1 /* 2 * linux/fs/jbd2/journal.c 3 * 4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 5 * 6 * Copyright 1998 Red Hat corp --- All Rights Reserved 7 * 8 * This file is part of the Linux kernel and is made available under 9 * the terms of the GNU General Public License, version 2, or at your 10 * option, any later version, incorporated herein by reference. 11 * 12 * Generic filesystem journal-writing code; part of the ext2fs 13 * journaling system. 14 * 15 * This file manages journals: areas of disk reserved for logging 16 * transactional updates. This includes the kernel journaling thread 17 * which is responsible for scheduling updates to the log. 18 * 19 * We do not actually manage the physical storage of the journal in this 20 * file: that is left to a per-journal policy function, which allows us 21 * to store the journal within a filesystem-specified area for ext2 22 * journaling (ext2 can use a reserved inode for storing the log). 23 */ 24 25 #include <linux/module.h> 26 #include <linux/time.h> 27 #include <linux/fs.h> 28 #include <linux/jbd2.h> 29 #include <linux/errno.h> 30 #include <linux/slab.h> 31 #include <linux/init.h> 32 #include <linux/mm.h> 33 #include <linux/freezer.h> 34 #include <linux/pagemap.h> 35 #include <linux/kthread.h> 36 #include <linux/poison.h> 37 #include <linux/proc_fs.h> 38 #include <linux/debugfs.h> 39 40 #include <asm/uaccess.h> 41 #include <asm/page.h> 42 43 EXPORT_SYMBOL(jbd2_journal_start); 44 EXPORT_SYMBOL(jbd2_journal_restart); 45 EXPORT_SYMBOL(jbd2_journal_extend); 46 EXPORT_SYMBOL(jbd2_journal_stop); 47 EXPORT_SYMBOL(jbd2_journal_lock_updates); 48 EXPORT_SYMBOL(jbd2_journal_unlock_updates); 49 EXPORT_SYMBOL(jbd2_journal_get_write_access); 50 EXPORT_SYMBOL(jbd2_journal_get_create_access); 51 EXPORT_SYMBOL(jbd2_journal_get_undo_access); 52 EXPORT_SYMBOL(jbd2_journal_dirty_data); 53 EXPORT_SYMBOL(jbd2_journal_dirty_metadata); 54 EXPORT_SYMBOL(jbd2_journal_release_buffer); 55 EXPORT_SYMBOL(jbd2_journal_forget); 56 #if 0 57 EXPORT_SYMBOL(journal_sync_buffer); 58 #endif 59 EXPORT_SYMBOL(jbd2_journal_flush); 60 EXPORT_SYMBOL(jbd2_journal_revoke); 61 62 EXPORT_SYMBOL(jbd2_journal_init_dev); 63 EXPORT_SYMBOL(jbd2_journal_init_inode); 64 EXPORT_SYMBOL(jbd2_journal_update_format); 65 EXPORT_SYMBOL(jbd2_journal_check_used_features); 66 EXPORT_SYMBOL(jbd2_journal_check_available_features); 67 EXPORT_SYMBOL(jbd2_journal_set_features); 68 EXPORT_SYMBOL(jbd2_journal_create); 69 EXPORT_SYMBOL(jbd2_journal_load); 70 EXPORT_SYMBOL(jbd2_journal_destroy); 71 EXPORT_SYMBOL(jbd2_journal_update_superblock); 72 EXPORT_SYMBOL(jbd2_journal_abort); 73 EXPORT_SYMBOL(jbd2_journal_errno); 74 EXPORT_SYMBOL(jbd2_journal_ack_err); 75 EXPORT_SYMBOL(jbd2_journal_clear_err); 76 EXPORT_SYMBOL(jbd2_log_wait_commit); 77 EXPORT_SYMBOL(jbd2_journal_start_commit); 78 EXPORT_SYMBOL(jbd2_journal_force_commit_nested); 79 EXPORT_SYMBOL(jbd2_journal_wipe); 80 EXPORT_SYMBOL(jbd2_journal_blocks_per_page); 81 EXPORT_SYMBOL(jbd2_journal_invalidatepage); 82 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers); 83 EXPORT_SYMBOL(jbd2_journal_force_commit); 84 85 static int journal_convert_superblock_v1(journal_t *, journal_superblock_t *); 86 static void __journal_abort_soft (journal_t *journal, int errno); 87 static int jbd2_journal_create_jbd_slab(size_t slab_size); 88 89 /* 90 * Helper function used to manage commit timeouts 91 */ 92 93 static void commit_timeout(unsigned long __data) 94 { 95 struct task_struct * p = (struct task_struct *) __data; 96 97 wake_up_process(p); 98 } 99 100 /* 101 * kjournald2: The main thread function used to manage a logging device 102 * journal. 103 * 104 * This kernel thread is responsible for two things: 105 * 106 * 1) COMMIT: Every so often we need to commit the current state of the 107 * filesystem to disk. The journal thread is responsible for writing 108 * all of the metadata buffers to disk. 109 * 110 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all 111 * of the data in that part of the log has been rewritten elsewhere on 112 * the disk. Flushing these old buffers to reclaim space in the log is 113 * known as checkpointing, and this thread is responsible for that job. 114 */ 115 116 static int kjournald2(void *arg) 117 { 118 journal_t *journal = arg; 119 transaction_t *transaction; 120 121 /* 122 * Set up an interval timer which can be used to trigger a commit wakeup 123 * after the commit interval expires 124 */ 125 setup_timer(&journal->j_commit_timer, commit_timeout, 126 (unsigned long)current); 127 128 /* Record that the journal thread is running */ 129 journal->j_task = current; 130 wake_up(&journal->j_wait_done_commit); 131 132 printk(KERN_INFO "kjournald2 starting. Commit interval %ld seconds\n", 133 journal->j_commit_interval / HZ); 134 135 /* 136 * And now, wait forever for commit wakeup events. 137 */ 138 spin_lock(&journal->j_state_lock); 139 140 loop: 141 if (journal->j_flags & JBD2_UNMOUNT) 142 goto end_loop; 143 144 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n", 145 journal->j_commit_sequence, journal->j_commit_request); 146 147 if (journal->j_commit_sequence != journal->j_commit_request) { 148 jbd_debug(1, "OK, requests differ\n"); 149 spin_unlock(&journal->j_state_lock); 150 del_timer_sync(&journal->j_commit_timer); 151 jbd2_journal_commit_transaction(journal); 152 spin_lock(&journal->j_state_lock); 153 goto loop; 154 } 155 156 wake_up(&journal->j_wait_done_commit); 157 if (freezing(current)) { 158 /* 159 * The simpler the better. Flushing journal isn't a 160 * good idea, because that depends on threads that may 161 * be already stopped. 162 */ 163 jbd_debug(1, "Now suspending kjournald2\n"); 164 spin_unlock(&journal->j_state_lock); 165 refrigerator(); 166 spin_lock(&journal->j_state_lock); 167 } else { 168 /* 169 * We assume on resume that commits are already there, 170 * so we don't sleep 171 */ 172 DEFINE_WAIT(wait); 173 int should_sleep = 1; 174 175 prepare_to_wait(&journal->j_wait_commit, &wait, 176 TASK_INTERRUPTIBLE); 177 if (journal->j_commit_sequence != journal->j_commit_request) 178 should_sleep = 0; 179 transaction = journal->j_running_transaction; 180 if (transaction && time_after_eq(jiffies, 181 transaction->t_expires)) 182 should_sleep = 0; 183 if (journal->j_flags & JBD2_UNMOUNT) 184 should_sleep = 0; 185 if (should_sleep) { 186 spin_unlock(&journal->j_state_lock); 187 schedule(); 188 spin_lock(&journal->j_state_lock); 189 } 190 finish_wait(&journal->j_wait_commit, &wait); 191 } 192 193 jbd_debug(1, "kjournald2 wakes\n"); 194 195 /* 196 * Were we woken up by a commit wakeup event? 197 */ 198 transaction = journal->j_running_transaction; 199 if (transaction && time_after_eq(jiffies, transaction->t_expires)) { 200 journal->j_commit_request = transaction->t_tid; 201 jbd_debug(1, "woke because of timeout\n"); 202 } 203 goto loop; 204 205 end_loop: 206 spin_unlock(&journal->j_state_lock); 207 del_timer_sync(&journal->j_commit_timer); 208 journal->j_task = NULL; 209 wake_up(&journal->j_wait_done_commit); 210 jbd_debug(1, "Journal thread exiting.\n"); 211 return 0; 212 } 213 214 static int jbd2_journal_start_thread(journal_t *journal) 215 { 216 struct task_struct *t; 217 218 t = kthread_run(kjournald2, journal, "kjournald2"); 219 if (IS_ERR(t)) 220 return PTR_ERR(t); 221 222 wait_event(journal->j_wait_done_commit, journal->j_task != 0); 223 return 0; 224 } 225 226 static void journal_kill_thread(journal_t *journal) 227 { 228 spin_lock(&journal->j_state_lock); 229 journal->j_flags |= JBD2_UNMOUNT; 230 231 while (journal->j_task) { 232 wake_up(&journal->j_wait_commit); 233 spin_unlock(&journal->j_state_lock); 234 wait_event(journal->j_wait_done_commit, journal->j_task == 0); 235 spin_lock(&journal->j_state_lock); 236 } 237 spin_unlock(&journal->j_state_lock); 238 } 239 240 /* 241 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal. 242 * 243 * Writes a metadata buffer to a given disk block. The actual IO is not 244 * performed but a new buffer_head is constructed which labels the data 245 * to be written with the correct destination disk block. 246 * 247 * Any magic-number escaping which needs to be done will cause a 248 * copy-out here. If the buffer happens to start with the 249 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the 250 * magic number is only written to the log for descripter blocks. In 251 * this case, we copy the data and replace the first word with 0, and we 252 * return a result code which indicates that this buffer needs to be 253 * marked as an escaped buffer in the corresponding log descriptor 254 * block. The missing word can then be restored when the block is read 255 * during recovery. 256 * 257 * If the source buffer has already been modified by a new transaction 258 * since we took the last commit snapshot, we use the frozen copy of 259 * that data for IO. If we end up using the existing buffer_head's data 260 * for the write, then we *have* to lock the buffer to prevent anyone 261 * else from using and possibly modifying it while the IO is in 262 * progress. 263 * 264 * The function returns a pointer to the buffer_heads to be used for IO. 265 * 266 * We assume that the journal has already been locked in this function. 267 * 268 * Return value: 269 * <0: Error 270 * >=0: Finished OK 271 * 272 * On success: 273 * Bit 0 set == escape performed on the data 274 * Bit 1 set == buffer copy-out performed (kfree the data after IO) 275 */ 276 277 int jbd2_journal_write_metadata_buffer(transaction_t *transaction, 278 struct journal_head *jh_in, 279 struct journal_head **jh_out, 280 unsigned long long blocknr) 281 { 282 int need_copy_out = 0; 283 int done_copy_out = 0; 284 int do_escape = 0; 285 char *mapped_data; 286 struct buffer_head *new_bh; 287 struct journal_head *new_jh; 288 struct page *new_page; 289 unsigned int new_offset; 290 struct buffer_head *bh_in = jh2bh(jh_in); 291 292 /* 293 * The buffer really shouldn't be locked: only the current committing 294 * transaction is allowed to write it, so nobody else is allowed 295 * to do any IO. 296 * 297 * akpm: except if we're journalling data, and write() output is 298 * also part of a shared mapping, and another thread has 299 * decided to launch a writepage() against this buffer. 300 */ 301 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in)); 302 303 new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL); 304 305 /* 306 * If a new transaction has already done a buffer copy-out, then 307 * we use that version of the data for the commit. 308 */ 309 jbd_lock_bh_state(bh_in); 310 repeat: 311 if (jh_in->b_frozen_data) { 312 done_copy_out = 1; 313 new_page = virt_to_page(jh_in->b_frozen_data); 314 new_offset = offset_in_page(jh_in->b_frozen_data); 315 } else { 316 new_page = jh2bh(jh_in)->b_page; 317 new_offset = offset_in_page(jh2bh(jh_in)->b_data); 318 } 319 320 mapped_data = kmap_atomic(new_page, KM_USER0); 321 /* 322 * Check for escaping 323 */ 324 if (*((__be32 *)(mapped_data + new_offset)) == 325 cpu_to_be32(JBD2_MAGIC_NUMBER)) { 326 need_copy_out = 1; 327 do_escape = 1; 328 } 329 kunmap_atomic(mapped_data, KM_USER0); 330 331 /* 332 * Do we need to do a data copy? 333 */ 334 if (need_copy_out && !done_copy_out) { 335 char *tmp; 336 337 jbd_unlock_bh_state(bh_in); 338 tmp = jbd2_slab_alloc(bh_in->b_size, GFP_NOFS); 339 jbd_lock_bh_state(bh_in); 340 if (jh_in->b_frozen_data) { 341 jbd2_slab_free(tmp, bh_in->b_size); 342 goto repeat; 343 } 344 345 jh_in->b_frozen_data = tmp; 346 mapped_data = kmap_atomic(new_page, KM_USER0); 347 memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size); 348 kunmap_atomic(mapped_data, KM_USER0); 349 350 new_page = virt_to_page(tmp); 351 new_offset = offset_in_page(tmp); 352 done_copy_out = 1; 353 } 354 355 /* 356 * Did we need to do an escaping? Now we've done all the 357 * copying, we can finally do so. 358 */ 359 if (do_escape) { 360 mapped_data = kmap_atomic(new_page, KM_USER0); 361 *((unsigned int *)(mapped_data + new_offset)) = 0; 362 kunmap_atomic(mapped_data, KM_USER0); 363 } 364 365 /* keep subsequent assertions sane */ 366 new_bh->b_state = 0; 367 init_buffer(new_bh, NULL, NULL); 368 atomic_set(&new_bh->b_count, 1); 369 jbd_unlock_bh_state(bh_in); 370 371 new_jh = jbd2_journal_add_journal_head(new_bh); /* This sleeps */ 372 373 set_bh_page(new_bh, new_page, new_offset); 374 new_jh->b_transaction = NULL; 375 new_bh->b_size = jh2bh(jh_in)->b_size; 376 new_bh->b_bdev = transaction->t_journal->j_dev; 377 new_bh->b_blocknr = blocknr; 378 set_buffer_mapped(new_bh); 379 set_buffer_dirty(new_bh); 380 381 *jh_out = new_jh; 382 383 /* 384 * The to-be-written buffer needs to get moved to the io queue, 385 * and the original buffer whose contents we are shadowing or 386 * copying is moved to the transaction's shadow queue. 387 */ 388 JBUFFER_TRACE(jh_in, "file as BJ_Shadow"); 389 jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow); 390 JBUFFER_TRACE(new_jh, "file as BJ_IO"); 391 jbd2_journal_file_buffer(new_jh, transaction, BJ_IO); 392 393 return do_escape | (done_copy_out << 1); 394 } 395 396 /* 397 * Allocation code for the journal file. Manage the space left in the 398 * journal, so that we can begin checkpointing when appropriate. 399 */ 400 401 /* 402 * __jbd2_log_space_left: Return the number of free blocks left in the journal. 403 * 404 * Called with the journal already locked. 405 * 406 * Called under j_state_lock 407 */ 408 409 int __jbd2_log_space_left(journal_t *journal) 410 { 411 int left = journal->j_free; 412 413 assert_spin_locked(&journal->j_state_lock); 414 415 /* 416 * Be pessimistic here about the number of those free blocks which 417 * might be required for log descriptor control blocks. 418 */ 419 420 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */ 421 422 left -= MIN_LOG_RESERVED_BLOCKS; 423 424 if (left <= 0) 425 return 0; 426 left -= (left >> 3); 427 return left; 428 } 429 430 /* 431 * Called under j_state_lock. Returns true if a transaction was started. 432 */ 433 int __jbd2_log_start_commit(journal_t *journal, tid_t target) 434 { 435 /* 436 * Are we already doing a recent enough commit? 437 */ 438 if (!tid_geq(journal->j_commit_request, target)) { 439 /* 440 * We want a new commit: OK, mark the request and wakup the 441 * commit thread. We do _not_ do the commit ourselves. 442 */ 443 444 journal->j_commit_request = target; 445 jbd_debug(1, "JBD: requesting commit %d/%d\n", 446 journal->j_commit_request, 447 journal->j_commit_sequence); 448 wake_up(&journal->j_wait_commit); 449 return 1; 450 } 451 return 0; 452 } 453 454 int jbd2_log_start_commit(journal_t *journal, tid_t tid) 455 { 456 int ret; 457 458 spin_lock(&journal->j_state_lock); 459 ret = __jbd2_log_start_commit(journal, tid); 460 spin_unlock(&journal->j_state_lock); 461 return ret; 462 } 463 464 /* 465 * Force and wait upon a commit if the calling process is not within 466 * transaction. This is used for forcing out undo-protected data which contains 467 * bitmaps, when the fs is running out of space. 468 * 469 * We can only force the running transaction if we don't have an active handle; 470 * otherwise, we will deadlock. 471 * 472 * Returns true if a transaction was started. 473 */ 474 int jbd2_journal_force_commit_nested(journal_t *journal) 475 { 476 transaction_t *transaction = NULL; 477 tid_t tid; 478 479 spin_lock(&journal->j_state_lock); 480 if (journal->j_running_transaction && !current->journal_info) { 481 transaction = journal->j_running_transaction; 482 __jbd2_log_start_commit(journal, transaction->t_tid); 483 } else if (journal->j_committing_transaction) 484 transaction = journal->j_committing_transaction; 485 486 if (!transaction) { 487 spin_unlock(&journal->j_state_lock); 488 return 0; /* Nothing to retry */ 489 } 490 491 tid = transaction->t_tid; 492 spin_unlock(&journal->j_state_lock); 493 jbd2_log_wait_commit(journal, tid); 494 return 1; 495 } 496 497 /* 498 * Start a commit of the current running transaction (if any). Returns true 499 * if a transaction was started, and fills its tid in at *ptid 500 */ 501 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid) 502 { 503 int ret = 0; 504 505 spin_lock(&journal->j_state_lock); 506 if (journal->j_running_transaction) { 507 tid_t tid = journal->j_running_transaction->t_tid; 508 509 ret = __jbd2_log_start_commit(journal, tid); 510 if (ret && ptid) 511 *ptid = tid; 512 } else if (journal->j_committing_transaction && ptid) { 513 /* 514 * If ext3_write_super() recently started a commit, then we 515 * have to wait for completion of that transaction 516 */ 517 *ptid = journal->j_committing_transaction->t_tid; 518 ret = 1; 519 } 520 spin_unlock(&journal->j_state_lock); 521 return ret; 522 } 523 524 /* 525 * Wait for a specified commit to complete. 526 * The caller may not hold the journal lock. 527 */ 528 int jbd2_log_wait_commit(journal_t *journal, tid_t tid) 529 { 530 int err = 0; 531 532 #ifdef CONFIG_JBD2_DEBUG 533 spin_lock(&journal->j_state_lock); 534 if (!tid_geq(journal->j_commit_request, tid)) { 535 printk(KERN_EMERG 536 "%s: error: j_commit_request=%d, tid=%d\n", 537 __FUNCTION__, journal->j_commit_request, tid); 538 } 539 spin_unlock(&journal->j_state_lock); 540 #endif 541 spin_lock(&journal->j_state_lock); 542 while (tid_gt(tid, journal->j_commit_sequence)) { 543 jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n", 544 tid, journal->j_commit_sequence); 545 wake_up(&journal->j_wait_commit); 546 spin_unlock(&journal->j_state_lock); 547 wait_event(journal->j_wait_done_commit, 548 !tid_gt(tid, journal->j_commit_sequence)); 549 spin_lock(&journal->j_state_lock); 550 } 551 spin_unlock(&journal->j_state_lock); 552 553 if (unlikely(is_journal_aborted(journal))) { 554 printk(KERN_EMERG "journal commit I/O error\n"); 555 err = -EIO; 556 } 557 return err; 558 } 559 560 /* 561 * Log buffer allocation routines: 562 */ 563 564 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp) 565 { 566 unsigned long blocknr; 567 568 spin_lock(&journal->j_state_lock); 569 J_ASSERT(journal->j_free > 1); 570 571 blocknr = journal->j_head; 572 journal->j_head++; 573 journal->j_free--; 574 if (journal->j_head == journal->j_last) 575 journal->j_head = journal->j_first; 576 spin_unlock(&journal->j_state_lock); 577 return jbd2_journal_bmap(journal, blocknr, retp); 578 } 579 580 /* 581 * Conversion of logical to physical block numbers for the journal 582 * 583 * On external journals the journal blocks are identity-mapped, so 584 * this is a no-op. If needed, we can use j_blk_offset - everything is 585 * ready. 586 */ 587 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr, 588 unsigned long long *retp) 589 { 590 int err = 0; 591 unsigned long long ret; 592 593 if (journal->j_inode) { 594 ret = bmap(journal->j_inode, blocknr); 595 if (ret) 596 *retp = ret; 597 else { 598 char b[BDEVNAME_SIZE]; 599 600 printk(KERN_ALERT "%s: journal block not found " 601 "at offset %lu on %s\n", 602 __FUNCTION__, 603 blocknr, 604 bdevname(journal->j_dev, b)); 605 err = -EIO; 606 __journal_abort_soft(journal, err); 607 } 608 } else { 609 *retp = blocknr; /* +journal->j_blk_offset */ 610 } 611 return err; 612 } 613 614 /* 615 * We play buffer_head aliasing tricks to write data/metadata blocks to 616 * the journal without copying their contents, but for journal 617 * descriptor blocks we do need to generate bona fide buffers. 618 * 619 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying 620 * the buffer's contents they really should run flush_dcache_page(bh->b_page). 621 * But we don't bother doing that, so there will be coherency problems with 622 * mmaps of blockdevs which hold live JBD-controlled filesystems. 623 */ 624 struct journal_head *jbd2_journal_get_descriptor_buffer(journal_t *journal) 625 { 626 struct buffer_head *bh; 627 unsigned long long blocknr; 628 int err; 629 630 err = jbd2_journal_next_log_block(journal, &blocknr); 631 632 if (err) 633 return NULL; 634 635 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize); 636 lock_buffer(bh); 637 memset(bh->b_data, 0, journal->j_blocksize); 638 set_buffer_uptodate(bh); 639 unlock_buffer(bh); 640 BUFFER_TRACE(bh, "return this buffer"); 641 return jbd2_journal_add_journal_head(bh); 642 } 643 644 /* 645 * Management for journal control blocks: functions to create and 646 * destroy journal_t structures, and to initialise and read existing 647 * journal blocks from disk. */ 648 649 /* First: create and setup a journal_t object in memory. We initialise 650 * very few fields yet: that has to wait until we have created the 651 * journal structures from from scratch, or loaded them from disk. */ 652 653 static journal_t * journal_init_common (void) 654 { 655 journal_t *journal; 656 int err; 657 658 journal = jbd_kmalloc(sizeof(*journal), GFP_KERNEL); 659 if (!journal) 660 goto fail; 661 memset(journal, 0, sizeof(*journal)); 662 663 init_waitqueue_head(&journal->j_wait_transaction_locked); 664 init_waitqueue_head(&journal->j_wait_logspace); 665 init_waitqueue_head(&journal->j_wait_done_commit); 666 init_waitqueue_head(&journal->j_wait_checkpoint); 667 init_waitqueue_head(&journal->j_wait_commit); 668 init_waitqueue_head(&journal->j_wait_updates); 669 mutex_init(&journal->j_barrier); 670 mutex_init(&journal->j_checkpoint_mutex); 671 spin_lock_init(&journal->j_revoke_lock); 672 spin_lock_init(&journal->j_list_lock); 673 spin_lock_init(&journal->j_state_lock); 674 675 journal->j_commit_interval = (HZ * JBD_DEFAULT_MAX_COMMIT_AGE); 676 677 /* The journal is marked for error until we succeed with recovery! */ 678 journal->j_flags = JBD2_ABORT; 679 680 /* Set up a default-sized revoke table for the new mount. */ 681 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH); 682 if (err) { 683 kfree(journal); 684 goto fail; 685 } 686 return journal; 687 fail: 688 return NULL; 689 } 690 691 /* jbd2_journal_init_dev and jbd2_journal_init_inode: 692 * 693 * Create a journal structure assigned some fixed set of disk blocks to 694 * the journal. We don't actually touch those disk blocks yet, but we 695 * need to set up all of the mapping information to tell the journaling 696 * system where the journal blocks are. 697 * 698 */ 699 700 /** 701 * journal_t * jbd2_journal_init_dev() - creates an initialises a journal structure 702 * @bdev: Block device on which to create the journal 703 * @fs_dev: Device which hold journalled filesystem for this journal. 704 * @start: Block nr Start of journal. 705 * @len: Length of the journal in blocks. 706 * @blocksize: blocksize of journalling device 707 * @returns: a newly created journal_t * 708 * 709 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous 710 * range of blocks on an arbitrary block device. 711 * 712 */ 713 journal_t * jbd2_journal_init_dev(struct block_device *bdev, 714 struct block_device *fs_dev, 715 unsigned long long start, int len, int blocksize) 716 { 717 journal_t *journal = journal_init_common(); 718 struct buffer_head *bh; 719 int n; 720 721 if (!journal) 722 return NULL; 723 724 /* journal descriptor can store up to n blocks -bzzz */ 725 journal->j_blocksize = blocksize; 726 n = journal->j_blocksize / sizeof(journal_block_tag_t); 727 journal->j_wbufsize = n; 728 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL); 729 if (!journal->j_wbuf) { 730 printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n", 731 __FUNCTION__); 732 kfree(journal); 733 journal = NULL; 734 goto out; 735 } 736 journal->j_dev = bdev; 737 journal->j_fs_dev = fs_dev; 738 journal->j_blk_offset = start; 739 journal->j_maxlen = len; 740 741 bh = __getblk(journal->j_dev, start, journal->j_blocksize); 742 J_ASSERT(bh != NULL); 743 journal->j_sb_buffer = bh; 744 journal->j_superblock = (journal_superblock_t *)bh->b_data; 745 out: 746 return journal; 747 } 748 749 /** 750 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode. 751 * @inode: An inode to create the journal in 752 * 753 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as 754 * the journal. The inode must exist already, must support bmap() and 755 * must have all data blocks preallocated. 756 */ 757 journal_t * jbd2_journal_init_inode (struct inode *inode) 758 { 759 struct buffer_head *bh; 760 journal_t *journal = journal_init_common(); 761 int err; 762 int n; 763 unsigned long long blocknr; 764 765 if (!journal) 766 return NULL; 767 768 journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev; 769 journal->j_inode = inode; 770 jbd_debug(1, 771 "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n", 772 journal, inode->i_sb->s_id, inode->i_ino, 773 (long long) inode->i_size, 774 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize); 775 776 journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits; 777 journal->j_blocksize = inode->i_sb->s_blocksize; 778 779 /* journal descriptor can store up to n blocks -bzzz */ 780 n = journal->j_blocksize / sizeof(journal_block_tag_t); 781 journal->j_wbufsize = n; 782 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL); 783 if (!journal->j_wbuf) { 784 printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n", 785 __FUNCTION__); 786 kfree(journal); 787 return NULL; 788 } 789 790 err = jbd2_journal_bmap(journal, 0, &blocknr); 791 /* If that failed, give up */ 792 if (err) { 793 printk(KERN_ERR "%s: Cannnot locate journal superblock\n", 794 __FUNCTION__); 795 kfree(journal); 796 return NULL; 797 } 798 799 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize); 800 J_ASSERT(bh != NULL); 801 journal->j_sb_buffer = bh; 802 journal->j_superblock = (journal_superblock_t *)bh->b_data; 803 804 return journal; 805 } 806 807 /* 808 * If the journal init or create aborts, we need to mark the journal 809 * superblock as being NULL to prevent the journal destroy from writing 810 * back a bogus superblock. 811 */ 812 static void journal_fail_superblock (journal_t *journal) 813 { 814 struct buffer_head *bh = journal->j_sb_buffer; 815 brelse(bh); 816 journal->j_sb_buffer = NULL; 817 } 818 819 /* 820 * Given a journal_t structure, initialise the various fields for 821 * startup of a new journaling session. We use this both when creating 822 * a journal, and after recovering an old journal to reset it for 823 * subsequent use. 824 */ 825 826 static int journal_reset(journal_t *journal) 827 { 828 journal_superblock_t *sb = journal->j_superblock; 829 unsigned long long first, last; 830 831 first = be32_to_cpu(sb->s_first); 832 last = be32_to_cpu(sb->s_maxlen); 833 834 journal->j_first = first; 835 journal->j_last = last; 836 837 journal->j_head = first; 838 journal->j_tail = first; 839 journal->j_free = last - first; 840 841 journal->j_tail_sequence = journal->j_transaction_sequence; 842 journal->j_commit_sequence = journal->j_transaction_sequence - 1; 843 journal->j_commit_request = journal->j_commit_sequence; 844 845 journal->j_max_transaction_buffers = journal->j_maxlen / 4; 846 847 /* Add the dynamic fields and write it to disk. */ 848 jbd2_journal_update_superblock(journal, 1); 849 return jbd2_journal_start_thread(journal); 850 } 851 852 /** 853 * int jbd2_journal_create() - Initialise the new journal file 854 * @journal: Journal to create. This structure must have been initialised 855 * 856 * Given a journal_t structure which tells us which disk blocks we can 857 * use, create a new journal superblock and initialise all of the 858 * journal fields from scratch. 859 **/ 860 int jbd2_journal_create(journal_t *journal) 861 { 862 unsigned long long blocknr; 863 struct buffer_head *bh; 864 journal_superblock_t *sb; 865 int i, err; 866 867 if (journal->j_maxlen < JBD2_MIN_JOURNAL_BLOCKS) { 868 printk (KERN_ERR "Journal length (%d blocks) too short.\n", 869 journal->j_maxlen); 870 journal_fail_superblock(journal); 871 return -EINVAL; 872 } 873 874 if (journal->j_inode == NULL) { 875 /* 876 * We don't know what block to start at! 877 */ 878 printk(KERN_EMERG 879 "%s: creation of journal on external device!\n", 880 __FUNCTION__); 881 BUG(); 882 } 883 884 /* Zero out the entire journal on disk. We cannot afford to 885 have any blocks on disk beginning with JBD2_MAGIC_NUMBER. */ 886 jbd_debug(1, "JBD: Zeroing out journal blocks...\n"); 887 for (i = 0; i < journal->j_maxlen; i++) { 888 err = jbd2_journal_bmap(journal, i, &blocknr); 889 if (err) 890 return err; 891 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize); 892 lock_buffer(bh); 893 memset (bh->b_data, 0, journal->j_blocksize); 894 BUFFER_TRACE(bh, "marking dirty"); 895 mark_buffer_dirty(bh); 896 BUFFER_TRACE(bh, "marking uptodate"); 897 set_buffer_uptodate(bh); 898 unlock_buffer(bh); 899 __brelse(bh); 900 } 901 902 sync_blockdev(journal->j_dev); 903 jbd_debug(1, "JBD: journal cleared.\n"); 904 905 /* OK, fill in the initial static fields in the new superblock */ 906 sb = journal->j_superblock; 907 908 sb->s_header.h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER); 909 sb->s_header.h_blocktype = cpu_to_be32(JBD2_SUPERBLOCK_V2); 910 911 sb->s_blocksize = cpu_to_be32(journal->j_blocksize); 912 sb->s_maxlen = cpu_to_be32(journal->j_maxlen); 913 sb->s_first = cpu_to_be32(1); 914 915 journal->j_transaction_sequence = 1; 916 917 journal->j_flags &= ~JBD2_ABORT; 918 journal->j_format_version = 2; 919 920 return journal_reset(journal); 921 } 922 923 /** 924 * void jbd2_journal_update_superblock() - Update journal sb on disk. 925 * @journal: The journal to update. 926 * @wait: Set to '0' if you don't want to wait for IO completion. 927 * 928 * Update a journal's dynamic superblock fields and write it to disk, 929 * optionally waiting for the IO to complete. 930 */ 931 void jbd2_journal_update_superblock(journal_t *journal, int wait) 932 { 933 journal_superblock_t *sb = journal->j_superblock; 934 struct buffer_head *bh = journal->j_sb_buffer; 935 936 /* 937 * As a special case, if the on-disk copy is already marked as needing 938 * no recovery (s_start == 0) and there are no outstanding transactions 939 * in the filesystem, then we can safely defer the superblock update 940 * until the next commit by setting JBD2_FLUSHED. This avoids 941 * attempting a write to a potential-readonly device. 942 */ 943 if (sb->s_start == 0 && journal->j_tail_sequence == 944 journal->j_transaction_sequence) { 945 jbd_debug(1,"JBD: Skipping superblock update on recovered sb " 946 "(start %ld, seq %d, errno %d)\n", 947 journal->j_tail, journal->j_tail_sequence, 948 journal->j_errno); 949 goto out; 950 } 951 952 spin_lock(&journal->j_state_lock); 953 jbd_debug(1,"JBD: updating superblock (start %ld, seq %d, errno %d)\n", 954 journal->j_tail, journal->j_tail_sequence, journal->j_errno); 955 956 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence); 957 sb->s_start = cpu_to_be32(journal->j_tail); 958 sb->s_errno = cpu_to_be32(journal->j_errno); 959 spin_unlock(&journal->j_state_lock); 960 961 BUFFER_TRACE(bh, "marking dirty"); 962 mark_buffer_dirty(bh); 963 if (wait) 964 sync_dirty_buffer(bh); 965 else 966 ll_rw_block(SWRITE, 1, &bh); 967 968 out: 969 /* If we have just flushed the log (by marking s_start==0), then 970 * any future commit will have to be careful to update the 971 * superblock again to re-record the true start of the log. */ 972 973 spin_lock(&journal->j_state_lock); 974 if (sb->s_start) 975 journal->j_flags &= ~JBD2_FLUSHED; 976 else 977 journal->j_flags |= JBD2_FLUSHED; 978 spin_unlock(&journal->j_state_lock); 979 } 980 981 /* 982 * Read the superblock for a given journal, performing initial 983 * validation of the format. 984 */ 985 986 static int journal_get_superblock(journal_t *journal) 987 { 988 struct buffer_head *bh; 989 journal_superblock_t *sb; 990 int err = -EIO; 991 992 bh = journal->j_sb_buffer; 993 994 J_ASSERT(bh != NULL); 995 if (!buffer_uptodate(bh)) { 996 ll_rw_block(READ, 1, &bh); 997 wait_on_buffer(bh); 998 if (!buffer_uptodate(bh)) { 999 printk (KERN_ERR 1000 "JBD: IO error reading journal superblock\n"); 1001 goto out; 1002 } 1003 } 1004 1005 sb = journal->j_superblock; 1006 1007 err = -EINVAL; 1008 1009 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) || 1010 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) { 1011 printk(KERN_WARNING "JBD: no valid journal superblock found\n"); 1012 goto out; 1013 } 1014 1015 switch(be32_to_cpu(sb->s_header.h_blocktype)) { 1016 case JBD2_SUPERBLOCK_V1: 1017 journal->j_format_version = 1; 1018 break; 1019 case JBD2_SUPERBLOCK_V2: 1020 journal->j_format_version = 2; 1021 break; 1022 default: 1023 printk(KERN_WARNING "JBD: unrecognised superblock format ID\n"); 1024 goto out; 1025 } 1026 1027 if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen) 1028 journal->j_maxlen = be32_to_cpu(sb->s_maxlen); 1029 else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) { 1030 printk (KERN_WARNING "JBD: journal file too short\n"); 1031 goto out; 1032 } 1033 1034 return 0; 1035 1036 out: 1037 journal_fail_superblock(journal); 1038 return err; 1039 } 1040 1041 /* 1042 * Load the on-disk journal superblock and read the key fields into the 1043 * journal_t. 1044 */ 1045 1046 static int load_superblock(journal_t *journal) 1047 { 1048 int err; 1049 journal_superblock_t *sb; 1050 1051 err = journal_get_superblock(journal); 1052 if (err) 1053 return err; 1054 1055 sb = journal->j_superblock; 1056 1057 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence); 1058 journal->j_tail = be32_to_cpu(sb->s_start); 1059 journal->j_first = be32_to_cpu(sb->s_first); 1060 journal->j_last = be32_to_cpu(sb->s_maxlen); 1061 journal->j_errno = be32_to_cpu(sb->s_errno); 1062 1063 return 0; 1064 } 1065 1066 1067 /** 1068 * int jbd2_journal_load() - Read journal from disk. 1069 * @journal: Journal to act on. 1070 * 1071 * Given a journal_t structure which tells us which disk blocks contain 1072 * a journal, read the journal from disk to initialise the in-memory 1073 * structures. 1074 */ 1075 int jbd2_journal_load(journal_t *journal) 1076 { 1077 int err; 1078 journal_superblock_t *sb; 1079 1080 err = load_superblock(journal); 1081 if (err) 1082 return err; 1083 1084 sb = journal->j_superblock; 1085 /* If this is a V2 superblock, then we have to check the 1086 * features flags on it. */ 1087 1088 if (journal->j_format_version >= 2) { 1089 if ((sb->s_feature_ro_compat & 1090 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) || 1091 (sb->s_feature_incompat & 1092 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) { 1093 printk (KERN_WARNING 1094 "JBD: Unrecognised features on journal\n"); 1095 return -EINVAL; 1096 } 1097 } 1098 1099 /* 1100 * Create a slab for this blocksize 1101 */ 1102 err = jbd2_journal_create_jbd_slab(be32_to_cpu(sb->s_blocksize)); 1103 if (err) 1104 return err; 1105 1106 /* Let the recovery code check whether it needs to recover any 1107 * data from the journal. */ 1108 if (jbd2_journal_recover(journal)) 1109 goto recovery_error; 1110 1111 /* OK, we've finished with the dynamic journal bits: 1112 * reinitialise the dynamic contents of the superblock in memory 1113 * and reset them on disk. */ 1114 if (journal_reset(journal)) 1115 goto recovery_error; 1116 1117 journal->j_flags &= ~JBD2_ABORT; 1118 journal->j_flags |= JBD2_LOADED; 1119 return 0; 1120 1121 recovery_error: 1122 printk (KERN_WARNING "JBD: recovery failed\n"); 1123 return -EIO; 1124 } 1125 1126 /** 1127 * void jbd2_journal_destroy() - Release a journal_t structure. 1128 * @journal: Journal to act on. 1129 * 1130 * Release a journal_t structure once it is no longer in use by the 1131 * journaled object. 1132 */ 1133 void jbd2_journal_destroy(journal_t *journal) 1134 { 1135 /* Wait for the commit thread to wake up and die. */ 1136 journal_kill_thread(journal); 1137 1138 /* Force a final log commit */ 1139 if (journal->j_running_transaction) 1140 jbd2_journal_commit_transaction(journal); 1141 1142 /* Force any old transactions to disk */ 1143 1144 /* Totally anal locking here... */ 1145 spin_lock(&journal->j_list_lock); 1146 while (journal->j_checkpoint_transactions != NULL) { 1147 spin_unlock(&journal->j_list_lock); 1148 jbd2_log_do_checkpoint(journal); 1149 spin_lock(&journal->j_list_lock); 1150 } 1151 1152 J_ASSERT(journal->j_running_transaction == NULL); 1153 J_ASSERT(journal->j_committing_transaction == NULL); 1154 J_ASSERT(journal->j_checkpoint_transactions == NULL); 1155 spin_unlock(&journal->j_list_lock); 1156 1157 /* We can now mark the journal as empty. */ 1158 journal->j_tail = 0; 1159 journal->j_tail_sequence = ++journal->j_transaction_sequence; 1160 if (journal->j_sb_buffer) { 1161 jbd2_journal_update_superblock(journal, 1); 1162 brelse(journal->j_sb_buffer); 1163 } 1164 1165 if (journal->j_inode) 1166 iput(journal->j_inode); 1167 if (journal->j_revoke) 1168 jbd2_journal_destroy_revoke(journal); 1169 kfree(journal->j_wbuf); 1170 kfree(journal); 1171 } 1172 1173 1174 /** 1175 *int jbd2_journal_check_used_features () - Check if features specified are used. 1176 * @journal: Journal to check. 1177 * @compat: bitmask of compatible features 1178 * @ro: bitmask of features that force read-only mount 1179 * @incompat: bitmask of incompatible features 1180 * 1181 * Check whether the journal uses all of a given set of 1182 * features. Return true (non-zero) if it does. 1183 **/ 1184 1185 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat, 1186 unsigned long ro, unsigned long incompat) 1187 { 1188 journal_superblock_t *sb; 1189 1190 if (!compat && !ro && !incompat) 1191 return 1; 1192 if (journal->j_format_version == 1) 1193 return 0; 1194 1195 sb = journal->j_superblock; 1196 1197 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) && 1198 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) && 1199 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat)) 1200 return 1; 1201 1202 return 0; 1203 } 1204 1205 /** 1206 * int jbd2_journal_check_available_features() - Check feature set in journalling layer 1207 * @journal: Journal to check. 1208 * @compat: bitmask of compatible features 1209 * @ro: bitmask of features that force read-only mount 1210 * @incompat: bitmask of incompatible features 1211 * 1212 * Check whether the journaling code supports the use of 1213 * all of a given set of features on this journal. Return true 1214 * (non-zero) if it can. */ 1215 1216 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat, 1217 unsigned long ro, unsigned long incompat) 1218 { 1219 journal_superblock_t *sb; 1220 1221 if (!compat && !ro && !incompat) 1222 return 1; 1223 1224 sb = journal->j_superblock; 1225 1226 /* We can support any known requested features iff the 1227 * superblock is in version 2. Otherwise we fail to support any 1228 * extended sb features. */ 1229 1230 if (journal->j_format_version != 2) 1231 return 0; 1232 1233 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat && 1234 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro && 1235 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat) 1236 return 1; 1237 1238 return 0; 1239 } 1240 1241 /** 1242 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock 1243 * @journal: Journal to act on. 1244 * @compat: bitmask of compatible features 1245 * @ro: bitmask of features that force read-only mount 1246 * @incompat: bitmask of incompatible features 1247 * 1248 * Mark a given journal feature as present on the 1249 * superblock. Returns true if the requested features could be set. 1250 * 1251 */ 1252 1253 int jbd2_journal_set_features (journal_t *journal, unsigned long compat, 1254 unsigned long ro, unsigned long incompat) 1255 { 1256 journal_superblock_t *sb; 1257 1258 if (jbd2_journal_check_used_features(journal, compat, ro, incompat)) 1259 return 1; 1260 1261 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat)) 1262 return 0; 1263 1264 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n", 1265 compat, ro, incompat); 1266 1267 sb = journal->j_superblock; 1268 1269 sb->s_feature_compat |= cpu_to_be32(compat); 1270 sb->s_feature_ro_compat |= cpu_to_be32(ro); 1271 sb->s_feature_incompat |= cpu_to_be32(incompat); 1272 1273 return 1; 1274 } 1275 1276 1277 /** 1278 * int jbd2_journal_update_format () - Update on-disk journal structure. 1279 * @journal: Journal to act on. 1280 * 1281 * Given an initialised but unloaded journal struct, poke about in the 1282 * on-disk structure to update it to the most recent supported version. 1283 */ 1284 int jbd2_journal_update_format (journal_t *journal) 1285 { 1286 journal_superblock_t *sb; 1287 int err; 1288 1289 err = journal_get_superblock(journal); 1290 if (err) 1291 return err; 1292 1293 sb = journal->j_superblock; 1294 1295 switch (be32_to_cpu(sb->s_header.h_blocktype)) { 1296 case JBD2_SUPERBLOCK_V2: 1297 return 0; 1298 case JBD2_SUPERBLOCK_V1: 1299 return journal_convert_superblock_v1(journal, sb); 1300 default: 1301 break; 1302 } 1303 return -EINVAL; 1304 } 1305 1306 static int journal_convert_superblock_v1(journal_t *journal, 1307 journal_superblock_t *sb) 1308 { 1309 int offset, blocksize; 1310 struct buffer_head *bh; 1311 1312 printk(KERN_WARNING 1313 "JBD: Converting superblock from version 1 to 2.\n"); 1314 1315 /* Pre-initialise new fields to zero */ 1316 offset = ((char *) &(sb->s_feature_compat)) - ((char *) sb); 1317 blocksize = be32_to_cpu(sb->s_blocksize); 1318 memset(&sb->s_feature_compat, 0, blocksize-offset); 1319 1320 sb->s_nr_users = cpu_to_be32(1); 1321 sb->s_header.h_blocktype = cpu_to_be32(JBD2_SUPERBLOCK_V2); 1322 journal->j_format_version = 2; 1323 1324 bh = journal->j_sb_buffer; 1325 BUFFER_TRACE(bh, "marking dirty"); 1326 mark_buffer_dirty(bh); 1327 sync_dirty_buffer(bh); 1328 return 0; 1329 } 1330 1331 1332 /** 1333 * int jbd2_journal_flush () - Flush journal 1334 * @journal: Journal to act on. 1335 * 1336 * Flush all data for a given journal to disk and empty the journal. 1337 * Filesystems can use this when remounting readonly to ensure that 1338 * recovery does not need to happen on remount. 1339 */ 1340 1341 int jbd2_journal_flush(journal_t *journal) 1342 { 1343 int err = 0; 1344 transaction_t *transaction = NULL; 1345 unsigned long old_tail; 1346 1347 spin_lock(&journal->j_state_lock); 1348 1349 /* Force everything buffered to the log... */ 1350 if (journal->j_running_transaction) { 1351 transaction = journal->j_running_transaction; 1352 __jbd2_log_start_commit(journal, transaction->t_tid); 1353 } else if (journal->j_committing_transaction) 1354 transaction = journal->j_committing_transaction; 1355 1356 /* Wait for the log commit to complete... */ 1357 if (transaction) { 1358 tid_t tid = transaction->t_tid; 1359 1360 spin_unlock(&journal->j_state_lock); 1361 jbd2_log_wait_commit(journal, tid); 1362 } else { 1363 spin_unlock(&journal->j_state_lock); 1364 } 1365 1366 /* ...and flush everything in the log out to disk. */ 1367 spin_lock(&journal->j_list_lock); 1368 while (!err && journal->j_checkpoint_transactions != NULL) { 1369 spin_unlock(&journal->j_list_lock); 1370 err = jbd2_log_do_checkpoint(journal); 1371 spin_lock(&journal->j_list_lock); 1372 } 1373 spin_unlock(&journal->j_list_lock); 1374 jbd2_cleanup_journal_tail(journal); 1375 1376 /* Finally, mark the journal as really needing no recovery. 1377 * This sets s_start==0 in the underlying superblock, which is 1378 * the magic code for a fully-recovered superblock. Any future 1379 * commits of data to the journal will restore the current 1380 * s_start value. */ 1381 spin_lock(&journal->j_state_lock); 1382 old_tail = journal->j_tail; 1383 journal->j_tail = 0; 1384 spin_unlock(&journal->j_state_lock); 1385 jbd2_journal_update_superblock(journal, 1); 1386 spin_lock(&journal->j_state_lock); 1387 journal->j_tail = old_tail; 1388 1389 J_ASSERT(!journal->j_running_transaction); 1390 J_ASSERT(!journal->j_committing_transaction); 1391 J_ASSERT(!journal->j_checkpoint_transactions); 1392 J_ASSERT(journal->j_head == journal->j_tail); 1393 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence); 1394 spin_unlock(&journal->j_state_lock); 1395 return err; 1396 } 1397 1398 /** 1399 * int jbd2_journal_wipe() - Wipe journal contents 1400 * @journal: Journal to act on. 1401 * @write: flag (see below) 1402 * 1403 * Wipe out all of the contents of a journal, safely. This will produce 1404 * a warning if the journal contains any valid recovery information. 1405 * Must be called between journal_init_*() and jbd2_journal_load(). 1406 * 1407 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise 1408 * we merely suppress recovery. 1409 */ 1410 1411 int jbd2_journal_wipe(journal_t *journal, int write) 1412 { 1413 journal_superblock_t *sb; 1414 int err = 0; 1415 1416 J_ASSERT (!(journal->j_flags & JBD2_LOADED)); 1417 1418 err = load_superblock(journal); 1419 if (err) 1420 return err; 1421 1422 sb = journal->j_superblock; 1423 1424 if (!journal->j_tail) 1425 goto no_recovery; 1426 1427 printk (KERN_WARNING "JBD: %s recovery information on journal\n", 1428 write ? "Clearing" : "Ignoring"); 1429 1430 err = jbd2_journal_skip_recovery(journal); 1431 if (write) 1432 jbd2_journal_update_superblock(journal, 1); 1433 1434 no_recovery: 1435 return err; 1436 } 1437 1438 /* 1439 * journal_dev_name: format a character string to describe on what 1440 * device this journal is present. 1441 */ 1442 1443 static const char *journal_dev_name(journal_t *journal, char *buffer) 1444 { 1445 struct block_device *bdev; 1446 1447 if (journal->j_inode) 1448 bdev = journal->j_inode->i_sb->s_bdev; 1449 else 1450 bdev = journal->j_dev; 1451 1452 return bdevname(bdev, buffer); 1453 } 1454 1455 /* 1456 * Journal abort has very specific semantics, which we describe 1457 * for journal abort. 1458 * 1459 * Two internal function, which provide abort to te jbd layer 1460 * itself are here. 1461 */ 1462 1463 /* 1464 * Quick version for internal journal use (doesn't lock the journal). 1465 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else, 1466 * and don't attempt to make any other journal updates. 1467 */ 1468 void __jbd2_journal_abort_hard(journal_t *journal) 1469 { 1470 transaction_t *transaction; 1471 char b[BDEVNAME_SIZE]; 1472 1473 if (journal->j_flags & JBD2_ABORT) 1474 return; 1475 1476 printk(KERN_ERR "Aborting journal on device %s.\n", 1477 journal_dev_name(journal, b)); 1478 1479 spin_lock(&journal->j_state_lock); 1480 journal->j_flags |= JBD2_ABORT; 1481 transaction = journal->j_running_transaction; 1482 if (transaction) 1483 __jbd2_log_start_commit(journal, transaction->t_tid); 1484 spin_unlock(&journal->j_state_lock); 1485 } 1486 1487 /* Soft abort: record the abort error status in the journal superblock, 1488 * but don't do any other IO. */ 1489 static void __journal_abort_soft (journal_t *journal, int errno) 1490 { 1491 if (journal->j_flags & JBD2_ABORT) 1492 return; 1493 1494 if (!journal->j_errno) 1495 journal->j_errno = errno; 1496 1497 __jbd2_journal_abort_hard(journal); 1498 1499 if (errno) 1500 jbd2_journal_update_superblock(journal, 1); 1501 } 1502 1503 /** 1504 * void jbd2_journal_abort () - Shutdown the journal immediately. 1505 * @journal: the journal to shutdown. 1506 * @errno: an error number to record in the journal indicating 1507 * the reason for the shutdown. 1508 * 1509 * Perform a complete, immediate shutdown of the ENTIRE 1510 * journal (not of a single transaction). This operation cannot be 1511 * undone without closing and reopening the journal. 1512 * 1513 * The jbd2_journal_abort function is intended to support higher level error 1514 * recovery mechanisms such as the ext2/ext3 remount-readonly error 1515 * mode. 1516 * 1517 * Journal abort has very specific semantics. Any existing dirty, 1518 * unjournaled buffers in the main filesystem will still be written to 1519 * disk by bdflush, but the journaling mechanism will be suspended 1520 * immediately and no further transaction commits will be honoured. 1521 * 1522 * Any dirty, journaled buffers will be written back to disk without 1523 * hitting the journal. Atomicity cannot be guaranteed on an aborted 1524 * filesystem, but we _do_ attempt to leave as much data as possible 1525 * behind for fsck to use for cleanup. 1526 * 1527 * Any attempt to get a new transaction handle on a journal which is in 1528 * ABORT state will just result in an -EROFS error return. A 1529 * jbd2_journal_stop on an existing handle will return -EIO if we have 1530 * entered abort state during the update. 1531 * 1532 * Recursive transactions are not disturbed by journal abort until the 1533 * final jbd2_journal_stop, which will receive the -EIO error. 1534 * 1535 * Finally, the jbd2_journal_abort call allows the caller to supply an errno 1536 * which will be recorded (if possible) in the journal superblock. This 1537 * allows a client to record failure conditions in the middle of a 1538 * transaction without having to complete the transaction to record the 1539 * failure to disk. ext3_error, for example, now uses this 1540 * functionality. 1541 * 1542 * Errors which originate from within the journaling layer will NOT 1543 * supply an errno; a null errno implies that absolutely no further 1544 * writes are done to the journal (unless there are any already in 1545 * progress). 1546 * 1547 */ 1548 1549 void jbd2_journal_abort(journal_t *journal, int errno) 1550 { 1551 __journal_abort_soft(journal, errno); 1552 } 1553 1554 /** 1555 * int jbd2_journal_errno () - returns the journal's error state. 1556 * @journal: journal to examine. 1557 * 1558 * This is the errno numbet set with jbd2_journal_abort(), the last 1559 * time the journal was mounted - if the journal was stopped 1560 * without calling abort this will be 0. 1561 * 1562 * If the journal has been aborted on this mount time -EROFS will 1563 * be returned. 1564 */ 1565 int jbd2_journal_errno(journal_t *journal) 1566 { 1567 int err; 1568 1569 spin_lock(&journal->j_state_lock); 1570 if (journal->j_flags & JBD2_ABORT) 1571 err = -EROFS; 1572 else 1573 err = journal->j_errno; 1574 spin_unlock(&journal->j_state_lock); 1575 return err; 1576 } 1577 1578 /** 1579 * int jbd2_journal_clear_err () - clears the journal's error state 1580 * @journal: journal to act on. 1581 * 1582 * An error must be cleared or Acked to take a FS out of readonly 1583 * mode. 1584 */ 1585 int jbd2_journal_clear_err(journal_t *journal) 1586 { 1587 int err = 0; 1588 1589 spin_lock(&journal->j_state_lock); 1590 if (journal->j_flags & JBD2_ABORT) 1591 err = -EROFS; 1592 else 1593 journal->j_errno = 0; 1594 spin_unlock(&journal->j_state_lock); 1595 return err; 1596 } 1597 1598 /** 1599 * void jbd2_journal_ack_err() - Ack journal err. 1600 * @journal: journal to act on. 1601 * 1602 * An error must be cleared or Acked to take a FS out of readonly 1603 * mode. 1604 */ 1605 void jbd2_journal_ack_err(journal_t *journal) 1606 { 1607 spin_lock(&journal->j_state_lock); 1608 if (journal->j_errno) 1609 journal->j_flags |= JBD2_ACK_ERR; 1610 spin_unlock(&journal->j_state_lock); 1611 } 1612 1613 int jbd2_journal_blocks_per_page(struct inode *inode) 1614 { 1615 return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 1616 } 1617 1618 /* 1619 * helper functions to deal with 32 or 64bit block numbers. 1620 */ 1621 size_t journal_tag_bytes(journal_t *journal) 1622 { 1623 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT)) 1624 return JBD_TAG_SIZE64; 1625 else 1626 return JBD_TAG_SIZE32; 1627 } 1628 1629 /* 1630 * Simple support for retrying memory allocations. Introduced to help to 1631 * debug different VM deadlock avoidance strategies. 1632 */ 1633 void * __jbd2_kmalloc (const char *where, size_t size, gfp_t flags, int retry) 1634 { 1635 return kmalloc(size, flags | (retry ? __GFP_NOFAIL : 0)); 1636 } 1637 1638 /* 1639 * jbd slab management: create 1k, 2k, 4k, 8k slabs as needed 1640 * and allocate frozen and commit buffers from these slabs. 1641 * 1642 * Reason for doing this is to avoid, SLAB_DEBUG - since it could 1643 * cause bh to cross page boundary. 1644 */ 1645 1646 #define JBD_MAX_SLABS 5 1647 #define JBD_SLAB_INDEX(size) (size >> 11) 1648 1649 static struct kmem_cache *jbd_slab[JBD_MAX_SLABS]; 1650 static const char *jbd_slab_names[JBD_MAX_SLABS] = { 1651 "jbd2_1k", "jbd2_2k", "jbd2_4k", NULL, "jbd2_8k" 1652 }; 1653 1654 static void jbd2_journal_destroy_jbd_slabs(void) 1655 { 1656 int i; 1657 1658 for (i = 0; i < JBD_MAX_SLABS; i++) { 1659 if (jbd_slab[i]) 1660 kmem_cache_destroy(jbd_slab[i]); 1661 jbd_slab[i] = NULL; 1662 } 1663 } 1664 1665 static int jbd2_journal_create_jbd_slab(size_t slab_size) 1666 { 1667 int i = JBD_SLAB_INDEX(slab_size); 1668 1669 BUG_ON(i >= JBD_MAX_SLABS); 1670 1671 /* 1672 * Check if we already have a slab created for this size 1673 */ 1674 if (jbd_slab[i]) 1675 return 0; 1676 1677 /* 1678 * Create a slab and force alignment to be same as slabsize - 1679 * this will make sure that allocations won't cross the page 1680 * boundary. 1681 */ 1682 jbd_slab[i] = kmem_cache_create(jbd_slab_names[i], 1683 slab_size, slab_size, 0, NULL); 1684 if (!jbd_slab[i]) { 1685 printk(KERN_EMERG "JBD: no memory for jbd_slab cache\n"); 1686 return -ENOMEM; 1687 } 1688 return 0; 1689 } 1690 1691 void * jbd2_slab_alloc(size_t size, gfp_t flags) 1692 { 1693 int idx; 1694 1695 idx = JBD_SLAB_INDEX(size); 1696 BUG_ON(jbd_slab[idx] == NULL); 1697 return kmem_cache_alloc(jbd_slab[idx], flags | __GFP_NOFAIL); 1698 } 1699 1700 void jbd2_slab_free(void *ptr, size_t size) 1701 { 1702 int idx; 1703 1704 idx = JBD_SLAB_INDEX(size); 1705 BUG_ON(jbd_slab[idx] == NULL); 1706 kmem_cache_free(jbd_slab[idx], ptr); 1707 } 1708 1709 /* 1710 * Journal_head storage management 1711 */ 1712 static struct kmem_cache *jbd2_journal_head_cache; 1713 #ifdef CONFIG_JBD2_DEBUG 1714 static atomic_t nr_journal_heads = ATOMIC_INIT(0); 1715 #endif 1716 1717 static int journal_init_jbd2_journal_head_cache(void) 1718 { 1719 int retval; 1720 1721 J_ASSERT(jbd2_journal_head_cache == 0); 1722 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head", 1723 sizeof(struct journal_head), 1724 0, /* offset */ 1725 0, /* flags */ 1726 NULL); /* ctor */ 1727 retval = 0; 1728 if (jbd2_journal_head_cache == 0) { 1729 retval = -ENOMEM; 1730 printk(KERN_EMERG "JBD: no memory for journal_head cache\n"); 1731 } 1732 return retval; 1733 } 1734 1735 static void jbd2_journal_destroy_jbd2_journal_head_cache(void) 1736 { 1737 J_ASSERT(jbd2_journal_head_cache != NULL); 1738 kmem_cache_destroy(jbd2_journal_head_cache); 1739 jbd2_journal_head_cache = NULL; 1740 } 1741 1742 /* 1743 * journal_head splicing and dicing 1744 */ 1745 static struct journal_head *journal_alloc_journal_head(void) 1746 { 1747 struct journal_head *ret; 1748 static unsigned long last_warning; 1749 1750 #ifdef CONFIG_JBD2_DEBUG 1751 atomic_inc(&nr_journal_heads); 1752 #endif 1753 ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS); 1754 if (ret == 0) { 1755 jbd_debug(1, "out of memory for journal_head\n"); 1756 if (time_after(jiffies, last_warning + 5*HZ)) { 1757 printk(KERN_NOTICE "ENOMEM in %s, retrying.\n", 1758 __FUNCTION__); 1759 last_warning = jiffies; 1760 } 1761 while (ret == 0) { 1762 yield(); 1763 ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS); 1764 } 1765 } 1766 return ret; 1767 } 1768 1769 static void journal_free_journal_head(struct journal_head *jh) 1770 { 1771 #ifdef CONFIG_JBD2_DEBUG 1772 atomic_dec(&nr_journal_heads); 1773 memset(jh, JBD_POISON_FREE, sizeof(*jh)); 1774 #endif 1775 kmem_cache_free(jbd2_journal_head_cache, jh); 1776 } 1777 1778 /* 1779 * A journal_head is attached to a buffer_head whenever JBD has an 1780 * interest in the buffer. 1781 * 1782 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit 1783 * is set. This bit is tested in core kernel code where we need to take 1784 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable 1785 * there. 1786 * 1787 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one. 1788 * 1789 * When a buffer has its BH_JBD bit set it is immune from being released by 1790 * core kernel code, mainly via ->b_count. 1791 * 1792 * A journal_head may be detached from its buffer_head when the journal_head's 1793 * b_transaction, b_cp_transaction and b_next_transaction pointers are NULL. 1794 * Various places in JBD call jbd2_journal_remove_journal_head() to indicate that the 1795 * journal_head can be dropped if needed. 1796 * 1797 * Various places in the kernel want to attach a journal_head to a buffer_head 1798 * _before_ attaching the journal_head to a transaction. To protect the 1799 * journal_head in this situation, jbd2_journal_add_journal_head elevates the 1800 * journal_head's b_jcount refcount by one. The caller must call 1801 * jbd2_journal_put_journal_head() to undo this. 1802 * 1803 * So the typical usage would be: 1804 * 1805 * (Attach a journal_head if needed. Increments b_jcount) 1806 * struct journal_head *jh = jbd2_journal_add_journal_head(bh); 1807 * ... 1808 * jh->b_transaction = xxx; 1809 * jbd2_journal_put_journal_head(jh); 1810 * 1811 * Now, the journal_head's b_jcount is zero, but it is safe from being released 1812 * because it has a non-zero b_transaction. 1813 */ 1814 1815 /* 1816 * Give a buffer_head a journal_head. 1817 * 1818 * Doesn't need the journal lock. 1819 * May sleep. 1820 */ 1821 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh) 1822 { 1823 struct journal_head *jh; 1824 struct journal_head *new_jh = NULL; 1825 1826 repeat: 1827 if (!buffer_jbd(bh)) { 1828 new_jh = journal_alloc_journal_head(); 1829 memset(new_jh, 0, sizeof(*new_jh)); 1830 } 1831 1832 jbd_lock_bh_journal_head(bh); 1833 if (buffer_jbd(bh)) { 1834 jh = bh2jh(bh); 1835 } else { 1836 J_ASSERT_BH(bh, 1837 (atomic_read(&bh->b_count) > 0) || 1838 (bh->b_page && bh->b_page->mapping)); 1839 1840 if (!new_jh) { 1841 jbd_unlock_bh_journal_head(bh); 1842 goto repeat; 1843 } 1844 1845 jh = new_jh; 1846 new_jh = NULL; /* We consumed it */ 1847 set_buffer_jbd(bh); 1848 bh->b_private = jh; 1849 jh->b_bh = bh; 1850 get_bh(bh); 1851 BUFFER_TRACE(bh, "added journal_head"); 1852 } 1853 jh->b_jcount++; 1854 jbd_unlock_bh_journal_head(bh); 1855 if (new_jh) 1856 journal_free_journal_head(new_jh); 1857 return bh->b_private; 1858 } 1859 1860 /* 1861 * Grab a ref against this buffer_head's journal_head. If it ended up not 1862 * having a journal_head, return NULL 1863 */ 1864 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh) 1865 { 1866 struct journal_head *jh = NULL; 1867 1868 jbd_lock_bh_journal_head(bh); 1869 if (buffer_jbd(bh)) { 1870 jh = bh2jh(bh); 1871 jh->b_jcount++; 1872 } 1873 jbd_unlock_bh_journal_head(bh); 1874 return jh; 1875 } 1876 1877 static void __journal_remove_journal_head(struct buffer_head *bh) 1878 { 1879 struct journal_head *jh = bh2jh(bh); 1880 1881 J_ASSERT_JH(jh, jh->b_jcount >= 0); 1882 1883 get_bh(bh); 1884 if (jh->b_jcount == 0) { 1885 if (jh->b_transaction == NULL && 1886 jh->b_next_transaction == NULL && 1887 jh->b_cp_transaction == NULL) { 1888 J_ASSERT_JH(jh, jh->b_jlist == BJ_None); 1889 J_ASSERT_BH(bh, buffer_jbd(bh)); 1890 J_ASSERT_BH(bh, jh2bh(jh) == bh); 1891 BUFFER_TRACE(bh, "remove journal_head"); 1892 if (jh->b_frozen_data) { 1893 printk(KERN_WARNING "%s: freeing " 1894 "b_frozen_data\n", 1895 __FUNCTION__); 1896 jbd2_slab_free(jh->b_frozen_data, bh->b_size); 1897 } 1898 if (jh->b_committed_data) { 1899 printk(KERN_WARNING "%s: freeing " 1900 "b_committed_data\n", 1901 __FUNCTION__); 1902 jbd2_slab_free(jh->b_committed_data, bh->b_size); 1903 } 1904 bh->b_private = NULL; 1905 jh->b_bh = NULL; /* debug, really */ 1906 clear_buffer_jbd(bh); 1907 __brelse(bh); 1908 journal_free_journal_head(jh); 1909 } else { 1910 BUFFER_TRACE(bh, "journal_head was locked"); 1911 } 1912 } 1913 } 1914 1915 /* 1916 * jbd2_journal_remove_journal_head(): if the buffer isn't attached to a transaction 1917 * and has a zero b_jcount then remove and release its journal_head. If we did 1918 * see that the buffer is not used by any transaction we also "logically" 1919 * decrement ->b_count. 1920 * 1921 * We in fact take an additional increment on ->b_count as a convenience, 1922 * because the caller usually wants to do additional things with the bh 1923 * after calling here. 1924 * The caller of jbd2_journal_remove_journal_head() *must* run __brelse(bh) at some 1925 * time. Once the caller has run __brelse(), the buffer is eligible for 1926 * reaping by try_to_free_buffers(). 1927 */ 1928 void jbd2_journal_remove_journal_head(struct buffer_head *bh) 1929 { 1930 jbd_lock_bh_journal_head(bh); 1931 __journal_remove_journal_head(bh); 1932 jbd_unlock_bh_journal_head(bh); 1933 } 1934 1935 /* 1936 * Drop a reference on the passed journal_head. If it fell to zero then try to 1937 * release the journal_head from the buffer_head. 1938 */ 1939 void jbd2_journal_put_journal_head(struct journal_head *jh) 1940 { 1941 struct buffer_head *bh = jh2bh(jh); 1942 1943 jbd_lock_bh_journal_head(bh); 1944 J_ASSERT_JH(jh, jh->b_jcount > 0); 1945 --jh->b_jcount; 1946 if (!jh->b_jcount && !jh->b_transaction) { 1947 __journal_remove_journal_head(bh); 1948 __brelse(bh); 1949 } 1950 jbd_unlock_bh_journal_head(bh); 1951 } 1952 1953 /* 1954 * debugfs tunables 1955 */ 1956 #if defined(CONFIG_JBD2_DEBUG) 1957 u8 jbd2_journal_enable_debug; 1958 EXPORT_SYMBOL(jbd2_journal_enable_debug); 1959 #endif 1960 1961 #if defined(CONFIG_JBD2_DEBUG) && defined(CONFIG_DEBUG_FS) 1962 1963 #define JBD2_DEBUG_NAME "jbd2-debug" 1964 1965 struct dentry *jbd2_debugfs_dir, *jbd2_debug; 1966 1967 static void __init jbd2_create_debugfs_entry(void) 1968 { 1969 jbd2_debugfs_dir = debugfs_create_dir("jbd2", NULL); 1970 if (jbd2_debugfs_dir) 1971 jbd2_debug = debugfs_create_u8(JBD2_DEBUG_NAME, S_IRUGO, 1972 jbd2_debugfs_dir, 1973 &jbd2_journal_enable_debug); 1974 } 1975 1976 static void __exit jbd2_remove_debugfs_entry(void) 1977 { 1978 if (jbd2_debug) 1979 debugfs_remove(jbd2_debug); 1980 if (jbd2_debugfs_dir) 1981 debugfs_remove(jbd2_debugfs_dir); 1982 } 1983 1984 #else 1985 1986 static void __init jbd2_create_debugfs_entry(void) 1987 { 1988 do { 1989 } while (0); 1990 } 1991 1992 static void __exit jbd2_remove_debugfs_entry(void) 1993 { 1994 do { 1995 } while (0); 1996 } 1997 1998 #endif 1999 2000 struct kmem_cache *jbd2_handle_cache; 2001 2002 static int __init journal_init_handle_cache(void) 2003 { 2004 jbd2_handle_cache = kmem_cache_create("jbd2_journal_handle", 2005 sizeof(handle_t), 2006 0, /* offset */ 2007 0, /* flags */ 2008 NULL); /* ctor */ 2009 if (jbd2_handle_cache == NULL) { 2010 printk(KERN_EMERG "JBD: failed to create handle cache\n"); 2011 return -ENOMEM; 2012 } 2013 return 0; 2014 } 2015 2016 static void jbd2_journal_destroy_handle_cache(void) 2017 { 2018 if (jbd2_handle_cache) 2019 kmem_cache_destroy(jbd2_handle_cache); 2020 } 2021 2022 /* 2023 * Module startup and shutdown 2024 */ 2025 2026 static int __init journal_init_caches(void) 2027 { 2028 int ret; 2029 2030 ret = jbd2_journal_init_revoke_caches(); 2031 if (ret == 0) 2032 ret = journal_init_jbd2_journal_head_cache(); 2033 if (ret == 0) 2034 ret = journal_init_handle_cache(); 2035 return ret; 2036 } 2037 2038 static void jbd2_journal_destroy_caches(void) 2039 { 2040 jbd2_journal_destroy_revoke_caches(); 2041 jbd2_journal_destroy_jbd2_journal_head_cache(); 2042 jbd2_journal_destroy_handle_cache(); 2043 jbd2_journal_destroy_jbd_slabs(); 2044 } 2045 2046 static int __init journal_init(void) 2047 { 2048 int ret; 2049 2050 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024); 2051 2052 ret = journal_init_caches(); 2053 if (ret != 0) 2054 jbd2_journal_destroy_caches(); 2055 jbd2_create_debugfs_entry(); 2056 return ret; 2057 } 2058 2059 static void __exit journal_exit(void) 2060 { 2061 #ifdef CONFIG_JBD2_DEBUG 2062 int n = atomic_read(&nr_journal_heads); 2063 if (n) 2064 printk(KERN_EMERG "JBD: leaked %d journal_heads!\n", n); 2065 #endif 2066 jbd2_remove_debugfs_entry(); 2067 jbd2_journal_destroy_caches(); 2068 } 2069 2070 MODULE_LICENSE("GPL"); 2071 module_init(journal_init); 2072 module_exit(journal_exit); 2073 2074