1 /* 2 * linux/fs/jbd2/journal.c 3 * 4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 5 * 6 * Copyright 1998 Red Hat corp --- All Rights Reserved 7 * 8 * This file is part of the Linux kernel and is made available under 9 * the terms of the GNU General Public License, version 2, or at your 10 * option, any later version, incorporated herein by reference. 11 * 12 * Generic filesystem journal-writing code; part of the ext2fs 13 * journaling system. 14 * 15 * This file manages journals: areas of disk reserved for logging 16 * transactional updates. This includes the kernel journaling thread 17 * which is responsible for scheduling updates to the log. 18 * 19 * We do not actually manage the physical storage of the journal in this 20 * file: that is left to a per-journal policy function, which allows us 21 * to store the journal within a filesystem-specified area for ext2 22 * journaling (ext2 can use a reserved inode for storing the log). 23 */ 24 25 #include <linux/module.h> 26 #include <linux/time.h> 27 #include <linux/fs.h> 28 #include <linux/jbd2.h> 29 #include <linux/errno.h> 30 #include <linux/slab.h> 31 #include <linux/init.h> 32 #include <linux/mm.h> 33 #include <linux/freezer.h> 34 #include <linux/pagemap.h> 35 #include <linux/kthread.h> 36 #include <linux/poison.h> 37 #include <linux/proc_fs.h> 38 #include <linux/debugfs.h> 39 #include <linux/seq_file.h> 40 #include <linux/math64.h> 41 #include <linux/hash.h> 42 #include <linux/log2.h> 43 #include <linux/vmalloc.h> 44 #include <linux/backing-dev.h> 45 #include <linux/bitops.h> 46 #include <linux/ratelimit.h> 47 48 #define CREATE_TRACE_POINTS 49 #include <trace/events/jbd2.h> 50 51 #include <asm/uaccess.h> 52 #include <asm/page.h> 53 54 EXPORT_SYMBOL(jbd2_journal_extend); 55 EXPORT_SYMBOL(jbd2_journal_stop); 56 EXPORT_SYMBOL(jbd2_journal_lock_updates); 57 EXPORT_SYMBOL(jbd2_journal_unlock_updates); 58 EXPORT_SYMBOL(jbd2_journal_get_write_access); 59 EXPORT_SYMBOL(jbd2_journal_get_create_access); 60 EXPORT_SYMBOL(jbd2_journal_get_undo_access); 61 EXPORT_SYMBOL(jbd2_journal_set_triggers); 62 EXPORT_SYMBOL(jbd2_journal_dirty_metadata); 63 EXPORT_SYMBOL(jbd2_journal_release_buffer); 64 EXPORT_SYMBOL(jbd2_journal_forget); 65 #if 0 66 EXPORT_SYMBOL(journal_sync_buffer); 67 #endif 68 EXPORT_SYMBOL(jbd2_journal_flush); 69 EXPORT_SYMBOL(jbd2_journal_revoke); 70 71 EXPORT_SYMBOL(jbd2_journal_init_dev); 72 EXPORT_SYMBOL(jbd2_journal_init_inode); 73 EXPORT_SYMBOL(jbd2_journal_check_used_features); 74 EXPORT_SYMBOL(jbd2_journal_check_available_features); 75 EXPORT_SYMBOL(jbd2_journal_set_features); 76 EXPORT_SYMBOL(jbd2_journal_load); 77 EXPORT_SYMBOL(jbd2_journal_destroy); 78 EXPORT_SYMBOL(jbd2_journal_abort); 79 EXPORT_SYMBOL(jbd2_journal_errno); 80 EXPORT_SYMBOL(jbd2_journal_ack_err); 81 EXPORT_SYMBOL(jbd2_journal_clear_err); 82 EXPORT_SYMBOL(jbd2_log_wait_commit); 83 EXPORT_SYMBOL(jbd2_log_start_commit); 84 EXPORT_SYMBOL(jbd2_journal_start_commit); 85 EXPORT_SYMBOL(jbd2_journal_force_commit_nested); 86 EXPORT_SYMBOL(jbd2_journal_wipe); 87 EXPORT_SYMBOL(jbd2_journal_blocks_per_page); 88 EXPORT_SYMBOL(jbd2_journal_invalidatepage); 89 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers); 90 EXPORT_SYMBOL(jbd2_journal_force_commit); 91 EXPORT_SYMBOL(jbd2_journal_file_inode); 92 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode); 93 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode); 94 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate); 95 EXPORT_SYMBOL(jbd2_inode_cache); 96 97 static void __journal_abort_soft (journal_t *journal, int errno); 98 static int jbd2_journal_create_slab(size_t slab_size); 99 100 /* Checksumming functions */ 101 int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb) 102 { 103 if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2)) 104 return 1; 105 106 return sb->s_checksum_type == JBD2_CRC32C_CHKSUM; 107 } 108 109 static __u32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb) 110 { 111 __u32 csum, old_csum; 112 113 old_csum = sb->s_checksum; 114 sb->s_checksum = 0; 115 csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t)); 116 sb->s_checksum = old_csum; 117 118 return cpu_to_be32(csum); 119 } 120 121 int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb) 122 { 123 if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2)) 124 return 1; 125 126 return sb->s_checksum == jbd2_superblock_csum(j, sb); 127 } 128 129 void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb) 130 { 131 if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2)) 132 return; 133 134 sb->s_checksum = jbd2_superblock_csum(j, sb); 135 } 136 137 /* 138 * Helper function used to manage commit timeouts 139 */ 140 141 static void commit_timeout(unsigned long __data) 142 { 143 struct task_struct * p = (struct task_struct *) __data; 144 145 wake_up_process(p); 146 } 147 148 /* 149 * kjournald2: The main thread function used to manage a logging device 150 * journal. 151 * 152 * This kernel thread is responsible for two things: 153 * 154 * 1) COMMIT: Every so often we need to commit the current state of the 155 * filesystem to disk. The journal thread is responsible for writing 156 * all of the metadata buffers to disk. 157 * 158 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all 159 * of the data in that part of the log has been rewritten elsewhere on 160 * the disk. Flushing these old buffers to reclaim space in the log is 161 * known as checkpointing, and this thread is responsible for that job. 162 */ 163 164 static int kjournald2(void *arg) 165 { 166 journal_t *journal = arg; 167 transaction_t *transaction; 168 169 /* 170 * Set up an interval timer which can be used to trigger a commit wakeup 171 * after the commit interval expires 172 */ 173 setup_timer(&journal->j_commit_timer, commit_timeout, 174 (unsigned long)current); 175 176 set_freezable(); 177 178 /* Record that the journal thread is running */ 179 journal->j_task = current; 180 wake_up(&journal->j_wait_done_commit); 181 182 /* 183 * And now, wait forever for commit wakeup events. 184 */ 185 write_lock(&journal->j_state_lock); 186 187 loop: 188 if (journal->j_flags & JBD2_UNMOUNT) 189 goto end_loop; 190 191 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n", 192 journal->j_commit_sequence, journal->j_commit_request); 193 194 if (journal->j_commit_sequence != journal->j_commit_request) { 195 jbd_debug(1, "OK, requests differ\n"); 196 write_unlock(&journal->j_state_lock); 197 del_timer_sync(&journal->j_commit_timer); 198 jbd2_journal_commit_transaction(journal); 199 write_lock(&journal->j_state_lock); 200 goto loop; 201 } 202 203 wake_up(&journal->j_wait_done_commit); 204 if (freezing(current)) { 205 /* 206 * The simpler the better. Flushing journal isn't a 207 * good idea, because that depends on threads that may 208 * be already stopped. 209 */ 210 jbd_debug(1, "Now suspending kjournald2\n"); 211 write_unlock(&journal->j_state_lock); 212 try_to_freeze(); 213 write_lock(&journal->j_state_lock); 214 } else { 215 /* 216 * We assume on resume that commits are already there, 217 * so we don't sleep 218 */ 219 DEFINE_WAIT(wait); 220 int should_sleep = 1; 221 222 prepare_to_wait(&journal->j_wait_commit, &wait, 223 TASK_INTERRUPTIBLE); 224 if (journal->j_commit_sequence != journal->j_commit_request) 225 should_sleep = 0; 226 transaction = journal->j_running_transaction; 227 if (transaction && time_after_eq(jiffies, 228 transaction->t_expires)) 229 should_sleep = 0; 230 if (journal->j_flags & JBD2_UNMOUNT) 231 should_sleep = 0; 232 if (should_sleep) { 233 write_unlock(&journal->j_state_lock); 234 schedule(); 235 write_lock(&journal->j_state_lock); 236 } 237 finish_wait(&journal->j_wait_commit, &wait); 238 } 239 240 jbd_debug(1, "kjournald2 wakes\n"); 241 242 /* 243 * Were we woken up by a commit wakeup event? 244 */ 245 transaction = journal->j_running_transaction; 246 if (transaction && time_after_eq(jiffies, transaction->t_expires)) { 247 journal->j_commit_request = transaction->t_tid; 248 jbd_debug(1, "woke because of timeout\n"); 249 } 250 goto loop; 251 252 end_loop: 253 write_unlock(&journal->j_state_lock); 254 del_timer_sync(&journal->j_commit_timer); 255 journal->j_task = NULL; 256 wake_up(&journal->j_wait_done_commit); 257 jbd_debug(1, "Journal thread exiting.\n"); 258 return 0; 259 } 260 261 static int jbd2_journal_start_thread(journal_t *journal) 262 { 263 struct task_struct *t; 264 265 t = kthread_run(kjournald2, journal, "jbd2/%s", 266 journal->j_devname); 267 if (IS_ERR(t)) 268 return PTR_ERR(t); 269 270 wait_event(journal->j_wait_done_commit, journal->j_task != NULL); 271 return 0; 272 } 273 274 static void journal_kill_thread(journal_t *journal) 275 { 276 write_lock(&journal->j_state_lock); 277 journal->j_flags |= JBD2_UNMOUNT; 278 279 while (journal->j_task) { 280 wake_up(&journal->j_wait_commit); 281 write_unlock(&journal->j_state_lock); 282 wait_event(journal->j_wait_done_commit, journal->j_task == NULL); 283 write_lock(&journal->j_state_lock); 284 } 285 write_unlock(&journal->j_state_lock); 286 } 287 288 /* 289 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal. 290 * 291 * Writes a metadata buffer to a given disk block. The actual IO is not 292 * performed but a new buffer_head is constructed which labels the data 293 * to be written with the correct destination disk block. 294 * 295 * Any magic-number escaping which needs to be done will cause a 296 * copy-out here. If the buffer happens to start with the 297 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the 298 * magic number is only written to the log for descripter blocks. In 299 * this case, we copy the data and replace the first word with 0, and we 300 * return a result code which indicates that this buffer needs to be 301 * marked as an escaped buffer in the corresponding log descriptor 302 * block. The missing word can then be restored when the block is read 303 * during recovery. 304 * 305 * If the source buffer has already been modified by a new transaction 306 * since we took the last commit snapshot, we use the frozen copy of 307 * that data for IO. If we end up using the existing buffer_head's data 308 * for the write, then we *have* to lock the buffer to prevent anyone 309 * else from using and possibly modifying it while the IO is in 310 * progress. 311 * 312 * The function returns a pointer to the buffer_heads to be used for IO. 313 * 314 * We assume that the journal has already been locked in this function. 315 * 316 * Return value: 317 * <0: Error 318 * >=0: Finished OK 319 * 320 * On success: 321 * Bit 0 set == escape performed on the data 322 * Bit 1 set == buffer copy-out performed (kfree the data after IO) 323 */ 324 325 int jbd2_journal_write_metadata_buffer(transaction_t *transaction, 326 struct journal_head *jh_in, 327 struct journal_head **jh_out, 328 unsigned long long blocknr) 329 { 330 int need_copy_out = 0; 331 int done_copy_out = 0; 332 int do_escape = 0; 333 char *mapped_data; 334 struct buffer_head *new_bh; 335 struct journal_head *new_jh; 336 struct page *new_page; 337 unsigned int new_offset; 338 struct buffer_head *bh_in = jh2bh(jh_in); 339 journal_t *journal = transaction->t_journal; 340 341 /* 342 * The buffer really shouldn't be locked: only the current committing 343 * transaction is allowed to write it, so nobody else is allowed 344 * to do any IO. 345 * 346 * akpm: except if we're journalling data, and write() output is 347 * also part of a shared mapping, and another thread has 348 * decided to launch a writepage() against this buffer. 349 */ 350 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in)); 351 352 retry_alloc: 353 new_bh = alloc_buffer_head(GFP_NOFS); 354 if (!new_bh) { 355 /* 356 * Failure is not an option, but __GFP_NOFAIL is going 357 * away; so we retry ourselves here. 358 */ 359 congestion_wait(BLK_RW_ASYNC, HZ/50); 360 goto retry_alloc; 361 } 362 363 /* keep subsequent assertions sane */ 364 new_bh->b_state = 0; 365 init_buffer(new_bh, NULL, NULL); 366 atomic_set(&new_bh->b_count, 1); 367 new_jh = jbd2_journal_add_journal_head(new_bh); /* This sleeps */ 368 369 /* 370 * If a new transaction has already done a buffer copy-out, then 371 * we use that version of the data for the commit. 372 */ 373 jbd_lock_bh_state(bh_in); 374 repeat: 375 if (jh_in->b_frozen_data) { 376 done_copy_out = 1; 377 new_page = virt_to_page(jh_in->b_frozen_data); 378 new_offset = offset_in_page(jh_in->b_frozen_data); 379 } else { 380 new_page = jh2bh(jh_in)->b_page; 381 new_offset = offset_in_page(jh2bh(jh_in)->b_data); 382 } 383 384 mapped_data = kmap_atomic(new_page); 385 /* 386 * Fire data frozen trigger if data already wasn't frozen. Do this 387 * before checking for escaping, as the trigger may modify the magic 388 * offset. If a copy-out happens afterwards, it will have the correct 389 * data in the buffer. 390 */ 391 if (!done_copy_out) 392 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset, 393 jh_in->b_triggers); 394 395 /* 396 * Check for escaping 397 */ 398 if (*((__be32 *)(mapped_data + new_offset)) == 399 cpu_to_be32(JBD2_MAGIC_NUMBER)) { 400 need_copy_out = 1; 401 do_escape = 1; 402 } 403 kunmap_atomic(mapped_data); 404 405 /* 406 * Do we need to do a data copy? 407 */ 408 if (need_copy_out && !done_copy_out) { 409 char *tmp; 410 411 jbd_unlock_bh_state(bh_in); 412 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS); 413 if (!tmp) { 414 jbd2_journal_put_journal_head(new_jh); 415 return -ENOMEM; 416 } 417 jbd_lock_bh_state(bh_in); 418 if (jh_in->b_frozen_data) { 419 jbd2_free(tmp, bh_in->b_size); 420 goto repeat; 421 } 422 423 jh_in->b_frozen_data = tmp; 424 mapped_data = kmap_atomic(new_page); 425 memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size); 426 kunmap_atomic(mapped_data); 427 428 new_page = virt_to_page(tmp); 429 new_offset = offset_in_page(tmp); 430 done_copy_out = 1; 431 432 /* 433 * This isn't strictly necessary, as we're using frozen 434 * data for the escaping, but it keeps consistency with 435 * b_frozen_data usage. 436 */ 437 jh_in->b_frozen_triggers = jh_in->b_triggers; 438 } 439 440 /* 441 * Did we need to do an escaping? Now we've done all the 442 * copying, we can finally do so. 443 */ 444 if (do_escape) { 445 mapped_data = kmap_atomic(new_page); 446 *((unsigned int *)(mapped_data + new_offset)) = 0; 447 kunmap_atomic(mapped_data); 448 } 449 450 set_bh_page(new_bh, new_page, new_offset); 451 new_jh->b_transaction = NULL; 452 new_bh->b_size = jh2bh(jh_in)->b_size; 453 new_bh->b_bdev = transaction->t_journal->j_dev; 454 new_bh->b_blocknr = blocknr; 455 set_buffer_mapped(new_bh); 456 set_buffer_dirty(new_bh); 457 458 *jh_out = new_jh; 459 460 /* 461 * The to-be-written buffer needs to get moved to the io queue, 462 * and the original buffer whose contents we are shadowing or 463 * copying is moved to the transaction's shadow queue. 464 */ 465 JBUFFER_TRACE(jh_in, "file as BJ_Shadow"); 466 spin_lock(&journal->j_list_lock); 467 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow); 468 spin_unlock(&journal->j_list_lock); 469 jbd_unlock_bh_state(bh_in); 470 471 JBUFFER_TRACE(new_jh, "file as BJ_IO"); 472 jbd2_journal_file_buffer(new_jh, transaction, BJ_IO); 473 474 return do_escape | (done_copy_out << 1); 475 } 476 477 /* 478 * Allocation code for the journal file. Manage the space left in the 479 * journal, so that we can begin checkpointing when appropriate. 480 */ 481 482 /* 483 * __jbd2_log_space_left: Return the number of free blocks left in the journal. 484 * 485 * Called with the journal already locked. 486 * 487 * Called under j_state_lock 488 */ 489 490 int __jbd2_log_space_left(journal_t *journal) 491 { 492 int left = journal->j_free; 493 494 /* assert_spin_locked(&journal->j_state_lock); */ 495 496 /* 497 * Be pessimistic here about the number of those free blocks which 498 * might be required for log descriptor control blocks. 499 */ 500 501 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */ 502 503 left -= MIN_LOG_RESERVED_BLOCKS; 504 505 if (left <= 0) 506 return 0; 507 left -= (left >> 3); 508 return left; 509 } 510 511 /* 512 * Called with j_state_lock locked for writing. 513 * Returns true if a transaction commit was started. 514 */ 515 int __jbd2_log_start_commit(journal_t *journal, tid_t target) 516 { 517 /* 518 * The only transaction we can possibly wait upon is the 519 * currently running transaction (if it exists). Otherwise, 520 * the target tid must be an old one. 521 */ 522 if (journal->j_running_transaction && 523 journal->j_running_transaction->t_tid == target) { 524 /* 525 * We want a new commit: OK, mark the request and wakeup the 526 * commit thread. We do _not_ do the commit ourselves. 527 */ 528 529 journal->j_commit_request = target; 530 jbd_debug(1, "JBD2: requesting commit %d/%d\n", 531 journal->j_commit_request, 532 journal->j_commit_sequence); 533 wake_up(&journal->j_wait_commit); 534 return 1; 535 } else if (!tid_geq(journal->j_commit_request, target)) 536 /* This should never happen, but if it does, preserve 537 the evidence before kjournald goes into a loop and 538 increments j_commit_sequence beyond all recognition. */ 539 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n", 540 journal->j_commit_request, 541 journal->j_commit_sequence, 542 target, journal->j_running_transaction ? 543 journal->j_running_transaction->t_tid : 0); 544 return 0; 545 } 546 547 int jbd2_log_start_commit(journal_t *journal, tid_t tid) 548 { 549 int ret; 550 551 write_lock(&journal->j_state_lock); 552 ret = __jbd2_log_start_commit(journal, tid); 553 write_unlock(&journal->j_state_lock); 554 return ret; 555 } 556 557 /* 558 * Force and wait upon a commit if the calling process is not within 559 * transaction. This is used for forcing out undo-protected data which contains 560 * bitmaps, when the fs is running out of space. 561 * 562 * We can only force the running transaction if we don't have an active handle; 563 * otherwise, we will deadlock. 564 * 565 * Returns true if a transaction was started. 566 */ 567 int jbd2_journal_force_commit_nested(journal_t *journal) 568 { 569 transaction_t *transaction = NULL; 570 tid_t tid; 571 int need_to_start = 0; 572 573 read_lock(&journal->j_state_lock); 574 if (journal->j_running_transaction && !current->journal_info) { 575 transaction = journal->j_running_transaction; 576 if (!tid_geq(journal->j_commit_request, transaction->t_tid)) 577 need_to_start = 1; 578 } else if (journal->j_committing_transaction) 579 transaction = journal->j_committing_transaction; 580 581 if (!transaction) { 582 read_unlock(&journal->j_state_lock); 583 return 0; /* Nothing to retry */ 584 } 585 586 tid = transaction->t_tid; 587 read_unlock(&journal->j_state_lock); 588 if (need_to_start) 589 jbd2_log_start_commit(journal, tid); 590 jbd2_log_wait_commit(journal, tid); 591 return 1; 592 } 593 594 /* 595 * Start a commit of the current running transaction (if any). Returns true 596 * if a transaction is going to be committed (or is currently already 597 * committing), and fills its tid in at *ptid 598 */ 599 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid) 600 { 601 int ret = 0; 602 603 write_lock(&journal->j_state_lock); 604 if (journal->j_running_transaction) { 605 tid_t tid = journal->j_running_transaction->t_tid; 606 607 __jbd2_log_start_commit(journal, tid); 608 /* There's a running transaction and we've just made sure 609 * it's commit has been scheduled. */ 610 if (ptid) 611 *ptid = tid; 612 ret = 1; 613 } else if (journal->j_committing_transaction) { 614 /* 615 * If ext3_write_super() recently started a commit, then we 616 * have to wait for completion of that transaction 617 */ 618 if (ptid) 619 *ptid = journal->j_committing_transaction->t_tid; 620 ret = 1; 621 } 622 write_unlock(&journal->j_state_lock); 623 return ret; 624 } 625 626 /* 627 * Return 1 if a given transaction has not yet sent barrier request 628 * connected with a transaction commit. If 0 is returned, transaction 629 * may or may not have sent the barrier. Used to avoid sending barrier 630 * twice in common cases. 631 */ 632 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid) 633 { 634 int ret = 0; 635 transaction_t *commit_trans; 636 637 if (!(journal->j_flags & JBD2_BARRIER)) 638 return 0; 639 read_lock(&journal->j_state_lock); 640 /* Transaction already committed? */ 641 if (tid_geq(journal->j_commit_sequence, tid)) 642 goto out; 643 commit_trans = journal->j_committing_transaction; 644 if (!commit_trans || commit_trans->t_tid != tid) { 645 ret = 1; 646 goto out; 647 } 648 /* 649 * Transaction is being committed and we already proceeded to 650 * submitting a flush to fs partition? 651 */ 652 if (journal->j_fs_dev != journal->j_dev) { 653 if (!commit_trans->t_need_data_flush || 654 commit_trans->t_state >= T_COMMIT_DFLUSH) 655 goto out; 656 } else { 657 if (commit_trans->t_state >= T_COMMIT_JFLUSH) 658 goto out; 659 } 660 ret = 1; 661 out: 662 read_unlock(&journal->j_state_lock); 663 return ret; 664 } 665 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier); 666 667 /* 668 * Wait for a specified commit to complete. 669 * The caller may not hold the journal lock. 670 */ 671 int jbd2_log_wait_commit(journal_t *journal, tid_t tid) 672 { 673 int err = 0; 674 675 read_lock(&journal->j_state_lock); 676 #ifdef CONFIG_JBD2_DEBUG 677 if (!tid_geq(journal->j_commit_request, tid)) { 678 printk(KERN_EMERG 679 "%s: error: j_commit_request=%d, tid=%d\n", 680 __func__, journal->j_commit_request, tid); 681 } 682 #endif 683 while (tid_gt(tid, journal->j_commit_sequence)) { 684 jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n", 685 tid, journal->j_commit_sequence); 686 wake_up(&journal->j_wait_commit); 687 read_unlock(&journal->j_state_lock); 688 wait_event(journal->j_wait_done_commit, 689 !tid_gt(tid, journal->j_commit_sequence)); 690 read_lock(&journal->j_state_lock); 691 } 692 read_unlock(&journal->j_state_lock); 693 694 if (unlikely(is_journal_aborted(journal))) { 695 printk(KERN_EMERG "journal commit I/O error\n"); 696 err = -EIO; 697 } 698 return err; 699 } 700 701 /* 702 * Log buffer allocation routines: 703 */ 704 705 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp) 706 { 707 unsigned long blocknr; 708 709 write_lock(&journal->j_state_lock); 710 J_ASSERT(journal->j_free > 1); 711 712 blocknr = journal->j_head; 713 journal->j_head++; 714 journal->j_free--; 715 if (journal->j_head == journal->j_last) 716 journal->j_head = journal->j_first; 717 write_unlock(&journal->j_state_lock); 718 return jbd2_journal_bmap(journal, blocknr, retp); 719 } 720 721 /* 722 * Conversion of logical to physical block numbers for the journal 723 * 724 * On external journals the journal blocks are identity-mapped, so 725 * this is a no-op. If needed, we can use j_blk_offset - everything is 726 * ready. 727 */ 728 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr, 729 unsigned long long *retp) 730 { 731 int err = 0; 732 unsigned long long ret; 733 734 if (journal->j_inode) { 735 ret = bmap(journal->j_inode, blocknr); 736 if (ret) 737 *retp = ret; 738 else { 739 printk(KERN_ALERT "%s: journal block not found " 740 "at offset %lu on %s\n", 741 __func__, blocknr, journal->j_devname); 742 err = -EIO; 743 __journal_abort_soft(journal, err); 744 } 745 } else { 746 *retp = blocknr; /* +journal->j_blk_offset */ 747 } 748 return err; 749 } 750 751 /* 752 * We play buffer_head aliasing tricks to write data/metadata blocks to 753 * the journal without copying their contents, but for journal 754 * descriptor blocks we do need to generate bona fide buffers. 755 * 756 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying 757 * the buffer's contents they really should run flush_dcache_page(bh->b_page). 758 * But we don't bother doing that, so there will be coherency problems with 759 * mmaps of blockdevs which hold live JBD-controlled filesystems. 760 */ 761 struct journal_head *jbd2_journal_get_descriptor_buffer(journal_t *journal) 762 { 763 struct buffer_head *bh; 764 unsigned long long blocknr; 765 int err; 766 767 err = jbd2_journal_next_log_block(journal, &blocknr); 768 769 if (err) 770 return NULL; 771 772 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize); 773 if (!bh) 774 return NULL; 775 lock_buffer(bh); 776 memset(bh->b_data, 0, journal->j_blocksize); 777 set_buffer_uptodate(bh); 778 unlock_buffer(bh); 779 BUFFER_TRACE(bh, "return this buffer"); 780 return jbd2_journal_add_journal_head(bh); 781 } 782 783 /* 784 * Return tid of the oldest transaction in the journal and block in the journal 785 * where the transaction starts. 786 * 787 * If the journal is now empty, return which will be the next transaction ID 788 * we will write and where will that transaction start. 789 * 790 * The return value is 0 if journal tail cannot be pushed any further, 1 if 791 * it can. 792 */ 793 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid, 794 unsigned long *block) 795 { 796 transaction_t *transaction; 797 int ret; 798 799 read_lock(&journal->j_state_lock); 800 spin_lock(&journal->j_list_lock); 801 transaction = journal->j_checkpoint_transactions; 802 if (transaction) { 803 *tid = transaction->t_tid; 804 *block = transaction->t_log_start; 805 } else if ((transaction = journal->j_committing_transaction) != NULL) { 806 *tid = transaction->t_tid; 807 *block = transaction->t_log_start; 808 } else if ((transaction = journal->j_running_transaction) != NULL) { 809 *tid = transaction->t_tid; 810 *block = journal->j_head; 811 } else { 812 *tid = journal->j_transaction_sequence; 813 *block = journal->j_head; 814 } 815 ret = tid_gt(*tid, journal->j_tail_sequence); 816 spin_unlock(&journal->j_list_lock); 817 read_unlock(&journal->j_state_lock); 818 819 return ret; 820 } 821 822 /* 823 * Update information in journal structure and in on disk journal superblock 824 * about log tail. This function does not check whether information passed in 825 * really pushes log tail further. It's responsibility of the caller to make 826 * sure provided log tail information is valid (e.g. by holding 827 * j_checkpoint_mutex all the time between computing log tail and calling this 828 * function as is the case with jbd2_cleanup_journal_tail()). 829 * 830 * Requires j_checkpoint_mutex 831 */ 832 void __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block) 833 { 834 unsigned long freed; 835 836 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 837 838 /* 839 * We cannot afford for write to remain in drive's caches since as 840 * soon as we update j_tail, next transaction can start reusing journal 841 * space and if we lose sb update during power failure we'd replay 842 * old transaction with possibly newly overwritten data. 843 */ 844 jbd2_journal_update_sb_log_tail(journal, tid, block, WRITE_FUA); 845 write_lock(&journal->j_state_lock); 846 freed = block - journal->j_tail; 847 if (block < journal->j_tail) 848 freed += journal->j_last - journal->j_first; 849 850 trace_jbd2_update_log_tail(journal, tid, block, freed); 851 jbd_debug(1, 852 "Cleaning journal tail from %d to %d (offset %lu), " 853 "freeing %lu\n", 854 journal->j_tail_sequence, tid, block, freed); 855 856 journal->j_free += freed; 857 journal->j_tail_sequence = tid; 858 journal->j_tail = block; 859 write_unlock(&journal->j_state_lock); 860 } 861 862 /* 863 * This is a variaon of __jbd2_update_log_tail which checks for validity of 864 * provided log tail and locks j_checkpoint_mutex. So it is safe against races 865 * with other threads updating log tail. 866 */ 867 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block) 868 { 869 mutex_lock(&journal->j_checkpoint_mutex); 870 if (tid_gt(tid, journal->j_tail_sequence)) 871 __jbd2_update_log_tail(journal, tid, block); 872 mutex_unlock(&journal->j_checkpoint_mutex); 873 } 874 875 struct jbd2_stats_proc_session { 876 journal_t *journal; 877 struct transaction_stats_s *stats; 878 int start; 879 int max; 880 }; 881 882 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos) 883 { 884 return *pos ? NULL : SEQ_START_TOKEN; 885 } 886 887 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos) 888 { 889 return NULL; 890 } 891 892 static int jbd2_seq_info_show(struct seq_file *seq, void *v) 893 { 894 struct jbd2_stats_proc_session *s = seq->private; 895 896 if (v != SEQ_START_TOKEN) 897 return 0; 898 seq_printf(seq, "%lu transaction, each up to %u blocks\n", 899 s->stats->ts_tid, 900 s->journal->j_max_transaction_buffers); 901 if (s->stats->ts_tid == 0) 902 return 0; 903 seq_printf(seq, "average: \n %ums waiting for transaction\n", 904 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid)); 905 seq_printf(seq, " %ums running transaction\n", 906 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid)); 907 seq_printf(seq, " %ums transaction was being locked\n", 908 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid)); 909 seq_printf(seq, " %ums flushing data (in ordered mode)\n", 910 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid)); 911 seq_printf(seq, " %ums logging transaction\n", 912 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid)); 913 seq_printf(seq, " %lluus average transaction commit time\n", 914 div_u64(s->journal->j_average_commit_time, 1000)); 915 seq_printf(seq, " %lu handles per transaction\n", 916 s->stats->run.rs_handle_count / s->stats->ts_tid); 917 seq_printf(seq, " %lu blocks per transaction\n", 918 s->stats->run.rs_blocks / s->stats->ts_tid); 919 seq_printf(seq, " %lu logged blocks per transaction\n", 920 s->stats->run.rs_blocks_logged / s->stats->ts_tid); 921 return 0; 922 } 923 924 static void jbd2_seq_info_stop(struct seq_file *seq, void *v) 925 { 926 } 927 928 static const struct seq_operations jbd2_seq_info_ops = { 929 .start = jbd2_seq_info_start, 930 .next = jbd2_seq_info_next, 931 .stop = jbd2_seq_info_stop, 932 .show = jbd2_seq_info_show, 933 }; 934 935 static int jbd2_seq_info_open(struct inode *inode, struct file *file) 936 { 937 journal_t *journal = PDE(inode)->data; 938 struct jbd2_stats_proc_session *s; 939 int rc, size; 940 941 s = kmalloc(sizeof(*s), GFP_KERNEL); 942 if (s == NULL) 943 return -ENOMEM; 944 size = sizeof(struct transaction_stats_s); 945 s->stats = kmalloc(size, GFP_KERNEL); 946 if (s->stats == NULL) { 947 kfree(s); 948 return -ENOMEM; 949 } 950 spin_lock(&journal->j_history_lock); 951 memcpy(s->stats, &journal->j_stats, size); 952 s->journal = journal; 953 spin_unlock(&journal->j_history_lock); 954 955 rc = seq_open(file, &jbd2_seq_info_ops); 956 if (rc == 0) { 957 struct seq_file *m = file->private_data; 958 m->private = s; 959 } else { 960 kfree(s->stats); 961 kfree(s); 962 } 963 return rc; 964 965 } 966 967 static int jbd2_seq_info_release(struct inode *inode, struct file *file) 968 { 969 struct seq_file *seq = file->private_data; 970 struct jbd2_stats_proc_session *s = seq->private; 971 kfree(s->stats); 972 kfree(s); 973 return seq_release(inode, file); 974 } 975 976 static const struct file_operations jbd2_seq_info_fops = { 977 .owner = THIS_MODULE, 978 .open = jbd2_seq_info_open, 979 .read = seq_read, 980 .llseek = seq_lseek, 981 .release = jbd2_seq_info_release, 982 }; 983 984 static struct proc_dir_entry *proc_jbd2_stats; 985 986 static void jbd2_stats_proc_init(journal_t *journal) 987 { 988 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats); 989 if (journal->j_proc_entry) { 990 proc_create_data("info", S_IRUGO, journal->j_proc_entry, 991 &jbd2_seq_info_fops, journal); 992 } 993 } 994 995 static void jbd2_stats_proc_exit(journal_t *journal) 996 { 997 remove_proc_entry("info", journal->j_proc_entry); 998 remove_proc_entry(journal->j_devname, proc_jbd2_stats); 999 } 1000 1001 /* 1002 * Management for journal control blocks: functions to create and 1003 * destroy journal_t structures, and to initialise and read existing 1004 * journal blocks from disk. */ 1005 1006 /* First: create and setup a journal_t object in memory. We initialise 1007 * very few fields yet: that has to wait until we have created the 1008 * journal structures from from scratch, or loaded them from disk. */ 1009 1010 static journal_t * journal_init_common (void) 1011 { 1012 journal_t *journal; 1013 int err; 1014 1015 journal = kzalloc(sizeof(*journal), GFP_KERNEL); 1016 if (!journal) 1017 return NULL; 1018 1019 init_waitqueue_head(&journal->j_wait_transaction_locked); 1020 init_waitqueue_head(&journal->j_wait_logspace); 1021 init_waitqueue_head(&journal->j_wait_done_commit); 1022 init_waitqueue_head(&journal->j_wait_checkpoint); 1023 init_waitqueue_head(&journal->j_wait_commit); 1024 init_waitqueue_head(&journal->j_wait_updates); 1025 mutex_init(&journal->j_barrier); 1026 mutex_init(&journal->j_checkpoint_mutex); 1027 spin_lock_init(&journal->j_revoke_lock); 1028 spin_lock_init(&journal->j_list_lock); 1029 rwlock_init(&journal->j_state_lock); 1030 1031 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE); 1032 journal->j_min_batch_time = 0; 1033 journal->j_max_batch_time = 15000; /* 15ms */ 1034 1035 /* The journal is marked for error until we succeed with recovery! */ 1036 journal->j_flags = JBD2_ABORT; 1037 1038 /* Set up a default-sized revoke table for the new mount. */ 1039 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH); 1040 if (err) { 1041 kfree(journal); 1042 return NULL; 1043 } 1044 1045 spin_lock_init(&journal->j_history_lock); 1046 1047 return journal; 1048 } 1049 1050 /* jbd2_journal_init_dev and jbd2_journal_init_inode: 1051 * 1052 * Create a journal structure assigned some fixed set of disk blocks to 1053 * the journal. We don't actually touch those disk blocks yet, but we 1054 * need to set up all of the mapping information to tell the journaling 1055 * system where the journal blocks are. 1056 * 1057 */ 1058 1059 /** 1060 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure 1061 * @bdev: Block device on which to create the journal 1062 * @fs_dev: Device which hold journalled filesystem for this journal. 1063 * @start: Block nr Start of journal. 1064 * @len: Length of the journal in blocks. 1065 * @blocksize: blocksize of journalling device 1066 * 1067 * Returns: a newly created journal_t * 1068 * 1069 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous 1070 * range of blocks on an arbitrary block device. 1071 * 1072 */ 1073 journal_t * jbd2_journal_init_dev(struct block_device *bdev, 1074 struct block_device *fs_dev, 1075 unsigned long long start, int len, int blocksize) 1076 { 1077 journal_t *journal = journal_init_common(); 1078 struct buffer_head *bh; 1079 char *p; 1080 int n; 1081 1082 if (!journal) 1083 return NULL; 1084 1085 /* journal descriptor can store up to n blocks -bzzz */ 1086 journal->j_blocksize = blocksize; 1087 journal->j_dev = bdev; 1088 journal->j_fs_dev = fs_dev; 1089 journal->j_blk_offset = start; 1090 journal->j_maxlen = len; 1091 bdevname(journal->j_dev, journal->j_devname); 1092 p = journal->j_devname; 1093 while ((p = strchr(p, '/'))) 1094 *p = '!'; 1095 jbd2_stats_proc_init(journal); 1096 n = journal->j_blocksize / sizeof(journal_block_tag_t); 1097 journal->j_wbufsize = n; 1098 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL); 1099 if (!journal->j_wbuf) { 1100 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n", 1101 __func__); 1102 goto out_err; 1103 } 1104 1105 bh = __getblk(journal->j_dev, start, journal->j_blocksize); 1106 if (!bh) { 1107 printk(KERN_ERR 1108 "%s: Cannot get buffer for journal superblock\n", 1109 __func__); 1110 goto out_err; 1111 } 1112 journal->j_sb_buffer = bh; 1113 journal->j_superblock = (journal_superblock_t *)bh->b_data; 1114 1115 return journal; 1116 out_err: 1117 kfree(journal->j_wbuf); 1118 jbd2_stats_proc_exit(journal); 1119 kfree(journal); 1120 return NULL; 1121 } 1122 1123 /** 1124 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode. 1125 * @inode: An inode to create the journal in 1126 * 1127 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as 1128 * the journal. The inode must exist already, must support bmap() and 1129 * must have all data blocks preallocated. 1130 */ 1131 journal_t * jbd2_journal_init_inode (struct inode *inode) 1132 { 1133 struct buffer_head *bh; 1134 journal_t *journal = journal_init_common(); 1135 char *p; 1136 int err; 1137 int n; 1138 unsigned long long blocknr; 1139 1140 if (!journal) 1141 return NULL; 1142 1143 journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev; 1144 journal->j_inode = inode; 1145 bdevname(journal->j_dev, journal->j_devname); 1146 p = journal->j_devname; 1147 while ((p = strchr(p, '/'))) 1148 *p = '!'; 1149 p = journal->j_devname + strlen(journal->j_devname); 1150 sprintf(p, "-%lu", journal->j_inode->i_ino); 1151 jbd_debug(1, 1152 "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n", 1153 journal, inode->i_sb->s_id, inode->i_ino, 1154 (long long) inode->i_size, 1155 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize); 1156 1157 journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits; 1158 journal->j_blocksize = inode->i_sb->s_blocksize; 1159 jbd2_stats_proc_init(journal); 1160 1161 /* journal descriptor can store up to n blocks -bzzz */ 1162 n = journal->j_blocksize / sizeof(journal_block_tag_t); 1163 journal->j_wbufsize = n; 1164 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL); 1165 if (!journal->j_wbuf) { 1166 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n", 1167 __func__); 1168 goto out_err; 1169 } 1170 1171 err = jbd2_journal_bmap(journal, 0, &blocknr); 1172 /* If that failed, give up */ 1173 if (err) { 1174 printk(KERN_ERR "%s: Cannot locate journal superblock\n", 1175 __func__); 1176 goto out_err; 1177 } 1178 1179 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize); 1180 if (!bh) { 1181 printk(KERN_ERR 1182 "%s: Cannot get buffer for journal superblock\n", 1183 __func__); 1184 goto out_err; 1185 } 1186 journal->j_sb_buffer = bh; 1187 journal->j_superblock = (journal_superblock_t *)bh->b_data; 1188 1189 return journal; 1190 out_err: 1191 kfree(journal->j_wbuf); 1192 jbd2_stats_proc_exit(journal); 1193 kfree(journal); 1194 return NULL; 1195 } 1196 1197 /* 1198 * If the journal init or create aborts, we need to mark the journal 1199 * superblock as being NULL to prevent the journal destroy from writing 1200 * back a bogus superblock. 1201 */ 1202 static void journal_fail_superblock (journal_t *journal) 1203 { 1204 struct buffer_head *bh = journal->j_sb_buffer; 1205 brelse(bh); 1206 journal->j_sb_buffer = NULL; 1207 } 1208 1209 /* 1210 * Given a journal_t structure, initialise the various fields for 1211 * startup of a new journaling session. We use this both when creating 1212 * a journal, and after recovering an old journal to reset it for 1213 * subsequent use. 1214 */ 1215 1216 static int journal_reset(journal_t *journal) 1217 { 1218 journal_superblock_t *sb = journal->j_superblock; 1219 unsigned long long first, last; 1220 1221 first = be32_to_cpu(sb->s_first); 1222 last = be32_to_cpu(sb->s_maxlen); 1223 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) { 1224 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n", 1225 first, last); 1226 journal_fail_superblock(journal); 1227 return -EINVAL; 1228 } 1229 1230 journal->j_first = first; 1231 journal->j_last = last; 1232 1233 journal->j_head = first; 1234 journal->j_tail = first; 1235 journal->j_free = last - first; 1236 1237 journal->j_tail_sequence = journal->j_transaction_sequence; 1238 journal->j_commit_sequence = journal->j_transaction_sequence - 1; 1239 journal->j_commit_request = journal->j_commit_sequence; 1240 1241 journal->j_max_transaction_buffers = journal->j_maxlen / 4; 1242 1243 /* 1244 * As a special case, if the on-disk copy is already marked as needing 1245 * no recovery (s_start == 0), then we can safely defer the superblock 1246 * update until the next commit by setting JBD2_FLUSHED. This avoids 1247 * attempting a write to a potential-readonly device. 1248 */ 1249 if (sb->s_start == 0) { 1250 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb " 1251 "(start %ld, seq %d, errno %d)\n", 1252 journal->j_tail, journal->j_tail_sequence, 1253 journal->j_errno); 1254 journal->j_flags |= JBD2_FLUSHED; 1255 } else { 1256 /* Lock here to make assertions happy... */ 1257 mutex_lock(&journal->j_checkpoint_mutex); 1258 /* 1259 * Update log tail information. We use WRITE_FUA since new 1260 * transaction will start reusing journal space and so we 1261 * must make sure information about current log tail is on 1262 * disk before that. 1263 */ 1264 jbd2_journal_update_sb_log_tail(journal, 1265 journal->j_tail_sequence, 1266 journal->j_tail, 1267 WRITE_FUA); 1268 mutex_unlock(&journal->j_checkpoint_mutex); 1269 } 1270 return jbd2_journal_start_thread(journal); 1271 } 1272 1273 static void jbd2_write_superblock(journal_t *journal, int write_op) 1274 { 1275 struct buffer_head *bh = journal->j_sb_buffer; 1276 int ret; 1277 1278 trace_jbd2_write_superblock(journal, write_op); 1279 if (!(journal->j_flags & JBD2_BARRIER)) 1280 write_op &= ~(REQ_FUA | REQ_FLUSH); 1281 lock_buffer(bh); 1282 if (buffer_write_io_error(bh)) { 1283 /* 1284 * Oh, dear. A previous attempt to write the journal 1285 * superblock failed. This could happen because the 1286 * USB device was yanked out. Or it could happen to 1287 * be a transient write error and maybe the block will 1288 * be remapped. Nothing we can do but to retry the 1289 * write and hope for the best. 1290 */ 1291 printk(KERN_ERR "JBD2: previous I/O error detected " 1292 "for journal superblock update for %s.\n", 1293 journal->j_devname); 1294 clear_buffer_write_io_error(bh); 1295 set_buffer_uptodate(bh); 1296 } 1297 get_bh(bh); 1298 bh->b_end_io = end_buffer_write_sync; 1299 ret = submit_bh(write_op, bh); 1300 wait_on_buffer(bh); 1301 if (buffer_write_io_error(bh)) { 1302 clear_buffer_write_io_error(bh); 1303 set_buffer_uptodate(bh); 1304 ret = -EIO; 1305 } 1306 if (ret) { 1307 printk(KERN_ERR "JBD2: Error %d detected when updating " 1308 "journal superblock for %s.\n", ret, 1309 journal->j_devname); 1310 } 1311 } 1312 1313 /** 1314 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk. 1315 * @journal: The journal to update. 1316 * @tail_tid: TID of the new transaction at the tail of the log 1317 * @tail_block: The first block of the transaction at the tail of the log 1318 * @write_op: With which operation should we write the journal sb 1319 * 1320 * Update a journal's superblock information about log tail and write it to 1321 * disk, waiting for the IO to complete. 1322 */ 1323 void jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid, 1324 unsigned long tail_block, int write_op) 1325 { 1326 journal_superblock_t *sb = journal->j_superblock; 1327 1328 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1329 jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n", 1330 tail_block, tail_tid); 1331 1332 sb->s_sequence = cpu_to_be32(tail_tid); 1333 sb->s_start = cpu_to_be32(tail_block); 1334 1335 jbd2_write_superblock(journal, write_op); 1336 1337 /* Log is no longer empty */ 1338 write_lock(&journal->j_state_lock); 1339 WARN_ON(!sb->s_sequence); 1340 journal->j_flags &= ~JBD2_FLUSHED; 1341 write_unlock(&journal->j_state_lock); 1342 } 1343 1344 /** 1345 * jbd2_mark_journal_empty() - Mark on disk journal as empty. 1346 * @journal: The journal to update. 1347 * 1348 * Update a journal's dynamic superblock fields to show that journal is empty. 1349 * Write updated superblock to disk waiting for IO to complete. 1350 */ 1351 static void jbd2_mark_journal_empty(journal_t *journal) 1352 { 1353 journal_superblock_t *sb = journal->j_superblock; 1354 1355 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1356 read_lock(&journal->j_state_lock); 1357 jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n", 1358 journal->j_tail_sequence); 1359 1360 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence); 1361 sb->s_start = cpu_to_be32(0); 1362 read_unlock(&journal->j_state_lock); 1363 1364 jbd2_write_superblock(journal, WRITE_FUA); 1365 1366 /* Log is no longer empty */ 1367 write_lock(&journal->j_state_lock); 1368 journal->j_flags |= JBD2_FLUSHED; 1369 write_unlock(&journal->j_state_lock); 1370 } 1371 1372 1373 /** 1374 * jbd2_journal_update_sb_errno() - Update error in the journal. 1375 * @journal: The journal to update. 1376 * 1377 * Update a journal's errno. Write updated superblock to disk waiting for IO 1378 * to complete. 1379 */ 1380 static void jbd2_journal_update_sb_errno(journal_t *journal) 1381 { 1382 journal_superblock_t *sb = journal->j_superblock; 1383 1384 read_lock(&journal->j_state_lock); 1385 jbd_debug(1, "JBD2: updating superblock error (errno %d)\n", 1386 journal->j_errno); 1387 sb->s_errno = cpu_to_be32(journal->j_errno); 1388 jbd2_superblock_csum_set(journal, sb); 1389 read_unlock(&journal->j_state_lock); 1390 1391 jbd2_write_superblock(journal, WRITE_SYNC); 1392 } 1393 1394 /* 1395 * Read the superblock for a given journal, performing initial 1396 * validation of the format. 1397 */ 1398 static int journal_get_superblock(journal_t *journal) 1399 { 1400 struct buffer_head *bh; 1401 journal_superblock_t *sb; 1402 int err = -EIO; 1403 1404 bh = journal->j_sb_buffer; 1405 1406 J_ASSERT(bh != NULL); 1407 if (!buffer_uptodate(bh)) { 1408 ll_rw_block(READ, 1, &bh); 1409 wait_on_buffer(bh); 1410 if (!buffer_uptodate(bh)) { 1411 printk(KERN_ERR 1412 "JBD2: IO error reading journal superblock\n"); 1413 goto out; 1414 } 1415 } 1416 1417 if (buffer_verified(bh)) 1418 return 0; 1419 1420 sb = journal->j_superblock; 1421 1422 err = -EINVAL; 1423 1424 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) || 1425 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) { 1426 printk(KERN_WARNING "JBD2: no valid journal superblock found\n"); 1427 goto out; 1428 } 1429 1430 switch(be32_to_cpu(sb->s_header.h_blocktype)) { 1431 case JBD2_SUPERBLOCK_V1: 1432 journal->j_format_version = 1; 1433 break; 1434 case JBD2_SUPERBLOCK_V2: 1435 journal->j_format_version = 2; 1436 break; 1437 default: 1438 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n"); 1439 goto out; 1440 } 1441 1442 if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen) 1443 journal->j_maxlen = be32_to_cpu(sb->s_maxlen); 1444 else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) { 1445 printk(KERN_WARNING "JBD2: journal file too short\n"); 1446 goto out; 1447 } 1448 1449 if (be32_to_cpu(sb->s_first) == 0 || 1450 be32_to_cpu(sb->s_first) >= journal->j_maxlen) { 1451 printk(KERN_WARNING 1452 "JBD2: Invalid start block of journal: %u\n", 1453 be32_to_cpu(sb->s_first)); 1454 goto out; 1455 } 1456 1457 if (JBD2_HAS_COMPAT_FEATURE(journal, JBD2_FEATURE_COMPAT_CHECKSUM) && 1458 JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) { 1459 /* Can't have checksum v1 and v2 on at the same time! */ 1460 printk(KERN_ERR "JBD: Can't enable checksumming v1 and v2 " 1461 "at the same time!\n"); 1462 goto out; 1463 } 1464 1465 if (!jbd2_verify_csum_type(journal, sb)) { 1466 printk(KERN_ERR "JBD: Unknown checksum type\n"); 1467 goto out; 1468 } 1469 1470 /* Load the checksum driver */ 1471 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) { 1472 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 1473 if (IS_ERR(journal->j_chksum_driver)) { 1474 printk(KERN_ERR "JBD: Cannot load crc32c driver.\n"); 1475 err = PTR_ERR(journal->j_chksum_driver); 1476 journal->j_chksum_driver = NULL; 1477 goto out; 1478 } 1479 } 1480 1481 /* Check superblock checksum */ 1482 if (!jbd2_superblock_csum_verify(journal, sb)) { 1483 printk(KERN_ERR "JBD: journal checksum error\n"); 1484 goto out; 1485 } 1486 1487 /* Precompute checksum seed for all metadata */ 1488 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) 1489 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid, 1490 sizeof(sb->s_uuid)); 1491 1492 set_buffer_verified(bh); 1493 1494 return 0; 1495 1496 out: 1497 journal_fail_superblock(journal); 1498 return err; 1499 } 1500 1501 /* 1502 * Load the on-disk journal superblock and read the key fields into the 1503 * journal_t. 1504 */ 1505 1506 static int load_superblock(journal_t *journal) 1507 { 1508 int err; 1509 journal_superblock_t *sb; 1510 1511 err = journal_get_superblock(journal); 1512 if (err) 1513 return err; 1514 1515 sb = journal->j_superblock; 1516 1517 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence); 1518 journal->j_tail = be32_to_cpu(sb->s_start); 1519 journal->j_first = be32_to_cpu(sb->s_first); 1520 journal->j_last = be32_to_cpu(sb->s_maxlen); 1521 journal->j_errno = be32_to_cpu(sb->s_errno); 1522 1523 return 0; 1524 } 1525 1526 1527 /** 1528 * int jbd2_journal_load() - Read journal from disk. 1529 * @journal: Journal to act on. 1530 * 1531 * Given a journal_t structure which tells us which disk blocks contain 1532 * a journal, read the journal from disk to initialise the in-memory 1533 * structures. 1534 */ 1535 int jbd2_journal_load(journal_t *journal) 1536 { 1537 int err; 1538 journal_superblock_t *sb; 1539 1540 err = load_superblock(journal); 1541 if (err) 1542 return err; 1543 1544 sb = journal->j_superblock; 1545 /* If this is a V2 superblock, then we have to check the 1546 * features flags on it. */ 1547 1548 if (journal->j_format_version >= 2) { 1549 if ((sb->s_feature_ro_compat & 1550 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) || 1551 (sb->s_feature_incompat & 1552 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) { 1553 printk(KERN_WARNING 1554 "JBD2: Unrecognised features on journal\n"); 1555 return -EINVAL; 1556 } 1557 } 1558 1559 /* 1560 * Create a slab for this blocksize 1561 */ 1562 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize)); 1563 if (err) 1564 return err; 1565 1566 /* Let the recovery code check whether it needs to recover any 1567 * data from the journal. */ 1568 if (jbd2_journal_recover(journal)) 1569 goto recovery_error; 1570 1571 if (journal->j_failed_commit) { 1572 printk(KERN_ERR "JBD2: journal transaction %u on %s " 1573 "is corrupt.\n", journal->j_failed_commit, 1574 journal->j_devname); 1575 return -EIO; 1576 } 1577 1578 /* OK, we've finished with the dynamic journal bits: 1579 * reinitialise the dynamic contents of the superblock in memory 1580 * and reset them on disk. */ 1581 if (journal_reset(journal)) 1582 goto recovery_error; 1583 1584 journal->j_flags &= ~JBD2_ABORT; 1585 journal->j_flags |= JBD2_LOADED; 1586 return 0; 1587 1588 recovery_error: 1589 printk(KERN_WARNING "JBD2: recovery failed\n"); 1590 return -EIO; 1591 } 1592 1593 /** 1594 * void jbd2_journal_destroy() - Release a journal_t structure. 1595 * @journal: Journal to act on. 1596 * 1597 * Release a journal_t structure once it is no longer in use by the 1598 * journaled object. 1599 * Return <0 if we couldn't clean up the journal. 1600 */ 1601 int jbd2_journal_destroy(journal_t *journal) 1602 { 1603 int err = 0; 1604 1605 /* Wait for the commit thread to wake up and die. */ 1606 journal_kill_thread(journal); 1607 1608 /* Force a final log commit */ 1609 if (journal->j_running_transaction) 1610 jbd2_journal_commit_transaction(journal); 1611 1612 /* Force any old transactions to disk */ 1613 1614 /* Totally anal locking here... */ 1615 spin_lock(&journal->j_list_lock); 1616 while (journal->j_checkpoint_transactions != NULL) { 1617 spin_unlock(&journal->j_list_lock); 1618 mutex_lock(&journal->j_checkpoint_mutex); 1619 jbd2_log_do_checkpoint(journal); 1620 mutex_unlock(&journal->j_checkpoint_mutex); 1621 spin_lock(&journal->j_list_lock); 1622 } 1623 1624 J_ASSERT(journal->j_running_transaction == NULL); 1625 J_ASSERT(journal->j_committing_transaction == NULL); 1626 J_ASSERT(journal->j_checkpoint_transactions == NULL); 1627 spin_unlock(&journal->j_list_lock); 1628 1629 if (journal->j_sb_buffer) { 1630 if (!is_journal_aborted(journal)) { 1631 mutex_lock(&journal->j_checkpoint_mutex); 1632 jbd2_mark_journal_empty(journal); 1633 mutex_unlock(&journal->j_checkpoint_mutex); 1634 } else 1635 err = -EIO; 1636 brelse(journal->j_sb_buffer); 1637 } 1638 1639 if (journal->j_proc_entry) 1640 jbd2_stats_proc_exit(journal); 1641 if (journal->j_inode) 1642 iput(journal->j_inode); 1643 if (journal->j_revoke) 1644 jbd2_journal_destroy_revoke(journal); 1645 if (journal->j_chksum_driver) 1646 crypto_free_shash(journal->j_chksum_driver); 1647 kfree(journal->j_wbuf); 1648 kfree(journal); 1649 1650 return err; 1651 } 1652 1653 1654 /** 1655 *int jbd2_journal_check_used_features () - Check if features specified are used. 1656 * @journal: Journal to check. 1657 * @compat: bitmask of compatible features 1658 * @ro: bitmask of features that force read-only mount 1659 * @incompat: bitmask of incompatible features 1660 * 1661 * Check whether the journal uses all of a given set of 1662 * features. Return true (non-zero) if it does. 1663 **/ 1664 1665 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat, 1666 unsigned long ro, unsigned long incompat) 1667 { 1668 journal_superblock_t *sb; 1669 1670 if (!compat && !ro && !incompat) 1671 return 1; 1672 /* Load journal superblock if it is not loaded yet. */ 1673 if (journal->j_format_version == 0 && 1674 journal_get_superblock(journal) != 0) 1675 return 0; 1676 if (journal->j_format_version == 1) 1677 return 0; 1678 1679 sb = journal->j_superblock; 1680 1681 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) && 1682 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) && 1683 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat)) 1684 return 1; 1685 1686 return 0; 1687 } 1688 1689 /** 1690 * int jbd2_journal_check_available_features() - Check feature set in journalling layer 1691 * @journal: Journal to check. 1692 * @compat: bitmask of compatible features 1693 * @ro: bitmask of features that force read-only mount 1694 * @incompat: bitmask of incompatible features 1695 * 1696 * Check whether the journaling code supports the use of 1697 * all of a given set of features on this journal. Return true 1698 * (non-zero) if it can. */ 1699 1700 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat, 1701 unsigned long ro, unsigned long incompat) 1702 { 1703 if (!compat && !ro && !incompat) 1704 return 1; 1705 1706 /* We can support any known requested features iff the 1707 * superblock is in version 2. Otherwise we fail to support any 1708 * extended sb features. */ 1709 1710 if (journal->j_format_version != 2) 1711 return 0; 1712 1713 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat && 1714 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro && 1715 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat) 1716 return 1; 1717 1718 return 0; 1719 } 1720 1721 /** 1722 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock 1723 * @journal: Journal to act on. 1724 * @compat: bitmask of compatible features 1725 * @ro: bitmask of features that force read-only mount 1726 * @incompat: bitmask of incompatible features 1727 * 1728 * Mark a given journal feature as present on the 1729 * superblock. Returns true if the requested features could be set. 1730 * 1731 */ 1732 1733 int jbd2_journal_set_features (journal_t *journal, unsigned long compat, 1734 unsigned long ro, unsigned long incompat) 1735 { 1736 #define INCOMPAT_FEATURE_ON(f) \ 1737 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f))) 1738 #define COMPAT_FEATURE_ON(f) \ 1739 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f))) 1740 journal_superblock_t *sb; 1741 1742 if (jbd2_journal_check_used_features(journal, compat, ro, incompat)) 1743 return 1; 1744 1745 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat)) 1746 return 0; 1747 1748 /* Asking for checksumming v2 and v1? Only give them v2. */ 1749 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2 && 1750 compat & JBD2_FEATURE_COMPAT_CHECKSUM) 1751 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM; 1752 1753 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n", 1754 compat, ro, incompat); 1755 1756 sb = journal->j_superblock; 1757 1758 /* If enabling v2 checksums, update superblock */ 1759 if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V2)) { 1760 sb->s_checksum_type = JBD2_CRC32C_CHKSUM; 1761 sb->s_feature_compat &= 1762 ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM); 1763 1764 /* Load the checksum driver */ 1765 if (journal->j_chksum_driver == NULL) { 1766 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 1767 0, 0); 1768 if (IS_ERR(journal->j_chksum_driver)) { 1769 printk(KERN_ERR "JBD: Cannot load crc32c " 1770 "driver.\n"); 1771 journal->j_chksum_driver = NULL; 1772 return 0; 1773 } 1774 } 1775 1776 /* Precompute checksum seed for all metadata */ 1777 if (JBD2_HAS_INCOMPAT_FEATURE(journal, 1778 JBD2_FEATURE_INCOMPAT_CSUM_V2)) 1779 journal->j_csum_seed = jbd2_chksum(journal, ~0, 1780 sb->s_uuid, 1781 sizeof(sb->s_uuid)); 1782 } 1783 1784 /* If enabling v1 checksums, downgrade superblock */ 1785 if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM)) 1786 sb->s_feature_incompat &= 1787 ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2); 1788 1789 sb->s_feature_compat |= cpu_to_be32(compat); 1790 sb->s_feature_ro_compat |= cpu_to_be32(ro); 1791 sb->s_feature_incompat |= cpu_to_be32(incompat); 1792 1793 return 1; 1794 #undef COMPAT_FEATURE_ON 1795 #undef INCOMPAT_FEATURE_ON 1796 } 1797 1798 /* 1799 * jbd2_journal_clear_features () - Clear a given journal feature in the 1800 * superblock 1801 * @journal: Journal to act on. 1802 * @compat: bitmask of compatible features 1803 * @ro: bitmask of features that force read-only mount 1804 * @incompat: bitmask of incompatible features 1805 * 1806 * Clear a given journal feature as present on the 1807 * superblock. 1808 */ 1809 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat, 1810 unsigned long ro, unsigned long incompat) 1811 { 1812 journal_superblock_t *sb; 1813 1814 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n", 1815 compat, ro, incompat); 1816 1817 sb = journal->j_superblock; 1818 1819 sb->s_feature_compat &= ~cpu_to_be32(compat); 1820 sb->s_feature_ro_compat &= ~cpu_to_be32(ro); 1821 sb->s_feature_incompat &= ~cpu_to_be32(incompat); 1822 } 1823 EXPORT_SYMBOL(jbd2_journal_clear_features); 1824 1825 /** 1826 * int jbd2_journal_flush () - Flush journal 1827 * @journal: Journal to act on. 1828 * 1829 * Flush all data for a given journal to disk and empty the journal. 1830 * Filesystems can use this when remounting readonly to ensure that 1831 * recovery does not need to happen on remount. 1832 */ 1833 1834 int jbd2_journal_flush(journal_t *journal) 1835 { 1836 int err = 0; 1837 transaction_t *transaction = NULL; 1838 1839 write_lock(&journal->j_state_lock); 1840 1841 /* Force everything buffered to the log... */ 1842 if (journal->j_running_transaction) { 1843 transaction = journal->j_running_transaction; 1844 __jbd2_log_start_commit(journal, transaction->t_tid); 1845 } else if (journal->j_committing_transaction) 1846 transaction = journal->j_committing_transaction; 1847 1848 /* Wait for the log commit to complete... */ 1849 if (transaction) { 1850 tid_t tid = transaction->t_tid; 1851 1852 write_unlock(&journal->j_state_lock); 1853 jbd2_log_wait_commit(journal, tid); 1854 } else { 1855 write_unlock(&journal->j_state_lock); 1856 } 1857 1858 /* ...and flush everything in the log out to disk. */ 1859 spin_lock(&journal->j_list_lock); 1860 while (!err && journal->j_checkpoint_transactions != NULL) { 1861 spin_unlock(&journal->j_list_lock); 1862 mutex_lock(&journal->j_checkpoint_mutex); 1863 err = jbd2_log_do_checkpoint(journal); 1864 mutex_unlock(&journal->j_checkpoint_mutex); 1865 spin_lock(&journal->j_list_lock); 1866 } 1867 spin_unlock(&journal->j_list_lock); 1868 1869 if (is_journal_aborted(journal)) 1870 return -EIO; 1871 1872 mutex_lock(&journal->j_checkpoint_mutex); 1873 jbd2_cleanup_journal_tail(journal); 1874 1875 /* Finally, mark the journal as really needing no recovery. 1876 * This sets s_start==0 in the underlying superblock, which is 1877 * the magic code for a fully-recovered superblock. Any future 1878 * commits of data to the journal will restore the current 1879 * s_start value. */ 1880 jbd2_mark_journal_empty(journal); 1881 mutex_unlock(&journal->j_checkpoint_mutex); 1882 write_lock(&journal->j_state_lock); 1883 J_ASSERT(!journal->j_running_transaction); 1884 J_ASSERT(!journal->j_committing_transaction); 1885 J_ASSERT(!journal->j_checkpoint_transactions); 1886 J_ASSERT(journal->j_head == journal->j_tail); 1887 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence); 1888 write_unlock(&journal->j_state_lock); 1889 return 0; 1890 } 1891 1892 /** 1893 * int jbd2_journal_wipe() - Wipe journal contents 1894 * @journal: Journal to act on. 1895 * @write: flag (see below) 1896 * 1897 * Wipe out all of the contents of a journal, safely. This will produce 1898 * a warning if the journal contains any valid recovery information. 1899 * Must be called between journal_init_*() and jbd2_journal_load(). 1900 * 1901 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise 1902 * we merely suppress recovery. 1903 */ 1904 1905 int jbd2_journal_wipe(journal_t *journal, int write) 1906 { 1907 int err = 0; 1908 1909 J_ASSERT (!(journal->j_flags & JBD2_LOADED)); 1910 1911 err = load_superblock(journal); 1912 if (err) 1913 return err; 1914 1915 if (!journal->j_tail) 1916 goto no_recovery; 1917 1918 printk(KERN_WARNING "JBD2: %s recovery information on journal\n", 1919 write ? "Clearing" : "Ignoring"); 1920 1921 err = jbd2_journal_skip_recovery(journal); 1922 if (write) { 1923 /* Lock to make assertions happy... */ 1924 mutex_lock(&journal->j_checkpoint_mutex); 1925 jbd2_mark_journal_empty(journal); 1926 mutex_unlock(&journal->j_checkpoint_mutex); 1927 } 1928 1929 no_recovery: 1930 return err; 1931 } 1932 1933 /* 1934 * Journal abort has very specific semantics, which we describe 1935 * for journal abort. 1936 * 1937 * Two internal functions, which provide abort to the jbd layer 1938 * itself are here. 1939 */ 1940 1941 /* 1942 * Quick version for internal journal use (doesn't lock the journal). 1943 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else, 1944 * and don't attempt to make any other journal updates. 1945 */ 1946 void __jbd2_journal_abort_hard(journal_t *journal) 1947 { 1948 transaction_t *transaction; 1949 1950 if (journal->j_flags & JBD2_ABORT) 1951 return; 1952 1953 printk(KERN_ERR "Aborting journal on device %s.\n", 1954 journal->j_devname); 1955 1956 write_lock(&journal->j_state_lock); 1957 journal->j_flags |= JBD2_ABORT; 1958 transaction = journal->j_running_transaction; 1959 if (transaction) 1960 __jbd2_log_start_commit(journal, transaction->t_tid); 1961 write_unlock(&journal->j_state_lock); 1962 } 1963 1964 /* Soft abort: record the abort error status in the journal superblock, 1965 * but don't do any other IO. */ 1966 static void __journal_abort_soft (journal_t *journal, int errno) 1967 { 1968 if (journal->j_flags & JBD2_ABORT) 1969 return; 1970 1971 if (!journal->j_errno) 1972 journal->j_errno = errno; 1973 1974 __jbd2_journal_abort_hard(journal); 1975 1976 if (errno) 1977 jbd2_journal_update_sb_errno(journal); 1978 } 1979 1980 /** 1981 * void jbd2_journal_abort () - Shutdown the journal immediately. 1982 * @journal: the journal to shutdown. 1983 * @errno: an error number to record in the journal indicating 1984 * the reason for the shutdown. 1985 * 1986 * Perform a complete, immediate shutdown of the ENTIRE 1987 * journal (not of a single transaction). This operation cannot be 1988 * undone without closing and reopening the journal. 1989 * 1990 * The jbd2_journal_abort function is intended to support higher level error 1991 * recovery mechanisms such as the ext2/ext3 remount-readonly error 1992 * mode. 1993 * 1994 * Journal abort has very specific semantics. Any existing dirty, 1995 * unjournaled buffers in the main filesystem will still be written to 1996 * disk by bdflush, but the journaling mechanism will be suspended 1997 * immediately and no further transaction commits will be honoured. 1998 * 1999 * Any dirty, journaled buffers will be written back to disk without 2000 * hitting the journal. Atomicity cannot be guaranteed on an aborted 2001 * filesystem, but we _do_ attempt to leave as much data as possible 2002 * behind for fsck to use for cleanup. 2003 * 2004 * Any attempt to get a new transaction handle on a journal which is in 2005 * ABORT state will just result in an -EROFS error return. A 2006 * jbd2_journal_stop on an existing handle will return -EIO if we have 2007 * entered abort state during the update. 2008 * 2009 * Recursive transactions are not disturbed by journal abort until the 2010 * final jbd2_journal_stop, which will receive the -EIO error. 2011 * 2012 * Finally, the jbd2_journal_abort call allows the caller to supply an errno 2013 * which will be recorded (if possible) in the journal superblock. This 2014 * allows a client to record failure conditions in the middle of a 2015 * transaction without having to complete the transaction to record the 2016 * failure to disk. ext3_error, for example, now uses this 2017 * functionality. 2018 * 2019 * Errors which originate from within the journaling layer will NOT 2020 * supply an errno; a null errno implies that absolutely no further 2021 * writes are done to the journal (unless there are any already in 2022 * progress). 2023 * 2024 */ 2025 2026 void jbd2_journal_abort(journal_t *journal, int errno) 2027 { 2028 __journal_abort_soft(journal, errno); 2029 } 2030 2031 /** 2032 * int jbd2_journal_errno () - returns the journal's error state. 2033 * @journal: journal to examine. 2034 * 2035 * This is the errno number set with jbd2_journal_abort(), the last 2036 * time the journal was mounted - if the journal was stopped 2037 * without calling abort this will be 0. 2038 * 2039 * If the journal has been aborted on this mount time -EROFS will 2040 * be returned. 2041 */ 2042 int jbd2_journal_errno(journal_t *journal) 2043 { 2044 int err; 2045 2046 read_lock(&journal->j_state_lock); 2047 if (journal->j_flags & JBD2_ABORT) 2048 err = -EROFS; 2049 else 2050 err = journal->j_errno; 2051 read_unlock(&journal->j_state_lock); 2052 return err; 2053 } 2054 2055 /** 2056 * int jbd2_journal_clear_err () - clears the journal's error state 2057 * @journal: journal to act on. 2058 * 2059 * An error must be cleared or acked to take a FS out of readonly 2060 * mode. 2061 */ 2062 int jbd2_journal_clear_err(journal_t *journal) 2063 { 2064 int err = 0; 2065 2066 write_lock(&journal->j_state_lock); 2067 if (journal->j_flags & JBD2_ABORT) 2068 err = -EROFS; 2069 else 2070 journal->j_errno = 0; 2071 write_unlock(&journal->j_state_lock); 2072 return err; 2073 } 2074 2075 /** 2076 * void jbd2_journal_ack_err() - Ack journal err. 2077 * @journal: journal to act on. 2078 * 2079 * An error must be cleared or acked to take a FS out of readonly 2080 * mode. 2081 */ 2082 void jbd2_journal_ack_err(journal_t *journal) 2083 { 2084 write_lock(&journal->j_state_lock); 2085 if (journal->j_errno) 2086 journal->j_flags |= JBD2_ACK_ERR; 2087 write_unlock(&journal->j_state_lock); 2088 } 2089 2090 int jbd2_journal_blocks_per_page(struct inode *inode) 2091 { 2092 return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 2093 } 2094 2095 /* 2096 * helper functions to deal with 32 or 64bit block numbers. 2097 */ 2098 size_t journal_tag_bytes(journal_t *journal) 2099 { 2100 journal_block_tag_t tag; 2101 size_t x = 0; 2102 2103 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) 2104 x += sizeof(tag.t_checksum); 2105 2106 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT)) 2107 return x + JBD2_TAG_SIZE64; 2108 else 2109 return x + JBD2_TAG_SIZE32; 2110 } 2111 2112 /* 2113 * JBD memory management 2114 * 2115 * These functions are used to allocate block-sized chunks of memory 2116 * used for making copies of buffer_head data. Very often it will be 2117 * page-sized chunks of data, but sometimes it will be in 2118 * sub-page-size chunks. (For example, 16k pages on Power systems 2119 * with a 4k block file system.) For blocks smaller than a page, we 2120 * use a SLAB allocator. There are slab caches for each block size, 2121 * which are allocated at mount time, if necessary, and we only free 2122 * (all of) the slab caches when/if the jbd2 module is unloaded. For 2123 * this reason we don't need to a mutex to protect access to 2124 * jbd2_slab[] allocating or releasing memory; only in 2125 * jbd2_journal_create_slab(). 2126 */ 2127 #define JBD2_MAX_SLABS 8 2128 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS]; 2129 2130 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = { 2131 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k", 2132 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k" 2133 }; 2134 2135 2136 static void jbd2_journal_destroy_slabs(void) 2137 { 2138 int i; 2139 2140 for (i = 0; i < JBD2_MAX_SLABS; i++) { 2141 if (jbd2_slab[i]) 2142 kmem_cache_destroy(jbd2_slab[i]); 2143 jbd2_slab[i] = NULL; 2144 } 2145 } 2146 2147 static int jbd2_journal_create_slab(size_t size) 2148 { 2149 static DEFINE_MUTEX(jbd2_slab_create_mutex); 2150 int i = order_base_2(size) - 10; 2151 size_t slab_size; 2152 2153 if (size == PAGE_SIZE) 2154 return 0; 2155 2156 if (i >= JBD2_MAX_SLABS) 2157 return -EINVAL; 2158 2159 if (unlikely(i < 0)) 2160 i = 0; 2161 mutex_lock(&jbd2_slab_create_mutex); 2162 if (jbd2_slab[i]) { 2163 mutex_unlock(&jbd2_slab_create_mutex); 2164 return 0; /* Already created */ 2165 } 2166 2167 slab_size = 1 << (i+10); 2168 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size, 2169 slab_size, 0, NULL); 2170 mutex_unlock(&jbd2_slab_create_mutex); 2171 if (!jbd2_slab[i]) { 2172 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n"); 2173 return -ENOMEM; 2174 } 2175 return 0; 2176 } 2177 2178 static struct kmem_cache *get_slab(size_t size) 2179 { 2180 int i = order_base_2(size) - 10; 2181 2182 BUG_ON(i >= JBD2_MAX_SLABS); 2183 if (unlikely(i < 0)) 2184 i = 0; 2185 BUG_ON(jbd2_slab[i] == NULL); 2186 return jbd2_slab[i]; 2187 } 2188 2189 void *jbd2_alloc(size_t size, gfp_t flags) 2190 { 2191 void *ptr; 2192 2193 BUG_ON(size & (size-1)); /* Must be a power of 2 */ 2194 2195 flags |= __GFP_REPEAT; 2196 if (size == PAGE_SIZE) 2197 ptr = (void *)__get_free_pages(flags, 0); 2198 else if (size > PAGE_SIZE) { 2199 int order = get_order(size); 2200 2201 if (order < 3) 2202 ptr = (void *)__get_free_pages(flags, order); 2203 else 2204 ptr = vmalloc(size); 2205 } else 2206 ptr = kmem_cache_alloc(get_slab(size), flags); 2207 2208 /* Check alignment; SLUB has gotten this wrong in the past, 2209 * and this can lead to user data corruption! */ 2210 BUG_ON(((unsigned long) ptr) & (size-1)); 2211 2212 return ptr; 2213 } 2214 2215 void jbd2_free(void *ptr, size_t size) 2216 { 2217 if (size == PAGE_SIZE) { 2218 free_pages((unsigned long)ptr, 0); 2219 return; 2220 } 2221 if (size > PAGE_SIZE) { 2222 int order = get_order(size); 2223 2224 if (order < 3) 2225 free_pages((unsigned long)ptr, order); 2226 else 2227 vfree(ptr); 2228 return; 2229 } 2230 kmem_cache_free(get_slab(size), ptr); 2231 }; 2232 2233 /* 2234 * Journal_head storage management 2235 */ 2236 static struct kmem_cache *jbd2_journal_head_cache; 2237 #ifdef CONFIG_JBD2_DEBUG 2238 static atomic_t nr_journal_heads = ATOMIC_INIT(0); 2239 #endif 2240 2241 static int jbd2_journal_init_journal_head_cache(void) 2242 { 2243 int retval; 2244 2245 J_ASSERT(jbd2_journal_head_cache == NULL); 2246 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head", 2247 sizeof(struct journal_head), 2248 0, /* offset */ 2249 SLAB_TEMPORARY, /* flags */ 2250 NULL); /* ctor */ 2251 retval = 0; 2252 if (!jbd2_journal_head_cache) { 2253 retval = -ENOMEM; 2254 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n"); 2255 } 2256 return retval; 2257 } 2258 2259 static void jbd2_journal_destroy_journal_head_cache(void) 2260 { 2261 if (jbd2_journal_head_cache) { 2262 kmem_cache_destroy(jbd2_journal_head_cache); 2263 jbd2_journal_head_cache = NULL; 2264 } 2265 } 2266 2267 /* 2268 * journal_head splicing and dicing 2269 */ 2270 static struct journal_head *journal_alloc_journal_head(void) 2271 { 2272 struct journal_head *ret; 2273 2274 #ifdef CONFIG_JBD2_DEBUG 2275 atomic_inc(&nr_journal_heads); 2276 #endif 2277 ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS); 2278 if (!ret) { 2279 jbd_debug(1, "out of memory for journal_head\n"); 2280 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__); 2281 while (!ret) { 2282 yield(); 2283 ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS); 2284 } 2285 } 2286 return ret; 2287 } 2288 2289 static void journal_free_journal_head(struct journal_head *jh) 2290 { 2291 #ifdef CONFIG_JBD2_DEBUG 2292 atomic_dec(&nr_journal_heads); 2293 memset(jh, JBD2_POISON_FREE, sizeof(*jh)); 2294 #endif 2295 kmem_cache_free(jbd2_journal_head_cache, jh); 2296 } 2297 2298 /* 2299 * A journal_head is attached to a buffer_head whenever JBD has an 2300 * interest in the buffer. 2301 * 2302 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit 2303 * is set. This bit is tested in core kernel code where we need to take 2304 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable 2305 * there. 2306 * 2307 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one. 2308 * 2309 * When a buffer has its BH_JBD bit set it is immune from being released by 2310 * core kernel code, mainly via ->b_count. 2311 * 2312 * A journal_head is detached from its buffer_head when the journal_head's 2313 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint 2314 * transaction (b_cp_transaction) hold their references to b_jcount. 2315 * 2316 * Various places in the kernel want to attach a journal_head to a buffer_head 2317 * _before_ attaching the journal_head to a transaction. To protect the 2318 * journal_head in this situation, jbd2_journal_add_journal_head elevates the 2319 * journal_head's b_jcount refcount by one. The caller must call 2320 * jbd2_journal_put_journal_head() to undo this. 2321 * 2322 * So the typical usage would be: 2323 * 2324 * (Attach a journal_head if needed. Increments b_jcount) 2325 * struct journal_head *jh = jbd2_journal_add_journal_head(bh); 2326 * ... 2327 * (Get another reference for transaction) 2328 * jbd2_journal_grab_journal_head(bh); 2329 * jh->b_transaction = xxx; 2330 * (Put original reference) 2331 * jbd2_journal_put_journal_head(jh); 2332 */ 2333 2334 /* 2335 * Give a buffer_head a journal_head. 2336 * 2337 * May sleep. 2338 */ 2339 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh) 2340 { 2341 struct journal_head *jh; 2342 struct journal_head *new_jh = NULL; 2343 2344 repeat: 2345 if (!buffer_jbd(bh)) { 2346 new_jh = journal_alloc_journal_head(); 2347 memset(new_jh, 0, sizeof(*new_jh)); 2348 } 2349 2350 jbd_lock_bh_journal_head(bh); 2351 if (buffer_jbd(bh)) { 2352 jh = bh2jh(bh); 2353 } else { 2354 J_ASSERT_BH(bh, 2355 (atomic_read(&bh->b_count) > 0) || 2356 (bh->b_page && bh->b_page->mapping)); 2357 2358 if (!new_jh) { 2359 jbd_unlock_bh_journal_head(bh); 2360 goto repeat; 2361 } 2362 2363 jh = new_jh; 2364 new_jh = NULL; /* We consumed it */ 2365 set_buffer_jbd(bh); 2366 bh->b_private = jh; 2367 jh->b_bh = bh; 2368 get_bh(bh); 2369 BUFFER_TRACE(bh, "added journal_head"); 2370 } 2371 jh->b_jcount++; 2372 jbd_unlock_bh_journal_head(bh); 2373 if (new_jh) 2374 journal_free_journal_head(new_jh); 2375 return bh->b_private; 2376 } 2377 2378 /* 2379 * Grab a ref against this buffer_head's journal_head. If it ended up not 2380 * having a journal_head, return NULL 2381 */ 2382 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh) 2383 { 2384 struct journal_head *jh = NULL; 2385 2386 jbd_lock_bh_journal_head(bh); 2387 if (buffer_jbd(bh)) { 2388 jh = bh2jh(bh); 2389 jh->b_jcount++; 2390 } 2391 jbd_unlock_bh_journal_head(bh); 2392 return jh; 2393 } 2394 2395 static void __journal_remove_journal_head(struct buffer_head *bh) 2396 { 2397 struct journal_head *jh = bh2jh(bh); 2398 2399 J_ASSERT_JH(jh, jh->b_jcount >= 0); 2400 J_ASSERT_JH(jh, jh->b_transaction == NULL); 2401 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 2402 J_ASSERT_JH(jh, jh->b_cp_transaction == NULL); 2403 J_ASSERT_JH(jh, jh->b_jlist == BJ_None); 2404 J_ASSERT_BH(bh, buffer_jbd(bh)); 2405 J_ASSERT_BH(bh, jh2bh(jh) == bh); 2406 BUFFER_TRACE(bh, "remove journal_head"); 2407 if (jh->b_frozen_data) { 2408 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__); 2409 jbd2_free(jh->b_frozen_data, bh->b_size); 2410 } 2411 if (jh->b_committed_data) { 2412 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__); 2413 jbd2_free(jh->b_committed_data, bh->b_size); 2414 } 2415 bh->b_private = NULL; 2416 jh->b_bh = NULL; /* debug, really */ 2417 clear_buffer_jbd(bh); 2418 journal_free_journal_head(jh); 2419 } 2420 2421 /* 2422 * Drop a reference on the passed journal_head. If it fell to zero then 2423 * release the journal_head from the buffer_head. 2424 */ 2425 void jbd2_journal_put_journal_head(struct journal_head *jh) 2426 { 2427 struct buffer_head *bh = jh2bh(jh); 2428 2429 jbd_lock_bh_journal_head(bh); 2430 J_ASSERT_JH(jh, jh->b_jcount > 0); 2431 --jh->b_jcount; 2432 if (!jh->b_jcount) { 2433 __journal_remove_journal_head(bh); 2434 jbd_unlock_bh_journal_head(bh); 2435 __brelse(bh); 2436 } else 2437 jbd_unlock_bh_journal_head(bh); 2438 } 2439 2440 /* 2441 * Initialize jbd inode head 2442 */ 2443 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode) 2444 { 2445 jinode->i_transaction = NULL; 2446 jinode->i_next_transaction = NULL; 2447 jinode->i_vfs_inode = inode; 2448 jinode->i_flags = 0; 2449 INIT_LIST_HEAD(&jinode->i_list); 2450 } 2451 2452 /* 2453 * Function to be called before we start removing inode from memory (i.e., 2454 * clear_inode() is a fine place to be called from). It removes inode from 2455 * transaction's lists. 2456 */ 2457 void jbd2_journal_release_jbd_inode(journal_t *journal, 2458 struct jbd2_inode *jinode) 2459 { 2460 if (!journal) 2461 return; 2462 restart: 2463 spin_lock(&journal->j_list_lock); 2464 /* Is commit writing out inode - we have to wait */ 2465 if (test_bit(__JI_COMMIT_RUNNING, &jinode->i_flags)) { 2466 wait_queue_head_t *wq; 2467 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING); 2468 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING); 2469 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 2470 spin_unlock(&journal->j_list_lock); 2471 schedule(); 2472 finish_wait(wq, &wait.wait); 2473 goto restart; 2474 } 2475 2476 if (jinode->i_transaction) { 2477 list_del(&jinode->i_list); 2478 jinode->i_transaction = NULL; 2479 } 2480 spin_unlock(&journal->j_list_lock); 2481 } 2482 2483 /* 2484 * debugfs tunables 2485 */ 2486 #ifdef CONFIG_JBD2_DEBUG 2487 u8 jbd2_journal_enable_debug __read_mostly; 2488 EXPORT_SYMBOL(jbd2_journal_enable_debug); 2489 2490 #define JBD2_DEBUG_NAME "jbd2-debug" 2491 2492 static struct dentry *jbd2_debugfs_dir; 2493 static struct dentry *jbd2_debug; 2494 2495 static void __init jbd2_create_debugfs_entry(void) 2496 { 2497 jbd2_debugfs_dir = debugfs_create_dir("jbd2", NULL); 2498 if (jbd2_debugfs_dir) 2499 jbd2_debug = debugfs_create_u8(JBD2_DEBUG_NAME, 2500 S_IRUGO | S_IWUSR, 2501 jbd2_debugfs_dir, 2502 &jbd2_journal_enable_debug); 2503 } 2504 2505 static void __exit jbd2_remove_debugfs_entry(void) 2506 { 2507 debugfs_remove(jbd2_debug); 2508 debugfs_remove(jbd2_debugfs_dir); 2509 } 2510 2511 #else 2512 2513 static void __init jbd2_create_debugfs_entry(void) 2514 { 2515 } 2516 2517 static void __exit jbd2_remove_debugfs_entry(void) 2518 { 2519 } 2520 2521 #endif 2522 2523 #ifdef CONFIG_PROC_FS 2524 2525 #define JBD2_STATS_PROC_NAME "fs/jbd2" 2526 2527 static void __init jbd2_create_jbd_stats_proc_entry(void) 2528 { 2529 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL); 2530 } 2531 2532 static void __exit jbd2_remove_jbd_stats_proc_entry(void) 2533 { 2534 if (proc_jbd2_stats) 2535 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL); 2536 } 2537 2538 #else 2539 2540 #define jbd2_create_jbd_stats_proc_entry() do {} while (0) 2541 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0) 2542 2543 #endif 2544 2545 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache; 2546 2547 static int __init jbd2_journal_init_handle_cache(void) 2548 { 2549 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY); 2550 if (jbd2_handle_cache == NULL) { 2551 printk(KERN_EMERG "JBD2: failed to create handle cache\n"); 2552 return -ENOMEM; 2553 } 2554 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0); 2555 if (jbd2_inode_cache == NULL) { 2556 printk(KERN_EMERG "JBD2: failed to create inode cache\n"); 2557 kmem_cache_destroy(jbd2_handle_cache); 2558 return -ENOMEM; 2559 } 2560 return 0; 2561 } 2562 2563 static void jbd2_journal_destroy_handle_cache(void) 2564 { 2565 if (jbd2_handle_cache) 2566 kmem_cache_destroy(jbd2_handle_cache); 2567 if (jbd2_inode_cache) 2568 kmem_cache_destroy(jbd2_inode_cache); 2569 2570 } 2571 2572 /* 2573 * Module startup and shutdown 2574 */ 2575 2576 static int __init journal_init_caches(void) 2577 { 2578 int ret; 2579 2580 ret = jbd2_journal_init_revoke_caches(); 2581 if (ret == 0) 2582 ret = jbd2_journal_init_journal_head_cache(); 2583 if (ret == 0) 2584 ret = jbd2_journal_init_handle_cache(); 2585 if (ret == 0) 2586 ret = jbd2_journal_init_transaction_cache(); 2587 return ret; 2588 } 2589 2590 static void jbd2_journal_destroy_caches(void) 2591 { 2592 jbd2_journal_destroy_revoke_caches(); 2593 jbd2_journal_destroy_journal_head_cache(); 2594 jbd2_journal_destroy_handle_cache(); 2595 jbd2_journal_destroy_transaction_cache(); 2596 jbd2_journal_destroy_slabs(); 2597 } 2598 2599 static int __init journal_init(void) 2600 { 2601 int ret; 2602 2603 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024); 2604 2605 ret = journal_init_caches(); 2606 if (ret == 0) { 2607 jbd2_create_debugfs_entry(); 2608 jbd2_create_jbd_stats_proc_entry(); 2609 } else { 2610 jbd2_journal_destroy_caches(); 2611 } 2612 return ret; 2613 } 2614 2615 static void __exit journal_exit(void) 2616 { 2617 #ifdef CONFIG_JBD2_DEBUG 2618 int n = atomic_read(&nr_journal_heads); 2619 if (n) 2620 printk(KERN_EMERG "JBD2: leaked %d journal_heads!\n", n); 2621 #endif 2622 jbd2_remove_debugfs_entry(); 2623 jbd2_remove_jbd_stats_proc_entry(); 2624 jbd2_journal_destroy_caches(); 2625 } 2626 2627 MODULE_LICENSE("GPL"); 2628 module_init(journal_init); 2629 module_exit(journal_exit); 2630 2631