xref: /linux/fs/jbd2/journal.c (revision 288440de9e5fdb4a3ff73864850f080c1250fc81)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * linux/fs/jbd2/journal.c
4  *
5  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6  *
7  * Copyright 1998 Red Hat corp --- All Rights Reserved
8  *
9  * Generic filesystem journal-writing code; part of the ext2fs
10  * journaling system.
11  *
12  * This file manages journals: areas of disk reserved for logging
13  * transactional updates.  This includes the kernel journaling thread
14  * which is responsible for scheduling updates to the log.
15  *
16  * We do not actually manage the physical storage of the journal in this
17  * file: that is left to a per-journal policy function, which allows us
18  * to store the journal within a filesystem-specified area for ext2
19  * journaling (ext2 can use a reserved inode for storing the log).
20  */
21 
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/fs.h>
25 #include <linux/jbd2.h>
26 #include <linux/errno.h>
27 #include <linux/slab.h>
28 #include <linux/init.h>
29 #include <linux/mm.h>
30 #include <linux/freezer.h>
31 #include <linux/pagemap.h>
32 #include <linux/kthread.h>
33 #include <linux/poison.h>
34 #include <linux/proc_fs.h>
35 #include <linux/seq_file.h>
36 #include <linux/math64.h>
37 #include <linux/hash.h>
38 #include <linux/log2.h>
39 #include <linux/vmalloc.h>
40 #include <linux/backing-dev.h>
41 #include <linux/bitops.h>
42 #include <linux/ratelimit.h>
43 #include <linux/sched/mm.h>
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/jbd2.h>
47 
48 #include <linux/uaccess.h>
49 #include <asm/page.h>
50 
51 #ifdef CONFIG_JBD2_DEBUG
52 static ushort jbd2_journal_enable_debug __read_mostly;
53 
54 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
55 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
56 #endif
57 
58 EXPORT_SYMBOL(jbd2_journal_extend);
59 EXPORT_SYMBOL(jbd2_journal_stop);
60 EXPORT_SYMBOL(jbd2_journal_lock_updates);
61 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
62 EXPORT_SYMBOL(jbd2_journal_get_write_access);
63 EXPORT_SYMBOL(jbd2_journal_get_create_access);
64 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
65 EXPORT_SYMBOL(jbd2_journal_set_triggers);
66 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
67 EXPORT_SYMBOL(jbd2_journal_forget);
68 EXPORT_SYMBOL(jbd2_journal_flush);
69 EXPORT_SYMBOL(jbd2_journal_revoke);
70 
71 EXPORT_SYMBOL(jbd2_journal_init_dev);
72 EXPORT_SYMBOL(jbd2_journal_init_inode);
73 EXPORT_SYMBOL(jbd2_journal_check_used_features);
74 EXPORT_SYMBOL(jbd2_journal_check_available_features);
75 EXPORT_SYMBOL(jbd2_journal_set_features);
76 EXPORT_SYMBOL(jbd2_journal_load);
77 EXPORT_SYMBOL(jbd2_journal_destroy);
78 EXPORT_SYMBOL(jbd2_journal_abort);
79 EXPORT_SYMBOL(jbd2_journal_errno);
80 EXPORT_SYMBOL(jbd2_journal_ack_err);
81 EXPORT_SYMBOL(jbd2_journal_clear_err);
82 EXPORT_SYMBOL(jbd2_log_wait_commit);
83 EXPORT_SYMBOL(jbd2_journal_start_commit);
84 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
85 EXPORT_SYMBOL(jbd2_journal_wipe);
86 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
87 EXPORT_SYMBOL(jbd2_journal_invalidate_folio);
88 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
89 EXPORT_SYMBOL(jbd2_journal_force_commit);
90 EXPORT_SYMBOL(jbd2_journal_inode_ranged_write);
91 EXPORT_SYMBOL(jbd2_journal_inode_ranged_wait);
92 EXPORT_SYMBOL(jbd2_journal_submit_inode_data_buffers);
93 EXPORT_SYMBOL(jbd2_journal_finish_inode_data_buffers);
94 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
95 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
96 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
97 EXPORT_SYMBOL(jbd2_inode_cache);
98 
99 static int jbd2_journal_create_slab(size_t slab_size);
100 
101 #ifdef CONFIG_JBD2_DEBUG
102 void __jbd2_debug(int level, const char *file, const char *func,
103 		  unsigned int line, const char *fmt, ...)
104 {
105 	struct va_format vaf;
106 	va_list args;
107 
108 	if (level > jbd2_journal_enable_debug)
109 		return;
110 	va_start(args, fmt);
111 	vaf.fmt = fmt;
112 	vaf.va = &args;
113 	printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf);
114 	va_end(args);
115 }
116 #endif
117 
118 /* Checksumming functions */
119 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
120 {
121 	if (!jbd2_journal_has_csum_v2or3_feature(j))
122 		return 1;
123 
124 	return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
125 }
126 
127 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
128 {
129 	__u32 csum;
130 	__be32 old_csum;
131 
132 	old_csum = sb->s_checksum;
133 	sb->s_checksum = 0;
134 	csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
135 	sb->s_checksum = old_csum;
136 
137 	return cpu_to_be32(csum);
138 }
139 
140 /*
141  * Helper function used to manage commit timeouts
142  */
143 
144 static void commit_timeout(struct timer_list *t)
145 {
146 	journal_t *journal = from_timer(journal, t, j_commit_timer);
147 
148 	wake_up_process(journal->j_task);
149 }
150 
151 /*
152  * kjournald2: The main thread function used to manage a logging device
153  * journal.
154  *
155  * This kernel thread is responsible for two things:
156  *
157  * 1) COMMIT:  Every so often we need to commit the current state of the
158  *    filesystem to disk.  The journal thread is responsible for writing
159  *    all of the metadata buffers to disk. If a fast commit is ongoing
160  *    journal thread waits until it's done and then continues from
161  *    there on.
162  *
163  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
164  *    of the data in that part of the log has been rewritten elsewhere on
165  *    the disk.  Flushing these old buffers to reclaim space in the log is
166  *    known as checkpointing, and this thread is responsible for that job.
167  */
168 
169 static int kjournald2(void *arg)
170 {
171 	journal_t *journal = arg;
172 	transaction_t *transaction;
173 
174 	/*
175 	 * Set up an interval timer which can be used to trigger a commit wakeup
176 	 * after the commit interval expires
177 	 */
178 	timer_setup(&journal->j_commit_timer, commit_timeout, 0);
179 
180 	set_freezable();
181 
182 	/* Record that the journal thread is running */
183 	journal->j_task = current;
184 	wake_up(&journal->j_wait_done_commit);
185 
186 	/*
187 	 * Make sure that no allocations from this kernel thread will ever
188 	 * recurse to the fs layer because we are responsible for the
189 	 * transaction commit and any fs involvement might get stuck waiting for
190 	 * the trasn. commit.
191 	 */
192 	memalloc_nofs_save();
193 
194 	/*
195 	 * And now, wait forever for commit wakeup events.
196 	 */
197 	write_lock(&journal->j_state_lock);
198 
199 loop:
200 	if (journal->j_flags & JBD2_UNMOUNT)
201 		goto end_loop;
202 
203 	jbd2_debug(1, "commit_sequence=%u, commit_request=%u\n",
204 		journal->j_commit_sequence, journal->j_commit_request);
205 
206 	if (journal->j_commit_sequence != journal->j_commit_request) {
207 		jbd2_debug(1, "OK, requests differ\n");
208 		write_unlock(&journal->j_state_lock);
209 		del_timer_sync(&journal->j_commit_timer);
210 		jbd2_journal_commit_transaction(journal);
211 		write_lock(&journal->j_state_lock);
212 		goto loop;
213 	}
214 
215 	wake_up(&journal->j_wait_done_commit);
216 	if (freezing(current)) {
217 		/*
218 		 * The simpler the better. Flushing journal isn't a
219 		 * good idea, because that depends on threads that may
220 		 * be already stopped.
221 		 */
222 		jbd2_debug(1, "Now suspending kjournald2\n");
223 		write_unlock(&journal->j_state_lock);
224 		try_to_freeze();
225 		write_lock(&journal->j_state_lock);
226 	} else {
227 		/*
228 		 * We assume on resume that commits are already there,
229 		 * so we don't sleep
230 		 */
231 		DEFINE_WAIT(wait);
232 		int should_sleep = 1;
233 
234 		prepare_to_wait(&journal->j_wait_commit, &wait,
235 				TASK_INTERRUPTIBLE);
236 		if (journal->j_commit_sequence != journal->j_commit_request)
237 			should_sleep = 0;
238 		transaction = journal->j_running_transaction;
239 		if (transaction && time_after_eq(jiffies,
240 						transaction->t_expires))
241 			should_sleep = 0;
242 		if (journal->j_flags & JBD2_UNMOUNT)
243 			should_sleep = 0;
244 		if (should_sleep) {
245 			write_unlock(&journal->j_state_lock);
246 			schedule();
247 			write_lock(&journal->j_state_lock);
248 		}
249 		finish_wait(&journal->j_wait_commit, &wait);
250 	}
251 
252 	jbd2_debug(1, "kjournald2 wakes\n");
253 
254 	/*
255 	 * Were we woken up by a commit wakeup event?
256 	 */
257 	transaction = journal->j_running_transaction;
258 	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
259 		journal->j_commit_request = transaction->t_tid;
260 		jbd2_debug(1, "woke because of timeout\n");
261 	}
262 	goto loop;
263 
264 end_loop:
265 	del_timer_sync(&journal->j_commit_timer);
266 	journal->j_task = NULL;
267 	wake_up(&journal->j_wait_done_commit);
268 	jbd2_debug(1, "Journal thread exiting.\n");
269 	write_unlock(&journal->j_state_lock);
270 	return 0;
271 }
272 
273 static int jbd2_journal_start_thread(journal_t *journal)
274 {
275 	struct task_struct *t;
276 
277 	t = kthread_run(kjournald2, journal, "jbd2/%s",
278 			journal->j_devname);
279 	if (IS_ERR(t))
280 		return PTR_ERR(t);
281 
282 	wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
283 	return 0;
284 }
285 
286 static void journal_kill_thread(journal_t *journal)
287 {
288 	write_lock(&journal->j_state_lock);
289 	journal->j_flags |= JBD2_UNMOUNT;
290 
291 	while (journal->j_task) {
292 		write_unlock(&journal->j_state_lock);
293 		wake_up(&journal->j_wait_commit);
294 		wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
295 		write_lock(&journal->j_state_lock);
296 	}
297 	write_unlock(&journal->j_state_lock);
298 }
299 
300 /*
301  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
302  *
303  * Writes a metadata buffer to a given disk block.  The actual IO is not
304  * performed but a new buffer_head is constructed which labels the data
305  * to be written with the correct destination disk block.
306  *
307  * Any magic-number escaping which needs to be done will cause a
308  * copy-out here.  If the buffer happens to start with the
309  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
310  * magic number is only written to the log for descripter blocks.  In
311  * this case, we copy the data and replace the first word with 0, and we
312  * return a result code which indicates that this buffer needs to be
313  * marked as an escaped buffer in the corresponding log descriptor
314  * block.  The missing word can then be restored when the block is read
315  * during recovery.
316  *
317  * If the source buffer has already been modified by a new transaction
318  * since we took the last commit snapshot, we use the frozen copy of
319  * that data for IO. If we end up using the existing buffer_head's data
320  * for the write, then we have to make sure nobody modifies it while the
321  * IO is in progress. do_get_write_access() handles this.
322  *
323  * The function returns a pointer to the buffer_head to be used for IO.
324  *
325  *
326  * Return value:
327  *  <0: Error
328  * >=0: Finished OK
329  *
330  * On success:
331  * Bit 0 set == escape performed on the data
332  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
333  */
334 
335 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
336 				  struct journal_head  *jh_in,
337 				  struct buffer_head **bh_out,
338 				  sector_t blocknr)
339 {
340 	int need_copy_out = 0;
341 	int done_copy_out = 0;
342 	int do_escape = 0;
343 	char *mapped_data;
344 	struct buffer_head *new_bh;
345 	struct page *new_page;
346 	unsigned int new_offset;
347 	struct buffer_head *bh_in = jh2bh(jh_in);
348 	journal_t *journal = transaction->t_journal;
349 
350 	/*
351 	 * The buffer really shouldn't be locked: only the current committing
352 	 * transaction is allowed to write it, so nobody else is allowed
353 	 * to do any IO.
354 	 *
355 	 * akpm: except if we're journalling data, and write() output is
356 	 * also part of a shared mapping, and another thread has
357 	 * decided to launch a writepage() against this buffer.
358 	 */
359 	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
360 
361 	new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
362 
363 	/* keep subsequent assertions sane */
364 	atomic_set(&new_bh->b_count, 1);
365 
366 	spin_lock(&jh_in->b_state_lock);
367 repeat:
368 	/*
369 	 * If a new transaction has already done a buffer copy-out, then
370 	 * we use that version of the data for the commit.
371 	 */
372 	if (jh_in->b_frozen_data) {
373 		done_copy_out = 1;
374 		new_page = virt_to_page(jh_in->b_frozen_data);
375 		new_offset = offset_in_page(jh_in->b_frozen_data);
376 	} else {
377 		new_page = jh2bh(jh_in)->b_page;
378 		new_offset = offset_in_page(jh2bh(jh_in)->b_data);
379 	}
380 
381 	mapped_data = kmap_atomic(new_page);
382 	/*
383 	 * Fire data frozen trigger if data already wasn't frozen.  Do this
384 	 * before checking for escaping, as the trigger may modify the magic
385 	 * offset.  If a copy-out happens afterwards, it will have the correct
386 	 * data in the buffer.
387 	 */
388 	if (!done_copy_out)
389 		jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
390 					   jh_in->b_triggers);
391 
392 	/*
393 	 * Check for escaping
394 	 */
395 	if (*((__be32 *)(mapped_data + new_offset)) ==
396 				cpu_to_be32(JBD2_MAGIC_NUMBER)) {
397 		need_copy_out = 1;
398 		do_escape = 1;
399 	}
400 	kunmap_atomic(mapped_data);
401 
402 	/*
403 	 * Do we need to do a data copy?
404 	 */
405 	if (need_copy_out && !done_copy_out) {
406 		char *tmp;
407 
408 		spin_unlock(&jh_in->b_state_lock);
409 		tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
410 		if (!tmp) {
411 			brelse(new_bh);
412 			return -ENOMEM;
413 		}
414 		spin_lock(&jh_in->b_state_lock);
415 		if (jh_in->b_frozen_data) {
416 			jbd2_free(tmp, bh_in->b_size);
417 			goto repeat;
418 		}
419 
420 		jh_in->b_frozen_data = tmp;
421 		mapped_data = kmap_atomic(new_page);
422 		memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
423 		kunmap_atomic(mapped_data);
424 
425 		new_page = virt_to_page(tmp);
426 		new_offset = offset_in_page(tmp);
427 		done_copy_out = 1;
428 
429 		/*
430 		 * This isn't strictly necessary, as we're using frozen
431 		 * data for the escaping, but it keeps consistency with
432 		 * b_frozen_data usage.
433 		 */
434 		jh_in->b_frozen_triggers = jh_in->b_triggers;
435 	}
436 
437 	/*
438 	 * Did we need to do an escaping?  Now we've done all the
439 	 * copying, we can finally do so.
440 	 */
441 	if (do_escape) {
442 		mapped_data = kmap_atomic(new_page);
443 		*((unsigned int *)(mapped_data + new_offset)) = 0;
444 		kunmap_atomic(mapped_data);
445 	}
446 
447 	set_bh_page(new_bh, new_page, new_offset);
448 	new_bh->b_size = bh_in->b_size;
449 	new_bh->b_bdev = journal->j_dev;
450 	new_bh->b_blocknr = blocknr;
451 	new_bh->b_private = bh_in;
452 	set_buffer_mapped(new_bh);
453 	set_buffer_dirty(new_bh);
454 
455 	*bh_out = new_bh;
456 
457 	/*
458 	 * The to-be-written buffer needs to get moved to the io queue,
459 	 * and the original buffer whose contents we are shadowing or
460 	 * copying is moved to the transaction's shadow queue.
461 	 */
462 	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
463 	spin_lock(&journal->j_list_lock);
464 	__jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
465 	spin_unlock(&journal->j_list_lock);
466 	set_buffer_shadow(bh_in);
467 	spin_unlock(&jh_in->b_state_lock);
468 
469 	return do_escape | (done_copy_out << 1);
470 }
471 
472 /*
473  * Allocation code for the journal file.  Manage the space left in the
474  * journal, so that we can begin checkpointing when appropriate.
475  */
476 
477 /*
478  * Called with j_state_lock locked for writing.
479  * Returns true if a transaction commit was started.
480  */
481 static int __jbd2_log_start_commit(journal_t *journal, tid_t target)
482 {
483 	/* Return if the txn has already requested to be committed */
484 	if (journal->j_commit_request == target)
485 		return 0;
486 
487 	/*
488 	 * The only transaction we can possibly wait upon is the
489 	 * currently running transaction (if it exists).  Otherwise,
490 	 * the target tid must be an old one.
491 	 */
492 	if (journal->j_running_transaction &&
493 	    journal->j_running_transaction->t_tid == target) {
494 		/*
495 		 * We want a new commit: OK, mark the request and wakeup the
496 		 * commit thread.  We do _not_ do the commit ourselves.
497 		 */
498 
499 		journal->j_commit_request = target;
500 		jbd2_debug(1, "JBD2: requesting commit %u/%u\n",
501 			  journal->j_commit_request,
502 			  journal->j_commit_sequence);
503 		journal->j_running_transaction->t_requested = jiffies;
504 		wake_up(&journal->j_wait_commit);
505 		return 1;
506 	} else if (!tid_geq(journal->j_commit_request, target))
507 		/* This should never happen, but if it does, preserve
508 		   the evidence before kjournald goes into a loop and
509 		   increments j_commit_sequence beyond all recognition. */
510 		WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
511 			  journal->j_commit_request,
512 			  journal->j_commit_sequence,
513 			  target, journal->j_running_transaction ?
514 			  journal->j_running_transaction->t_tid : 0);
515 	return 0;
516 }
517 
518 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
519 {
520 	int ret;
521 
522 	write_lock(&journal->j_state_lock);
523 	ret = __jbd2_log_start_commit(journal, tid);
524 	write_unlock(&journal->j_state_lock);
525 	return ret;
526 }
527 
528 /*
529  * Force and wait any uncommitted transactions.  We can only force the running
530  * transaction if we don't have an active handle, otherwise, we will deadlock.
531  * Returns: <0 in case of error,
532  *           0 if nothing to commit,
533  *           1 if transaction was successfully committed.
534  */
535 static int __jbd2_journal_force_commit(journal_t *journal)
536 {
537 	transaction_t *transaction = NULL;
538 	tid_t tid;
539 	int need_to_start = 0, ret = 0;
540 
541 	read_lock(&journal->j_state_lock);
542 	if (journal->j_running_transaction && !current->journal_info) {
543 		transaction = journal->j_running_transaction;
544 		if (!tid_geq(journal->j_commit_request, transaction->t_tid))
545 			need_to_start = 1;
546 	} else if (journal->j_committing_transaction)
547 		transaction = journal->j_committing_transaction;
548 
549 	if (!transaction) {
550 		/* Nothing to commit */
551 		read_unlock(&journal->j_state_lock);
552 		return 0;
553 	}
554 	tid = transaction->t_tid;
555 	read_unlock(&journal->j_state_lock);
556 	if (need_to_start)
557 		jbd2_log_start_commit(journal, tid);
558 	ret = jbd2_log_wait_commit(journal, tid);
559 	if (!ret)
560 		ret = 1;
561 
562 	return ret;
563 }
564 
565 /**
566  * jbd2_journal_force_commit_nested - Force and wait upon a commit if the
567  * calling process is not within transaction.
568  *
569  * @journal: journal to force
570  * Returns true if progress was made.
571  *
572  * This is used for forcing out undo-protected data which contains
573  * bitmaps, when the fs is running out of space.
574  */
575 int jbd2_journal_force_commit_nested(journal_t *journal)
576 {
577 	int ret;
578 
579 	ret = __jbd2_journal_force_commit(journal);
580 	return ret > 0;
581 }
582 
583 /**
584  * jbd2_journal_force_commit() - force any uncommitted transactions
585  * @journal: journal to force
586  *
587  * Caller want unconditional commit. We can only force the running transaction
588  * if we don't have an active handle, otherwise, we will deadlock.
589  */
590 int jbd2_journal_force_commit(journal_t *journal)
591 {
592 	int ret;
593 
594 	J_ASSERT(!current->journal_info);
595 	ret = __jbd2_journal_force_commit(journal);
596 	if (ret > 0)
597 		ret = 0;
598 	return ret;
599 }
600 
601 /*
602  * Start a commit of the current running transaction (if any).  Returns true
603  * if a transaction is going to be committed (or is currently already
604  * committing), and fills its tid in at *ptid
605  */
606 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
607 {
608 	int ret = 0;
609 
610 	write_lock(&journal->j_state_lock);
611 	if (journal->j_running_transaction) {
612 		tid_t tid = journal->j_running_transaction->t_tid;
613 
614 		__jbd2_log_start_commit(journal, tid);
615 		/* There's a running transaction and we've just made sure
616 		 * it's commit has been scheduled. */
617 		if (ptid)
618 			*ptid = tid;
619 		ret = 1;
620 	} else if (journal->j_committing_transaction) {
621 		/*
622 		 * If commit has been started, then we have to wait for
623 		 * completion of that transaction.
624 		 */
625 		if (ptid)
626 			*ptid = journal->j_committing_transaction->t_tid;
627 		ret = 1;
628 	}
629 	write_unlock(&journal->j_state_lock);
630 	return ret;
631 }
632 
633 /*
634  * Return 1 if a given transaction has not yet sent barrier request
635  * connected with a transaction commit. If 0 is returned, transaction
636  * may or may not have sent the barrier. Used to avoid sending barrier
637  * twice in common cases.
638  */
639 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
640 {
641 	int ret = 0;
642 	transaction_t *commit_trans;
643 
644 	if (!(journal->j_flags & JBD2_BARRIER))
645 		return 0;
646 	read_lock(&journal->j_state_lock);
647 	/* Transaction already committed? */
648 	if (tid_geq(journal->j_commit_sequence, tid))
649 		goto out;
650 	commit_trans = journal->j_committing_transaction;
651 	if (!commit_trans || commit_trans->t_tid != tid) {
652 		ret = 1;
653 		goto out;
654 	}
655 	/*
656 	 * Transaction is being committed and we already proceeded to
657 	 * submitting a flush to fs partition?
658 	 */
659 	if (journal->j_fs_dev != journal->j_dev) {
660 		if (!commit_trans->t_need_data_flush ||
661 		    commit_trans->t_state >= T_COMMIT_DFLUSH)
662 			goto out;
663 	} else {
664 		if (commit_trans->t_state >= T_COMMIT_JFLUSH)
665 			goto out;
666 	}
667 	ret = 1;
668 out:
669 	read_unlock(&journal->j_state_lock);
670 	return ret;
671 }
672 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
673 
674 /*
675  * Wait for a specified commit to complete.
676  * The caller may not hold the journal lock.
677  */
678 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
679 {
680 	int err = 0;
681 
682 	read_lock(&journal->j_state_lock);
683 #ifdef CONFIG_PROVE_LOCKING
684 	/*
685 	 * Some callers make sure transaction is already committing and in that
686 	 * case we cannot block on open handles anymore. So don't warn in that
687 	 * case.
688 	 */
689 	if (tid_gt(tid, journal->j_commit_sequence) &&
690 	    (!journal->j_committing_transaction ||
691 	     journal->j_committing_transaction->t_tid != tid)) {
692 		read_unlock(&journal->j_state_lock);
693 		jbd2_might_wait_for_commit(journal);
694 		read_lock(&journal->j_state_lock);
695 	}
696 #endif
697 #ifdef CONFIG_JBD2_DEBUG
698 	if (!tid_geq(journal->j_commit_request, tid)) {
699 		printk(KERN_ERR
700 		       "%s: error: j_commit_request=%u, tid=%u\n",
701 		       __func__, journal->j_commit_request, tid);
702 	}
703 #endif
704 	while (tid_gt(tid, journal->j_commit_sequence)) {
705 		jbd2_debug(1, "JBD2: want %u, j_commit_sequence=%u\n",
706 				  tid, journal->j_commit_sequence);
707 		read_unlock(&journal->j_state_lock);
708 		wake_up(&journal->j_wait_commit);
709 		wait_event(journal->j_wait_done_commit,
710 				!tid_gt(tid, journal->j_commit_sequence));
711 		read_lock(&journal->j_state_lock);
712 	}
713 	read_unlock(&journal->j_state_lock);
714 
715 	if (unlikely(is_journal_aborted(journal)))
716 		err = -EIO;
717 	return err;
718 }
719 
720 /*
721  * Start a fast commit. If there's an ongoing fast or full commit wait for
722  * it to complete. Returns 0 if a new fast commit was started. Returns -EALREADY
723  * if a fast commit is not needed, either because there's an already a commit
724  * going on or this tid has already been committed. Returns -EINVAL if no jbd2
725  * commit has yet been performed.
726  */
727 int jbd2_fc_begin_commit(journal_t *journal, tid_t tid)
728 {
729 	if (unlikely(is_journal_aborted(journal)))
730 		return -EIO;
731 	/*
732 	 * Fast commits only allowed if at least one full commit has
733 	 * been processed.
734 	 */
735 	if (!journal->j_stats.ts_tid)
736 		return -EINVAL;
737 
738 	write_lock(&journal->j_state_lock);
739 	if (tid <= journal->j_commit_sequence) {
740 		write_unlock(&journal->j_state_lock);
741 		return -EALREADY;
742 	}
743 
744 	if (journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
745 	    (journal->j_flags & JBD2_FAST_COMMIT_ONGOING)) {
746 		DEFINE_WAIT(wait);
747 
748 		prepare_to_wait(&journal->j_fc_wait, &wait,
749 				TASK_UNINTERRUPTIBLE);
750 		write_unlock(&journal->j_state_lock);
751 		schedule();
752 		finish_wait(&journal->j_fc_wait, &wait);
753 		return -EALREADY;
754 	}
755 	journal->j_flags |= JBD2_FAST_COMMIT_ONGOING;
756 	write_unlock(&journal->j_state_lock);
757 	jbd2_journal_lock_updates(journal);
758 
759 	return 0;
760 }
761 EXPORT_SYMBOL(jbd2_fc_begin_commit);
762 
763 /*
764  * Stop a fast commit. If fallback is set, this function starts commit of
765  * TID tid before any other fast commit can start.
766  */
767 static int __jbd2_fc_end_commit(journal_t *journal, tid_t tid, bool fallback)
768 {
769 	jbd2_journal_unlock_updates(journal);
770 	if (journal->j_fc_cleanup_callback)
771 		journal->j_fc_cleanup_callback(journal, 0, tid);
772 	write_lock(&journal->j_state_lock);
773 	journal->j_flags &= ~JBD2_FAST_COMMIT_ONGOING;
774 	if (fallback)
775 		journal->j_flags |= JBD2_FULL_COMMIT_ONGOING;
776 	write_unlock(&journal->j_state_lock);
777 	wake_up(&journal->j_fc_wait);
778 	if (fallback)
779 		return jbd2_complete_transaction(journal, tid);
780 	return 0;
781 }
782 
783 int jbd2_fc_end_commit(journal_t *journal)
784 {
785 	return __jbd2_fc_end_commit(journal, 0, false);
786 }
787 EXPORT_SYMBOL(jbd2_fc_end_commit);
788 
789 int jbd2_fc_end_commit_fallback(journal_t *journal)
790 {
791 	tid_t tid;
792 
793 	read_lock(&journal->j_state_lock);
794 	tid = journal->j_running_transaction ?
795 		journal->j_running_transaction->t_tid : 0;
796 	read_unlock(&journal->j_state_lock);
797 	return __jbd2_fc_end_commit(journal, tid, true);
798 }
799 EXPORT_SYMBOL(jbd2_fc_end_commit_fallback);
800 
801 /* Return 1 when transaction with given tid has already committed. */
802 int jbd2_transaction_committed(journal_t *journal, tid_t tid)
803 {
804 	int ret = 1;
805 
806 	read_lock(&journal->j_state_lock);
807 	if (journal->j_running_transaction &&
808 	    journal->j_running_transaction->t_tid == tid)
809 		ret = 0;
810 	if (journal->j_committing_transaction &&
811 	    journal->j_committing_transaction->t_tid == tid)
812 		ret = 0;
813 	read_unlock(&journal->j_state_lock);
814 	return ret;
815 }
816 EXPORT_SYMBOL(jbd2_transaction_committed);
817 
818 /*
819  * When this function returns the transaction corresponding to tid
820  * will be completed.  If the transaction has currently running, start
821  * committing that transaction before waiting for it to complete.  If
822  * the transaction id is stale, it is by definition already completed,
823  * so just return SUCCESS.
824  */
825 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
826 {
827 	int	need_to_wait = 1;
828 
829 	read_lock(&journal->j_state_lock);
830 	if (journal->j_running_transaction &&
831 	    journal->j_running_transaction->t_tid == tid) {
832 		if (journal->j_commit_request != tid) {
833 			/* transaction not yet started, so request it */
834 			read_unlock(&journal->j_state_lock);
835 			jbd2_log_start_commit(journal, tid);
836 			goto wait_commit;
837 		}
838 	} else if (!(journal->j_committing_transaction &&
839 		     journal->j_committing_transaction->t_tid == tid))
840 		need_to_wait = 0;
841 	read_unlock(&journal->j_state_lock);
842 	if (!need_to_wait)
843 		return 0;
844 wait_commit:
845 	return jbd2_log_wait_commit(journal, tid);
846 }
847 EXPORT_SYMBOL(jbd2_complete_transaction);
848 
849 /*
850  * Log buffer allocation routines:
851  */
852 
853 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
854 {
855 	unsigned long blocknr;
856 
857 	write_lock(&journal->j_state_lock);
858 	J_ASSERT(journal->j_free > 1);
859 
860 	blocknr = journal->j_head;
861 	journal->j_head++;
862 	journal->j_free--;
863 	if (journal->j_head == journal->j_last)
864 		journal->j_head = journal->j_first;
865 	write_unlock(&journal->j_state_lock);
866 	return jbd2_journal_bmap(journal, blocknr, retp);
867 }
868 
869 /* Map one fast commit buffer for use by the file system */
870 int jbd2_fc_get_buf(journal_t *journal, struct buffer_head **bh_out)
871 {
872 	unsigned long long pblock;
873 	unsigned long blocknr;
874 	int ret = 0;
875 	struct buffer_head *bh;
876 	int fc_off;
877 
878 	*bh_out = NULL;
879 
880 	if (journal->j_fc_off + journal->j_fc_first < journal->j_fc_last) {
881 		fc_off = journal->j_fc_off;
882 		blocknr = journal->j_fc_first + fc_off;
883 		journal->j_fc_off++;
884 	} else {
885 		ret = -EINVAL;
886 	}
887 
888 	if (ret)
889 		return ret;
890 
891 	ret = jbd2_journal_bmap(journal, blocknr, &pblock);
892 	if (ret)
893 		return ret;
894 
895 	bh = __getblk(journal->j_dev, pblock, journal->j_blocksize);
896 	if (!bh)
897 		return -ENOMEM;
898 
899 
900 	journal->j_fc_wbuf[fc_off] = bh;
901 
902 	*bh_out = bh;
903 
904 	return 0;
905 }
906 EXPORT_SYMBOL(jbd2_fc_get_buf);
907 
908 /*
909  * Wait on fast commit buffers that were allocated by jbd2_fc_get_buf
910  * for completion.
911  */
912 int jbd2_fc_wait_bufs(journal_t *journal, int num_blks)
913 {
914 	struct buffer_head *bh;
915 	int i, j_fc_off;
916 
917 	j_fc_off = journal->j_fc_off;
918 
919 	/*
920 	 * Wait in reverse order to minimize chances of us being woken up before
921 	 * all IOs have completed
922 	 */
923 	for (i = j_fc_off - 1; i >= j_fc_off - num_blks; i--) {
924 		bh = journal->j_fc_wbuf[i];
925 		wait_on_buffer(bh);
926 		put_bh(bh);
927 		journal->j_fc_wbuf[i] = NULL;
928 		if (unlikely(!buffer_uptodate(bh)))
929 			return -EIO;
930 	}
931 
932 	return 0;
933 }
934 EXPORT_SYMBOL(jbd2_fc_wait_bufs);
935 
936 int jbd2_fc_release_bufs(journal_t *journal)
937 {
938 	struct buffer_head *bh;
939 	int i, j_fc_off;
940 
941 	j_fc_off = journal->j_fc_off;
942 
943 	for (i = j_fc_off - 1; i >= 0; i--) {
944 		bh = journal->j_fc_wbuf[i];
945 		if (!bh)
946 			break;
947 		put_bh(bh);
948 		journal->j_fc_wbuf[i] = NULL;
949 	}
950 
951 	return 0;
952 }
953 EXPORT_SYMBOL(jbd2_fc_release_bufs);
954 
955 /*
956  * Conversion of logical to physical block numbers for the journal
957  *
958  * On external journals the journal blocks are identity-mapped, so
959  * this is a no-op.  If needed, we can use j_blk_offset - everything is
960  * ready.
961  */
962 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
963 		 unsigned long long *retp)
964 {
965 	int err = 0;
966 	unsigned long long ret;
967 	sector_t block = 0;
968 
969 	if (journal->j_inode) {
970 		block = blocknr;
971 		ret = bmap(journal->j_inode, &block);
972 
973 		if (ret || !block) {
974 			printk(KERN_ALERT "%s: journal block not found "
975 					"at offset %lu on %s\n",
976 			       __func__, blocknr, journal->j_devname);
977 			err = -EIO;
978 			jbd2_journal_abort(journal, err);
979 		} else {
980 			*retp = block;
981 		}
982 
983 	} else {
984 		*retp = blocknr; /* +journal->j_blk_offset */
985 	}
986 	return err;
987 }
988 
989 /*
990  * We play buffer_head aliasing tricks to write data/metadata blocks to
991  * the journal without copying their contents, but for journal
992  * descriptor blocks we do need to generate bona fide buffers.
993  *
994  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
995  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
996  * But we don't bother doing that, so there will be coherency problems with
997  * mmaps of blockdevs which hold live JBD-controlled filesystems.
998  */
999 struct buffer_head *
1000 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
1001 {
1002 	journal_t *journal = transaction->t_journal;
1003 	struct buffer_head *bh;
1004 	unsigned long long blocknr;
1005 	journal_header_t *header;
1006 	int err;
1007 
1008 	err = jbd2_journal_next_log_block(journal, &blocknr);
1009 
1010 	if (err)
1011 		return NULL;
1012 
1013 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
1014 	if (!bh)
1015 		return NULL;
1016 	atomic_dec(&transaction->t_outstanding_credits);
1017 	lock_buffer(bh);
1018 	memset(bh->b_data, 0, journal->j_blocksize);
1019 	header = (journal_header_t *)bh->b_data;
1020 	header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
1021 	header->h_blocktype = cpu_to_be32(type);
1022 	header->h_sequence = cpu_to_be32(transaction->t_tid);
1023 	set_buffer_uptodate(bh);
1024 	unlock_buffer(bh);
1025 	BUFFER_TRACE(bh, "return this buffer");
1026 	return bh;
1027 }
1028 
1029 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
1030 {
1031 	struct jbd2_journal_block_tail *tail;
1032 	__u32 csum;
1033 
1034 	if (!jbd2_journal_has_csum_v2or3(j))
1035 		return;
1036 
1037 	tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
1038 			sizeof(struct jbd2_journal_block_tail));
1039 	tail->t_checksum = 0;
1040 	csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
1041 	tail->t_checksum = cpu_to_be32(csum);
1042 }
1043 
1044 /*
1045  * Return tid of the oldest transaction in the journal and block in the journal
1046  * where the transaction starts.
1047  *
1048  * If the journal is now empty, return which will be the next transaction ID
1049  * we will write and where will that transaction start.
1050  *
1051  * The return value is 0 if journal tail cannot be pushed any further, 1 if
1052  * it can.
1053  */
1054 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
1055 			      unsigned long *block)
1056 {
1057 	transaction_t *transaction;
1058 	int ret;
1059 
1060 	read_lock(&journal->j_state_lock);
1061 	spin_lock(&journal->j_list_lock);
1062 	transaction = journal->j_checkpoint_transactions;
1063 	if (transaction) {
1064 		*tid = transaction->t_tid;
1065 		*block = transaction->t_log_start;
1066 	} else if ((transaction = journal->j_committing_transaction) != NULL) {
1067 		*tid = transaction->t_tid;
1068 		*block = transaction->t_log_start;
1069 	} else if ((transaction = journal->j_running_transaction) != NULL) {
1070 		*tid = transaction->t_tid;
1071 		*block = journal->j_head;
1072 	} else {
1073 		*tid = journal->j_transaction_sequence;
1074 		*block = journal->j_head;
1075 	}
1076 	ret = tid_gt(*tid, journal->j_tail_sequence);
1077 	spin_unlock(&journal->j_list_lock);
1078 	read_unlock(&journal->j_state_lock);
1079 
1080 	return ret;
1081 }
1082 
1083 /*
1084  * Update information in journal structure and in on disk journal superblock
1085  * about log tail. This function does not check whether information passed in
1086  * really pushes log tail further. It's responsibility of the caller to make
1087  * sure provided log tail information is valid (e.g. by holding
1088  * j_checkpoint_mutex all the time between computing log tail and calling this
1089  * function as is the case with jbd2_cleanup_journal_tail()).
1090  *
1091  * Requires j_checkpoint_mutex
1092  */
1093 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
1094 {
1095 	unsigned long freed;
1096 	int ret;
1097 
1098 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1099 
1100 	/*
1101 	 * We cannot afford for write to remain in drive's caches since as
1102 	 * soon as we update j_tail, next transaction can start reusing journal
1103 	 * space and if we lose sb update during power failure we'd replay
1104 	 * old transaction with possibly newly overwritten data.
1105 	 */
1106 	ret = jbd2_journal_update_sb_log_tail(journal, tid, block,
1107 					      REQ_SYNC | REQ_FUA);
1108 	if (ret)
1109 		goto out;
1110 
1111 	write_lock(&journal->j_state_lock);
1112 	freed = block - journal->j_tail;
1113 	if (block < journal->j_tail)
1114 		freed += journal->j_last - journal->j_first;
1115 
1116 	trace_jbd2_update_log_tail(journal, tid, block, freed);
1117 	jbd2_debug(1,
1118 		  "Cleaning journal tail from %u to %u (offset %lu), "
1119 		  "freeing %lu\n",
1120 		  journal->j_tail_sequence, tid, block, freed);
1121 
1122 	journal->j_free += freed;
1123 	journal->j_tail_sequence = tid;
1124 	journal->j_tail = block;
1125 	write_unlock(&journal->j_state_lock);
1126 
1127 out:
1128 	return ret;
1129 }
1130 
1131 /*
1132  * This is a variation of __jbd2_update_log_tail which checks for validity of
1133  * provided log tail and locks j_checkpoint_mutex. So it is safe against races
1134  * with other threads updating log tail.
1135  */
1136 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
1137 {
1138 	mutex_lock_io(&journal->j_checkpoint_mutex);
1139 	if (tid_gt(tid, journal->j_tail_sequence))
1140 		__jbd2_update_log_tail(journal, tid, block);
1141 	mutex_unlock(&journal->j_checkpoint_mutex);
1142 }
1143 
1144 struct jbd2_stats_proc_session {
1145 	journal_t *journal;
1146 	struct transaction_stats_s *stats;
1147 	int start;
1148 	int max;
1149 };
1150 
1151 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
1152 {
1153 	return *pos ? NULL : SEQ_START_TOKEN;
1154 }
1155 
1156 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
1157 {
1158 	(*pos)++;
1159 	return NULL;
1160 }
1161 
1162 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
1163 {
1164 	struct jbd2_stats_proc_session *s = seq->private;
1165 
1166 	if (v != SEQ_START_TOKEN)
1167 		return 0;
1168 	seq_printf(seq, "%lu transactions (%lu requested), "
1169 		   "each up to %u blocks\n",
1170 		   s->stats->ts_tid, s->stats->ts_requested,
1171 		   s->journal->j_max_transaction_buffers);
1172 	if (s->stats->ts_tid == 0)
1173 		return 0;
1174 	seq_printf(seq, "average: \n  %ums waiting for transaction\n",
1175 	    jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
1176 	seq_printf(seq, "  %ums request delay\n",
1177 	    (s->stats->ts_requested == 0) ? 0 :
1178 	    jiffies_to_msecs(s->stats->run.rs_request_delay /
1179 			     s->stats->ts_requested));
1180 	seq_printf(seq, "  %ums running transaction\n",
1181 	    jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
1182 	seq_printf(seq, "  %ums transaction was being locked\n",
1183 	    jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1184 	seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
1185 	    jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1186 	seq_printf(seq, "  %ums logging transaction\n",
1187 	    jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1188 	seq_printf(seq, "  %lluus average transaction commit time\n",
1189 		   div_u64(s->journal->j_average_commit_time, 1000));
1190 	seq_printf(seq, "  %lu handles per transaction\n",
1191 	    s->stats->run.rs_handle_count / s->stats->ts_tid);
1192 	seq_printf(seq, "  %lu blocks per transaction\n",
1193 	    s->stats->run.rs_blocks / s->stats->ts_tid);
1194 	seq_printf(seq, "  %lu logged blocks per transaction\n",
1195 	    s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1196 	return 0;
1197 }
1198 
1199 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1200 {
1201 }
1202 
1203 static const struct seq_operations jbd2_seq_info_ops = {
1204 	.start  = jbd2_seq_info_start,
1205 	.next   = jbd2_seq_info_next,
1206 	.stop   = jbd2_seq_info_stop,
1207 	.show   = jbd2_seq_info_show,
1208 };
1209 
1210 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1211 {
1212 	journal_t *journal = pde_data(inode);
1213 	struct jbd2_stats_proc_session *s;
1214 	int rc, size;
1215 
1216 	s = kmalloc(sizeof(*s), GFP_KERNEL);
1217 	if (s == NULL)
1218 		return -ENOMEM;
1219 	size = sizeof(struct transaction_stats_s);
1220 	s->stats = kmalloc(size, GFP_KERNEL);
1221 	if (s->stats == NULL) {
1222 		kfree(s);
1223 		return -ENOMEM;
1224 	}
1225 	spin_lock(&journal->j_history_lock);
1226 	memcpy(s->stats, &journal->j_stats, size);
1227 	s->journal = journal;
1228 	spin_unlock(&journal->j_history_lock);
1229 
1230 	rc = seq_open(file, &jbd2_seq_info_ops);
1231 	if (rc == 0) {
1232 		struct seq_file *m = file->private_data;
1233 		m->private = s;
1234 	} else {
1235 		kfree(s->stats);
1236 		kfree(s);
1237 	}
1238 	return rc;
1239 
1240 }
1241 
1242 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1243 {
1244 	struct seq_file *seq = file->private_data;
1245 	struct jbd2_stats_proc_session *s = seq->private;
1246 	kfree(s->stats);
1247 	kfree(s);
1248 	return seq_release(inode, file);
1249 }
1250 
1251 static const struct proc_ops jbd2_info_proc_ops = {
1252 	.proc_open	= jbd2_seq_info_open,
1253 	.proc_read	= seq_read,
1254 	.proc_lseek	= seq_lseek,
1255 	.proc_release	= jbd2_seq_info_release,
1256 };
1257 
1258 static struct proc_dir_entry *proc_jbd2_stats;
1259 
1260 static void jbd2_stats_proc_init(journal_t *journal)
1261 {
1262 	journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1263 	if (journal->j_proc_entry) {
1264 		proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1265 				 &jbd2_info_proc_ops, journal);
1266 	}
1267 }
1268 
1269 static void jbd2_stats_proc_exit(journal_t *journal)
1270 {
1271 	remove_proc_entry("info", journal->j_proc_entry);
1272 	remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1273 }
1274 
1275 /* Minimum size of descriptor tag */
1276 static int jbd2_min_tag_size(void)
1277 {
1278 	/*
1279 	 * Tag with 32-bit block numbers does not use last four bytes of the
1280 	 * structure
1281 	 */
1282 	return sizeof(journal_block_tag_t) - 4;
1283 }
1284 
1285 /**
1286  * jbd2_journal_shrink_scan()
1287  * @shrink: shrinker to work on
1288  * @sc: reclaim request to process
1289  *
1290  * Scan the checkpointed buffer on the checkpoint list and release the
1291  * journal_head.
1292  */
1293 static unsigned long jbd2_journal_shrink_scan(struct shrinker *shrink,
1294 					      struct shrink_control *sc)
1295 {
1296 	journal_t *journal = container_of(shrink, journal_t, j_shrinker);
1297 	unsigned long nr_to_scan = sc->nr_to_scan;
1298 	unsigned long nr_shrunk;
1299 	unsigned long count;
1300 
1301 	count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count);
1302 	trace_jbd2_shrink_scan_enter(journal, sc->nr_to_scan, count);
1303 
1304 	nr_shrunk = jbd2_journal_shrink_checkpoint_list(journal, &nr_to_scan);
1305 
1306 	count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count);
1307 	trace_jbd2_shrink_scan_exit(journal, nr_to_scan, nr_shrunk, count);
1308 
1309 	return nr_shrunk;
1310 }
1311 
1312 /**
1313  * jbd2_journal_shrink_count()
1314  * @shrink: shrinker to work on
1315  * @sc: reclaim request to process
1316  *
1317  * Count the number of checkpoint buffers on the checkpoint list.
1318  */
1319 static unsigned long jbd2_journal_shrink_count(struct shrinker *shrink,
1320 					       struct shrink_control *sc)
1321 {
1322 	journal_t *journal = container_of(shrink, journal_t, j_shrinker);
1323 	unsigned long count;
1324 
1325 	count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count);
1326 	trace_jbd2_shrink_count(journal, sc->nr_to_scan, count);
1327 
1328 	return count;
1329 }
1330 
1331 /*
1332  * Management for journal control blocks: functions to create and
1333  * destroy journal_t structures, and to initialise and read existing
1334  * journal blocks from disk.  */
1335 
1336 /* First: create and setup a journal_t object in memory.  We initialise
1337  * very few fields yet: that has to wait until we have created the
1338  * journal structures from from scratch, or loaded them from disk. */
1339 
1340 static journal_t *journal_init_common(struct block_device *bdev,
1341 			struct block_device *fs_dev,
1342 			unsigned long long start, int len, int blocksize)
1343 {
1344 	static struct lock_class_key jbd2_trans_commit_key;
1345 	journal_t *journal;
1346 	int err;
1347 	struct buffer_head *bh;
1348 	int n;
1349 
1350 	journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1351 	if (!journal)
1352 		return NULL;
1353 
1354 	init_waitqueue_head(&journal->j_wait_transaction_locked);
1355 	init_waitqueue_head(&journal->j_wait_done_commit);
1356 	init_waitqueue_head(&journal->j_wait_commit);
1357 	init_waitqueue_head(&journal->j_wait_updates);
1358 	init_waitqueue_head(&journal->j_wait_reserved);
1359 	init_waitqueue_head(&journal->j_fc_wait);
1360 	mutex_init(&journal->j_abort_mutex);
1361 	mutex_init(&journal->j_barrier);
1362 	mutex_init(&journal->j_checkpoint_mutex);
1363 	spin_lock_init(&journal->j_revoke_lock);
1364 	spin_lock_init(&journal->j_list_lock);
1365 	rwlock_init(&journal->j_state_lock);
1366 
1367 	journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1368 	journal->j_min_batch_time = 0;
1369 	journal->j_max_batch_time = 15000; /* 15ms */
1370 	atomic_set(&journal->j_reserved_credits, 0);
1371 
1372 	/* The journal is marked for error until we succeed with recovery! */
1373 	journal->j_flags = JBD2_ABORT;
1374 
1375 	/* Set up a default-sized revoke table for the new mount. */
1376 	err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1377 	if (err)
1378 		goto err_cleanup;
1379 
1380 	spin_lock_init(&journal->j_history_lock);
1381 
1382 	lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1383 			 &jbd2_trans_commit_key, 0);
1384 
1385 	/* journal descriptor can store up to n blocks -bzzz */
1386 	journal->j_blocksize = blocksize;
1387 	journal->j_dev = bdev;
1388 	journal->j_fs_dev = fs_dev;
1389 	journal->j_blk_offset = start;
1390 	journal->j_total_len = len;
1391 	/* We need enough buffers to write out full descriptor block. */
1392 	n = journal->j_blocksize / jbd2_min_tag_size();
1393 	journal->j_wbufsize = n;
1394 	journal->j_fc_wbuf = NULL;
1395 	journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1396 					GFP_KERNEL);
1397 	if (!journal->j_wbuf)
1398 		goto err_cleanup;
1399 
1400 	bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize);
1401 	if (!bh) {
1402 		pr_err("%s: Cannot get buffer for journal superblock\n",
1403 			__func__);
1404 		goto err_cleanup;
1405 	}
1406 	journal->j_sb_buffer = bh;
1407 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
1408 
1409 	journal->j_shrink_transaction = NULL;
1410 	journal->j_shrinker.scan_objects = jbd2_journal_shrink_scan;
1411 	journal->j_shrinker.count_objects = jbd2_journal_shrink_count;
1412 	journal->j_shrinker.seeks = DEFAULT_SEEKS;
1413 	journal->j_shrinker.batch = journal->j_max_transaction_buffers;
1414 
1415 	if (percpu_counter_init(&journal->j_checkpoint_jh_count, 0, GFP_KERNEL))
1416 		goto err_cleanup;
1417 
1418 	if (register_shrinker(&journal->j_shrinker, "jbd2-journal:(%u:%u)",
1419 			      MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev))) {
1420 		percpu_counter_destroy(&journal->j_checkpoint_jh_count);
1421 		goto err_cleanup;
1422 	}
1423 	return journal;
1424 
1425 err_cleanup:
1426 	brelse(journal->j_sb_buffer);
1427 	kfree(journal->j_wbuf);
1428 	jbd2_journal_destroy_revoke(journal);
1429 	kfree(journal);
1430 	return NULL;
1431 }
1432 
1433 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1434  *
1435  * Create a journal structure assigned some fixed set of disk blocks to
1436  * the journal.  We don't actually touch those disk blocks yet, but we
1437  * need to set up all of the mapping information to tell the journaling
1438  * system where the journal blocks are.
1439  *
1440  */
1441 
1442 /**
1443  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1444  *  @bdev: Block device on which to create the journal
1445  *  @fs_dev: Device which hold journalled filesystem for this journal.
1446  *  @start: Block nr Start of journal.
1447  *  @len:  Length of the journal in blocks.
1448  *  @blocksize: blocksize of journalling device
1449  *
1450  *  Returns: a newly created journal_t *
1451  *
1452  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1453  *  range of blocks on an arbitrary block device.
1454  *
1455  */
1456 journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1457 			struct block_device *fs_dev,
1458 			unsigned long long start, int len, int blocksize)
1459 {
1460 	journal_t *journal;
1461 
1462 	journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1463 	if (!journal)
1464 		return NULL;
1465 
1466 	snprintf(journal->j_devname, sizeof(journal->j_devname),
1467 		 "%pg", journal->j_dev);
1468 	strreplace(journal->j_devname, '/', '!');
1469 	jbd2_stats_proc_init(journal);
1470 
1471 	return journal;
1472 }
1473 
1474 /**
1475  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1476  *  @inode: An inode to create the journal in
1477  *
1478  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1479  * the journal.  The inode must exist already, must support bmap() and
1480  * must have all data blocks preallocated.
1481  */
1482 journal_t *jbd2_journal_init_inode(struct inode *inode)
1483 {
1484 	journal_t *journal;
1485 	sector_t blocknr;
1486 	char *p;
1487 	int err = 0;
1488 
1489 	blocknr = 0;
1490 	err = bmap(inode, &blocknr);
1491 
1492 	if (err || !blocknr) {
1493 		pr_err("%s: Cannot locate journal superblock\n",
1494 			__func__);
1495 		return NULL;
1496 	}
1497 
1498 	jbd2_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1499 		  inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1500 		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1501 
1502 	journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1503 			blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1504 			inode->i_sb->s_blocksize);
1505 	if (!journal)
1506 		return NULL;
1507 
1508 	journal->j_inode = inode;
1509 	snprintf(journal->j_devname, sizeof(journal->j_devname),
1510 		 "%pg", journal->j_dev);
1511 	p = strreplace(journal->j_devname, '/', '!');
1512 	sprintf(p, "-%lu", journal->j_inode->i_ino);
1513 	jbd2_stats_proc_init(journal);
1514 
1515 	return journal;
1516 }
1517 
1518 /*
1519  * If the journal init or create aborts, we need to mark the journal
1520  * superblock as being NULL to prevent the journal destroy from writing
1521  * back a bogus superblock.
1522  */
1523 static void journal_fail_superblock(journal_t *journal)
1524 {
1525 	struct buffer_head *bh = journal->j_sb_buffer;
1526 	brelse(bh);
1527 	journal->j_sb_buffer = NULL;
1528 }
1529 
1530 /*
1531  * Given a journal_t structure, initialise the various fields for
1532  * startup of a new journaling session.  We use this both when creating
1533  * a journal, and after recovering an old journal to reset it for
1534  * subsequent use.
1535  */
1536 
1537 static int journal_reset(journal_t *journal)
1538 {
1539 	journal_superblock_t *sb = journal->j_superblock;
1540 	unsigned long long first, last;
1541 
1542 	first = be32_to_cpu(sb->s_first);
1543 	last = be32_to_cpu(sb->s_maxlen);
1544 	if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1545 		printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1546 		       first, last);
1547 		journal_fail_superblock(journal);
1548 		return -EINVAL;
1549 	}
1550 
1551 	journal->j_first = first;
1552 	journal->j_last = last;
1553 
1554 	journal->j_head = journal->j_first;
1555 	journal->j_tail = journal->j_first;
1556 	journal->j_free = journal->j_last - journal->j_first;
1557 
1558 	journal->j_tail_sequence = journal->j_transaction_sequence;
1559 	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1560 	journal->j_commit_request = journal->j_commit_sequence;
1561 
1562 	journal->j_max_transaction_buffers = jbd2_journal_get_max_txn_bufs(journal);
1563 
1564 	/*
1565 	 * Now that journal recovery is done, turn fast commits off here. This
1566 	 * way, if fast commit was enabled before the crash but if now FS has
1567 	 * disabled it, we don't enable fast commits.
1568 	 */
1569 	jbd2_clear_feature_fast_commit(journal);
1570 
1571 	/*
1572 	 * As a special case, if the on-disk copy is already marked as needing
1573 	 * no recovery (s_start == 0), then we can safely defer the superblock
1574 	 * update until the next commit by setting JBD2_FLUSHED.  This avoids
1575 	 * attempting a write to a potential-readonly device.
1576 	 */
1577 	if (sb->s_start == 0) {
1578 		jbd2_debug(1, "JBD2: Skipping superblock update on recovered sb "
1579 			"(start %ld, seq %u, errno %d)\n",
1580 			journal->j_tail, journal->j_tail_sequence,
1581 			journal->j_errno);
1582 		journal->j_flags |= JBD2_FLUSHED;
1583 	} else {
1584 		/* Lock here to make assertions happy... */
1585 		mutex_lock_io(&journal->j_checkpoint_mutex);
1586 		/*
1587 		 * Update log tail information. We use REQ_FUA since new
1588 		 * transaction will start reusing journal space and so we
1589 		 * must make sure information about current log tail is on
1590 		 * disk before that.
1591 		 */
1592 		jbd2_journal_update_sb_log_tail(journal,
1593 						journal->j_tail_sequence,
1594 						journal->j_tail,
1595 						REQ_SYNC | REQ_FUA);
1596 		mutex_unlock(&journal->j_checkpoint_mutex);
1597 	}
1598 	return jbd2_journal_start_thread(journal);
1599 }
1600 
1601 /*
1602  * This function expects that the caller will have locked the journal
1603  * buffer head, and will return with it unlocked
1604  */
1605 static int jbd2_write_superblock(journal_t *journal, blk_opf_t write_flags)
1606 {
1607 	struct buffer_head *bh = journal->j_sb_buffer;
1608 	journal_superblock_t *sb = journal->j_superblock;
1609 	int ret;
1610 
1611 	/* Buffer got discarded which means block device got invalidated */
1612 	if (!buffer_mapped(bh)) {
1613 		unlock_buffer(bh);
1614 		return -EIO;
1615 	}
1616 
1617 	trace_jbd2_write_superblock(journal, write_flags);
1618 	if (!(journal->j_flags & JBD2_BARRIER))
1619 		write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1620 	if (buffer_write_io_error(bh)) {
1621 		/*
1622 		 * Oh, dear.  A previous attempt to write the journal
1623 		 * superblock failed.  This could happen because the
1624 		 * USB device was yanked out.  Or it could happen to
1625 		 * be a transient write error and maybe the block will
1626 		 * be remapped.  Nothing we can do but to retry the
1627 		 * write and hope for the best.
1628 		 */
1629 		printk(KERN_ERR "JBD2: previous I/O error detected "
1630 		       "for journal superblock update for %s.\n",
1631 		       journal->j_devname);
1632 		clear_buffer_write_io_error(bh);
1633 		set_buffer_uptodate(bh);
1634 	}
1635 	if (jbd2_journal_has_csum_v2or3(journal))
1636 		sb->s_checksum = jbd2_superblock_csum(journal, sb);
1637 	get_bh(bh);
1638 	bh->b_end_io = end_buffer_write_sync;
1639 	ret = submit_bh(REQ_OP_WRITE | write_flags, bh);
1640 	wait_on_buffer(bh);
1641 	if (buffer_write_io_error(bh)) {
1642 		clear_buffer_write_io_error(bh);
1643 		set_buffer_uptodate(bh);
1644 		ret = -EIO;
1645 	}
1646 	if (ret) {
1647 		printk(KERN_ERR "JBD2: Error %d detected when updating "
1648 		       "journal superblock for %s.\n", ret,
1649 		       journal->j_devname);
1650 		if (!is_journal_aborted(journal))
1651 			jbd2_journal_abort(journal, ret);
1652 	}
1653 
1654 	return ret;
1655 }
1656 
1657 /**
1658  * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1659  * @journal: The journal to update.
1660  * @tail_tid: TID of the new transaction at the tail of the log
1661  * @tail_block: The first block of the transaction at the tail of the log
1662  * @write_flags: Flags for the journal sb write operation
1663  *
1664  * Update a journal's superblock information about log tail and write it to
1665  * disk, waiting for the IO to complete.
1666  */
1667 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1668 				    unsigned long tail_block,
1669 				    blk_opf_t write_flags)
1670 {
1671 	journal_superblock_t *sb = journal->j_superblock;
1672 	int ret;
1673 
1674 	if (is_journal_aborted(journal))
1675 		return -EIO;
1676 	if (test_bit(JBD2_CHECKPOINT_IO_ERROR, &journal->j_atomic_flags)) {
1677 		jbd2_journal_abort(journal, -EIO);
1678 		return -EIO;
1679 	}
1680 
1681 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1682 	jbd2_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1683 		  tail_block, tail_tid);
1684 
1685 	lock_buffer(journal->j_sb_buffer);
1686 	sb->s_sequence = cpu_to_be32(tail_tid);
1687 	sb->s_start    = cpu_to_be32(tail_block);
1688 
1689 	ret = jbd2_write_superblock(journal, write_flags);
1690 	if (ret)
1691 		goto out;
1692 
1693 	/* Log is no longer empty */
1694 	write_lock(&journal->j_state_lock);
1695 	WARN_ON(!sb->s_sequence);
1696 	journal->j_flags &= ~JBD2_FLUSHED;
1697 	write_unlock(&journal->j_state_lock);
1698 
1699 out:
1700 	return ret;
1701 }
1702 
1703 /**
1704  * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1705  * @journal: The journal to update.
1706  * @write_flags: Flags for the journal sb write operation
1707  *
1708  * Update a journal's dynamic superblock fields to show that journal is empty.
1709  * Write updated superblock to disk waiting for IO to complete.
1710  */
1711 static void jbd2_mark_journal_empty(journal_t *journal, blk_opf_t write_flags)
1712 {
1713 	journal_superblock_t *sb = journal->j_superblock;
1714 	bool had_fast_commit = false;
1715 
1716 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1717 	lock_buffer(journal->j_sb_buffer);
1718 	if (sb->s_start == 0) {		/* Is it already empty? */
1719 		unlock_buffer(journal->j_sb_buffer);
1720 		return;
1721 	}
1722 
1723 	jbd2_debug(1, "JBD2: Marking journal as empty (seq %u)\n",
1724 		  journal->j_tail_sequence);
1725 
1726 	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1727 	sb->s_start    = cpu_to_be32(0);
1728 	if (jbd2_has_feature_fast_commit(journal)) {
1729 		/*
1730 		 * When journal is clean, no need to commit fast commit flag and
1731 		 * make file system incompatible with older kernels.
1732 		 */
1733 		jbd2_clear_feature_fast_commit(journal);
1734 		had_fast_commit = true;
1735 	}
1736 
1737 	jbd2_write_superblock(journal, write_flags);
1738 
1739 	if (had_fast_commit)
1740 		jbd2_set_feature_fast_commit(journal);
1741 
1742 	/* Log is no longer empty */
1743 	write_lock(&journal->j_state_lock);
1744 	journal->j_flags |= JBD2_FLUSHED;
1745 	write_unlock(&journal->j_state_lock);
1746 }
1747 
1748 /**
1749  * __jbd2_journal_erase() - Discard or zeroout journal blocks (excluding superblock)
1750  * @journal: The journal to erase.
1751  * @flags: A discard/zeroout request is sent for each physically contigous
1752  *	region of the journal. Either JBD2_JOURNAL_FLUSH_DISCARD or
1753  *	JBD2_JOURNAL_FLUSH_ZEROOUT must be set to determine which operation
1754  *	to perform.
1755  *
1756  * Note: JBD2_JOURNAL_FLUSH_ZEROOUT attempts to use hardware offload. Zeroes
1757  * will be explicitly written if no hardware offload is available, see
1758  * blkdev_issue_zeroout for more details.
1759  */
1760 static int __jbd2_journal_erase(journal_t *journal, unsigned int flags)
1761 {
1762 	int err = 0;
1763 	unsigned long block, log_offset; /* logical */
1764 	unsigned long long phys_block, block_start, block_stop; /* physical */
1765 	loff_t byte_start, byte_stop, byte_count;
1766 
1767 	/* flags must be set to either discard or zeroout */
1768 	if ((flags & ~JBD2_JOURNAL_FLUSH_VALID) || !flags ||
1769 			((flags & JBD2_JOURNAL_FLUSH_DISCARD) &&
1770 			(flags & JBD2_JOURNAL_FLUSH_ZEROOUT)))
1771 		return -EINVAL;
1772 
1773 	if ((flags & JBD2_JOURNAL_FLUSH_DISCARD) &&
1774 	    !bdev_max_discard_sectors(journal->j_dev))
1775 		return -EOPNOTSUPP;
1776 
1777 	/*
1778 	 * lookup block mapping and issue discard/zeroout for each
1779 	 * contiguous region
1780 	 */
1781 	log_offset = be32_to_cpu(journal->j_superblock->s_first);
1782 	block_start =  ~0ULL;
1783 	for (block = log_offset; block < journal->j_total_len; block++) {
1784 		err = jbd2_journal_bmap(journal, block, &phys_block);
1785 		if (err) {
1786 			pr_err("JBD2: bad block at offset %lu", block);
1787 			return err;
1788 		}
1789 
1790 		if (block_start == ~0ULL) {
1791 			block_start = phys_block;
1792 			block_stop = block_start - 1;
1793 		}
1794 
1795 		/*
1796 		 * last block not contiguous with current block,
1797 		 * process last contiguous region and return to this block on
1798 		 * next loop
1799 		 */
1800 		if (phys_block != block_stop + 1) {
1801 			block--;
1802 		} else {
1803 			block_stop++;
1804 			/*
1805 			 * if this isn't the last block of journal,
1806 			 * no need to process now because next block may also
1807 			 * be part of this contiguous region
1808 			 */
1809 			if (block != journal->j_total_len - 1)
1810 				continue;
1811 		}
1812 
1813 		/*
1814 		 * end of contiguous region or this is last block of journal,
1815 		 * take care of the region
1816 		 */
1817 		byte_start = block_start * journal->j_blocksize;
1818 		byte_stop = block_stop * journal->j_blocksize;
1819 		byte_count = (block_stop - block_start + 1) *
1820 				journal->j_blocksize;
1821 
1822 		truncate_inode_pages_range(journal->j_dev->bd_inode->i_mapping,
1823 				byte_start, byte_stop);
1824 
1825 		if (flags & JBD2_JOURNAL_FLUSH_DISCARD) {
1826 			err = blkdev_issue_discard(journal->j_dev,
1827 					byte_start >> SECTOR_SHIFT,
1828 					byte_count >> SECTOR_SHIFT,
1829 					GFP_NOFS);
1830 		} else if (flags & JBD2_JOURNAL_FLUSH_ZEROOUT) {
1831 			err = blkdev_issue_zeroout(journal->j_dev,
1832 					byte_start >> SECTOR_SHIFT,
1833 					byte_count >> SECTOR_SHIFT,
1834 					GFP_NOFS, 0);
1835 		}
1836 
1837 		if (unlikely(err != 0)) {
1838 			pr_err("JBD2: (error %d) unable to wipe journal at physical blocks %llu - %llu",
1839 					err, block_start, block_stop);
1840 			return err;
1841 		}
1842 
1843 		/* reset start and stop after processing a region */
1844 		block_start = ~0ULL;
1845 	}
1846 
1847 	return blkdev_issue_flush(journal->j_dev);
1848 }
1849 
1850 /**
1851  * jbd2_journal_update_sb_errno() - Update error in the journal.
1852  * @journal: The journal to update.
1853  *
1854  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1855  * to complete.
1856  */
1857 void jbd2_journal_update_sb_errno(journal_t *journal)
1858 {
1859 	journal_superblock_t *sb = journal->j_superblock;
1860 	int errcode;
1861 
1862 	lock_buffer(journal->j_sb_buffer);
1863 	errcode = journal->j_errno;
1864 	if (errcode == -ESHUTDOWN)
1865 		errcode = 0;
1866 	jbd2_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode);
1867 	sb->s_errno    = cpu_to_be32(errcode);
1868 
1869 	jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA);
1870 }
1871 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1872 
1873 static int journal_revoke_records_per_block(journal_t *journal)
1874 {
1875 	int record_size;
1876 	int space = journal->j_blocksize - sizeof(jbd2_journal_revoke_header_t);
1877 
1878 	if (jbd2_has_feature_64bit(journal))
1879 		record_size = 8;
1880 	else
1881 		record_size = 4;
1882 
1883 	if (jbd2_journal_has_csum_v2or3(journal))
1884 		space -= sizeof(struct jbd2_journal_block_tail);
1885 	return space / record_size;
1886 }
1887 
1888 /*
1889  * Read the superblock for a given journal, performing initial
1890  * validation of the format.
1891  */
1892 static int journal_get_superblock(journal_t *journal)
1893 {
1894 	struct buffer_head *bh;
1895 	journal_superblock_t *sb;
1896 	int err = -EIO;
1897 
1898 	bh = journal->j_sb_buffer;
1899 
1900 	J_ASSERT(bh != NULL);
1901 	if (!buffer_uptodate(bh)) {
1902 		ll_rw_block(REQ_OP_READ, 1, &bh);
1903 		wait_on_buffer(bh);
1904 		if (!buffer_uptodate(bh)) {
1905 			printk(KERN_ERR
1906 				"JBD2: IO error reading journal superblock\n");
1907 			goto out;
1908 		}
1909 	}
1910 
1911 	if (buffer_verified(bh))
1912 		return 0;
1913 
1914 	sb = journal->j_superblock;
1915 
1916 	err = -EINVAL;
1917 
1918 	if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1919 	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1920 		printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1921 		goto out;
1922 	}
1923 
1924 	switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1925 	case JBD2_SUPERBLOCK_V1:
1926 		journal->j_format_version = 1;
1927 		break;
1928 	case JBD2_SUPERBLOCK_V2:
1929 		journal->j_format_version = 2;
1930 		break;
1931 	default:
1932 		printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1933 		goto out;
1934 	}
1935 
1936 	if (be32_to_cpu(sb->s_maxlen) < journal->j_total_len)
1937 		journal->j_total_len = be32_to_cpu(sb->s_maxlen);
1938 	else if (be32_to_cpu(sb->s_maxlen) > journal->j_total_len) {
1939 		printk(KERN_WARNING "JBD2: journal file too short\n");
1940 		goto out;
1941 	}
1942 
1943 	if (be32_to_cpu(sb->s_first) == 0 ||
1944 	    be32_to_cpu(sb->s_first) >= journal->j_total_len) {
1945 		printk(KERN_WARNING
1946 			"JBD2: Invalid start block of journal: %u\n",
1947 			be32_to_cpu(sb->s_first));
1948 		goto out;
1949 	}
1950 
1951 	if (jbd2_has_feature_csum2(journal) &&
1952 	    jbd2_has_feature_csum3(journal)) {
1953 		/* Can't have checksum v2 and v3 at the same time! */
1954 		printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1955 		       "at the same time!\n");
1956 		goto out;
1957 	}
1958 
1959 	if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1960 	    jbd2_has_feature_checksum(journal)) {
1961 		/* Can't have checksum v1 and v2 on at the same time! */
1962 		printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1963 		       "at the same time!\n");
1964 		goto out;
1965 	}
1966 
1967 	if (!jbd2_verify_csum_type(journal, sb)) {
1968 		printk(KERN_ERR "JBD2: Unknown checksum type\n");
1969 		goto out;
1970 	}
1971 
1972 	/* Load the checksum driver */
1973 	if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1974 		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1975 		if (IS_ERR(journal->j_chksum_driver)) {
1976 			printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1977 			err = PTR_ERR(journal->j_chksum_driver);
1978 			journal->j_chksum_driver = NULL;
1979 			goto out;
1980 		}
1981 	}
1982 
1983 	if (jbd2_journal_has_csum_v2or3(journal)) {
1984 		/* Check superblock checksum */
1985 		if (sb->s_checksum != jbd2_superblock_csum(journal, sb)) {
1986 			printk(KERN_ERR "JBD2: journal checksum error\n");
1987 			err = -EFSBADCRC;
1988 			goto out;
1989 		}
1990 
1991 		/* Precompute checksum seed for all metadata */
1992 		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1993 						   sizeof(sb->s_uuid));
1994 	}
1995 
1996 	journal->j_revoke_records_per_block =
1997 				journal_revoke_records_per_block(journal);
1998 	set_buffer_verified(bh);
1999 
2000 	return 0;
2001 
2002 out:
2003 	journal_fail_superblock(journal);
2004 	return err;
2005 }
2006 
2007 /*
2008  * Load the on-disk journal superblock and read the key fields into the
2009  * journal_t.
2010  */
2011 
2012 static int load_superblock(journal_t *journal)
2013 {
2014 	int err;
2015 	journal_superblock_t *sb;
2016 	int num_fc_blocks;
2017 
2018 	err = journal_get_superblock(journal);
2019 	if (err)
2020 		return err;
2021 
2022 	sb = journal->j_superblock;
2023 
2024 	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
2025 	journal->j_tail = be32_to_cpu(sb->s_start);
2026 	journal->j_first = be32_to_cpu(sb->s_first);
2027 	journal->j_errno = be32_to_cpu(sb->s_errno);
2028 	journal->j_last = be32_to_cpu(sb->s_maxlen);
2029 
2030 	if (jbd2_has_feature_fast_commit(journal)) {
2031 		journal->j_fc_last = be32_to_cpu(sb->s_maxlen);
2032 		num_fc_blocks = jbd2_journal_get_num_fc_blks(sb);
2033 		if (journal->j_last - num_fc_blocks >= JBD2_MIN_JOURNAL_BLOCKS)
2034 			journal->j_last = journal->j_fc_last - num_fc_blocks;
2035 		journal->j_fc_first = journal->j_last + 1;
2036 		journal->j_fc_off = 0;
2037 	}
2038 
2039 	return 0;
2040 }
2041 
2042 
2043 /**
2044  * jbd2_journal_load() - Read journal from disk.
2045  * @journal: Journal to act on.
2046  *
2047  * Given a journal_t structure which tells us which disk blocks contain
2048  * a journal, read the journal from disk to initialise the in-memory
2049  * structures.
2050  */
2051 int jbd2_journal_load(journal_t *journal)
2052 {
2053 	int err;
2054 	journal_superblock_t *sb;
2055 
2056 	err = load_superblock(journal);
2057 	if (err)
2058 		return err;
2059 
2060 	sb = journal->j_superblock;
2061 	/* If this is a V2 superblock, then we have to check the
2062 	 * features flags on it. */
2063 
2064 	if (journal->j_format_version >= 2) {
2065 		if ((sb->s_feature_ro_compat &
2066 		     ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
2067 		    (sb->s_feature_incompat &
2068 		     ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
2069 			printk(KERN_WARNING
2070 				"JBD2: Unrecognised features on journal\n");
2071 			return -EINVAL;
2072 		}
2073 	}
2074 
2075 	/*
2076 	 * Create a slab for this blocksize
2077 	 */
2078 	err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
2079 	if (err)
2080 		return err;
2081 
2082 	/* Let the recovery code check whether it needs to recover any
2083 	 * data from the journal. */
2084 	if (jbd2_journal_recover(journal))
2085 		goto recovery_error;
2086 
2087 	if (journal->j_failed_commit) {
2088 		printk(KERN_ERR "JBD2: journal transaction %u on %s "
2089 		       "is corrupt.\n", journal->j_failed_commit,
2090 		       journal->j_devname);
2091 		return -EFSCORRUPTED;
2092 	}
2093 	/*
2094 	 * clear JBD2_ABORT flag initialized in journal_init_common
2095 	 * here to update log tail information with the newest seq.
2096 	 */
2097 	journal->j_flags &= ~JBD2_ABORT;
2098 
2099 	/* OK, we've finished with the dynamic journal bits:
2100 	 * reinitialise the dynamic contents of the superblock in memory
2101 	 * and reset them on disk. */
2102 	if (journal_reset(journal))
2103 		goto recovery_error;
2104 
2105 	journal->j_flags |= JBD2_LOADED;
2106 	return 0;
2107 
2108 recovery_error:
2109 	printk(KERN_WARNING "JBD2: recovery failed\n");
2110 	return -EIO;
2111 }
2112 
2113 /**
2114  * jbd2_journal_destroy() - Release a journal_t structure.
2115  * @journal: Journal to act on.
2116  *
2117  * Release a journal_t structure once it is no longer in use by the
2118  * journaled object.
2119  * Return <0 if we couldn't clean up the journal.
2120  */
2121 int jbd2_journal_destroy(journal_t *journal)
2122 {
2123 	int err = 0;
2124 
2125 	/* Wait for the commit thread to wake up and die. */
2126 	journal_kill_thread(journal);
2127 
2128 	/* Force a final log commit */
2129 	if (journal->j_running_transaction)
2130 		jbd2_journal_commit_transaction(journal);
2131 
2132 	/* Force any old transactions to disk */
2133 
2134 	/* Totally anal locking here... */
2135 	spin_lock(&journal->j_list_lock);
2136 	while (journal->j_checkpoint_transactions != NULL) {
2137 		spin_unlock(&journal->j_list_lock);
2138 		mutex_lock_io(&journal->j_checkpoint_mutex);
2139 		err = jbd2_log_do_checkpoint(journal);
2140 		mutex_unlock(&journal->j_checkpoint_mutex);
2141 		/*
2142 		 * If checkpointing failed, just free the buffers to avoid
2143 		 * looping forever
2144 		 */
2145 		if (err) {
2146 			jbd2_journal_destroy_checkpoint(journal);
2147 			spin_lock(&journal->j_list_lock);
2148 			break;
2149 		}
2150 		spin_lock(&journal->j_list_lock);
2151 	}
2152 
2153 	J_ASSERT(journal->j_running_transaction == NULL);
2154 	J_ASSERT(journal->j_committing_transaction == NULL);
2155 	J_ASSERT(journal->j_checkpoint_transactions == NULL);
2156 	spin_unlock(&journal->j_list_lock);
2157 
2158 	/*
2159 	 * OK, all checkpoint transactions have been checked, now check the
2160 	 * write out io error flag and abort the journal if some buffer failed
2161 	 * to write back to the original location, otherwise the filesystem
2162 	 * may become inconsistent.
2163 	 */
2164 	if (!is_journal_aborted(journal) &&
2165 	    test_bit(JBD2_CHECKPOINT_IO_ERROR, &journal->j_atomic_flags))
2166 		jbd2_journal_abort(journal, -EIO);
2167 
2168 	if (journal->j_sb_buffer) {
2169 		if (!is_journal_aborted(journal)) {
2170 			mutex_lock_io(&journal->j_checkpoint_mutex);
2171 
2172 			write_lock(&journal->j_state_lock);
2173 			journal->j_tail_sequence =
2174 				++journal->j_transaction_sequence;
2175 			write_unlock(&journal->j_state_lock);
2176 
2177 			jbd2_mark_journal_empty(journal,
2178 					REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
2179 			mutex_unlock(&journal->j_checkpoint_mutex);
2180 		} else
2181 			err = -EIO;
2182 		brelse(journal->j_sb_buffer);
2183 	}
2184 
2185 	if (journal->j_shrinker.flags & SHRINKER_REGISTERED) {
2186 		percpu_counter_destroy(&journal->j_checkpoint_jh_count);
2187 		unregister_shrinker(&journal->j_shrinker);
2188 	}
2189 	if (journal->j_proc_entry)
2190 		jbd2_stats_proc_exit(journal);
2191 	iput(journal->j_inode);
2192 	if (journal->j_revoke)
2193 		jbd2_journal_destroy_revoke(journal);
2194 	if (journal->j_chksum_driver)
2195 		crypto_free_shash(journal->j_chksum_driver);
2196 	kfree(journal->j_fc_wbuf);
2197 	kfree(journal->j_wbuf);
2198 	kfree(journal);
2199 
2200 	return err;
2201 }
2202 
2203 
2204 /**
2205  * jbd2_journal_check_used_features() - Check if features specified are used.
2206  * @journal: Journal to check.
2207  * @compat: bitmask of compatible features
2208  * @ro: bitmask of features that force read-only mount
2209  * @incompat: bitmask of incompatible features
2210  *
2211  * Check whether the journal uses all of a given set of
2212  * features.  Return true (non-zero) if it does.
2213  **/
2214 
2215 int jbd2_journal_check_used_features(journal_t *journal, unsigned long compat,
2216 				 unsigned long ro, unsigned long incompat)
2217 {
2218 	journal_superblock_t *sb;
2219 
2220 	if (!compat && !ro && !incompat)
2221 		return 1;
2222 	/* Load journal superblock if it is not loaded yet. */
2223 	if (journal->j_format_version == 0 &&
2224 	    journal_get_superblock(journal) != 0)
2225 		return 0;
2226 	if (journal->j_format_version == 1)
2227 		return 0;
2228 
2229 	sb = journal->j_superblock;
2230 
2231 	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
2232 	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
2233 	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
2234 		return 1;
2235 
2236 	return 0;
2237 }
2238 
2239 /**
2240  * jbd2_journal_check_available_features() - Check feature set in journalling layer
2241  * @journal: Journal to check.
2242  * @compat: bitmask of compatible features
2243  * @ro: bitmask of features that force read-only mount
2244  * @incompat: bitmask of incompatible features
2245  *
2246  * Check whether the journaling code supports the use of
2247  * all of a given set of features on this journal.  Return true
2248  * (non-zero) if it can. */
2249 
2250 int jbd2_journal_check_available_features(journal_t *journal, unsigned long compat,
2251 				      unsigned long ro, unsigned long incompat)
2252 {
2253 	if (!compat && !ro && !incompat)
2254 		return 1;
2255 
2256 	/* We can support any known requested features iff the
2257 	 * superblock is in version 2.  Otherwise we fail to support any
2258 	 * extended sb features. */
2259 
2260 	if (journal->j_format_version != 2)
2261 		return 0;
2262 
2263 	if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
2264 	    (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
2265 	    (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
2266 		return 1;
2267 
2268 	return 0;
2269 }
2270 
2271 static int
2272 jbd2_journal_initialize_fast_commit(journal_t *journal)
2273 {
2274 	journal_superblock_t *sb = journal->j_superblock;
2275 	unsigned long long num_fc_blks;
2276 
2277 	num_fc_blks = jbd2_journal_get_num_fc_blks(sb);
2278 	if (journal->j_last - num_fc_blks < JBD2_MIN_JOURNAL_BLOCKS)
2279 		return -ENOSPC;
2280 
2281 	/* Are we called twice? */
2282 	WARN_ON(journal->j_fc_wbuf != NULL);
2283 	journal->j_fc_wbuf = kmalloc_array(num_fc_blks,
2284 				sizeof(struct buffer_head *), GFP_KERNEL);
2285 	if (!journal->j_fc_wbuf)
2286 		return -ENOMEM;
2287 
2288 	journal->j_fc_wbufsize = num_fc_blks;
2289 	journal->j_fc_last = journal->j_last;
2290 	journal->j_last = journal->j_fc_last - num_fc_blks;
2291 	journal->j_fc_first = journal->j_last + 1;
2292 	journal->j_fc_off = 0;
2293 	journal->j_free = journal->j_last - journal->j_first;
2294 	journal->j_max_transaction_buffers =
2295 		jbd2_journal_get_max_txn_bufs(journal);
2296 
2297 	return 0;
2298 }
2299 
2300 /**
2301  * jbd2_journal_set_features() - Mark a given journal feature in the superblock
2302  * @journal: Journal to act on.
2303  * @compat: bitmask of compatible features
2304  * @ro: bitmask of features that force read-only mount
2305  * @incompat: bitmask of incompatible features
2306  *
2307  * Mark a given journal feature as present on the
2308  * superblock.  Returns true if the requested features could be set.
2309  *
2310  */
2311 
2312 int jbd2_journal_set_features(journal_t *journal, unsigned long compat,
2313 			  unsigned long ro, unsigned long incompat)
2314 {
2315 #define INCOMPAT_FEATURE_ON(f) \
2316 		((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
2317 #define COMPAT_FEATURE_ON(f) \
2318 		((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
2319 	journal_superblock_t *sb;
2320 
2321 	if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
2322 		return 1;
2323 
2324 	if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
2325 		return 0;
2326 
2327 	/* If enabling v2 checksums, turn on v3 instead */
2328 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
2329 		incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
2330 		incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
2331 	}
2332 
2333 	/* Asking for checksumming v3 and v1?  Only give them v3. */
2334 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
2335 	    compat & JBD2_FEATURE_COMPAT_CHECKSUM)
2336 		compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
2337 
2338 	jbd2_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
2339 		  compat, ro, incompat);
2340 
2341 	sb = journal->j_superblock;
2342 
2343 	if (incompat & JBD2_FEATURE_INCOMPAT_FAST_COMMIT) {
2344 		if (jbd2_journal_initialize_fast_commit(journal)) {
2345 			pr_err("JBD2: Cannot enable fast commits.\n");
2346 			return 0;
2347 		}
2348 	}
2349 
2350 	/* Load the checksum driver if necessary */
2351 	if ((journal->j_chksum_driver == NULL) &&
2352 	    INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
2353 		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
2354 		if (IS_ERR(journal->j_chksum_driver)) {
2355 			printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
2356 			journal->j_chksum_driver = NULL;
2357 			return 0;
2358 		}
2359 		/* Precompute checksum seed for all metadata */
2360 		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
2361 						   sizeof(sb->s_uuid));
2362 	}
2363 
2364 	lock_buffer(journal->j_sb_buffer);
2365 
2366 	/* If enabling v3 checksums, update superblock */
2367 	if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
2368 		sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
2369 		sb->s_feature_compat &=
2370 			~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
2371 	}
2372 
2373 	/* If enabling v1 checksums, downgrade superblock */
2374 	if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
2375 		sb->s_feature_incompat &=
2376 			~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
2377 				     JBD2_FEATURE_INCOMPAT_CSUM_V3);
2378 
2379 	sb->s_feature_compat    |= cpu_to_be32(compat);
2380 	sb->s_feature_ro_compat |= cpu_to_be32(ro);
2381 	sb->s_feature_incompat  |= cpu_to_be32(incompat);
2382 	unlock_buffer(journal->j_sb_buffer);
2383 	journal->j_revoke_records_per_block =
2384 				journal_revoke_records_per_block(journal);
2385 
2386 	return 1;
2387 #undef COMPAT_FEATURE_ON
2388 #undef INCOMPAT_FEATURE_ON
2389 }
2390 
2391 /*
2392  * jbd2_journal_clear_features() - Clear a given journal feature in the
2393  * 				    superblock
2394  * @journal: Journal to act on.
2395  * @compat: bitmask of compatible features
2396  * @ro: bitmask of features that force read-only mount
2397  * @incompat: bitmask of incompatible features
2398  *
2399  * Clear a given journal feature as present on the
2400  * superblock.
2401  */
2402 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
2403 				unsigned long ro, unsigned long incompat)
2404 {
2405 	journal_superblock_t *sb;
2406 
2407 	jbd2_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
2408 		  compat, ro, incompat);
2409 
2410 	sb = journal->j_superblock;
2411 
2412 	sb->s_feature_compat    &= ~cpu_to_be32(compat);
2413 	sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
2414 	sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
2415 	journal->j_revoke_records_per_block =
2416 				journal_revoke_records_per_block(journal);
2417 }
2418 EXPORT_SYMBOL(jbd2_journal_clear_features);
2419 
2420 /**
2421  * jbd2_journal_flush() - Flush journal
2422  * @journal: Journal to act on.
2423  * @flags: optional operation on the journal blocks after the flush (see below)
2424  *
2425  * Flush all data for a given journal to disk and empty the journal.
2426  * Filesystems can use this when remounting readonly to ensure that
2427  * recovery does not need to happen on remount. Optionally, a discard or zeroout
2428  * can be issued on the journal blocks after flushing.
2429  *
2430  * flags:
2431  *	JBD2_JOURNAL_FLUSH_DISCARD: issues discards for the journal blocks
2432  *	JBD2_JOURNAL_FLUSH_ZEROOUT: issues zeroouts for the journal blocks
2433  */
2434 int jbd2_journal_flush(journal_t *journal, unsigned int flags)
2435 {
2436 	int err = 0;
2437 	transaction_t *transaction = NULL;
2438 
2439 	write_lock(&journal->j_state_lock);
2440 
2441 	/* Force everything buffered to the log... */
2442 	if (journal->j_running_transaction) {
2443 		transaction = journal->j_running_transaction;
2444 		__jbd2_log_start_commit(journal, transaction->t_tid);
2445 	} else if (journal->j_committing_transaction)
2446 		transaction = journal->j_committing_transaction;
2447 
2448 	/* Wait for the log commit to complete... */
2449 	if (transaction) {
2450 		tid_t tid = transaction->t_tid;
2451 
2452 		write_unlock(&journal->j_state_lock);
2453 		jbd2_log_wait_commit(journal, tid);
2454 	} else {
2455 		write_unlock(&journal->j_state_lock);
2456 	}
2457 
2458 	/* ...and flush everything in the log out to disk. */
2459 	spin_lock(&journal->j_list_lock);
2460 	while (!err && journal->j_checkpoint_transactions != NULL) {
2461 		spin_unlock(&journal->j_list_lock);
2462 		mutex_lock_io(&journal->j_checkpoint_mutex);
2463 		err = jbd2_log_do_checkpoint(journal);
2464 		mutex_unlock(&journal->j_checkpoint_mutex);
2465 		spin_lock(&journal->j_list_lock);
2466 	}
2467 	spin_unlock(&journal->j_list_lock);
2468 
2469 	if (is_journal_aborted(journal))
2470 		return -EIO;
2471 
2472 	mutex_lock_io(&journal->j_checkpoint_mutex);
2473 	if (!err) {
2474 		err = jbd2_cleanup_journal_tail(journal);
2475 		if (err < 0) {
2476 			mutex_unlock(&journal->j_checkpoint_mutex);
2477 			goto out;
2478 		}
2479 		err = 0;
2480 	}
2481 
2482 	/* Finally, mark the journal as really needing no recovery.
2483 	 * This sets s_start==0 in the underlying superblock, which is
2484 	 * the magic code for a fully-recovered superblock.  Any future
2485 	 * commits of data to the journal will restore the current
2486 	 * s_start value. */
2487 	jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2488 
2489 	if (flags)
2490 		err = __jbd2_journal_erase(journal, flags);
2491 
2492 	mutex_unlock(&journal->j_checkpoint_mutex);
2493 	write_lock(&journal->j_state_lock);
2494 	J_ASSERT(!journal->j_running_transaction);
2495 	J_ASSERT(!journal->j_committing_transaction);
2496 	J_ASSERT(!journal->j_checkpoint_transactions);
2497 	J_ASSERT(journal->j_head == journal->j_tail);
2498 	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2499 	write_unlock(&journal->j_state_lock);
2500 out:
2501 	return err;
2502 }
2503 
2504 /**
2505  * jbd2_journal_wipe() - Wipe journal contents
2506  * @journal: Journal to act on.
2507  * @write: flag (see below)
2508  *
2509  * Wipe out all of the contents of a journal, safely.  This will produce
2510  * a warning if the journal contains any valid recovery information.
2511  * Must be called between journal_init_*() and jbd2_journal_load().
2512  *
2513  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2514  * we merely suppress recovery.
2515  */
2516 
2517 int jbd2_journal_wipe(journal_t *journal, int write)
2518 {
2519 	int err = 0;
2520 
2521 	J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2522 
2523 	err = load_superblock(journal);
2524 	if (err)
2525 		return err;
2526 
2527 	if (!journal->j_tail)
2528 		goto no_recovery;
2529 
2530 	printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2531 		write ? "Clearing" : "Ignoring");
2532 
2533 	err = jbd2_journal_skip_recovery(journal);
2534 	if (write) {
2535 		/* Lock to make assertions happy... */
2536 		mutex_lock_io(&journal->j_checkpoint_mutex);
2537 		jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2538 		mutex_unlock(&journal->j_checkpoint_mutex);
2539 	}
2540 
2541  no_recovery:
2542 	return err;
2543 }
2544 
2545 /**
2546  * jbd2_journal_abort () - Shutdown the journal immediately.
2547  * @journal: the journal to shutdown.
2548  * @errno:   an error number to record in the journal indicating
2549  *           the reason for the shutdown.
2550  *
2551  * Perform a complete, immediate shutdown of the ENTIRE
2552  * journal (not of a single transaction).  This operation cannot be
2553  * undone without closing and reopening the journal.
2554  *
2555  * The jbd2_journal_abort function is intended to support higher level error
2556  * recovery mechanisms such as the ext2/ext3 remount-readonly error
2557  * mode.
2558  *
2559  * Journal abort has very specific semantics.  Any existing dirty,
2560  * unjournaled buffers in the main filesystem will still be written to
2561  * disk by bdflush, but the journaling mechanism will be suspended
2562  * immediately and no further transaction commits will be honoured.
2563  *
2564  * Any dirty, journaled buffers will be written back to disk without
2565  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2566  * filesystem, but we _do_ attempt to leave as much data as possible
2567  * behind for fsck to use for cleanup.
2568  *
2569  * Any attempt to get a new transaction handle on a journal which is in
2570  * ABORT state will just result in an -EROFS error return.  A
2571  * jbd2_journal_stop on an existing handle will return -EIO if we have
2572  * entered abort state during the update.
2573  *
2574  * Recursive transactions are not disturbed by journal abort until the
2575  * final jbd2_journal_stop, which will receive the -EIO error.
2576  *
2577  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2578  * which will be recorded (if possible) in the journal superblock.  This
2579  * allows a client to record failure conditions in the middle of a
2580  * transaction without having to complete the transaction to record the
2581  * failure to disk.  ext3_error, for example, now uses this
2582  * functionality.
2583  *
2584  */
2585 
2586 void jbd2_journal_abort(journal_t *journal, int errno)
2587 {
2588 	transaction_t *transaction;
2589 
2590 	/*
2591 	 * Lock the aborting procedure until everything is done, this avoid
2592 	 * races between filesystem's error handling flow (e.g. ext4_abort()),
2593 	 * ensure panic after the error info is written into journal's
2594 	 * superblock.
2595 	 */
2596 	mutex_lock(&journal->j_abort_mutex);
2597 	/*
2598 	 * ESHUTDOWN always takes precedence because a file system check
2599 	 * caused by any other journal abort error is not required after
2600 	 * a shutdown triggered.
2601 	 */
2602 	write_lock(&journal->j_state_lock);
2603 	if (journal->j_flags & JBD2_ABORT) {
2604 		int old_errno = journal->j_errno;
2605 
2606 		write_unlock(&journal->j_state_lock);
2607 		if (old_errno != -ESHUTDOWN && errno == -ESHUTDOWN) {
2608 			journal->j_errno = errno;
2609 			jbd2_journal_update_sb_errno(journal);
2610 		}
2611 		mutex_unlock(&journal->j_abort_mutex);
2612 		return;
2613 	}
2614 
2615 	/*
2616 	 * Mark the abort as occurred and start current running transaction
2617 	 * to release all journaled buffer.
2618 	 */
2619 	pr_err("Aborting journal on device %s.\n", journal->j_devname);
2620 
2621 	journal->j_flags |= JBD2_ABORT;
2622 	journal->j_errno = errno;
2623 	transaction = journal->j_running_transaction;
2624 	if (transaction)
2625 		__jbd2_log_start_commit(journal, transaction->t_tid);
2626 	write_unlock(&journal->j_state_lock);
2627 
2628 	/*
2629 	 * Record errno to the journal super block, so that fsck and jbd2
2630 	 * layer could realise that a filesystem check is needed.
2631 	 */
2632 	jbd2_journal_update_sb_errno(journal);
2633 	mutex_unlock(&journal->j_abort_mutex);
2634 }
2635 
2636 /**
2637  * jbd2_journal_errno() - returns the journal's error state.
2638  * @journal: journal to examine.
2639  *
2640  * This is the errno number set with jbd2_journal_abort(), the last
2641  * time the journal was mounted - if the journal was stopped
2642  * without calling abort this will be 0.
2643  *
2644  * If the journal has been aborted on this mount time -EROFS will
2645  * be returned.
2646  */
2647 int jbd2_journal_errno(journal_t *journal)
2648 {
2649 	int err;
2650 
2651 	read_lock(&journal->j_state_lock);
2652 	if (journal->j_flags & JBD2_ABORT)
2653 		err = -EROFS;
2654 	else
2655 		err = journal->j_errno;
2656 	read_unlock(&journal->j_state_lock);
2657 	return err;
2658 }
2659 
2660 /**
2661  * jbd2_journal_clear_err() - clears the journal's error state
2662  * @journal: journal to act on.
2663  *
2664  * An error must be cleared or acked to take a FS out of readonly
2665  * mode.
2666  */
2667 int jbd2_journal_clear_err(journal_t *journal)
2668 {
2669 	int err = 0;
2670 
2671 	write_lock(&journal->j_state_lock);
2672 	if (journal->j_flags & JBD2_ABORT)
2673 		err = -EROFS;
2674 	else
2675 		journal->j_errno = 0;
2676 	write_unlock(&journal->j_state_lock);
2677 	return err;
2678 }
2679 
2680 /**
2681  * jbd2_journal_ack_err() - Ack journal err.
2682  * @journal: journal to act on.
2683  *
2684  * An error must be cleared or acked to take a FS out of readonly
2685  * mode.
2686  */
2687 void jbd2_journal_ack_err(journal_t *journal)
2688 {
2689 	write_lock(&journal->j_state_lock);
2690 	if (journal->j_errno)
2691 		journal->j_flags |= JBD2_ACK_ERR;
2692 	write_unlock(&journal->j_state_lock);
2693 }
2694 
2695 int jbd2_journal_blocks_per_page(struct inode *inode)
2696 {
2697 	return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2698 }
2699 
2700 /*
2701  * helper functions to deal with 32 or 64bit block numbers.
2702  */
2703 size_t journal_tag_bytes(journal_t *journal)
2704 {
2705 	size_t sz;
2706 
2707 	if (jbd2_has_feature_csum3(journal))
2708 		return sizeof(journal_block_tag3_t);
2709 
2710 	sz = sizeof(journal_block_tag_t);
2711 
2712 	if (jbd2_has_feature_csum2(journal))
2713 		sz += sizeof(__u16);
2714 
2715 	if (jbd2_has_feature_64bit(journal))
2716 		return sz;
2717 	else
2718 		return sz - sizeof(__u32);
2719 }
2720 
2721 /*
2722  * JBD memory management
2723  *
2724  * These functions are used to allocate block-sized chunks of memory
2725  * used for making copies of buffer_head data.  Very often it will be
2726  * page-sized chunks of data, but sometimes it will be in
2727  * sub-page-size chunks.  (For example, 16k pages on Power systems
2728  * with a 4k block file system.)  For blocks smaller than a page, we
2729  * use a SLAB allocator.  There are slab caches for each block size,
2730  * which are allocated at mount time, if necessary, and we only free
2731  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2732  * this reason we don't need to a mutex to protect access to
2733  * jbd2_slab[] allocating or releasing memory; only in
2734  * jbd2_journal_create_slab().
2735  */
2736 #define JBD2_MAX_SLABS 8
2737 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2738 
2739 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2740 	"jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2741 	"jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2742 };
2743 
2744 
2745 static void jbd2_journal_destroy_slabs(void)
2746 {
2747 	int i;
2748 
2749 	for (i = 0; i < JBD2_MAX_SLABS; i++) {
2750 		kmem_cache_destroy(jbd2_slab[i]);
2751 		jbd2_slab[i] = NULL;
2752 	}
2753 }
2754 
2755 static int jbd2_journal_create_slab(size_t size)
2756 {
2757 	static DEFINE_MUTEX(jbd2_slab_create_mutex);
2758 	int i = order_base_2(size) - 10;
2759 	size_t slab_size;
2760 
2761 	if (size == PAGE_SIZE)
2762 		return 0;
2763 
2764 	if (i >= JBD2_MAX_SLABS)
2765 		return -EINVAL;
2766 
2767 	if (unlikely(i < 0))
2768 		i = 0;
2769 	mutex_lock(&jbd2_slab_create_mutex);
2770 	if (jbd2_slab[i]) {
2771 		mutex_unlock(&jbd2_slab_create_mutex);
2772 		return 0;	/* Already created */
2773 	}
2774 
2775 	slab_size = 1 << (i+10);
2776 	jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2777 					 slab_size, 0, NULL);
2778 	mutex_unlock(&jbd2_slab_create_mutex);
2779 	if (!jbd2_slab[i]) {
2780 		printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2781 		return -ENOMEM;
2782 	}
2783 	return 0;
2784 }
2785 
2786 static struct kmem_cache *get_slab(size_t size)
2787 {
2788 	int i = order_base_2(size) - 10;
2789 
2790 	BUG_ON(i >= JBD2_MAX_SLABS);
2791 	if (unlikely(i < 0))
2792 		i = 0;
2793 	BUG_ON(jbd2_slab[i] == NULL);
2794 	return jbd2_slab[i];
2795 }
2796 
2797 void *jbd2_alloc(size_t size, gfp_t flags)
2798 {
2799 	void *ptr;
2800 
2801 	BUG_ON(size & (size-1)); /* Must be a power of 2 */
2802 
2803 	if (size < PAGE_SIZE)
2804 		ptr = kmem_cache_alloc(get_slab(size), flags);
2805 	else
2806 		ptr = (void *)__get_free_pages(flags, get_order(size));
2807 
2808 	/* Check alignment; SLUB has gotten this wrong in the past,
2809 	 * and this can lead to user data corruption! */
2810 	BUG_ON(((unsigned long) ptr) & (size-1));
2811 
2812 	return ptr;
2813 }
2814 
2815 void jbd2_free(void *ptr, size_t size)
2816 {
2817 	if (size < PAGE_SIZE)
2818 		kmem_cache_free(get_slab(size), ptr);
2819 	else
2820 		free_pages((unsigned long)ptr, get_order(size));
2821 };
2822 
2823 /*
2824  * Journal_head storage management
2825  */
2826 static struct kmem_cache *jbd2_journal_head_cache;
2827 #ifdef CONFIG_JBD2_DEBUG
2828 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2829 #endif
2830 
2831 static int __init jbd2_journal_init_journal_head_cache(void)
2832 {
2833 	J_ASSERT(!jbd2_journal_head_cache);
2834 	jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2835 				sizeof(struct journal_head),
2836 				0,		/* offset */
2837 				SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU,
2838 				NULL);		/* ctor */
2839 	if (!jbd2_journal_head_cache) {
2840 		printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2841 		return -ENOMEM;
2842 	}
2843 	return 0;
2844 }
2845 
2846 static void jbd2_journal_destroy_journal_head_cache(void)
2847 {
2848 	kmem_cache_destroy(jbd2_journal_head_cache);
2849 	jbd2_journal_head_cache = NULL;
2850 }
2851 
2852 /*
2853  * journal_head splicing and dicing
2854  */
2855 static struct journal_head *journal_alloc_journal_head(void)
2856 {
2857 	struct journal_head *ret;
2858 
2859 #ifdef CONFIG_JBD2_DEBUG
2860 	atomic_inc(&nr_journal_heads);
2861 #endif
2862 	ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2863 	if (!ret) {
2864 		jbd2_debug(1, "out of memory for journal_head\n");
2865 		pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2866 		ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2867 				GFP_NOFS | __GFP_NOFAIL);
2868 	}
2869 	if (ret)
2870 		spin_lock_init(&ret->b_state_lock);
2871 	return ret;
2872 }
2873 
2874 static void journal_free_journal_head(struct journal_head *jh)
2875 {
2876 #ifdef CONFIG_JBD2_DEBUG
2877 	atomic_dec(&nr_journal_heads);
2878 	memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2879 #endif
2880 	kmem_cache_free(jbd2_journal_head_cache, jh);
2881 }
2882 
2883 /*
2884  * A journal_head is attached to a buffer_head whenever JBD has an
2885  * interest in the buffer.
2886  *
2887  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2888  * is set.  This bit is tested in core kernel code where we need to take
2889  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2890  * there.
2891  *
2892  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2893  *
2894  * When a buffer has its BH_JBD bit set it is immune from being released by
2895  * core kernel code, mainly via ->b_count.
2896  *
2897  * A journal_head is detached from its buffer_head when the journal_head's
2898  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2899  * transaction (b_cp_transaction) hold their references to b_jcount.
2900  *
2901  * Various places in the kernel want to attach a journal_head to a buffer_head
2902  * _before_ attaching the journal_head to a transaction.  To protect the
2903  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2904  * journal_head's b_jcount refcount by one.  The caller must call
2905  * jbd2_journal_put_journal_head() to undo this.
2906  *
2907  * So the typical usage would be:
2908  *
2909  *	(Attach a journal_head if needed.  Increments b_jcount)
2910  *	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2911  *	...
2912  *      (Get another reference for transaction)
2913  *	jbd2_journal_grab_journal_head(bh);
2914  *	jh->b_transaction = xxx;
2915  *	(Put original reference)
2916  *	jbd2_journal_put_journal_head(jh);
2917  */
2918 
2919 /*
2920  * Give a buffer_head a journal_head.
2921  *
2922  * May sleep.
2923  */
2924 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2925 {
2926 	struct journal_head *jh;
2927 	struct journal_head *new_jh = NULL;
2928 
2929 repeat:
2930 	if (!buffer_jbd(bh))
2931 		new_jh = journal_alloc_journal_head();
2932 
2933 	jbd_lock_bh_journal_head(bh);
2934 	if (buffer_jbd(bh)) {
2935 		jh = bh2jh(bh);
2936 	} else {
2937 		J_ASSERT_BH(bh,
2938 			(atomic_read(&bh->b_count) > 0) ||
2939 			(bh->b_page && bh->b_page->mapping));
2940 
2941 		if (!new_jh) {
2942 			jbd_unlock_bh_journal_head(bh);
2943 			goto repeat;
2944 		}
2945 
2946 		jh = new_jh;
2947 		new_jh = NULL;		/* We consumed it */
2948 		set_buffer_jbd(bh);
2949 		bh->b_private = jh;
2950 		jh->b_bh = bh;
2951 		get_bh(bh);
2952 		BUFFER_TRACE(bh, "added journal_head");
2953 	}
2954 	jh->b_jcount++;
2955 	jbd_unlock_bh_journal_head(bh);
2956 	if (new_jh)
2957 		journal_free_journal_head(new_jh);
2958 	return bh->b_private;
2959 }
2960 
2961 /*
2962  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2963  * having a journal_head, return NULL
2964  */
2965 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2966 {
2967 	struct journal_head *jh = NULL;
2968 
2969 	jbd_lock_bh_journal_head(bh);
2970 	if (buffer_jbd(bh)) {
2971 		jh = bh2jh(bh);
2972 		jh->b_jcount++;
2973 	}
2974 	jbd_unlock_bh_journal_head(bh);
2975 	return jh;
2976 }
2977 EXPORT_SYMBOL(jbd2_journal_grab_journal_head);
2978 
2979 static void __journal_remove_journal_head(struct buffer_head *bh)
2980 {
2981 	struct journal_head *jh = bh2jh(bh);
2982 
2983 	J_ASSERT_JH(jh, jh->b_transaction == NULL);
2984 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2985 	J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2986 	J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2987 	J_ASSERT_BH(bh, buffer_jbd(bh));
2988 	J_ASSERT_BH(bh, jh2bh(jh) == bh);
2989 	BUFFER_TRACE(bh, "remove journal_head");
2990 
2991 	/* Unlink before dropping the lock */
2992 	bh->b_private = NULL;
2993 	jh->b_bh = NULL;	/* debug, really */
2994 	clear_buffer_jbd(bh);
2995 }
2996 
2997 static void journal_release_journal_head(struct journal_head *jh, size_t b_size)
2998 {
2999 	if (jh->b_frozen_data) {
3000 		printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
3001 		jbd2_free(jh->b_frozen_data, b_size);
3002 	}
3003 	if (jh->b_committed_data) {
3004 		printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
3005 		jbd2_free(jh->b_committed_data, b_size);
3006 	}
3007 	journal_free_journal_head(jh);
3008 }
3009 
3010 /*
3011  * Drop a reference on the passed journal_head.  If it fell to zero then
3012  * release the journal_head from the buffer_head.
3013  */
3014 void jbd2_journal_put_journal_head(struct journal_head *jh)
3015 {
3016 	struct buffer_head *bh = jh2bh(jh);
3017 
3018 	jbd_lock_bh_journal_head(bh);
3019 	J_ASSERT_JH(jh, jh->b_jcount > 0);
3020 	--jh->b_jcount;
3021 	if (!jh->b_jcount) {
3022 		__journal_remove_journal_head(bh);
3023 		jbd_unlock_bh_journal_head(bh);
3024 		journal_release_journal_head(jh, bh->b_size);
3025 		__brelse(bh);
3026 	} else {
3027 		jbd_unlock_bh_journal_head(bh);
3028 	}
3029 }
3030 EXPORT_SYMBOL(jbd2_journal_put_journal_head);
3031 
3032 /*
3033  * Initialize jbd inode head
3034  */
3035 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
3036 {
3037 	jinode->i_transaction = NULL;
3038 	jinode->i_next_transaction = NULL;
3039 	jinode->i_vfs_inode = inode;
3040 	jinode->i_flags = 0;
3041 	jinode->i_dirty_start = 0;
3042 	jinode->i_dirty_end = 0;
3043 	INIT_LIST_HEAD(&jinode->i_list);
3044 }
3045 
3046 /*
3047  * Function to be called before we start removing inode from memory (i.e.,
3048  * clear_inode() is a fine place to be called from). It removes inode from
3049  * transaction's lists.
3050  */
3051 void jbd2_journal_release_jbd_inode(journal_t *journal,
3052 				    struct jbd2_inode *jinode)
3053 {
3054 	if (!journal)
3055 		return;
3056 restart:
3057 	spin_lock(&journal->j_list_lock);
3058 	/* Is commit writing out inode - we have to wait */
3059 	if (jinode->i_flags & JI_COMMIT_RUNNING) {
3060 		wait_queue_head_t *wq;
3061 		DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
3062 		wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
3063 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
3064 		spin_unlock(&journal->j_list_lock);
3065 		schedule();
3066 		finish_wait(wq, &wait.wq_entry);
3067 		goto restart;
3068 	}
3069 
3070 	if (jinode->i_transaction) {
3071 		list_del(&jinode->i_list);
3072 		jinode->i_transaction = NULL;
3073 	}
3074 	spin_unlock(&journal->j_list_lock);
3075 }
3076 
3077 
3078 #ifdef CONFIG_PROC_FS
3079 
3080 #define JBD2_STATS_PROC_NAME "fs/jbd2"
3081 
3082 static void __init jbd2_create_jbd_stats_proc_entry(void)
3083 {
3084 	proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
3085 }
3086 
3087 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
3088 {
3089 	if (proc_jbd2_stats)
3090 		remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
3091 }
3092 
3093 #else
3094 
3095 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
3096 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
3097 
3098 #endif
3099 
3100 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
3101 
3102 static int __init jbd2_journal_init_inode_cache(void)
3103 {
3104 	J_ASSERT(!jbd2_inode_cache);
3105 	jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
3106 	if (!jbd2_inode_cache) {
3107 		pr_emerg("JBD2: failed to create inode cache\n");
3108 		return -ENOMEM;
3109 	}
3110 	return 0;
3111 }
3112 
3113 static int __init jbd2_journal_init_handle_cache(void)
3114 {
3115 	J_ASSERT(!jbd2_handle_cache);
3116 	jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
3117 	if (!jbd2_handle_cache) {
3118 		printk(KERN_EMERG "JBD2: failed to create handle cache\n");
3119 		return -ENOMEM;
3120 	}
3121 	return 0;
3122 }
3123 
3124 static void jbd2_journal_destroy_inode_cache(void)
3125 {
3126 	kmem_cache_destroy(jbd2_inode_cache);
3127 	jbd2_inode_cache = NULL;
3128 }
3129 
3130 static void jbd2_journal_destroy_handle_cache(void)
3131 {
3132 	kmem_cache_destroy(jbd2_handle_cache);
3133 	jbd2_handle_cache = NULL;
3134 }
3135 
3136 /*
3137  * Module startup and shutdown
3138  */
3139 
3140 static int __init journal_init_caches(void)
3141 {
3142 	int ret;
3143 
3144 	ret = jbd2_journal_init_revoke_record_cache();
3145 	if (ret == 0)
3146 		ret = jbd2_journal_init_revoke_table_cache();
3147 	if (ret == 0)
3148 		ret = jbd2_journal_init_journal_head_cache();
3149 	if (ret == 0)
3150 		ret = jbd2_journal_init_handle_cache();
3151 	if (ret == 0)
3152 		ret = jbd2_journal_init_inode_cache();
3153 	if (ret == 0)
3154 		ret = jbd2_journal_init_transaction_cache();
3155 	return ret;
3156 }
3157 
3158 static void jbd2_journal_destroy_caches(void)
3159 {
3160 	jbd2_journal_destroy_revoke_record_cache();
3161 	jbd2_journal_destroy_revoke_table_cache();
3162 	jbd2_journal_destroy_journal_head_cache();
3163 	jbd2_journal_destroy_handle_cache();
3164 	jbd2_journal_destroy_inode_cache();
3165 	jbd2_journal_destroy_transaction_cache();
3166 	jbd2_journal_destroy_slabs();
3167 }
3168 
3169 static int __init journal_init(void)
3170 {
3171 	int ret;
3172 
3173 	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
3174 
3175 	ret = journal_init_caches();
3176 	if (ret == 0) {
3177 		jbd2_create_jbd_stats_proc_entry();
3178 	} else {
3179 		jbd2_journal_destroy_caches();
3180 	}
3181 	return ret;
3182 }
3183 
3184 static void __exit journal_exit(void)
3185 {
3186 #ifdef CONFIG_JBD2_DEBUG
3187 	int n = atomic_read(&nr_journal_heads);
3188 	if (n)
3189 		printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
3190 #endif
3191 	jbd2_remove_jbd_stats_proc_entry();
3192 	jbd2_journal_destroy_caches();
3193 }
3194 
3195 MODULE_LICENSE("GPL");
3196 module_init(journal_init);
3197 module_exit(journal_exit);
3198 
3199