xref: /linux/fs/jbd2/journal.c (revision 2b8232ce512105e28453f301d1510de8363bccd1)
1 /*
2  * linux/fs/jbd2/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24 
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/debugfs.h>
39 
40 #include <asm/uaccess.h>
41 #include <asm/page.h>
42 
43 EXPORT_SYMBOL(jbd2_journal_start);
44 EXPORT_SYMBOL(jbd2_journal_restart);
45 EXPORT_SYMBOL(jbd2_journal_extend);
46 EXPORT_SYMBOL(jbd2_journal_stop);
47 EXPORT_SYMBOL(jbd2_journal_lock_updates);
48 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
49 EXPORT_SYMBOL(jbd2_journal_get_write_access);
50 EXPORT_SYMBOL(jbd2_journal_get_create_access);
51 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
52 EXPORT_SYMBOL(jbd2_journal_dirty_data);
53 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
54 EXPORT_SYMBOL(jbd2_journal_release_buffer);
55 EXPORT_SYMBOL(jbd2_journal_forget);
56 #if 0
57 EXPORT_SYMBOL(journal_sync_buffer);
58 #endif
59 EXPORT_SYMBOL(jbd2_journal_flush);
60 EXPORT_SYMBOL(jbd2_journal_revoke);
61 
62 EXPORT_SYMBOL(jbd2_journal_init_dev);
63 EXPORT_SYMBOL(jbd2_journal_init_inode);
64 EXPORT_SYMBOL(jbd2_journal_update_format);
65 EXPORT_SYMBOL(jbd2_journal_check_used_features);
66 EXPORT_SYMBOL(jbd2_journal_check_available_features);
67 EXPORT_SYMBOL(jbd2_journal_set_features);
68 EXPORT_SYMBOL(jbd2_journal_create);
69 EXPORT_SYMBOL(jbd2_journal_load);
70 EXPORT_SYMBOL(jbd2_journal_destroy);
71 EXPORT_SYMBOL(jbd2_journal_update_superblock);
72 EXPORT_SYMBOL(jbd2_journal_abort);
73 EXPORT_SYMBOL(jbd2_journal_errno);
74 EXPORT_SYMBOL(jbd2_journal_ack_err);
75 EXPORT_SYMBOL(jbd2_journal_clear_err);
76 EXPORT_SYMBOL(jbd2_log_wait_commit);
77 EXPORT_SYMBOL(jbd2_journal_start_commit);
78 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
79 EXPORT_SYMBOL(jbd2_journal_wipe);
80 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
81 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
82 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
83 EXPORT_SYMBOL(jbd2_journal_force_commit);
84 
85 static int journal_convert_superblock_v1(journal_t *, journal_superblock_t *);
86 static void __journal_abort_soft (journal_t *journal, int errno);
87 static int jbd2_journal_create_jbd_slab(size_t slab_size);
88 
89 /*
90  * Helper function used to manage commit timeouts
91  */
92 
93 static void commit_timeout(unsigned long __data)
94 {
95 	struct task_struct * p = (struct task_struct *) __data;
96 
97 	wake_up_process(p);
98 }
99 
100 /*
101  * kjournald2: The main thread function used to manage a logging device
102  * journal.
103  *
104  * This kernel thread is responsible for two things:
105  *
106  * 1) COMMIT:  Every so often we need to commit the current state of the
107  *    filesystem to disk.  The journal thread is responsible for writing
108  *    all of the metadata buffers to disk.
109  *
110  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
111  *    of the data in that part of the log has been rewritten elsewhere on
112  *    the disk.  Flushing these old buffers to reclaim space in the log is
113  *    known as checkpointing, and this thread is responsible for that job.
114  */
115 
116 static int kjournald2(void *arg)
117 {
118 	journal_t *journal = arg;
119 	transaction_t *transaction;
120 
121 	/*
122 	 * Set up an interval timer which can be used to trigger a commit wakeup
123 	 * after the commit interval expires
124 	 */
125 	setup_timer(&journal->j_commit_timer, commit_timeout,
126 			(unsigned long)current);
127 
128 	/* Record that the journal thread is running */
129 	journal->j_task = current;
130 	wake_up(&journal->j_wait_done_commit);
131 
132 	printk(KERN_INFO "kjournald2 starting.  Commit interval %ld seconds\n",
133 			journal->j_commit_interval / HZ);
134 
135 	/*
136 	 * And now, wait forever for commit wakeup events.
137 	 */
138 	spin_lock(&journal->j_state_lock);
139 
140 loop:
141 	if (journal->j_flags & JBD2_UNMOUNT)
142 		goto end_loop;
143 
144 	jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
145 		journal->j_commit_sequence, journal->j_commit_request);
146 
147 	if (journal->j_commit_sequence != journal->j_commit_request) {
148 		jbd_debug(1, "OK, requests differ\n");
149 		spin_unlock(&journal->j_state_lock);
150 		del_timer_sync(&journal->j_commit_timer);
151 		jbd2_journal_commit_transaction(journal);
152 		spin_lock(&journal->j_state_lock);
153 		goto loop;
154 	}
155 
156 	wake_up(&journal->j_wait_done_commit);
157 	if (freezing(current)) {
158 		/*
159 		 * The simpler the better. Flushing journal isn't a
160 		 * good idea, because that depends on threads that may
161 		 * be already stopped.
162 		 */
163 		jbd_debug(1, "Now suspending kjournald2\n");
164 		spin_unlock(&journal->j_state_lock);
165 		refrigerator();
166 		spin_lock(&journal->j_state_lock);
167 	} else {
168 		/*
169 		 * We assume on resume that commits are already there,
170 		 * so we don't sleep
171 		 */
172 		DEFINE_WAIT(wait);
173 		int should_sleep = 1;
174 
175 		prepare_to_wait(&journal->j_wait_commit, &wait,
176 				TASK_INTERRUPTIBLE);
177 		if (journal->j_commit_sequence != journal->j_commit_request)
178 			should_sleep = 0;
179 		transaction = journal->j_running_transaction;
180 		if (transaction && time_after_eq(jiffies,
181 						transaction->t_expires))
182 			should_sleep = 0;
183 		if (journal->j_flags & JBD2_UNMOUNT)
184 			should_sleep = 0;
185 		if (should_sleep) {
186 			spin_unlock(&journal->j_state_lock);
187 			schedule();
188 			spin_lock(&journal->j_state_lock);
189 		}
190 		finish_wait(&journal->j_wait_commit, &wait);
191 	}
192 
193 	jbd_debug(1, "kjournald2 wakes\n");
194 
195 	/*
196 	 * Were we woken up by a commit wakeup event?
197 	 */
198 	transaction = journal->j_running_transaction;
199 	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
200 		journal->j_commit_request = transaction->t_tid;
201 		jbd_debug(1, "woke because of timeout\n");
202 	}
203 	goto loop;
204 
205 end_loop:
206 	spin_unlock(&journal->j_state_lock);
207 	del_timer_sync(&journal->j_commit_timer);
208 	journal->j_task = NULL;
209 	wake_up(&journal->j_wait_done_commit);
210 	jbd_debug(1, "Journal thread exiting.\n");
211 	return 0;
212 }
213 
214 static int jbd2_journal_start_thread(journal_t *journal)
215 {
216 	struct task_struct *t;
217 
218 	t = kthread_run(kjournald2, journal, "kjournald2");
219 	if (IS_ERR(t))
220 		return PTR_ERR(t);
221 
222 	wait_event(journal->j_wait_done_commit, journal->j_task != 0);
223 	return 0;
224 }
225 
226 static void journal_kill_thread(journal_t *journal)
227 {
228 	spin_lock(&journal->j_state_lock);
229 	journal->j_flags |= JBD2_UNMOUNT;
230 
231 	while (journal->j_task) {
232 		wake_up(&journal->j_wait_commit);
233 		spin_unlock(&journal->j_state_lock);
234 		wait_event(journal->j_wait_done_commit, journal->j_task == 0);
235 		spin_lock(&journal->j_state_lock);
236 	}
237 	spin_unlock(&journal->j_state_lock);
238 }
239 
240 /*
241  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
242  *
243  * Writes a metadata buffer to a given disk block.  The actual IO is not
244  * performed but a new buffer_head is constructed which labels the data
245  * to be written with the correct destination disk block.
246  *
247  * Any magic-number escaping which needs to be done will cause a
248  * copy-out here.  If the buffer happens to start with the
249  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
250  * magic number is only written to the log for descripter blocks.  In
251  * this case, we copy the data and replace the first word with 0, and we
252  * return a result code which indicates that this buffer needs to be
253  * marked as an escaped buffer in the corresponding log descriptor
254  * block.  The missing word can then be restored when the block is read
255  * during recovery.
256  *
257  * If the source buffer has already been modified by a new transaction
258  * since we took the last commit snapshot, we use the frozen copy of
259  * that data for IO.  If we end up using the existing buffer_head's data
260  * for the write, then we *have* to lock the buffer to prevent anyone
261  * else from using and possibly modifying it while the IO is in
262  * progress.
263  *
264  * The function returns a pointer to the buffer_heads to be used for IO.
265  *
266  * We assume that the journal has already been locked in this function.
267  *
268  * Return value:
269  *  <0: Error
270  * >=0: Finished OK
271  *
272  * On success:
273  * Bit 0 set == escape performed on the data
274  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
275  */
276 
277 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
278 				  struct journal_head  *jh_in,
279 				  struct journal_head **jh_out,
280 				  unsigned long long blocknr)
281 {
282 	int need_copy_out = 0;
283 	int done_copy_out = 0;
284 	int do_escape = 0;
285 	char *mapped_data;
286 	struct buffer_head *new_bh;
287 	struct journal_head *new_jh;
288 	struct page *new_page;
289 	unsigned int new_offset;
290 	struct buffer_head *bh_in = jh2bh(jh_in);
291 
292 	/*
293 	 * The buffer really shouldn't be locked: only the current committing
294 	 * transaction is allowed to write it, so nobody else is allowed
295 	 * to do any IO.
296 	 *
297 	 * akpm: except if we're journalling data, and write() output is
298 	 * also part of a shared mapping, and another thread has
299 	 * decided to launch a writepage() against this buffer.
300 	 */
301 	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
302 
303 	new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
304 
305 	/*
306 	 * If a new transaction has already done a buffer copy-out, then
307 	 * we use that version of the data for the commit.
308 	 */
309 	jbd_lock_bh_state(bh_in);
310 repeat:
311 	if (jh_in->b_frozen_data) {
312 		done_copy_out = 1;
313 		new_page = virt_to_page(jh_in->b_frozen_data);
314 		new_offset = offset_in_page(jh_in->b_frozen_data);
315 	} else {
316 		new_page = jh2bh(jh_in)->b_page;
317 		new_offset = offset_in_page(jh2bh(jh_in)->b_data);
318 	}
319 
320 	mapped_data = kmap_atomic(new_page, KM_USER0);
321 	/*
322 	 * Check for escaping
323 	 */
324 	if (*((__be32 *)(mapped_data + new_offset)) ==
325 				cpu_to_be32(JBD2_MAGIC_NUMBER)) {
326 		need_copy_out = 1;
327 		do_escape = 1;
328 	}
329 	kunmap_atomic(mapped_data, KM_USER0);
330 
331 	/*
332 	 * Do we need to do a data copy?
333 	 */
334 	if (need_copy_out && !done_copy_out) {
335 		char *tmp;
336 
337 		jbd_unlock_bh_state(bh_in);
338 		tmp = jbd2_slab_alloc(bh_in->b_size, GFP_NOFS);
339 		jbd_lock_bh_state(bh_in);
340 		if (jh_in->b_frozen_data) {
341 			jbd2_slab_free(tmp, bh_in->b_size);
342 			goto repeat;
343 		}
344 
345 		jh_in->b_frozen_data = tmp;
346 		mapped_data = kmap_atomic(new_page, KM_USER0);
347 		memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
348 		kunmap_atomic(mapped_data, KM_USER0);
349 
350 		new_page = virt_to_page(tmp);
351 		new_offset = offset_in_page(tmp);
352 		done_copy_out = 1;
353 	}
354 
355 	/*
356 	 * Did we need to do an escaping?  Now we've done all the
357 	 * copying, we can finally do so.
358 	 */
359 	if (do_escape) {
360 		mapped_data = kmap_atomic(new_page, KM_USER0);
361 		*((unsigned int *)(mapped_data + new_offset)) = 0;
362 		kunmap_atomic(mapped_data, KM_USER0);
363 	}
364 
365 	/* keep subsequent assertions sane */
366 	new_bh->b_state = 0;
367 	init_buffer(new_bh, NULL, NULL);
368 	atomic_set(&new_bh->b_count, 1);
369 	jbd_unlock_bh_state(bh_in);
370 
371 	new_jh = jbd2_journal_add_journal_head(new_bh);	/* This sleeps */
372 
373 	set_bh_page(new_bh, new_page, new_offset);
374 	new_jh->b_transaction = NULL;
375 	new_bh->b_size = jh2bh(jh_in)->b_size;
376 	new_bh->b_bdev = transaction->t_journal->j_dev;
377 	new_bh->b_blocknr = blocknr;
378 	set_buffer_mapped(new_bh);
379 	set_buffer_dirty(new_bh);
380 
381 	*jh_out = new_jh;
382 
383 	/*
384 	 * The to-be-written buffer needs to get moved to the io queue,
385 	 * and the original buffer whose contents we are shadowing or
386 	 * copying is moved to the transaction's shadow queue.
387 	 */
388 	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
389 	jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
390 	JBUFFER_TRACE(new_jh, "file as BJ_IO");
391 	jbd2_journal_file_buffer(new_jh, transaction, BJ_IO);
392 
393 	return do_escape | (done_copy_out << 1);
394 }
395 
396 /*
397  * Allocation code for the journal file.  Manage the space left in the
398  * journal, so that we can begin checkpointing when appropriate.
399  */
400 
401 /*
402  * __jbd2_log_space_left: Return the number of free blocks left in the journal.
403  *
404  * Called with the journal already locked.
405  *
406  * Called under j_state_lock
407  */
408 
409 int __jbd2_log_space_left(journal_t *journal)
410 {
411 	int left = journal->j_free;
412 
413 	assert_spin_locked(&journal->j_state_lock);
414 
415 	/*
416 	 * Be pessimistic here about the number of those free blocks which
417 	 * might be required for log descriptor control blocks.
418 	 */
419 
420 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
421 
422 	left -= MIN_LOG_RESERVED_BLOCKS;
423 
424 	if (left <= 0)
425 		return 0;
426 	left -= (left >> 3);
427 	return left;
428 }
429 
430 /*
431  * Called under j_state_lock.  Returns true if a transaction was started.
432  */
433 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
434 {
435 	/*
436 	 * Are we already doing a recent enough commit?
437 	 */
438 	if (!tid_geq(journal->j_commit_request, target)) {
439 		/*
440 		 * We want a new commit: OK, mark the request and wakup the
441 		 * commit thread.  We do _not_ do the commit ourselves.
442 		 */
443 
444 		journal->j_commit_request = target;
445 		jbd_debug(1, "JBD: requesting commit %d/%d\n",
446 			  journal->j_commit_request,
447 			  journal->j_commit_sequence);
448 		wake_up(&journal->j_wait_commit);
449 		return 1;
450 	}
451 	return 0;
452 }
453 
454 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
455 {
456 	int ret;
457 
458 	spin_lock(&journal->j_state_lock);
459 	ret = __jbd2_log_start_commit(journal, tid);
460 	spin_unlock(&journal->j_state_lock);
461 	return ret;
462 }
463 
464 /*
465  * Force and wait upon a commit if the calling process is not within
466  * transaction.  This is used for forcing out undo-protected data which contains
467  * bitmaps, when the fs is running out of space.
468  *
469  * We can only force the running transaction if we don't have an active handle;
470  * otherwise, we will deadlock.
471  *
472  * Returns true if a transaction was started.
473  */
474 int jbd2_journal_force_commit_nested(journal_t *journal)
475 {
476 	transaction_t *transaction = NULL;
477 	tid_t tid;
478 
479 	spin_lock(&journal->j_state_lock);
480 	if (journal->j_running_transaction && !current->journal_info) {
481 		transaction = journal->j_running_transaction;
482 		__jbd2_log_start_commit(journal, transaction->t_tid);
483 	} else if (journal->j_committing_transaction)
484 		transaction = journal->j_committing_transaction;
485 
486 	if (!transaction) {
487 		spin_unlock(&journal->j_state_lock);
488 		return 0;	/* Nothing to retry */
489 	}
490 
491 	tid = transaction->t_tid;
492 	spin_unlock(&journal->j_state_lock);
493 	jbd2_log_wait_commit(journal, tid);
494 	return 1;
495 }
496 
497 /*
498  * Start a commit of the current running transaction (if any).  Returns true
499  * if a transaction was started, and fills its tid in at *ptid
500  */
501 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
502 {
503 	int ret = 0;
504 
505 	spin_lock(&journal->j_state_lock);
506 	if (journal->j_running_transaction) {
507 		tid_t tid = journal->j_running_transaction->t_tid;
508 
509 		ret = __jbd2_log_start_commit(journal, tid);
510 		if (ret && ptid)
511 			*ptid = tid;
512 	} else if (journal->j_committing_transaction && ptid) {
513 		/*
514 		 * If ext3_write_super() recently started a commit, then we
515 		 * have to wait for completion of that transaction
516 		 */
517 		*ptid = journal->j_committing_transaction->t_tid;
518 		ret = 1;
519 	}
520 	spin_unlock(&journal->j_state_lock);
521 	return ret;
522 }
523 
524 /*
525  * Wait for a specified commit to complete.
526  * The caller may not hold the journal lock.
527  */
528 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
529 {
530 	int err = 0;
531 
532 #ifdef CONFIG_JBD2_DEBUG
533 	spin_lock(&journal->j_state_lock);
534 	if (!tid_geq(journal->j_commit_request, tid)) {
535 		printk(KERN_EMERG
536 		       "%s: error: j_commit_request=%d, tid=%d\n",
537 		       __FUNCTION__, journal->j_commit_request, tid);
538 	}
539 	spin_unlock(&journal->j_state_lock);
540 #endif
541 	spin_lock(&journal->j_state_lock);
542 	while (tid_gt(tid, journal->j_commit_sequence)) {
543 		jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n",
544 				  tid, journal->j_commit_sequence);
545 		wake_up(&journal->j_wait_commit);
546 		spin_unlock(&journal->j_state_lock);
547 		wait_event(journal->j_wait_done_commit,
548 				!tid_gt(tid, journal->j_commit_sequence));
549 		spin_lock(&journal->j_state_lock);
550 	}
551 	spin_unlock(&journal->j_state_lock);
552 
553 	if (unlikely(is_journal_aborted(journal))) {
554 		printk(KERN_EMERG "journal commit I/O error\n");
555 		err = -EIO;
556 	}
557 	return err;
558 }
559 
560 /*
561  * Log buffer allocation routines:
562  */
563 
564 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
565 {
566 	unsigned long blocknr;
567 
568 	spin_lock(&journal->j_state_lock);
569 	J_ASSERT(journal->j_free > 1);
570 
571 	blocknr = journal->j_head;
572 	journal->j_head++;
573 	journal->j_free--;
574 	if (journal->j_head == journal->j_last)
575 		journal->j_head = journal->j_first;
576 	spin_unlock(&journal->j_state_lock);
577 	return jbd2_journal_bmap(journal, blocknr, retp);
578 }
579 
580 /*
581  * Conversion of logical to physical block numbers for the journal
582  *
583  * On external journals the journal blocks are identity-mapped, so
584  * this is a no-op.  If needed, we can use j_blk_offset - everything is
585  * ready.
586  */
587 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
588 		 unsigned long long *retp)
589 {
590 	int err = 0;
591 	unsigned long long ret;
592 
593 	if (journal->j_inode) {
594 		ret = bmap(journal->j_inode, blocknr);
595 		if (ret)
596 			*retp = ret;
597 		else {
598 			char b[BDEVNAME_SIZE];
599 
600 			printk(KERN_ALERT "%s: journal block not found "
601 					"at offset %lu on %s\n",
602 				__FUNCTION__,
603 				blocknr,
604 				bdevname(journal->j_dev, b));
605 			err = -EIO;
606 			__journal_abort_soft(journal, err);
607 		}
608 	} else {
609 		*retp = blocknr; /* +journal->j_blk_offset */
610 	}
611 	return err;
612 }
613 
614 /*
615  * We play buffer_head aliasing tricks to write data/metadata blocks to
616  * the journal without copying their contents, but for journal
617  * descriptor blocks we do need to generate bona fide buffers.
618  *
619  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
620  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
621  * But we don't bother doing that, so there will be coherency problems with
622  * mmaps of blockdevs which hold live JBD-controlled filesystems.
623  */
624 struct journal_head *jbd2_journal_get_descriptor_buffer(journal_t *journal)
625 {
626 	struct buffer_head *bh;
627 	unsigned long long blocknr;
628 	int err;
629 
630 	err = jbd2_journal_next_log_block(journal, &blocknr);
631 
632 	if (err)
633 		return NULL;
634 
635 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
636 	lock_buffer(bh);
637 	memset(bh->b_data, 0, journal->j_blocksize);
638 	set_buffer_uptodate(bh);
639 	unlock_buffer(bh);
640 	BUFFER_TRACE(bh, "return this buffer");
641 	return jbd2_journal_add_journal_head(bh);
642 }
643 
644 /*
645  * Management for journal control blocks: functions to create and
646  * destroy journal_t structures, and to initialise and read existing
647  * journal blocks from disk.  */
648 
649 /* First: create and setup a journal_t object in memory.  We initialise
650  * very few fields yet: that has to wait until we have created the
651  * journal structures from from scratch, or loaded them from disk. */
652 
653 static journal_t * journal_init_common (void)
654 {
655 	journal_t *journal;
656 	int err;
657 
658 	journal = jbd_kmalloc(sizeof(*journal), GFP_KERNEL);
659 	if (!journal)
660 		goto fail;
661 	memset(journal, 0, sizeof(*journal));
662 
663 	init_waitqueue_head(&journal->j_wait_transaction_locked);
664 	init_waitqueue_head(&journal->j_wait_logspace);
665 	init_waitqueue_head(&journal->j_wait_done_commit);
666 	init_waitqueue_head(&journal->j_wait_checkpoint);
667 	init_waitqueue_head(&journal->j_wait_commit);
668 	init_waitqueue_head(&journal->j_wait_updates);
669 	mutex_init(&journal->j_barrier);
670 	mutex_init(&journal->j_checkpoint_mutex);
671 	spin_lock_init(&journal->j_revoke_lock);
672 	spin_lock_init(&journal->j_list_lock);
673 	spin_lock_init(&journal->j_state_lock);
674 
675 	journal->j_commit_interval = (HZ * JBD_DEFAULT_MAX_COMMIT_AGE);
676 
677 	/* The journal is marked for error until we succeed with recovery! */
678 	journal->j_flags = JBD2_ABORT;
679 
680 	/* Set up a default-sized revoke table for the new mount. */
681 	err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
682 	if (err) {
683 		kfree(journal);
684 		goto fail;
685 	}
686 	return journal;
687 fail:
688 	return NULL;
689 }
690 
691 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
692  *
693  * Create a journal structure assigned some fixed set of disk blocks to
694  * the journal.  We don't actually touch those disk blocks yet, but we
695  * need to set up all of the mapping information to tell the journaling
696  * system where the journal blocks are.
697  *
698  */
699 
700 /**
701  *  journal_t * jbd2_journal_init_dev() - creates an initialises a journal structure
702  *  @bdev: Block device on which to create the journal
703  *  @fs_dev: Device which hold journalled filesystem for this journal.
704  *  @start: Block nr Start of journal.
705  *  @len:  Length of the journal in blocks.
706  *  @blocksize: blocksize of journalling device
707  *  @returns: a newly created journal_t *
708  *
709  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
710  *  range of blocks on an arbitrary block device.
711  *
712  */
713 journal_t * jbd2_journal_init_dev(struct block_device *bdev,
714 			struct block_device *fs_dev,
715 			unsigned long long start, int len, int blocksize)
716 {
717 	journal_t *journal = journal_init_common();
718 	struct buffer_head *bh;
719 	int n;
720 
721 	if (!journal)
722 		return NULL;
723 
724 	/* journal descriptor can store up to n blocks -bzzz */
725 	journal->j_blocksize = blocksize;
726 	n = journal->j_blocksize / sizeof(journal_block_tag_t);
727 	journal->j_wbufsize = n;
728 	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
729 	if (!journal->j_wbuf) {
730 		printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n",
731 			__FUNCTION__);
732 		kfree(journal);
733 		journal = NULL;
734 		goto out;
735 	}
736 	journal->j_dev = bdev;
737 	journal->j_fs_dev = fs_dev;
738 	journal->j_blk_offset = start;
739 	journal->j_maxlen = len;
740 
741 	bh = __getblk(journal->j_dev, start, journal->j_blocksize);
742 	J_ASSERT(bh != NULL);
743 	journal->j_sb_buffer = bh;
744 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
745 out:
746 	return journal;
747 }
748 
749 /**
750  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
751  *  @inode: An inode to create the journal in
752  *
753  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
754  * the journal.  The inode must exist already, must support bmap() and
755  * must have all data blocks preallocated.
756  */
757 journal_t * jbd2_journal_init_inode (struct inode *inode)
758 {
759 	struct buffer_head *bh;
760 	journal_t *journal = journal_init_common();
761 	int err;
762 	int n;
763 	unsigned long long blocknr;
764 
765 	if (!journal)
766 		return NULL;
767 
768 	journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
769 	journal->j_inode = inode;
770 	jbd_debug(1,
771 		  "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
772 		  journal, inode->i_sb->s_id, inode->i_ino,
773 		  (long long) inode->i_size,
774 		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
775 
776 	journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
777 	journal->j_blocksize = inode->i_sb->s_blocksize;
778 
779 	/* journal descriptor can store up to n blocks -bzzz */
780 	n = journal->j_blocksize / sizeof(journal_block_tag_t);
781 	journal->j_wbufsize = n;
782 	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
783 	if (!journal->j_wbuf) {
784 		printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n",
785 			__FUNCTION__);
786 		kfree(journal);
787 		return NULL;
788 	}
789 
790 	err = jbd2_journal_bmap(journal, 0, &blocknr);
791 	/* If that failed, give up */
792 	if (err) {
793 		printk(KERN_ERR "%s: Cannnot locate journal superblock\n",
794 		       __FUNCTION__);
795 		kfree(journal);
796 		return NULL;
797 	}
798 
799 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
800 	J_ASSERT(bh != NULL);
801 	journal->j_sb_buffer = bh;
802 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
803 
804 	return journal;
805 }
806 
807 /*
808  * If the journal init or create aborts, we need to mark the journal
809  * superblock as being NULL to prevent the journal destroy from writing
810  * back a bogus superblock.
811  */
812 static void journal_fail_superblock (journal_t *journal)
813 {
814 	struct buffer_head *bh = journal->j_sb_buffer;
815 	brelse(bh);
816 	journal->j_sb_buffer = NULL;
817 }
818 
819 /*
820  * Given a journal_t structure, initialise the various fields for
821  * startup of a new journaling session.  We use this both when creating
822  * a journal, and after recovering an old journal to reset it for
823  * subsequent use.
824  */
825 
826 static int journal_reset(journal_t *journal)
827 {
828 	journal_superblock_t *sb = journal->j_superblock;
829 	unsigned long long first, last;
830 
831 	first = be32_to_cpu(sb->s_first);
832 	last = be32_to_cpu(sb->s_maxlen);
833 
834 	journal->j_first = first;
835 	journal->j_last = last;
836 
837 	journal->j_head = first;
838 	journal->j_tail = first;
839 	journal->j_free = last - first;
840 
841 	journal->j_tail_sequence = journal->j_transaction_sequence;
842 	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
843 	journal->j_commit_request = journal->j_commit_sequence;
844 
845 	journal->j_max_transaction_buffers = journal->j_maxlen / 4;
846 
847 	/* Add the dynamic fields and write it to disk. */
848 	jbd2_journal_update_superblock(journal, 1);
849 	return jbd2_journal_start_thread(journal);
850 }
851 
852 /**
853  * int jbd2_journal_create() - Initialise the new journal file
854  * @journal: Journal to create. This structure must have been initialised
855  *
856  * Given a journal_t structure which tells us which disk blocks we can
857  * use, create a new journal superblock and initialise all of the
858  * journal fields from scratch.
859  **/
860 int jbd2_journal_create(journal_t *journal)
861 {
862 	unsigned long long blocknr;
863 	struct buffer_head *bh;
864 	journal_superblock_t *sb;
865 	int i, err;
866 
867 	if (journal->j_maxlen < JBD2_MIN_JOURNAL_BLOCKS) {
868 		printk (KERN_ERR "Journal length (%d blocks) too short.\n",
869 			journal->j_maxlen);
870 		journal_fail_superblock(journal);
871 		return -EINVAL;
872 	}
873 
874 	if (journal->j_inode == NULL) {
875 		/*
876 		 * We don't know what block to start at!
877 		 */
878 		printk(KERN_EMERG
879 		       "%s: creation of journal on external device!\n",
880 		       __FUNCTION__);
881 		BUG();
882 	}
883 
884 	/* Zero out the entire journal on disk.  We cannot afford to
885 	   have any blocks on disk beginning with JBD2_MAGIC_NUMBER. */
886 	jbd_debug(1, "JBD: Zeroing out journal blocks...\n");
887 	for (i = 0; i < journal->j_maxlen; i++) {
888 		err = jbd2_journal_bmap(journal, i, &blocknr);
889 		if (err)
890 			return err;
891 		bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
892 		lock_buffer(bh);
893 		memset (bh->b_data, 0, journal->j_blocksize);
894 		BUFFER_TRACE(bh, "marking dirty");
895 		mark_buffer_dirty(bh);
896 		BUFFER_TRACE(bh, "marking uptodate");
897 		set_buffer_uptodate(bh);
898 		unlock_buffer(bh);
899 		__brelse(bh);
900 	}
901 
902 	sync_blockdev(journal->j_dev);
903 	jbd_debug(1, "JBD: journal cleared.\n");
904 
905 	/* OK, fill in the initial static fields in the new superblock */
906 	sb = journal->j_superblock;
907 
908 	sb->s_header.h_magic	 = cpu_to_be32(JBD2_MAGIC_NUMBER);
909 	sb->s_header.h_blocktype = cpu_to_be32(JBD2_SUPERBLOCK_V2);
910 
911 	sb->s_blocksize	= cpu_to_be32(journal->j_blocksize);
912 	sb->s_maxlen	= cpu_to_be32(journal->j_maxlen);
913 	sb->s_first	= cpu_to_be32(1);
914 
915 	journal->j_transaction_sequence = 1;
916 
917 	journal->j_flags &= ~JBD2_ABORT;
918 	journal->j_format_version = 2;
919 
920 	return journal_reset(journal);
921 }
922 
923 /**
924  * void jbd2_journal_update_superblock() - Update journal sb on disk.
925  * @journal: The journal to update.
926  * @wait: Set to '0' if you don't want to wait for IO completion.
927  *
928  * Update a journal's dynamic superblock fields and write it to disk,
929  * optionally waiting for the IO to complete.
930  */
931 void jbd2_journal_update_superblock(journal_t *journal, int wait)
932 {
933 	journal_superblock_t *sb = journal->j_superblock;
934 	struct buffer_head *bh = journal->j_sb_buffer;
935 
936 	/*
937 	 * As a special case, if the on-disk copy is already marked as needing
938 	 * no recovery (s_start == 0) and there are no outstanding transactions
939 	 * in the filesystem, then we can safely defer the superblock update
940 	 * until the next commit by setting JBD2_FLUSHED.  This avoids
941 	 * attempting a write to a potential-readonly device.
942 	 */
943 	if (sb->s_start == 0 && journal->j_tail_sequence ==
944 				journal->j_transaction_sequence) {
945 		jbd_debug(1,"JBD: Skipping superblock update on recovered sb "
946 			"(start %ld, seq %d, errno %d)\n",
947 			journal->j_tail, journal->j_tail_sequence,
948 			journal->j_errno);
949 		goto out;
950 	}
951 
952 	spin_lock(&journal->j_state_lock);
953 	jbd_debug(1,"JBD: updating superblock (start %ld, seq %d, errno %d)\n",
954 		  journal->j_tail, journal->j_tail_sequence, journal->j_errno);
955 
956 	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
957 	sb->s_start    = cpu_to_be32(journal->j_tail);
958 	sb->s_errno    = cpu_to_be32(journal->j_errno);
959 	spin_unlock(&journal->j_state_lock);
960 
961 	BUFFER_TRACE(bh, "marking dirty");
962 	mark_buffer_dirty(bh);
963 	if (wait)
964 		sync_dirty_buffer(bh);
965 	else
966 		ll_rw_block(SWRITE, 1, &bh);
967 
968 out:
969 	/* If we have just flushed the log (by marking s_start==0), then
970 	 * any future commit will have to be careful to update the
971 	 * superblock again to re-record the true start of the log. */
972 
973 	spin_lock(&journal->j_state_lock);
974 	if (sb->s_start)
975 		journal->j_flags &= ~JBD2_FLUSHED;
976 	else
977 		journal->j_flags |= JBD2_FLUSHED;
978 	spin_unlock(&journal->j_state_lock);
979 }
980 
981 /*
982  * Read the superblock for a given journal, performing initial
983  * validation of the format.
984  */
985 
986 static int journal_get_superblock(journal_t *journal)
987 {
988 	struct buffer_head *bh;
989 	journal_superblock_t *sb;
990 	int err = -EIO;
991 
992 	bh = journal->j_sb_buffer;
993 
994 	J_ASSERT(bh != NULL);
995 	if (!buffer_uptodate(bh)) {
996 		ll_rw_block(READ, 1, &bh);
997 		wait_on_buffer(bh);
998 		if (!buffer_uptodate(bh)) {
999 			printk (KERN_ERR
1000 				"JBD: IO error reading journal superblock\n");
1001 			goto out;
1002 		}
1003 	}
1004 
1005 	sb = journal->j_superblock;
1006 
1007 	err = -EINVAL;
1008 
1009 	if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1010 	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1011 		printk(KERN_WARNING "JBD: no valid journal superblock found\n");
1012 		goto out;
1013 	}
1014 
1015 	switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1016 	case JBD2_SUPERBLOCK_V1:
1017 		journal->j_format_version = 1;
1018 		break;
1019 	case JBD2_SUPERBLOCK_V2:
1020 		journal->j_format_version = 2;
1021 		break;
1022 	default:
1023 		printk(KERN_WARNING "JBD: unrecognised superblock format ID\n");
1024 		goto out;
1025 	}
1026 
1027 	if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1028 		journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1029 	else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1030 		printk (KERN_WARNING "JBD: journal file too short\n");
1031 		goto out;
1032 	}
1033 
1034 	return 0;
1035 
1036 out:
1037 	journal_fail_superblock(journal);
1038 	return err;
1039 }
1040 
1041 /*
1042  * Load the on-disk journal superblock and read the key fields into the
1043  * journal_t.
1044  */
1045 
1046 static int load_superblock(journal_t *journal)
1047 {
1048 	int err;
1049 	journal_superblock_t *sb;
1050 
1051 	err = journal_get_superblock(journal);
1052 	if (err)
1053 		return err;
1054 
1055 	sb = journal->j_superblock;
1056 
1057 	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1058 	journal->j_tail = be32_to_cpu(sb->s_start);
1059 	journal->j_first = be32_to_cpu(sb->s_first);
1060 	journal->j_last = be32_to_cpu(sb->s_maxlen);
1061 	journal->j_errno = be32_to_cpu(sb->s_errno);
1062 
1063 	return 0;
1064 }
1065 
1066 
1067 /**
1068  * int jbd2_journal_load() - Read journal from disk.
1069  * @journal: Journal to act on.
1070  *
1071  * Given a journal_t structure which tells us which disk blocks contain
1072  * a journal, read the journal from disk to initialise the in-memory
1073  * structures.
1074  */
1075 int jbd2_journal_load(journal_t *journal)
1076 {
1077 	int err;
1078 	journal_superblock_t *sb;
1079 
1080 	err = load_superblock(journal);
1081 	if (err)
1082 		return err;
1083 
1084 	sb = journal->j_superblock;
1085 	/* If this is a V2 superblock, then we have to check the
1086 	 * features flags on it. */
1087 
1088 	if (journal->j_format_version >= 2) {
1089 		if ((sb->s_feature_ro_compat &
1090 		     ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1091 		    (sb->s_feature_incompat &
1092 		     ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1093 			printk (KERN_WARNING
1094 				"JBD: Unrecognised features on journal\n");
1095 			return -EINVAL;
1096 		}
1097 	}
1098 
1099 	/*
1100 	 * Create a slab for this blocksize
1101 	 */
1102 	err = jbd2_journal_create_jbd_slab(be32_to_cpu(sb->s_blocksize));
1103 	if (err)
1104 		return err;
1105 
1106 	/* Let the recovery code check whether it needs to recover any
1107 	 * data from the journal. */
1108 	if (jbd2_journal_recover(journal))
1109 		goto recovery_error;
1110 
1111 	/* OK, we've finished with the dynamic journal bits:
1112 	 * reinitialise the dynamic contents of the superblock in memory
1113 	 * and reset them on disk. */
1114 	if (journal_reset(journal))
1115 		goto recovery_error;
1116 
1117 	journal->j_flags &= ~JBD2_ABORT;
1118 	journal->j_flags |= JBD2_LOADED;
1119 	return 0;
1120 
1121 recovery_error:
1122 	printk (KERN_WARNING "JBD: recovery failed\n");
1123 	return -EIO;
1124 }
1125 
1126 /**
1127  * void jbd2_journal_destroy() - Release a journal_t structure.
1128  * @journal: Journal to act on.
1129  *
1130  * Release a journal_t structure once it is no longer in use by the
1131  * journaled object.
1132  */
1133 void jbd2_journal_destroy(journal_t *journal)
1134 {
1135 	/* Wait for the commit thread to wake up and die. */
1136 	journal_kill_thread(journal);
1137 
1138 	/* Force a final log commit */
1139 	if (journal->j_running_transaction)
1140 		jbd2_journal_commit_transaction(journal);
1141 
1142 	/* Force any old transactions to disk */
1143 
1144 	/* Totally anal locking here... */
1145 	spin_lock(&journal->j_list_lock);
1146 	while (journal->j_checkpoint_transactions != NULL) {
1147 		spin_unlock(&journal->j_list_lock);
1148 		jbd2_log_do_checkpoint(journal);
1149 		spin_lock(&journal->j_list_lock);
1150 	}
1151 
1152 	J_ASSERT(journal->j_running_transaction == NULL);
1153 	J_ASSERT(journal->j_committing_transaction == NULL);
1154 	J_ASSERT(journal->j_checkpoint_transactions == NULL);
1155 	spin_unlock(&journal->j_list_lock);
1156 
1157 	/* We can now mark the journal as empty. */
1158 	journal->j_tail = 0;
1159 	journal->j_tail_sequence = ++journal->j_transaction_sequence;
1160 	if (journal->j_sb_buffer) {
1161 		jbd2_journal_update_superblock(journal, 1);
1162 		brelse(journal->j_sb_buffer);
1163 	}
1164 
1165 	if (journal->j_inode)
1166 		iput(journal->j_inode);
1167 	if (journal->j_revoke)
1168 		jbd2_journal_destroy_revoke(journal);
1169 	kfree(journal->j_wbuf);
1170 	kfree(journal);
1171 }
1172 
1173 
1174 /**
1175  *int jbd2_journal_check_used_features () - Check if features specified are used.
1176  * @journal: Journal to check.
1177  * @compat: bitmask of compatible features
1178  * @ro: bitmask of features that force read-only mount
1179  * @incompat: bitmask of incompatible features
1180  *
1181  * Check whether the journal uses all of a given set of
1182  * features.  Return true (non-zero) if it does.
1183  **/
1184 
1185 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1186 				 unsigned long ro, unsigned long incompat)
1187 {
1188 	journal_superblock_t *sb;
1189 
1190 	if (!compat && !ro && !incompat)
1191 		return 1;
1192 	if (journal->j_format_version == 1)
1193 		return 0;
1194 
1195 	sb = journal->j_superblock;
1196 
1197 	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1198 	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1199 	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1200 		return 1;
1201 
1202 	return 0;
1203 }
1204 
1205 /**
1206  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1207  * @journal: Journal to check.
1208  * @compat: bitmask of compatible features
1209  * @ro: bitmask of features that force read-only mount
1210  * @incompat: bitmask of incompatible features
1211  *
1212  * Check whether the journaling code supports the use of
1213  * all of a given set of features on this journal.  Return true
1214  * (non-zero) if it can. */
1215 
1216 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1217 				      unsigned long ro, unsigned long incompat)
1218 {
1219 	journal_superblock_t *sb;
1220 
1221 	if (!compat && !ro && !incompat)
1222 		return 1;
1223 
1224 	sb = journal->j_superblock;
1225 
1226 	/* We can support any known requested features iff the
1227 	 * superblock is in version 2.  Otherwise we fail to support any
1228 	 * extended sb features. */
1229 
1230 	if (journal->j_format_version != 2)
1231 		return 0;
1232 
1233 	if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1234 	    (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1235 	    (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1236 		return 1;
1237 
1238 	return 0;
1239 }
1240 
1241 /**
1242  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1243  * @journal: Journal to act on.
1244  * @compat: bitmask of compatible features
1245  * @ro: bitmask of features that force read-only mount
1246  * @incompat: bitmask of incompatible features
1247  *
1248  * Mark a given journal feature as present on the
1249  * superblock.  Returns true if the requested features could be set.
1250  *
1251  */
1252 
1253 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1254 			  unsigned long ro, unsigned long incompat)
1255 {
1256 	journal_superblock_t *sb;
1257 
1258 	if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1259 		return 1;
1260 
1261 	if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1262 		return 0;
1263 
1264 	jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1265 		  compat, ro, incompat);
1266 
1267 	sb = journal->j_superblock;
1268 
1269 	sb->s_feature_compat    |= cpu_to_be32(compat);
1270 	sb->s_feature_ro_compat |= cpu_to_be32(ro);
1271 	sb->s_feature_incompat  |= cpu_to_be32(incompat);
1272 
1273 	return 1;
1274 }
1275 
1276 
1277 /**
1278  * int jbd2_journal_update_format () - Update on-disk journal structure.
1279  * @journal: Journal to act on.
1280  *
1281  * Given an initialised but unloaded journal struct, poke about in the
1282  * on-disk structure to update it to the most recent supported version.
1283  */
1284 int jbd2_journal_update_format (journal_t *journal)
1285 {
1286 	journal_superblock_t *sb;
1287 	int err;
1288 
1289 	err = journal_get_superblock(journal);
1290 	if (err)
1291 		return err;
1292 
1293 	sb = journal->j_superblock;
1294 
1295 	switch (be32_to_cpu(sb->s_header.h_blocktype)) {
1296 	case JBD2_SUPERBLOCK_V2:
1297 		return 0;
1298 	case JBD2_SUPERBLOCK_V1:
1299 		return journal_convert_superblock_v1(journal, sb);
1300 	default:
1301 		break;
1302 	}
1303 	return -EINVAL;
1304 }
1305 
1306 static int journal_convert_superblock_v1(journal_t *journal,
1307 					 journal_superblock_t *sb)
1308 {
1309 	int offset, blocksize;
1310 	struct buffer_head *bh;
1311 
1312 	printk(KERN_WARNING
1313 		"JBD: Converting superblock from version 1 to 2.\n");
1314 
1315 	/* Pre-initialise new fields to zero */
1316 	offset = ((char *) &(sb->s_feature_compat)) - ((char *) sb);
1317 	blocksize = be32_to_cpu(sb->s_blocksize);
1318 	memset(&sb->s_feature_compat, 0, blocksize-offset);
1319 
1320 	sb->s_nr_users = cpu_to_be32(1);
1321 	sb->s_header.h_blocktype = cpu_to_be32(JBD2_SUPERBLOCK_V2);
1322 	journal->j_format_version = 2;
1323 
1324 	bh = journal->j_sb_buffer;
1325 	BUFFER_TRACE(bh, "marking dirty");
1326 	mark_buffer_dirty(bh);
1327 	sync_dirty_buffer(bh);
1328 	return 0;
1329 }
1330 
1331 
1332 /**
1333  * int jbd2_journal_flush () - Flush journal
1334  * @journal: Journal to act on.
1335  *
1336  * Flush all data for a given journal to disk and empty the journal.
1337  * Filesystems can use this when remounting readonly to ensure that
1338  * recovery does not need to happen on remount.
1339  */
1340 
1341 int jbd2_journal_flush(journal_t *journal)
1342 {
1343 	int err = 0;
1344 	transaction_t *transaction = NULL;
1345 	unsigned long old_tail;
1346 
1347 	spin_lock(&journal->j_state_lock);
1348 
1349 	/* Force everything buffered to the log... */
1350 	if (journal->j_running_transaction) {
1351 		transaction = journal->j_running_transaction;
1352 		__jbd2_log_start_commit(journal, transaction->t_tid);
1353 	} else if (journal->j_committing_transaction)
1354 		transaction = journal->j_committing_transaction;
1355 
1356 	/* Wait for the log commit to complete... */
1357 	if (transaction) {
1358 		tid_t tid = transaction->t_tid;
1359 
1360 		spin_unlock(&journal->j_state_lock);
1361 		jbd2_log_wait_commit(journal, tid);
1362 	} else {
1363 		spin_unlock(&journal->j_state_lock);
1364 	}
1365 
1366 	/* ...and flush everything in the log out to disk. */
1367 	spin_lock(&journal->j_list_lock);
1368 	while (!err && journal->j_checkpoint_transactions != NULL) {
1369 		spin_unlock(&journal->j_list_lock);
1370 		err = jbd2_log_do_checkpoint(journal);
1371 		spin_lock(&journal->j_list_lock);
1372 	}
1373 	spin_unlock(&journal->j_list_lock);
1374 	jbd2_cleanup_journal_tail(journal);
1375 
1376 	/* Finally, mark the journal as really needing no recovery.
1377 	 * This sets s_start==0 in the underlying superblock, which is
1378 	 * the magic code for a fully-recovered superblock.  Any future
1379 	 * commits of data to the journal will restore the current
1380 	 * s_start value. */
1381 	spin_lock(&journal->j_state_lock);
1382 	old_tail = journal->j_tail;
1383 	journal->j_tail = 0;
1384 	spin_unlock(&journal->j_state_lock);
1385 	jbd2_journal_update_superblock(journal, 1);
1386 	spin_lock(&journal->j_state_lock);
1387 	journal->j_tail = old_tail;
1388 
1389 	J_ASSERT(!journal->j_running_transaction);
1390 	J_ASSERT(!journal->j_committing_transaction);
1391 	J_ASSERT(!journal->j_checkpoint_transactions);
1392 	J_ASSERT(journal->j_head == journal->j_tail);
1393 	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1394 	spin_unlock(&journal->j_state_lock);
1395 	return err;
1396 }
1397 
1398 /**
1399  * int jbd2_journal_wipe() - Wipe journal contents
1400  * @journal: Journal to act on.
1401  * @write: flag (see below)
1402  *
1403  * Wipe out all of the contents of a journal, safely.  This will produce
1404  * a warning if the journal contains any valid recovery information.
1405  * Must be called between journal_init_*() and jbd2_journal_load().
1406  *
1407  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1408  * we merely suppress recovery.
1409  */
1410 
1411 int jbd2_journal_wipe(journal_t *journal, int write)
1412 {
1413 	journal_superblock_t *sb;
1414 	int err = 0;
1415 
1416 	J_ASSERT (!(journal->j_flags & JBD2_LOADED));
1417 
1418 	err = load_superblock(journal);
1419 	if (err)
1420 		return err;
1421 
1422 	sb = journal->j_superblock;
1423 
1424 	if (!journal->j_tail)
1425 		goto no_recovery;
1426 
1427 	printk (KERN_WARNING "JBD: %s recovery information on journal\n",
1428 		write ? "Clearing" : "Ignoring");
1429 
1430 	err = jbd2_journal_skip_recovery(journal);
1431 	if (write)
1432 		jbd2_journal_update_superblock(journal, 1);
1433 
1434  no_recovery:
1435 	return err;
1436 }
1437 
1438 /*
1439  * journal_dev_name: format a character string to describe on what
1440  * device this journal is present.
1441  */
1442 
1443 static const char *journal_dev_name(journal_t *journal, char *buffer)
1444 {
1445 	struct block_device *bdev;
1446 
1447 	if (journal->j_inode)
1448 		bdev = journal->j_inode->i_sb->s_bdev;
1449 	else
1450 		bdev = journal->j_dev;
1451 
1452 	return bdevname(bdev, buffer);
1453 }
1454 
1455 /*
1456  * Journal abort has very specific semantics, which we describe
1457  * for journal abort.
1458  *
1459  * Two internal function, which provide abort to te jbd layer
1460  * itself are here.
1461  */
1462 
1463 /*
1464  * Quick version for internal journal use (doesn't lock the journal).
1465  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1466  * and don't attempt to make any other journal updates.
1467  */
1468 void __jbd2_journal_abort_hard(journal_t *journal)
1469 {
1470 	transaction_t *transaction;
1471 	char b[BDEVNAME_SIZE];
1472 
1473 	if (journal->j_flags & JBD2_ABORT)
1474 		return;
1475 
1476 	printk(KERN_ERR "Aborting journal on device %s.\n",
1477 		journal_dev_name(journal, b));
1478 
1479 	spin_lock(&journal->j_state_lock);
1480 	journal->j_flags |= JBD2_ABORT;
1481 	transaction = journal->j_running_transaction;
1482 	if (transaction)
1483 		__jbd2_log_start_commit(journal, transaction->t_tid);
1484 	spin_unlock(&journal->j_state_lock);
1485 }
1486 
1487 /* Soft abort: record the abort error status in the journal superblock,
1488  * but don't do any other IO. */
1489 static void __journal_abort_soft (journal_t *journal, int errno)
1490 {
1491 	if (journal->j_flags & JBD2_ABORT)
1492 		return;
1493 
1494 	if (!journal->j_errno)
1495 		journal->j_errno = errno;
1496 
1497 	__jbd2_journal_abort_hard(journal);
1498 
1499 	if (errno)
1500 		jbd2_journal_update_superblock(journal, 1);
1501 }
1502 
1503 /**
1504  * void jbd2_journal_abort () - Shutdown the journal immediately.
1505  * @journal: the journal to shutdown.
1506  * @errno:   an error number to record in the journal indicating
1507  *           the reason for the shutdown.
1508  *
1509  * Perform a complete, immediate shutdown of the ENTIRE
1510  * journal (not of a single transaction).  This operation cannot be
1511  * undone without closing and reopening the journal.
1512  *
1513  * The jbd2_journal_abort function is intended to support higher level error
1514  * recovery mechanisms such as the ext2/ext3 remount-readonly error
1515  * mode.
1516  *
1517  * Journal abort has very specific semantics.  Any existing dirty,
1518  * unjournaled buffers in the main filesystem will still be written to
1519  * disk by bdflush, but the journaling mechanism will be suspended
1520  * immediately and no further transaction commits will be honoured.
1521  *
1522  * Any dirty, journaled buffers will be written back to disk without
1523  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
1524  * filesystem, but we _do_ attempt to leave as much data as possible
1525  * behind for fsck to use for cleanup.
1526  *
1527  * Any attempt to get a new transaction handle on a journal which is in
1528  * ABORT state will just result in an -EROFS error return.  A
1529  * jbd2_journal_stop on an existing handle will return -EIO if we have
1530  * entered abort state during the update.
1531  *
1532  * Recursive transactions are not disturbed by journal abort until the
1533  * final jbd2_journal_stop, which will receive the -EIO error.
1534  *
1535  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
1536  * which will be recorded (if possible) in the journal superblock.  This
1537  * allows a client to record failure conditions in the middle of a
1538  * transaction without having to complete the transaction to record the
1539  * failure to disk.  ext3_error, for example, now uses this
1540  * functionality.
1541  *
1542  * Errors which originate from within the journaling layer will NOT
1543  * supply an errno; a null errno implies that absolutely no further
1544  * writes are done to the journal (unless there are any already in
1545  * progress).
1546  *
1547  */
1548 
1549 void jbd2_journal_abort(journal_t *journal, int errno)
1550 {
1551 	__journal_abort_soft(journal, errno);
1552 }
1553 
1554 /**
1555  * int jbd2_journal_errno () - returns the journal's error state.
1556  * @journal: journal to examine.
1557  *
1558  * This is the errno numbet set with jbd2_journal_abort(), the last
1559  * time the journal was mounted - if the journal was stopped
1560  * without calling abort this will be 0.
1561  *
1562  * If the journal has been aborted on this mount time -EROFS will
1563  * be returned.
1564  */
1565 int jbd2_journal_errno(journal_t *journal)
1566 {
1567 	int err;
1568 
1569 	spin_lock(&journal->j_state_lock);
1570 	if (journal->j_flags & JBD2_ABORT)
1571 		err = -EROFS;
1572 	else
1573 		err = journal->j_errno;
1574 	spin_unlock(&journal->j_state_lock);
1575 	return err;
1576 }
1577 
1578 /**
1579  * int jbd2_journal_clear_err () - clears the journal's error state
1580  * @journal: journal to act on.
1581  *
1582  * An error must be cleared or Acked to take a FS out of readonly
1583  * mode.
1584  */
1585 int jbd2_journal_clear_err(journal_t *journal)
1586 {
1587 	int err = 0;
1588 
1589 	spin_lock(&journal->j_state_lock);
1590 	if (journal->j_flags & JBD2_ABORT)
1591 		err = -EROFS;
1592 	else
1593 		journal->j_errno = 0;
1594 	spin_unlock(&journal->j_state_lock);
1595 	return err;
1596 }
1597 
1598 /**
1599  * void jbd2_journal_ack_err() - Ack journal err.
1600  * @journal: journal to act on.
1601  *
1602  * An error must be cleared or Acked to take a FS out of readonly
1603  * mode.
1604  */
1605 void jbd2_journal_ack_err(journal_t *journal)
1606 {
1607 	spin_lock(&journal->j_state_lock);
1608 	if (journal->j_errno)
1609 		journal->j_flags |= JBD2_ACK_ERR;
1610 	spin_unlock(&journal->j_state_lock);
1611 }
1612 
1613 int jbd2_journal_blocks_per_page(struct inode *inode)
1614 {
1615 	return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1616 }
1617 
1618 /*
1619  * helper functions to deal with 32 or 64bit block numbers.
1620  */
1621 size_t journal_tag_bytes(journal_t *journal)
1622 {
1623 	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT))
1624 		return JBD_TAG_SIZE64;
1625 	else
1626 		return JBD_TAG_SIZE32;
1627 }
1628 
1629 /*
1630  * Simple support for retrying memory allocations.  Introduced to help to
1631  * debug different VM deadlock avoidance strategies.
1632  */
1633 void * __jbd2_kmalloc (const char *where, size_t size, gfp_t flags, int retry)
1634 {
1635 	return kmalloc(size, flags | (retry ? __GFP_NOFAIL : 0));
1636 }
1637 
1638 /*
1639  * jbd slab management: create 1k, 2k, 4k, 8k slabs as needed
1640  * and allocate frozen and commit buffers from these slabs.
1641  *
1642  * Reason for doing this is to avoid, SLAB_DEBUG - since it could
1643  * cause bh to cross page boundary.
1644  */
1645 
1646 #define JBD_MAX_SLABS 5
1647 #define JBD_SLAB_INDEX(size)  (size >> 11)
1648 
1649 static struct kmem_cache *jbd_slab[JBD_MAX_SLABS];
1650 static const char *jbd_slab_names[JBD_MAX_SLABS] = {
1651 	"jbd2_1k", "jbd2_2k", "jbd2_4k", NULL, "jbd2_8k"
1652 };
1653 
1654 static void jbd2_journal_destroy_jbd_slabs(void)
1655 {
1656 	int i;
1657 
1658 	for (i = 0; i < JBD_MAX_SLABS; i++) {
1659 		if (jbd_slab[i])
1660 			kmem_cache_destroy(jbd_slab[i]);
1661 		jbd_slab[i] = NULL;
1662 	}
1663 }
1664 
1665 static int jbd2_journal_create_jbd_slab(size_t slab_size)
1666 {
1667 	int i = JBD_SLAB_INDEX(slab_size);
1668 
1669 	BUG_ON(i >= JBD_MAX_SLABS);
1670 
1671 	/*
1672 	 * Check if we already have a slab created for this size
1673 	 */
1674 	if (jbd_slab[i])
1675 		return 0;
1676 
1677 	/*
1678 	 * Create a slab and force alignment to be same as slabsize -
1679 	 * this will make sure that allocations won't cross the page
1680 	 * boundary.
1681 	 */
1682 	jbd_slab[i] = kmem_cache_create(jbd_slab_names[i],
1683 				slab_size, slab_size, 0, NULL);
1684 	if (!jbd_slab[i]) {
1685 		printk(KERN_EMERG "JBD: no memory for jbd_slab cache\n");
1686 		return -ENOMEM;
1687 	}
1688 	return 0;
1689 }
1690 
1691 void * jbd2_slab_alloc(size_t size, gfp_t flags)
1692 {
1693 	int idx;
1694 
1695 	idx = JBD_SLAB_INDEX(size);
1696 	BUG_ON(jbd_slab[idx] == NULL);
1697 	return kmem_cache_alloc(jbd_slab[idx], flags | __GFP_NOFAIL);
1698 }
1699 
1700 void jbd2_slab_free(void *ptr,  size_t size)
1701 {
1702 	int idx;
1703 
1704 	idx = JBD_SLAB_INDEX(size);
1705 	BUG_ON(jbd_slab[idx] == NULL);
1706 	kmem_cache_free(jbd_slab[idx], ptr);
1707 }
1708 
1709 /*
1710  * Journal_head storage management
1711  */
1712 static struct kmem_cache *jbd2_journal_head_cache;
1713 #ifdef CONFIG_JBD2_DEBUG
1714 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
1715 #endif
1716 
1717 static int journal_init_jbd2_journal_head_cache(void)
1718 {
1719 	int retval;
1720 
1721 	J_ASSERT(jbd2_journal_head_cache == 0);
1722 	jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
1723 				sizeof(struct journal_head),
1724 				0,		/* offset */
1725 				0,		/* flags */
1726 				NULL);		/* ctor */
1727 	retval = 0;
1728 	if (jbd2_journal_head_cache == 0) {
1729 		retval = -ENOMEM;
1730 		printk(KERN_EMERG "JBD: no memory for journal_head cache\n");
1731 	}
1732 	return retval;
1733 }
1734 
1735 static void jbd2_journal_destroy_jbd2_journal_head_cache(void)
1736 {
1737 	J_ASSERT(jbd2_journal_head_cache != NULL);
1738 	kmem_cache_destroy(jbd2_journal_head_cache);
1739 	jbd2_journal_head_cache = NULL;
1740 }
1741 
1742 /*
1743  * journal_head splicing and dicing
1744  */
1745 static struct journal_head *journal_alloc_journal_head(void)
1746 {
1747 	struct journal_head *ret;
1748 	static unsigned long last_warning;
1749 
1750 #ifdef CONFIG_JBD2_DEBUG
1751 	atomic_inc(&nr_journal_heads);
1752 #endif
1753 	ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
1754 	if (ret == 0) {
1755 		jbd_debug(1, "out of memory for journal_head\n");
1756 		if (time_after(jiffies, last_warning + 5*HZ)) {
1757 			printk(KERN_NOTICE "ENOMEM in %s, retrying.\n",
1758 			       __FUNCTION__);
1759 			last_warning = jiffies;
1760 		}
1761 		while (ret == 0) {
1762 			yield();
1763 			ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
1764 		}
1765 	}
1766 	return ret;
1767 }
1768 
1769 static void journal_free_journal_head(struct journal_head *jh)
1770 {
1771 #ifdef CONFIG_JBD2_DEBUG
1772 	atomic_dec(&nr_journal_heads);
1773 	memset(jh, JBD_POISON_FREE, sizeof(*jh));
1774 #endif
1775 	kmem_cache_free(jbd2_journal_head_cache, jh);
1776 }
1777 
1778 /*
1779  * A journal_head is attached to a buffer_head whenever JBD has an
1780  * interest in the buffer.
1781  *
1782  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
1783  * is set.  This bit is tested in core kernel code where we need to take
1784  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
1785  * there.
1786  *
1787  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
1788  *
1789  * When a buffer has its BH_JBD bit set it is immune from being released by
1790  * core kernel code, mainly via ->b_count.
1791  *
1792  * A journal_head may be detached from its buffer_head when the journal_head's
1793  * b_transaction, b_cp_transaction and b_next_transaction pointers are NULL.
1794  * Various places in JBD call jbd2_journal_remove_journal_head() to indicate that the
1795  * journal_head can be dropped if needed.
1796  *
1797  * Various places in the kernel want to attach a journal_head to a buffer_head
1798  * _before_ attaching the journal_head to a transaction.  To protect the
1799  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
1800  * journal_head's b_jcount refcount by one.  The caller must call
1801  * jbd2_journal_put_journal_head() to undo this.
1802  *
1803  * So the typical usage would be:
1804  *
1805  *	(Attach a journal_head if needed.  Increments b_jcount)
1806  *	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1807  *	...
1808  *	jh->b_transaction = xxx;
1809  *	jbd2_journal_put_journal_head(jh);
1810  *
1811  * Now, the journal_head's b_jcount is zero, but it is safe from being released
1812  * because it has a non-zero b_transaction.
1813  */
1814 
1815 /*
1816  * Give a buffer_head a journal_head.
1817  *
1818  * Doesn't need the journal lock.
1819  * May sleep.
1820  */
1821 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
1822 {
1823 	struct journal_head *jh;
1824 	struct journal_head *new_jh = NULL;
1825 
1826 repeat:
1827 	if (!buffer_jbd(bh)) {
1828 		new_jh = journal_alloc_journal_head();
1829 		memset(new_jh, 0, sizeof(*new_jh));
1830 	}
1831 
1832 	jbd_lock_bh_journal_head(bh);
1833 	if (buffer_jbd(bh)) {
1834 		jh = bh2jh(bh);
1835 	} else {
1836 		J_ASSERT_BH(bh,
1837 			(atomic_read(&bh->b_count) > 0) ||
1838 			(bh->b_page && bh->b_page->mapping));
1839 
1840 		if (!new_jh) {
1841 			jbd_unlock_bh_journal_head(bh);
1842 			goto repeat;
1843 		}
1844 
1845 		jh = new_jh;
1846 		new_jh = NULL;		/* We consumed it */
1847 		set_buffer_jbd(bh);
1848 		bh->b_private = jh;
1849 		jh->b_bh = bh;
1850 		get_bh(bh);
1851 		BUFFER_TRACE(bh, "added journal_head");
1852 	}
1853 	jh->b_jcount++;
1854 	jbd_unlock_bh_journal_head(bh);
1855 	if (new_jh)
1856 		journal_free_journal_head(new_jh);
1857 	return bh->b_private;
1858 }
1859 
1860 /*
1861  * Grab a ref against this buffer_head's journal_head.  If it ended up not
1862  * having a journal_head, return NULL
1863  */
1864 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
1865 {
1866 	struct journal_head *jh = NULL;
1867 
1868 	jbd_lock_bh_journal_head(bh);
1869 	if (buffer_jbd(bh)) {
1870 		jh = bh2jh(bh);
1871 		jh->b_jcount++;
1872 	}
1873 	jbd_unlock_bh_journal_head(bh);
1874 	return jh;
1875 }
1876 
1877 static void __journal_remove_journal_head(struct buffer_head *bh)
1878 {
1879 	struct journal_head *jh = bh2jh(bh);
1880 
1881 	J_ASSERT_JH(jh, jh->b_jcount >= 0);
1882 
1883 	get_bh(bh);
1884 	if (jh->b_jcount == 0) {
1885 		if (jh->b_transaction == NULL &&
1886 				jh->b_next_transaction == NULL &&
1887 				jh->b_cp_transaction == NULL) {
1888 			J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
1889 			J_ASSERT_BH(bh, buffer_jbd(bh));
1890 			J_ASSERT_BH(bh, jh2bh(jh) == bh);
1891 			BUFFER_TRACE(bh, "remove journal_head");
1892 			if (jh->b_frozen_data) {
1893 				printk(KERN_WARNING "%s: freeing "
1894 						"b_frozen_data\n",
1895 						__FUNCTION__);
1896 				jbd2_slab_free(jh->b_frozen_data, bh->b_size);
1897 			}
1898 			if (jh->b_committed_data) {
1899 				printk(KERN_WARNING "%s: freeing "
1900 						"b_committed_data\n",
1901 						__FUNCTION__);
1902 				jbd2_slab_free(jh->b_committed_data, bh->b_size);
1903 			}
1904 			bh->b_private = NULL;
1905 			jh->b_bh = NULL;	/* debug, really */
1906 			clear_buffer_jbd(bh);
1907 			__brelse(bh);
1908 			journal_free_journal_head(jh);
1909 		} else {
1910 			BUFFER_TRACE(bh, "journal_head was locked");
1911 		}
1912 	}
1913 }
1914 
1915 /*
1916  * jbd2_journal_remove_journal_head(): if the buffer isn't attached to a transaction
1917  * and has a zero b_jcount then remove and release its journal_head.   If we did
1918  * see that the buffer is not used by any transaction we also "logically"
1919  * decrement ->b_count.
1920  *
1921  * We in fact take an additional increment on ->b_count as a convenience,
1922  * because the caller usually wants to do additional things with the bh
1923  * after calling here.
1924  * The caller of jbd2_journal_remove_journal_head() *must* run __brelse(bh) at some
1925  * time.  Once the caller has run __brelse(), the buffer is eligible for
1926  * reaping by try_to_free_buffers().
1927  */
1928 void jbd2_journal_remove_journal_head(struct buffer_head *bh)
1929 {
1930 	jbd_lock_bh_journal_head(bh);
1931 	__journal_remove_journal_head(bh);
1932 	jbd_unlock_bh_journal_head(bh);
1933 }
1934 
1935 /*
1936  * Drop a reference on the passed journal_head.  If it fell to zero then try to
1937  * release the journal_head from the buffer_head.
1938  */
1939 void jbd2_journal_put_journal_head(struct journal_head *jh)
1940 {
1941 	struct buffer_head *bh = jh2bh(jh);
1942 
1943 	jbd_lock_bh_journal_head(bh);
1944 	J_ASSERT_JH(jh, jh->b_jcount > 0);
1945 	--jh->b_jcount;
1946 	if (!jh->b_jcount && !jh->b_transaction) {
1947 		__journal_remove_journal_head(bh);
1948 		__brelse(bh);
1949 	}
1950 	jbd_unlock_bh_journal_head(bh);
1951 }
1952 
1953 /*
1954  * debugfs tunables
1955  */
1956 #if defined(CONFIG_JBD2_DEBUG)
1957 u8 jbd2_journal_enable_debug;
1958 EXPORT_SYMBOL(jbd2_journal_enable_debug);
1959 #endif
1960 
1961 #if defined(CONFIG_JBD2_DEBUG) && defined(CONFIG_DEBUG_FS)
1962 
1963 #define JBD2_DEBUG_NAME "jbd2-debug"
1964 
1965 struct dentry *jbd2_debugfs_dir, *jbd2_debug;
1966 
1967 static void __init jbd2_create_debugfs_entry(void)
1968 {
1969 	jbd2_debugfs_dir = debugfs_create_dir("jbd2", NULL);
1970 	if (jbd2_debugfs_dir)
1971 		jbd2_debug = debugfs_create_u8(JBD2_DEBUG_NAME, S_IRUGO,
1972 					       jbd2_debugfs_dir,
1973 					       &jbd2_journal_enable_debug);
1974 }
1975 
1976 static void __exit jbd2_remove_debugfs_entry(void)
1977 {
1978 	if (jbd2_debug)
1979 		debugfs_remove(jbd2_debug);
1980 	if (jbd2_debugfs_dir)
1981 		debugfs_remove(jbd2_debugfs_dir);
1982 }
1983 
1984 #else
1985 
1986 static void __init jbd2_create_debugfs_entry(void)
1987 {
1988 	do {
1989 	} while (0);
1990 }
1991 
1992 static void __exit jbd2_remove_debugfs_entry(void)
1993 {
1994 	do {
1995 	} while (0);
1996 }
1997 
1998 #endif
1999 
2000 struct kmem_cache *jbd2_handle_cache;
2001 
2002 static int __init journal_init_handle_cache(void)
2003 {
2004 	jbd2_handle_cache = kmem_cache_create("jbd2_journal_handle",
2005 				sizeof(handle_t),
2006 				0,		/* offset */
2007 				0,		/* flags */
2008 				NULL);		/* ctor */
2009 	if (jbd2_handle_cache == NULL) {
2010 		printk(KERN_EMERG "JBD: failed to create handle cache\n");
2011 		return -ENOMEM;
2012 	}
2013 	return 0;
2014 }
2015 
2016 static void jbd2_journal_destroy_handle_cache(void)
2017 {
2018 	if (jbd2_handle_cache)
2019 		kmem_cache_destroy(jbd2_handle_cache);
2020 }
2021 
2022 /*
2023  * Module startup and shutdown
2024  */
2025 
2026 static int __init journal_init_caches(void)
2027 {
2028 	int ret;
2029 
2030 	ret = jbd2_journal_init_revoke_caches();
2031 	if (ret == 0)
2032 		ret = journal_init_jbd2_journal_head_cache();
2033 	if (ret == 0)
2034 		ret = journal_init_handle_cache();
2035 	return ret;
2036 }
2037 
2038 static void jbd2_journal_destroy_caches(void)
2039 {
2040 	jbd2_journal_destroy_revoke_caches();
2041 	jbd2_journal_destroy_jbd2_journal_head_cache();
2042 	jbd2_journal_destroy_handle_cache();
2043 	jbd2_journal_destroy_jbd_slabs();
2044 }
2045 
2046 static int __init journal_init(void)
2047 {
2048 	int ret;
2049 
2050 	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2051 
2052 	ret = journal_init_caches();
2053 	if (ret != 0)
2054 		jbd2_journal_destroy_caches();
2055 	jbd2_create_debugfs_entry();
2056 	return ret;
2057 }
2058 
2059 static void __exit journal_exit(void)
2060 {
2061 #ifdef CONFIG_JBD2_DEBUG
2062 	int n = atomic_read(&nr_journal_heads);
2063 	if (n)
2064 		printk(KERN_EMERG "JBD: leaked %d journal_heads!\n", n);
2065 #endif
2066 	jbd2_remove_debugfs_entry();
2067 	jbd2_journal_destroy_caches();
2068 }
2069 
2070 MODULE_LICENSE("GPL");
2071 module_init(journal_init);
2072 module_exit(journal_exit);
2073 
2074