int blocksize)
1523 {
1524 	static struct lock_class_key jbd2_trans_commit_key;
1525 	journal_t *journal;
1526 	int err;
1527 	int n;
1528 
1529 	journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1530 	if (!journal)
1531 		return ERR_PTR(-ENOMEM);
1532 
1533 	journal->j_blocksize = blocksize;
1534 	journal->j_dev = bdev;
1535 	journal->j_fs_dev = fs_dev;
1536 	journal->j_blk_offset = start;
1537 	journal->j_total_len = len;
1538 
1539 	err = journal_load_superblock(journal);
1540 	if (err)
1541 		goto err_cleanup;
1542 
1543 	init_waitqueue_head(&journal->j_wait_transaction_locked);
1544 	init_waitqueue_head(&journal->j_wait_done_commit);
1545 	init_waitqueue_head(&journal->j_wait_commit);
1546 	init_waitqueue_head(&journal->j_wait_updates);
1547 	init_waitqueue_head(&journal->j_wait_reserved);
1548 	init_waitqueue_head(&journal->j_fc_wait);
1549 	mutex_init(&journal->j_abort_mutex);
1550 	mutex_init(&journal->j_barrier);
1551 	mutex_init(&journal->j_checkpoint_mutex);
1552 	spin_lock_init(&journal->j_revoke_lock);
1553 	spin_lock_init(&journal->j_list_lock);
1554 	spin_lock_init(&journal->j_history_lock);
1555 	rwlock_init(&journal->j_state_lock);
1556 
1557 	journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1558 	journal->j_min_batch_time = 0;
1559 	journal->j_max_batch_time = 15000; /* 15ms */
1560 	atomic_set(&journal->j_reserved_credits, 0);
1561 	lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1562 			 &jbd2_trans_commit_key, 0);
1563 
1564 	/* The journal is marked for error until we succeed with recovery! */
1565 	journal->j_flags = JBD2_ABORT;
1566 
1567 	/* Set up a default-sized revoke table for the new mount. */
1568 	err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1569 	if (err)
1570 		goto err_cleanup;
1571 
1572 	/*
1573 	 * journal descriptor can store up to n blocks, we need enough
1574 	 * buffers to write out full descriptor block.
1575 	 */
1576 	err = -ENOMEM;
1577 	n = journal->j_blocksize / jbd2_min_tag_size();
1578 	journal->j_wbufsize = n;
1579 	journal->j_fc_wbuf = NULL;
1580 	journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1581 					GFP_KERNEL);
1582 	if (!journal->j_wbuf)
1583 		goto err_cleanup;
1584 
1585 	err = percpu_counter_init(&journal->j_checkpoint_jh_count, 0,
1586 				  GFP_KERNEL);
1587 	if (err)
1588 		goto err_cleanup;
1589 
1590 	journal->j_shrink_transaction = NULL;
1591 	journal->j_shrinker.scan_objects = jbd2_journal_shrink_scan;
1592 	journal->j_shrinker.count_objects = jbd2_journal_shrink_count;
1593 	journal->j_shrinker.seeks = DEFAULT_SEEKS;
1594 	journal->j_shrinker.batch = journal->j_max_transaction_buffers;
1595 	err = register_shrinker(&journal->j_shrinker, "jbd2-journal:(%u:%u)",
1596 				MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
1597 	if (err)
1598 		goto err_cleanup;
1599 
1600 	return journal;
1601 
1602 err_cleanup:
1603 	percpu_counter_destroy(&journal->j_checkpoint_jh_count);
1604 	if (journal->j_chksum_driver)
1605 		crypto_free_shash(journal->j_chksum_driver);
1606 	kfree(journal->j_wbuf);
1607 	jbd2_journal_destroy_revoke(journal);
1608 	journal_fail_superblock(journal);
1609 	kfree(journal);
1610 	return ERR_PTR(err);
1611 }
1612 
1613 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1614  *
1615  * Create a journal structure assigned some fixed set of disk blocks to
1616  * the journal.  We don't actually touch those disk blocks yet, but we
1617  * need to set up all of the mapping information to tell the journaling
1618  * system where the journal blocks are.
1619  *
1620  */
1621 
1622 /**
1623  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1624  *  @bdev: Block device on which to create the journal
1625  *  @fs_dev: Device which hold journalled filesystem for this journal.
1626  *  @start: Block nr Start of journal.
1627  *  @len:  Length of the journal in blocks.
1628  *  @blocksize: blocksize of journalling device
1629  *
1630  *  Returns: a newly created journal_t *
1631  *
1632  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1633  *  range of blocks on an arbitrary block device.
1634  *
1635  */
1636 journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1637 			struct block_device *fs_dev,
1638 			unsigned long long start, int len, int blocksize)
1639 {
1640 	journal_t *journal;
1641 
1642 	journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1643 	if (IS_ERR(journal))
1644 		return ERR_CAST(journal);
1645 
1646 	snprintf(journal->j_devname, sizeof(journal->j_devname),
1647 		 "%pg", journal->j_dev);
1648 	strreplace(journal->j_devname, '/', '!');
1649 	jbd2_stats_proc_init(journal);
1650 
1651 	return journal;
1652 }
1653 
1654 /**
1655  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1656  *  @inode: An inode to create the journal in
1657  *
1658  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1659  * the journal.  The inode must exist already, must support bmap() and
1660  * must have all data blocks preallocated.
1661  */
1662 journal_t *jbd2_journal_init_inode(struct inode *inode)
1663 {
1664 	journal_t *journal;
1665 	sector_t blocknr;
1666 	int err = 0;
1667 
1668 	blocknr = 0;
1669 	err = bmap(inode, &blocknr);
1670 	if (err || !blocknr) {
1671 		pr_err("%s: Cannot locate journal superblock\n", __func__);
1672 		return err ? ERR_PTR(err) : ERR_PTR(-EINVAL);
1673 	}
1674 
1675 	jbd2_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1676 		  inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1677 		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1678 
1679 	journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1680 			blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1681 			inode->i_sb->s_blocksize);
1682 	if (IS_ERR(journal))
1683 		return ERR_CAST(journal);
1684 
1685 	journal->j_inode = inode;
1686 	snprintf(journal->j_devname, sizeof(journal->j_devname),
1687 		 "%pg-%lu", journal->j_dev, journal->j_inode->i_ino);
1688 	strreplace(journal->j_devname, '/', '!');
1689 	jbd2_stats_proc_init(journal);
1690 
1691 	return journal;
1692 }
1693 
1694 /*
1695  * Given a journal_t structure, initialise the various fields for
1696  * startup of a new journaling session.  We use this both when creating
1697  * a journal, and after recovering an old journal to reset it for
1698  * subsequent use.
1699  */
1700 
1701 static int journal_reset(journal_t *journal)
1702 {
1703 	journal_superblock_t *sb = journal->j_superblock;
1704 	unsigned long long first, last;
1705 
1706 	first = be32_to_cpu(sb->s_first);
1707 	last = be32_to_cpu(sb->s_maxlen);
1708 	if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1709 		printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1710 		       first, last);
1711 		journal_fail_superblock(journal);
1712 		return -EINVAL;
1713 	}
1714 
1715 	journal->j_first = first;
1716 	journal->j_last = last;
1717 
1718 	if (journal->j_head != 0 && journal->j_flags & JBD2_CYCLE_RECORD) {
1719 		/*
1720 		 * Disable the cycled recording mode if the journal head block
1721 		 * number is not correct.
1722 		 */
1723 		if (journal->j_head < first || journal->j_head >= last) {
1724 			printk(KERN_WARNING "JBD2: Incorrect Journal head block %lu, "
1725 			       "disable journal_cycle_record\n",
1726 			       journal->j_head);
1727 			journal->j_head = journal->j_first;
1728 		}
1729 	} else {
1730 		journal->j_head = journal->j_first;
1731 	}
1732 	journal->j_tail = journal->j_head;
1733 	journal->j_free = journal->j_last - journal->j_first;
1734 
1735 	journal->j_tail_sequence = journal->j_transaction_sequence;
1736 	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1737 	journal->j_commit_request = journal->j_commit_sequence;
1738 
1739 	journal->j_max_transaction_buffers = jbd2_journal_get_max_txn_bufs(journal);
1740 
1741 	/*
1742 	 * Now that journal recovery is done, turn fast commits off here. This
1743 	 * way, if fast commit was enabled before the crash but if now FS has
1744 	 * disabled it, we don't enable fast commits.
1745 	 */
1746 	jbd2_clear_feature_fast_commit(journal);
1747 
1748 	/*
1749 	 * As a special case, if the on-disk copy is already marked as needing
1750 	 * no recovery (s_start == 0), then we can safely defer the superblock
1751 	 * update until the next commit by setting JBD2_FLUSHED.  This avoids
1752 	 * attempting a write to a potential-readonly device.
1753 	 */
1754 	if (sb->s_start == 0) {
1755 		jbd2_debug(1, "JBD2: Skipping superblock update on recovered sb "
1756 			"(start %ld, seq %u, errno %d)\n",
1757 			journal->j_tail, journal->j_tail_sequence,
1758 			journal->j_errno);
1759 		journal->j_flags |= JBD2_FLUSHED;
1760 	} else {
1761 		/* Lock here to make assertions happy... */
1762 		mutex_lock_io(&journal->j_checkpoint_mutex);
1763 		/*
1764 		 * Update log tail information. We use REQ_FUA since new
1765 		 * transaction will start reusing journal space and so we
1766 		 * must make sure information about current log tail is on
1767 		 * disk before that.
1768 		 */
1769 		jbd2_journal_update_sb_log_tail(journal,
1770 						journal->j_tail_sequence,
1771 						journal->j_tail,
1772 						REQ_SYNC | REQ_FUA);
1773 		mutex_unlock(&journal->j_checkpoint_mutex);
1774 	}
1775 	return jbd2_journal_start_thread(journal);
1776 }
1777 
1778 /*
1779  * This function expects that the caller will have locked the journal
1780  * buffer head, and will return with it unlocked
1781  */
1782 static int jbd2_write_superblock(journal_t *journal, blk_opf_t write_flags)
1783 {
1784 	struct buffer_head *bh = journal->j_sb_buffer;
1785 	journal_superblock_t *sb = journal->j_superblock;
1786 	int ret = 0;
1787 
1788 	/* Buffer got discarded which means block device got invalidated */
1789 	if (!buffer_mapped(bh)) {
1790 		unlock_buffer(bh);
1791 		return -EIO;
1792 	}
1793 
1794 	trace_jbd2_write_superblock(journal, write_flags);
1795 	if (!(journal->j_flags & JBD2_BARRIER))
1796 		write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1797 	if (buffer_write_io_error(bh)) {
1798 		/*
1799 		 * Oh, dear.  A previous attempt to write the journal
1800 		 * superblock failed.  This could happen because the
1801 		 * USB device was yanked out.  Or it could happen to
1802 		 * be a transient write error and maybe the block will
1803 		 * be remapped.  Nothing we can do but to retry the
1804 		 * write and hope for the best.
1805 		 */
1806 		printk(KERN_ERR "JBD2: previous I/O error detected "
1807 		       "for journal superblock update for %s.\n",
1808 		       journal->j_devname);
1809 		clear_buffer_write_io_error(bh);
1810 		set_buffer_uptodate(bh);
1811 	}
1812 	if (jbd2_journal_has_csum_v2or3(journal))
1813 		sb->s_checksum = jbd2_superblock_csum(journal, sb);
1814 	get_bh(bh);
1815 	bh->b_end_io = end_buffer_write_sync;
1816 	submit_bh(REQ_OP_WRITE | write_flags, bh);
1817 	wait_on_buffer(bh);
1818 	if (buffer_write_io_error(bh)) {
1819 		clear_buffer_write_io_error(bh);
1820 		set_buffer_uptodate(bh);
1821 		ret = -EIO;
1822 	}
1823 	if (ret) {
1824 		printk(KERN_ERR "JBD2: I/O error when updating journal superblock for %s.\n",
1825 				journal->j_devname);
1826 		if (!is_journal_aborted(journal))
1827 			jbd2_journal_abort(journal, ret);
1828 	}
1829 
1830 	return ret;
1831 }
1832 
1833 /**
1834  * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1835  * @journal: The journal to update.
1836  * @tail_tid: TID of the new transaction at the tail of the log
1837  * @tail_block: The first block of the transaction at the tail of the log
1838  * @write_flags: Flags for the journal sb write operation
1839  *
1840  * Update a journal's superblock information about log tail and write it to
1841  * disk, waiting for the IO to complete.
1842  */
1843 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1844 				    unsigned long tail_block,
1845 				    blk_opf_t write_flags)
1846 {
1847 	journal_superblock_t *sb = journal->j_superblock;
1848 	int ret;
1849 
1850 	if (is_journal_aborted(journal))
1851 		return -EIO;
1852 	if (test_bit(JBD2_CHECKPOINT_IO_ERROR, &journal->j_atomic_flags)) {
1853 		jbd2_journal_abort(journal, -EIO);
1854 		return -EIO;
1855 	}
1856 
1857 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1858 	jbd2_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1859 		  tail_block, tail_tid);
1860 
1861 	lock_buffer(journal->j_sb_buffer);
1862 	sb->s_sequence = cpu_to_be32(tail_tid);
1863 	sb->s_start    = cpu_to_be32(tail_block);
1864 
1865 	ret = jbd2_write_superblock(journal, write_flags);
1866 	if (ret)
1867 		goto out;
1868 
1869 	/* Log is no longer empty */
1870 	write_lock(&journal->j_state_lock);
1871 	WARN_ON(!sb->s_sequence);
1872 	journal->j_flags &= ~JBD2_FLUSHED;
1873 	write_unlock(&journal->j_state_lock);
1874 
1875 out:
1876 	return ret;
1877 }
1878 
1879 /**
1880  * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1881  * @journal: The journal to update.
1882  * @write_flags: Flags for the journal sb write operation
1883  *
1884  * Update a journal's dynamic superblock fields to show that journal is empty.
1885  * Write updated superblock to disk waiting for IO to complete.
1886  */
1887 static void jbd2_mark_journal_empty(journal_t *journal, blk_opf_t write_flags)
1888 {
1889 	journal_superblock_t *sb = journal->j_superblock;
1890 	bool had_fast_commit = false;
1891 
1892 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1893 	lock_buffer(journal->j_sb_buffer);
1894 	if (sb->s_start == 0) {		/* Is it already empty? */
1895 		unlock_buffer(journal->j_sb_buffer);
1896 		return;
1897 	}
1898 
1899 	jbd2_debug(1, "JBD2: Marking journal as empty (seq %u)\n",
1900 		  journal->j_tail_sequence);
1901 
1902 	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1903 	sb->s_start    = cpu_to_be32(0);
1904 	sb->s_head     = cpu_to_be32(journal->j_head);
1905 	if (jbd2_has_feature_fast_commit(journal)) {
1906 		/*
1907 		 * When journal is clean, no need to commit fast commit flag and
1908 		 * make file system incompatible with older kernels.
1909 		 */
1910 		jbd2_clear_feature_fast_commit(journal);
1911 		had_fast_commit = true;
1912 	}
1913 
1914 	jbd2_write_superblock(journal, write_flags);
1915 
1916 	if (had_fast_commit)
1917 		jbd2_set_feature_fast_commit(journal);
1918 
1919 	/* Log is no longer empty */
1920 	write_lock(&journal->j_state_lock);
1921 	journal->j_flags |= JBD2_FLUSHED;
1922 	write_unlock(&journal->j_state_lock);
1923 }
1924 
1925 /**
1926  * __jbd2_journal_erase() - Discard or zeroout journal blocks (excluding superblock)
1927  * @journal: The journal to erase.
1928  * @flags: A discard/zeroout request is sent for each physically contigous
1929  *	region of the journal. Either JBD2_JOURNAL_FLUSH_DISCARD or
1930  *	JBD2_JOURNAL_FLUSH_ZEROOUT must be set to determine which operation
1931  *	to perform.
1932  *
1933  * Note: JBD2_JOURNAL_FLUSH_ZEROOUT attempts to use hardware offload. Zeroes
1934  * will be explicitly written if no hardware offload is available, see
1935  * blkdev_issue_zeroout for more details.
1936  */
1937 static int __jbd2_journal_erase(journal_t *journal, unsigned int flags)
1938 {
1939 	int err = 0;
1940 	unsigned long block, log_offset; /* logical */
1941 	unsigned long long phys_block, block_start, block_stop; /* physical */
1942 	loff_t byte_start, byte_stop, byte_count;
1943 
1944 	/* flags must be set to either discard or zeroout */
1945 	if ((flags & ~JBD2_JOURNAL_FLUSH_VALID) || !flags ||
1946 			((flags & JBD2_JOURNAL_FLUSH_DISCARD) &&
1947 			(flags & JBD2_JOURNAL_FLUSH_ZEROOUT)))
1948 		return -EINVAL;
1949 
1950 	if ((flags & JBD2_JOURNAL_FLUSH_DISCARD) &&
1951 	    !bdev_max_discard_sectors(journal->j_dev))
1952 		return -EOPNOTSUPP;
1953 
1954 	/*
1955 	 * lookup block mapping and issue discard/zeroout for each
1956 	 * contiguous region
1957 	 */
1958 	log_offset = be32_to_cpu(journal->j_superblock->s_first);
1959 	block_start =  ~0ULL;
1960 	for (block = log_offset; block < journal->j_total_len; block++) {
1961 		err = jbd2_journal_bmap(journal, block, &phys_block);
1962 		if (err) {
1963 			pr_err("JBD2: bad block at offset %lu", block);
1964 			return err;
1965 		}
1966 
1967 		if (block_start == ~0ULL) {
1968 			block_start = phys_block;
1969 			block_stop = block_start - 1;
1970 		}
1971 
1972 		/*
1973 		 * last block not contiguous with current block,
1974 		 * process last contiguous region and return to this block on
1975 		 * next loop
1976 		 */
1977 		if (phys_block != block_stop + 1) {
1978 			block--;
1979 		} else {
1980 			block_stop++;
1981 			/*
1982 			 * if this isn't the last block of journal,
1983 			 * no need to process now because next block may also
1984 			 * be part of this contiguous region
1985 			 */
1986 			if (block != journal->j_total_len - 1)
1987 				continue;
1988 		}
1989 
1990 		/*
1991 		 * end of contiguous region or this is last block of journal,
1992 		 * take care of the region
1993 		 */
1994 		byte_start = block_start * journal->j_blocksize;
1995 		byte_stop = block_stop * journal->j_blocksize;
1996 		byte_count = (block_stop - block_start + 1) *
1997 				journal->j_blocksize;
1998 
1999 		truncate_inode_pages_range(journal->j_dev->bd_inode->i_mapping,
2000 				byte_start, byte_stop);
2001 
2002 		if (flags & JBD2_JOURNAL_FLUSH_DISCARD) {
2003 			err = blkdev_issue_discard(journal->j_dev,
2004 					byte_start >> SECTOR_SHIFT,
2005 					byte_count >> SECTOR_SHIFT,
2006 					GFP_NOFS);
2007 		} else if (flags & JBD2_JOURNAL_FLUSH_ZEROOUT) {
2008 			err = blkdev_issue_zeroout(journal->j_dev,
2009 					byte_start >> SECTOR_SHIFT,
2010 					byte_count >> SECTOR_SHIFT,
2011 					GFP_NOFS, 0);
2012 		}
2013 
2014 		if (unlikely(err != 0)) {
2015 			pr_err("JBD2: (error %d) unable to wipe journal at physical blocks %llu - %llu",
2016 					err, block_start, block_stop);
2017 			return err;
2018 		}
2019 
2020 		/* reset start and stop after processing a region */
2021 		block_start = ~0ULL;
2022 	}
2023 
2024 	return blkdev_issue_flush(journal->j_dev);
2025 }
2026 
2027 /**
2028  * jbd2_journal_update_sb_errno() - Update error in the journal.
2029  * @journal: The journal to update.
2030  *
2031  * Update a journal's errno.  Write updated superblock to disk waiting for IO
2032  * to complete.
2033  */
2034 void jbd2_journal_update_sb_errno(journal_t *journal)
2035 {
2036 	journal_superblock_t *sb = journal->j_superblock;
2037 	int errcode;
2038 
2039 	lock_buffer(journal->j_sb_buffer);
2040 	errcode = journal->j_errno;
2041 	if (errcode == -ESHUTDOWN)
2042 		errcode = 0;
2043 	jbd2_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode);
2044 	sb->s_errno    = cpu_to_be32(errcode);
2045 
2046 	jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA);
2047 }
2048 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
2049 
2050 /**
2051  * jbd2_journal_load() - Read journal from disk.
2052  * @journal: Journal to act on.
2053  *
2054  * Given a journal_t structure which tells us which disk blocks contain
2055  * a journal, read the journal from disk to initialise the in-memory
2056  * structures.
2057  */
2058 int jbd2_journal_load(journal_t *journal)
2059 {
2060 	int err;
2061 	journal_superblock_t *sb = journal->j_superblock;
2062 
2063 	/*
2064 	 * Create a slab for this blocksize
2065 	 */
2066 	err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
2067 	if (err)
2068 		return err;
2069 
2070 	/* Let the recovery code check whether it needs to recover any
2071 	 * data from the journal. */
2072 	err = jbd2_journal_recover(journal);
2073 	if (err) {
2074 		pr_warn("JBD2: journal recovery failed\n");
2075 		return err;
2076 	}
2077 
2078 	if (journal->j_failed_commit) {
2079 		printk(KERN_ERR "JBD2: journal transaction %u on %s "
2080 		       "is corrupt.\n", journal->j_failed_commit,
2081 		       journal->j_devname);
2082 		return -EFSCORRUPTED;
2083 	}
2084 	/*
2085 	 * clear JBD2_ABORT flag initialized in journal_init_common
2086 	 * here to update log tail information with the newest seq.
2087 	 */
2088 	journal->j_flags &= ~JBD2_ABORT;
2089 
2090 	/* OK, we've finished with the dynamic journal bits:
2091 	 * reinitialise the dynamic contents of the superblock in memory
2092 	 * and reset them on disk. */
2093 	err = journal_reset(journal);
2094 	if (err) {
2095 		pr_warn("JBD2: journal reset failed\n");
2096 		return err;
2097 	}
2098 
2099 	journal->j_flags |= JBD2_LOADED;
2100 	return 0;
2101 }
2102 
2103 /**
2104  * jbd2_journal_destroy() - Release a journal_t structure.
2105  * @journal: Journal to act on.
2106  *
2107  * Release a journal_t structure once it is no longer in use by the
2108  * journaled object.
2109  * Return <0 if we couldn't clean up the journal.
2110  */
2111 int jbd2_journal_destroy(journal_t *journal)
2112 {
2113 	int err = 0;
2114 
2115 	/* Wait for the commit thread to wake up and die. */
2116 	journal_kill_thread(journal);
2117 
2118 	/* Force a final log commit */
2119 	if (journal->j_running_transaction)
2120 		jbd2_journal_commit_transaction(journal);
2121 
2122 	/* Force any old transactions to disk */
2123 
2124 	/* Totally anal locking here... */
2125 	spin_lock(&journal->j_list_lock);
2126 	while (journal->j_checkpoint_transactions != NULL) {
2127 		spin_unlock(&journal->j_list_lock);
2128 		mutex_lock_io(&journal->j_checkpoint_mutex);
2129 		err = jbd2_log_do_checkpoint(journal);
2130 		mutex_unlock(&journal->j_checkpoint_mutex);
2131 		/*
2132 		 * If checkpointing failed, just free the buffers to avoid
2133 		 * looping forever
2134 		 */
2135 		if (err) {
2136 			jbd2_journal_destroy_checkpoint(journal);
2137 			spin_lock(&journal->j_list_lock);
2138 			break;
2139 		}
2140 		spin_lock(&journal->j_list_lock);
2141 	}
2142 
2143 	J_ASSERT(journal->j_running_transaction == NULL);
2144 	J_ASSERT(journal->j_committing_transaction == NULL);
2145 	J_ASSERT(journal->j_checkpoint_transactions == NULL);
2146 	spin_unlock(&journal->j_list_lock);
2147 
2148 	/*
2149 	 * OK, all checkpoint transactions have been checked, now check the
2150 	 * write out io error flag and abort the journal if some buffer failed
2151 	 * to write back to the original location, otherwise the filesystem
2152 	 * may become inconsistent.
2153 	 */
2154 	if (!is_journal_aborted(journal) &&
2155 	    test_bit(JBD2_CHECKPOINT_IO_ERROR, &journal->j_atomic_flags))
2156 		jbd2_journal_abort(journal, -EIO);
2157 
2158 	if (journal->j_sb_buffer) {
2159 		if (!is_journal_aborted(journal)) {
2160 			mutex_lock_io(&journal->j_checkpoint_mutex);
2161 
2162 			write_lock(&journal->j_state_lock);
2163 			journal->j_tail_sequence =
2164 				++journal->j_transaction_sequence;
2165 			write_unlock(&journal->j_state_lock);
2166 
2167 			jbd2_mark_journal_empty(journal,
2168 					REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
2169 			mutex_unlock(&journal->j_checkpoint_mutex);
2170 		} else
2171 			err = -EIO;
2172 		brelse(journal->j_sb_buffer);
2173 	}
2174 
2175 	if (journal->j_shrinker.flags & SHRINKER_REGISTERED) {
2176 		percpu_counter_destroy(&journal->j_checkpoint_jh_count);
2177 		unregister_shrinker(&journal->j_shrinker);
2178 	}
2179 	if (journal->j_proc_entry)
2180 		jbd2_stats_proc_exit(journal);
2181 	iput(journal->j_inode);
2182 	if (journal->j_revoke)
2183 		jbd2_journal_destroy_revoke(journal);
2184 	if (journal->j_chksum_driver)
2185 		crypto_free_shash(journal->j_chksum_driver);
2186 	kfree(journal->j_fc_wbuf);
2187 	kfree(journal->j_wbuf);
2188 	kfree(journal);
2189 
2190 	return err;
2191 }
2192 
2193 
2194 /**
2195  * jbd2_journal_check_used_features() - Check if features specified are used.
2196  * @journal: Journal to check.
2197  * @compat: bitmask of compatible features
2198  * @ro: bitmask of features that force read-only mount
2199  * @incompat: bitmask of incompatible features
2200  *
2201  * Check whether the journal uses all of a given set of
2202  * features.  Return true (non-zero) if it does.
2203  **/
2204 
2205 int jbd2_journal_check_used_features(journal_t *journal, unsigned long compat,
2206 				 unsigned long ro, unsigned long incompat)
2207 {
2208 	journal_superblock_t *sb;
2209 
2210 	if (!compat && !ro && !incompat)
2211 		return 1;
2212 	if (!jbd2_format_support_feature(journal))
2213 		return 0;
2214 
2215 	sb = journal->j_superblock;
2216 
2217 	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
2218 	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
2219 	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
2220 		return 1;
2221 
2222 	return 0;
2223 }
2224 
2225 /**
2226  * jbd2_journal_check_available_features() - Check feature set in journalling layer
2227  * @journal: Journal to check.
2228  * @compat: bitmask of compatible features
2229  * @ro: bitmask of features that force read-only mount
2230  * @incompat: bitmask of incompatible features
2231  *
2232  * Check whether the journaling code supports the use of
2233  * all of a given set of features on this journal.  Return true
2234  * (non-zero) if it can. */
2235 
2236 int jbd2_journal_check_available_features(journal_t *journal, unsigned long compat,
2237 				      unsigned long ro, unsigned long incompat)
2238 {
2239 	if (!compat && !ro && !incompat)
2240 		return 1;
2241 
2242 	if (!jbd2_format_support_feature(journal))
2243 		return 0;
2244 
2245 	if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
2246 	    (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
2247 	    (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
2248 		return 1;
2249 
2250 	return 0;
2251 }
2252 
2253 static int
2254 jbd2_journal_initialize_fast_commit(journal_t *journal)
2255 {
2256 	journal_superblock_t *sb = journal->j_superblock;
2257 	unsigned long long num_fc_blks;
2258 
2259 	num_fc_blks = jbd2_journal_get_num_fc_blks(sb);
2260 	if (journal->j_last - num_fc_blks < JBD2_MIN_JOURNAL_BLOCKS)
2261 		return -ENOSPC;
2262 
2263 	/* Are we called twice? */
2264 	WARN_ON(journal->j_fc_wbuf != NULL);
2265 	journal->j_fc_wbuf = kmalloc_array(num_fc_blks,
2266 				sizeof(struct buffer_head *), GFP_KERNEL);
2267 	if (!journal->j_fc_wbuf)
2268 		return -ENOMEM;
2269 
2270 	journal->j_fc_wbufsize = num_fc_blks;
2271 	journal->j_fc_last = journal->j_last;
2272 	journal->j_last = journal->j_fc_last - num_fc_blks;
2273 	journal->j_fc_first = journal->j_last + 1;
2274 	journal->j_fc_off = 0;
2275 	journal->j_free = journal->j_last - journal->j_first;
2276 	journal->j_max_transaction_buffers =
2277 		jbd2_journal_get_max_txn_bufs(journal);
2278 
2279 	return 0;
2280 }
2281 
2282 /**
2283  * jbd2_journal_set_features() - Mark a given journal feature in the superblock
2284  * @journal: Journal to act on.
2285  * @compat: bitmask of compatible features
2286  * @ro: bitmask of features that force read-only mount
2287  * @incompat: bitmask of incompatible features
2288  *
2289  * Mark a given journal feature as present on the
2290  * superblock.  Returns true if the requested features could be set.
2291  *
2292  */
2293 
2294 int jbd2_journal_set_features(journal_t *journal, unsigned long compat,
2295 			  unsigned long ro, unsigned long incompat)
2296 {
2297 #define INCOMPAT_FEATURE_ON(f) \
2298 		((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
2299 #define COMPAT_FEATURE_ON(f) \
2300 		((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
2301 	journal_superblock_t *sb;
2302 
2303 	if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
2304 		return 1;
2305 
2306 	if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
2307 		return 0;
2308 
2309 	/* If enabling v2 checksums, turn on v3 instead */
2310 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
2311 		incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
2312 		incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
2313 	}
2314 
2315 	/* Asking for checksumming v3 and v1?  Only give them v3. */
2316 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
2317 	    compat & JBD2_FEATURE_COMPAT_CHECKSUM)
2318 		compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
2319 
2320 	jbd2_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
2321 		  compat, ro, incompat);
2322 
2323 	sb = journal->j_superblock;
2324 
2325 	if (incompat & JBD2_FEATURE_INCOMPAT_FAST_COMMIT) {
2326 		if (jbd2_journal_initialize_fast_commit(journal)) {
2327 			pr_err("JBD2: Cannot enable fast commits.\n");
2328 			return 0;
2329 		}
2330 	}
2331 
2332 	/* Load the checksum driver if necessary */
2333 	if ((journal->j_chksum_driver == NULL) &&
2334 	    INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
2335 		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
2336 		if (IS_ERR(journal->j_chksum_driver)) {
2337 			printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
2338 			journal->j_chksum_driver = NULL;
2339 			return 0;
2340 		}
2341 		/* Precompute checksum seed for all metadata */
2342 		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
2343 						   sizeof(sb->s_uuid));
2344 	}
2345 
2346 	lock_buffer(journal->j_sb_buffer);
2347 
2348 	/* If enabling v3 checksums, update superblock */
2349 	if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
2350 		sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
2351 		sb->s_feature_compat &=
2352 			~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
2353 	}
2354 
2355 	/* If enabling v1 checksums, downgrade superblock */
2356 	if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
2357 		sb->s_feature_incompat &=
2358 			~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
2359 				     JBD2_FEATURE_INCOMPAT_CSUM_V3);
2360 
2361 	sb->s_feature_compat    |= cpu_to_be32(compat);
2362 	sb->s_feature_ro_compat |= cpu_to_be32(ro);
2363 	sb->s_feature_incompat  |= cpu_to_be32(incompat);
2364 	unlock_buffer(journal->j_sb_buffer);
2365 	journal->j_revoke_records_per_block =
2366 				journal_revoke_records_per_block(journal);
2367 
2368 	return 1;
2369 #undef COMPAT_FEATURE_ON
2370 #undef INCOMPAT_FEATURE_ON
2371 }
2372 
2373 /*
2374  * jbd2_journal_clear_features() - Clear a given journal feature in the
2375  * 				    superblock
2376  * @journal: Journal to act on.
2377  * @compat: bitmask of compatible features
2378  * @ro: bitmask of features that force read-only mount
2379  * @incompat: bitmask of incompatible features
2380  *
2381  * Clear a given journal feature as present on the
2382  * superblock.
2383  */
2384 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
2385 				unsigned long ro, unsigned long incompat)
2386 {
2387 	journal_superblock_t *sb;
2388 
2389 	jbd2_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
2390 		  compat, ro, incompat);
2391 
2392 	sb = journal->j_superblock;
2393 
2394 	sb->s_feature_compat    &= ~cpu_to_be32(compat);
2395 	sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
2396 	sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
2397 	journal->j_revoke_records_per_block =
2398 				journal_revoke_records_per_block(journal);
2399 }
2400 EXPORT_SYMBOL(jbd2_journal_clear_features);
2401 
2402 /**
2403  * jbd2_journal_flush() - Flush journal
2404  * @journal: Journal to act on.
2405  * @flags: optional operation on the journal blocks after the flush (see below)
2406  *
2407  * Flush all data for a given journal to disk and empty the journal.
2408  * Filesystems can use this when remounting readonly to ensure that
2409  * recovery does not need to happen on remount. Optionally, a discard or zeroout
2410  * can be issued on the journal blocks after flushing.
2411  *
2412  * flags:
2413  *	JBD2_JOURNAL_FLUSH_DISCARD: issues discards for the journal blocks
2414  *	JBD2_JOURNAL_FLUSH_ZEROOUT: issues zeroouts for the journal blocks
2415  */
2416 int jbd2_journal_flush(journal_t *journal, unsigned int flags)
2417 {
2418 	int err = 0;
2419 	transaction_t *transaction = NULL;
2420 
2421 	write_lock(&journal->j_state_lock);
2422 
2423 	/* Force everything buffered to the log... */
2424 	if (journal->j_running_transaction) {
2425 		transaction = journal->j_running_transaction;
2426 		__jbd2_log_start_commit(journal, transaction->t_tid);
2427 	} else if (journal->j_committing_transaction)
2428 		transaction = journal->j_committing_transaction;
2429 
2430 	/* Wait for the log commit to complete... */
2431 	if (transaction) {
2432 		tid_t tid = transaction->t_tid;
2433 
2434 		write_unlock(&journal->j_state_lock);
2435 		jbd2_log_wait_commit(journal, tid);
2436 	} else {
2437 		write_unlock(&journal->j_state_lock);
2438 	}
2439 
2440 	/* ...and flush everything in the log out to disk. */
2441 	spin_lock(&journal->j_list_lock);
2442 	while (!err && journal->j_checkpoint_transactions != NULL) {
2443 		spin_unlock(&journal->j_list_lock);
2444 		mutex_lock_io(&journal->j_checkpoint_mutex);
2445 		err = jbd2_log_do_checkpoint(journal);
2446 		mutex_unlock(&journal->j_checkpoint_mutex);
2447 		spin_lock(&journal->j_list_lock);
2448 	}
2449 	spin_unlock(&journal->j_list_lock);
2450 
2451 	if (is_journal_aborted(journal))
2452 		return -EIO;
2453 
2454 	mutex_lock_io(&journal->j_checkpoint_mutex);
2455 	if (!err) {
2456 		err = jbd2_cleanup_journal_tail(journal);
2457 		if (err < 0) {
2458 			mutex_unlock(&journal->j_checkpoint_mutex);
2459 			goto out;
2460 		}
2461 		err = 0;
2462 	}
2463 
2464 	/* Finally, mark the journal as really needing no recovery.
2465 	 * This sets s_start==0 in the underlying superblock, which is
2466 	 * the magic code for a fully-recovered superblock.  Any future
2467 	 * commits of data to the journal will restore the current
2468 	 * s_start value. */
2469 	jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2470 
2471 	if (flags)
2472 		err = __jbd2_journal_erase(journal, flags);
2473 
2474 	mutex_unlock(&journal->j_checkpoint_mutex);
2475 	write_lock(&journal->j_state_lock);
2476 	J_ASSERT(!journal->j_running_transaction);
2477 	J_ASSERT(!journal->j_committing_transaction);
2478 	J_ASSERT(!journal->j_checkpoint_transactions);
2479 	J_ASSERT(journal->j_head == journal->j_tail);
2480 	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2481 	write_unlock(&journal->j_state_lock);
2482 out:
2483 	return err;
2484 }
2485 
2486 /**
2487  * jbd2_journal_wipe() - Wipe journal contents
2488  * @journal: Journal to act on.
2489  * @write: flag (see below)
2490  *
2491  * Wipe out all of the contents of a journal, safely.  This will produce
2492  * a warning if the journal contains any valid recovery information.
2493  * Must be called between journal_init_*() and jbd2_journal_load().
2494  *
2495  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2496  * we merely suppress recovery.
2497  */
2498 
2499 int jbd2_journal_wipe(journal_t *journal, int write)
2500 {
2501 	int err;
2502 
2503 	J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2504 
2505 	if (!journal->j_tail)
2506 		return 0;
2507 
2508 	printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2509 		write ? "Clearing" : "Ignoring");
2510 
2511 	err = jbd2_journal_skip_recovery(journal);
2512 	if (write) {
2513 		/* Lock to make assertions happy... */
2514 		mutex_lock_io(&journal->j_checkpoint_mutex);
2515 		jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2516 		mutex_unlock(&journal->j_checkpoint_mutex);
2517 	}
2518 
2519 	return err;
2520 }
2521 
2522 /**
2523  * jbd2_journal_abort () - Shutdown the journal immediately.
2524  * @journal: the journal to shutdown.
2525  * @errno:   an error number to record in the journal indicating
2526  *           the reason for the shutdown.
2527  *
2528  * Perform a complete, immediate shutdown of the ENTIRE
2529  * journal (not of a single transaction).  This operation cannot be
2530  * undone without closing and reopening the journal.
2531  *
2532  * The jbd2_journal_abort function is intended to support higher level error
2533  * recovery mechanisms such as the ext2/ext3 remount-readonly error
2534  * mode.
2535  *
2536  * Journal abort has very specific semantics.  Any existing dirty,
2537  * unjournaled buffers in the main filesystem will still be written to
2538  * disk by bdflush, but the journaling mechanism will be suspended
2539  * immediately and no further transaction commits will be honoured.
2540  *
2541  * Any dirty, journaled buffers will be written back to disk without
2542  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2543  * filesystem, but we _do_ attempt to leave as much data as possible
2544  * behind for fsck to use for cleanup.
2545  *
2546  * Any attempt to get a new transaction handle on a journal which is in
2547  * ABORT state will just result in an -EROFS error return.  A
2548  * jbd2_journal_stop on an existing handle will return -EIO if we have
2549  * entered abort state during the update.
2550  *
2551  * Recursive transactions are not disturbed by journal abort until the
2552  * final jbd2_journal_stop, which will receive the -EIO error.
2553  *
2554  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2555  * which will be recorded (if possible) in the journal superblock.  This
2556  * allows a client to record failure conditions in the middle of a
2557  * transaction without having to complete the transaction to record the
2558  * failure to disk.  ext3_error, for example, now uses this
2559  * functionality.
2560  *
2561  */
2562 
2563 void jbd2_journal_abort(journal_t *journal, int errno)
2564 {
2565 	transaction_t *transaction;
2566 
2567 	/*
2568 	 * Lock the aborting procedure until everything is done, this avoid
2569 	 * races between filesystem's error handling flow (e.g. ext4_abort()),
2570 	 * ensure panic after the error info is written into journal's
2571 	 * superblock.
2572 	 */
2573 	mutex_lock(&journal->j_abort_mutex);
2574 	/*
2575 	 * ESHUTDOWN always takes precedence because a file system check
2576 	 * caused by any other journal abort error is not required after
2577 	 * a shutdown triggered.
2578 	 */
2579 	write_lock(&journal->j_state_lock);
2580 	if (journal->j_flags & JBD2_ABORT) {
2581 		int old_errno = journal->j_errno;
2582 
2583 		write_unlock(&journal->j_state_lock);
2584 		if (old_errno != -ESHUTDOWN && errno == -ESHUTDOWN) {
2585 			journal->j_errno = errno;
2586 			jbd2_journal_update_sb_errno(journal);
2587 		}
2588 		mutex_unlock(&journal->j_abort_mutex);
2589 		return;
2590 	}
2591 
2592 	/*
2593 	 * Mark the abort as occurred and start current running transaction
2594 	 * to release all journaled buffer.
2595 	 */
2596 	pr_err("Aborting journal on device %s.\n", journal->j_devname);
2597 
2598 	journal->j_flags |= JBD2_ABORT;
2599 	journal->j_errno = errno;
2600 	transaction = journal->j_running_transaction;
2601 	if (transaction)
2602 		__jbd2_log_start_commit(journal, transaction->t_tid);
2603 	write_unlock(&journal->j_state_lock);
2604 
2605 	/*
2606 	 * Record errno to the journal super block, so that fsck and jbd2
2607 	 * layer could realise that a filesystem check is needed.
2608 	 */
2609 	jbd2_journal_update_sb_errno(journal);
2610 	mutex_unlock(&journal->j_abort_mutex);
2611 }
2612 
2613 /**
2614  * jbd2_journal_errno() - returns the journal's error state.
2615  * @journal: journal to examine.
2616  *
2617  * This is the errno number set with jbd2_journal_abort(), the last
2618  * time the journal was mounted - if the journal was stopped
2619  * without calling abort this will be 0.
2620  *
2621  * If the journal has been aborted on this mount time -EROFS will
2622  * be returned.
2623  */
2624 int jbd2_journal_errno(journal_t *journal)
2625 {
2626 	int err;
2627 
2628 	read_lock(&journal->j_state_lock);
2629 	if (journal->j_flags & JBD2_ABORT)
2630 		err = -EROFS;
2631 	else
2632 		err = journal->j_errno;
2633 	read_unlock(&journal->j_state_lock);
2634 	return err;
2635 }
2636 
2637 /**
2638  * jbd2_journal_clear_err() - clears the journal's error state
2639  * @journal: journal to act on.
2640  *
2641  * An error must be cleared or acked to take a FS out of readonly
2642  * mode.
2643  */
2644 int jbd2_journal_clear_err(journal_t *journal)
2645 {
2646 	int err = 0;
2647 
2648 	write_lock(&journal->j_state_lock);
2649 	if (journal->j_flags & JBD2_ABORT)
2650 		err = -EROFS;
2651 	else
2652 		journal->j_errno = 0;
2653 	write_unlock(&journal->j_state_lock);
2654 	return err;
2655 }
2656 
2657 /**
2658  * jbd2_journal_ack_err() - Ack journal err.
2659  * @journal: journal to act on.
2660  *
2661  * An error must be cleared or acked to take a FS out of readonly
2662  * mode.
2663  */
2664 void jbd2_journal_ack_err(journal_t *journal)
2665 {
2666 	write_lock(&journal->j_state_lock);
2667 	if (journal->j_errno)
2668 		journal->j_flags |= JBD2_ACK_ERR;
2669 	write_unlock(&journal->j_state_lock);
2670 }
2671 
2672 int jbd2_journal_blocks_per_page(struct inode *inode)
2673 {
2674 	return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2675 }
2676 
2677 /*
2678  * helper functions to deal with 32 or 64bit block numbers.
2679  */
2680 size_t journal_tag_bytes(journal_t *journal)
2681 {
2682 	size_t sz;
2683 
2684 	if (jbd2_has_feature_csum3(journal))
2685 		return sizeof(journal_block_tag3_t);
2686 
2687 	sz = sizeof(journal_block_tag_t);
2688 
2689 	if (jbd2_has_feature_csum2(journal))
2690 		sz += sizeof(__u16);
2691 
2692 	if (jbd2_has_feature_64bit(journal))
2693 		return sz;
2694 	else
2695 		return sz - sizeof(__u32);
2696 }
2697 
2698 /*
2699  * JBD memory management
2700  *
2701  * These functions are used to allocate block-sized chunks of memory
2702  * used for making copies of buffer_head data.  Very often it will be
2703  * page-sized chunks of data, but sometimes it will be in
2704  * sub-page-size chunks.  (For example, 16k pages on Power systems
2705  * with a 4k block file system.)  For blocks smaller than a page, we
2706  * use a SLAB allocator.  There are slab caches for each block size,
2707  * which are allocated at mount time, if necessary, and we only free
2708  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2709  * this reason we don't need to a mutex to protect access to
2710  * jbd2_slab[] allocating or releasing memory; only in
2711  * jbd2_journal_create_slab().
2712  */
2713 #define JBD2_MAX_SLABS 8
2714 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2715 
2716 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2717 	"jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2718 	"jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2719 };
2720 
2721 
2722 static void jbd2_journal_destroy_slabs(void)
2723 {
2724 	int i;
2725 
2726 	for (i = 0; i < JBD2_MAX_SLABS; i++) {
2727 		kmem_cache_destroy(jbd2_slab[i]);
2728 		jbd2_slab[i] = NULL;
2729 	}
2730 }
2731 
2732 static int jbd2_journal_create_slab(size_t size)
2733 {
2734 	static DEFINE_MUTEX(jbd2_slab_create_mutex);
2735 	int i = order_base_2(size) - 10;
2736 	size_t slab_size;
2737 
2738 	if (size == PAGE_SIZE)
2739 		return 0;
2740 
2741 	if (i >= JBD2_MAX_SLABS)
2742 		return -EINVAL;
2743 
2744 	if (unlikely(i < 0))
2745 		i = 0;
2746 	mutex_lock(&jbd2_slab_create_mutex);
2747 	if (jbd2_slab[i]) {
2748 		mutex_unlock(&jbd2_slab_create_mutex);
2749 		return 0;	/* Already created */
2750 	}
2751 
2752 	slab_size = 1 << (i+10);
2753 	jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2754 					 slab_size, 0, NULL);
2755 	mutex_unlock(&jbd2_slab_create_mutex);
2756 	if (!jbd2_slab[i]) {
2757 		printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2758 		return -ENOMEM;
2759 	}
2760 	return 0;
2761 }
2762 
2763 static struct kmem_cache *get_slab(size_t size)
2764 {
2765 	int i = order_base_2(size) - 10;
2766 
2767 	BUG_ON(i >= JBD2_MAX_SLABS);
2768 	if (unlikely(i < 0))
2769 		i = 0;
2770 	BUG_ON(jbd2_slab[i] == NULL);
2771 	return jbd2_slab[i];
2772 }
2773 
2774 void *jbd2_alloc(size_t size, gfp_t flags)
2775 {
2776 	void *ptr;
2777 
2778 	BUG_ON(size & (size-1)); /* Must be a power of 2 */
2779 
2780 	if (size < PAGE_SIZE)
2781 		ptr = kmem_cache_alloc(get_slab(size), flags);
2782 	else
2783 		ptr = (void *)__get_free_pages(flags, get_order(size));
2784 
2785 	/* Check alignment; SLUB has gotten this wrong in the past,
2786 	 * and this can lead to user data corruption! */
2787 	BUG_ON(((unsigned long) ptr) & (size-1));
2788 
2789 	return ptr;
2790 }
2791 
2792 void jbd2_free(void *ptr, size_t size)
2793 {
2794 	if (size < PAGE_SIZE)
2795 		kmem_cache_free(get_slab(size), ptr);
2796 	else
2797 		free_pages((unsigned long)ptr, get_order(size));
2798 };
2799 
2800 /*
2801  * Journal_head storage management
2802  */
2803 static struct kmem_cache *jbd2_journal_head_cache;
2804 #ifdef CONFIG_JBD2_DEBUG
2805 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2806 #endif
2807 
2808 static int __init jbd2_journal_init_journal_head_cache(void)
2809 {
2810 	J_ASSERT(!jbd2_journal_head_cache);
2811 	jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2812 				sizeof(struct journal_head),
2813 				0,		/* offset */
2814 				SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU,
2815 				NULL);		/* ctor */
2816 	if (!jbd2_journal_head_cache) {
2817 		printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2818 		return -ENOMEM;
2819 	}
2820 	return 0;
2821 }
2822 
2823 static void jbd2_journal_destroy_journal_head_cache(void)
2824 {
2825 	kmem_cache_destroy(jbd2_journal_head_cache);
2826 	jbd2_journal_head_cache = NULL;
2827 }
2828 
2829 /*
2830  * journal_head splicing and dicing
2831  */
2832 static struct journal_head *journal_alloc_journal_head(void)
2833 {
2834 	struct journal_head *ret;
2835 
2836 #ifdef CONFIG_JBD2_DEBUG
2837 	atomic_inc(&nr_journal_heads);
2838 #endif
2839 	ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2840 	if (!ret) {
2841 		jbd2_debug(1, "out of memory for journal_head\n");
2842 		pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2843 		ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2844 				GFP_NOFS | __GFP_NOFAIL);
2845 	}
2846 	if (ret)
2847 		spin_lock_init(&ret->b_state_lock);
2848 	return ret;
2849 }
2850 
2851 static void journal_free_journal_head(struct journal_head *jh)
2852 {
2853 #ifdef CONFIG_JBD2_DEBUG
2854 	atomic_dec(&nr_journal_heads);
2855 	memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2856 #endif
2857 	kmem_cache_free(jbd2_journal_head_cache, jh);
2858 }
2859 
2860 /*
2861  * A journal_head is attached to a buffer_head whenever JBD has an
2862  * interest in the buffer.
2863  *
2864  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2865  * is set.  This bit is tested in core kernel code where we need to take
2866  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2867  * there.
2868  *
2869  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2870  *
2871  * When a buffer has its BH_JBD bit set it is immune from being released by
2872  * core kernel code, mainly via ->b_count.
2873  *
2874  * A journal_head is detached from its buffer_head when the journal_head's
2875  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2876  * transaction (b_cp_transaction) hold their references to b_jcount.
2877  *
2878  * Various places in the kernel want to attach a journal_head to a buffer_head
2879  * _before_ attaching the journal_head to a transaction.  To protect the
2880  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2881  * journal_head's b_jcount refcount by one.  The caller must call
2882  * jbd2_journal_put_journal_head() to undo this.
2883  *
2884  * So the typical usage would be:
2885  *
2886  *	(Attach a journal_head if needed.  Increments b_jcount)
2887  *	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2888  *	...
2889  *      (Get another reference for transaction)
2890  *	jbd2_journal_grab_journal_head(bh);
2891  *	jh->b_transaction = xxx;
2892  *	(Put original reference)
2893  *	jbd2_journal_put_journal_head(jh);
2894  */
2895 
2896 /*
2897  * Give a buffer_head a journal_head.
2898  *
2899  * May sleep.
2900  */
2901 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2902 {
2903 	struct journal_head *jh;
2904 	struct journal_head *new_jh = NULL;
2905 
2906 repeat:
2907 	if (!buffer_jbd(bh))
2908 		new_jh = journal_alloc_journal_head();
2909 
2910 	jbd_lock_bh_journal_head(bh);
2911 	if (buffer_jbd(bh)) {
2912 		jh = bh2jh(bh);
2913 	} else {
2914 		J_ASSERT_BH(bh,
2915 			(atomic_read(&bh->b_count) > 0) ||
2916 			(bh->b_folio && bh->b_folio->mapping));
2917 
2918 		if (!new_jh) {
2919 			jbd_unlock_bh_journal_head(bh);
2920 			goto repeat;
2921 		}
2922 
2923 		jh = new_jh;
2924 		new_jh = NULL;		/* We consumed it */
2925 		set_buffer_jbd(bh);
2926 		bh->b_private = jh;
2927 		jh->b_bh = bh;
2928 		get_bh(bh);
2929 		BUFFER_TRACE(bh, "added journal_head");
2930 	}
2931 	jh->b_jcount++;
2932 	jbd_unlock_bh_journal_head(bh);
2933 	if (new_jh)
2934 		journal_free_journal_head(new_jh);
2935 	return bh->b_private;
2936 }
2937 
2938 /*
2939  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2940  * having a journal_head, return NULL
2941  */
2942 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2943 {
2944 	struct journal_head *jh = NULL;
2945 
2946 	jbd_lock_bh_journal_head(bh);
2947 	if (buffer_jbd(bh)) {
2948 		jh = bh2jh(bh);
2949 		jh->b_jcount++;
2950 	}
2951 	jbd_unlock_bh_journal_head(bh);
2952 	return jh;
2953 }
2954 EXPORT_SYMBOL(jbd2_journal_grab_journal_head);
2955 
2956 static void __journal_remove_journal_head(struct buffer_head *bh)
2957 {
2958 	struct journal_head *jh = bh2jh(bh);
2959 
2960 	J_ASSERT_JH(jh, jh->b_transaction == NULL);
2961 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2962 	J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2963 	J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2964 	J_ASSERT_BH(bh, buffer_jbd(bh));
2965 	J_ASSERT_BH(bh, jh2bh(jh) == bh);
2966 	BUFFER_TRACE(bh, "remove journal_head");
2967 
2968 	/* Unlink before dropping the lock */
2969 	bh->b_private = NULL;
2970 	jh->b_bh = NULL;	/* debug, really */
2971 	clear_buffer_jbd(bh);
2972 }
2973 
2974 static void journal_release_journal_head(struct journal_head *jh, size_t b_size)
2975 {
2976 	if (jh->b_frozen_data) {
2977 		printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2978 		jbd2_free(jh->b_frozen_data, b_size);
2979 	}
2980 	if (jh->b_committed_data) {
2981 		printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2982 		jbd2_free(jh->b_committed_data, b_size);
2983 	}
2984 	journal_free_journal_head(jh);
2985 }
2986 
2987 /*
2988  * Drop a reference on the passed journal_head.  If it fell to zero then
2989  * release the journal_head from the buffer_head.
2990  */
2991 void jbd2_journal_put_journal_head(struct journal_head *jh)
2992 {
2993 	struct buffer_head *bh = jh2bh(jh);
2994 
2995 	jbd_lock_bh_journal_head(bh);
2996 	J_ASSERT_JH(jh, jh->b_jcount > 0);
2997 	--jh->b_jcount;
2998 	if (!jh->b_jcount) {
2999 		__journal_remove_journal_head(bh);
3000 		jbd_unlock_bh_journal_head(bh);
3001 		journal_release_journal_head(jh, bh->b_size);
3002 		__brelse(bh);
3003 	} else {
3004 		jbd_unlock_bh_journal_head(bh);
3005 	}
3006 }
3007 EXPORT_SYMBOL(jbd2_journal_put_journal_head);
3008 
3009 /*
3010  * Initialize jbd inode head
3011  */
3012 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
3013 {
3014 	jinode->i_transaction = NULL;
3015 	jinode->i_next_transaction = NULL;
3016 	jinode->i_vfs_inode = inode;
3017 	jinode->i_flags = 0;
3018 	jinode->i_dirty_start = 0;
3019 	jinode->i_dirty_end = 0;
3020 	INIT_LIST_HEAD(&jinode->i_list);
3021 }
3022 
3023 /*
3024  * Function to be called before we start removing inode from memory (i.e.,
3025  * clear_inode() is a fine place to be called from). It removes inode from
3026  * transaction's lists.
3027  */
3028 void jbd2_journal_release_jbd_inode(journal_t *journal,
3029 				    struct jbd2_inode *jinode)
3030 {
3031 	if (!journal)
3032 		return;
3033 restart:
3034 	spin_lock(&journal->j_list_lock);
3035 	/* Is commit writing out inode - we have to wait */
3036 	if (jinode->i_flags & JI_COMMIT_RUNNING) {
3037 		wait_queue_head_t *wq;
3038 		DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
3039 		wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
3040 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
3041 		spin_unlock(&journal->j_list_lock);
3042 		schedule();
3043 		finish_wait(wq, &wait.wq_entry);
3044 		goto restart;
3045 	}
3046 
3047 	if (jinode->i_transaction) {
3048 		list_del(&jinode->i_list);
3049 		jinode->i_transaction = NULL;
3050 	}
3051 	spin_unlock(&journal->j_list_lock);
3052 }
3053 
3054 
3055 #ifdef CONFIG_PROC_FS
3056 
3057 #define JBD2_STATS_PROC_NAME "fs/jbd2"
3058 
3059 static void __init jbd2_create_jbd_stats_proc_entry(void)
3060 {
3061 	proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
3062 }
3063 
3064 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
3065 {
3066 	if (proc_jbd2_stats)
3067 		remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
3068 }
3069 
3070 #else
3071 
3072 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
3073 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
3074 
3075 #endif
3076 
3077 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
3078 
3079 static int __init jbd2_journal_init_inode_cache(void)
3080 {
3081 	J_ASSERT(!jbd2_inode_cache);
3082 	jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
3083 	if (!jbd2_inode_cache) {
3084 		pr_emerg("JBD2: failed to create inode cache\n");
3085 		return -ENOMEM;
3086 	}
3087 	return 0;
3088 }
3089 
3090 static int __init jbd2_journal_init_handle_cache(void)
3091 {
3092 	J_ASSERT(!jbd2_handle_cache);
3093 	jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
3094 	if (!jbd2_handle_cache) {
3095 		printk(KERN_EMERG "JBD2: failed to create handle cache\n");
3096 		return -ENOMEM;
3097 	}
3098 	return 0;
3099 }
3100 
3101 static void jbd2_journal_destroy_inode_cache(void)
3102 {
3103 	kmem_cache_destroy(jbd2_inode_cache);
3104 	jbd2_inode_cache = NULL;
3105 }
3106 
3107 static void jbd2_journal_destroy_handle_cache(void)
3108 {
3109 	kmem_cache_destroy(jbd2_handle_cache);
3110 	jbd2_handle_cache = NULL;
3111 }
3112 
3113 /*
3114  * Module startup and shutdown
3115  */
3116 
3117 static int __init journal_init_caches(void)
3118 {
3119 	int ret;
3120 
3121 	ret = jbd2_journal_init_revoke_record_cache();
3122 	if (ret == 0)
3123 		ret = jbd2_journal_init_revoke_table_cache();
3124 	if (ret == 0)
3125 		ret = jbd2_journal_init_journal_head_cache();
3126 	if (ret == 0)
3127 		ret = jbd2_journal_init_handle_cache();
3128 	if (ret == 0)
3129 		ret = jbd2_journal_init_inode_cache();
3130 	if (ret == 0)
3131 		ret = jbd2_journal_init_transaction_cache();
3132 	return ret;
3133 }
3134 
3135 static void jbd2_journal_destroy_caches(void)
3136 {
3137 	jbd2_journal_destroy_revoke_record_cache();
3138 	jbd2_journal_destroy_revoke_table_cache();
3139 	jbd2_journal_destroy_journal_head_cache();
3140 	jbd2_journal_destroy_handle_cache();
3141 	jbd2_journal_destroy_inode_cache();
3142 	jbd2_journal_destroy_transaction_cache();
3143 	jbd2_journal_destroy_slabs();
3144 }
3145 
3146 static int __init journal_init(void)
3147 {
3148 	int ret;
3149 
3150 	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
3151 
3152 	ret = journal_init_caches();
3153 	if (ret == 0) {
3154 		jbd2_create_jbd_stats_proc_entry();
3155 	} else {
3156 		jbd2_journal_destroy_caches();
3157 	}
3158 	return ret;
3159 }
3160 
3161 static void __exit journal_exit(void)
3162 {
3163 #ifdef CONFIG_JBD2_DEBUG
3164 	int n = atomic_read(&nr_journal_heads);
3165 	if (n)
3166 		printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
3167 #endif
3168 	jbd2_remove_jbd_stats_proc_entry();
3169 	jbd2_journal_destroy_caches();
3170 }
3171 
3172 MODULE_LICENSE("GPL");
3173 module_init(journal_init);
3174 module_exit(journal_exit);
3175 
3176