xref: /linux/fs/jbd2/journal.c (revision 25aee3debe0464f6c680173041fa3de30ec9ff54)
1 /*
2  * linux/fs/jbd2/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24 
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/debugfs.h>
39 #include <linux/seq_file.h>
40 #include <linux/math64.h>
41 #include <linux/hash.h>
42 #include <linux/log2.h>
43 #include <linux/vmalloc.h>
44 #include <linux/backing-dev.h>
45 #include <linux/bitops.h>
46 #include <linux/ratelimit.h>
47 
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/jbd2.h>
50 
51 #include <asm/uaccess.h>
52 #include <asm/page.h>
53 
54 EXPORT_SYMBOL(jbd2_journal_extend);
55 EXPORT_SYMBOL(jbd2_journal_stop);
56 EXPORT_SYMBOL(jbd2_journal_lock_updates);
57 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
58 EXPORT_SYMBOL(jbd2_journal_get_write_access);
59 EXPORT_SYMBOL(jbd2_journal_get_create_access);
60 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
61 EXPORT_SYMBOL(jbd2_journal_set_triggers);
62 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
63 EXPORT_SYMBOL(jbd2_journal_release_buffer);
64 EXPORT_SYMBOL(jbd2_journal_forget);
65 #if 0
66 EXPORT_SYMBOL(journal_sync_buffer);
67 #endif
68 EXPORT_SYMBOL(jbd2_journal_flush);
69 EXPORT_SYMBOL(jbd2_journal_revoke);
70 
71 EXPORT_SYMBOL(jbd2_journal_init_dev);
72 EXPORT_SYMBOL(jbd2_journal_init_inode);
73 EXPORT_SYMBOL(jbd2_journal_check_used_features);
74 EXPORT_SYMBOL(jbd2_journal_check_available_features);
75 EXPORT_SYMBOL(jbd2_journal_set_features);
76 EXPORT_SYMBOL(jbd2_journal_load);
77 EXPORT_SYMBOL(jbd2_journal_destroy);
78 EXPORT_SYMBOL(jbd2_journal_abort);
79 EXPORT_SYMBOL(jbd2_journal_errno);
80 EXPORT_SYMBOL(jbd2_journal_ack_err);
81 EXPORT_SYMBOL(jbd2_journal_clear_err);
82 EXPORT_SYMBOL(jbd2_log_wait_commit);
83 EXPORT_SYMBOL(jbd2_log_start_commit);
84 EXPORT_SYMBOL(jbd2_journal_start_commit);
85 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
86 EXPORT_SYMBOL(jbd2_journal_wipe);
87 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
88 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
89 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
90 EXPORT_SYMBOL(jbd2_journal_force_commit);
91 EXPORT_SYMBOL(jbd2_journal_file_inode);
92 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
93 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
94 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
95 EXPORT_SYMBOL(jbd2_inode_cache);
96 
97 static void __journal_abort_soft (journal_t *journal, int errno);
98 static int jbd2_journal_create_slab(size_t slab_size);
99 
100 /* Checksumming functions */
101 int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
102 {
103 	if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
104 		return 1;
105 
106 	return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
107 }
108 
109 static __u32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
110 {
111 	__u32 csum, old_csum;
112 
113 	old_csum = sb->s_checksum;
114 	sb->s_checksum = 0;
115 	csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
116 	sb->s_checksum = old_csum;
117 
118 	return cpu_to_be32(csum);
119 }
120 
121 int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb)
122 {
123 	if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
124 		return 1;
125 
126 	return sb->s_checksum == jbd2_superblock_csum(j, sb);
127 }
128 
129 void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb)
130 {
131 	if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
132 		return;
133 
134 	sb->s_checksum = jbd2_superblock_csum(j, sb);
135 }
136 
137 /*
138  * Helper function used to manage commit timeouts
139  */
140 
141 static void commit_timeout(unsigned long __data)
142 {
143 	struct task_struct * p = (struct task_struct *) __data;
144 
145 	wake_up_process(p);
146 }
147 
148 /*
149  * kjournald2: The main thread function used to manage a logging device
150  * journal.
151  *
152  * This kernel thread is responsible for two things:
153  *
154  * 1) COMMIT:  Every so often we need to commit the current state of the
155  *    filesystem to disk.  The journal thread is responsible for writing
156  *    all of the metadata buffers to disk.
157  *
158  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
159  *    of the data in that part of the log has been rewritten elsewhere on
160  *    the disk.  Flushing these old buffers to reclaim space in the log is
161  *    known as checkpointing, and this thread is responsible for that job.
162  */
163 
164 static int kjournald2(void *arg)
165 {
166 	journal_t *journal = arg;
167 	transaction_t *transaction;
168 
169 	/*
170 	 * Set up an interval timer which can be used to trigger a commit wakeup
171 	 * after the commit interval expires
172 	 */
173 	setup_timer(&journal->j_commit_timer, commit_timeout,
174 			(unsigned long)current);
175 
176 	set_freezable();
177 
178 	/* Record that the journal thread is running */
179 	journal->j_task = current;
180 	wake_up(&journal->j_wait_done_commit);
181 
182 	/*
183 	 * And now, wait forever for commit wakeup events.
184 	 */
185 	write_lock(&journal->j_state_lock);
186 
187 loop:
188 	if (journal->j_flags & JBD2_UNMOUNT)
189 		goto end_loop;
190 
191 	jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
192 		journal->j_commit_sequence, journal->j_commit_request);
193 
194 	if (journal->j_commit_sequence != journal->j_commit_request) {
195 		jbd_debug(1, "OK, requests differ\n");
196 		write_unlock(&journal->j_state_lock);
197 		del_timer_sync(&journal->j_commit_timer);
198 		jbd2_journal_commit_transaction(journal);
199 		write_lock(&journal->j_state_lock);
200 		goto loop;
201 	}
202 
203 	wake_up(&journal->j_wait_done_commit);
204 	if (freezing(current)) {
205 		/*
206 		 * The simpler the better. Flushing journal isn't a
207 		 * good idea, because that depends on threads that may
208 		 * be already stopped.
209 		 */
210 		jbd_debug(1, "Now suspending kjournald2\n");
211 		write_unlock(&journal->j_state_lock);
212 		try_to_freeze();
213 		write_lock(&journal->j_state_lock);
214 	} else {
215 		/*
216 		 * We assume on resume that commits are already there,
217 		 * so we don't sleep
218 		 */
219 		DEFINE_WAIT(wait);
220 		int should_sleep = 1;
221 
222 		prepare_to_wait(&journal->j_wait_commit, &wait,
223 				TASK_INTERRUPTIBLE);
224 		if (journal->j_commit_sequence != journal->j_commit_request)
225 			should_sleep = 0;
226 		transaction = journal->j_running_transaction;
227 		if (transaction && time_after_eq(jiffies,
228 						transaction->t_expires))
229 			should_sleep = 0;
230 		if (journal->j_flags & JBD2_UNMOUNT)
231 			should_sleep = 0;
232 		if (should_sleep) {
233 			write_unlock(&journal->j_state_lock);
234 			schedule();
235 			write_lock(&journal->j_state_lock);
236 		}
237 		finish_wait(&journal->j_wait_commit, &wait);
238 	}
239 
240 	jbd_debug(1, "kjournald2 wakes\n");
241 
242 	/*
243 	 * Were we woken up by a commit wakeup event?
244 	 */
245 	transaction = journal->j_running_transaction;
246 	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
247 		journal->j_commit_request = transaction->t_tid;
248 		jbd_debug(1, "woke because of timeout\n");
249 	}
250 	goto loop;
251 
252 end_loop:
253 	write_unlock(&journal->j_state_lock);
254 	del_timer_sync(&journal->j_commit_timer);
255 	journal->j_task = NULL;
256 	wake_up(&journal->j_wait_done_commit);
257 	jbd_debug(1, "Journal thread exiting.\n");
258 	return 0;
259 }
260 
261 static int jbd2_journal_start_thread(journal_t *journal)
262 {
263 	struct task_struct *t;
264 
265 	t = kthread_run(kjournald2, journal, "jbd2/%s",
266 			journal->j_devname);
267 	if (IS_ERR(t))
268 		return PTR_ERR(t);
269 
270 	wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
271 	return 0;
272 }
273 
274 static void journal_kill_thread(journal_t *journal)
275 {
276 	write_lock(&journal->j_state_lock);
277 	journal->j_flags |= JBD2_UNMOUNT;
278 
279 	while (journal->j_task) {
280 		wake_up(&journal->j_wait_commit);
281 		write_unlock(&journal->j_state_lock);
282 		wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
283 		write_lock(&journal->j_state_lock);
284 	}
285 	write_unlock(&journal->j_state_lock);
286 }
287 
288 /*
289  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
290  *
291  * Writes a metadata buffer to a given disk block.  The actual IO is not
292  * performed but a new buffer_head is constructed which labels the data
293  * to be written with the correct destination disk block.
294  *
295  * Any magic-number escaping which needs to be done will cause a
296  * copy-out here.  If the buffer happens to start with the
297  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
298  * magic number is only written to the log for descripter blocks.  In
299  * this case, we copy the data and replace the first word with 0, and we
300  * return a result code which indicates that this buffer needs to be
301  * marked as an escaped buffer in the corresponding log descriptor
302  * block.  The missing word can then be restored when the block is read
303  * during recovery.
304  *
305  * If the source buffer has already been modified by a new transaction
306  * since we took the last commit snapshot, we use the frozen copy of
307  * that data for IO.  If we end up using the existing buffer_head's data
308  * for the write, then we *have* to lock the buffer to prevent anyone
309  * else from using and possibly modifying it while the IO is in
310  * progress.
311  *
312  * The function returns a pointer to the buffer_heads to be used for IO.
313  *
314  * We assume that the journal has already been locked in this function.
315  *
316  * Return value:
317  *  <0: Error
318  * >=0: Finished OK
319  *
320  * On success:
321  * Bit 0 set == escape performed on the data
322  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
323  */
324 
325 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
326 				  struct journal_head  *jh_in,
327 				  struct journal_head **jh_out,
328 				  unsigned long long blocknr)
329 {
330 	int need_copy_out = 0;
331 	int done_copy_out = 0;
332 	int do_escape = 0;
333 	char *mapped_data;
334 	struct buffer_head *new_bh;
335 	struct journal_head *new_jh;
336 	struct page *new_page;
337 	unsigned int new_offset;
338 	struct buffer_head *bh_in = jh2bh(jh_in);
339 	journal_t *journal = transaction->t_journal;
340 
341 	/*
342 	 * The buffer really shouldn't be locked: only the current committing
343 	 * transaction is allowed to write it, so nobody else is allowed
344 	 * to do any IO.
345 	 *
346 	 * akpm: except if we're journalling data, and write() output is
347 	 * also part of a shared mapping, and another thread has
348 	 * decided to launch a writepage() against this buffer.
349 	 */
350 	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
351 
352 retry_alloc:
353 	new_bh = alloc_buffer_head(GFP_NOFS);
354 	if (!new_bh) {
355 		/*
356 		 * Failure is not an option, but __GFP_NOFAIL is going
357 		 * away; so we retry ourselves here.
358 		 */
359 		congestion_wait(BLK_RW_ASYNC, HZ/50);
360 		goto retry_alloc;
361 	}
362 
363 	/* keep subsequent assertions sane */
364 	new_bh->b_state = 0;
365 	init_buffer(new_bh, NULL, NULL);
366 	atomic_set(&new_bh->b_count, 1);
367 	new_jh = jbd2_journal_add_journal_head(new_bh);	/* This sleeps */
368 
369 	/*
370 	 * If a new transaction has already done a buffer copy-out, then
371 	 * we use that version of the data for the commit.
372 	 */
373 	jbd_lock_bh_state(bh_in);
374 repeat:
375 	if (jh_in->b_frozen_data) {
376 		done_copy_out = 1;
377 		new_page = virt_to_page(jh_in->b_frozen_data);
378 		new_offset = offset_in_page(jh_in->b_frozen_data);
379 	} else {
380 		new_page = jh2bh(jh_in)->b_page;
381 		new_offset = offset_in_page(jh2bh(jh_in)->b_data);
382 	}
383 
384 	mapped_data = kmap_atomic(new_page);
385 	/*
386 	 * Fire data frozen trigger if data already wasn't frozen.  Do this
387 	 * before checking for escaping, as the trigger may modify the magic
388 	 * offset.  If a copy-out happens afterwards, it will have the correct
389 	 * data in the buffer.
390 	 */
391 	if (!done_copy_out)
392 		jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
393 					   jh_in->b_triggers);
394 
395 	/*
396 	 * Check for escaping
397 	 */
398 	if (*((__be32 *)(mapped_data + new_offset)) ==
399 				cpu_to_be32(JBD2_MAGIC_NUMBER)) {
400 		need_copy_out = 1;
401 		do_escape = 1;
402 	}
403 	kunmap_atomic(mapped_data);
404 
405 	/*
406 	 * Do we need to do a data copy?
407 	 */
408 	if (need_copy_out && !done_copy_out) {
409 		char *tmp;
410 
411 		jbd_unlock_bh_state(bh_in);
412 		tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
413 		if (!tmp) {
414 			jbd2_journal_put_journal_head(new_jh);
415 			return -ENOMEM;
416 		}
417 		jbd_lock_bh_state(bh_in);
418 		if (jh_in->b_frozen_data) {
419 			jbd2_free(tmp, bh_in->b_size);
420 			goto repeat;
421 		}
422 
423 		jh_in->b_frozen_data = tmp;
424 		mapped_data = kmap_atomic(new_page);
425 		memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
426 		kunmap_atomic(mapped_data);
427 
428 		new_page = virt_to_page(tmp);
429 		new_offset = offset_in_page(tmp);
430 		done_copy_out = 1;
431 
432 		/*
433 		 * This isn't strictly necessary, as we're using frozen
434 		 * data for the escaping, but it keeps consistency with
435 		 * b_frozen_data usage.
436 		 */
437 		jh_in->b_frozen_triggers = jh_in->b_triggers;
438 	}
439 
440 	/*
441 	 * Did we need to do an escaping?  Now we've done all the
442 	 * copying, we can finally do so.
443 	 */
444 	if (do_escape) {
445 		mapped_data = kmap_atomic(new_page);
446 		*((unsigned int *)(mapped_data + new_offset)) = 0;
447 		kunmap_atomic(mapped_data);
448 	}
449 
450 	set_bh_page(new_bh, new_page, new_offset);
451 	new_jh->b_transaction = NULL;
452 	new_bh->b_size = jh2bh(jh_in)->b_size;
453 	new_bh->b_bdev = transaction->t_journal->j_dev;
454 	new_bh->b_blocknr = blocknr;
455 	set_buffer_mapped(new_bh);
456 	set_buffer_dirty(new_bh);
457 
458 	*jh_out = new_jh;
459 
460 	/*
461 	 * The to-be-written buffer needs to get moved to the io queue,
462 	 * and the original buffer whose contents we are shadowing or
463 	 * copying is moved to the transaction's shadow queue.
464 	 */
465 	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
466 	spin_lock(&journal->j_list_lock);
467 	__jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
468 	spin_unlock(&journal->j_list_lock);
469 	jbd_unlock_bh_state(bh_in);
470 
471 	JBUFFER_TRACE(new_jh, "file as BJ_IO");
472 	jbd2_journal_file_buffer(new_jh, transaction, BJ_IO);
473 
474 	return do_escape | (done_copy_out << 1);
475 }
476 
477 /*
478  * Allocation code for the journal file.  Manage the space left in the
479  * journal, so that we can begin checkpointing when appropriate.
480  */
481 
482 /*
483  * __jbd2_log_space_left: Return the number of free blocks left in the journal.
484  *
485  * Called with the journal already locked.
486  *
487  * Called under j_state_lock
488  */
489 
490 int __jbd2_log_space_left(journal_t *journal)
491 {
492 	int left = journal->j_free;
493 
494 	/* assert_spin_locked(&journal->j_state_lock); */
495 
496 	/*
497 	 * Be pessimistic here about the number of those free blocks which
498 	 * might be required for log descriptor control blocks.
499 	 */
500 
501 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
502 
503 	left -= MIN_LOG_RESERVED_BLOCKS;
504 
505 	if (left <= 0)
506 		return 0;
507 	left -= (left >> 3);
508 	return left;
509 }
510 
511 /*
512  * Called with j_state_lock locked for writing.
513  * Returns true if a transaction commit was started.
514  */
515 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
516 {
517 	/*
518 	 * The only transaction we can possibly wait upon is the
519 	 * currently running transaction (if it exists).  Otherwise,
520 	 * the target tid must be an old one.
521 	 */
522 	if (journal->j_running_transaction &&
523 	    journal->j_running_transaction->t_tid == target) {
524 		/*
525 		 * We want a new commit: OK, mark the request and wakeup the
526 		 * commit thread.  We do _not_ do the commit ourselves.
527 		 */
528 
529 		journal->j_commit_request = target;
530 		jbd_debug(1, "JBD2: requesting commit %d/%d\n",
531 			  journal->j_commit_request,
532 			  journal->j_commit_sequence);
533 		wake_up(&journal->j_wait_commit);
534 		return 1;
535 	} else if (!tid_geq(journal->j_commit_request, target))
536 		/* This should never happen, but if it does, preserve
537 		   the evidence before kjournald goes into a loop and
538 		   increments j_commit_sequence beyond all recognition. */
539 		WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
540 			  journal->j_commit_request,
541 			  journal->j_commit_sequence,
542 			  target, journal->j_running_transaction ?
543 			  journal->j_running_transaction->t_tid : 0);
544 	return 0;
545 }
546 
547 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
548 {
549 	int ret;
550 
551 	write_lock(&journal->j_state_lock);
552 	ret = __jbd2_log_start_commit(journal, tid);
553 	write_unlock(&journal->j_state_lock);
554 	return ret;
555 }
556 
557 /*
558  * Force and wait upon a commit if the calling process is not within
559  * transaction.  This is used for forcing out undo-protected data which contains
560  * bitmaps, when the fs is running out of space.
561  *
562  * We can only force the running transaction if we don't have an active handle;
563  * otherwise, we will deadlock.
564  *
565  * Returns true if a transaction was started.
566  */
567 int jbd2_journal_force_commit_nested(journal_t *journal)
568 {
569 	transaction_t *transaction = NULL;
570 	tid_t tid;
571 	int need_to_start = 0;
572 
573 	read_lock(&journal->j_state_lock);
574 	if (journal->j_running_transaction && !current->journal_info) {
575 		transaction = journal->j_running_transaction;
576 		if (!tid_geq(journal->j_commit_request, transaction->t_tid))
577 			need_to_start = 1;
578 	} else if (journal->j_committing_transaction)
579 		transaction = journal->j_committing_transaction;
580 
581 	if (!transaction) {
582 		read_unlock(&journal->j_state_lock);
583 		return 0;	/* Nothing to retry */
584 	}
585 
586 	tid = transaction->t_tid;
587 	read_unlock(&journal->j_state_lock);
588 	if (need_to_start)
589 		jbd2_log_start_commit(journal, tid);
590 	jbd2_log_wait_commit(journal, tid);
591 	return 1;
592 }
593 
594 /*
595  * Start a commit of the current running transaction (if any).  Returns true
596  * if a transaction is going to be committed (or is currently already
597  * committing), and fills its tid in at *ptid
598  */
599 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
600 {
601 	int ret = 0;
602 
603 	write_lock(&journal->j_state_lock);
604 	if (journal->j_running_transaction) {
605 		tid_t tid = journal->j_running_transaction->t_tid;
606 
607 		__jbd2_log_start_commit(journal, tid);
608 		/* There's a running transaction and we've just made sure
609 		 * it's commit has been scheduled. */
610 		if (ptid)
611 			*ptid = tid;
612 		ret = 1;
613 	} else if (journal->j_committing_transaction) {
614 		/*
615 		 * If ext3_write_super() recently started a commit, then we
616 		 * have to wait for completion of that transaction
617 		 */
618 		if (ptid)
619 			*ptid = journal->j_committing_transaction->t_tid;
620 		ret = 1;
621 	}
622 	write_unlock(&journal->j_state_lock);
623 	return ret;
624 }
625 
626 /*
627  * Return 1 if a given transaction has not yet sent barrier request
628  * connected with a transaction commit. If 0 is returned, transaction
629  * may or may not have sent the barrier. Used to avoid sending barrier
630  * twice in common cases.
631  */
632 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
633 {
634 	int ret = 0;
635 	transaction_t *commit_trans;
636 
637 	if (!(journal->j_flags & JBD2_BARRIER))
638 		return 0;
639 	read_lock(&journal->j_state_lock);
640 	/* Transaction already committed? */
641 	if (tid_geq(journal->j_commit_sequence, tid))
642 		goto out;
643 	commit_trans = journal->j_committing_transaction;
644 	if (!commit_trans || commit_trans->t_tid != tid) {
645 		ret = 1;
646 		goto out;
647 	}
648 	/*
649 	 * Transaction is being committed and we already proceeded to
650 	 * submitting a flush to fs partition?
651 	 */
652 	if (journal->j_fs_dev != journal->j_dev) {
653 		if (!commit_trans->t_need_data_flush ||
654 		    commit_trans->t_state >= T_COMMIT_DFLUSH)
655 			goto out;
656 	} else {
657 		if (commit_trans->t_state >= T_COMMIT_JFLUSH)
658 			goto out;
659 	}
660 	ret = 1;
661 out:
662 	read_unlock(&journal->j_state_lock);
663 	return ret;
664 }
665 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
666 
667 /*
668  * Wait for a specified commit to complete.
669  * The caller may not hold the journal lock.
670  */
671 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
672 {
673 	int err = 0;
674 
675 	read_lock(&journal->j_state_lock);
676 #ifdef CONFIG_JBD2_DEBUG
677 	if (!tid_geq(journal->j_commit_request, tid)) {
678 		printk(KERN_EMERG
679 		       "%s: error: j_commit_request=%d, tid=%d\n",
680 		       __func__, journal->j_commit_request, tid);
681 	}
682 #endif
683 	while (tid_gt(tid, journal->j_commit_sequence)) {
684 		jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
685 				  tid, journal->j_commit_sequence);
686 		wake_up(&journal->j_wait_commit);
687 		read_unlock(&journal->j_state_lock);
688 		wait_event(journal->j_wait_done_commit,
689 				!tid_gt(tid, journal->j_commit_sequence));
690 		read_lock(&journal->j_state_lock);
691 	}
692 	read_unlock(&journal->j_state_lock);
693 
694 	if (unlikely(is_journal_aborted(journal))) {
695 		printk(KERN_EMERG "journal commit I/O error\n");
696 		err = -EIO;
697 	}
698 	return err;
699 }
700 
701 /*
702  * Log buffer allocation routines:
703  */
704 
705 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
706 {
707 	unsigned long blocknr;
708 
709 	write_lock(&journal->j_state_lock);
710 	J_ASSERT(journal->j_free > 1);
711 
712 	blocknr = journal->j_head;
713 	journal->j_head++;
714 	journal->j_free--;
715 	if (journal->j_head == journal->j_last)
716 		journal->j_head = journal->j_first;
717 	write_unlock(&journal->j_state_lock);
718 	return jbd2_journal_bmap(journal, blocknr, retp);
719 }
720 
721 /*
722  * Conversion of logical to physical block numbers for the journal
723  *
724  * On external journals the journal blocks are identity-mapped, so
725  * this is a no-op.  If needed, we can use j_blk_offset - everything is
726  * ready.
727  */
728 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
729 		 unsigned long long *retp)
730 {
731 	int err = 0;
732 	unsigned long long ret;
733 
734 	if (journal->j_inode) {
735 		ret = bmap(journal->j_inode, blocknr);
736 		if (ret)
737 			*retp = ret;
738 		else {
739 			printk(KERN_ALERT "%s: journal block not found "
740 					"at offset %lu on %s\n",
741 			       __func__, blocknr, journal->j_devname);
742 			err = -EIO;
743 			__journal_abort_soft(journal, err);
744 		}
745 	} else {
746 		*retp = blocknr; /* +journal->j_blk_offset */
747 	}
748 	return err;
749 }
750 
751 /*
752  * We play buffer_head aliasing tricks to write data/metadata blocks to
753  * the journal without copying their contents, but for journal
754  * descriptor blocks we do need to generate bona fide buffers.
755  *
756  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
757  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
758  * But we don't bother doing that, so there will be coherency problems with
759  * mmaps of blockdevs which hold live JBD-controlled filesystems.
760  */
761 struct journal_head *jbd2_journal_get_descriptor_buffer(journal_t *journal)
762 {
763 	struct buffer_head *bh;
764 	unsigned long long blocknr;
765 	int err;
766 
767 	err = jbd2_journal_next_log_block(journal, &blocknr);
768 
769 	if (err)
770 		return NULL;
771 
772 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
773 	if (!bh)
774 		return NULL;
775 	lock_buffer(bh);
776 	memset(bh->b_data, 0, journal->j_blocksize);
777 	set_buffer_uptodate(bh);
778 	unlock_buffer(bh);
779 	BUFFER_TRACE(bh, "return this buffer");
780 	return jbd2_journal_add_journal_head(bh);
781 }
782 
783 /*
784  * Return tid of the oldest transaction in the journal and block in the journal
785  * where the transaction starts.
786  *
787  * If the journal is now empty, return which will be the next transaction ID
788  * we will write and where will that transaction start.
789  *
790  * The return value is 0 if journal tail cannot be pushed any further, 1 if
791  * it can.
792  */
793 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
794 			      unsigned long *block)
795 {
796 	transaction_t *transaction;
797 	int ret;
798 
799 	read_lock(&journal->j_state_lock);
800 	spin_lock(&journal->j_list_lock);
801 	transaction = journal->j_checkpoint_transactions;
802 	if (transaction) {
803 		*tid = transaction->t_tid;
804 		*block = transaction->t_log_start;
805 	} else if ((transaction = journal->j_committing_transaction) != NULL) {
806 		*tid = transaction->t_tid;
807 		*block = transaction->t_log_start;
808 	} else if ((transaction = journal->j_running_transaction) != NULL) {
809 		*tid = transaction->t_tid;
810 		*block = journal->j_head;
811 	} else {
812 		*tid = journal->j_transaction_sequence;
813 		*block = journal->j_head;
814 	}
815 	ret = tid_gt(*tid, journal->j_tail_sequence);
816 	spin_unlock(&journal->j_list_lock);
817 	read_unlock(&journal->j_state_lock);
818 
819 	return ret;
820 }
821 
822 /*
823  * Update information in journal structure and in on disk journal superblock
824  * about log tail. This function does not check whether information passed in
825  * really pushes log tail further. It's responsibility of the caller to make
826  * sure provided log tail information is valid (e.g. by holding
827  * j_checkpoint_mutex all the time between computing log tail and calling this
828  * function as is the case with jbd2_cleanup_journal_tail()).
829  *
830  * Requires j_checkpoint_mutex
831  */
832 void __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
833 {
834 	unsigned long freed;
835 
836 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
837 
838 	/*
839 	 * We cannot afford for write to remain in drive's caches since as
840 	 * soon as we update j_tail, next transaction can start reusing journal
841 	 * space and if we lose sb update during power failure we'd replay
842 	 * old transaction with possibly newly overwritten data.
843 	 */
844 	jbd2_journal_update_sb_log_tail(journal, tid, block, WRITE_FUA);
845 	write_lock(&journal->j_state_lock);
846 	freed = block - journal->j_tail;
847 	if (block < journal->j_tail)
848 		freed += journal->j_last - journal->j_first;
849 
850 	trace_jbd2_update_log_tail(journal, tid, block, freed);
851 	jbd_debug(1,
852 		  "Cleaning journal tail from %d to %d (offset %lu), "
853 		  "freeing %lu\n",
854 		  journal->j_tail_sequence, tid, block, freed);
855 
856 	journal->j_free += freed;
857 	journal->j_tail_sequence = tid;
858 	journal->j_tail = block;
859 	write_unlock(&journal->j_state_lock);
860 }
861 
862 /*
863  * This is a variaon of __jbd2_update_log_tail which checks for validity of
864  * provided log tail and locks j_checkpoint_mutex. So it is safe against races
865  * with other threads updating log tail.
866  */
867 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
868 {
869 	mutex_lock(&journal->j_checkpoint_mutex);
870 	if (tid_gt(tid, journal->j_tail_sequence))
871 		__jbd2_update_log_tail(journal, tid, block);
872 	mutex_unlock(&journal->j_checkpoint_mutex);
873 }
874 
875 struct jbd2_stats_proc_session {
876 	journal_t *journal;
877 	struct transaction_stats_s *stats;
878 	int start;
879 	int max;
880 };
881 
882 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
883 {
884 	return *pos ? NULL : SEQ_START_TOKEN;
885 }
886 
887 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
888 {
889 	return NULL;
890 }
891 
892 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
893 {
894 	struct jbd2_stats_proc_session *s = seq->private;
895 
896 	if (v != SEQ_START_TOKEN)
897 		return 0;
898 	seq_printf(seq, "%lu transaction, each up to %u blocks\n",
899 			s->stats->ts_tid,
900 			s->journal->j_max_transaction_buffers);
901 	if (s->stats->ts_tid == 0)
902 		return 0;
903 	seq_printf(seq, "average: \n  %ums waiting for transaction\n",
904 	    jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
905 	seq_printf(seq, "  %ums running transaction\n",
906 	    jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
907 	seq_printf(seq, "  %ums transaction was being locked\n",
908 	    jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
909 	seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
910 	    jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
911 	seq_printf(seq, "  %ums logging transaction\n",
912 	    jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
913 	seq_printf(seq, "  %lluus average transaction commit time\n",
914 		   div_u64(s->journal->j_average_commit_time, 1000));
915 	seq_printf(seq, "  %lu handles per transaction\n",
916 	    s->stats->run.rs_handle_count / s->stats->ts_tid);
917 	seq_printf(seq, "  %lu blocks per transaction\n",
918 	    s->stats->run.rs_blocks / s->stats->ts_tid);
919 	seq_printf(seq, "  %lu logged blocks per transaction\n",
920 	    s->stats->run.rs_blocks_logged / s->stats->ts_tid);
921 	return 0;
922 }
923 
924 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
925 {
926 }
927 
928 static const struct seq_operations jbd2_seq_info_ops = {
929 	.start  = jbd2_seq_info_start,
930 	.next   = jbd2_seq_info_next,
931 	.stop   = jbd2_seq_info_stop,
932 	.show   = jbd2_seq_info_show,
933 };
934 
935 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
936 {
937 	journal_t *journal = PDE(inode)->data;
938 	struct jbd2_stats_proc_session *s;
939 	int rc, size;
940 
941 	s = kmalloc(sizeof(*s), GFP_KERNEL);
942 	if (s == NULL)
943 		return -ENOMEM;
944 	size = sizeof(struct transaction_stats_s);
945 	s->stats = kmalloc(size, GFP_KERNEL);
946 	if (s->stats == NULL) {
947 		kfree(s);
948 		return -ENOMEM;
949 	}
950 	spin_lock(&journal->j_history_lock);
951 	memcpy(s->stats, &journal->j_stats, size);
952 	s->journal = journal;
953 	spin_unlock(&journal->j_history_lock);
954 
955 	rc = seq_open(file, &jbd2_seq_info_ops);
956 	if (rc == 0) {
957 		struct seq_file *m = file->private_data;
958 		m->private = s;
959 	} else {
960 		kfree(s->stats);
961 		kfree(s);
962 	}
963 	return rc;
964 
965 }
966 
967 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
968 {
969 	struct seq_file *seq = file->private_data;
970 	struct jbd2_stats_proc_session *s = seq->private;
971 	kfree(s->stats);
972 	kfree(s);
973 	return seq_release(inode, file);
974 }
975 
976 static const struct file_operations jbd2_seq_info_fops = {
977 	.owner		= THIS_MODULE,
978 	.open           = jbd2_seq_info_open,
979 	.read           = seq_read,
980 	.llseek         = seq_lseek,
981 	.release        = jbd2_seq_info_release,
982 };
983 
984 static struct proc_dir_entry *proc_jbd2_stats;
985 
986 static void jbd2_stats_proc_init(journal_t *journal)
987 {
988 	journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
989 	if (journal->j_proc_entry) {
990 		proc_create_data("info", S_IRUGO, journal->j_proc_entry,
991 				 &jbd2_seq_info_fops, journal);
992 	}
993 }
994 
995 static void jbd2_stats_proc_exit(journal_t *journal)
996 {
997 	remove_proc_entry("info", journal->j_proc_entry);
998 	remove_proc_entry(journal->j_devname, proc_jbd2_stats);
999 }
1000 
1001 /*
1002  * Management for journal control blocks: functions to create and
1003  * destroy journal_t structures, and to initialise and read existing
1004  * journal blocks from disk.  */
1005 
1006 /* First: create and setup a journal_t object in memory.  We initialise
1007  * very few fields yet: that has to wait until we have created the
1008  * journal structures from from scratch, or loaded them from disk. */
1009 
1010 static journal_t * journal_init_common (void)
1011 {
1012 	journal_t *journal;
1013 	int err;
1014 
1015 	journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1016 	if (!journal)
1017 		return NULL;
1018 
1019 	init_waitqueue_head(&journal->j_wait_transaction_locked);
1020 	init_waitqueue_head(&journal->j_wait_logspace);
1021 	init_waitqueue_head(&journal->j_wait_done_commit);
1022 	init_waitqueue_head(&journal->j_wait_checkpoint);
1023 	init_waitqueue_head(&journal->j_wait_commit);
1024 	init_waitqueue_head(&journal->j_wait_updates);
1025 	mutex_init(&journal->j_barrier);
1026 	mutex_init(&journal->j_checkpoint_mutex);
1027 	spin_lock_init(&journal->j_revoke_lock);
1028 	spin_lock_init(&journal->j_list_lock);
1029 	rwlock_init(&journal->j_state_lock);
1030 
1031 	journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1032 	journal->j_min_batch_time = 0;
1033 	journal->j_max_batch_time = 15000; /* 15ms */
1034 
1035 	/* The journal is marked for error until we succeed with recovery! */
1036 	journal->j_flags = JBD2_ABORT;
1037 
1038 	/* Set up a default-sized revoke table for the new mount. */
1039 	err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1040 	if (err) {
1041 		kfree(journal);
1042 		return NULL;
1043 	}
1044 
1045 	spin_lock_init(&journal->j_history_lock);
1046 
1047 	return journal;
1048 }
1049 
1050 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1051  *
1052  * Create a journal structure assigned some fixed set of disk blocks to
1053  * the journal.  We don't actually touch those disk blocks yet, but we
1054  * need to set up all of the mapping information to tell the journaling
1055  * system where the journal blocks are.
1056  *
1057  */
1058 
1059 /**
1060  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1061  *  @bdev: Block device on which to create the journal
1062  *  @fs_dev: Device which hold journalled filesystem for this journal.
1063  *  @start: Block nr Start of journal.
1064  *  @len:  Length of the journal in blocks.
1065  *  @blocksize: blocksize of journalling device
1066  *
1067  *  Returns: a newly created journal_t *
1068  *
1069  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1070  *  range of blocks on an arbitrary block device.
1071  *
1072  */
1073 journal_t * jbd2_journal_init_dev(struct block_device *bdev,
1074 			struct block_device *fs_dev,
1075 			unsigned long long start, int len, int blocksize)
1076 {
1077 	journal_t *journal = journal_init_common();
1078 	struct buffer_head *bh;
1079 	char *p;
1080 	int n;
1081 
1082 	if (!journal)
1083 		return NULL;
1084 
1085 	/* journal descriptor can store up to n blocks -bzzz */
1086 	journal->j_blocksize = blocksize;
1087 	journal->j_dev = bdev;
1088 	journal->j_fs_dev = fs_dev;
1089 	journal->j_blk_offset = start;
1090 	journal->j_maxlen = len;
1091 	bdevname(journal->j_dev, journal->j_devname);
1092 	p = journal->j_devname;
1093 	while ((p = strchr(p, '/')))
1094 		*p = '!';
1095 	jbd2_stats_proc_init(journal);
1096 	n = journal->j_blocksize / sizeof(journal_block_tag_t);
1097 	journal->j_wbufsize = n;
1098 	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1099 	if (!journal->j_wbuf) {
1100 		printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1101 			__func__);
1102 		goto out_err;
1103 	}
1104 
1105 	bh = __getblk(journal->j_dev, start, journal->j_blocksize);
1106 	if (!bh) {
1107 		printk(KERN_ERR
1108 		       "%s: Cannot get buffer for journal superblock\n",
1109 		       __func__);
1110 		goto out_err;
1111 	}
1112 	journal->j_sb_buffer = bh;
1113 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
1114 
1115 	return journal;
1116 out_err:
1117 	kfree(journal->j_wbuf);
1118 	jbd2_stats_proc_exit(journal);
1119 	kfree(journal);
1120 	return NULL;
1121 }
1122 
1123 /**
1124  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1125  *  @inode: An inode to create the journal in
1126  *
1127  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1128  * the journal.  The inode must exist already, must support bmap() and
1129  * must have all data blocks preallocated.
1130  */
1131 journal_t * jbd2_journal_init_inode (struct inode *inode)
1132 {
1133 	struct buffer_head *bh;
1134 	journal_t *journal = journal_init_common();
1135 	char *p;
1136 	int err;
1137 	int n;
1138 	unsigned long long blocknr;
1139 
1140 	if (!journal)
1141 		return NULL;
1142 
1143 	journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
1144 	journal->j_inode = inode;
1145 	bdevname(journal->j_dev, journal->j_devname);
1146 	p = journal->j_devname;
1147 	while ((p = strchr(p, '/')))
1148 		*p = '!';
1149 	p = journal->j_devname + strlen(journal->j_devname);
1150 	sprintf(p, "-%lu", journal->j_inode->i_ino);
1151 	jbd_debug(1,
1152 		  "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
1153 		  journal, inode->i_sb->s_id, inode->i_ino,
1154 		  (long long) inode->i_size,
1155 		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1156 
1157 	journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
1158 	journal->j_blocksize = inode->i_sb->s_blocksize;
1159 	jbd2_stats_proc_init(journal);
1160 
1161 	/* journal descriptor can store up to n blocks -bzzz */
1162 	n = journal->j_blocksize / sizeof(journal_block_tag_t);
1163 	journal->j_wbufsize = n;
1164 	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1165 	if (!journal->j_wbuf) {
1166 		printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1167 			__func__);
1168 		goto out_err;
1169 	}
1170 
1171 	err = jbd2_journal_bmap(journal, 0, &blocknr);
1172 	/* If that failed, give up */
1173 	if (err) {
1174 		printk(KERN_ERR "%s: Cannot locate journal superblock\n",
1175 		       __func__);
1176 		goto out_err;
1177 	}
1178 
1179 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
1180 	if (!bh) {
1181 		printk(KERN_ERR
1182 		       "%s: Cannot get buffer for journal superblock\n",
1183 		       __func__);
1184 		goto out_err;
1185 	}
1186 	journal->j_sb_buffer = bh;
1187 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
1188 
1189 	return journal;
1190 out_err:
1191 	kfree(journal->j_wbuf);
1192 	jbd2_stats_proc_exit(journal);
1193 	kfree(journal);
1194 	return NULL;
1195 }
1196 
1197 /*
1198  * If the journal init or create aborts, we need to mark the journal
1199  * superblock as being NULL to prevent the journal destroy from writing
1200  * back a bogus superblock.
1201  */
1202 static void journal_fail_superblock (journal_t *journal)
1203 {
1204 	struct buffer_head *bh = journal->j_sb_buffer;
1205 	brelse(bh);
1206 	journal->j_sb_buffer = NULL;
1207 }
1208 
1209 /*
1210  * Given a journal_t structure, initialise the various fields for
1211  * startup of a new journaling session.  We use this both when creating
1212  * a journal, and after recovering an old journal to reset it for
1213  * subsequent use.
1214  */
1215 
1216 static int journal_reset(journal_t *journal)
1217 {
1218 	journal_superblock_t *sb = journal->j_superblock;
1219 	unsigned long long first, last;
1220 
1221 	first = be32_to_cpu(sb->s_first);
1222 	last = be32_to_cpu(sb->s_maxlen);
1223 	if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1224 		printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1225 		       first, last);
1226 		journal_fail_superblock(journal);
1227 		return -EINVAL;
1228 	}
1229 
1230 	journal->j_first = first;
1231 	journal->j_last = last;
1232 
1233 	journal->j_head = first;
1234 	journal->j_tail = first;
1235 	journal->j_free = last - first;
1236 
1237 	journal->j_tail_sequence = journal->j_transaction_sequence;
1238 	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1239 	journal->j_commit_request = journal->j_commit_sequence;
1240 
1241 	journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1242 
1243 	/*
1244 	 * As a special case, if the on-disk copy is already marked as needing
1245 	 * no recovery (s_start == 0), then we can safely defer the superblock
1246 	 * update until the next commit by setting JBD2_FLUSHED.  This avoids
1247 	 * attempting a write to a potential-readonly device.
1248 	 */
1249 	if (sb->s_start == 0) {
1250 		jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1251 			"(start %ld, seq %d, errno %d)\n",
1252 			journal->j_tail, journal->j_tail_sequence,
1253 			journal->j_errno);
1254 		journal->j_flags |= JBD2_FLUSHED;
1255 	} else {
1256 		/* Lock here to make assertions happy... */
1257 		mutex_lock(&journal->j_checkpoint_mutex);
1258 		/*
1259 		 * Update log tail information. We use WRITE_FUA since new
1260 		 * transaction will start reusing journal space and so we
1261 		 * must make sure information about current log tail is on
1262 		 * disk before that.
1263 		 */
1264 		jbd2_journal_update_sb_log_tail(journal,
1265 						journal->j_tail_sequence,
1266 						journal->j_tail,
1267 						WRITE_FUA);
1268 		mutex_unlock(&journal->j_checkpoint_mutex);
1269 	}
1270 	return jbd2_journal_start_thread(journal);
1271 }
1272 
1273 static void jbd2_write_superblock(journal_t *journal, int write_op)
1274 {
1275 	struct buffer_head *bh = journal->j_sb_buffer;
1276 	int ret;
1277 
1278 	trace_jbd2_write_superblock(journal, write_op);
1279 	if (!(journal->j_flags & JBD2_BARRIER))
1280 		write_op &= ~(REQ_FUA | REQ_FLUSH);
1281 	lock_buffer(bh);
1282 	if (buffer_write_io_error(bh)) {
1283 		/*
1284 		 * Oh, dear.  A previous attempt to write the journal
1285 		 * superblock failed.  This could happen because the
1286 		 * USB device was yanked out.  Or it could happen to
1287 		 * be a transient write error and maybe the block will
1288 		 * be remapped.  Nothing we can do but to retry the
1289 		 * write and hope for the best.
1290 		 */
1291 		printk(KERN_ERR "JBD2: previous I/O error detected "
1292 		       "for journal superblock update for %s.\n",
1293 		       journal->j_devname);
1294 		clear_buffer_write_io_error(bh);
1295 		set_buffer_uptodate(bh);
1296 	}
1297 	get_bh(bh);
1298 	bh->b_end_io = end_buffer_write_sync;
1299 	ret = submit_bh(write_op, bh);
1300 	wait_on_buffer(bh);
1301 	if (buffer_write_io_error(bh)) {
1302 		clear_buffer_write_io_error(bh);
1303 		set_buffer_uptodate(bh);
1304 		ret = -EIO;
1305 	}
1306 	if (ret) {
1307 		printk(KERN_ERR "JBD2: Error %d detected when updating "
1308 		       "journal superblock for %s.\n", ret,
1309 		       journal->j_devname);
1310 	}
1311 }
1312 
1313 /**
1314  * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1315  * @journal: The journal to update.
1316  * @tail_tid: TID of the new transaction at the tail of the log
1317  * @tail_block: The first block of the transaction at the tail of the log
1318  * @write_op: With which operation should we write the journal sb
1319  *
1320  * Update a journal's superblock information about log tail and write it to
1321  * disk, waiting for the IO to complete.
1322  */
1323 void jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1324 				     unsigned long tail_block, int write_op)
1325 {
1326 	journal_superblock_t *sb = journal->j_superblock;
1327 
1328 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1329 	jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1330 		  tail_block, tail_tid);
1331 
1332 	sb->s_sequence = cpu_to_be32(tail_tid);
1333 	sb->s_start    = cpu_to_be32(tail_block);
1334 
1335 	jbd2_write_superblock(journal, write_op);
1336 
1337 	/* Log is no longer empty */
1338 	write_lock(&journal->j_state_lock);
1339 	WARN_ON(!sb->s_sequence);
1340 	journal->j_flags &= ~JBD2_FLUSHED;
1341 	write_unlock(&journal->j_state_lock);
1342 }
1343 
1344 /**
1345  * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1346  * @journal: The journal to update.
1347  *
1348  * Update a journal's dynamic superblock fields to show that journal is empty.
1349  * Write updated superblock to disk waiting for IO to complete.
1350  */
1351 static void jbd2_mark_journal_empty(journal_t *journal)
1352 {
1353 	journal_superblock_t *sb = journal->j_superblock;
1354 
1355 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1356 	read_lock(&journal->j_state_lock);
1357 	jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1358 		  journal->j_tail_sequence);
1359 
1360 	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1361 	sb->s_start    = cpu_to_be32(0);
1362 	read_unlock(&journal->j_state_lock);
1363 
1364 	jbd2_write_superblock(journal, WRITE_FUA);
1365 
1366 	/* Log is no longer empty */
1367 	write_lock(&journal->j_state_lock);
1368 	journal->j_flags |= JBD2_FLUSHED;
1369 	write_unlock(&journal->j_state_lock);
1370 }
1371 
1372 
1373 /**
1374  * jbd2_journal_update_sb_errno() - Update error in the journal.
1375  * @journal: The journal to update.
1376  *
1377  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1378  * to complete.
1379  */
1380 static void jbd2_journal_update_sb_errno(journal_t *journal)
1381 {
1382 	journal_superblock_t *sb = journal->j_superblock;
1383 
1384 	read_lock(&journal->j_state_lock);
1385 	jbd_debug(1, "JBD2: updating superblock error (errno %d)\n",
1386 		  journal->j_errno);
1387 	sb->s_errno    = cpu_to_be32(journal->j_errno);
1388 	jbd2_superblock_csum_set(journal, sb);
1389 	read_unlock(&journal->j_state_lock);
1390 
1391 	jbd2_write_superblock(journal, WRITE_SYNC);
1392 }
1393 
1394 /*
1395  * Read the superblock for a given journal, performing initial
1396  * validation of the format.
1397  */
1398 static int journal_get_superblock(journal_t *journal)
1399 {
1400 	struct buffer_head *bh;
1401 	journal_superblock_t *sb;
1402 	int err = -EIO;
1403 
1404 	bh = journal->j_sb_buffer;
1405 
1406 	J_ASSERT(bh != NULL);
1407 	if (!buffer_uptodate(bh)) {
1408 		ll_rw_block(READ, 1, &bh);
1409 		wait_on_buffer(bh);
1410 		if (!buffer_uptodate(bh)) {
1411 			printk(KERN_ERR
1412 				"JBD2: IO error reading journal superblock\n");
1413 			goto out;
1414 		}
1415 	}
1416 
1417 	if (buffer_verified(bh))
1418 		return 0;
1419 
1420 	sb = journal->j_superblock;
1421 
1422 	err = -EINVAL;
1423 
1424 	if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1425 	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1426 		printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1427 		goto out;
1428 	}
1429 
1430 	switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1431 	case JBD2_SUPERBLOCK_V1:
1432 		journal->j_format_version = 1;
1433 		break;
1434 	case JBD2_SUPERBLOCK_V2:
1435 		journal->j_format_version = 2;
1436 		break;
1437 	default:
1438 		printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1439 		goto out;
1440 	}
1441 
1442 	if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1443 		journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1444 	else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1445 		printk(KERN_WARNING "JBD2: journal file too short\n");
1446 		goto out;
1447 	}
1448 
1449 	if (be32_to_cpu(sb->s_first) == 0 ||
1450 	    be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1451 		printk(KERN_WARNING
1452 			"JBD2: Invalid start block of journal: %u\n",
1453 			be32_to_cpu(sb->s_first));
1454 		goto out;
1455 	}
1456 
1457 	if (JBD2_HAS_COMPAT_FEATURE(journal, JBD2_FEATURE_COMPAT_CHECKSUM) &&
1458 	    JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
1459 		/* Can't have checksum v1 and v2 on at the same time! */
1460 		printk(KERN_ERR "JBD: Can't enable checksumming v1 and v2 "
1461 		       "at the same time!\n");
1462 		goto out;
1463 	}
1464 
1465 	if (!jbd2_verify_csum_type(journal, sb)) {
1466 		printk(KERN_ERR "JBD: Unknown checksum type\n");
1467 		goto out;
1468 	}
1469 
1470 	/* Load the checksum driver */
1471 	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
1472 		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1473 		if (IS_ERR(journal->j_chksum_driver)) {
1474 			printk(KERN_ERR "JBD: Cannot load crc32c driver.\n");
1475 			err = PTR_ERR(journal->j_chksum_driver);
1476 			journal->j_chksum_driver = NULL;
1477 			goto out;
1478 		}
1479 	}
1480 
1481 	/* Check superblock checksum */
1482 	if (!jbd2_superblock_csum_verify(journal, sb)) {
1483 		printk(KERN_ERR "JBD: journal checksum error\n");
1484 		goto out;
1485 	}
1486 
1487 	/* Precompute checksum seed for all metadata */
1488 	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2))
1489 		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1490 						   sizeof(sb->s_uuid));
1491 
1492 	set_buffer_verified(bh);
1493 
1494 	return 0;
1495 
1496 out:
1497 	journal_fail_superblock(journal);
1498 	return err;
1499 }
1500 
1501 /*
1502  * Load the on-disk journal superblock and read the key fields into the
1503  * journal_t.
1504  */
1505 
1506 static int load_superblock(journal_t *journal)
1507 {
1508 	int err;
1509 	journal_superblock_t *sb;
1510 
1511 	err = journal_get_superblock(journal);
1512 	if (err)
1513 		return err;
1514 
1515 	sb = journal->j_superblock;
1516 
1517 	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1518 	journal->j_tail = be32_to_cpu(sb->s_start);
1519 	journal->j_first = be32_to_cpu(sb->s_first);
1520 	journal->j_last = be32_to_cpu(sb->s_maxlen);
1521 	journal->j_errno = be32_to_cpu(sb->s_errno);
1522 
1523 	return 0;
1524 }
1525 
1526 
1527 /**
1528  * int jbd2_journal_load() - Read journal from disk.
1529  * @journal: Journal to act on.
1530  *
1531  * Given a journal_t structure which tells us which disk blocks contain
1532  * a journal, read the journal from disk to initialise the in-memory
1533  * structures.
1534  */
1535 int jbd2_journal_load(journal_t *journal)
1536 {
1537 	int err;
1538 	journal_superblock_t *sb;
1539 
1540 	err = load_superblock(journal);
1541 	if (err)
1542 		return err;
1543 
1544 	sb = journal->j_superblock;
1545 	/* If this is a V2 superblock, then we have to check the
1546 	 * features flags on it. */
1547 
1548 	if (journal->j_format_version >= 2) {
1549 		if ((sb->s_feature_ro_compat &
1550 		     ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1551 		    (sb->s_feature_incompat &
1552 		     ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1553 			printk(KERN_WARNING
1554 				"JBD2: Unrecognised features on journal\n");
1555 			return -EINVAL;
1556 		}
1557 	}
1558 
1559 	/*
1560 	 * Create a slab for this blocksize
1561 	 */
1562 	err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1563 	if (err)
1564 		return err;
1565 
1566 	/* Let the recovery code check whether it needs to recover any
1567 	 * data from the journal. */
1568 	if (jbd2_journal_recover(journal))
1569 		goto recovery_error;
1570 
1571 	if (journal->j_failed_commit) {
1572 		printk(KERN_ERR "JBD2: journal transaction %u on %s "
1573 		       "is corrupt.\n", journal->j_failed_commit,
1574 		       journal->j_devname);
1575 		return -EIO;
1576 	}
1577 
1578 	/* OK, we've finished with the dynamic journal bits:
1579 	 * reinitialise the dynamic contents of the superblock in memory
1580 	 * and reset them on disk. */
1581 	if (journal_reset(journal))
1582 		goto recovery_error;
1583 
1584 	journal->j_flags &= ~JBD2_ABORT;
1585 	journal->j_flags |= JBD2_LOADED;
1586 	return 0;
1587 
1588 recovery_error:
1589 	printk(KERN_WARNING "JBD2: recovery failed\n");
1590 	return -EIO;
1591 }
1592 
1593 /**
1594  * void jbd2_journal_destroy() - Release a journal_t structure.
1595  * @journal: Journal to act on.
1596  *
1597  * Release a journal_t structure once it is no longer in use by the
1598  * journaled object.
1599  * Return <0 if we couldn't clean up the journal.
1600  */
1601 int jbd2_journal_destroy(journal_t *journal)
1602 {
1603 	int err = 0;
1604 
1605 	/* Wait for the commit thread to wake up and die. */
1606 	journal_kill_thread(journal);
1607 
1608 	/* Force a final log commit */
1609 	if (journal->j_running_transaction)
1610 		jbd2_journal_commit_transaction(journal);
1611 
1612 	/* Force any old transactions to disk */
1613 
1614 	/* Totally anal locking here... */
1615 	spin_lock(&journal->j_list_lock);
1616 	while (journal->j_checkpoint_transactions != NULL) {
1617 		spin_unlock(&journal->j_list_lock);
1618 		mutex_lock(&journal->j_checkpoint_mutex);
1619 		jbd2_log_do_checkpoint(journal);
1620 		mutex_unlock(&journal->j_checkpoint_mutex);
1621 		spin_lock(&journal->j_list_lock);
1622 	}
1623 
1624 	J_ASSERT(journal->j_running_transaction == NULL);
1625 	J_ASSERT(journal->j_committing_transaction == NULL);
1626 	J_ASSERT(journal->j_checkpoint_transactions == NULL);
1627 	spin_unlock(&journal->j_list_lock);
1628 
1629 	if (journal->j_sb_buffer) {
1630 		if (!is_journal_aborted(journal)) {
1631 			mutex_lock(&journal->j_checkpoint_mutex);
1632 			jbd2_mark_journal_empty(journal);
1633 			mutex_unlock(&journal->j_checkpoint_mutex);
1634 		} else
1635 			err = -EIO;
1636 		brelse(journal->j_sb_buffer);
1637 	}
1638 
1639 	if (journal->j_proc_entry)
1640 		jbd2_stats_proc_exit(journal);
1641 	if (journal->j_inode)
1642 		iput(journal->j_inode);
1643 	if (journal->j_revoke)
1644 		jbd2_journal_destroy_revoke(journal);
1645 	if (journal->j_chksum_driver)
1646 		crypto_free_shash(journal->j_chksum_driver);
1647 	kfree(journal->j_wbuf);
1648 	kfree(journal);
1649 
1650 	return err;
1651 }
1652 
1653 
1654 /**
1655  *int jbd2_journal_check_used_features () - Check if features specified are used.
1656  * @journal: Journal to check.
1657  * @compat: bitmask of compatible features
1658  * @ro: bitmask of features that force read-only mount
1659  * @incompat: bitmask of incompatible features
1660  *
1661  * Check whether the journal uses all of a given set of
1662  * features.  Return true (non-zero) if it does.
1663  **/
1664 
1665 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1666 				 unsigned long ro, unsigned long incompat)
1667 {
1668 	journal_superblock_t *sb;
1669 
1670 	if (!compat && !ro && !incompat)
1671 		return 1;
1672 	/* Load journal superblock if it is not loaded yet. */
1673 	if (journal->j_format_version == 0 &&
1674 	    journal_get_superblock(journal) != 0)
1675 		return 0;
1676 	if (journal->j_format_version == 1)
1677 		return 0;
1678 
1679 	sb = journal->j_superblock;
1680 
1681 	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1682 	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1683 	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1684 		return 1;
1685 
1686 	return 0;
1687 }
1688 
1689 /**
1690  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1691  * @journal: Journal to check.
1692  * @compat: bitmask of compatible features
1693  * @ro: bitmask of features that force read-only mount
1694  * @incompat: bitmask of incompatible features
1695  *
1696  * Check whether the journaling code supports the use of
1697  * all of a given set of features on this journal.  Return true
1698  * (non-zero) if it can. */
1699 
1700 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1701 				      unsigned long ro, unsigned long incompat)
1702 {
1703 	if (!compat && !ro && !incompat)
1704 		return 1;
1705 
1706 	/* We can support any known requested features iff the
1707 	 * superblock is in version 2.  Otherwise we fail to support any
1708 	 * extended sb features. */
1709 
1710 	if (journal->j_format_version != 2)
1711 		return 0;
1712 
1713 	if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1714 	    (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1715 	    (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1716 		return 1;
1717 
1718 	return 0;
1719 }
1720 
1721 /**
1722  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1723  * @journal: Journal to act on.
1724  * @compat: bitmask of compatible features
1725  * @ro: bitmask of features that force read-only mount
1726  * @incompat: bitmask of incompatible features
1727  *
1728  * Mark a given journal feature as present on the
1729  * superblock.  Returns true if the requested features could be set.
1730  *
1731  */
1732 
1733 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1734 			  unsigned long ro, unsigned long incompat)
1735 {
1736 #define INCOMPAT_FEATURE_ON(f) \
1737 		((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1738 #define COMPAT_FEATURE_ON(f) \
1739 		((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1740 	journal_superblock_t *sb;
1741 
1742 	if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1743 		return 1;
1744 
1745 	if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1746 		return 0;
1747 
1748 	/* Asking for checksumming v2 and v1?  Only give them v2. */
1749 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2 &&
1750 	    compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1751 		compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1752 
1753 	jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1754 		  compat, ro, incompat);
1755 
1756 	sb = journal->j_superblock;
1757 
1758 	/* If enabling v2 checksums, update superblock */
1759 	if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
1760 		sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1761 		sb->s_feature_compat &=
1762 			~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1763 
1764 		/* Load the checksum driver */
1765 		if (journal->j_chksum_driver == NULL) {
1766 			journal->j_chksum_driver = crypto_alloc_shash("crc32c",
1767 								      0, 0);
1768 			if (IS_ERR(journal->j_chksum_driver)) {
1769 				printk(KERN_ERR "JBD: Cannot load crc32c "
1770 				       "driver.\n");
1771 				journal->j_chksum_driver = NULL;
1772 				return 0;
1773 			}
1774 		}
1775 
1776 		/* Precompute checksum seed for all metadata */
1777 		if (JBD2_HAS_INCOMPAT_FEATURE(journal,
1778 					      JBD2_FEATURE_INCOMPAT_CSUM_V2))
1779 			journal->j_csum_seed = jbd2_chksum(journal, ~0,
1780 							   sb->s_uuid,
1781 							   sizeof(sb->s_uuid));
1782 	}
1783 
1784 	/* If enabling v1 checksums, downgrade superblock */
1785 	if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1786 		sb->s_feature_incompat &=
1787 			~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2);
1788 
1789 	sb->s_feature_compat    |= cpu_to_be32(compat);
1790 	sb->s_feature_ro_compat |= cpu_to_be32(ro);
1791 	sb->s_feature_incompat  |= cpu_to_be32(incompat);
1792 
1793 	return 1;
1794 #undef COMPAT_FEATURE_ON
1795 #undef INCOMPAT_FEATURE_ON
1796 }
1797 
1798 /*
1799  * jbd2_journal_clear_features () - Clear a given journal feature in the
1800  * 				    superblock
1801  * @journal: Journal to act on.
1802  * @compat: bitmask of compatible features
1803  * @ro: bitmask of features that force read-only mount
1804  * @incompat: bitmask of incompatible features
1805  *
1806  * Clear a given journal feature as present on the
1807  * superblock.
1808  */
1809 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1810 				unsigned long ro, unsigned long incompat)
1811 {
1812 	journal_superblock_t *sb;
1813 
1814 	jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1815 		  compat, ro, incompat);
1816 
1817 	sb = journal->j_superblock;
1818 
1819 	sb->s_feature_compat    &= ~cpu_to_be32(compat);
1820 	sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1821 	sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1822 }
1823 EXPORT_SYMBOL(jbd2_journal_clear_features);
1824 
1825 /**
1826  * int jbd2_journal_flush () - Flush journal
1827  * @journal: Journal to act on.
1828  *
1829  * Flush all data for a given journal to disk and empty the journal.
1830  * Filesystems can use this when remounting readonly to ensure that
1831  * recovery does not need to happen on remount.
1832  */
1833 
1834 int jbd2_journal_flush(journal_t *journal)
1835 {
1836 	int err = 0;
1837 	transaction_t *transaction = NULL;
1838 
1839 	write_lock(&journal->j_state_lock);
1840 
1841 	/* Force everything buffered to the log... */
1842 	if (journal->j_running_transaction) {
1843 		transaction = journal->j_running_transaction;
1844 		__jbd2_log_start_commit(journal, transaction->t_tid);
1845 	} else if (journal->j_committing_transaction)
1846 		transaction = journal->j_committing_transaction;
1847 
1848 	/* Wait for the log commit to complete... */
1849 	if (transaction) {
1850 		tid_t tid = transaction->t_tid;
1851 
1852 		write_unlock(&journal->j_state_lock);
1853 		jbd2_log_wait_commit(journal, tid);
1854 	} else {
1855 		write_unlock(&journal->j_state_lock);
1856 	}
1857 
1858 	/* ...and flush everything in the log out to disk. */
1859 	spin_lock(&journal->j_list_lock);
1860 	while (!err && journal->j_checkpoint_transactions != NULL) {
1861 		spin_unlock(&journal->j_list_lock);
1862 		mutex_lock(&journal->j_checkpoint_mutex);
1863 		err = jbd2_log_do_checkpoint(journal);
1864 		mutex_unlock(&journal->j_checkpoint_mutex);
1865 		spin_lock(&journal->j_list_lock);
1866 	}
1867 	spin_unlock(&journal->j_list_lock);
1868 
1869 	if (is_journal_aborted(journal))
1870 		return -EIO;
1871 
1872 	mutex_lock(&journal->j_checkpoint_mutex);
1873 	jbd2_cleanup_journal_tail(journal);
1874 
1875 	/* Finally, mark the journal as really needing no recovery.
1876 	 * This sets s_start==0 in the underlying superblock, which is
1877 	 * the magic code for a fully-recovered superblock.  Any future
1878 	 * commits of data to the journal will restore the current
1879 	 * s_start value. */
1880 	jbd2_mark_journal_empty(journal);
1881 	mutex_unlock(&journal->j_checkpoint_mutex);
1882 	write_lock(&journal->j_state_lock);
1883 	J_ASSERT(!journal->j_running_transaction);
1884 	J_ASSERT(!journal->j_committing_transaction);
1885 	J_ASSERT(!journal->j_checkpoint_transactions);
1886 	J_ASSERT(journal->j_head == journal->j_tail);
1887 	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1888 	write_unlock(&journal->j_state_lock);
1889 	return 0;
1890 }
1891 
1892 /**
1893  * int jbd2_journal_wipe() - Wipe journal contents
1894  * @journal: Journal to act on.
1895  * @write: flag (see below)
1896  *
1897  * Wipe out all of the contents of a journal, safely.  This will produce
1898  * a warning if the journal contains any valid recovery information.
1899  * Must be called between journal_init_*() and jbd2_journal_load().
1900  *
1901  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1902  * we merely suppress recovery.
1903  */
1904 
1905 int jbd2_journal_wipe(journal_t *journal, int write)
1906 {
1907 	int err = 0;
1908 
1909 	J_ASSERT (!(journal->j_flags & JBD2_LOADED));
1910 
1911 	err = load_superblock(journal);
1912 	if (err)
1913 		return err;
1914 
1915 	if (!journal->j_tail)
1916 		goto no_recovery;
1917 
1918 	printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
1919 		write ? "Clearing" : "Ignoring");
1920 
1921 	err = jbd2_journal_skip_recovery(journal);
1922 	if (write) {
1923 		/* Lock to make assertions happy... */
1924 		mutex_lock(&journal->j_checkpoint_mutex);
1925 		jbd2_mark_journal_empty(journal);
1926 		mutex_unlock(&journal->j_checkpoint_mutex);
1927 	}
1928 
1929  no_recovery:
1930 	return err;
1931 }
1932 
1933 /*
1934  * Journal abort has very specific semantics, which we describe
1935  * for journal abort.
1936  *
1937  * Two internal functions, which provide abort to the jbd layer
1938  * itself are here.
1939  */
1940 
1941 /*
1942  * Quick version for internal journal use (doesn't lock the journal).
1943  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1944  * and don't attempt to make any other journal updates.
1945  */
1946 void __jbd2_journal_abort_hard(journal_t *journal)
1947 {
1948 	transaction_t *transaction;
1949 
1950 	if (journal->j_flags & JBD2_ABORT)
1951 		return;
1952 
1953 	printk(KERN_ERR "Aborting journal on device %s.\n",
1954 	       journal->j_devname);
1955 
1956 	write_lock(&journal->j_state_lock);
1957 	journal->j_flags |= JBD2_ABORT;
1958 	transaction = journal->j_running_transaction;
1959 	if (transaction)
1960 		__jbd2_log_start_commit(journal, transaction->t_tid);
1961 	write_unlock(&journal->j_state_lock);
1962 }
1963 
1964 /* Soft abort: record the abort error status in the journal superblock,
1965  * but don't do any other IO. */
1966 static void __journal_abort_soft (journal_t *journal, int errno)
1967 {
1968 	if (journal->j_flags & JBD2_ABORT)
1969 		return;
1970 
1971 	if (!journal->j_errno)
1972 		journal->j_errno = errno;
1973 
1974 	__jbd2_journal_abort_hard(journal);
1975 
1976 	if (errno)
1977 		jbd2_journal_update_sb_errno(journal);
1978 }
1979 
1980 /**
1981  * void jbd2_journal_abort () - Shutdown the journal immediately.
1982  * @journal: the journal to shutdown.
1983  * @errno:   an error number to record in the journal indicating
1984  *           the reason for the shutdown.
1985  *
1986  * Perform a complete, immediate shutdown of the ENTIRE
1987  * journal (not of a single transaction).  This operation cannot be
1988  * undone without closing and reopening the journal.
1989  *
1990  * The jbd2_journal_abort function is intended to support higher level error
1991  * recovery mechanisms such as the ext2/ext3 remount-readonly error
1992  * mode.
1993  *
1994  * Journal abort has very specific semantics.  Any existing dirty,
1995  * unjournaled buffers in the main filesystem will still be written to
1996  * disk by bdflush, but the journaling mechanism will be suspended
1997  * immediately and no further transaction commits will be honoured.
1998  *
1999  * Any dirty, journaled buffers will be written back to disk without
2000  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2001  * filesystem, but we _do_ attempt to leave as much data as possible
2002  * behind for fsck to use for cleanup.
2003  *
2004  * Any attempt to get a new transaction handle on a journal which is in
2005  * ABORT state will just result in an -EROFS error return.  A
2006  * jbd2_journal_stop on an existing handle will return -EIO if we have
2007  * entered abort state during the update.
2008  *
2009  * Recursive transactions are not disturbed by journal abort until the
2010  * final jbd2_journal_stop, which will receive the -EIO error.
2011  *
2012  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2013  * which will be recorded (if possible) in the journal superblock.  This
2014  * allows a client to record failure conditions in the middle of a
2015  * transaction without having to complete the transaction to record the
2016  * failure to disk.  ext3_error, for example, now uses this
2017  * functionality.
2018  *
2019  * Errors which originate from within the journaling layer will NOT
2020  * supply an errno; a null errno implies that absolutely no further
2021  * writes are done to the journal (unless there are any already in
2022  * progress).
2023  *
2024  */
2025 
2026 void jbd2_journal_abort(journal_t *journal, int errno)
2027 {
2028 	__journal_abort_soft(journal, errno);
2029 }
2030 
2031 /**
2032  * int jbd2_journal_errno () - returns the journal's error state.
2033  * @journal: journal to examine.
2034  *
2035  * This is the errno number set with jbd2_journal_abort(), the last
2036  * time the journal was mounted - if the journal was stopped
2037  * without calling abort this will be 0.
2038  *
2039  * If the journal has been aborted on this mount time -EROFS will
2040  * be returned.
2041  */
2042 int jbd2_journal_errno(journal_t *journal)
2043 {
2044 	int err;
2045 
2046 	read_lock(&journal->j_state_lock);
2047 	if (journal->j_flags & JBD2_ABORT)
2048 		err = -EROFS;
2049 	else
2050 		err = journal->j_errno;
2051 	read_unlock(&journal->j_state_lock);
2052 	return err;
2053 }
2054 
2055 /**
2056  * int jbd2_journal_clear_err () - clears the journal's error state
2057  * @journal: journal to act on.
2058  *
2059  * An error must be cleared or acked to take a FS out of readonly
2060  * mode.
2061  */
2062 int jbd2_journal_clear_err(journal_t *journal)
2063 {
2064 	int err = 0;
2065 
2066 	write_lock(&journal->j_state_lock);
2067 	if (journal->j_flags & JBD2_ABORT)
2068 		err = -EROFS;
2069 	else
2070 		journal->j_errno = 0;
2071 	write_unlock(&journal->j_state_lock);
2072 	return err;
2073 }
2074 
2075 /**
2076  * void jbd2_journal_ack_err() - Ack journal err.
2077  * @journal: journal to act on.
2078  *
2079  * An error must be cleared or acked to take a FS out of readonly
2080  * mode.
2081  */
2082 void jbd2_journal_ack_err(journal_t *journal)
2083 {
2084 	write_lock(&journal->j_state_lock);
2085 	if (journal->j_errno)
2086 		journal->j_flags |= JBD2_ACK_ERR;
2087 	write_unlock(&journal->j_state_lock);
2088 }
2089 
2090 int jbd2_journal_blocks_per_page(struct inode *inode)
2091 {
2092 	return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
2093 }
2094 
2095 /*
2096  * helper functions to deal with 32 or 64bit block numbers.
2097  */
2098 size_t journal_tag_bytes(journal_t *journal)
2099 {
2100 	journal_block_tag_t tag;
2101 	size_t x = 0;
2102 
2103 	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2))
2104 		x += sizeof(tag.t_checksum);
2105 
2106 	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT))
2107 		return x + JBD2_TAG_SIZE64;
2108 	else
2109 		return x + JBD2_TAG_SIZE32;
2110 }
2111 
2112 /*
2113  * JBD memory management
2114  *
2115  * These functions are used to allocate block-sized chunks of memory
2116  * used for making copies of buffer_head data.  Very often it will be
2117  * page-sized chunks of data, but sometimes it will be in
2118  * sub-page-size chunks.  (For example, 16k pages on Power systems
2119  * with a 4k block file system.)  For blocks smaller than a page, we
2120  * use a SLAB allocator.  There are slab caches for each block size,
2121  * which are allocated at mount time, if necessary, and we only free
2122  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2123  * this reason we don't need to a mutex to protect access to
2124  * jbd2_slab[] allocating or releasing memory; only in
2125  * jbd2_journal_create_slab().
2126  */
2127 #define JBD2_MAX_SLABS 8
2128 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2129 
2130 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2131 	"jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2132 	"jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2133 };
2134 
2135 
2136 static void jbd2_journal_destroy_slabs(void)
2137 {
2138 	int i;
2139 
2140 	for (i = 0; i < JBD2_MAX_SLABS; i++) {
2141 		if (jbd2_slab[i])
2142 			kmem_cache_destroy(jbd2_slab[i]);
2143 		jbd2_slab[i] = NULL;
2144 	}
2145 }
2146 
2147 static int jbd2_journal_create_slab(size_t size)
2148 {
2149 	static DEFINE_MUTEX(jbd2_slab_create_mutex);
2150 	int i = order_base_2(size) - 10;
2151 	size_t slab_size;
2152 
2153 	if (size == PAGE_SIZE)
2154 		return 0;
2155 
2156 	if (i >= JBD2_MAX_SLABS)
2157 		return -EINVAL;
2158 
2159 	if (unlikely(i < 0))
2160 		i = 0;
2161 	mutex_lock(&jbd2_slab_create_mutex);
2162 	if (jbd2_slab[i]) {
2163 		mutex_unlock(&jbd2_slab_create_mutex);
2164 		return 0;	/* Already created */
2165 	}
2166 
2167 	slab_size = 1 << (i+10);
2168 	jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2169 					 slab_size, 0, NULL);
2170 	mutex_unlock(&jbd2_slab_create_mutex);
2171 	if (!jbd2_slab[i]) {
2172 		printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2173 		return -ENOMEM;
2174 	}
2175 	return 0;
2176 }
2177 
2178 static struct kmem_cache *get_slab(size_t size)
2179 {
2180 	int i = order_base_2(size) - 10;
2181 
2182 	BUG_ON(i >= JBD2_MAX_SLABS);
2183 	if (unlikely(i < 0))
2184 		i = 0;
2185 	BUG_ON(jbd2_slab[i] == NULL);
2186 	return jbd2_slab[i];
2187 }
2188 
2189 void *jbd2_alloc(size_t size, gfp_t flags)
2190 {
2191 	void *ptr;
2192 
2193 	BUG_ON(size & (size-1)); /* Must be a power of 2 */
2194 
2195 	flags |= __GFP_REPEAT;
2196 	if (size == PAGE_SIZE)
2197 		ptr = (void *)__get_free_pages(flags, 0);
2198 	else if (size > PAGE_SIZE) {
2199 		int order = get_order(size);
2200 
2201 		if (order < 3)
2202 			ptr = (void *)__get_free_pages(flags, order);
2203 		else
2204 			ptr = vmalloc(size);
2205 	} else
2206 		ptr = kmem_cache_alloc(get_slab(size), flags);
2207 
2208 	/* Check alignment; SLUB has gotten this wrong in the past,
2209 	 * and this can lead to user data corruption! */
2210 	BUG_ON(((unsigned long) ptr) & (size-1));
2211 
2212 	return ptr;
2213 }
2214 
2215 void jbd2_free(void *ptr, size_t size)
2216 {
2217 	if (size == PAGE_SIZE) {
2218 		free_pages((unsigned long)ptr, 0);
2219 		return;
2220 	}
2221 	if (size > PAGE_SIZE) {
2222 		int order = get_order(size);
2223 
2224 		if (order < 3)
2225 			free_pages((unsigned long)ptr, order);
2226 		else
2227 			vfree(ptr);
2228 		return;
2229 	}
2230 	kmem_cache_free(get_slab(size), ptr);
2231 };
2232 
2233 /*
2234  * Journal_head storage management
2235  */
2236 static struct kmem_cache *jbd2_journal_head_cache;
2237 #ifdef CONFIG_JBD2_DEBUG
2238 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2239 #endif
2240 
2241 static int jbd2_journal_init_journal_head_cache(void)
2242 {
2243 	int retval;
2244 
2245 	J_ASSERT(jbd2_journal_head_cache == NULL);
2246 	jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2247 				sizeof(struct journal_head),
2248 				0,		/* offset */
2249 				SLAB_TEMPORARY,	/* flags */
2250 				NULL);		/* ctor */
2251 	retval = 0;
2252 	if (!jbd2_journal_head_cache) {
2253 		retval = -ENOMEM;
2254 		printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2255 	}
2256 	return retval;
2257 }
2258 
2259 static void jbd2_journal_destroy_journal_head_cache(void)
2260 {
2261 	if (jbd2_journal_head_cache) {
2262 		kmem_cache_destroy(jbd2_journal_head_cache);
2263 		jbd2_journal_head_cache = NULL;
2264 	}
2265 }
2266 
2267 /*
2268  * journal_head splicing and dicing
2269  */
2270 static struct journal_head *journal_alloc_journal_head(void)
2271 {
2272 	struct journal_head *ret;
2273 
2274 #ifdef CONFIG_JBD2_DEBUG
2275 	atomic_inc(&nr_journal_heads);
2276 #endif
2277 	ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
2278 	if (!ret) {
2279 		jbd_debug(1, "out of memory for journal_head\n");
2280 		pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2281 		while (!ret) {
2282 			yield();
2283 			ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
2284 		}
2285 	}
2286 	return ret;
2287 }
2288 
2289 static void journal_free_journal_head(struct journal_head *jh)
2290 {
2291 #ifdef CONFIG_JBD2_DEBUG
2292 	atomic_dec(&nr_journal_heads);
2293 	memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2294 #endif
2295 	kmem_cache_free(jbd2_journal_head_cache, jh);
2296 }
2297 
2298 /*
2299  * A journal_head is attached to a buffer_head whenever JBD has an
2300  * interest in the buffer.
2301  *
2302  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2303  * is set.  This bit is tested in core kernel code where we need to take
2304  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2305  * there.
2306  *
2307  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2308  *
2309  * When a buffer has its BH_JBD bit set it is immune from being released by
2310  * core kernel code, mainly via ->b_count.
2311  *
2312  * A journal_head is detached from its buffer_head when the journal_head's
2313  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2314  * transaction (b_cp_transaction) hold their references to b_jcount.
2315  *
2316  * Various places in the kernel want to attach a journal_head to a buffer_head
2317  * _before_ attaching the journal_head to a transaction.  To protect the
2318  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2319  * journal_head's b_jcount refcount by one.  The caller must call
2320  * jbd2_journal_put_journal_head() to undo this.
2321  *
2322  * So the typical usage would be:
2323  *
2324  *	(Attach a journal_head if needed.  Increments b_jcount)
2325  *	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2326  *	...
2327  *      (Get another reference for transaction)
2328  *	jbd2_journal_grab_journal_head(bh);
2329  *	jh->b_transaction = xxx;
2330  *	(Put original reference)
2331  *	jbd2_journal_put_journal_head(jh);
2332  */
2333 
2334 /*
2335  * Give a buffer_head a journal_head.
2336  *
2337  * May sleep.
2338  */
2339 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2340 {
2341 	struct journal_head *jh;
2342 	struct journal_head *new_jh = NULL;
2343 
2344 repeat:
2345 	if (!buffer_jbd(bh)) {
2346 		new_jh = journal_alloc_journal_head();
2347 		memset(new_jh, 0, sizeof(*new_jh));
2348 	}
2349 
2350 	jbd_lock_bh_journal_head(bh);
2351 	if (buffer_jbd(bh)) {
2352 		jh = bh2jh(bh);
2353 	} else {
2354 		J_ASSERT_BH(bh,
2355 			(atomic_read(&bh->b_count) > 0) ||
2356 			(bh->b_page && bh->b_page->mapping));
2357 
2358 		if (!new_jh) {
2359 			jbd_unlock_bh_journal_head(bh);
2360 			goto repeat;
2361 		}
2362 
2363 		jh = new_jh;
2364 		new_jh = NULL;		/* We consumed it */
2365 		set_buffer_jbd(bh);
2366 		bh->b_private = jh;
2367 		jh->b_bh = bh;
2368 		get_bh(bh);
2369 		BUFFER_TRACE(bh, "added journal_head");
2370 	}
2371 	jh->b_jcount++;
2372 	jbd_unlock_bh_journal_head(bh);
2373 	if (new_jh)
2374 		journal_free_journal_head(new_jh);
2375 	return bh->b_private;
2376 }
2377 
2378 /*
2379  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2380  * having a journal_head, return NULL
2381  */
2382 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2383 {
2384 	struct journal_head *jh = NULL;
2385 
2386 	jbd_lock_bh_journal_head(bh);
2387 	if (buffer_jbd(bh)) {
2388 		jh = bh2jh(bh);
2389 		jh->b_jcount++;
2390 	}
2391 	jbd_unlock_bh_journal_head(bh);
2392 	return jh;
2393 }
2394 
2395 static void __journal_remove_journal_head(struct buffer_head *bh)
2396 {
2397 	struct journal_head *jh = bh2jh(bh);
2398 
2399 	J_ASSERT_JH(jh, jh->b_jcount >= 0);
2400 	J_ASSERT_JH(jh, jh->b_transaction == NULL);
2401 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2402 	J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2403 	J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2404 	J_ASSERT_BH(bh, buffer_jbd(bh));
2405 	J_ASSERT_BH(bh, jh2bh(jh) == bh);
2406 	BUFFER_TRACE(bh, "remove journal_head");
2407 	if (jh->b_frozen_data) {
2408 		printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2409 		jbd2_free(jh->b_frozen_data, bh->b_size);
2410 	}
2411 	if (jh->b_committed_data) {
2412 		printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2413 		jbd2_free(jh->b_committed_data, bh->b_size);
2414 	}
2415 	bh->b_private = NULL;
2416 	jh->b_bh = NULL;	/* debug, really */
2417 	clear_buffer_jbd(bh);
2418 	journal_free_journal_head(jh);
2419 }
2420 
2421 /*
2422  * Drop a reference on the passed journal_head.  If it fell to zero then
2423  * release the journal_head from the buffer_head.
2424  */
2425 void jbd2_journal_put_journal_head(struct journal_head *jh)
2426 {
2427 	struct buffer_head *bh = jh2bh(jh);
2428 
2429 	jbd_lock_bh_journal_head(bh);
2430 	J_ASSERT_JH(jh, jh->b_jcount > 0);
2431 	--jh->b_jcount;
2432 	if (!jh->b_jcount) {
2433 		__journal_remove_journal_head(bh);
2434 		jbd_unlock_bh_journal_head(bh);
2435 		__brelse(bh);
2436 	} else
2437 		jbd_unlock_bh_journal_head(bh);
2438 }
2439 
2440 /*
2441  * Initialize jbd inode head
2442  */
2443 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2444 {
2445 	jinode->i_transaction = NULL;
2446 	jinode->i_next_transaction = NULL;
2447 	jinode->i_vfs_inode = inode;
2448 	jinode->i_flags = 0;
2449 	INIT_LIST_HEAD(&jinode->i_list);
2450 }
2451 
2452 /*
2453  * Function to be called before we start removing inode from memory (i.e.,
2454  * clear_inode() is a fine place to be called from). It removes inode from
2455  * transaction's lists.
2456  */
2457 void jbd2_journal_release_jbd_inode(journal_t *journal,
2458 				    struct jbd2_inode *jinode)
2459 {
2460 	if (!journal)
2461 		return;
2462 restart:
2463 	spin_lock(&journal->j_list_lock);
2464 	/* Is commit writing out inode - we have to wait */
2465 	if (test_bit(__JI_COMMIT_RUNNING, &jinode->i_flags)) {
2466 		wait_queue_head_t *wq;
2467 		DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2468 		wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2469 		prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2470 		spin_unlock(&journal->j_list_lock);
2471 		schedule();
2472 		finish_wait(wq, &wait.wait);
2473 		goto restart;
2474 	}
2475 
2476 	if (jinode->i_transaction) {
2477 		list_del(&jinode->i_list);
2478 		jinode->i_transaction = NULL;
2479 	}
2480 	spin_unlock(&journal->j_list_lock);
2481 }
2482 
2483 /*
2484  * debugfs tunables
2485  */
2486 #ifdef CONFIG_JBD2_DEBUG
2487 u8 jbd2_journal_enable_debug __read_mostly;
2488 EXPORT_SYMBOL(jbd2_journal_enable_debug);
2489 
2490 #define JBD2_DEBUG_NAME "jbd2-debug"
2491 
2492 static struct dentry *jbd2_debugfs_dir;
2493 static struct dentry *jbd2_debug;
2494 
2495 static void __init jbd2_create_debugfs_entry(void)
2496 {
2497 	jbd2_debugfs_dir = debugfs_create_dir("jbd2", NULL);
2498 	if (jbd2_debugfs_dir)
2499 		jbd2_debug = debugfs_create_u8(JBD2_DEBUG_NAME,
2500 					       S_IRUGO | S_IWUSR,
2501 					       jbd2_debugfs_dir,
2502 					       &jbd2_journal_enable_debug);
2503 }
2504 
2505 static void __exit jbd2_remove_debugfs_entry(void)
2506 {
2507 	debugfs_remove(jbd2_debug);
2508 	debugfs_remove(jbd2_debugfs_dir);
2509 }
2510 
2511 #else
2512 
2513 static void __init jbd2_create_debugfs_entry(void)
2514 {
2515 }
2516 
2517 static void __exit jbd2_remove_debugfs_entry(void)
2518 {
2519 }
2520 
2521 #endif
2522 
2523 #ifdef CONFIG_PROC_FS
2524 
2525 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2526 
2527 static void __init jbd2_create_jbd_stats_proc_entry(void)
2528 {
2529 	proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2530 }
2531 
2532 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2533 {
2534 	if (proc_jbd2_stats)
2535 		remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2536 }
2537 
2538 #else
2539 
2540 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2541 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2542 
2543 #endif
2544 
2545 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2546 
2547 static int __init jbd2_journal_init_handle_cache(void)
2548 {
2549 	jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2550 	if (jbd2_handle_cache == NULL) {
2551 		printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2552 		return -ENOMEM;
2553 	}
2554 	jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2555 	if (jbd2_inode_cache == NULL) {
2556 		printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2557 		kmem_cache_destroy(jbd2_handle_cache);
2558 		return -ENOMEM;
2559 	}
2560 	return 0;
2561 }
2562 
2563 static void jbd2_journal_destroy_handle_cache(void)
2564 {
2565 	if (jbd2_handle_cache)
2566 		kmem_cache_destroy(jbd2_handle_cache);
2567 	if (jbd2_inode_cache)
2568 		kmem_cache_destroy(jbd2_inode_cache);
2569 
2570 }
2571 
2572 /*
2573  * Module startup and shutdown
2574  */
2575 
2576 static int __init journal_init_caches(void)
2577 {
2578 	int ret;
2579 
2580 	ret = jbd2_journal_init_revoke_caches();
2581 	if (ret == 0)
2582 		ret = jbd2_journal_init_journal_head_cache();
2583 	if (ret == 0)
2584 		ret = jbd2_journal_init_handle_cache();
2585 	if (ret == 0)
2586 		ret = jbd2_journal_init_transaction_cache();
2587 	return ret;
2588 }
2589 
2590 static void jbd2_journal_destroy_caches(void)
2591 {
2592 	jbd2_journal_destroy_revoke_caches();
2593 	jbd2_journal_destroy_journal_head_cache();
2594 	jbd2_journal_destroy_handle_cache();
2595 	jbd2_journal_destroy_transaction_cache();
2596 	jbd2_journal_destroy_slabs();
2597 }
2598 
2599 static int __init journal_init(void)
2600 {
2601 	int ret;
2602 
2603 	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2604 
2605 	ret = journal_init_caches();
2606 	if (ret == 0) {
2607 		jbd2_create_debugfs_entry();
2608 		jbd2_create_jbd_stats_proc_entry();
2609 	} else {
2610 		jbd2_journal_destroy_caches();
2611 	}
2612 	return ret;
2613 }
2614 
2615 static void __exit journal_exit(void)
2616 {
2617 #ifdef CONFIG_JBD2_DEBUG
2618 	int n = atomic_read(&nr_journal_heads);
2619 	if (n)
2620 		printk(KERN_EMERG "JBD2: leaked %d journal_heads!\n", n);
2621 #endif
2622 	jbd2_remove_debugfs_entry();
2623 	jbd2_remove_jbd_stats_proc_entry();
2624 	jbd2_journal_destroy_caches();
2625 }
2626 
2627 MODULE_LICENSE("GPL");
2628 module_init(journal_init);
2629 module_exit(journal_exit);
2630 
2631