xref: /linux/fs/jbd2/journal.c (revision 0c7c237b1c35011ef0b8d30c1d5c20bc6ae7b69b)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * linux/fs/jbd2/journal.c
4  *
5  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6  *
7  * Copyright 1998 Red Hat corp --- All Rights Reserved
8  *
9  * Generic filesystem journal-writing code; part of the ext2fs
10  * journaling system.
11  *
12  * This file manages journals: areas of disk reserved for logging
13  * transactional updates.  This includes the kernel journaling thread
14  * which is responsible for scheduling updates to the log.
15  *
16  * We do not actually manage the physical storage of the journal in this
17  * file: that is left to a per-journal policy function, which allows us
18  * to store the journal within a filesystem-specified area for ext2
19  * journaling (ext2 can use a reserved inode for storing the log).
20  */
21 
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/fs.h>
25 #include <linux/jbd2.h>
26 #include <linux/errno.h>
27 #include <linux/slab.h>
28 #include <linux/init.h>
29 #include <linux/mm.h>
30 #include <linux/freezer.h>
31 #include <linux/pagemap.h>
32 #include <linux/kthread.h>
33 #include <linux/poison.h>
34 #include <linux/proc_fs.h>
35 #include <linux/seq_file.h>
36 #include <linux/math64.h>
37 #include <linux/hash.h>
38 #include <linux/log2.h>
39 #include <linux/vmalloc.h>
40 #include <linux/backing-dev.h>
41 #include <linux/bitops.h>
42 #include <linux/ratelimit.h>
43 #include <linux/sched/mm.h>
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/jbd2.h>
47 
48 #include <linux/uaccess.h>
49 #include <asm/page.h>
50 
51 #ifdef CONFIG_JBD2_DEBUG
52 static ushort jbd2_journal_enable_debug __read_mostly;
53 
54 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
55 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
56 #endif
57 
58 EXPORT_SYMBOL(jbd2_journal_extend);
59 EXPORT_SYMBOL(jbd2_journal_stop);
60 EXPORT_SYMBOL(jbd2_journal_lock_updates);
61 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
62 EXPORT_SYMBOL(jbd2_journal_get_write_access);
63 EXPORT_SYMBOL(jbd2_journal_get_create_access);
64 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
65 EXPORT_SYMBOL(jbd2_journal_set_triggers);
66 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
67 EXPORT_SYMBOL(jbd2_journal_forget);
68 EXPORT_SYMBOL(jbd2_journal_flush);
69 EXPORT_SYMBOL(jbd2_journal_revoke);
70 
71 EXPORT_SYMBOL(jbd2_journal_init_dev);
72 EXPORT_SYMBOL(jbd2_journal_init_inode);
73 EXPORT_SYMBOL(jbd2_journal_check_used_features);
74 EXPORT_SYMBOL(jbd2_journal_check_available_features);
75 EXPORT_SYMBOL(jbd2_journal_set_features);
76 EXPORT_SYMBOL(jbd2_journal_load);
77 EXPORT_SYMBOL(jbd2_journal_destroy);
78 EXPORT_SYMBOL(jbd2_journal_abort);
79 EXPORT_SYMBOL(jbd2_journal_errno);
80 EXPORT_SYMBOL(jbd2_journal_ack_err);
81 EXPORT_SYMBOL(jbd2_journal_clear_err);
82 EXPORT_SYMBOL(jbd2_log_wait_commit);
83 EXPORT_SYMBOL(jbd2_journal_start_commit);
84 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
85 EXPORT_SYMBOL(jbd2_journal_wipe);
86 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
87 EXPORT_SYMBOL(jbd2_journal_invalidate_folio);
88 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
89 EXPORT_SYMBOL(jbd2_journal_force_commit);
90 EXPORT_SYMBOL(jbd2_journal_inode_ranged_write);
91 EXPORT_SYMBOL(jbd2_journal_inode_ranged_wait);
92 EXPORT_SYMBOL(jbd2_journal_finish_inode_data_buffers);
93 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
94 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
95 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
96 EXPORT_SYMBOL(jbd2_inode_cache);
97 
98 static int jbd2_journal_create_slab(size_t slab_size);
99 
100 #ifdef CONFIG_JBD2_DEBUG
101 void __jbd2_debug(int level, const char *file, const char *func,
102 		  unsigned int line, const char *fmt, ...)
103 {
104 	struct va_format vaf;
105 	va_list args;
106 
107 	if (level > jbd2_journal_enable_debug)
108 		return;
109 	va_start(args, fmt);
110 	vaf.fmt = fmt;
111 	vaf.va = &args;
112 	printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf);
113 	va_end(args);
114 }
115 #endif
116 
117 /* Checksumming functions */
118 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
119 {
120 	if (!jbd2_journal_has_csum_v2or3_feature(j))
121 		return 1;
122 
123 	return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
124 }
125 
126 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
127 {
128 	__u32 csum;
129 	__be32 old_csum;
130 
131 	old_csum = sb->s_checksum;
132 	sb->s_checksum = 0;
133 	csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
134 	sb->s_checksum = old_csum;
135 
136 	return cpu_to_be32(csum);
137 }
138 
139 /*
140  * Helper function used to manage commit timeouts
141  */
142 
143 static void commit_timeout(struct timer_list *t)
144 {
145 	journal_t *journal = from_timer(journal, t, j_commit_timer);
146 
147 	wake_up_process(journal->j_task);
148 }
149 
150 /*
151  * kjournald2: The main thread function used to manage a logging device
152  * journal.
153  *
154  * This kernel thread is responsible for two things:
155  *
156  * 1) COMMIT:  Every so often we need to commit the current state of the
157  *    filesystem to disk.  The journal thread is responsible for writing
158  *    all of the metadata buffers to disk. If a fast commit is ongoing
159  *    journal thread waits until it's done and then continues from
160  *    there on.
161  *
162  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
163  *    of the data in that part of the log has been rewritten elsewhere on
164  *    the disk.  Flushing these old buffers to reclaim space in the log is
165  *    known as checkpointing, and this thread is responsible for that job.
166  */
167 
168 static int kjournald2(void *arg)
169 {
170 	journal_t *journal = arg;
171 	transaction_t *transaction;
172 
173 	/*
174 	 * Set up an interval timer which can be used to trigger a commit wakeup
175 	 * after the commit interval expires
176 	 */
177 	timer_setup(&journal->j_commit_timer, commit_timeout, 0);
178 
179 	set_freezable();
180 
181 	/* Record that the journal thread is running */
182 	journal->j_task = current;
183 	wake_up(&journal->j_wait_done_commit);
184 
185 	/*
186 	 * Make sure that no allocations from this kernel thread will ever
187 	 * recurse to the fs layer because we are responsible for the
188 	 * transaction commit and any fs involvement might get stuck waiting for
189 	 * the trasn. commit.
190 	 */
191 	memalloc_nofs_save();
192 
193 	/*
194 	 * And now, wait forever for commit wakeup events.
195 	 */
196 	write_lock(&journal->j_state_lock);
197 
198 loop:
199 	if (journal->j_flags & JBD2_UNMOUNT)
200 		goto end_loop;
201 
202 	jbd2_debug(1, "commit_sequence=%u, commit_request=%u\n",
203 		journal->j_commit_sequence, journal->j_commit_request);
204 
205 	if (journal->j_commit_sequence != journal->j_commit_request) {
206 		jbd2_debug(1, "OK, requests differ\n");
207 		write_unlock(&journal->j_state_lock);
208 		del_timer_sync(&journal->j_commit_timer);
209 		jbd2_journal_commit_transaction(journal);
210 		write_lock(&journal->j_state_lock);
211 		goto loop;
212 	}
213 
214 	wake_up(&journal->j_wait_done_commit);
215 	if (freezing(current)) {
216 		/*
217 		 * The simpler the better. Flushing journal isn't a
218 		 * good idea, because that depends on threads that may
219 		 * be already stopped.
220 		 */
221 		jbd2_debug(1, "Now suspending kjournald2\n");
222 		write_unlock(&journal->j_state_lock);
223 		try_to_freeze();
224 		write_lock(&journal->j_state_lock);
225 	} else {
226 		/*
227 		 * We assume on resume that commits are already there,
228 		 * so we don't sleep
229 		 */
230 		DEFINE_WAIT(wait);
231 		int should_sleep = 1;
232 
233 		prepare_to_wait(&journal->j_wait_commit, &wait,
234 				TASK_INTERRUPTIBLE);
235 		if (journal->j_commit_sequence != journal->j_commit_request)
236 			should_sleep = 0;
237 		transaction = journal->j_running_transaction;
238 		if (transaction && time_after_eq(jiffies,
239 						transaction->t_expires))
240 			should_sleep = 0;
241 		if (journal->j_flags & JBD2_UNMOUNT)
242 			should_sleep = 0;
243 		if (should_sleep) {
244 			write_unlock(&journal->j_state_lock);
245 			schedule();
246 			write_lock(&journal->j_state_lock);
247 		}
248 		finish_wait(&journal->j_wait_commit, &wait);
249 	}
250 
251 	jbd2_debug(1, "kjournald2 wakes\n");
252 
253 	/*
254 	 * Were we woken up by a commit wakeup event?
255 	 */
256 	transaction = journal->j_running_transaction;
257 	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
258 		journal->j_commit_request = transaction->t_tid;
259 		jbd2_debug(1, "woke because of timeout\n");
260 	}
261 	goto loop;
262 
263 end_loop:
264 	del_timer_sync(&journal->j_commit_timer);
265 	journal->j_task = NULL;
266 	wake_up(&journal->j_wait_done_commit);
267 	jbd2_debug(1, "Journal thread exiting.\n");
268 	write_unlock(&journal->j_state_lock);
269 	return 0;
270 }
271 
272 static int jbd2_journal_start_thread(journal_t *journal)
273 {
274 	struct task_struct *t;
275 
276 	t = kthread_run(kjournald2, journal, "jbd2/%s",
277 			journal->j_devname);
278 	if (IS_ERR(t))
279 		return PTR_ERR(t);
280 
281 	wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
282 	return 0;
283 }
284 
285 static void journal_kill_thread(journal_t *journal)
286 {
287 	write_lock(&journal->j_state_lock);
288 	journal->j_flags |= JBD2_UNMOUNT;
289 
290 	while (journal->j_task) {
291 		write_unlock(&journal->j_state_lock);
292 		wake_up(&journal->j_wait_commit);
293 		wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
294 		write_lock(&journal->j_state_lock);
295 	}
296 	write_unlock(&journal->j_state_lock);
297 }
298 
299 /*
300  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
301  *
302  * Writes a metadata buffer to a given disk block.  The actual IO is not
303  * performed but a new buffer_head is constructed which labels the data
304  * to be written with the correct destination disk block.
305  *
306  * Any magic-number escaping which needs to be done will cause a
307  * copy-out here.  If the buffer happens to start with the
308  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
309  * magic number is only written to the log for descripter blocks.  In
310  * this case, we copy the data and replace the first word with 0, and we
311  * return a result code which indicates that this buffer needs to be
312  * marked as an escaped buffer in the corresponding log descriptor
313  * block.  The missing word can then be restored when the block is read
314  * during recovery.
315  *
316  * If the source buffer has already been modified by a new transaction
317  * since we took the last commit snapshot, we use the frozen copy of
318  * that data for IO. If we end up using the existing buffer_head's data
319  * for the write, then we have to make sure nobody modifies it while the
320  * IO is in progress. do_get_write_access() handles this.
321  *
322  * The function returns a pointer to the buffer_head to be used for IO.
323  *
324  *
325  * Return value:
326  *  <0: Error
327  * >=0: Finished OK
328  *
329  * On success:
330  * Bit 0 set == escape performed on the data
331  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
332  */
333 
334 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
335 				  struct journal_head  *jh_in,
336 				  struct buffer_head **bh_out,
337 				  sector_t blocknr)
338 {
339 	int need_copy_out = 0;
340 	int done_copy_out = 0;
341 	int do_escape = 0;
342 	char *mapped_data;
343 	struct buffer_head *new_bh;
344 	struct page *new_page;
345 	unsigned int new_offset;
346 	struct buffer_head *bh_in = jh2bh(jh_in);
347 	journal_t *journal = transaction->t_journal;
348 
349 	/*
350 	 * The buffer really shouldn't be locked: only the current committing
351 	 * transaction is allowed to write it, so nobody else is allowed
352 	 * to do any IO.
353 	 *
354 	 * akpm: except if we're journalling data, and write() output is
355 	 * also part of a shared mapping, and another thread has
356 	 * decided to launch a writepage() against this buffer.
357 	 */
358 	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
359 
360 	new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
361 
362 	/* keep subsequent assertions sane */
363 	atomic_set(&new_bh->b_count, 1);
364 
365 	spin_lock(&jh_in->b_state_lock);
366 repeat:
367 	/*
368 	 * If a new transaction has already done a buffer copy-out, then
369 	 * we use that version of the data for the commit.
370 	 */
371 	if (jh_in->b_frozen_data) {
372 		done_copy_out = 1;
373 		new_page = virt_to_page(jh_in->b_frozen_data);
374 		new_offset = offset_in_page(jh_in->b_frozen_data);
375 	} else {
376 		new_page = jh2bh(jh_in)->b_page;
377 		new_offset = offset_in_page(jh2bh(jh_in)->b_data);
378 	}
379 
380 	mapped_data = kmap_atomic(new_page);
381 	/*
382 	 * Fire data frozen trigger if data already wasn't frozen.  Do this
383 	 * before checking for escaping, as the trigger may modify the magic
384 	 * offset.  If a copy-out happens afterwards, it will have the correct
385 	 * data in the buffer.
386 	 */
387 	if (!done_copy_out)
388 		jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
389 					   jh_in->b_triggers);
390 
391 	/*
392 	 * Check for escaping
393 	 */
394 	if (*((__be32 *)(mapped_data + new_offset)) ==
395 				cpu_to_be32(JBD2_MAGIC_NUMBER)) {
396 		need_copy_out = 1;
397 		do_escape = 1;
398 	}
399 	kunmap_atomic(mapped_data);
400 
401 	/*
402 	 * Do we need to do a data copy?
403 	 */
404 	if (need_copy_out && !done_copy_out) {
405 		char *tmp;
406 
407 		spin_unlock(&jh_in->b_state_lock);
408 		tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
409 		if (!tmp) {
410 			brelse(new_bh);
411 			return -ENOMEM;
412 		}
413 		spin_lock(&jh_in->b_state_lock);
414 		if (jh_in->b_frozen_data) {
415 			jbd2_free(tmp, bh_in->b_size);
416 			goto repeat;
417 		}
418 
419 		jh_in->b_frozen_data = tmp;
420 		mapped_data = kmap_atomic(new_page);
421 		memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
422 		kunmap_atomic(mapped_data);
423 
424 		new_page = virt_to_page(tmp);
425 		new_offset = offset_in_page(tmp);
426 		done_copy_out = 1;
427 
428 		/*
429 		 * This isn't strictly necessary, as we're using frozen
430 		 * data for the escaping, but it keeps consistency with
431 		 * b_frozen_data usage.
432 		 */
433 		jh_in->b_frozen_triggers = jh_in->b_triggers;
434 	}
435 
436 	/*
437 	 * Did we need to do an escaping?  Now we've done all the
438 	 * copying, we can finally do so.
439 	 */
440 	if (do_escape) {
441 		mapped_data = kmap_atomic(new_page);
442 		*((unsigned int *)(mapped_data + new_offset)) = 0;
443 		kunmap_atomic(mapped_data);
444 	}
445 
446 	set_bh_page(new_bh, new_page, new_offset);
447 	new_bh->b_size = bh_in->b_size;
448 	new_bh->b_bdev = journal->j_dev;
449 	new_bh->b_blocknr = blocknr;
450 	new_bh->b_private = bh_in;
451 	set_buffer_mapped(new_bh);
452 	set_buffer_dirty(new_bh);
453 
454 	*bh_out = new_bh;
455 
456 	/*
457 	 * The to-be-written buffer needs to get moved to the io queue,
458 	 * and the original buffer whose contents we are shadowing or
459 	 * copying is moved to the transaction's shadow queue.
460 	 */
461 	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
462 	spin_lock(&journal->j_list_lock);
463 	__jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
464 	spin_unlock(&journal->j_list_lock);
465 	set_buffer_shadow(bh_in);
466 	spin_unlock(&jh_in->b_state_lock);
467 
468 	return do_escape | (done_copy_out << 1);
469 }
470 
471 /*
472  * Allocation code for the journal file.  Manage the space left in the
473  * journal, so that we can begin checkpointing when appropriate.
474  */
475 
476 /*
477  * Called with j_state_lock locked for writing.
478  * Returns true if a transaction commit was started.
479  */
480 static int __jbd2_log_start_commit(journal_t *journal, tid_t target)
481 {
482 	/* Return if the txn has already requested to be committed */
483 	if (journal->j_commit_request == target)
484 		return 0;
485 
486 	/*
487 	 * The only transaction we can possibly wait upon is the
488 	 * currently running transaction (if it exists).  Otherwise,
489 	 * the target tid must be an old one.
490 	 */
491 	if (journal->j_running_transaction &&
492 	    journal->j_running_transaction->t_tid == target) {
493 		/*
494 		 * We want a new commit: OK, mark the request and wakeup the
495 		 * commit thread.  We do _not_ do the commit ourselves.
496 		 */
497 
498 		journal->j_commit_request = target;
499 		jbd2_debug(1, "JBD2: requesting commit %u/%u\n",
500 			  journal->j_commit_request,
501 			  journal->j_commit_sequence);
502 		journal->j_running_transaction->t_requested = jiffies;
503 		wake_up(&journal->j_wait_commit);
504 		return 1;
505 	} else if (!tid_geq(journal->j_commit_request, target))
506 		/* This should never happen, but if it does, preserve
507 		   the evidence before kjournald goes into a loop and
508 		   increments j_commit_sequence beyond all recognition. */
509 		WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
510 			  journal->j_commit_request,
511 			  journal->j_commit_sequence,
512 			  target, journal->j_running_transaction ?
513 			  journal->j_running_transaction->t_tid : 0);
514 	return 0;
515 }
516 
517 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
518 {
519 	int ret;
520 
521 	write_lock(&journal->j_state_lock);
522 	ret = __jbd2_log_start_commit(journal, tid);
523 	write_unlock(&journal->j_state_lock);
524 	return ret;
525 }
526 
527 /*
528  * Force and wait any uncommitted transactions.  We can only force the running
529  * transaction if we don't have an active handle, otherwise, we will deadlock.
530  * Returns: <0 in case of error,
531  *           0 if nothing to commit,
532  *           1 if transaction was successfully committed.
533  */
534 static int __jbd2_journal_force_commit(journal_t *journal)
535 {
536 	transaction_t *transaction = NULL;
537 	tid_t tid;
538 	int need_to_start = 0, ret = 0;
539 
540 	read_lock(&journal->j_state_lock);
541 	if (journal->j_running_transaction && !current->journal_info) {
542 		transaction = journal->j_running_transaction;
543 		if (!tid_geq(journal->j_commit_request, transaction->t_tid))
544 			need_to_start = 1;
545 	} else if (journal->j_committing_transaction)
546 		transaction = journal->j_committing_transaction;
547 
548 	if (!transaction) {
549 		/* Nothing to commit */
550 		read_unlock(&journal->j_state_lock);
551 		return 0;
552 	}
553 	tid = transaction->t_tid;
554 	read_unlock(&journal->j_state_lock);
555 	if (need_to_start)
556 		jbd2_log_start_commit(journal, tid);
557 	ret = jbd2_log_wait_commit(journal, tid);
558 	if (!ret)
559 		ret = 1;
560 
561 	return ret;
562 }
563 
564 /**
565  * jbd2_journal_force_commit_nested - Force and wait upon a commit if the
566  * calling process is not within transaction.
567  *
568  * @journal: journal to force
569  * Returns true if progress was made.
570  *
571  * This is used for forcing out undo-protected data which contains
572  * bitmaps, when the fs is running out of space.
573  */
574 int jbd2_journal_force_commit_nested(journal_t *journal)
575 {
576 	int ret;
577 
578 	ret = __jbd2_journal_force_commit(journal);
579 	return ret > 0;
580 }
581 
582 /**
583  * jbd2_journal_force_commit() - force any uncommitted transactions
584  * @journal: journal to force
585  *
586  * Caller want unconditional commit. We can only force the running transaction
587  * if we don't have an active handle, otherwise, we will deadlock.
588  */
589 int jbd2_journal_force_commit(journal_t *journal)
590 {
591 	int ret;
592 
593 	J_ASSERT(!current->journal_info);
594 	ret = __jbd2_journal_force_commit(journal);
595 	if (ret > 0)
596 		ret = 0;
597 	return ret;
598 }
599 
600 /*
601  * Start a commit of the current running transaction (if any).  Returns true
602  * if a transaction is going to be committed (or is currently already
603  * committing), and fills its tid in at *ptid
604  */
605 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
606 {
607 	int ret = 0;
608 
609 	write_lock(&journal->j_state_lock);
610 	if (journal->j_running_transaction) {
611 		tid_t tid = journal->j_running_transaction->t_tid;
612 
613 		__jbd2_log_start_commit(journal, tid);
614 		/* There's a running transaction and we've just made sure
615 		 * it's commit has been scheduled. */
616 		if (ptid)
617 			*ptid = tid;
618 		ret = 1;
619 	} else if (journal->j_committing_transaction) {
620 		/*
621 		 * If commit has been started, then we have to wait for
622 		 * completion of that transaction.
623 		 */
624 		if (ptid)
625 			*ptid = journal->j_committing_transaction->t_tid;
626 		ret = 1;
627 	}
628 	write_unlock(&journal->j_state_lock);
629 	return ret;
630 }
631 
632 /*
633  * Return 1 if a given transaction has not yet sent barrier request
634  * connected with a transaction commit. If 0 is returned, transaction
635  * may or may not have sent the barrier. Used to avoid sending barrier
636  * twice in common cases.
637  */
638 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
639 {
640 	int ret = 0;
641 	transaction_t *commit_trans;
642 
643 	if (!(journal->j_flags & JBD2_BARRIER))
644 		return 0;
645 	read_lock(&journal->j_state_lock);
646 	/* Transaction already committed? */
647 	if (tid_geq(journal->j_commit_sequence, tid))
648 		goto out;
649 	commit_trans = journal->j_committing_transaction;
650 	if (!commit_trans || commit_trans->t_tid != tid) {
651 		ret = 1;
652 		goto out;
653 	}
654 	/*
655 	 * Transaction is being committed and we already proceeded to
656 	 * submitting a flush to fs partition?
657 	 */
658 	if (journal->j_fs_dev != journal->j_dev) {
659 		if (!commit_trans->t_need_data_flush ||
660 		    commit_trans->t_state >= T_COMMIT_DFLUSH)
661 			goto out;
662 	} else {
663 		if (commit_trans->t_state >= T_COMMIT_JFLUSH)
664 			goto out;
665 	}
666 	ret = 1;
667 out:
668 	read_unlock(&journal->j_state_lock);
669 	return ret;
670 }
671 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
672 
673 /*
674  * Wait for a specified commit to complete.
675  * The caller may not hold the journal lock.
676  */
677 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
678 {
679 	int err = 0;
680 
681 	read_lock(&journal->j_state_lock);
682 #ifdef CONFIG_PROVE_LOCKING
683 	/*
684 	 * Some callers make sure transaction is already committing and in that
685 	 * case we cannot block on open handles anymore. So don't warn in that
686 	 * case.
687 	 */
688 	if (tid_gt(tid, journal->j_commit_sequence) &&
689 	    (!journal->j_committing_transaction ||
690 	     journal->j_committing_transaction->t_tid != tid)) {
691 		read_unlock(&journal->j_state_lock);
692 		jbd2_might_wait_for_commit(journal);
693 		read_lock(&journal->j_state_lock);
694 	}
695 #endif
696 #ifdef CONFIG_JBD2_DEBUG
697 	if (!tid_geq(journal->j_commit_request, tid)) {
698 		printk(KERN_ERR
699 		       "%s: error: j_commit_request=%u, tid=%u\n",
700 		       __func__, journal->j_commit_request, tid);
701 	}
702 #endif
703 	while (tid_gt(tid, journal->j_commit_sequence)) {
704 		jbd2_debug(1, "JBD2: want %u, j_commit_sequence=%u\n",
705 				  tid, journal->j_commit_sequence);
706 		read_unlock(&journal->j_state_lock);
707 		wake_up(&journal->j_wait_commit);
708 		wait_event(journal->j_wait_done_commit,
709 				!tid_gt(tid, journal->j_commit_sequence));
710 		read_lock(&journal->j_state_lock);
711 	}
712 	read_unlock(&journal->j_state_lock);
713 
714 	if (unlikely(is_journal_aborted(journal)))
715 		err = -EIO;
716 	return err;
717 }
718 
719 /*
720  * Start a fast commit. If there's an ongoing fast or full commit wait for
721  * it to complete. Returns 0 if a new fast commit was started. Returns -EALREADY
722  * if a fast commit is not needed, either because there's an already a commit
723  * going on or this tid has already been committed. Returns -EINVAL if no jbd2
724  * commit has yet been performed.
725  */
726 int jbd2_fc_begin_commit(journal_t *journal, tid_t tid)
727 {
728 	if (unlikely(is_journal_aborted(journal)))
729 		return -EIO;
730 	/*
731 	 * Fast commits only allowed if at least one full commit has
732 	 * been processed.
733 	 */
734 	if (!journal->j_stats.ts_tid)
735 		return -EINVAL;
736 
737 	write_lock(&journal->j_state_lock);
738 	if (tid <= journal->j_commit_sequence) {
739 		write_unlock(&journal->j_state_lock);
740 		return -EALREADY;
741 	}
742 
743 	if (journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
744 	    (journal->j_flags & JBD2_FAST_COMMIT_ONGOING)) {
745 		DEFINE_WAIT(wait);
746 
747 		prepare_to_wait(&journal->j_fc_wait, &wait,
748 				TASK_UNINTERRUPTIBLE);
749 		write_unlock(&journal->j_state_lock);
750 		schedule();
751 		finish_wait(&journal->j_fc_wait, &wait);
752 		return -EALREADY;
753 	}
754 	journal->j_flags |= JBD2_FAST_COMMIT_ONGOING;
755 	write_unlock(&journal->j_state_lock);
756 	jbd2_journal_lock_updates(journal);
757 
758 	return 0;
759 }
760 EXPORT_SYMBOL(jbd2_fc_begin_commit);
761 
762 /*
763  * Stop a fast commit. If fallback is set, this function starts commit of
764  * TID tid before any other fast commit can start.
765  */
766 static int __jbd2_fc_end_commit(journal_t *journal, tid_t tid, bool fallback)
767 {
768 	jbd2_journal_unlock_updates(journal);
769 	if (journal->j_fc_cleanup_callback)
770 		journal->j_fc_cleanup_callback(journal, 0, tid);
771 	write_lock(&journal->j_state_lock);
772 	journal->j_flags &= ~JBD2_FAST_COMMIT_ONGOING;
773 	if (fallback)
774 		journal->j_flags |= JBD2_FULL_COMMIT_ONGOING;
775 	write_unlock(&journal->j_state_lock);
776 	wake_up(&journal->j_fc_wait);
777 	if (fallback)
778 		return jbd2_complete_transaction(journal, tid);
779 	return 0;
780 }
781 
782 int jbd2_fc_end_commit(journal_t *journal)
783 {
784 	return __jbd2_fc_end_commit(journal, 0, false);
785 }
786 EXPORT_SYMBOL(jbd2_fc_end_commit);
787 
788 int jbd2_fc_end_commit_fallback(journal_t *journal)
789 {
790 	tid_t tid;
791 
792 	read_lock(&journal->j_state_lock);
793 	tid = journal->j_running_transaction ?
794 		journal->j_running_transaction->t_tid : 0;
795 	read_unlock(&journal->j_state_lock);
796 	return __jbd2_fc_end_commit(journal, tid, true);
797 }
798 EXPORT_SYMBOL(jbd2_fc_end_commit_fallback);
799 
800 /* Return 1 when transaction with given tid has already committed. */
801 int jbd2_transaction_committed(journal_t *journal, tid_t tid)
802 {
803 	int ret = 1;
804 
805 	read_lock(&journal->j_state_lock);
806 	if (journal->j_running_transaction &&
807 	    journal->j_running_transaction->t_tid == tid)
808 		ret = 0;
809 	if (journal->j_committing_transaction &&
810 	    journal->j_committing_transaction->t_tid == tid)
811 		ret = 0;
812 	read_unlock(&journal->j_state_lock);
813 	return ret;
814 }
815 EXPORT_SYMBOL(jbd2_transaction_committed);
816 
817 /*
818  * When this function returns the transaction corresponding to tid
819  * will be completed.  If the transaction has currently running, start
820  * committing that transaction before waiting for it to complete.  If
821  * the transaction id is stale, it is by definition already completed,
822  * so just return SUCCESS.
823  */
824 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
825 {
826 	int	need_to_wait = 1;
827 
828 	read_lock(&journal->j_state_lock);
829 	if (journal->j_running_transaction &&
830 	    journal->j_running_transaction->t_tid == tid) {
831 		if (journal->j_commit_request != tid) {
832 			/* transaction not yet started, so request it */
833 			read_unlock(&journal->j_state_lock);
834 			jbd2_log_start_commit(journal, tid);
835 			goto wait_commit;
836 		}
837 	} else if (!(journal->j_committing_transaction &&
838 		     journal->j_committing_transaction->t_tid == tid))
839 		need_to_wait = 0;
840 	read_unlock(&journal->j_state_lock);
841 	if (!need_to_wait)
842 		return 0;
843 wait_commit:
844 	return jbd2_log_wait_commit(journal, tid);
845 }
846 EXPORT_SYMBOL(jbd2_complete_transaction);
847 
848 /*
849  * Log buffer allocation routines:
850  */
851 
852 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
853 {
854 	unsigned long blocknr;
855 
856 	write_lock(&journal->j_state_lock);
857 	J_ASSERT(journal->j_free > 1);
858 
859 	blocknr = journal->j_head;
860 	journal->j_head++;
861 	journal->j_free--;
862 	if (journal->j_head == journal->j_last)
863 		journal->j_head = journal->j_first;
864 	write_unlock(&journal->j_state_lock);
865 	return jbd2_journal_bmap(journal, blocknr, retp);
866 }
867 
868 /* Map one fast commit buffer for use by the file system */
869 int jbd2_fc_get_buf(journal_t *journal, struct buffer_head **bh_out)
870 {
871 	unsigned long long pblock;
872 	unsigned long blocknr;
873 	int ret = 0;
874 	struct buffer_head *bh;
875 	int fc_off;
876 
877 	*bh_out = NULL;
878 
879 	if (journal->j_fc_off + journal->j_fc_first < journal->j_fc_last) {
880 		fc_off = journal->j_fc_off;
881 		blocknr = journal->j_fc_first + fc_off;
882 		journal->j_fc_off++;
883 	} else {
884 		ret = -EINVAL;
885 	}
886 
887 	if (ret)
888 		return ret;
889 
890 	ret = jbd2_journal_bmap(journal, blocknr, &pblock);
891 	if (ret)
892 		return ret;
893 
894 	bh = __getblk(journal->j_dev, pblock, journal->j_blocksize);
895 	if (!bh)
896 		return -ENOMEM;
897 
898 
899 	journal->j_fc_wbuf[fc_off] = bh;
900 
901 	*bh_out = bh;
902 
903 	return 0;
904 }
905 EXPORT_SYMBOL(jbd2_fc_get_buf);
906 
907 /*
908  * Wait on fast commit buffers that were allocated by jbd2_fc_get_buf
909  * for completion.
910  */
911 int jbd2_fc_wait_bufs(journal_t *journal, int num_blks)
912 {
913 	struct buffer_head *bh;
914 	int i, j_fc_off;
915 
916 	j_fc_off = journal->j_fc_off;
917 
918 	/*
919 	 * Wait in reverse order to minimize chances of us being woken up before
920 	 * all IOs have completed
921 	 */
922 	for (i = j_fc_off - 1; i >= j_fc_off - num_blks; i--) {
923 		bh = journal->j_fc_wbuf[i];
924 		wait_on_buffer(bh);
925 		/*
926 		 * Update j_fc_off so jbd2_fc_release_bufs can release remain
927 		 * buffer head.
928 		 */
929 		if (unlikely(!buffer_uptodate(bh))) {
930 			journal->j_fc_off = i + 1;
931 			return -EIO;
932 		}
933 		put_bh(bh);
934 		journal->j_fc_wbuf[i] = NULL;
935 	}
936 
937 	return 0;
938 }
939 EXPORT_SYMBOL(jbd2_fc_wait_bufs);
940 
941 int jbd2_fc_release_bufs(journal_t *journal)
942 {
943 	struct buffer_head *bh;
944 	int i, j_fc_off;
945 
946 	j_fc_off = journal->j_fc_off;
947 
948 	for (i = j_fc_off - 1; i >= 0; i--) {
949 		bh = journal->j_fc_wbuf[i];
950 		if (!bh)
951 			break;
952 		put_bh(bh);
953 		journal->j_fc_wbuf[i] = NULL;
954 	}
955 
956 	return 0;
957 }
958 EXPORT_SYMBOL(jbd2_fc_release_bufs);
959 
960 /*
961  * Conversion of logical to physical block numbers for the journal
962  *
963  * On external journals the journal blocks are identity-mapped, so
964  * this is a no-op.  If needed, we can use j_blk_offset - everything is
965  * ready.
966  */
967 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
968 		 unsigned long long *retp)
969 {
970 	int err = 0;
971 	unsigned long long ret;
972 	sector_t block = blocknr;
973 
974 	if (journal->j_bmap) {
975 		err = journal->j_bmap(journal, &block);
976 		if (err == 0)
977 			*retp = block;
978 	} else if (journal->j_inode) {
979 		ret = bmap(journal->j_inode, &block);
980 
981 		if (ret || !block) {
982 			printk(KERN_ALERT "%s: journal block not found "
983 					"at offset %lu on %s\n",
984 			       __func__, blocknr, journal->j_devname);
985 			err = -EIO;
986 			jbd2_journal_abort(journal, err);
987 		} else {
988 			*retp = block;
989 		}
990 
991 	} else {
992 		*retp = blocknr; /* +journal->j_blk_offset */
993 	}
994 	return err;
995 }
996 
997 /*
998  * We play buffer_head aliasing tricks to write data/metadata blocks to
999  * the journal without copying their contents, but for journal
1000  * descriptor blocks we do need to generate bona fide buffers.
1001  *
1002  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
1003  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
1004  * But we don't bother doing that, so there will be coherency problems with
1005  * mmaps of blockdevs which hold live JBD-controlled filesystems.
1006  */
1007 struct buffer_head *
1008 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
1009 {
1010 	journal_t *journal = transaction->t_journal;
1011 	struct buffer_head *bh;
1012 	unsigned long long blocknr;
1013 	journal_header_t *header;
1014 	int err;
1015 
1016 	err = jbd2_journal_next_log_block(journal, &blocknr);
1017 
1018 	if (err)
1019 		return NULL;
1020 
1021 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
1022 	if (!bh)
1023 		return NULL;
1024 	atomic_dec(&transaction->t_outstanding_credits);
1025 	lock_buffer(bh);
1026 	memset(bh->b_data, 0, journal->j_blocksize);
1027 	header = (journal_header_t *)bh->b_data;
1028 	header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
1029 	header->h_blocktype = cpu_to_be32(type);
1030 	header->h_sequence = cpu_to_be32(transaction->t_tid);
1031 	set_buffer_uptodate(bh);
1032 	unlock_buffer(bh);
1033 	BUFFER_TRACE(bh, "return this buffer");
1034 	return bh;
1035 }
1036 
1037 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
1038 {
1039 	struct jbd2_journal_block_tail *tail;
1040 	__u32 csum;
1041 
1042 	if (!jbd2_journal_has_csum_v2or3(j))
1043 		return;
1044 
1045 	tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
1046 			sizeof(struct jbd2_journal_block_tail));
1047 	tail->t_checksum = 0;
1048 	csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
1049 	tail->t_checksum = cpu_to_be32(csum);
1050 }
1051 
1052 /*
1053  * Return tid of the oldest transaction in the journal and block in the journal
1054  * where the transaction starts.
1055  *
1056  * If the journal is now empty, return which will be the next transaction ID
1057  * we will write and where will that transaction start.
1058  *
1059  * The return value is 0 if journal tail cannot be pushed any further, 1 if
1060  * it can.
1061  */
1062 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
1063 			      unsigned long *block)
1064 {
1065 	transaction_t *transaction;
1066 	int ret;
1067 
1068 	read_lock(&journal->j_state_lock);
1069 	spin_lock(&journal->j_list_lock);
1070 	transaction = journal->j_checkpoint_transactions;
1071 	if (transaction) {
1072 		*tid = transaction->t_tid;
1073 		*block = transaction->t_log_start;
1074 	} else if ((transaction = journal->j_committing_transaction) != NULL) {
1075 		*tid = transaction->t_tid;
1076 		*block = transaction->t_log_start;
1077 	} else if ((transaction = journal->j_running_transaction) != NULL) {
1078 		*tid = transaction->t_tid;
1079 		*block = journal->j_head;
1080 	} else {
1081 		*tid = journal->j_transaction_sequence;
1082 		*block = journal->j_head;
1083 	}
1084 	ret = tid_gt(*tid, journal->j_tail_sequence);
1085 	spin_unlock(&journal->j_list_lock);
1086 	read_unlock(&journal->j_state_lock);
1087 
1088 	return ret;
1089 }
1090 
1091 /*
1092  * Update information in journal structure and in on disk journal superblock
1093  * about log tail. This function does not check whether information passed in
1094  * really pushes log tail further. It's responsibility of the caller to make
1095  * sure provided log tail information is valid (e.g. by holding
1096  * j_checkpoint_mutex all the time between computing log tail and calling this
1097  * function as is the case with jbd2_cleanup_journal_tail()).
1098  *
1099  * Requires j_checkpoint_mutex
1100  */
1101 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
1102 {
1103 	unsigned long freed;
1104 	int ret;
1105 
1106 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1107 
1108 	/*
1109 	 * We cannot afford for write to remain in drive's caches since as
1110 	 * soon as we update j_tail, next transaction can start reusing journal
1111 	 * space and if we lose sb update during power failure we'd replay
1112 	 * old transaction with possibly newly overwritten data.
1113 	 */
1114 	ret = jbd2_journal_update_sb_log_tail(journal, tid, block,
1115 					      REQ_SYNC | REQ_FUA);
1116 	if (ret)
1117 		goto out;
1118 
1119 	write_lock(&journal->j_state_lock);
1120 	freed = block - journal->j_tail;
1121 	if (block < journal->j_tail)
1122 		freed += journal->j_last - journal->j_first;
1123 
1124 	trace_jbd2_update_log_tail(journal, tid, block, freed);
1125 	jbd2_debug(1,
1126 		  "Cleaning journal tail from %u to %u (offset %lu), "
1127 		  "freeing %lu\n",
1128 		  journal->j_tail_sequence, tid, block, freed);
1129 
1130 	journal->j_free += freed;
1131 	journal->j_tail_sequence = tid;
1132 	journal->j_tail = block;
1133 	write_unlock(&journal->j_state_lock);
1134 
1135 out:
1136 	return ret;
1137 }
1138 
1139 /*
1140  * This is a variation of __jbd2_update_log_tail which checks for validity of
1141  * provided log tail and locks j_checkpoint_mutex. So it is safe against races
1142  * with other threads updating log tail.
1143  */
1144 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
1145 {
1146 	mutex_lock_io(&journal->j_checkpoint_mutex);
1147 	if (tid_gt(tid, journal->j_tail_sequence))
1148 		__jbd2_update_log_tail(journal, tid, block);
1149 	mutex_unlock(&journal->j_checkpoint_mutex);
1150 }
1151 
1152 struct jbd2_stats_proc_session {
1153 	journal_t *journal;
1154 	struct transaction_stats_s *stats;
1155 	int start;
1156 	int max;
1157 };
1158 
1159 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
1160 {
1161 	return *pos ? NULL : SEQ_START_TOKEN;
1162 }
1163 
1164 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
1165 {
1166 	(*pos)++;
1167 	return NULL;
1168 }
1169 
1170 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
1171 {
1172 	struct jbd2_stats_proc_session *s = seq->private;
1173 
1174 	if (v != SEQ_START_TOKEN)
1175 		return 0;
1176 	seq_printf(seq, "%lu transactions (%lu requested), "
1177 		   "each up to %u blocks\n",
1178 		   s->stats->ts_tid, s->stats->ts_requested,
1179 		   s->journal->j_max_transaction_buffers);
1180 	if (s->stats->ts_tid == 0)
1181 		return 0;
1182 	seq_printf(seq, "average: \n  %ums waiting for transaction\n",
1183 	    jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
1184 	seq_printf(seq, "  %ums request delay\n",
1185 	    (s->stats->ts_requested == 0) ? 0 :
1186 	    jiffies_to_msecs(s->stats->run.rs_request_delay /
1187 			     s->stats->ts_requested));
1188 	seq_printf(seq, "  %ums running transaction\n",
1189 	    jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
1190 	seq_printf(seq, "  %ums transaction was being locked\n",
1191 	    jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1192 	seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
1193 	    jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1194 	seq_printf(seq, "  %ums logging transaction\n",
1195 	    jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1196 	seq_printf(seq, "  %lluus average transaction commit time\n",
1197 		   div_u64(s->journal->j_average_commit_time, 1000));
1198 	seq_printf(seq, "  %lu handles per transaction\n",
1199 	    s->stats->run.rs_handle_count / s->stats->ts_tid);
1200 	seq_printf(seq, "  %lu blocks per transaction\n",
1201 	    s->stats->run.rs_blocks / s->stats->ts_tid);
1202 	seq_printf(seq, "  %lu logged blocks per transaction\n",
1203 	    s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1204 	return 0;
1205 }
1206 
1207 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1208 {
1209 }
1210 
1211 static const struct seq_operations jbd2_seq_info_ops = {
1212 	.start  = jbd2_seq_info_start,
1213 	.next   = jbd2_seq_info_next,
1214 	.stop   = jbd2_seq_info_stop,
1215 	.show   = jbd2_seq_info_show,
1216 };
1217 
1218 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1219 {
1220 	journal_t *journal = pde_data(inode);
1221 	struct jbd2_stats_proc_session *s;
1222 	int rc, size;
1223 
1224 	s = kmalloc(sizeof(*s), GFP_KERNEL);
1225 	if (s == NULL)
1226 		return -ENOMEM;
1227 	size = sizeof(struct transaction_stats_s);
1228 	s->stats = kmalloc(size, GFP_KERNEL);
1229 	if (s->stats == NULL) {
1230 		kfree(s);
1231 		return -ENOMEM;
1232 	}
1233 	spin_lock(&journal->j_history_lock);
1234 	memcpy(s->stats, &journal->j_stats, size);
1235 	s->journal = journal;
1236 	spin_unlock(&journal->j_history_lock);
1237 
1238 	rc = seq_open(file, &jbd2_seq_info_ops);
1239 	if (rc == 0) {
1240 		struct seq_file *m = file->private_data;
1241 		m->private = s;
1242 	} else {
1243 		kfree(s->stats);
1244 		kfree(s);
1245 	}
1246 	return rc;
1247 
1248 }
1249 
1250 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1251 {
1252 	struct seq_file *seq = file->private_data;
1253 	struct jbd2_stats_proc_session *s = seq->private;
1254 	kfree(s->stats);
1255 	kfree(s);
1256 	return seq_release(inode, file);
1257 }
1258 
1259 static const struct proc_ops jbd2_info_proc_ops = {
1260 	.proc_open	= jbd2_seq_info_open,
1261 	.proc_read	= seq_read,
1262 	.proc_lseek	= seq_lseek,
1263 	.proc_release	= jbd2_seq_info_release,
1264 };
1265 
1266 static struct proc_dir_entry *proc_jbd2_stats;
1267 
1268 static void jbd2_stats_proc_init(journal_t *journal)
1269 {
1270 	journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1271 	if (journal->j_proc_entry) {
1272 		proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1273 				 &jbd2_info_proc_ops, journal);
1274 	}
1275 }
1276 
1277 static void jbd2_stats_proc_exit(journal_t *journal)
1278 {
1279 	remove_proc_entry("info", journal->j_proc_entry);
1280 	remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1281 }
1282 
1283 /* Minimum size of descriptor tag */
1284 static int jbd2_min_tag_size(void)
1285 {
1286 	/*
1287 	 * Tag with 32-bit block numbers does not use last four bytes of the
1288 	 * structure
1289 	 */
1290 	return sizeof(journal_block_tag_t) - 4;
1291 }
1292 
1293 /**
1294  * jbd2_journal_shrink_scan()
1295  * @shrink: shrinker to work on
1296  * @sc: reclaim request to process
1297  *
1298  * Scan the checkpointed buffer on the checkpoint list and release the
1299  * journal_head.
1300  */
1301 static unsigned long jbd2_journal_shrink_scan(struct shrinker *shrink,
1302 					      struct shrink_control *sc)
1303 {
1304 	journal_t *journal = container_of(shrink, journal_t, j_shrinker);
1305 	unsigned long nr_to_scan = sc->nr_to_scan;
1306 	unsigned long nr_shrunk;
1307 	unsigned long count;
1308 
1309 	count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count);
1310 	trace_jbd2_shrink_scan_enter(journal, sc->nr_to_scan, count);
1311 
1312 	nr_shrunk = jbd2_journal_shrink_checkpoint_list(journal, &nr_to_scan);
1313 
1314 	count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count);
1315 	trace_jbd2_shrink_scan_exit(journal, nr_to_scan, nr_shrunk, count);
1316 
1317 	return nr_shrunk;
1318 }
1319 
1320 /**
1321  * jbd2_journal_shrink_count()
1322  * @shrink: shrinker to work on
1323  * @sc: reclaim request to process
1324  *
1325  * Count the number of checkpoint buffers on the checkpoint list.
1326  */
1327 static unsigned long jbd2_journal_shrink_count(struct shrinker *shrink,
1328 					       struct shrink_control *sc)
1329 {
1330 	journal_t *journal = container_of(shrink, journal_t, j_shrinker);
1331 	unsigned long count;
1332 
1333 	count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count);
1334 	trace_jbd2_shrink_count(journal, sc->nr_to_scan, count);
1335 
1336 	return count;
1337 }
1338 
1339 /*
1340  * Management for journal control blocks: functions to create and
1341  * destroy journal_t structures, and to initialise and read existing
1342  * journal blocks from disk.  */
1343 
1344 /* First: create and setup a journal_t object in memory.  We initialise
1345  * very few fields yet: that has to wait until we have created the
1346  * journal structures from from scratch, or loaded them from disk. */
1347 
1348 static journal_t *journal_init_common(struct block_device *bdev,
1349 			struct block_device *fs_dev,
1350 			unsigned long long start, int len, int blocksize)
1351 {
1352 	static struct lock_class_key jbd2_trans_commit_key;
1353 	journal_t *journal;
1354 	int err;
1355 	struct buffer_head *bh;
1356 	int n;
1357 
1358 	journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1359 	if (!journal)
1360 		return NULL;
1361 
1362 	init_waitqueue_head(&journal->j_wait_transaction_locked);
1363 	init_waitqueue_head(&journal->j_wait_done_commit);
1364 	init_waitqueue_head(&journal->j_wait_commit);
1365 	init_waitqueue_head(&journal->j_wait_updates);
1366 	init_waitqueue_head(&journal->j_wait_reserved);
1367 	init_waitqueue_head(&journal->j_fc_wait);
1368 	mutex_init(&journal->j_abort_mutex);
1369 	mutex_init(&journal->j_barrier);
1370 	mutex_init(&journal->j_checkpoint_mutex);
1371 	spin_lock_init(&journal->j_revoke_lock);
1372 	spin_lock_init(&journal->j_list_lock);
1373 	rwlock_init(&journal->j_state_lock);
1374 
1375 	journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1376 	journal->j_min_batch_time = 0;
1377 	journal->j_max_batch_time = 15000; /* 15ms */
1378 	atomic_set(&journal->j_reserved_credits, 0);
1379 
1380 	/* The journal is marked for error until we succeed with recovery! */
1381 	journal->j_flags = JBD2_ABORT;
1382 
1383 	/* Set up a default-sized revoke table for the new mount. */
1384 	err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1385 	if (err)
1386 		goto err_cleanup;
1387 
1388 	spin_lock_init(&journal->j_history_lock);
1389 
1390 	lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1391 			 &jbd2_trans_commit_key, 0);
1392 
1393 	/* journal descriptor can store up to n blocks -bzzz */
1394 	journal->j_blocksize = blocksize;
1395 	journal->j_dev = bdev;
1396 	journal->j_fs_dev = fs_dev;
1397 	journal->j_blk_offset = start;
1398 	journal->j_total_len = len;
1399 	/* We need enough buffers to write out full descriptor block. */
1400 	n = journal->j_blocksize / jbd2_min_tag_size();
1401 	journal->j_wbufsize = n;
1402 	journal->j_fc_wbuf = NULL;
1403 	journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1404 					GFP_KERNEL);
1405 	if (!journal->j_wbuf)
1406 		goto err_cleanup;
1407 
1408 	bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize);
1409 	if (!bh) {
1410 		pr_err("%s: Cannot get buffer for journal superblock\n",
1411 			__func__);
1412 		goto err_cleanup;
1413 	}
1414 	journal->j_sb_buffer = bh;
1415 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
1416 
1417 	journal->j_shrink_transaction = NULL;
1418 	journal->j_shrinker.scan_objects = jbd2_journal_shrink_scan;
1419 	journal->j_shrinker.count_objects = jbd2_journal_shrink_count;
1420 	journal->j_shrinker.seeks = DEFAULT_SEEKS;
1421 	journal->j_shrinker.batch = journal->j_max_transaction_buffers;
1422 
1423 	if (percpu_counter_init(&journal->j_checkpoint_jh_count, 0, GFP_KERNEL))
1424 		goto err_cleanup;
1425 
1426 	if (register_shrinker(&journal->j_shrinker, "jbd2-journal:(%u:%u)",
1427 			      MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev))) {
1428 		percpu_counter_destroy(&journal->j_checkpoint_jh_count);
1429 		goto err_cleanup;
1430 	}
1431 	return journal;
1432 
1433 err_cleanup:
1434 	brelse(journal->j_sb_buffer);
1435 	kfree(journal->j_wbuf);
1436 	jbd2_journal_destroy_revoke(journal);
1437 	kfree(journal);
1438 	return NULL;
1439 }
1440 
1441 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1442  *
1443  * Create a journal structure assigned some fixed set of disk blocks to
1444  * the journal.  We don't actually touch those disk blocks yet, but we
1445  * need to set up all of the mapping information to tell the journaling
1446  * system where the journal blocks are.
1447  *
1448  */
1449 
1450 /**
1451  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1452  *  @bdev: Block device on which to create the journal
1453  *  @fs_dev: Device which hold journalled filesystem for this journal.
1454  *  @start: Block nr Start of journal.
1455  *  @len:  Length of the journal in blocks.
1456  *  @blocksize: blocksize of journalling device
1457  *
1458  *  Returns: a newly created journal_t *
1459  *
1460  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1461  *  range of blocks on an arbitrary block device.
1462  *
1463  */
1464 journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1465 			struct block_device *fs_dev,
1466 			unsigned long long start, int len, int blocksize)
1467 {
1468 	journal_t *journal;
1469 
1470 	journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1471 	if (!journal)
1472 		return NULL;
1473 
1474 	snprintf(journal->j_devname, sizeof(journal->j_devname),
1475 		 "%pg", journal->j_dev);
1476 	strreplace(journal->j_devname, '/', '!');
1477 	jbd2_stats_proc_init(journal);
1478 
1479 	return journal;
1480 }
1481 
1482 /**
1483  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1484  *  @inode: An inode to create the journal in
1485  *
1486  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1487  * the journal.  The inode must exist already, must support bmap() and
1488  * must have all data blocks preallocated.
1489  */
1490 journal_t *jbd2_journal_init_inode(struct inode *inode)
1491 {
1492 	journal_t *journal;
1493 	sector_t blocknr;
1494 	int err = 0;
1495 
1496 	blocknr = 0;
1497 	err = bmap(inode, &blocknr);
1498 
1499 	if (err || !blocknr) {
1500 		pr_err("%s: Cannot locate journal superblock\n",
1501 			__func__);
1502 		return NULL;
1503 	}
1504 
1505 	jbd2_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1506 		  inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1507 		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1508 
1509 	journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1510 			blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1511 			inode->i_sb->s_blocksize);
1512 	if (!journal)
1513 		return NULL;
1514 
1515 	journal->j_inode = inode;
1516 	snprintf(journal->j_devname, sizeof(journal->j_devname),
1517 		 "%pg-%lu", journal->j_dev, journal->j_inode->i_ino);
1518 	strreplace(journal->j_devname, '/', '!');
1519 	jbd2_stats_proc_init(journal);
1520 
1521 	return journal;
1522 }
1523 
1524 /*
1525  * If the journal init or create aborts, we need to mark the journal
1526  * superblock as being NULL to prevent the journal destroy from writing
1527  * back a bogus superblock.
1528  */
1529 static void journal_fail_superblock(journal_t *journal)
1530 {
1531 	struct buffer_head *bh = journal->j_sb_buffer;
1532 	brelse(bh);
1533 	journal->j_sb_buffer = NULL;
1534 }
1535 
1536 /*
1537  * Given a journal_t structure, initialise the various fields for
1538  * startup of a new journaling session.  We use this both when creating
1539  * a journal, and after recovering an old journal to reset it for
1540  * subsequent use.
1541  */
1542 
1543 static int journal_reset(journal_t *journal)
1544 {
1545 	journal_superblock_t *sb = journal->j_superblock;
1546 	unsigned long long first, last;
1547 
1548 	first = be32_to_cpu(sb->s_first);
1549 	last = be32_to_cpu(sb->s_maxlen);
1550 	if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1551 		printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1552 		       first, last);
1553 		journal_fail_superblock(journal);
1554 		return -EINVAL;
1555 	}
1556 
1557 	journal->j_first = first;
1558 	journal->j_last = last;
1559 
1560 	if (journal->j_head != 0 && journal->j_flags & JBD2_CYCLE_RECORD) {
1561 		/*
1562 		 * Disable the cycled recording mode if the journal head block
1563 		 * number is not correct.
1564 		 */
1565 		if (journal->j_head < first || journal->j_head >= last) {
1566 			printk(KERN_WARNING "JBD2: Incorrect Journal head block %lu, "
1567 			       "disable journal_cycle_record\n",
1568 			       journal->j_head);
1569 			journal->j_head = journal->j_first;
1570 		}
1571 	} else {
1572 		journal->j_head = journal->j_first;
1573 	}
1574 	journal->j_tail = journal->j_head;
1575 	journal->j_free = journal->j_last - journal->j_first;
1576 
1577 	journal->j_tail_sequence = journal->j_transaction_sequence;
1578 	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1579 	journal->j_commit_request = journal->j_commit_sequence;
1580 
1581 	journal->j_max_transaction_buffers = jbd2_journal_get_max_txn_bufs(journal);
1582 
1583 	/*
1584 	 * Now that journal recovery is done, turn fast commits off here. This
1585 	 * way, if fast commit was enabled before the crash but if now FS has
1586 	 * disabled it, we don't enable fast commits.
1587 	 */
1588 	jbd2_clear_feature_fast_commit(journal);
1589 
1590 	/*
1591 	 * As a special case, if the on-disk copy is already marked as needing
1592 	 * no recovery (s_start == 0), then we can safely defer the superblock
1593 	 * update until the next commit by setting JBD2_FLUSHED.  This avoids
1594 	 * attempting a write to a potential-readonly device.
1595 	 */
1596 	if (sb->s_start == 0) {
1597 		jbd2_debug(1, "JBD2: Skipping superblock update on recovered sb "
1598 			"(start %ld, seq %u, errno %d)\n",
1599 			journal->j_tail, journal->j_tail_sequence,
1600 			journal->j_errno);
1601 		journal->j_flags |= JBD2_FLUSHED;
1602 	} else {
1603 		/* Lock here to make assertions happy... */
1604 		mutex_lock_io(&journal->j_checkpoint_mutex);
1605 		/*
1606 		 * Update log tail information. We use REQ_FUA since new
1607 		 * transaction will start reusing journal space and so we
1608 		 * must make sure information about current log tail is on
1609 		 * disk before that.
1610 		 */
1611 		jbd2_journal_update_sb_log_tail(journal,
1612 						journal->j_tail_sequence,
1613 						journal->j_tail,
1614 						REQ_SYNC | REQ_FUA);
1615 		mutex_unlock(&journal->j_checkpoint_mutex);
1616 	}
1617 	return jbd2_journal_start_thread(journal);
1618 }
1619 
1620 /*
1621  * This function expects that the caller will have locked the journal
1622  * buffer head, and will return with it unlocked
1623  */
1624 static int jbd2_write_superblock(journal_t *journal, blk_opf_t write_flags)
1625 {
1626 	struct buffer_head *bh = journal->j_sb_buffer;
1627 	journal_superblock_t *sb = journal->j_superblock;
1628 	int ret = 0;
1629 
1630 	/* Buffer got discarded which means block device got invalidated */
1631 	if (!buffer_mapped(bh)) {
1632 		unlock_buffer(bh);
1633 		return -EIO;
1634 	}
1635 
1636 	trace_jbd2_write_superblock(journal, write_flags);
1637 	if (!(journal->j_flags & JBD2_BARRIER))
1638 		write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1639 	if (buffer_write_io_error(bh)) {
1640 		/*
1641 		 * Oh, dear.  A previous attempt to write the journal
1642 		 * superblock failed.  This could happen because the
1643 		 * USB device was yanked out.  Or it could happen to
1644 		 * be a transient write error and maybe the block will
1645 		 * be remapped.  Nothing we can do but to retry the
1646 		 * write and hope for the best.
1647 		 */
1648 		printk(KERN_ERR "JBD2: previous I/O error detected "
1649 		       "for journal superblock update for %s.\n",
1650 		       journal->j_devname);
1651 		clear_buffer_write_io_error(bh);
1652 		set_buffer_uptodate(bh);
1653 	}
1654 	if (jbd2_journal_has_csum_v2or3(journal))
1655 		sb->s_checksum = jbd2_superblock_csum(journal, sb);
1656 	get_bh(bh);
1657 	bh->b_end_io = end_buffer_write_sync;
1658 	submit_bh(REQ_OP_WRITE | write_flags, bh);
1659 	wait_on_buffer(bh);
1660 	if (buffer_write_io_error(bh)) {
1661 		clear_buffer_write_io_error(bh);
1662 		set_buffer_uptodate(bh);
1663 		ret = -EIO;
1664 	}
1665 	if (ret) {
1666 		printk(KERN_ERR "JBD2: I/O error when updating journal superblock for %s.\n",
1667 				journal->j_devname);
1668 		if (!is_journal_aborted(journal))
1669 			jbd2_journal_abort(journal, ret);
1670 	}
1671 
1672 	return ret;
1673 }
1674 
1675 /**
1676  * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1677  * @journal: The journal to update.
1678  * @tail_tid: TID of the new transaction at the tail of the log
1679  * @tail_block: The first block of the transaction at the tail of the log
1680  * @write_flags: Flags for the journal sb write operation
1681  *
1682  * Update a journal's superblock information about log tail and write it to
1683  * disk, waiting for the IO to complete.
1684  */
1685 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1686 				    unsigned long tail_block,
1687 				    blk_opf_t write_flags)
1688 {
1689 	journal_superblock_t *sb = journal->j_superblock;
1690 	int ret;
1691 
1692 	if (is_journal_aborted(journal))
1693 		return -EIO;
1694 	if (test_bit(JBD2_CHECKPOINT_IO_ERROR, &journal->j_atomic_flags)) {
1695 		jbd2_journal_abort(journal, -EIO);
1696 		return -EIO;
1697 	}
1698 
1699 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1700 	jbd2_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1701 		  tail_block, tail_tid);
1702 
1703 	lock_buffer(journal->j_sb_buffer);
1704 	sb->s_sequence = cpu_to_be32(tail_tid);
1705 	sb->s_start    = cpu_to_be32(tail_block);
1706 
1707 	ret = jbd2_write_superblock(journal, write_flags);
1708 	if (ret)
1709 		goto out;
1710 
1711 	/* Log is no longer empty */
1712 	write_lock(&journal->j_state_lock);
1713 	WARN_ON(!sb->s_sequence);
1714 	journal->j_flags &= ~JBD2_FLUSHED;
1715 	write_unlock(&journal->j_state_lock);
1716 
1717 out:
1718 	return ret;
1719 }
1720 
1721 /**
1722  * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1723  * @journal: The journal to update.
1724  * @write_flags: Flags for the journal sb write operation
1725  *
1726  * Update a journal's dynamic superblock fields to show that journal is empty.
1727  * Write updated superblock to disk waiting for IO to complete.
1728  */
1729 static void jbd2_mark_journal_empty(journal_t *journal, blk_opf_t write_flags)
1730 {
1731 	journal_superblock_t *sb = journal->j_superblock;
1732 	bool had_fast_commit = false;
1733 
1734 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1735 	lock_buffer(journal->j_sb_buffer);
1736 	if (sb->s_start == 0) {		/* Is it already empty? */
1737 		unlock_buffer(journal->j_sb_buffer);
1738 		return;
1739 	}
1740 
1741 	jbd2_debug(1, "JBD2: Marking journal as empty (seq %u)\n",
1742 		  journal->j_tail_sequence);
1743 
1744 	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1745 	sb->s_start    = cpu_to_be32(0);
1746 	sb->s_head     = cpu_to_be32(journal->j_head);
1747 	if (jbd2_has_feature_fast_commit(journal)) {
1748 		/*
1749 		 * When journal is clean, no need to commit fast commit flag and
1750 		 * make file system incompatible with older kernels.
1751 		 */
1752 		jbd2_clear_feature_fast_commit(journal);
1753 		had_fast_commit = true;
1754 	}
1755 
1756 	jbd2_write_superblock(journal, write_flags);
1757 
1758 	if (had_fast_commit)
1759 		jbd2_set_feature_fast_commit(journal);
1760 
1761 	/* Log is no longer empty */
1762 	write_lock(&journal->j_state_lock);
1763 	journal->j_flags |= JBD2_FLUSHED;
1764 	write_unlock(&journal->j_state_lock);
1765 }
1766 
1767 /**
1768  * __jbd2_journal_erase() - Discard or zeroout journal blocks (excluding superblock)
1769  * @journal: The journal to erase.
1770  * @flags: A discard/zeroout request is sent for each physically contigous
1771  *	region of the journal. Either JBD2_JOURNAL_FLUSH_DISCARD or
1772  *	JBD2_JOURNAL_FLUSH_ZEROOUT must be set to determine which operation
1773  *	to perform.
1774  *
1775  * Note: JBD2_JOURNAL_FLUSH_ZEROOUT attempts to use hardware offload. Zeroes
1776  * will be explicitly written if no hardware offload is available, see
1777  * blkdev_issue_zeroout for more details.
1778  */
1779 static int __jbd2_journal_erase(journal_t *journal, unsigned int flags)
1780 {
1781 	int err = 0;
1782 	unsigned long block, log_offset; /* logical */
1783 	unsigned long long phys_block, block_start, block_stop; /* physical */
1784 	loff_t byte_start, byte_stop, byte_count;
1785 
1786 	/* flags must be set to either discard or zeroout */
1787 	if ((flags & ~JBD2_JOURNAL_FLUSH_VALID) || !flags ||
1788 			((flags & JBD2_JOURNAL_FLUSH_DISCARD) &&
1789 			(flags & JBD2_JOURNAL_FLUSH_ZEROOUT)))
1790 		return -EINVAL;
1791 
1792 	if ((flags & JBD2_JOURNAL_FLUSH_DISCARD) &&
1793 	    !bdev_max_discard_sectors(journal->j_dev))
1794 		return -EOPNOTSUPP;
1795 
1796 	/*
1797 	 * lookup block mapping and issue discard/zeroout for each
1798 	 * contiguous region
1799 	 */
1800 	log_offset = be32_to_cpu(journal->j_superblock->s_first);
1801 	block_start =  ~0ULL;
1802 	for (block = log_offset; block < journal->j_total_len; block++) {
1803 		err = jbd2_journal_bmap(journal, block, &phys_block);
1804 		if (err) {
1805 			pr_err("JBD2: bad block at offset %lu", block);
1806 			return err;
1807 		}
1808 
1809 		if (block_start == ~0ULL) {
1810 			block_start = phys_block;
1811 			block_stop = block_start - 1;
1812 		}
1813 
1814 		/*
1815 		 * last block not contiguous with current block,
1816 		 * process last contiguous region and return to this block on
1817 		 * next loop
1818 		 */
1819 		if (phys_block != block_stop + 1) {
1820 			block--;
1821 		} else {
1822 			block_stop++;
1823 			/*
1824 			 * if this isn't the last block of journal,
1825 			 * no need to process now because next block may also
1826 			 * be part of this contiguous region
1827 			 */
1828 			if (block != journal->j_total_len - 1)
1829 				continue;
1830 		}
1831 
1832 		/*
1833 		 * end of contiguous region or this is last block of journal,
1834 		 * take care of the region
1835 		 */
1836 		byte_start = block_start * journal->j_blocksize;
1837 		byte_stop = block_stop * journal->j_blocksize;
1838 		byte_count = (block_stop - block_start + 1) *
1839 				journal->j_blocksize;
1840 
1841 		truncate_inode_pages_range(journal->j_dev->bd_inode->i_mapping,
1842 				byte_start, byte_stop);
1843 
1844 		if (flags & JBD2_JOURNAL_FLUSH_DISCARD) {
1845 			err = blkdev_issue_discard(journal->j_dev,
1846 					byte_start >> SECTOR_SHIFT,
1847 					byte_count >> SECTOR_SHIFT,
1848 					GFP_NOFS);
1849 		} else if (flags & JBD2_JOURNAL_FLUSH_ZEROOUT) {
1850 			err = blkdev_issue_zeroout(journal->j_dev,
1851 					byte_start >> SECTOR_SHIFT,
1852 					byte_count >> SECTOR_SHIFT,
1853 					GFP_NOFS, 0);
1854 		}
1855 
1856 		if (unlikely(err != 0)) {
1857 			pr_err("JBD2: (error %d) unable to wipe journal at physical blocks %llu - %llu",
1858 					err, block_start, block_stop);
1859 			return err;
1860 		}
1861 
1862 		/* reset start and stop after processing a region */
1863 		block_start = ~0ULL;
1864 	}
1865 
1866 	return blkdev_issue_flush(journal->j_dev);
1867 }
1868 
1869 /**
1870  * jbd2_journal_update_sb_errno() - Update error in the journal.
1871  * @journal: The journal to update.
1872  *
1873  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1874  * to complete.
1875  */
1876 void jbd2_journal_update_sb_errno(journal_t *journal)
1877 {
1878 	journal_superblock_t *sb = journal->j_superblock;
1879 	int errcode;
1880 
1881 	lock_buffer(journal->j_sb_buffer);
1882 	errcode = journal->j_errno;
1883 	if (errcode == -ESHUTDOWN)
1884 		errcode = 0;
1885 	jbd2_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode);
1886 	sb->s_errno    = cpu_to_be32(errcode);
1887 
1888 	jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA);
1889 }
1890 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1891 
1892 static int journal_revoke_records_per_block(journal_t *journal)
1893 {
1894 	int record_size;
1895 	int space = journal->j_blocksize - sizeof(jbd2_journal_revoke_header_t);
1896 
1897 	if (jbd2_has_feature_64bit(journal))
1898 		record_size = 8;
1899 	else
1900 		record_size = 4;
1901 
1902 	if (jbd2_journal_has_csum_v2or3(journal))
1903 		space -= sizeof(struct jbd2_journal_block_tail);
1904 	return space / record_size;
1905 }
1906 
1907 /*
1908  * Read the superblock for a given journal, performing initial
1909  * validation of the format.
1910  */
1911 static int journal_get_superblock(journal_t *journal)
1912 {
1913 	struct buffer_head *bh;
1914 	journal_superblock_t *sb;
1915 	int err;
1916 
1917 	bh = journal->j_sb_buffer;
1918 
1919 	J_ASSERT(bh != NULL);
1920 	if (buffer_verified(bh))
1921 		return 0;
1922 
1923 	err = bh_read(bh, 0);
1924 	if (err < 0) {
1925 		printk(KERN_ERR
1926 			"JBD2: IO error reading journal superblock\n");
1927 		goto out;
1928 	}
1929 
1930 	sb = journal->j_superblock;
1931 
1932 	err = -EINVAL;
1933 
1934 	if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1935 	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1936 		printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1937 		goto out;
1938 	}
1939 
1940 	if (be32_to_cpu(sb->s_header.h_blocktype) != JBD2_SUPERBLOCK_V1 &&
1941 	    be32_to_cpu(sb->s_header.h_blocktype) != JBD2_SUPERBLOCK_V2) {
1942 		printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1943 		goto out;
1944 	}
1945 
1946 	if (be32_to_cpu(sb->s_maxlen) > journal->j_total_len) {
1947 		printk(KERN_WARNING "JBD2: journal file too short\n");
1948 		goto out;
1949 	}
1950 
1951 	if (be32_to_cpu(sb->s_first) == 0 ||
1952 	    be32_to_cpu(sb->s_first) >= journal->j_total_len) {
1953 		printk(KERN_WARNING
1954 			"JBD2: Invalid start block of journal: %u\n",
1955 			be32_to_cpu(sb->s_first));
1956 		goto out;
1957 	}
1958 
1959 	if (jbd2_has_feature_csum2(journal) &&
1960 	    jbd2_has_feature_csum3(journal)) {
1961 		/* Can't have checksum v2 and v3 at the same time! */
1962 		printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1963 		       "at the same time!\n");
1964 		goto out;
1965 	}
1966 
1967 	if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1968 	    jbd2_has_feature_checksum(journal)) {
1969 		/* Can't have checksum v1 and v2 on at the same time! */
1970 		printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1971 		       "at the same time!\n");
1972 		goto out;
1973 	}
1974 
1975 	if (!jbd2_verify_csum_type(journal, sb)) {
1976 		printk(KERN_ERR "JBD2: Unknown checksum type\n");
1977 		goto out;
1978 	}
1979 
1980 	/* Load the checksum driver */
1981 	if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1982 		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1983 		if (IS_ERR(journal->j_chksum_driver)) {
1984 			printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1985 			err = PTR_ERR(journal->j_chksum_driver);
1986 			journal->j_chksum_driver = NULL;
1987 			goto out;
1988 		}
1989 		/* Check superblock checksum */
1990 		if (sb->s_checksum != jbd2_superblock_csum(journal, sb)) {
1991 			printk(KERN_ERR "JBD2: journal checksum error\n");
1992 			err = -EFSBADCRC;
1993 			goto out;
1994 		}
1995 	}
1996 	set_buffer_verified(bh);
1997 	return 0;
1998 
1999 out:
2000 	journal_fail_superblock(journal);
2001 	return err;
2002 }
2003 
2004 /*
2005  * Load the on-disk journal superblock and read the key fields into the
2006  * journal_t.
2007  */
2008 
2009 static int load_superblock(journal_t *journal)
2010 {
2011 	int err;
2012 	journal_superblock_t *sb;
2013 	int num_fc_blocks;
2014 
2015 	err = journal_get_superblock(journal);
2016 	if (err)
2017 		return err;
2018 
2019 	sb = journal->j_superblock;
2020 
2021 	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
2022 	journal->j_tail = be32_to_cpu(sb->s_start);
2023 	journal->j_first = be32_to_cpu(sb->s_first);
2024 	journal->j_errno = be32_to_cpu(sb->s_errno);
2025 	journal->j_last = be32_to_cpu(sb->s_maxlen);
2026 
2027 	if (be32_to_cpu(sb->s_maxlen) < journal->j_total_len)
2028 		journal->j_total_len = be32_to_cpu(sb->s_maxlen);
2029 	/* Precompute checksum seed for all metadata */
2030 	if (jbd2_journal_has_csum_v2or3(journal))
2031 		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
2032 						   sizeof(sb->s_uuid));
2033 	journal->j_revoke_records_per_block =
2034 				journal_revoke_records_per_block(journal);
2035 
2036 	if (jbd2_has_feature_fast_commit(journal)) {
2037 		journal->j_fc_last = be32_to_cpu(sb->s_maxlen);
2038 		num_fc_blocks = jbd2_journal_get_num_fc_blks(sb);
2039 		if (journal->j_last - num_fc_blocks >= JBD2_MIN_JOURNAL_BLOCKS)
2040 			journal->j_last = journal->j_fc_last - num_fc_blocks;
2041 		journal->j_fc_first = journal->j_last + 1;
2042 		journal->j_fc_off = 0;
2043 	}
2044 
2045 	return 0;
2046 }
2047 
2048 
2049 /**
2050  * jbd2_journal_load() - Read journal from disk.
2051  * @journal: Journal to act on.
2052  *
2053  * Given a journal_t structure which tells us which disk blocks contain
2054  * a journal, read the journal from disk to initialise the in-memory
2055  * structures.
2056  */
2057 int jbd2_journal_load(journal_t *journal)
2058 {
2059 	int err;
2060 	journal_superblock_t *sb;
2061 
2062 	err = load_superblock(journal);
2063 	if (err)
2064 		return err;
2065 
2066 	sb = journal->j_superblock;
2067 
2068 	/*
2069 	 * If this is a V2 superblock, then we have to check the
2070 	 * features flags on it.
2071 	 */
2072 	if (jbd2_format_support_feature(journal)) {
2073 		if ((sb->s_feature_ro_compat &
2074 		     ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
2075 		    (sb->s_feature_incompat &
2076 		     ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
2077 			printk(KERN_WARNING
2078 				"JBD2: Unrecognised features on journal\n");
2079 			return -EINVAL;
2080 		}
2081 	}
2082 
2083 	/*
2084 	 * Create a slab for this blocksize
2085 	 */
2086 	err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
2087 	if (err)
2088 		return err;
2089 
2090 	/* Let the recovery code check whether it needs to recover any
2091 	 * data from the journal. */
2092 	if (jbd2_journal_recover(journal))
2093 		goto recovery_error;
2094 
2095 	if (journal->j_failed_commit) {
2096 		printk(KERN_ERR "JBD2: journal transaction %u on %s "
2097 		       "is corrupt.\n", journal->j_failed_commit,
2098 		       journal->j_devname);
2099 		return -EFSCORRUPTED;
2100 	}
2101 	/*
2102 	 * clear JBD2_ABORT flag initialized in journal_init_common
2103 	 * here to update log tail information with the newest seq.
2104 	 */
2105 	journal->j_flags &= ~JBD2_ABORT;
2106 
2107 	/* OK, we've finished with the dynamic journal bits:
2108 	 * reinitialise the dynamic contents of the superblock in memory
2109 	 * and reset them on disk. */
2110 	if (journal_reset(journal))
2111 		goto recovery_error;
2112 
2113 	journal->j_flags |= JBD2_LOADED;
2114 	return 0;
2115 
2116 recovery_error:
2117 	printk(KERN_WARNING "JBD2: recovery failed\n");
2118 	return -EIO;
2119 }
2120 
2121 /**
2122  * jbd2_journal_destroy() - Release a journal_t structure.
2123  * @journal: Journal to act on.
2124  *
2125  * Release a journal_t structure once it is no longer in use by the
2126  * journaled object.
2127  * Return <0 if we couldn't clean up the journal.
2128  */
2129 int jbd2_journal_destroy(journal_t *journal)
2130 {
2131 	int err = 0;
2132 
2133 	/* Wait for the commit thread to wake up and die. */
2134 	journal_kill_thread(journal);
2135 
2136 	/* Force a final log commit */
2137 	if (journal->j_running_transaction)
2138 		jbd2_journal_commit_transaction(journal);
2139 
2140 	/* Force any old transactions to disk */
2141 
2142 	/* Totally anal locking here... */
2143 	spin_lock(&journal->j_list_lock);
2144 	while (journal->j_checkpoint_transactions != NULL) {
2145 		spin_unlock(&journal->j_list_lock);
2146 		mutex_lock_io(&journal->j_checkpoint_mutex);
2147 		err = jbd2_log_do_checkpoint(journal);
2148 		mutex_unlock(&journal->j_checkpoint_mutex);
2149 		/*
2150 		 * If checkpointing failed, just free the buffers to avoid
2151 		 * looping forever
2152 		 */
2153 		if (err) {
2154 			jbd2_journal_destroy_checkpoint(journal);
2155 			spin_lock(&journal->j_list_lock);
2156 			break;
2157 		}
2158 		spin_lock(&journal->j_list_lock);
2159 	}
2160 
2161 	J_ASSERT(journal->j_running_transaction == NULL);
2162 	J_ASSERT(journal->j_committing_transaction == NULL);
2163 	J_ASSERT(journal->j_checkpoint_transactions == NULL);
2164 	spin_unlock(&journal->j_list_lock);
2165 
2166 	/*
2167 	 * OK, all checkpoint transactions have been checked, now check the
2168 	 * write out io error flag and abort the journal if some buffer failed
2169 	 * to write back to the original location, otherwise the filesystem
2170 	 * may become inconsistent.
2171 	 */
2172 	if (!is_journal_aborted(journal) &&
2173 	    test_bit(JBD2_CHECKPOINT_IO_ERROR, &journal->j_atomic_flags))
2174 		jbd2_journal_abort(journal, -EIO);
2175 
2176 	if (journal->j_sb_buffer) {
2177 		if (!is_journal_aborted(journal)) {
2178 			mutex_lock_io(&journal->j_checkpoint_mutex);
2179 
2180 			write_lock(&journal->j_state_lock);
2181 			journal->j_tail_sequence =
2182 				++journal->j_transaction_sequence;
2183 			write_unlock(&journal->j_state_lock);
2184 
2185 			jbd2_mark_journal_empty(journal,
2186 					REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
2187 			mutex_unlock(&journal->j_checkpoint_mutex);
2188 		} else
2189 			err = -EIO;
2190 		brelse(journal->j_sb_buffer);
2191 	}
2192 
2193 	if (journal->j_shrinker.flags & SHRINKER_REGISTERED) {
2194 		percpu_counter_destroy(&journal->j_checkpoint_jh_count);
2195 		unregister_shrinker(&journal->j_shrinker);
2196 	}
2197 	if (journal->j_proc_entry)
2198 		jbd2_stats_proc_exit(journal);
2199 	iput(journal->j_inode);
2200 	if (journal->j_revoke)
2201 		jbd2_journal_destroy_revoke(journal);
2202 	if (journal->j_chksum_driver)
2203 		crypto_free_shash(journal->j_chksum_driver);
2204 	kfree(journal->j_fc_wbuf);
2205 	kfree(journal->j_wbuf);
2206 	kfree(journal);
2207 
2208 	return err;
2209 }
2210 
2211 
2212 /**
2213  * jbd2_journal_check_used_features() - Check if features specified are used.
2214  * @journal: Journal to check.
2215  * @compat: bitmask of compatible features
2216  * @ro: bitmask of features that force read-only mount
2217  * @incompat: bitmask of incompatible features
2218  *
2219  * Check whether the journal uses all of a given set of
2220  * features.  Return true (non-zero) if it does.
2221  **/
2222 
2223 int jbd2_journal_check_used_features(journal_t *journal, unsigned long compat,
2224 				 unsigned long ro, unsigned long incompat)
2225 {
2226 	journal_superblock_t *sb;
2227 
2228 	if (!compat && !ro && !incompat)
2229 		return 1;
2230 	if (journal_get_superblock(journal))
2231 		return 0;
2232 	if (!jbd2_format_support_feature(journal))
2233 		return 0;
2234 
2235 	sb = journal->j_superblock;
2236 
2237 	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
2238 	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
2239 	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
2240 		return 1;
2241 
2242 	return 0;
2243 }
2244 
2245 /**
2246  * jbd2_journal_check_available_features() - Check feature set in journalling layer
2247  * @journal: Journal to check.
2248  * @compat: bitmask of compatible features
2249  * @ro: bitmask of features that force read-only mount
2250  * @incompat: bitmask of incompatible features
2251  *
2252  * Check whether the journaling code supports the use of
2253  * all of a given set of features on this journal.  Return true
2254  * (non-zero) if it can. */
2255 
2256 int jbd2_journal_check_available_features(journal_t *journal, unsigned long compat,
2257 				      unsigned long ro, unsigned long incompat)
2258 {
2259 	if (!compat && !ro && !incompat)
2260 		return 1;
2261 
2262 	if (!jbd2_format_support_feature(journal))
2263 		return 0;
2264 
2265 	if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
2266 	    (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
2267 	    (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
2268 		return 1;
2269 
2270 	return 0;
2271 }
2272 
2273 static int
2274 jbd2_journal_initialize_fast_commit(journal_t *journal)
2275 {
2276 	journal_superblock_t *sb = journal->j_superblock;
2277 	unsigned long long num_fc_blks;
2278 
2279 	num_fc_blks = jbd2_journal_get_num_fc_blks(sb);
2280 	if (journal->j_last - num_fc_blks < JBD2_MIN_JOURNAL_BLOCKS)
2281 		return -ENOSPC;
2282 
2283 	/* Are we called twice? */
2284 	WARN_ON(journal->j_fc_wbuf != NULL);
2285 	journal->j_fc_wbuf = kmalloc_array(num_fc_blks,
2286 				sizeof(struct buffer_head *), GFP_KERNEL);
2287 	if (!journal->j_fc_wbuf)
2288 		return -ENOMEM;
2289 
2290 	journal->j_fc_wbufsize = num_fc_blks;
2291 	journal->j_fc_last = journal->j_last;
2292 	journal->j_last = journal->j_fc_last - num_fc_blks;
2293 	journal->j_fc_first = journal->j_last + 1;
2294 	journal->j_fc_off = 0;
2295 	journal->j_free = journal->j_last - journal->j_first;
2296 	journal->j_max_transaction_buffers =
2297 		jbd2_journal_get_max_txn_bufs(journal);
2298 
2299 	return 0;
2300 }
2301 
2302 /**
2303  * jbd2_journal_set_features() - Mark a given journal feature in the superblock
2304  * @journal: Journal to act on.
2305  * @compat: bitmask of compatible features
2306  * @ro: bitmask of features that force read-only mount
2307  * @incompat: bitmask of incompatible features
2308  *
2309  * Mark a given journal feature as present on the
2310  * superblock.  Returns true if the requested features could be set.
2311  *
2312  */
2313 
2314 int jbd2_journal_set_features(journal_t *journal, unsigned long compat,
2315 			  unsigned long ro, unsigned long incompat)
2316 {
2317 #define INCOMPAT_FEATURE_ON(f) \
2318 		((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
2319 #define COMPAT_FEATURE_ON(f) \
2320 		((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
2321 	journal_superblock_t *sb;
2322 
2323 	if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
2324 		return 1;
2325 
2326 	if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
2327 		return 0;
2328 
2329 	/* If enabling v2 checksums, turn on v3 instead */
2330 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
2331 		incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
2332 		incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
2333 	}
2334 
2335 	/* Asking for checksumming v3 and v1?  Only give them v3. */
2336 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
2337 	    compat & JBD2_FEATURE_COMPAT_CHECKSUM)
2338 		compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
2339 
2340 	jbd2_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
2341 		  compat, ro, incompat);
2342 
2343 	sb = journal->j_superblock;
2344 
2345 	if (incompat & JBD2_FEATURE_INCOMPAT_FAST_COMMIT) {
2346 		if (jbd2_journal_initialize_fast_commit(journal)) {
2347 			pr_err("JBD2: Cannot enable fast commits.\n");
2348 			return 0;
2349 		}
2350 	}
2351 
2352 	/* Load the checksum driver if necessary */
2353 	if ((journal->j_chksum_driver == NULL) &&
2354 	    INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
2355 		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
2356 		if (IS_ERR(journal->j_chksum_driver)) {
2357 			printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
2358 			journal->j_chksum_driver = NULL;
2359 			return 0;
2360 		}
2361 		/* Precompute checksum seed for all metadata */
2362 		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
2363 						   sizeof(sb->s_uuid));
2364 	}
2365 
2366 	lock_buffer(journal->j_sb_buffer);
2367 
2368 	/* If enabling v3 checksums, update superblock */
2369 	if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
2370 		sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
2371 		sb->s_feature_compat &=
2372 			~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
2373 	}
2374 
2375 	/* If enabling v1 checksums, downgrade superblock */
2376 	if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
2377 		sb->s_feature_incompat &=
2378 			~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
2379 				     JBD2_FEATURE_INCOMPAT_CSUM_V3);
2380 
2381 	sb->s_feature_compat    |= cpu_to_be32(compat);
2382 	sb->s_feature_ro_compat |= cpu_to_be32(ro);
2383 	sb->s_feature_incompat  |= cpu_to_be32(incompat);
2384 	unlock_buffer(journal->j_sb_buffer);
2385 	journal->j_revoke_records_per_block =
2386 				journal_revoke_records_per_block(journal);
2387 
2388 	return 1;
2389 #undef COMPAT_FEATURE_ON
2390 #undef INCOMPAT_FEATURE_ON
2391 }
2392 
2393 /*
2394  * jbd2_journal_clear_features() - Clear a given journal feature in the
2395  * 				    superblock
2396  * @journal: Journal to act on.
2397  * @compat: bitmask of compatible features
2398  * @ro: bitmask of features that force read-only mount
2399  * @incompat: bitmask of incompatible features
2400  *
2401  * Clear a given journal feature as present on the
2402  * superblock.
2403  */
2404 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
2405 				unsigned long ro, unsigned long incompat)
2406 {
2407 	journal_superblock_t *sb;
2408 
2409 	jbd2_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
2410 		  compat, ro, incompat);
2411 
2412 	sb = journal->j_superblock;
2413 
2414 	sb->s_feature_compat    &= ~cpu_to_be32(compat);
2415 	sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
2416 	sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
2417 	journal->j_revoke_records_per_block =
2418 				journal_revoke_records_per_block(journal);
2419 }
2420 EXPORT_SYMBOL(jbd2_journal_clear_features);
2421 
2422 /**
2423  * jbd2_journal_flush() - Flush journal
2424  * @journal: Journal to act on.
2425  * @flags: optional operation on the journal blocks after the flush (see below)
2426  *
2427  * Flush all data for a given journal to disk and empty the journal.
2428  * Filesystems can use this when remounting readonly to ensure that
2429  * recovery does not need to happen on remount. Optionally, a discard or zeroout
2430  * can be issued on the journal blocks after flushing.
2431  *
2432  * flags:
2433  *	JBD2_JOURNAL_FLUSH_DISCARD: issues discards for the journal blocks
2434  *	JBD2_JOURNAL_FLUSH_ZEROOUT: issues zeroouts for the journal blocks
2435  */
2436 int jbd2_journal_flush(journal_t *journal, unsigned int flags)
2437 {
2438 	int err = 0;
2439 	transaction_t *transaction = NULL;
2440 
2441 	write_lock(&journal->j_state_lock);
2442 
2443 	/* Force everything buffered to the log... */
2444 	if (journal->j_running_transaction) {
2445 		transaction = journal->j_running_transaction;
2446 		__jbd2_log_start_commit(journal, transaction->t_tid);
2447 	} else if (journal->j_committing_transaction)
2448 		transaction = journal->j_committing_transaction;
2449 
2450 	/* Wait for the log commit to complete... */
2451 	if (transaction) {
2452 		tid_t tid = transaction->t_tid;
2453 
2454 		write_unlock(&journal->j_state_lock);
2455 		jbd2_log_wait_commit(journal, tid);
2456 	} else {
2457 		write_unlock(&journal->j_state_lock);
2458 	}
2459 
2460 	/* ...and flush everything in the log out to disk. */
2461 	spin_lock(&journal->j_list_lock);
2462 	while (!err && journal->j_checkpoint_transactions != NULL) {
2463 		spin_unlock(&journal->j_list_lock);
2464 		mutex_lock_io(&journal->j_checkpoint_mutex);
2465 		err = jbd2_log_do_checkpoint(journal);
2466 		mutex_unlock(&journal->j_checkpoint_mutex);
2467 		spin_lock(&journal->j_list_lock);
2468 	}
2469 	spin_unlock(&journal->j_list_lock);
2470 
2471 	if (is_journal_aborted(journal))
2472 		return -EIO;
2473 
2474 	mutex_lock_io(&journal->j_checkpoint_mutex);
2475 	if (!err) {
2476 		err = jbd2_cleanup_journal_tail(journal);
2477 		if (err < 0) {
2478 			mutex_unlock(&journal->j_checkpoint_mutex);
2479 			goto out;
2480 		}
2481 		err = 0;
2482 	}
2483 
2484 	/* Finally, mark the journal as really needing no recovery.
2485 	 * This sets s_start==0 in the underlying superblock, which is
2486 	 * the magic code for a fully-recovered superblock.  Any future
2487 	 * commits of data to the journal will restore the current
2488 	 * s_start value. */
2489 	jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2490 
2491 	if (flags)
2492 		err = __jbd2_journal_erase(journal, flags);
2493 
2494 	mutex_unlock(&journal->j_checkpoint_mutex);
2495 	write_lock(&journal->j_state_lock);
2496 	J_ASSERT(!journal->j_running_transaction);
2497 	J_ASSERT(!journal->j_committing_transaction);
2498 	J_ASSERT(!journal->j_checkpoint_transactions);
2499 	J_ASSERT(journal->j_head == journal->j_tail);
2500 	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2501 	write_unlock(&journal->j_state_lock);
2502 out:
2503 	return err;
2504 }
2505 
2506 /**
2507  * jbd2_journal_wipe() - Wipe journal contents
2508  * @journal: Journal to act on.
2509  * @write: flag (see below)
2510  *
2511  * Wipe out all of the contents of a journal, safely.  This will produce
2512  * a warning if the journal contains any valid recovery information.
2513  * Must be called between journal_init_*() and jbd2_journal_load().
2514  *
2515  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2516  * we merely suppress recovery.
2517  */
2518 
2519 int jbd2_journal_wipe(journal_t *journal, int write)
2520 {
2521 	int err = 0;
2522 
2523 	J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2524 
2525 	err = load_superblock(journal);
2526 	if (err)
2527 		return err;
2528 
2529 	if (!journal->j_tail)
2530 		goto no_recovery;
2531 
2532 	printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2533 		write ? "Clearing" : "Ignoring");
2534 
2535 	err = jbd2_journal_skip_recovery(journal);
2536 	if (write) {
2537 		/* Lock to make assertions happy... */
2538 		mutex_lock_io(&journal->j_checkpoint_mutex);
2539 		jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2540 		mutex_unlock(&journal->j_checkpoint_mutex);
2541 	}
2542 
2543  no_recovery:
2544 	return err;
2545 }
2546 
2547 /**
2548  * jbd2_journal_abort () - Shutdown the journal immediately.
2549  * @journal: the journal to shutdown.
2550  * @errno:   an error number to record in the journal indicating
2551  *           the reason for the shutdown.
2552  *
2553  * Perform a complete, immediate shutdown of the ENTIRE
2554  * journal (not of a single transaction).  This operation cannot be
2555  * undone without closing and reopening the journal.
2556  *
2557  * The jbd2_journal_abort function is intended to support higher level error
2558  * recovery mechanisms such as the ext2/ext3 remount-readonly error
2559  * mode.
2560  *
2561  * Journal abort has very specific semantics.  Any existing dirty,
2562  * unjournaled buffers in the main filesystem will still be written to
2563  * disk by bdflush, but the journaling mechanism will be suspended
2564  * immediately and no further transaction commits will be honoured.
2565  *
2566  * Any dirty, journaled buffers will be written back to disk without
2567  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2568  * filesystem, but we _do_ attempt to leave as much data as possible
2569  * behind for fsck to use for cleanup.
2570  *
2571  * Any attempt to get a new transaction handle on a journal which is in
2572  * ABORT state will just result in an -EROFS error return.  A
2573  * jbd2_journal_stop on an existing handle will return -EIO if we have
2574  * entered abort state during the update.
2575  *
2576  * Recursive transactions are not disturbed by journal abort until the
2577  * final jbd2_journal_stop, which will receive the -EIO error.
2578  *
2579  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2580  * which will be recorded (if possible) in the journal superblock.  This
2581  * allows a client to record failure conditions in the middle of a
2582  * transaction without having to complete the transaction to record the
2583  * failure to disk.  ext3_error, for example, now uses this
2584  * functionality.
2585  *
2586  */
2587 
2588 void jbd2_journal_abort(journal_t *journal, int errno)
2589 {
2590 	transaction_t *transaction;
2591 
2592 	/*
2593 	 * Lock the aborting procedure until everything is done, this avoid
2594 	 * races between filesystem's error handling flow (e.g. ext4_abort()),
2595 	 * ensure panic after the error info is written into journal's
2596 	 * superblock.
2597 	 */
2598 	mutex_lock(&journal->j_abort_mutex);
2599 	/*
2600 	 * ESHUTDOWN always takes precedence because a file system check
2601 	 * caused by any other journal abort error is not required after
2602 	 * a shutdown triggered.
2603 	 */
2604 	write_lock(&journal->j_state_lock);
2605 	if (journal->j_flags & JBD2_ABORT) {
2606 		int old_errno = journal->j_errno;
2607 
2608 		write_unlock(&journal->j_state_lock);
2609 		if (old_errno != -ESHUTDOWN && errno == -ESHUTDOWN) {
2610 			journal->j_errno = errno;
2611 			jbd2_journal_update_sb_errno(journal);
2612 		}
2613 		mutex_unlock(&journal->j_abort_mutex);
2614 		return;
2615 	}
2616 
2617 	/*
2618 	 * Mark the abort as occurred and start current running transaction
2619 	 * to release all journaled buffer.
2620 	 */
2621 	pr_err("Aborting journal on device %s.\n", journal->j_devname);
2622 
2623 	journal->j_flags |= JBD2_ABORT;
2624 	journal->j_errno = errno;
2625 	transaction = journal->j_running_transaction;
2626 	if (transaction)
2627 		__jbd2_log_start_commit(journal, transaction->t_tid);
2628 	write_unlock(&journal->j_state_lock);
2629 
2630 	/*
2631 	 * Record errno to the journal super block, so that fsck and jbd2
2632 	 * layer could realise that a filesystem check is needed.
2633 	 */
2634 	jbd2_journal_update_sb_errno(journal);
2635 	mutex_unlock(&journal->j_abort_mutex);
2636 }
2637 
2638 /**
2639  * jbd2_journal_errno() - returns the journal's error state.
2640  * @journal: journal to examine.
2641  *
2642  * This is the errno number set with jbd2_journal_abort(), the last
2643  * time the journal was mounted - if the journal was stopped
2644  * without calling abort this will be 0.
2645  *
2646  * If the journal has been aborted on this mount time -EROFS will
2647  * be returned.
2648  */
2649 int jbd2_journal_errno(journal_t *journal)
2650 {
2651 	int err;
2652 
2653 	read_lock(&journal->j_state_lock);
2654 	if (journal->j_flags & JBD2_ABORT)
2655 		err = -EROFS;
2656 	else
2657 		err = journal->j_errno;
2658 	read_unlock(&journal->j_state_lock);
2659 	return err;
2660 }
2661 
2662 /**
2663  * jbd2_journal_clear_err() - clears the journal's error state
2664  * @journal: journal to act on.
2665  *
2666  * An error must be cleared or acked to take a FS out of readonly
2667  * mode.
2668  */
2669 int jbd2_journal_clear_err(journal_t *journal)
2670 {
2671 	int err = 0;
2672 
2673 	write_lock(&journal->j_state_lock);
2674 	if (journal->j_flags & JBD2_ABORT)
2675 		err = -EROFS;
2676 	else
2677 		journal->j_errno = 0;
2678 	write_unlock(&journal->j_state_lock);
2679 	return err;
2680 }
2681 
2682 /**
2683  * jbd2_journal_ack_err() - Ack journal err.
2684  * @journal: journal to act on.
2685  *
2686  * An error must be cleared or acked to take a FS out of readonly
2687  * mode.
2688  */
2689 void jbd2_journal_ack_err(journal_t *journal)
2690 {
2691 	write_lock(&journal->j_state_lock);
2692 	if (journal->j_errno)
2693 		journal->j_flags |= JBD2_ACK_ERR;
2694 	write_unlock(&journal->j_state_lock);
2695 }
2696 
2697 int jbd2_journal_blocks_per_page(struct inode *inode)
2698 {
2699 	return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2700 }
2701 
2702 /*
2703  * helper functions to deal with 32 or 64bit block numbers.
2704  */
2705 size_t journal_tag_bytes(journal_t *journal)
2706 {
2707 	size_t sz;
2708 
2709 	if (jbd2_has_feature_csum3(journal))
2710 		return sizeof(journal_block_tag3_t);
2711 
2712 	sz = sizeof(journal_block_tag_t);
2713 
2714 	if (jbd2_has_feature_csum2(journal))
2715 		sz += sizeof(__u16);
2716 
2717 	if (jbd2_has_feature_64bit(journal))
2718 		return sz;
2719 	else
2720 		return sz - sizeof(__u32);
2721 }
2722 
2723 /*
2724  * JBD memory management
2725  *
2726  * These functions are used to allocate block-sized chunks of memory
2727  * used for making copies of buffer_head data.  Very often it will be
2728  * page-sized chunks of data, but sometimes it will be in
2729  * sub-page-size chunks.  (For example, 16k pages on Power systems
2730  * with a 4k block file system.)  For blocks smaller than a page, we
2731  * use a SLAB allocator.  There are slab caches for each block size,
2732  * which are allocated at mount time, if necessary, and we only free
2733  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2734  * this reason we don't need to a mutex to protect access to
2735  * jbd2_slab[] allocating or releasing memory; only in
2736  * jbd2_journal_create_slab().
2737  */
2738 #define JBD2_MAX_SLABS 8
2739 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2740 
2741 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2742 	"jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2743 	"jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2744 };
2745 
2746 
2747 static void jbd2_journal_destroy_slabs(void)
2748 {
2749 	int i;
2750 
2751 	for (i = 0; i < JBD2_MAX_SLABS; i++) {
2752 		kmem_cache_destroy(jbd2_slab[i]);
2753 		jbd2_slab[i] = NULL;
2754 	}
2755 }
2756 
2757 static int jbd2_journal_create_slab(size_t size)
2758 {
2759 	static DEFINE_MUTEX(jbd2_slab_create_mutex);
2760 	int i = order_base_2(size) - 10;
2761 	size_t slab_size;
2762 
2763 	if (size == PAGE_SIZE)
2764 		return 0;
2765 
2766 	if (i >= JBD2_MAX_SLABS)
2767 		return -EINVAL;
2768 
2769 	if (unlikely(i < 0))
2770 		i = 0;
2771 	mutex_lock(&jbd2_slab_create_mutex);
2772 	if (jbd2_slab[i]) {
2773 		mutex_unlock(&jbd2_slab_create_mutex);
2774 		return 0;	/* Already created */
2775 	}
2776 
2777 	slab_size = 1 << (i+10);
2778 	jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2779 					 slab_size, 0, NULL);
2780 	mutex_unlock(&jbd2_slab_create_mutex);
2781 	if (!jbd2_slab[i]) {
2782 		printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2783 		return -ENOMEM;
2784 	}
2785 	return 0;
2786 }
2787 
2788 static struct kmem_cache *get_slab(size_t size)
2789 {
2790 	int i = order_base_2(size) - 10;
2791 
2792 	BUG_ON(i >= JBD2_MAX_SLABS);
2793 	if (unlikely(i < 0))
2794 		i = 0;
2795 	BUG_ON(jbd2_slab[i] == NULL);
2796 	return jbd2_slab[i];
2797 }
2798 
2799 void *jbd2_alloc(size_t size, gfp_t flags)
2800 {
2801 	void *ptr;
2802 
2803 	BUG_ON(size & (size-1)); /* Must be a power of 2 */
2804 
2805 	if (size < PAGE_SIZE)
2806 		ptr = kmem_cache_alloc(get_slab(size), flags);
2807 	else
2808 		ptr = (void *)__get_free_pages(flags, get_order(size));
2809 
2810 	/* Check alignment; SLUB has gotten this wrong in the past,
2811 	 * and this can lead to user data corruption! */
2812 	BUG_ON(((unsigned long) ptr) & (size-1));
2813 
2814 	return ptr;
2815 }
2816 
2817 void jbd2_free(void *ptr, size_t size)
2818 {
2819 	if (size < PAGE_SIZE)
2820 		kmem_cache_free(get_slab(size), ptr);
2821 	else
2822 		free_pages((unsigned long)ptr, get_order(size));
2823 };
2824 
2825 /*
2826  * Journal_head storage management
2827  */
2828 static struct kmem_cache *jbd2_journal_head_cache;
2829 #ifdef CONFIG_JBD2_DEBUG
2830 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2831 #endif
2832 
2833 static int __init jbd2_journal_init_journal_head_cache(void)
2834 {
2835 	J_ASSERT(!jbd2_journal_head_cache);
2836 	jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2837 				sizeof(struct journal_head),
2838 				0,		/* offset */
2839 				SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU,
2840 				NULL);		/* ctor */
2841 	if (!jbd2_journal_head_cache) {
2842 		printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2843 		return -ENOMEM;
2844 	}
2845 	return 0;
2846 }
2847 
2848 static void jbd2_journal_destroy_journal_head_cache(void)
2849 {
2850 	kmem_cache_destroy(jbd2_journal_head_cache);
2851 	jbd2_journal_head_cache = NULL;
2852 }
2853 
2854 /*
2855  * journal_head splicing and dicing
2856  */
2857 static struct journal_head *journal_alloc_journal_head(void)
2858 {
2859 	struct journal_head *ret;
2860 
2861 #ifdef CONFIG_JBD2_DEBUG
2862 	atomic_inc(&nr_journal_heads);
2863 #endif
2864 	ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2865 	if (!ret) {
2866 		jbd2_debug(1, "out of memory for journal_head\n");
2867 		pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2868 		ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2869 				GFP_NOFS | __GFP_NOFAIL);
2870 	}
2871 	if (ret)
2872 		spin_lock_init(&ret->b_state_lock);
2873 	return ret;
2874 }
2875 
2876 static void journal_free_journal_head(struct journal_head *jh)
2877 {
2878 #ifdef CONFIG_JBD2_DEBUG
2879 	atomic_dec(&nr_journal_heads);
2880 	memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2881 #endif
2882 	kmem_cache_free(jbd2_journal_head_cache, jh);
2883 }
2884 
2885 /*
2886  * A journal_head is attached to a buffer_head whenever JBD has an
2887  * interest in the buffer.
2888  *
2889  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2890  * is set.  This bit is tested in core kernel code where we need to take
2891  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2892  * there.
2893  *
2894  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2895  *
2896  * When a buffer has its BH_JBD bit set it is immune from being released by
2897  * core kernel code, mainly via ->b_count.
2898  *
2899  * A journal_head is detached from its buffer_head when the journal_head's
2900  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2901  * transaction (b_cp_transaction) hold their references to b_jcount.
2902  *
2903  * Various places in the kernel want to attach a journal_head to a buffer_head
2904  * _before_ attaching the journal_head to a transaction.  To protect the
2905  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2906  * journal_head's b_jcount refcount by one.  The caller must call
2907  * jbd2_journal_put_journal_head() to undo this.
2908  *
2909  * So the typical usage would be:
2910  *
2911  *	(Attach a journal_head if needed.  Increments b_jcount)
2912  *	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2913  *	...
2914  *      (Get another reference for transaction)
2915  *	jbd2_journal_grab_journal_head(bh);
2916  *	jh->b_transaction = xxx;
2917  *	(Put original reference)
2918  *	jbd2_journal_put_journal_head(jh);
2919  */
2920 
2921 /*
2922  * Give a buffer_head a journal_head.
2923  *
2924  * May sleep.
2925  */
2926 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2927 {
2928 	struct journal_head *jh;
2929 	struct journal_head *new_jh = NULL;
2930 
2931 repeat:
2932 	if (!buffer_jbd(bh))
2933 		new_jh = journal_alloc_journal_head();
2934 
2935 	jbd_lock_bh_journal_head(bh);
2936 	if (buffer_jbd(bh)) {
2937 		jh = bh2jh(bh);
2938 	} else {
2939 		J_ASSERT_BH(bh,
2940 			(atomic_read(&bh->b_count) > 0) ||
2941 			(bh->b_folio && bh->b_folio->mapping));
2942 
2943 		if (!new_jh) {
2944 			jbd_unlock_bh_journal_head(bh);
2945 			goto repeat;
2946 		}
2947 
2948 		jh = new_jh;
2949 		new_jh = NULL;		/* We consumed it */
2950 		set_buffer_jbd(bh);
2951 		bh->b_private = jh;
2952 		jh->b_bh = bh;
2953 		get_bh(bh);
2954 		BUFFER_TRACE(bh, "added journal_head");
2955 	}
2956 	jh->b_jcount++;
2957 	jbd_unlock_bh_journal_head(bh);
2958 	if (new_jh)
2959 		journal_free_journal_head(new_jh);
2960 	return bh->b_private;
2961 }
2962 
2963 /*
2964  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2965  * having a journal_head, return NULL
2966  */
2967 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2968 {
2969 	struct journal_head *jh = NULL;
2970 
2971 	jbd_lock_bh_journal_head(bh);
2972 	if (buffer_jbd(bh)) {
2973 		jh = bh2jh(bh);
2974 		jh->b_jcount++;
2975 	}
2976 	jbd_unlock_bh_journal_head(bh);
2977 	return jh;
2978 }
2979 EXPORT_SYMBOL(jbd2_journal_grab_journal_head);
2980 
2981 static void __journal_remove_journal_head(struct buffer_head *bh)
2982 {
2983 	struct journal_head *jh = bh2jh(bh);
2984 
2985 	J_ASSERT_JH(jh, jh->b_transaction == NULL);
2986 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2987 	J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2988 	J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2989 	J_ASSERT_BH(bh, buffer_jbd(bh));
2990 	J_ASSERT_BH(bh, jh2bh(jh) == bh);
2991 	BUFFER_TRACE(bh, "remove journal_head");
2992 
2993 	/* Unlink before dropping the lock */
2994 	bh->b_private = NULL;
2995 	jh->b_bh = NULL;	/* debug, really */
2996 	clear_buffer_jbd(bh);
2997 }
2998 
2999 static void journal_release_journal_head(struct journal_head *jh, size_t b_size)
3000 {
3001 	if (jh->b_frozen_data) {
3002 		printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
3003 		jbd2_free(jh->b_frozen_data, b_size);
3004 	}
3005 	if (jh->b_committed_data) {
3006 		printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
3007 		jbd2_free(jh->b_committed_data, b_size);
3008 	}
3009 	journal_free_journal_head(jh);
3010 }
3011 
3012 /*
3013  * Drop a reference on the passed journal_head.  If it fell to zero then
3014  * release the journal_head from the buffer_head.
3015  */
3016 void jbd2_journal_put_journal_head(struct journal_head *jh)
3017 {
3018 	struct buffer_head *bh = jh2bh(jh);
3019 
3020 	jbd_lock_bh_journal_head(bh);
3021 	J_ASSERT_JH(jh, jh->b_jcount > 0);
3022 	--jh->b_jcount;
3023 	if (!jh->b_jcount) {
3024 		__journal_remove_journal_head(bh);
3025 		jbd_unlock_bh_journal_head(bh);
3026 		journal_release_journal_head(jh, bh->b_size);
3027 		__brelse(bh);
3028 	} else {
3029 		jbd_unlock_bh_journal_head(bh);
3030 	}
3031 }
3032 EXPORT_SYMBOL(jbd2_journal_put_journal_head);
3033 
3034 /*
3035  * Initialize jbd inode head
3036  */
3037 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
3038 {
3039 	jinode->i_transaction = NULL;
3040 	jinode->i_next_transaction = NULL;
3041 	jinode->i_vfs_inode = inode;
3042 	jinode->i_flags = 0;
3043 	jinode->i_dirty_start = 0;
3044 	jinode->i_dirty_end = 0;
3045 	INIT_LIST_HEAD(&jinode->i_list);
3046 }
3047 
3048 /*
3049  * Function to be called before we start removing inode from memory (i.e.,
3050  * clear_inode() is a fine place to be called from). It removes inode from
3051  * transaction's lists.
3052  */
3053 void jbd2_journal_release_jbd_inode(journal_t *journal,
3054 				    struct jbd2_inode *jinode)
3055 {
3056 	if (!journal)
3057 		return;
3058 restart:
3059 	spin_lock(&journal->j_list_lock);
3060 	/* Is commit writing out inode - we have to wait */
3061 	if (jinode->i_flags & JI_COMMIT_RUNNING) {
3062 		wait_queue_head_t *wq;
3063 		DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
3064 		wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
3065 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
3066 		spin_unlock(&journal->j_list_lock);
3067 		schedule();
3068 		finish_wait(wq, &wait.wq_entry);
3069 		goto restart;
3070 	}
3071 
3072 	if (jinode->i_transaction) {
3073 		list_del(&jinode->i_list);
3074 		jinode->i_transaction = NULL;
3075 	}
3076 	spin_unlock(&journal->j_list_lock);
3077 }
3078 
3079 
3080 #ifdef CONFIG_PROC_FS
3081 
3082 #define JBD2_STATS_PROC_NAME "fs/jbd2"
3083 
3084 static void __init jbd2_create_jbd_stats_proc_entry(void)
3085 {
3086 	proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
3087 }
3088 
3089 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
3090 {
3091 	if (proc_jbd2_stats)
3092 		remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
3093 }
3094 
3095 #else
3096 
3097 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
3098 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
3099 
3100 #endif
3101 
3102 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
3103 
3104 static int __init jbd2_journal_init_inode_cache(void)
3105 {
3106 	J_ASSERT(!jbd2_inode_cache);
3107 	jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
3108 	if (!jbd2_inode_cache) {
3109 		pr_emerg("JBD2: failed to create inode cache\n");
3110 		return -ENOMEM;
3111 	}
3112 	return 0;
3113 }
3114 
3115 static int __init jbd2_journal_init_handle_cache(void)
3116 {
3117 	J_ASSERT(!jbd2_handle_cache);
3118 	jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
3119 	if (!jbd2_handle_cache) {
3120 		printk(KERN_EMERG "JBD2: failed to create handle cache\n");
3121 		return -ENOMEM;
3122 	}
3123 	return 0;
3124 }
3125 
3126 static void jbd2_journal_destroy_inode_cache(void)
3127 {
3128 	kmem_cache_destroy(jbd2_inode_cache);
3129 	jbd2_inode_cache = NULL;
3130 }
3131 
3132 static void jbd2_journal_destroy_handle_cache(void)
3133 {
3134 	kmem_cache_destroy(jbd2_handle_cache);
3135 	jbd2_handle_cache = NULL;
3136 }
3137 
3138 /*
3139  * Module startup and shutdown
3140  */
3141 
3142 static int __init journal_init_caches(void)
3143 {
3144 	int ret;
3145 
3146 	ret = jbd2_journal_init_revoke_record_cache();
3147 	if (ret == 0)
3148 		ret = jbd2_journal_init_revoke_table_cache();
3149 	if (ret == 0)
3150 		ret = jbd2_journal_init_journal_head_cache();
3151 	if (ret == 0)
3152 		ret = jbd2_journal_init_handle_cache();
3153 	if (ret == 0)
3154 		ret = jbd2_journal_init_inode_cache();
3155 	if (ret == 0)
3156 		ret = jbd2_journal_init_transaction_cache();
3157 	return ret;
3158 }
3159 
3160 static void jbd2_journal_destroy_caches(void)
3161 {
3162 	jbd2_journal_destroy_revoke_record_cache();
3163 	jbd2_journal_destroy_revoke_table_cache();
3164 	jbd2_journal_destroy_journal_head_cache();
3165 	jbd2_journal_destroy_handle_cache();
3166 	jbd2_journal_destroy_inode_cache();
3167 	jbd2_journal_destroy_transaction_cache();
3168 	jbd2_journal_destroy_slabs();
3169 }
3170 
3171 static int __init journal_init(void)
3172 {
3173 	int ret;
3174 
3175 	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
3176 
3177 	ret = journal_init_caches();
3178 	if (ret == 0) {
3179 		jbd2_create_jbd_stats_proc_entry();
3180 	} else {
3181 		jbd2_journal_destroy_caches();
3182 	}
3183 	return ret;
3184 }
3185 
3186 static void __exit journal_exit(void)
3187 {
3188 #ifdef CONFIG_JBD2_DEBUG
3189 	int n = atomic_read(&nr_journal_heads);
3190 	if (n)
3191 		printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
3192 #endif
3193 	jbd2_remove_jbd_stats_proc_entry();
3194 	jbd2_journal_destroy_caches();
3195 }
3196 
3197 MODULE_LICENSE("GPL");
3198 module_init(journal_init);
3199 module_exit(journal_exit);
3200 
3201