xref: /linux/fs/jbd2/journal.c (revision 268531be211f18c55f7ff5a1641d32c0fd0571cd)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * linux/fs/jbd2/journal.c
4  *
5  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6  *
7  * Copyright 1998 Red Hat corp --- All Rights Reserved
8  *
9  * Generic filesystem journal-writing code; part of the ext2fs
10  * journaling system.
11  *
12  * This file manages journals: areas of disk reserved for logging
13  * transactional updates.  This includes the kernel journaling thread
14  * which is responsible for scheduling updates to the log.
15  *
16  * We do not actually manage the physical storage of the journal in this
17  * file: that is left to a per-journal policy function, which allows us
18  * to store the journal within a filesystem-specified area for ext2
19  * journaling (ext2 can use a reserved inode for storing the log).
20  */
21 
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/fs.h>
25 #include <linux/jbd2.h>
26 #include <linux/errno.h>
27 #include <linux/slab.h>
28 #include <linux/init.h>
29 #include <linux/mm.h>
30 #include <linux/freezer.h>
31 #include <linux/pagemap.h>
32 #include <linux/kthread.h>
33 #include <linux/poison.h>
34 #include <linux/proc_fs.h>
35 #include <linux/seq_file.h>
36 #include <linux/math64.h>
37 #include <linux/hash.h>
38 #include <linux/log2.h>
39 #include <linux/vmalloc.h>
40 #include <linux/backing-dev.h>
41 #include <linux/bitops.h>
42 #include <linux/ratelimit.h>
43 #include <linux/sched/mm.h>
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/jbd2.h>
47 
48 #include <linux/uaccess.h>
49 #include <asm/page.h>
50 
51 #ifdef CONFIG_JBD2_DEBUG
52 static ushort jbd2_journal_enable_debug __read_mostly;
53 
54 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
55 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
56 #endif
57 
58 EXPORT_SYMBOL(jbd2_journal_extend);
59 EXPORT_SYMBOL(jbd2_journal_stop);
60 EXPORT_SYMBOL(jbd2_journal_lock_updates);
61 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
62 EXPORT_SYMBOL(jbd2_journal_get_write_access);
63 EXPORT_SYMBOL(jbd2_journal_get_create_access);
64 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
65 EXPORT_SYMBOL(jbd2_journal_set_triggers);
66 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
67 EXPORT_SYMBOL(jbd2_journal_forget);
68 EXPORT_SYMBOL(jbd2_journal_flush);
69 EXPORT_SYMBOL(jbd2_journal_revoke);
70 
71 EXPORT_SYMBOL(jbd2_journal_init_dev);
72 EXPORT_SYMBOL(jbd2_journal_init_inode);
73 EXPORT_SYMBOL(jbd2_journal_check_used_features);
74 EXPORT_SYMBOL(jbd2_journal_check_available_features);
75 EXPORT_SYMBOL(jbd2_journal_set_features);
76 EXPORT_SYMBOL(jbd2_journal_load);
77 EXPORT_SYMBOL(jbd2_journal_destroy);
78 EXPORT_SYMBOL(jbd2_journal_abort);
79 EXPORT_SYMBOL(jbd2_journal_errno);
80 EXPORT_SYMBOL(jbd2_journal_ack_err);
81 EXPORT_SYMBOL(jbd2_journal_clear_err);
82 EXPORT_SYMBOL(jbd2_log_wait_commit);
83 EXPORT_SYMBOL(jbd2_journal_start_commit);
84 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
85 EXPORT_SYMBOL(jbd2_journal_wipe);
86 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
87 EXPORT_SYMBOL(jbd2_journal_invalidate_folio);
88 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
89 EXPORT_SYMBOL(jbd2_journal_force_commit);
90 EXPORT_SYMBOL(jbd2_journal_inode_ranged_write);
91 EXPORT_SYMBOL(jbd2_journal_inode_ranged_wait);
92 EXPORT_SYMBOL(jbd2_journal_finish_inode_data_buffers);
93 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
94 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
95 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
96 EXPORT_SYMBOL(jbd2_inode_cache);
97 
98 static int jbd2_journal_create_slab(size_t slab_size);
99 
100 #ifdef CONFIG_JBD2_DEBUG
101 void __jbd2_debug(int level, const char *file, const char *func,
102 		  unsigned int line, const char *fmt, ...)
103 {
104 	struct va_format vaf;
105 	va_list args;
106 
107 	if (level > jbd2_journal_enable_debug)
108 		return;
109 	va_start(args, fmt);
110 	vaf.fmt = fmt;
111 	vaf.va = &args;
112 	printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf);
113 	va_end(args);
114 }
115 #endif
116 
117 /* Checksumming functions */
118 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
119 {
120 	__u32 csum;
121 	__be32 old_csum;
122 
123 	old_csum = sb->s_checksum;
124 	sb->s_checksum = 0;
125 	csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
126 	sb->s_checksum = old_csum;
127 
128 	return cpu_to_be32(csum);
129 }
130 
131 /*
132  * Helper function used to manage commit timeouts
133  */
134 
135 static void commit_timeout(struct timer_list *t)
136 {
137 	journal_t *journal = from_timer(journal, t, j_commit_timer);
138 
139 	wake_up_process(journal->j_task);
140 }
141 
142 /*
143  * kjournald2: The main thread function used to manage a logging device
144  * journal.
145  *
146  * This kernel thread is responsible for two things:
147  *
148  * 1) COMMIT:  Every so often we need to commit the current state of the
149  *    filesystem to disk.  The journal thread is responsible for writing
150  *    all of the metadata buffers to disk. If a fast commit is ongoing
151  *    journal thread waits until it's done and then continues from
152  *    there on.
153  *
154  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
155  *    of the data in that part of the log has been rewritten elsewhere on
156  *    the disk.  Flushing these old buffers to reclaim space in the log is
157  *    known as checkpointing, and this thread is responsible for that job.
158  */
159 
160 static int kjournald2(void *arg)
161 {
162 	journal_t *journal = arg;
163 	transaction_t *transaction;
164 
165 	/*
166 	 * Set up an interval timer which can be used to trigger a commit wakeup
167 	 * after the commit interval expires
168 	 */
169 	timer_setup(&journal->j_commit_timer, commit_timeout, 0);
170 
171 	set_freezable();
172 
173 	/* Record that the journal thread is running */
174 	journal->j_task = current;
175 	wake_up(&journal->j_wait_done_commit);
176 
177 	/*
178 	 * Make sure that no allocations from this kernel thread will ever
179 	 * recurse to the fs layer because we are responsible for the
180 	 * transaction commit and any fs involvement might get stuck waiting for
181 	 * the trasn. commit.
182 	 */
183 	memalloc_nofs_save();
184 
185 	/*
186 	 * And now, wait forever for commit wakeup events.
187 	 */
188 	write_lock(&journal->j_state_lock);
189 
190 loop:
191 	if (journal->j_flags & JBD2_UNMOUNT)
192 		goto end_loop;
193 
194 	jbd2_debug(1, "commit_sequence=%u, commit_request=%u\n",
195 		journal->j_commit_sequence, journal->j_commit_request);
196 
197 	if (journal->j_commit_sequence != journal->j_commit_request) {
198 		jbd2_debug(1, "OK, requests differ\n");
199 		write_unlock(&journal->j_state_lock);
200 		del_timer_sync(&journal->j_commit_timer);
201 		jbd2_journal_commit_transaction(journal);
202 		write_lock(&journal->j_state_lock);
203 		goto loop;
204 	}
205 
206 	wake_up(&journal->j_wait_done_commit);
207 	if (freezing(current)) {
208 		/*
209 		 * The simpler the better. Flushing journal isn't a
210 		 * good idea, because that depends on threads that may
211 		 * be already stopped.
212 		 */
213 		jbd2_debug(1, "Now suspending kjournald2\n");
214 		write_unlock(&journal->j_state_lock);
215 		try_to_freeze();
216 		write_lock(&journal->j_state_lock);
217 	} else {
218 		/*
219 		 * We assume on resume that commits are already there,
220 		 * so we don't sleep
221 		 */
222 		DEFINE_WAIT(wait);
223 		int should_sleep = 1;
224 
225 		prepare_to_wait(&journal->j_wait_commit, &wait,
226 				TASK_INTERRUPTIBLE);
227 		if (journal->j_commit_sequence != journal->j_commit_request)
228 			should_sleep = 0;
229 		transaction = journal->j_running_transaction;
230 		if (transaction && time_after_eq(jiffies,
231 						transaction->t_expires))
232 			should_sleep = 0;
233 		if (journal->j_flags & JBD2_UNMOUNT)
234 			should_sleep = 0;
235 		if (should_sleep) {
236 			write_unlock(&journal->j_state_lock);
237 			schedule();
238 			write_lock(&journal->j_state_lock);
239 		}
240 		finish_wait(&journal->j_wait_commit, &wait);
241 	}
242 
243 	jbd2_debug(1, "kjournald2 wakes\n");
244 
245 	/*
246 	 * Were we woken up by a commit wakeup event?
247 	 */
248 	transaction = journal->j_running_transaction;
249 	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
250 		journal->j_commit_request = transaction->t_tid;
251 		jbd2_debug(1, "woke because of timeout\n");
252 	}
253 	goto loop;
254 
255 end_loop:
256 	del_timer_sync(&journal->j_commit_timer);
257 	journal->j_task = NULL;
258 	wake_up(&journal->j_wait_done_commit);
259 	jbd2_debug(1, "Journal thread exiting.\n");
260 	write_unlock(&journal->j_state_lock);
261 	return 0;
262 }
263 
264 static int jbd2_journal_start_thread(journal_t *journal)
265 {
266 	struct task_struct *t;
267 
268 	t = kthread_run(kjournald2, journal, "jbd2/%s",
269 			journal->j_devname);
270 	if (IS_ERR(t))
271 		return PTR_ERR(t);
272 
273 	wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
274 	return 0;
275 }
276 
277 static void journal_kill_thread(journal_t *journal)
278 {
279 	write_lock(&journal->j_state_lock);
280 	journal->j_flags |= JBD2_UNMOUNT;
281 
282 	while (journal->j_task) {
283 		write_unlock(&journal->j_state_lock);
284 		wake_up(&journal->j_wait_commit);
285 		wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
286 		write_lock(&journal->j_state_lock);
287 	}
288 	write_unlock(&journal->j_state_lock);
289 }
290 
291 /*
292  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
293  *
294  * Writes a metadata buffer to a given disk block.  The actual IO is not
295  * performed but a new buffer_head is constructed which labels the data
296  * to be written with the correct destination disk block.
297  *
298  * Any magic-number escaping which needs to be done will cause a
299  * copy-out here.  If the buffer happens to start with the
300  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
301  * magic number is only written to the log for descripter blocks.  In
302  * this case, we copy the data and replace the first word with 0, and we
303  * return a result code which indicates that this buffer needs to be
304  * marked as an escaped buffer in the corresponding log descriptor
305  * block.  The missing word can then be restored when the block is read
306  * during recovery.
307  *
308  * If the source buffer has already been modified by a new transaction
309  * since we took the last commit snapshot, we use the frozen copy of
310  * that data for IO. If we end up using the existing buffer_head's data
311  * for the write, then we have to make sure nobody modifies it while the
312  * IO is in progress. do_get_write_access() handles this.
313  *
314  * The function returns a pointer to the buffer_head to be used for IO.
315  *
316  *
317  * Return value:
318  *  <0: Error
319  * >=0: Finished OK
320  *
321  * On success:
322  * Bit 0 set == escape performed on the data
323  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
324  */
325 
326 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
327 				  struct journal_head  *jh_in,
328 				  struct buffer_head **bh_out,
329 				  sector_t blocknr)
330 {
331 	int need_copy_out = 0;
332 	int done_copy_out = 0;
333 	int do_escape = 0;
334 	char *mapped_data;
335 	struct buffer_head *new_bh;
336 	struct folio *new_folio;
337 	unsigned int new_offset;
338 	struct buffer_head *bh_in = jh2bh(jh_in);
339 	journal_t *journal = transaction->t_journal;
340 
341 	/*
342 	 * The buffer really shouldn't be locked: only the current committing
343 	 * transaction is allowed to write it, so nobody else is allowed
344 	 * to do any IO.
345 	 *
346 	 * akpm: except if we're journalling data, and write() output is
347 	 * also part of a shared mapping, and another thread has
348 	 * decided to launch a writepage() against this buffer.
349 	 */
350 	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
351 
352 	new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
353 
354 	/* keep subsequent assertions sane */
355 	atomic_set(&new_bh->b_count, 1);
356 
357 	spin_lock(&jh_in->b_state_lock);
358 repeat:
359 	/*
360 	 * If a new transaction has already done a buffer copy-out, then
361 	 * we use that version of the data for the commit.
362 	 */
363 	if (jh_in->b_frozen_data) {
364 		done_copy_out = 1;
365 		new_folio = virt_to_folio(jh_in->b_frozen_data);
366 		new_offset = offset_in_folio(new_folio, jh_in->b_frozen_data);
367 	} else {
368 		new_folio = jh2bh(jh_in)->b_folio;
369 		new_offset = offset_in_folio(new_folio, jh2bh(jh_in)->b_data);
370 	}
371 
372 	mapped_data = kmap_local_folio(new_folio, new_offset);
373 	/*
374 	 * Fire data frozen trigger if data already wasn't frozen.  Do this
375 	 * before checking for escaping, as the trigger may modify the magic
376 	 * offset.  If a copy-out happens afterwards, it will have the correct
377 	 * data in the buffer.
378 	 */
379 	if (!done_copy_out)
380 		jbd2_buffer_frozen_trigger(jh_in, mapped_data,
381 					   jh_in->b_triggers);
382 
383 	/*
384 	 * Check for escaping
385 	 */
386 	if (*((__be32 *)mapped_data) == cpu_to_be32(JBD2_MAGIC_NUMBER)) {
387 		need_copy_out = 1;
388 		do_escape = 1;
389 	}
390 	kunmap_local(mapped_data);
391 
392 	/*
393 	 * Do we need to do a data copy?
394 	 */
395 	if (need_copy_out && !done_copy_out) {
396 		char *tmp;
397 
398 		spin_unlock(&jh_in->b_state_lock);
399 		tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
400 		if (!tmp) {
401 			brelse(new_bh);
402 			return -ENOMEM;
403 		}
404 		spin_lock(&jh_in->b_state_lock);
405 		if (jh_in->b_frozen_data) {
406 			jbd2_free(tmp, bh_in->b_size);
407 			goto repeat;
408 		}
409 
410 		jh_in->b_frozen_data = tmp;
411 		memcpy_from_folio(tmp, new_folio, new_offset, bh_in->b_size);
412 
413 		new_folio = virt_to_folio(tmp);
414 		new_offset = offset_in_folio(new_folio, tmp);
415 		done_copy_out = 1;
416 
417 		/*
418 		 * This isn't strictly necessary, as we're using frozen
419 		 * data for the escaping, but it keeps consistency with
420 		 * b_frozen_data usage.
421 		 */
422 		jh_in->b_frozen_triggers = jh_in->b_triggers;
423 	}
424 
425 	/*
426 	 * Did we need to do an escaping?  Now we've done all the
427 	 * copying, we can finally do so.
428 	 */
429 	if (do_escape) {
430 		mapped_data = kmap_local_folio(new_folio, new_offset);
431 		*((unsigned int *)mapped_data) = 0;
432 		kunmap_local(mapped_data);
433 	}
434 
435 	folio_set_bh(new_bh, new_folio, new_offset);
436 	new_bh->b_size = bh_in->b_size;
437 	new_bh->b_bdev = journal->j_dev;
438 	new_bh->b_blocknr = blocknr;
439 	new_bh->b_private = bh_in;
440 	set_buffer_mapped(new_bh);
441 	set_buffer_dirty(new_bh);
442 
443 	*bh_out = new_bh;
444 
445 	/*
446 	 * The to-be-written buffer needs to get moved to the io queue,
447 	 * and the original buffer whose contents we are shadowing or
448 	 * copying is moved to the transaction's shadow queue.
449 	 */
450 	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
451 	spin_lock(&journal->j_list_lock);
452 	__jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
453 	spin_unlock(&journal->j_list_lock);
454 	set_buffer_shadow(bh_in);
455 	spin_unlock(&jh_in->b_state_lock);
456 
457 	return do_escape | (done_copy_out << 1);
458 }
459 
460 /*
461  * Allocation code for the journal file.  Manage the space left in the
462  * journal, so that we can begin checkpointing when appropriate.
463  */
464 
465 /*
466  * Called with j_state_lock locked for writing.
467  * Returns true if a transaction commit was started.
468  */
469 static int __jbd2_log_start_commit(journal_t *journal, tid_t target)
470 {
471 	/* Return if the txn has already requested to be committed */
472 	if (journal->j_commit_request == target)
473 		return 0;
474 
475 	/*
476 	 * The only transaction we can possibly wait upon is the
477 	 * currently running transaction (if it exists).  Otherwise,
478 	 * the target tid must be an old one.
479 	 */
480 	if (journal->j_running_transaction &&
481 	    journal->j_running_transaction->t_tid == target) {
482 		/*
483 		 * We want a new commit: OK, mark the request and wakeup the
484 		 * commit thread.  We do _not_ do the commit ourselves.
485 		 */
486 
487 		journal->j_commit_request = target;
488 		jbd2_debug(1, "JBD2: requesting commit %u/%u\n",
489 			  journal->j_commit_request,
490 			  journal->j_commit_sequence);
491 		journal->j_running_transaction->t_requested = jiffies;
492 		wake_up(&journal->j_wait_commit);
493 		return 1;
494 	} else if (!tid_geq(journal->j_commit_request, target))
495 		/* This should never happen, but if it does, preserve
496 		   the evidence before kjournald goes into a loop and
497 		   increments j_commit_sequence beyond all recognition. */
498 		WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
499 			  journal->j_commit_request,
500 			  journal->j_commit_sequence,
501 			  target, journal->j_running_transaction ?
502 			  journal->j_running_transaction->t_tid : 0);
503 	return 0;
504 }
505 
506 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
507 {
508 	int ret;
509 
510 	write_lock(&journal->j_state_lock);
511 	ret = __jbd2_log_start_commit(journal, tid);
512 	write_unlock(&journal->j_state_lock);
513 	return ret;
514 }
515 
516 /*
517  * Force and wait any uncommitted transactions.  We can only force the running
518  * transaction if we don't have an active handle, otherwise, we will deadlock.
519  * Returns: <0 in case of error,
520  *           0 if nothing to commit,
521  *           1 if transaction was successfully committed.
522  */
523 static int __jbd2_journal_force_commit(journal_t *journal)
524 {
525 	transaction_t *transaction = NULL;
526 	tid_t tid;
527 	int need_to_start = 0, ret = 0;
528 
529 	read_lock(&journal->j_state_lock);
530 	if (journal->j_running_transaction && !current->journal_info) {
531 		transaction = journal->j_running_transaction;
532 		if (!tid_geq(journal->j_commit_request, transaction->t_tid))
533 			need_to_start = 1;
534 	} else if (journal->j_committing_transaction)
535 		transaction = journal->j_committing_transaction;
536 
537 	if (!transaction) {
538 		/* Nothing to commit */
539 		read_unlock(&journal->j_state_lock);
540 		return 0;
541 	}
542 	tid = transaction->t_tid;
543 	read_unlock(&journal->j_state_lock);
544 	if (need_to_start)
545 		jbd2_log_start_commit(journal, tid);
546 	ret = jbd2_log_wait_commit(journal, tid);
547 	if (!ret)
548 		ret = 1;
549 
550 	return ret;
551 }
552 
553 /**
554  * jbd2_journal_force_commit_nested - Force and wait upon a commit if the
555  * calling process is not within transaction.
556  *
557  * @journal: journal to force
558  * Returns true if progress was made.
559  *
560  * This is used for forcing out undo-protected data which contains
561  * bitmaps, when the fs is running out of space.
562  */
563 int jbd2_journal_force_commit_nested(journal_t *journal)
564 {
565 	int ret;
566 
567 	ret = __jbd2_journal_force_commit(journal);
568 	return ret > 0;
569 }
570 
571 /**
572  * jbd2_journal_force_commit() - force any uncommitted transactions
573  * @journal: journal to force
574  *
575  * Caller want unconditional commit. We can only force the running transaction
576  * if we don't have an active handle, otherwise, we will deadlock.
577  */
578 int jbd2_journal_force_commit(journal_t *journal)
579 {
580 	int ret;
581 
582 	J_ASSERT(!current->journal_info);
583 	ret = __jbd2_journal_force_commit(journal);
584 	if (ret > 0)
585 		ret = 0;
586 	return ret;
587 }
588 
589 /*
590  * Start a commit of the current running transaction (if any).  Returns true
591  * if a transaction is going to be committed (or is currently already
592  * committing), and fills its tid in at *ptid
593  */
594 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
595 {
596 	int ret = 0;
597 
598 	write_lock(&journal->j_state_lock);
599 	if (journal->j_running_transaction) {
600 		tid_t tid = journal->j_running_transaction->t_tid;
601 
602 		__jbd2_log_start_commit(journal, tid);
603 		/* There's a running transaction and we've just made sure
604 		 * it's commit has been scheduled. */
605 		if (ptid)
606 			*ptid = tid;
607 		ret = 1;
608 	} else if (journal->j_committing_transaction) {
609 		/*
610 		 * If commit has been started, then we have to wait for
611 		 * completion of that transaction.
612 		 */
613 		if (ptid)
614 			*ptid = journal->j_committing_transaction->t_tid;
615 		ret = 1;
616 	}
617 	write_unlock(&journal->j_state_lock);
618 	return ret;
619 }
620 
621 /*
622  * Return 1 if a given transaction has not yet sent barrier request
623  * connected with a transaction commit. If 0 is returned, transaction
624  * may or may not have sent the barrier. Used to avoid sending barrier
625  * twice in common cases.
626  */
627 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
628 {
629 	int ret = 0;
630 	transaction_t *commit_trans;
631 
632 	if (!(journal->j_flags & JBD2_BARRIER))
633 		return 0;
634 	read_lock(&journal->j_state_lock);
635 	/* Transaction already committed? */
636 	if (tid_geq(journal->j_commit_sequence, tid))
637 		goto out;
638 	commit_trans = journal->j_committing_transaction;
639 	if (!commit_trans || commit_trans->t_tid != tid) {
640 		ret = 1;
641 		goto out;
642 	}
643 	/*
644 	 * Transaction is being committed and we already proceeded to
645 	 * submitting a flush to fs partition?
646 	 */
647 	if (journal->j_fs_dev != journal->j_dev) {
648 		if (!commit_trans->t_need_data_flush ||
649 		    commit_trans->t_state >= T_COMMIT_DFLUSH)
650 			goto out;
651 	} else {
652 		if (commit_trans->t_state >= T_COMMIT_JFLUSH)
653 			goto out;
654 	}
655 	ret = 1;
656 out:
657 	read_unlock(&journal->j_state_lock);
658 	return ret;
659 }
660 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
661 
662 /*
663  * Wait for a specified commit to complete.
664  * The caller may not hold the journal lock.
665  */
666 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
667 {
668 	int err = 0;
669 
670 	read_lock(&journal->j_state_lock);
671 #ifdef CONFIG_PROVE_LOCKING
672 	/*
673 	 * Some callers make sure transaction is already committing and in that
674 	 * case we cannot block on open handles anymore. So don't warn in that
675 	 * case.
676 	 */
677 	if (tid_gt(tid, journal->j_commit_sequence) &&
678 	    (!journal->j_committing_transaction ||
679 	     journal->j_committing_transaction->t_tid != tid)) {
680 		read_unlock(&journal->j_state_lock);
681 		jbd2_might_wait_for_commit(journal);
682 		read_lock(&journal->j_state_lock);
683 	}
684 #endif
685 #ifdef CONFIG_JBD2_DEBUG
686 	if (!tid_geq(journal->j_commit_request, tid)) {
687 		printk(KERN_ERR
688 		       "%s: error: j_commit_request=%u, tid=%u\n",
689 		       __func__, journal->j_commit_request, tid);
690 	}
691 #endif
692 	while (tid_gt(tid, journal->j_commit_sequence)) {
693 		jbd2_debug(1, "JBD2: want %u, j_commit_sequence=%u\n",
694 				  tid, journal->j_commit_sequence);
695 		read_unlock(&journal->j_state_lock);
696 		wake_up(&journal->j_wait_commit);
697 		wait_event(journal->j_wait_done_commit,
698 				!tid_gt(tid, journal->j_commit_sequence));
699 		read_lock(&journal->j_state_lock);
700 	}
701 	read_unlock(&journal->j_state_lock);
702 
703 	if (unlikely(is_journal_aborted(journal)))
704 		err = -EIO;
705 	return err;
706 }
707 
708 /*
709  * Start a fast commit. If there's an ongoing fast or full commit wait for
710  * it to complete. Returns 0 if a new fast commit was started. Returns -EALREADY
711  * if a fast commit is not needed, either because there's an already a commit
712  * going on or this tid has already been committed. Returns -EINVAL if no jbd2
713  * commit has yet been performed.
714  */
715 int jbd2_fc_begin_commit(journal_t *journal, tid_t tid)
716 {
717 	if (unlikely(is_journal_aborted(journal)))
718 		return -EIO;
719 	/*
720 	 * Fast commits only allowed if at least one full commit has
721 	 * been processed.
722 	 */
723 	if (!journal->j_stats.ts_tid)
724 		return -EINVAL;
725 
726 	write_lock(&journal->j_state_lock);
727 	if (tid <= journal->j_commit_sequence) {
728 		write_unlock(&journal->j_state_lock);
729 		return -EALREADY;
730 	}
731 
732 	if (journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
733 	    (journal->j_flags & JBD2_FAST_COMMIT_ONGOING)) {
734 		DEFINE_WAIT(wait);
735 
736 		prepare_to_wait(&journal->j_fc_wait, &wait,
737 				TASK_UNINTERRUPTIBLE);
738 		write_unlock(&journal->j_state_lock);
739 		schedule();
740 		finish_wait(&journal->j_fc_wait, &wait);
741 		return -EALREADY;
742 	}
743 	journal->j_flags |= JBD2_FAST_COMMIT_ONGOING;
744 	write_unlock(&journal->j_state_lock);
745 	jbd2_journal_lock_updates(journal);
746 
747 	return 0;
748 }
749 EXPORT_SYMBOL(jbd2_fc_begin_commit);
750 
751 /*
752  * Stop a fast commit. If fallback is set, this function starts commit of
753  * TID tid before any other fast commit can start.
754  */
755 static int __jbd2_fc_end_commit(journal_t *journal, tid_t tid, bool fallback)
756 {
757 	jbd2_journal_unlock_updates(journal);
758 	if (journal->j_fc_cleanup_callback)
759 		journal->j_fc_cleanup_callback(journal, 0, tid);
760 	write_lock(&journal->j_state_lock);
761 	journal->j_flags &= ~JBD2_FAST_COMMIT_ONGOING;
762 	if (fallback)
763 		journal->j_flags |= JBD2_FULL_COMMIT_ONGOING;
764 	write_unlock(&journal->j_state_lock);
765 	wake_up(&journal->j_fc_wait);
766 	if (fallback)
767 		return jbd2_complete_transaction(journal, tid);
768 	return 0;
769 }
770 
771 int jbd2_fc_end_commit(journal_t *journal)
772 {
773 	return __jbd2_fc_end_commit(journal, 0, false);
774 }
775 EXPORT_SYMBOL(jbd2_fc_end_commit);
776 
777 int jbd2_fc_end_commit_fallback(journal_t *journal)
778 {
779 	tid_t tid;
780 
781 	read_lock(&journal->j_state_lock);
782 	tid = journal->j_running_transaction ?
783 		journal->j_running_transaction->t_tid : 0;
784 	read_unlock(&journal->j_state_lock);
785 	return __jbd2_fc_end_commit(journal, tid, true);
786 }
787 EXPORT_SYMBOL(jbd2_fc_end_commit_fallback);
788 
789 /* Return 1 when transaction with given tid has already committed. */
790 int jbd2_transaction_committed(journal_t *journal, tid_t tid)
791 {
792 	int ret = 1;
793 
794 	read_lock(&journal->j_state_lock);
795 	if (journal->j_running_transaction &&
796 	    journal->j_running_transaction->t_tid == tid)
797 		ret = 0;
798 	if (journal->j_committing_transaction &&
799 	    journal->j_committing_transaction->t_tid == tid)
800 		ret = 0;
801 	read_unlock(&journal->j_state_lock);
802 	return ret;
803 }
804 EXPORT_SYMBOL(jbd2_transaction_committed);
805 
806 /*
807  * When this function returns the transaction corresponding to tid
808  * will be completed.  If the transaction has currently running, start
809  * committing that transaction before waiting for it to complete.  If
810  * the transaction id is stale, it is by definition already completed,
811  * so just return SUCCESS.
812  */
813 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
814 {
815 	int	need_to_wait = 1;
816 
817 	read_lock(&journal->j_state_lock);
818 	if (journal->j_running_transaction &&
819 	    journal->j_running_transaction->t_tid == tid) {
820 		if (journal->j_commit_request != tid) {
821 			/* transaction not yet started, so request it */
822 			read_unlock(&journal->j_state_lock);
823 			jbd2_log_start_commit(journal, tid);
824 			goto wait_commit;
825 		}
826 	} else if (!(journal->j_committing_transaction &&
827 		     journal->j_committing_transaction->t_tid == tid))
828 		need_to_wait = 0;
829 	read_unlock(&journal->j_state_lock);
830 	if (!need_to_wait)
831 		return 0;
832 wait_commit:
833 	return jbd2_log_wait_commit(journal, tid);
834 }
835 EXPORT_SYMBOL(jbd2_complete_transaction);
836 
837 /*
838  * Log buffer allocation routines:
839  */
840 
841 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
842 {
843 	unsigned long blocknr;
844 
845 	write_lock(&journal->j_state_lock);
846 	J_ASSERT(journal->j_free > 1);
847 
848 	blocknr = journal->j_head;
849 	journal->j_head++;
850 	journal->j_free--;
851 	if (journal->j_head == journal->j_last)
852 		journal->j_head = journal->j_first;
853 	write_unlock(&journal->j_state_lock);
854 	return jbd2_journal_bmap(journal, blocknr, retp);
855 }
856 
857 /* Map one fast commit buffer for use by the file system */
858 int jbd2_fc_get_buf(journal_t *journal, struct buffer_head **bh_out)
859 {
860 	unsigned long long pblock;
861 	unsigned long blocknr;
862 	int ret = 0;
863 	struct buffer_head *bh;
864 	int fc_off;
865 
866 	*bh_out = NULL;
867 
868 	if (journal->j_fc_off + journal->j_fc_first < journal->j_fc_last) {
869 		fc_off = journal->j_fc_off;
870 		blocknr = journal->j_fc_first + fc_off;
871 		journal->j_fc_off++;
872 	} else {
873 		ret = -EINVAL;
874 	}
875 
876 	if (ret)
877 		return ret;
878 
879 	ret = jbd2_journal_bmap(journal, blocknr, &pblock);
880 	if (ret)
881 		return ret;
882 
883 	bh = __getblk(journal->j_dev, pblock, journal->j_blocksize);
884 	if (!bh)
885 		return -ENOMEM;
886 
887 
888 	journal->j_fc_wbuf[fc_off] = bh;
889 
890 	*bh_out = bh;
891 
892 	return 0;
893 }
894 EXPORT_SYMBOL(jbd2_fc_get_buf);
895 
896 /*
897  * Wait on fast commit buffers that were allocated by jbd2_fc_get_buf
898  * for completion.
899  */
900 int jbd2_fc_wait_bufs(journal_t *journal, int num_blks)
901 {
902 	struct buffer_head *bh;
903 	int i, j_fc_off;
904 
905 	j_fc_off = journal->j_fc_off;
906 
907 	/*
908 	 * Wait in reverse order to minimize chances of us being woken up before
909 	 * all IOs have completed
910 	 */
911 	for (i = j_fc_off - 1; i >= j_fc_off - num_blks; i--) {
912 		bh = journal->j_fc_wbuf[i];
913 		wait_on_buffer(bh);
914 		/*
915 		 * Update j_fc_off so jbd2_fc_release_bufs can release remain
916 		 * buffer head.
917 		 */
918 		if (unlikely(!buffer_uptodate(bh))) {
919 			journal->j_fc_off = i + 1;
920 			return -EIO;
921 		}
922 		put_bh(bh);
923 		journal->j_fc_wbuf[i] = NULL;
924 	}
925 
926 	return 0;
927 }
928 EXPORT_SYMBOL(jbd2_fc_wait_bufs);
929 
930 int jbd2_fc_release_bufs(journal_t *journal)
931 {
932 	struct buffer_head *bh;
933 	int i, j_fc_off;
934 
935 	j_fc_off = journal->j_fc_off;
936 
937 	for (i = j_fc_off - 1; i >= 0; i--) {
938 		bh = journal->j_fc_wbuf[i];
939 		if (!bh)
940 			break;
941 		put_bh(bh);
942 		journal->j_fc_wbuf[i] = NULL;
943 	}
944 
945 	return 0;
946 }
947 EXPORT_SYMBOL(jbd2_fc_release_bufs);
948 
949 /*
950  * Conversion of logical to physical block numbers for the journal
951  *
952  * On external journals the journal blocks are identity-mapped, so
953  * this is a no-op.  If needed, we can use j_blk_offset - everything is
954  * ready.
955  */
956 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
957 		 unsigned long long *retp)
958 {
959 	int err = 0;
960 	unsigned long long ret;
961 	sector_t block = blocknr;
962 
963 	if (journal->j_bmap) {
964 		err = journal->j_bmap(journal, &block);
965 		if (err == 0)
966 			*retp = block;
967 	} else if (journal->j_inode) {
968 		ret = bmap(journal->j_inode, &block);
969 
970 		if (ret || !block) {
971 			printk(KERN_ALERT "%s: journal block not found "
972 					"at offset %lu on %s\n",
973 			       __func__, blocknr, journal->j_devname);
974 			err = -EIO;
975 			jbd2_journal_abort(journal, err);
976 		} else {
977 			*retp = block;
978 		}
979 
980 	} else {
981 		*retp = blocknr; /* +journal->j_blk_offset */
982 	}
983 	return err;
984 }
985 
986 /*
987  * We play buffer_head aliasing tricks to write data/metadata blocks to
988  * the journal without copying their contents, but for journal
989  * descriptor blocks we do need to generate bona fide buffers.
990  *
991  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
992  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
993  * But we don't bother doing that, so there will be coherency problems with
994  * mmaps of blockdevs which hold live JBD-controlled filesystems.
995  */
996 struct buffer_head *
997 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
998 {
999 	journal_t *journal = transaction->t_journal;
1000 	struct buffer_head *bh;
1001 	unsigned long long blocknr;
1002 	journal_header_t *header;
1003 	int err;
1004 
1005 	err = jbd2_journal_next_log_block(journal, &blocknr);
1006 
1007 	if (err)
1008 		return NULL;
1009 
1010 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
1011 	if (!bh)
1012 		return NULL;
1013 	atomic_dec(&transaction->t_outstanding_credits);
1014 	lock_buffer(bh);
1015 	memset(bh->b_data, 0, journal->j_blocksize);
1016 	header = (journal_header_t *)bh->b_data;
1017 	header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
1018 	header->h_blocktype = cpu_to_be32(type);
1019 	header->h_sequence = cpu_to_be32(transaction->t_tid);
1020 	set_buffer_uptodate(bh);
1021 	unlock_buffer(bh);
1022 	BUFFER_TRACE(bh, "return this buffer");
1023 	return bh;
1024 }
1025 
1026 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
1027 {
1028 	struct jbd2_journal_block_tail *tail;
1029 	__u32 csum;
1030 
1031 	if (!jbd2_journal_has_csum_v2or3(j))
1032 		return;
1033 
1034 	tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
1035 			sizeof(struct jbd2_journal_block_tail));
1036 	tail->t_checksum = 0;
1037 	csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
1038 	tail->t_checksum = cpu_to_be32(csum);
1039 }
1040 
1041 /*
1042  * Return tid of the oldest transaction in the journal and block in the journal
1043  * where the transaction starts.
1044  *
1045  * If the journal is now empty, return which will be the next transaction ID
1046  * we will write and where will that transaction start.
1047  *
1048  * The return value is 0 if journal tail cannot be pushed any further, 1 if
1049  * it can.
1050  */
1051 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
1052 			      unsigned long *block)
1053 {
1054 	transaction_t *transaction;
1055 	int ret;
1056 
1057 	read_lock(&journal->j_state_lock);
1058 	spin_lock(&journal->j_list_lock);
1059 	transaction = journal->j_checkpoint_transactions;
1060 	if (transaction) {
1061 		*tid = transaction->t_tid;
1062 		*block = transaction->t_log_start;
1063 	} else if ((transaction = journal->j_committing_transaction) != NULL) {
1064 		*tid = transaction->t_tid;
1065 		*block = transaction->t_log_start;
1066 	} else if ((transaction = journal->j_running_transaction) != NULL) {
1067 		*tid = transaction->t_tid;
1068 		*block = journal->j_head;
1069 	} else {
1070 		*tid = journal->j_transaction_sequence;
1071 		*block = journal->j_head;
1072 	}
1073 	ret = tid_gt(*tid, journal->j_tail_sequence);
1074 	spin_unlock(&journal->j_list_lock);
1075 	read_unlock(&journal->j_state_lock);
1076 
1077 	return ret;
1078 }
1079 
1080 /*
1081  * Update information in journal structure and in on disk journal superblock
1082  * about log tail. This function does not check whether information passed in
1083  * really pushes log tail further. It's responsibility of the caller to make
1084  * sure provided log tail information is valid (e.g. by holding
1085  * j_checkpoint_mutex all the time between computing log tail and calling this
1086  * function as is the case with jbd2_cleanup_journal_tail()).
1087  *
1088  * Requires j_checkpoint_mutex
1089  */
1090 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
1091 {
1092 	unsigned long freed;
1093 	int ret;
1094 
1095 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1096 
1097 	/*
1098 	 * We cannot afford for write to remain in drive's caches since as
1099 	 * soon as we update j_tail, next transaction can start reusing journal
1100 	 * space and if we lose sb update during power failure we'd replay
1101 	 * old transaction with possibly newly overwritten data.
1102 	 */
1103 	ret = jbd2_journal_update_sb_log_tail(journal, tid, block, REQ_FUA);
1104 	if (ret)
1105 		goto out;
1106 
1107 	write_lock(&journal->j_state_lock);
1108 	freed = block - journal->j_tail;
1109 	if (block < journal->j_tail)
1110 		freed += journal->j_last - journal->j_first;
1111 
1112 	trace_jbd2_update_log_tail(journal, tid, block, freed);
1113 	jbd2_debug(1,
1114 		  "Cleaning journal tail from %u to %u (offset %lu), "
1115 		  "freeing %lu\n",
1116 		  journal->j_tail_sequence, tid, block, freed);
1117 
1118 	journal->j_free += freed;
1119 	journal->j_tail_sequence = tid;
1120 	journal->j_tail = block;
1121 	write_unlock(&journal->j_state_lock);
1122 
1123 out:
1124 	return ret;
1125 }
1126 
1127 /*
1128  * This is a variation of __jbd2_update_log_tail which checks for validity of
1129  * provided log tail and locks j_checkpoint_mutex. So it is safe against races
1130  * with other threads updating log tail.
1131  */
1132 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
1133 {
1134 	mutex_lock_io(&journal->j_checkpoint_mutex);
1135 	if (tid_gt(tid, journal->j_tail_sequence))
1136 		__jbd2_update_log_tail(journal, tid, block);
1137 	mutex_unlock(&journal->j_checkpoint_mutex);
1138 }
1139 
1140 struct jbd2_stats_proc_session {
1141 	journal_t *journal;
1142 	struct transaction_stats_s *stats;
1143 	int start;
1144 	int max;
1145 };
1146 
1147 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
1148 {
1149 	return *pos ? NULL : SEQ_START_TOKEN;
1150 }
1151 
1152 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
1153 {
1154 	(*pos)++;
1155 	return NULL;
1156 }
1157 
1158 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
1159 {
1160 	struct jbd2_stats_proc_session *s = seq->private;
1161 
1162 	if (v != SEQ_START_TOKEN)
1163 		return 0;
1164 	seq_printf(seq, "%lu transactions (%lu requested), "
1165 		   "each up to %u blocks\n",
1166 		   s->stats->ts_tid, s->stats->ts_requested,
1167 		   s->journal->j_max_transaction_buffers);
1168 	if (s->stats->ts_tid == 0)
1169 		return 0;
1170 	seq_printf(seq, "average: \n  %ums waiting for transaction\n",
1171 	    jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
1172 	seq_printf(seq, "  %ums request delay\n",
1173 	    (s->stats->ts_requested == 0) ? 0 :
1174 	    jiffies_to_msecs(s->stats->run.rs_request_delay /
1175 			     s->stats->ts_requested));
1176 	seq_printf(seq, "  %ums running transaction\n",
1177 	    jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
1178 	seq_printf(seq, "  %ums transaction was being locked\n",
1179 	    jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1180 	seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
1181 	    jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1182 	seq_printf(seq, "  %ums logging transaction\n",
1183 	    jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1184 	seq_printf(seq, "  %lluus average transaction commit time\n",
1185 		   div_u64(s->journal->j_average_commit_time, 1000));
1186 	seq_printf(seq, "  %lu handles per transaction\n",
1187 	    s->stats->run.rs_handle_count / s->stats->ts_tid);
1188 	seq_printf(seq, "  %lu blocks per transaction\n",
1189 	    s->stats->run.rs_blocks / s->stats->ts_tid);
1190 	seq_printf(seq, "  %lu logged blocks per transaction\n",
1191 	    s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1192 	return 0;
1193 }
1194 
1195 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1196 {
1197 }
1198 
1199 static const struct seq_operations jbd2_seq_info_ops = {
1200 	.start  = jbd2_seq_info_start,
1201 	.next   = jbd2_seq_info_next,
1202 	.stop   = jbd2_seq_info_stop,
1203 	.show   = jbd2_seq_info_show,
1204 };
1205 
1206 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1207 {
1208 	journal_t *journal = pde_data(inode);
1209 	struct jbd2_stats_proc_session *s;
1210 	int rc, size;
1211 
1212 	s = kmalloc(sizeof(*s), GFP_KERNEL);
1213 	if (s == NULL)
1214 		return -ENOMEM;
1215 	size = sizeof(struct transaction_stats_s);
1216 	s->stats = kmalloc(size, GFP_KERNEL);
1217 	if (s->stats == NULL) {
1218 		kfree(s);
1219 		return -ENOMEM;
1220 	}
1221 	spin_lock(&journal->j_history_lock);
1222 	memcpy(s->stats, &journal->j_stats, size);
1223 	s->journal = journal;
1224 	spin_unlock(&journal->j_history_lock);
1225 
1226 	rc = seq_open(file, &jbd2_seq_info_ops);
1227 	if (rc == 0) {
1228 		struct seq_file *m = file->private_data;
1229 		m->private = s;
1230 	} else {
1231 		kfree(s->stats);
1232 		kfree(s);
1233 	}
1234 	return rc;
1235 
1236 }
1237 
1238 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1239 {
1240 	struct seq_file *seq = file->private_data;
1241 	struct jbd2_stats_proc_session *s = seq->private;
1242 	kfree(s->stats);
1243 	kfree(s);
1244 	return seq_release(inode, file);
1245 }
1246 
1247 static const struct proc_ops jbd2_info_proc_ops = {
1248 	.proc_open	= jbd2_seq_info_open,
1249 	.proc_read	= seq_read,
1250 	.proc_lseek	= seq_lseek,
1251 	.proc_release	= jbd2_seq_info_release,
1252 };
1253 
1254 static struct proc_dir_entry *proc_jbd2_stats;
1255 
1256 static void jbd2_stats_proc_init(journal_t *journal)
1257 {
1258 	journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1259 	if (journal->j_proc_entry) {
1260 		proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1261 				 &jbd2_info_proc_ops, journal);
1262 	}
1263 }
1264 
1265 static void jbd2_stats_proc_exit(journal_t *journal)
1266 {
1267 	remove_proc_entry("info", journal->j_proc_entry);
1268 	remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1269 }
1270 
1271 /* Minimum size of descriptor tag */
1272 static int jbd2_min_tag_size(void)
1273 {
1274 	/*
1275 	 * Tag with 32-bit block numbers does not use last four bytes of the
1276 	 * structure
1277 	 */
1278 	return sizeof(journal_block_tag_t) - 4;
1279 }
1280 
1281 /**
1282  * jbd2_journal_shrink_scan()
1283  * @shrink: shrinker to work on
1284  * @sc: reclaim request to process
1285  *
1286  * Scan the checkpointed buffer on the checkpoint list and release the
1287  * journal_head.
1288  */
1289 static unsigned long jbd2_journal_shrink_scan(struct shrinker *shrink,
1290 					      struct shrink_control *sc)
1291 {
1292 	journal_t *journal = shrink->private_data;
1293 	unsigned long nr_to_scan = sc->nr_to_scan;
1294 	unsigned long nr_shrunk;
1295 	unsigned long count;
1296 
1297 	count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count);
1298 	trace_jbd2_shrink_scan_enter(journal, sc->nr_to_scan, count);
1299 
1300 	nr_shrunk = jbd2_journal_shrink_checkpoint_list(journal, &nr_to_scan);
1301 
1302 	count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count);
1303 	trace_jbd2_shrink_scan_exit(journal, nr_to_scan, nr_shrunk, count);
1304 
1305 	return nr_shrunk;
1306 }
1307 
1308 /**
1309  * jbd2_journal_shrink_count()
1310  * @shrink: shrinker to work on
1311  * @sc: reclaim request to process
1312  *
1313  * Count the number of checkpoint buffers on the checkpoint list.
1314  */
1315 static unsigned long jbd2_journal_shrink_count(struct shrinker *shrink,
1316 					       struct shrink_control *sc)
1317 {
1318 	journal_t *journal = shrink->private_data;
1319 	unsigned long count;
1320 
1321 	count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count);
1322 	trace_jbd2_shrink_count(journal, sc->nr_to_scan, count);
1323 
1324 	return count;
1325 }
1326 
1327 /*
1328  * If the journal init or create aborts, we need to mark the journal
1329  * superblock as being NULL to prevent the journal destroy from writing
1330  * back a bogus superblock.
1331  */
1332 static void journal_fail_superblock(journal_t *journal)
1333 {
1334 	struct buffer_head *bh = journal->j_sb_buffer;
1335 	brelse(bh);
1336 	journal->j_sb_buffer = NULL;
1337 }
1338 
1339 /*
1340  * Check the superblock for a given journal, performing initial
1341  * validation of the format.
1342  */
1343 static int journal_check_superblock(journal_t *journal)
1344 {
1345 	journal_superblock_t *sb = journal->j_superblock;
1346 	int num_fc_blks;
1347 	int err = -EINVAL;
1348 
1349 	if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1350 	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1351 		printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1352 		return err;
1353 	}
1354 
1355 	if (be32_to_cpu(sb->s_header.h_blocktype) != JBD2_SUPERBLOCK_V1 &&
1356 	    be32_to_cpu(sb->s_header.h_blocktype) != JBD2_SUPERBLOCK_V2) {
1357 		printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1358 		return err;
1359 	}
1360 
1361 	if (be32_to_cpu(sb->s_maxlen) > journal->j_total_len) {
1362 		printk(KERN_WARNING "JBD2: journal file too short\n");
1363 		return err;
1364 	}
1365 
1366 	if (be32_to_cpu(sb->s_first) == 0 ||
1367 	    be32_to_cpu(sb->s_first) >= journal->j_total_len) {
1368 		printk(KERN_WARNING
1369 			"JBD2: Invalid start block of journal: %u\n",
1370 			be32_to_cpu(sb->s_first));
1371 		return err;
1372 	}
1373 
1374 	/*
1375 	 * If this is a V2 superblock, then we have to check the
1376 	 * features flags on it.
1377 	 */
1378 	if (!jbd2_format_support_feature(journal))
1379 		return 0;
1380 
1381 	if ((sb->s_feature_ro_compat &
1382 			~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1383 	    (sb->s_feature_incompat &
1384 			~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1385 		printk(KERN_WARNING "JBD2: Unrecognised features on journal\n");
1386 		return err;
1387 	}
1388 
1389 	num_fc_blks = jbd2_has_feature_fast_commit(journal) ?
1390 				jbd2_journal_get_num_fc_blks(sb) : 0;
1391 	if (be32_to_cpu(sb->s_maxlen) < JBD2_MIN_JOURNAL_BLOCKS ||
1392 	    be32_to_cpu(sb->s_maxlen) - JBD2_MIN_JOURNAL_BLOCKS < num_fc_blks) {
1393 		printk(KERN_ERR "JBD2: journal file too short %u,%d\n",
1394 		       be32_to_cpu(sb->s_maxlen), num_fc_blks);
1395 		return err;
1396 	}
1397 
1398 	if (jbd2_has_feature_csum2(journal) &&
1399 	    jbd2_has_feature_csum3(journal)) {
1400 		/* Can't have checksum v2 and v3 at the same time! */
1401 		printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1402 		       "at the same time!\n");
1403 		return err;
1404 	}
1405 
1406 	if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1407 	    jbd2_has_feature_checksum(journal)) {
1408 		/* Can't have checksum v1 and v2 on at the same time! */
1409 		printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1410 		       "at the same time!\n");
1411 		return err;
1412 	}
1413 
1414 	/* Load the checksum driver */
1415 	if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1416 		if (sb->s_checksum_type != JBD2_CRC32C_CHKSUM) {
1417 			printk(KERN_ERR "JBD2: Unknown checksum type\n");
1418 			return err;
1419 		}
1420 
1421 		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1422 		if (IS_ERR(journal->j_chksum_driver)) {
1423 			printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1424 			err = PTR_ERR(journal->j_chksum_driver);
1425 			journal->j_chksum_driver = NULL;
1426 			return err;
1427 		}
1428 		/* Check superblock checksum */
1429 		if (sb->s_checksum != jbd2_superblock_csum(journal, sb)) {
1430 			printk(KERN_ERR "JBD2: journal checksum error\n");
1431 			err = -EFSBADCRC;
1432 			return err;
1433 		}
1434 	}
1435 
1436 	return 0;
1437 }
1438 
1439 static int journal_revoke_records_per_block(journal_t *journal)
1440 {
1441 	int record_size;
1442 	int space = journal->j_blocksize - sizeof(jbd2_journal_revoke_header_t);
1443 
1444 	if (jbd2_has_feature_64bit(journal))
1445 		record_size = 8;
1446 	else
1447 		record_size = 4;
1448 
1449 	if (jbd2_journal_has_csum_v2or3(journal))
1450 		space -= sizeof(struct jbd2_journal_block_tail);
1451 	return space / record_size;
1452 }
1453 
1454 /*
1455  * Load the on-disk journal superblock and read the key fields into the
1456  * journal_t.
1457  */
1458 static int journal_load_superblock(journal_t *journal)
1459 {
1460 	int err;
1461 	struct buffer_head *bh;
1462 	journal_superblock_t *sb;
1463 
1464 	bh = getblk_unmovable(journal->j_dev, journal->j_blk_offset,
1465 			      journal->j_blocksize);
1466 	if (bh)
1467 		err = bh_read(bh, 0);
1468 	if (!bh || err < 0) {
1469 		pr_err("%s: Cannot read journal superblock\n", __func__);
1470 		brelse(bh);
1471 		return -EIO;
1472 	}
1473 
1474 	journal->j_sb_buffer = bh;
1475 	sb = (journal_superblock_t *)bh->b_data;
1476 	journal->j_superblock = sb;
1477 	err = journal_check_superblock(journal);
1478 	if (err) {
1479 		journal_fail_superblock(journal);
1480 		return err;
1481 	}
1482 
1483 	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1484 	journal->j_tail = be32_to_cpu(sb->s_start);
1485 	journal->j_first = be32_to_cpu(sb->s_first);
1486 	journal->j_errno = be32_to_cpu(sb->s_errno);
1487 	journal->j_last = be32_to_cpu(sb->s_maxlen);
1488 
1489 	if (be32_to_cpu(sb->s_maxlen) < journal->j_total_len)
1490 		journal->j_total_len = be32_to_cpu(sb->s_maxlen);
1491 	/* Precompute checksum seed for all metadata */
1492 	if (jbd2_journal_has_csum_v2or3(journal))
1493 		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1494 						   sizeof(sb->s_uuid));
1495 	journal->j_revoke_records_per_block =
1496 				journal_revoke_records_per_block(journal);
1497 
1498 	if (jbd2_has_feature_fast_commit(journal)) {
1499 		journal->j_fc_last = be32_to_cpu(sb->s_maxlen);
1500 		journal->j_last = journal->j_fc_last -
1501 				  jbd2_journal_get_num_fc_blks(sb);
1502 		journal->j_fc_first = journal->j_last + 1;
1503 		journal->j_fc_off = 0;
1504 	}
1505 
1506 	return 0;
1507 }
1508 
1509 
1510 /*
1511  * Management for journal control blocks: functions to create and
1512  * destroy journal_t structures, and to initialise and read existing
1513  * journal blocks from disk.  */
1514 
1515 /* First: create and setup a journal_t object in memory.  We initialise
1516  * very few fields yet: that has to wait until we have created the
1517  * journal structures from from scratch, or loaded them from disk. */
1518 
1519 static journal_t *journal_init_common(struct block_device *bdev,
1520 			struct block_device *fs_dev,
1521 			unsigned long long start, int len, int blocksize)
1522 {
1523 	static struct lock_class_key jbd2_trans_commit_key;
1524 	journal_t *journal;
1525 	int err;
1526 	int n;
1527 
1528 	journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1529 	if (!journal)
1530 		return ERR_PTR(-ENOMEM);
1531 
1532 	journal->j_blocksize = blocksize;
1533 	journal->j_dev = bdev;
1534 	journal->j_fs_dev = fs_dev;
1535 	journal->j_blk_offset = start;
1536 	journal->j_total_len = len;
1537 
1538 	err = journal_load_superblock(journal);
1539 	if (err)
1540 		goto err_cleanup;
1541 
1542 	init_waitqueue_head(&journal->j_wait_transaction_locked);
1543 	init_waitqueue_head(&journal->j_wait_done_commit);
1544 	init_waitqueue_head(&journal->j_wait_commit);
1545 	init_waitqueue_head(&journal->j_wait_updates);
1546 	init_waitqueue_head(&journal->j_wait_reserved);
1547 	init_waitqueue_head(&journal->j_fc_wait);
1548 	mutex_init(&journal->j_abort_mutex);
1549 	mutex_init(&journal->j_barrier);
1550 	mutex_init(&journal->j_checkpoint_mutex);
1551 	spin_lock_init(&journal->j_revoke_lock);
1552 	spin_lock_init(&journal->j_list_lock);
1553 	spin_lock_init(&journal->j_history_lock);
1554 	rwlock_init(&journal->j_state_lock);
1555 
1556 	journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1557 	journal->j_min_batch_time = 0;
1558 	journal->j_max_batch_time = 15000; /* 15ms */
1559 	atomic_set(&journal->j_reserved_credits, 0);
1560 	lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1561 			 &jbd2_trans_commit_key, 0);
1562 
1563 	/* The journal is marked for error until we succeed with recovery! */
1564 	journal->j_flags = JBD2_ABORT;
1565 
1566 	/* Set up a default-sized revoke table for the new mount. */
1567 	err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1568 	if (err)
1569 		goto err_cleanup;
1570 
1571 	/*
1572 	 * journal descriptor can store up to n blocks, we need enough
1573 	 * buffers to write out full descriptor block.
1574 	 */
1575 	err = -ENOMEM;
1576 	n = journal->j_blocksize / jbd2_min_tag_size();
1577 	journal->j_wbufsize = n;
1578 	journal->j_fc_wbuf = NULL;
1579 	journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1580 					GFP_KERNEL);
1581 	if (!journal->j_wbuf)
1582 		goto err_cleanup;
1583 
1584 	err = percpu_counter_init(&journal->j_checkpoint_jh_count, 0,
1585 				  GFP_KERNEL);
1586 	if (err)
1587 		goto err_cleanup;
1588 
1589 	journal->j_shrink_transaction = NULL;
1590 
1591 	journal->j_shrinker = shrinker_alloc(0, "jbd2-journal:(%u:%u)",
1592 					     MAJOR(bdev->bd_dev),
1593 					     MINOR(bdev->bd_dev));
1594 	if (!journal->j_shrinker) {
1595 		err = -ENOMEM;
1596 		goto err_cleanup;
1597 	}
1598 
1599 	journal->j_shrinker->scan_objects = jbd2_journal_shrink_scan;
1600 	journal->j_shrinker->count_objects = jbd2_journal_shrink_count;
1601 	journal->j_shrinker->batch = journal->j_max_transaction_buffers;
1602 	journal->j_shrinker->private_data = journal;
1603 
1604 	shrinker_register(journal->j_shrinker);
1605 
1606 	return journal;
1607 
1608 err_cleanup:
1609 	percpu_counter_destroy(&journal->j_checkpoint_jh_count);
1610 	if (journal->j_chksum_driver)
1611 		crypto_free_shash(journal->j_chksum_driver);
1612 	kfree(journal->j_wbuf);
1613 	jbd2_journal_destroy_revoke(journal);
1614 	journal_fail_superblock(journal);
1615 	kfree(journal);
1616 	return ERR_PTR(err);
1617 }
1618 
1619 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1620  *
1621  * Create a journal structure assigned some fixed set of disk blocks to
1622  * the journal.  We don't actually touch those disk blocks yet, but we
1623  * need to set up all of the mapping information to tell the journaling
1624  * system where the journal blocks are.
1625  *
1626  */
1627 
1628 /**
1629  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1630  *  @bdev: Block device on which to create the journal
1631  *  @fs_dev: Device which hold journalled filesystem for this journal.
1632  *  @start: Block nr Start of journal.
1633  *  @len:  Length of the journal in blocks.
1634  *  @blocksize: blocksize of journalling device
1635  *
1636  *  Returns: a newly created journal_t *
1637  *
1638  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1639  *  range of blocks on an arbitrary block device.
1640  *
1641  */
1642 journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1643 			struct block_device *fs_dev,
1644 			unsigned long long start, int len, int blocksize)
1645 {
1646 	journal_t *journal;
1647 
1648 	journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1649 	if (IS_ERR(journal))
1650 		return ERR_CAST(journal);
1651 
1652 	snprintf(journal->j_devname, sizeof(journal->j_devname),
1653 		 "%pg", journal->j_dev);
1654 	strreplace(journal->j_devname, '/', '!');
1655 	jbd2_stats_proc_init(journal);
1656 
1657 	return journal;
1658 }
1659 
1660 /**
1661  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1662  *  @inode: An inode to create the journal in
1663  *
1664  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1665  * the journal.  The inode must exist already, must support bmap() and
1666  * must have all data blocks preallocated.
1667  */
1668 journal_t *jbd2_journal_init_inode(struct inode *inode)
1669 {
1670 	journal_t *journal;
1671 	sector_t blocknr;
1672 	int err = 0;
1673 
1674 	blocknr = 0;
1675 	err = bmap(inode, &blocknr);
1676 	if (err || !blocknr) {
1677 		pr_err("%s: Cannot locate journal superblock\n", __func__);
1678 		return err ? ERR_PTR(err) : ERR_PTR(-EINVAL);
1679 	}
1680 
1681 	jbd2_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1682 		  inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1683 		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1684 
1685 	journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1686 			blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1687 			inode->i_sb->s_blocksize);
1688 	if (IS_ERR(journal))
1689 		return ERR_CAST(journal);
1690 
1691 	journal->j_inode = inode;
1692 	snprintf(journal->j_devname, sizeof(journal->j_devname),
1693 		 "%pg-%lu", journal->j_dev, journal->j_inode->i_ino);
1694 	strreplace(journal->j_devname, '/', '!');
1695 	jbd2_stats_proc_init(journal);
1696 
1697 	return journal;
1698 }
1699 
1700 /*
1701  * Given a journal_t structure, initialise the various fields for
1702  * startup of a new journaling session.  We use this both when creating
1703  * a journal, and after recovering an old journal to reset it for
1704  * subsequent use.
1705  */
1706 
1707 static int journal_reset(journal_t *journal)
1708 {
1709 	journal_superblock_t *sb = journal->j_superblock;
1710 	unsigned long long first, last;
1711 
1712 	first = be32_to_cpu(sb->s_first);
1713 	last = be32_to_cpu(sb->s_maxlen);
1714 	if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1715 		printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1716 		       first, last);
1717 		journal_fail_superblock(journal);
1718 		return -EINVAL;
1719 	}
1720 
1721 	journal->j_first = first;
1722 	journal->j_last = last;
1723 
1724 	if (journal->j_head != 0 && journal->j_flags & JBD2_CYCLE_RECORD) {
1725 		/*
1726 		 * Disable the cycled recording mode if the journal head block
1727 		 * number is not correct.
1728 		 */
1729 		if (journal->j_head < first || journal->j_head >= last) {
1730 			printk(KERN_WARNING "JBD2: Incorrect Journal head block %lu, "
1731 			       "disable journal_cycle_record\n",
1732 			       journal->j_head);
1733 			journal->j_head = journal->j_first;
1734 		}
1735 	} else {
1736 		journal->j_head = journal->j_first;
1737 	}
1738 	journal->j_tail = journal->j_head;
1739 	journal->j_free = journal->j_last - journal->j_first;
1740 
1741 	journal->j_tail_sequence = journal->j_transaction_sequence;
1742 	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1743 	journal->j_commit_request = journal->j_commit_sequence;
1744 
1745 	journal->j_max_transaction_buffers = jbd2_journal_get_max_txn_bufs(journal);
1746 
1747 	/*
1748 	 * Now that journal recovery is done, turn fast commits off here. This
1749 	 * way, if fast commit was enabled before the crash but if now FS has
1750 	 * disabled it, we don't enable fast commits.
1751 	 */
1752 	jbd2_clear_feature_fast_commit(journal);
1753 
1754 	/*
1755 	 * As a special case, if the on-disk copy is already marked as needing
1756 	 * no recovery (s_start == 0), then we can safely defer the superblock
1757 	 * update until the next commit by setting JBD2_FLUSHED.  This avoids
1758 	 * attempting a write to a potential-readonly device.
1759 	 */
1760 	if (sb->s_start == 0) {
1761 		jbd2_debug(1, "JBD2: Skipping superblock update on recovered sb "
1762 			"(start %ld, seq %u, errno %d)\n",
1763 			journal->j_tail, journal->j_tail_sequence,
1764 			journal->j_errno);
1765 		journal->j_flags |= JBD2_FLUSHED;
1766 	} else {
1767 		/* Lock here to make assertions happy... */
1768 		mutex_lock_io(&journal->j_checkpoint_mutex);
1769 		/*
1770 		 * Update log tail information. We use REQ_FUA since new
1771 		 * transaction will start reusing journal space and so we
1772 		 * must make sure information about current log tail is on
1773 		 * disk before that.
1774 		 */
1775 		jbd2_journal_update_sb_log_tail(journal,
1776 						journal->j_tail_sequence,
1777 						journal->j_tail, REQ_FUA);
1778 		mutex_unlock(&journal->j_checkpoint_mutex);
1779 	}
1780 	return jbd2_journal_start_thread(journal);
1781 }
1782 
1783 /*
1784  * This function expects that the caller will have locked the journal
1785  * buffer head, and will return with it unlocked
1786  */
1787 static int jbd2_write_superblock(journal_t *journal, blk_opf_t write_flags)
1788 {
1789 	struct buffer_head *bh = journal->j_sb_buffer;
1790 	journal_superblock_t *sb = journal->j_superblock;
1791 	int ret = 0;
1792 
1793 	/* Buffer got discarded which means block device got invalidated */
1794 	if (!buffer_mapped(bh)) {
1795 		unlock_buffer(bh);
1796 		return -EIO;
1797 	}
1798 
1799 	/*
1800 	 * Always set high priority flags to exempt from block layer's
1801 	 * QOS policies, e.g. writeback throttle.
1802 	 */
1803 	write_flags |= JBD2_JOURNAL_REQ_FLAGS;
1804 	if (!(journal->j_flags & JBD2_BARRIER))
1805 		write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1806 
1807 	trace_jbd2_write_superblock(journal, write_flags);
1808 
1809 	if (buffer_write_io_error(bh)) {
1810 		/*
1811 		 * Oh, dear.  A previous attempt to write the journal
1812 		 * superblock failed.  This could happen because the
1813 		 * USB device was yanked out.  Or it could happen to
1814 		 * be a transient write error and maybe the block will
1815 		 * be remapped.  Nothing we can do but to retry the
1816 		 * write and hope for the best.
1817 		 */
1818 		printk(KERN_ERR "JBD2: previous I/O error detected "
1819 		       "for journal superblock update for %s.\n",
1820 		       journal->j_devname);
1821 		clear_buffer_write_io_error(bh);
1822 		set_buffer_uptodate(bh);
1823 	}
1824 	if (jbd2_journal_has_csum_v2or3(journal))
1825 		sb->s_checksum = jbd2_superblock_csum(journal, sb);
1826 	get_bh(bh);
1827 	bh->b_end_io = end_buffer_write_sync;
1828 	submit_bh(REQ_OP_WRITE | write_flags, bh);
1829 	wait_on_buffer(bh);
1830 	if (buffer_write_io_error(bh)) {
1831 		clear_buffer_write_io_error(bh);
1832 		set_buffer_uptodate(bh);
1833 		ret = -EIO;
1834 	}
1835 	if (ret) {
1836 		printk(KERN_ERR "JBD2: I/O error when updating journal superblock for %s.\n",
1837 				journal->j_devname);
1838 		if (!is_journal_aborted(journal))
1839 			jbd2_journal_abort(journal, ret);
1840 	}
1841 
1842 	return ret;
1843 }
1844 
1845 /**
1846  * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1847  * @journal: The journal to update.
1848  * @tail_tid: TID of the new transaction at the tail of the log
1849  * @tail_block: The first block of the transaction at the tail of the log
1850  * @write_flags: Flags for the journal sb write operation
1851  *
1852  * Update a journal's superblock information about log tail and write it to
1853  * disk, waiting for the IO to complete.
1854  */
1855 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1856 				    unsigned long tail_block,
1857 				    blk_opf_t write_flags)
1858 {
1859 	journal_superblock_t *sb = journal->j_superblock;
1860 	int ret;
1861 
1862 	if (is_journal_aborted(journal))
1863 		return -EIO;
1864 	if (test_bit(JBD2_CHECKPOINT_IO_ERROR, &journal->j_atomic_flags)) {
1865 		jbd2_journal_abort(journal, -EIO);
1866 		return -EIO;
1867 	}
1868 
1869 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1870 	jbd2_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1871 		  tail_block, tail_tid);
1872 
1873 	lock_buffer(journal->j_sb_buffer);
1874 	sb->s_sequence = cpu_to_be32(tail_tid);
1875 	sb->s_start    = cpu_to_be32(tail_block);
1876 
1877 	ret = jbd2_write_superblock(journal, write_flags);
1878 	if (ret)
1879 		goto out;
1880 
1881 	/* Log is no longer empty */
1882 	write_lock(&journal->j_state_lock);
1883 	WARN_ON(!sb->s_sequence);
1884 	journal->j_flags &= ~JBD2_FLUSHED;
1885 	write_unlock(&journal->j_state_lock);
1886 
1887 out:
1888 	return ret;
1889 }
1890 
1891 /**
1892  * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1893  * @journal: The journal to update.
1894  * @write_flags: Flags for the journal sb write operation
1895  *
1896  * Update a journal's dynamic superblock fields to show that journal is empty.
1897  * Write updated superblock to disk waiting for IO to complete.
1898  */
1899 static void jbd2_mark_journal_empty(journal_t *journal, blk_opf_t write_flags)
1900 {
1901 	journal_superblock_t *sb = journal->j_superblock;
1902 	bool had_fast_commit = false;
1903 
1904 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1905 	lock_buffer(journal->j_sb_buffer);
1906 	if (sb->s_start == 0) {		/* Is it already empty? */
1907 		unlock_buffer(journal->j_sb_buffer);
1908 		return;
1909 	}
1910 
1911 	jbd2_debug(1, "JBD2: Marking journal as empty (seq %u)\n",
1912 		  journal->j_tail_sequence);
1913 
1914 	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1915 	sb->s_start    = cpu_to_be32(0);
1916 	sb->s_head     = cpu_to_be32(journal->j_head);
1917 	if (jbd2_has_feature_fast_commit(journal)) {
1918 		/*
1919 		 * When journal is clean, no need to commit fast commit flag and
1920 		 * make file system incompatible with older kernels.
1921 		 */
1922 		jbd2_clear_feature_fast_commit(journal);
1923 		had_fast_commit = true;
1924 	}
1925 
1926 	jbd2_write_superblock(journal, write_flags);
1927 
1928 	if (had_fast_commit)
1929 		jbd2_set_feature_fast_commit(journal);
1930 
1931 	/* Log is no longer empty */
1932 	write_lock(&journal->j_state_lock);
1933 	journal->j_flags |= JBD2_FLUSHED;
1934 	write_unlock(&journal->j_state_lock);
1935 }
1936 
1937 /**
1938  * __jbd2_journal_erase() - Discard or zeroout journal blocks (excluding superblock)
1939  * @journal: The journal to erase.
1940  * @flags: A discard/zeroout request is sent for each physically contigous
1941  *	region of the journal. Either JBD2_JOURNAL_FLUSH_DISCARD or
1942  *	JBD2_JOURNAL_FLUSH_ZEROOUT must be set to determine which operation
1943  *	to perform.
1944  *
1945  * Note: JBD2_JOURNAL_FLUSH_ZEROOUT attempts to use hardware offload. Zeroes
1946  * will be explicitly written if no hardware offload is available, see
1947  * blkdev_issue_zeroout for more details.
1948  */
1949 static int __jbd2_journal_erase(journal_t *journal, unsigned int flags)
1950 {
1951 	int err = 0;
1952 	unsigned long block, log_offset; /* logical */
1953 	unsigned long long phys_block, block_start, block_stop; /* physical */
1954 	loff_t byte_start, byte_stop, byte_count;
1955 
1956 	/* flags must be set to either discard or zeroout */
1957 	if ((flags & ~JBD2_JOURNAL_FLUSH_VALID) || !flags ||
1958 			((flags & JBD2_JOURNAL_FLUSH_DISCARD) &&
1959 			(flags & JBD2_JOURNAL_FLUSH_ZEROOUT)))
1960 		return -EINVAL;
1961 
1962 	if ((flags & JBD2_JOURNAL_FLUSH_DISCARD) &&
1963 	    !bdev_max_discard_sectors(journal->j_dev))
1964 		return -EOPNOTSUPP;
1965 
1966 	/*
1967 	 * lookup block mapping and issue discard/zeroout for each
1968 	 * contiguous region
1969 	 */
1970 	log_offset = be32_to_cpu(journal->j_superblock->s_first);
1971 	block_start =  ~0ULL;
1972 	for (block = log_offset; block < journal->j_total_len; block++) {
1973 		err = jbd2_journal_bmap(journal, block, &phys_block);
1974 		if (err) {
1975 			pr_err("JBD2: bad block at offset %lu", block);
1976 			return err;
1977 		}
1978 
1979 		if (block_start == ~0ULL) {
1980 			block_start = phys_block;
1981 			block_stop = block_start - 1;
1982 		}
1983 
1984 		/*
1985 		 * last block not contiguous with current block,
1986 		 * process last contiguous region and return to this block on
1987 		 * next loop
1988 		 */
1989 		if (phys_block != block_stop + 1) {
1990 			block--;
1991 		} else {
1992 			block_stop++;
1993 			/*
1994 			 * if this isn't the last block of journal,
1995 			 * no need to process now because next block may also
1996 			 * be part of this contiguous region
1997 			 */
1998 			if (block != journal->j_total_len - 1)
1999 				continue;
2000 		}
2001 
2002 		/*
2003 		 * end of contiguous region or this is last block of journal,
2004 		 * take care of the region
2005 		 */
2006 		byte_start = block_start * journal->j_blocksize;
2007 		byte_stop = block_stop * journal->j_blocksize;
2008 		byte_count = (block_stop - block_start + 1) *
2009 				journal->j_blocksize;
2010 
2011 		truncate_inode_pages_range(journal->j_dev->bd_inode->i_mapping,
2012 				byte_start, byte_stop);
2013 
2014 		if (flags & JBD2_JOURNAL_FLUSH_DISCARD) {
2015 			err = blkdev_issue_discard(journal->j_dev,
2016 					byte_start >> SECTOR_SHIFT,
2017 					byte_count >> SECTOR_SHIFT,
2018 					GFP_NOFS);
2019 		} else if (flags & JBD2_JOURNAL_FLUSH_ZEROOUT) {
2020 			err = blkdev_issue_zeroout(journal->j_dev,
2021 					byte_start >> SECTOR_SHIFT,
2022 					byte_count >> SECTOR_SHIFT,
2023 					GFP_NOFS, 0);
2024 		}
2025 
2026 		if (unlikely(err != 0)) {
2027 			pr_err("JBD2: (error %d) unable to wipe journal at physical blocks %llu - %llu",
2028 					err, block_start, block_stop);
2029 			return err;
2030 		}
2031 
2032 		/* reset start and stop after processing a region */
2033 		block_start = ~0ULL;
2034 	}
2035 
2036 	return blkdev_issue_flush(journal->j_dev);
2037 }
2038 
2039 /**
2040  * jbd2_journal_update_sb_errno() - Update error in the journal.
2041  * @journal: The journal to update.
2042  *
2043  * Update a journal's errno.  Write updated superblock to disk waiting for IO
2044  * to complete.
2045  */
2046 void jbd2_journal_update_sb_errno(journal_t *journal)
2047 {
2048 	journal_superblock_t *sb = journal->j_superblock;
2049 	int errcode;
2050 
2051 	lock_buffer(journal->j_sb_buffer);
2052 	errcode = journal->j_errno;
2053 	if (errcode == -ESHUTDOWN)
2054 		errcode = 0;
2055 	jbd2_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode);
2056 	sb->s_errno    = cpu_to_be32(errcode);
2057 
2058 	jbd2_write_superblock(journal, REQ_FUA);
2059 }
2060 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
2061 
2062 /**
2063  * jbd2_journal_load() - Read journal from disk.
2064  * @journal: Journal to act on.
2065  *
2066  * Given a journal_t structure which tells us which disk blocks contain
2067  * a journal, read the journal from disk to initialise the in-memory
2068  * structures.
2069  */
2070 int jbd2_journal_load(journal_t *journal)
2071 {
2072 	int err;
2073 	journal_superblock_t *sb = journal->j_superblock;
2074 
2075 	/*
2076 	 * Create a slab for this blocksize
2077 	 */
2078 	err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
2079 	if (err)
2080 		return err;
2081 
2082 	/* Let the recovery code check whether it needs to recover any
2083 	 * data from the journal. */
2084 	err = jbd2_journal_recover(journal);
2085 	if (err) {
2086 		pr_warn("JBD2: journal recovery failed\n");
2087 		return err;
2088 	}
2089 
2090 	if (journal->j_failed_commit) {
2091 		printk(KERN_ERR "JBD2: journal transaction %u on %s "
2092 		       "is corrupt.\n", journal->j_failed_commit,
2093 		       journal->j_devname);
2094 		return -EFSCORRUPTED;
2095 	}
2096 	/*
2097 	 * clear JBD2_ABORT flag initialized in journal_init_common
2098 	 * here to update log tail information with the newest seq.
2099 	 */
2100 	journal->j_flags &= ~JBD2_ABORT;
2101 
2102 	/* OK, we've finished with the dynamic journal bits:
2103 	 * reinitialise the dynamic contents of the superblock in memory
2104 	 * and reset them on disk. */
2105 	err = journal_reset(journal);
2106 	if (err) {
2107 		pr_warn("JBD2: journal reset failed\n");
2108 		return err;
2109 	}
2110 
2111 	journal->j_flags |= JBD2_LOADED;
2112 	return 0;
2113 }
2114 
2115 /**
2116  * jbd2_journal_destroy() - Release a journal_t structure.
2117  * @journal: Journal to act on.
2118  *
2119  * Release a journal_t structure once it is no longer in use by the
2120  * journaled object.
2121  * Return <0 if we couldn't clean up the journal.
2122  */
2123 int jbd2_journal_destroy(journal_t *journal)
2124 {
2125 	int err = 0;
2126 
2127 	/* Wait for the commit thread to wake up and die. */
2128 	journal_kill_thread(journal);
2129 
2130 	/* Force a final log commit */
2131 	if (journal->j_running_transaction)
2132 		jbd2_journal_commit_transaction(journal);
2133 
2134 	/* Force any old transactions to disk */
2135 
2136 	/* Totally anal locking here... */
2137 	spin_lock(&journal->j_list_lock);
2138 	while (journal->j_checkpoint_transactions != NULL) {
2139 		spin_unlock(&journal->j_list_lock);
2140 		mutex_lock_io(&journal->j_checkpoint_mutex);
2141 		err = jbd2_log_do_checkpoint(journal);
2142 		mutex_unlock(&journal->j_checkpoint_mutex);
2143 		/*
2144 		 * If checkpointing failed, just free the buffers to avoid
2145 		 * looping forever
2146 		 */
2147 		if (err) {
2148 			jbd2_journal_destroy_checkpoint(journal);
2149 			spin_lock(&journal->j_list_lock);
2150 			break;
2151 		}
2152 		spin_lock(&journal->j_list_lock);
2153 	}
2154 
2155 	J_ASSERT(journal->j_running_transaction == NULL);
2156 	J_ASSERT(journal->j_committing_transaction == NULL);
2157 	J_ASSERT(journal->j_checkpoint_transactions == NULL);
2158 	spin_unlock(&journal->j_list_lock);
2159 
2160 	/*
2161 	 * OK, all checkpoint transactions have been checked, now check the
2162 	 * write out io error flag and abort the journal if some buffer failed
2163 	 * to write back to the original location, otherwise the filesystem
2164 	 * may become inconsistent.
2165 	 */
2166 	if (!is_journal_aborted(journal) &&
2167 	    test_bit(JBD2_CHECKPOINT_IO_ERROR, &journal->j_atomic_flags))
2168 		jbd2_journal_abort(journal, -EIO);
2169 
2170 	if (journal->j_sb_buffer) {
2171 		if (!is_journal_aborted(journal)) {
2172 			mutex_lock_io(&journal->j_checkpoint_mutex);
2173 
2174 			write_lock(&journal->j_state_lock);
2175 			journal->j_tail_sequence =
2176 				++journal->j_transaction_sequence;
2177 			write_unlock(&journal->j_state_lock);
2178 
2179 			jbd2_mark_journal_empty(journal, REQ_PREFLUSH | REQ_FUA);
2180 			mutex_unlock(&journal->j_checkpoint_mutex);
2181 		} else
2182 			err = -EIO;
2183 		brelse(journal->j_sb_buffer);
2184 	}
2185 
2186 	if (journal->j_shrinker) {
2187 		percpu_counter_destroy(&journal->j_checkpoint_jh_count);
2188 		shrinker_free(journal->j_shrinker);
2189 	}
2190 	if (journal->j_proc_entry)
2191 		jbd2_stats_proc_exit(journal);
2192 	iput(journal->j_inode);
2193 	if (journal->j_revoke)
2194 		jbd2_journal_destroy_revoke(journal);
2195 	if (journal->j_chksum_driver)
2196 		crypto_free_shash(journal->j_chksum_driver);
2197 	kfree(journal->j_fc_wbuf);
2198 	kfree(journal->j_wbuf);
2199 	kfree(journal);
2200 
2201 	return err;
2202 }
2203 
2204 
2205 /**
2206  * jbd2_journal_check_used_features() - Check if features specified are used.
2207  * @journal: Journal to check.
2208  * @compat: bitmask of compatible features
2209  * @ro: bitmask of features that force read-only mount
2210  * @incompat: bitmask of incompatible features
2211  *
2212  * Check whether the journal uses all of a given set of
2213  * features.  Return true (non-zero) if it does.
2214  **/
2215 
2216 int jbd2_journal_check_used_features(journal_t *journal, unsigned long compat,
2217 				 unsigned long ro, unsigned long incompat)
2218 {
2219 	journal_superblock_t *sb;
2220 
2221 	if (!compat && !ro && !incompat)
2222 		return 1;
2223 	if (!jbd2_format_support_feature(journal))
2224 		return 0;
2225 
2226 	sb = journal->j_superblock;
2227 
2228 	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
2229 	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
2230 	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
2231 		return 1;
2232 
2233 	return 0;
2234 }
2235 
2236 /**
2237  * jbd2_journal_check_available_features() - Check feature set in journalling layer
2238  * @journal: Journal to check.
2239  * @compat: bitmask of compatible features
2240  * @ro: bitmask of features that force read-only mount
2241  * @incompat: bitmask of incompatible features
2242  *
2243  * Check whether the journaling code supports the use of
2244  * all of a given set of features on this journal.  Return true
2245  * (non-zero) if it can. */
2246 
2247 int jbd2_journal_check_available_features(journal_t *journal, unsigned long compat,
2248 				      unsigned long ro, unsigned long incompat)
2249 {
2250 	if (!compat && !ro && !incompat)
2251 		return 1;
2252 
2253 	if (!jbd2_format_support_feature(journal))
2254 		return 0;
2255 
2256 	if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
2257 	    (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
2258 	    (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
2259 		return 1;
2260 
2261 	return 0;
2262 }
2263 
2264 static int
2265 jbd2_journal_initialize_fast_commit(journal_t *journal)
2266 {
2267 	journal_superblock_t *sb = journal->j_superblock;
2268 	unsigned long long num_fc_blks;
2269 
2270 	num_fc_blks = jbd2_journal_get_num_fc_blks(sb);
2271 	if (journal->j_last - num_fc_blks < JBD2_MIN_JOURNAL_BLOCKS)
2272 		return -ENOSPC;
2273 
2274 	/* Are we called twice? */
2275 	WARN_ON(journal->j_fc_wbuf != NULL);
2276 	journal->j_fc_wbuf = kmalloc_array(num_fc_blks,
2277 				sizeof(struct buffer_head *), GFP_KERNEL);
2278 	if (!journal->j_fc_wbuf)
2279 		return -ENOMEM;
2280 
2281 	journal->j_fc_wbufsize = num_fc_blks;
2282 	journal->j_fc_last = journal->j_last;
2283 	journal->j_last = journal->j_fc_last - num_fc_blks;
2284 	journal->j_fc_first = journal->j_last + 1;
2285 	journal->j_fc_off = 0;
2286 	journal->j_free = journal->j_last - journal->j_first;
2287 	journal->j_max_transaction_buffers =
2288 		jbd2_journal_get_max_txn_bufs(journal);
2289 
2290 	return 0;
2291 }
2292 
2293 /**
2294  * jbd2_journal_set_features() - Mark a given journal feature in the superblock
2295  * @journal: Journal to act on.
2296  * @compat: bitmask of compatible features
2297  * @ro: bitmask of features that force read-only mount
2298  * @incompat: bitmask of incompatible features
2299  *
2300  * Mark a given journal feature as present on the
2301  * superblock.  Returns true if the requested features could be set.
2302  *
2303  */
2304 
2305 int jbd2_journal_set_features(journal_t *journal, unsigned long compat,
2306 			  unsigned long ro, unsigned long incompat)
2307 {
2308 #define INCOMPAT_FEATURE_ON(f) \
2309 		((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
2310 #define COMPAT_FEATURE_ON(f) \
2311 		((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
2312 	journal_superblock_t *sb;
2313 
2314 	if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
2315 		return 1;
2316 
2317 	if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
2318 		return 0;
2319 
2320 	/* If enabling v2 checksums, turn on v3 instead */
2321 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
2322 		incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
2323 		incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
2324 	}
2325 
2326 	/* Asking for checksumming v3 and v1?  Only give them v3. */
2327 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
2328 	    compat & JBD2_FEATURE_COMPAT_CHECKSUM)
2329 		compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
2330 
2331 	jbd2_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
2332 		  compat, ro, incompat);
2333 
2334 	sb = journal->j_superblock;
2335 
2336 	if (incompat & JBD2_FEATURE_INCOMPAT_FAST_COMMIT) {
2337 		if (jbd2_journal_initialize_fast_commit(journal)) {
2338 			pr_err("JBD2: Cannot enable fast commits.\n");
2339 			return 0;
2340 		}
2341 	}
2342 
2343 	/* Load the checksum driver if necessary */
2344 	if ((journal->j_chksum_driver == NULL) &&
2345 	    INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
2346 		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
2347 		if (IS_ERR(journal->j_chksum_driver)) {
2348 			printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
2349 			journal->j_chksum_driver = NULL;
2350 			return 0;
2351 		}
2352 		/* Precompute checksum seed for all metadata */
2353 		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
2354 						   sizeof(sb->s_uuid));
2355 	}
2356 
2357 	lock_buffer(journal->j_sb_buffer);
2358 
2359 	/* If enabling v3 checksums, update superblock */
2360 	if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
2361 		sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
2362 		sb->s_feature_compat &=
2363 			~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
2364 	}
2365 
2366 	/* If enabling v1 checksums, downgrade superblock */
2367 	if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
2368 		sb->s_feature_incompat &=
2369 			~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
2370 				     JBD2_FEATURE_INCOMPAT_CSUM_V3);
2371 
2372 	sb->s_feature_compat    |= cpu_to_be32(compat);
2373 	sb->s_feature_ro_compat |= cpu_to_be32(ro);
2374 	sb->s_feature_incompat  |= cpu_to_be32(incompat);
2375 	unlock_buffer(journal->j_sb_buffer);
2376 	journal->j_revoke_records_per_block =
2377 				journal_revoke_records_per_block(journal);
2378 
2379 	return 1;
2380 #undef COMPAT_FEATURE_ON
2381 #undef INCOMPAT_FEATURE_ON
2382 }
2383 
2384 /*
2385  * jbd2_journal_clear_features() - Clear a given journal feature in the
2386  * 				    superblock
2387  * @journal: Journal to act on.
2388  * @compat: bitmask of compatible features
2389  * @ro: bitmask of features that force read-only mount
2390  * @incompat: bitmask of incompatible features
2391  *
2392  * Clear a given journal feature as present on the
2393  * superblock.
2394  */
2395 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
2396 				unsigned long ro, unsigned long incompat)
2397 {
2398 	journal_superblock_t *sb;
2399 
2400 	jbd2_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
2401 		  compat, ro, incompat);
2402 
2403 	sb = journal->j_superblock;
2404 
2405 	sb->s_feature_compat    &= ~cpu_to_be32(compat);
2406 	sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
2407 	sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
2408 	journal->j_revoke_records_per_block =
2409 				journal_revoke_records_per_block(journal);
2410 }
2411 EXPORT_SYMBOL(jbd2_journal_clear_features);
2412 
2413 /**
2414  * jbd2_journal_flush() - Flush journal
2415  * @journal: Journal to act on.
2416  * @flags: optional operation on the journal blocks after the flush (see below)
2417  *
2418  * Flush all data for a given journal to disk and empty the journal.
2419  * Filesystems can use this when remounting readonly to ensure that
2420  * recovery does not need to happen on remount. Optionally, a discard or zeroout
2421  * can be issued on the journal blocks after flushing.
2422  *
2423  * flags:
2424  *	JBD2_JOURNAL_FLUSH_DISCARD: issues discards for the journal blocks
2425  *	JBD2_JOURNAL_FLUSH_ZEROOUT: issues zeroouts for the journal blocks
2426  */
2427 int jbd2_journal_flush(journal_t *journal, unsigned int flags)
2428 {
2429 	int err = 0;
2430 	transaction_t *transaction = NULL;
2431 
2432 	write_lock(&journal->j_state_lock);
2433 
2434 	/* Force everything buffered to the log... */
2435 	if (journal->j_running_transaction) {
2436 		transaction = journal->j_running_transaction;
2437 		__jbd2_log_start_commit(journal, transaction->t_tid);
2438 	} else if (journal->j_committing_transaction)
2439 		transaction = journal->j_committing_transaction;
2440 
2441 	/* Wait for the log commit to complete... */
2442 	if (transaction) {
2443 		tid_t tid = transaction->t_tid;
2444 
2445 		write_unlock(&journal->j_state_lock);
2446 		jbd2_log_wait_commit(journal, tid);
2447 	} else {
2448 		write_unlock(&journal->j_state_lock);
2449 	}
2450 
2451 	/* ...and flush everything in the log out to disk. */
2452 	spin_lock(&journal->j_list_lock);
2453 	while (!err && journal->j_checkpoint_transactions != NULL) {
2454 		spin_unlock(&journal->j_list_lock);
2455 		mutex_lock_io(&journal->j_checkpoint_mutex);
2456 		err = jbd2_log_do_checkpoint(journal);
2457 		mutex_unlock(&journal->j_checkpoint_mutex);
2458 		spin_lock(&journal->j_list_lock);
2459 	}
2460 	spin_unlock(&journal->j_list_lock);
2461 
2462 	if (is_journal_aborted(journal))
2463 		return -EIO;
2464 
2465 	mutex_lock_io(&journal->j_checkpoint_mutex);
2466 	if (!err) {
2467 		err = jbd2_cleanup_journal_tail(journal);
2468 		if (err < 0) {
2469 			mutex_unlock(&journal->j_checkpoint_mutex);
2470 			goto out;
2471 		}
2472 		err = 0;
2473 	}
2474 
2475 	/* Finally, mark the journal as really needing no recovery.
2476 	 * This sets s_start==0 in the underlying superblock, which is
2477 	 * the magic code for a fully-recovered superblock.  Any future
2478 	 * commits of data to the journal will restore the current
2479 	 * s_start value. */
2480 	jbd2_mark_journal_empty(journal, REQ_FUA);
2481 
2482 	if (flags)
2483 		err = __jbd2_journal_erase(journal, flags);
2484 
2485 	mutex_unlock(&journal->j_checkpoint_mutex);
2486 	write_lock(&journal->j_state_lock);
2487 	J_ASSERT(!journal->j_running_transaction);
2488 	J_ASSERT(!journal->j_committing_transaction);
2489 	J_ASSERT(!journal->j_checkpoint_transactions);
2490 	J_ASSERT(journal->j_head == journal->j_tail);
2491 	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2492 	write_unlock(&journal->j_state_lock);
2493 out:
2494 	return err;
2495 }
2496 
2497 /**
2498  * jbd2_journal_wipe() - Wipe journal contents
2499  * @journal: Journal to act on.
2500  * @write: flag (see below)
2501  *
2502  * Wipe out all of the contents of a journal, safely.  This will produce
2503  * a warning if the journal contains any valid recovery information.
2504  * Must be called between journal_init_*() and jbd2_journal_load().
2505  *
2506  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2507  * we merely suppress recovery.
2508  */
2509 
2510 int jbd2_journal_wipe(journal_t *journal, int write)
2511 {
2512 	int err;
2513 
2514 	J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2515 
2516 	if (!journal->j_tail)
2517 		return 0;
2518 
2519 	printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2520 		write ? "Clearing" : "Ignoring");
2521 
2522 	err = jbd2_journal_skip_recovery(journal);
2523 	if (write) {
2524 		/* Lock to make assertions happy... */
2525 		mutex_lock_io(&journal->j_checkpoint_mutex);
2526 		jbd2_mark_journal_empty(journal, REQ_FUA);
2527 		mutex_unlock(&journal->j_checkpoint_mutex);
2528 	}
2529 
2530 	return err;
2531 }
2532 
2533 /**
2534  * jbd2_journal_abort () - Shutdown the journal immediately.
2535  * @journal: the journal to shutdown.
2536  * @errno:   an error number to record in the journal indicating
2537  *           the reason for the shutdown.
2538  *
2539  * Perform a complete, immediate shutdown of the ENTIRE
2540  * journal (not of a single transaction).  This operation cannot be
2541  * undone without closing and reopening the journal.
2542  *
2543  * The jbd2_journal_abort function is intended to support higher level error
2544  * recovery mechanisms such as the ext2/ext3 remount-readonly error
2545  * mode.
2546  *
2547  * Journal abort has very specific semantics.  Any existing dirty,
2548  * unjournaled buffers in the main filesystem will still be written to
2549  * disk by bdflush, but the journaling mechanism will be suspended
2550  * immediately and no further transaction commits will be honoured.
2551  *
2552  * Any dirty, journaled buffers will be written back to disk without
2553  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2554  * filesystem, but we _do_ attempt to leave as much data as possible
2555  * behind for fsck to use for cleanup.
2556  *
2557  * Any attempt to get a new transaction handle on a journal which is in
2558  * ABORT state will just result in an -EROFS error return.  A
2559  * jbd2_journal_stop on an existing handle will return -EIO if we have
2560  * entered abort state during the update.
2561  *
2562  * Recursive transactions are not disturbed by journal abort until the
2563  * final jbd2_journal_stop, which will receive the -EIO error.
2564  *
2565  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2566  * which will be recorded (if possible) in the journal superblock.  This
2567  * allows a client to record failure conditions in the middle of a
2568  * transaction without having to complete the transaction to record the
2569  * failure to disk.  ext3_error, for example, now uses this
2570  * functionality.
2571  *
2572  */
2573 
2574 void jbd2_journal_abort(journal_t *journal, int errno)
2575 {
2576 	transaction_t *transaction;
2577 
2578 	/*
2579 	 * Lock the aborting procedure until everything is done, this avoid
2580 	 * races between filesystem's error handling flow (e.g. ext4_abort()),
2581 	 * ensure panic after the error info is written into journal's
2582 	 * superblock.
2583 	 */
2584 	mutex_lock(&journal->j_abort_mutex);
2585 	/*
2586 	 * ESHUTDOWN always takes precedence because a file system check
2587 	 * caused by any other journal abort error is not required after
2588 	 * a shutdown triggered.
2589 	 */
2590 	write_lock(&journal->j_state_lock);
2591 	if (journal->j_flags & JBD2_ABORT) {
2592 		int old_errno = journal->j_errno;
2593 
2594 		write_unlock(&journal->j_state_lock);
2595 		if (old_errno != -ESHUTDOWN && errno == -ESHUTDOWN) {
2596 			journal->j_errno = errno;
2597 			jbd2_journal_update_sb_errno(journal);
2598 		}
2599 		mutex_unlock(&journal->j_abort_mutex);
2600 		return;
2601 	}
2602 
2603 	/*
2604 	 * Mark the abort as occurred and start current running transaction
2605 	 * to release all journaled buffer.
2606 	 */
2607 	pr_err("Aborting journal on device %s.\n", journal->j_devname);
2608 
2609 	journal->j_flags |= JBD2_ABORT;
2610 	journal->j_errno = errno;
2611 	transaction = journal->j_running_transaction;
2612 	if (transaction)
2613 		__jbd2_log_start_commit(journal, transaction->t_tid);
2614 	write_unlock(&journal->j_state_lock);
2615 
2616 	/*
2617 	 * Record errno to the journal super block, so that fsck and jbd2
2618 	 * layer could realise that a filesystem check is needed.
2619 	 */
2620 	jbd2_journal_update_sb_errno(journal);
2621 	mutex_unlock(&journal->j_abort_mutex);
2622 }
2623 
2624 /**
2625  * jbd2_journal_errno() - returns the journal's error state.
2626  * @journal: journal to examine.
2627  *
2628  * This is the errno number set with jbd2_journal_abort(), the last
2629  * time the journal was mounted - if the journal was stopped
2630  * without calling abort this will be 0.
2631  *
2632  * If the journal has been aborted on this mount time -EROFS will
2633  * be returned.
2634  */
2635 int jbd2_journal_errno(journal_t *journal)
2636 {
2637 	int err;
2638 
2639 	read_lock(&journal->j_state_lock);
2640 	if (journal->j_flags & JBD2_ABORT)
2641 		err = -EROFS;
2642 	else
2643 		err = journal->j_errno;
2644 	read_unlock(&journal->j_state_lock);
2645 	return err;
2646 }
2647 
2648 /**
2649  * jbd2_journal_clear_err() - clears the journal's error state
2650  * @journal: journal to act on.
2651  *
2652  * An error must be cleared or acked to take a FS out of readonly
2653  * mode.
2654  */
2655 int jbd2_journal_clear_err(journal_t *journal)
2656 {
2657 	int err = 0;
2658 
2659 	write_lock(&journal->j_state_lock);
2660 	if (journal->j_flags & JBD2_ABORT)
2661 		err = -EROFS;
2662 	else
2663 		journal->j_errno = 0;
2664 	write_unlock(&journal->j_state_lock);
2665 	return err;
2666 }
2667 
2668 /**
2669  * jbd2_journal_ack_err() - Ack journal err.
2670  * @journal: journal to act on.
2671  *
2672  * An error must be cleared or acked to take a FS out of readonly
2673  * mode.
2674  */
2675 void jbd2_journal_ack_err(journal_t *journal)
2676 {
2677 	write_lock(&journal->j_state_lock);
2678 	if (journal->j_errno)
2679 		journal->j_flags |= JBD2_ACK_ERR;
2680 	write_unlock(&journal->j_state_lock);
2681 }
2682 
2683 int jbd2_journal_blocks_per_page(struct inode *inode)
2684 {
2685 	return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2686 }
2687 
2688 /*
2689  * helper functions to deal with 32 or 64bit block numbers.
2690  */
2691 size_t journal_tag_bytes(journal_t *journal)
2692 {
2693 	size_t sz;
2694 
2695 	if (jbd2_has_feature_csum3(journal))
2696 		return sizeof(journal_block_tag3_t);
2697 
2698 	sz = sizeof(journal_block_tag_t);
2699 
2700 	if (jbd2_has_feature_csum2(journal))
2701 		sz += sizeof(__u16);
2702 
2703 	if (jbd2_has_feature_64bit(journal))
2704 		return sz;
2705 	else
2706 		return sz - sizeof(__u32);
2707 }
2708 
2709 /*
2710  * JBD memory management
2711  *
2712  * These functions are used to allocate block-sized chunks of memory
2713  * used for making copies of buffer_head data.  Very often it will be
2714  * page-sized chunks of data, but sometimes it will be in
2715  * sub-page-size chunks.  (For example, 16k pages on Power systems
2716  * with a 4k block file system.)  For blocks smaller than a page, we
2717  * use a SLAB allocator.  There are slab caches for each block size,
2718  * which are allocated at mount time, if necessary, and we only free
2719  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2720  * this reason we don't need to a mutex to protect access to
2721  * jbd2_slab[] allocating or releasing memory; only in
2722  * jbd2_journal_create_slab().
2723  */
2724 #define JBD2_MAX_SLABS 8
2725 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2726 
2727 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2728 	"jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2729 	"jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2730 };
2731 
2732 
2733 static void jbd2_journal_destroy_slabs(void)
2734 {
2735 	int i;
2736 
2737 	for (i = 0; i < JBD2_MAX_SLABS; i++) {
2738 		kmem_cache_destroy(jbd2_slab[i]);
2739 		jbd2_slab[i] = NULL;
2740 	}
2741 }
2742 
2743 static int jbd2_journal_create_slab(size_t size)
2744 {
2745 	static DEFINE_MUTEX(jbd2_slab_create_mutex);
2746 	int i = order_base_2(size) - 10;
2747 	size_t slab_size;
2748 
2749 	if (size == PAGE_SIZE)
2750 		return 0;
2751 
2752 	if (i >= JBD2_MAX_SLABS)
2753 		return -EINVAL;
2754 
2755 	if (unlikely(i < 0))
2756 		i = 0;
2757 	mutex_lock(&jbd2_slab_create_mutex);
2758 	if (jbd2_slab[i]) {
2759 		mutex_unlock(&jbd2_slab_create_mutex);
2760 		return 0;	/* Already created */
2761 	}
2762 
2763 	slab_size = 1 << (i+10);
2764 	jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2765 					 slab_size, 0, NULL);
2766 	mutex_unlock(&jbd2_slab_create_mutex);
2767 	if (!jbd2_slab[i]) {
2768 		printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2769 		return -ENOMEM;
2770 	}
2771 	return 0;
2772 }
2773 
2774 static struct kmem_cache *get_slab(size_t size)
2775 {
2776 	int i = order_base_2(size) - 10;
2777 
2778 	BUG_ON(i >= JBD2_MAX_SLABS);
2779 	if (unlikely(i < 0))
2780 		i = 0;
2781 	BUG_ON(jbd2_slab[i] == NULL);
2782 	return jbd2_slab[i];
2783 }
2784 
2785 void *jbd2_alloc(size_t size, gfp_t flags)
2786 {
2787 	void *ptr;
2788 
2789 	BUG_ON(size & (size-1)); /* Must be a power of 2 */
2790 
2791 	if (size < PAGE_SIZE)
2792 		ptr = kmem_cache_alloc(get_slab(size), flags);
2793 	else
2794 		ptr = (void *)__get_free_pages(flags, get_order(size));
2795 
2796 	/* Check alignment; SLUB has gotten this wrong in the past,
2797 	 * and this can lead to user data corruption! */
2798 	BUG_ON(((unsigned long) ptr) & (size-1));
2799 
2800 	return ptr;
2801 }
2802 
2803 void jbd2_free(void *ptr, size_t size)
2804 {
2805 	if (size < PAGE_SIZE)
2806 		kmem_cache_free(get_slab(size), ptr);
2807 	else
2808 		free_pages((unsigned long)ptr, get_order(size));
2809 };
2810 
2811 /*
2812  * Journal_head storage management
2813  */
2814 static struct kmem_cache *jbd2_journal_head_cache;
2815 #ifdef CONFIG_JBD2_DEBUG
2816 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2817 #endif
2818 
2819 static int __init jbd2_journal_init_journal_head_cache(void)
2820 {
2821 	J_ASSERT(!jbd2_journal_head_cache);
2822 	jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2823 				sizeof(struct journal_head),
2824 				0,		/* offset */
2825 				SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU,
2826 				NULL);		/* ctor */
2827 	if (!jbd2_journal_head_cache) {
2828 		printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2829 		return -ENOMEM;
2830 	}
2831 	return 0;
2832 }
2833 
2834 static void jbd2_journal_destroy_journal_head_cache(void)
2835 {
2836 	kmem_cache_destroy(jbd2_journal_head_cache);
2837 	jbd2_journal_head_cache = NULL;
2838 }
2839 
2840 /*
2841  * journal_head splicing and dicing
2842  */
2843 static struct journal_head *journal_alloc_journal_head(void)
2844 {
2845 	struct journal_head *ret;
2846 
2847 #ifdef CONFIG_JBD2_DEBUG
2848 	atomic_inc(&nr_journal_heads);
2849 #endif
2850 	ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2851 	if (!ret) {
2852 		jbd2_debug(1, "out of memory for journal_head\n");
2853 		pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2854 		ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2855 				GFP_NOFS | __GFP_NOFAIL);
2856 	}
2857 	if (ret)
2858 		spin_lock_init(&ret->b_state_lock);
2859 	return ret;
2860 }
2861 
2862 static void journal_free_journal_head(struct journal_head *jh)
2863 {
2864 #ifdef CONFIG_JBD2_DEBUG
2865 	atomic_dec(&nr_journal_heads);
2866 	memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2867 #endif
2868 	kmem_cache_free(jbd2_journal_head_cache, jh);
2869 }
2870 
2871 /*
2872  * A journal_head is attached to a buffer_head whenever JBD has an
2873  * interest in the buffer.
2874  *
2875  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2876  * is set.  This bit is tested in core kernel code where we need to take
2877  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2878  * there.
2879  *
2880  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2881  *
2882  * When a buffer has its BH_JBD bit set it is immune from being released by
2883  * core kernel code, mainly via ->b_count.
2884  *
2885  * A journal_head is detached from its buffer_head when the journal_head's
2886  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2887  * transaction (b_cp_transaction) hold their references to b_jcount.
2888  *
2889  * Various places in the kernel want to attach a journal_head to a buffer_head
2890  * _before_ attaching the journal_head to a transaction.  To protect the
2891  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2892  * journal_head's b_jcount refcount by one.  The caller must call
2893  * jbd2_journal_put_journal_head() to undo this.
2894  *
2895  * So the typical usage would be:
2896  *
2897  *	(Attach a journal_head if needed.  Increments b_jcount)
2898  *	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2899  *	...
2900  *      (Get another reference for transaction)
2901  *	jbd2_journal_grab_journal_head(bh);
2902  *	jh->b_transaction = xxx;
2903  *	(Put original reference)
2904  *	jbd2_journal_put_journal_head(jh);
2905  */
2906 
2907 /*
2908  * Give a buffer_head a journal_head.
2909  *
2910  * May sleep.
2911  */
2912 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2913 {
2914 	struct journal_head *jh;
2915 	struct journal_head *new_jh = NULL;
2916 
2917 repeat:
2918 	if (!buffer_jbd(bh))
2919 		new_jh = journal_alloc_journal_head();
2920 
2921 	jbd_lock_bh_journal_head(bh);
2922 	if (buffer_jbd(bh)) {
2923 		jh = bh2jh(bh);
2924 	} else {
2925 		J_ASSERT_BH(bh,
2926 			(atomic_read(&bh->b_count) > 0) ||
2927 			(bh->b_folio && bh->b_folio->mapping));
2928 
2929 		if (!new_jh) {
2930 			jbd_unlock_bh_journal_head(bh);
2931 			goto repeat;
2932 		}
2933 
2934 		jh = new_jh;
2935 		new_jh = NULL;		/* We consumed it */
2936 		set_buffer_jbd(bh);
2937 		bh->b_private = jh;
2938 		jh->b_bh = bh;
2939 		get_bh(bh);
2940 		BUFFER_TRACE(bh, "added journal_head");
2941 	}
2942 	jh->b_jcount++;
2943 	jbd_unlock_bh_journal_head(bh);
2944 	if (new_jh)
2945 		journal_free_journal_head(new_jh);
2946 	return bh->b_private;
2947 }
2948 
2949 /*
2950  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2951  * having a journal_head, return NULL
2952  */
2953 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2954 {
2955 	struct journal_head *jh = NULL;
2956 
2957 	jbd_lock_bh_journal_head(bh);
2958 	if (buffer_jbd(bh)) {
2959 		jh = bh2jh(bh);
2960 		jh->b_jcount++;
2961 	}
2962 	jbd_unlock_bh_journal_head(bh);
2963 	return jh;
2964 }
2965 EXPORT_SYMBOL(jbd2_journal_grab_journal_head);
2966 
2967 static void __journal_remove_journal_head(struct buffer_head *bh)
2968 {
2969 	struct journal_head *jh = bh2jh(bh);
2970 
2971 	J_ASSERT_JH(jh, jh->b_transaction == NULL);
2972 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2973 	J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2974 	J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2975 	J_ASSERT_BH(bh, buffer_jbd(bh));
2976 	J_ASSERT_BH(bh, jh2bh(jh) == bh);
2977 	BUFFER_TRACE(bh, "remove journal_head");
2978 
2979 	/* Unlink before dropping the lock */
2980 	bh->b_private = NULL;
2981 	jh->b_bh = NULL;	/* debug, really */
2982 	clear_buffer_jbd(bh);
2983 }
2984 
2985 static void journal_release_journal_head(struct journal_head *jh, size_t b_size)
2986 {
2987 	if (jh->b_frozen_data) {
2988 		printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2989 		jbd2_free(jh->b_frozen_data, b_size);
2990 	}
2991 	if (jh->b_committed_data) {
2992 		printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2993 		jbd2_free(jh->b_committed_data, b_size);
2994 	}
2995 	journal_free_journal_head(jh);
2996 }
2997 
2998 /*
2999  * Drop a reference on the passed journal_head.  If it fell to zero then
3000  * release the journal_head from the buffer_head.
3001  */
3002 void jbd2_journal_put_journal_head(struct journal_head *jh)
3003 {
3004 	struct buffer_head *bh = jh2bh(jh);
3005 
3006 	jbd_lock_bh_journal_head(bh);
3007 	J_ASSERT_JH(jh, jh->b_jcount > 0);
3008 	--jh->b_jcount;
3009 	if (!jh->b_jcount) {
3010 		__journal_remove_journal_head(bh);
3011 		jbd_unlock_bh_journal_head(bh);
3012 		journal_release_journal_head(jh, bh->b_size);
3013 		__brelse(bh);
3014 	} else {
3015 		jbd_unlock_bh_journal_head(bh);
3016 	}
3017 }
3018 EXPORT_SYMBOL(jbd2_journal_put_journal_head);
3019 
3020 /*
3021  * Initialize jbd inode head
3022  */
3023 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
3024 {
3025 	jinode->i_transaction = NULL;
3026 	jinode->i_next_transaction = NULL;
3027 	jinode->i_vfs_inode = inode;
3028 	jinode->i_flags = 0;
3029 	jinode->i_dirty_start = 0;
3030 	jinode->i_dirty_end = 0;
3031 	INIT_LIST_HEAD(&jinode->i_list);
3032 }
3033 
3034 /*
3035  * Function to be called before we start removing inode from memory (i.e.,
3036  * clear_inode() is a fine place to be called from). It removes inode from
3037  * transaction's lists.
3038  */
3039 void jbd2_journal_release_jbd_inode(journal_t *journal,
3040 				    struct jbd2_inode *jinode)
3041 {
3042 	if (!journal)
3043 		return;
3044 restart:
3045 	spin_lock(&journal->j_list_lock);
3046 	/* Is commit writing out inode - we have to wait */
3047 	if (jinode->i_flags & JI_COMMIT_RUNNING) {
3048 		wait_queue_head_t *wq;
3049 		DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
3050 		wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
3051 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
3052 		spin_unlock(&journal->j_list_lock);
3053 		schedule();
3054 		finish_wait(wq, &wait.wq_entry);
3055 		goto restart;
3056 	}
3057 
3058 	if (jinode->i_transaction) {
3059 		list_del(&jinode->i_list);
3060 		jinode->i_transaction = NULL;
3061 	}
3062 	spin_unlock(&journal->j_list_lock);
3063 }
3064 
3065 
3066 #ifdef CONFIG_PROC_FS
3067 
3068 #define JBD2_STATS_PROC_NAME "fs/jbd2"
3069 
3070 static void __init jbd2_create_jbd_stats_proc_entry(void)
3071 {
3072 	proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
3073 }
3074 
3075 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
3076 {
3077 	if (proc_jbd2_stats)
3078 		remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
3079 }
3080 
3081 #else
3082 
3083 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
3084 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
3085 
3086 #endif
3087 
3088 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
3089 
3090 static int __init jbd2_journal_init_inode_cache(void)
3091 {
3092 	J_ASSERT(!jbd2_inode_cache);
3093 	jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
3094 	if (!jbd2_inode_cache) {
3095 		pr_emerg("JBD2: failed to create inode cache\n");
3096 		return -ENOMEM;
3097 	}
3098 	return 0;
3099 }
3100 
3101 static int __init jbd2_journal_init_handle_cache(void)
3102 {
3103 	J_ASSERT(!jbd2_handle_cache);
3104 	jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
3105 	if (!jbd2_handle_cache) {
3106 		printk(KERN_EMERG "JBD2: failed to create handle cache\n");
3107 		return -ENOMEM;
3108 	}
3109 	return 0;
3110 }
3111 
3112 static void jbd2_journal_destroy_inode_cache(void)
3113 {
3114 	kmem_cache_destroy(jbd2_inode_cache);
3115 	jbd2_inode_cache = NULL;
3116 }
3117 
3118 static void jbd2_journal_destroy_handle_cache(void)
3119 {
3120 	kmem_cache_destroy(jbd2_handle_cache);
3121 	jbd2_handle_cache = NULL;
3122 }
3123 
3124 /*
3125  * Module startup and shutdown
3126  */
3127 
3128 static int __init journal_init_caches(void)
3129 {
3130 	int ret;
3131 
3132 	ret = jbd2_journal_init_revoke_record_cache();
3133 	if (ret == 0)
3134 		ret = jbd2_journal_init_revoke_table_cache();
3135 	if (ret == 0)
3136 		ret = jbd2_journal_init_journal_head_cache();
3137 	if (ret == 0)
3138 		ret = jbd2_journal_init_handle_cache();
3139 	if (ret == 0)
3140 		ret = jbd2_journal_init_inode_cache();
3141 	if (ret == 0)
3142 		ret = jbd2_journal_init_transaction_cache();
3143 	return ret;
3144 }
3145 
3146 static void jbd2_journal_destroy_caches(void)
3147 {
3148 	jbd2_journal_destroy_revoke_record_cache();
3149 	jbd2_journal_destroy_revoke_table_cache();
3150 	jbd2_journal_destroy_journal_head_cache();
3151 	jbd2_journal_destroy_handle_cache();
3152 	jbd2_journal_destroy_inode_cache();
3153 	jbd2_journal_destroy_transaction_cache();
3154 	jbd2_journal_destroy_slabs();
3155 }
3156 
3157 static int __init journal_init(void)
3158 {
3159 	int ret;
3160 
3161 	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
3162 
3163 	ret = journal_init_caches();
3164 	if (ret == 0) {
3165 		jbd2_create_jbd_stats_proc_entry();
3166 	} else {
3167 		jbd2_journal_destroy_caches();
3168 	}
3169 	return ret;
3170 }
3171 
3172 static void __exit journal_exit(void)
3173 {
3174 #ifdef CONFIG_JBD2_DEBUG
3175 	int n = atomic_read(&nr_journal_heads);
3176 	if (n)
3177 		printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
3178 #endif
3179 	jbd2_remove_jbd_stats_proc_entry();
3180 	jbd2_journal_destroy_caches();
3181 }
3182 
3183 MODULE_LICENSE("GPL");
3184 module_init(journal_init);
3185 module_exit(journal_exit);
3186 
3187