1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * linux/fs/jbd2/commit.c 4 * 5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 6 * 7 * Copyright 1998 Red Hat corp --- All Rights Reserved 8 * 9 * Journal commit routines for the generic filesystem journaling code; 10 * part of the ext2fs journaling system. 11 */ 12 13 #include <linux/time.h> 14 #include <linux/fs.h> 15 #include <linux/jbd2.h> 16 #include <linux/errno.h> 17 #include <linux/slab.h> 18 #include <linux/mm.h> 19 #include <linux/pagemap.h> 20 #include <linux/jiffies.h> 21 #include <linux/crc32.h> 22 #include <linux/writeback.h> 23 #include <linux/backing-dev.h> 24 #include <linux/bio.h> 25 #include <linux/blkdev.h> 26 #include <linux/bitops.h> 27 #include <trace/events/jbd2.h> 28 29 /* 30 * IO end handler for temporary buffer_heads handling writes to the journal. 31 */ 32 static void journal_end_buffer_io_sync(struct buffer_head *bh, int uptodate) 33 { 34 struct buffer_head *orig_bh = bh->b_private; 35 36 BUFFER_TRACE(bh, ""); 37 if (uptodate) 38 set_buffer_uptodate(bh); 39 else 40 clear_buffer_uptodate(bh); 41 if (orig_bh) { 42 clear_bit_unlock(BH_Shadow, &orig_bh->b_state); 43 smp_mb__after_atomic(); 44 wake_up_bit(&orig_bh->b_state, BH_Shadow); 45 } 46 unlock_buffer(bh); 47 } 48 49 /* 50 * When an ext4 file is truncated, it is possible that some pages are not 51 * successfully freed, because they are attached to a committing transaction. 52 * After the transaction commits, these pages are left on the LRU, with no 53 * ->mapping, and with attached buffers. These pages are trivially reclaimable 54 * by the VM, but their apparent absence upsets the VM accounting, and it makes 55 * the numbers in /proc/meminfo look odd. 56 * 57 * So here, we have a buffer which has just come off the forget list. Look to 58 * see if we can strip all buffers from the backing page. 59 * 60 * Called under lock_journal(), and possibly under journal_datalist_lock. The 61 * caller provided us with a ref against the buffer, and we drop that here. 62 */ 63 static void release_buffer_page(struct buffer_head *bh) 64 { 65 struct folio *folio; 66 67 if (buffer_dirty(bh)) 68 goto nope; 69 if (atomic_read(&bh->b_count) != 1) 70 goto nope; 71 folio = bh->b_folio; 72 if (folio->mapping) 73 goto nope; 74 75 /* OK, it's a truncated page */ 76 if (!folio_trylock(folio)) 77 goto nope; 78 79 folio_get(folio); 80 __brelse(bh); 81 try_to_free_buffers(folio); 82 folio_unlock(folio); 83 folio_put(folio); 84 return; 85 86 nope: 87 __brelse(bh); 88 } 89 90 static void jbd2_commit_block_csum_set(journal_t *j, struct buffer_head *bh) 91 { 92 struct commit_header *h; 93 __u32 csum; 94 95 if (!jbd2_journal_has_csum_v2or3(j)) 96 return; 97 98 h = (struct commit_header *)(bh->b_data); 99 h->h_chksum_type = 0; 100 h->h_chksum_size = 0; 101 h->h_chksum[0] = 0; 102 csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize); 103 h->h_chksum[0] = cpu_to_be32(csum); 104 } 105 106 /* 107 * Done it all: now submit the commit record. We should have 108 * cleaned up our previous buffers by now, so if we are in abort 109 * mode we can now just skip the rest of the journal write 110 * entirely. 111 * 112 * Returns 1 if the journal needs to be aborted or 0 on success 113 */ 114 static int journal_submit_commit_record(journal_t *journal, 115 transaction_t *commit_transaction, 116 struct buffer_head **cbh, 117 __u32 crc32_sum) 118 { 119 struct commit_header *tmp; 120 struct buffer_head *bh; 121 struct timespec64 now; 122 blk_opf_t write_flags = REQ_OP_WRITE | REQ_SYNC; 123 124 *cbh = NULL; 125 126 if (is_journal_aborted(journal)) 127 return 0; 128 129 bh = jbd2_journal_get_descriptor_buffer(commit_transaction, 130 JBD2_COMMIT_BLOCK); 131 if (!bh) 132 return 1; 133 134 tmp = (struct commit_header *)bh->b_data; 135 ktime_get_coarse_real_ts64(&now); 136 tmp->h_commit_sec = cpu_to_be64(now.tv_sec); 137 tmp->h_commit_nsec = cpu_to_be32(now.tv_nsec); 138 139 if (jbd2_has_feature_checksum(journal)) { 140 tmp->h_chksum_type = JBD2_CRC32_CHKSUM; 141 tmp->h_chksum_size = JBD2_CRC32_CHKSUM_SIZE; 142 tmp->h_chksum[0] = cpu_to_be32(crc32_sum); 143 } 144 jbd2_commit_block_csum_set(journal, bh); 145 146 BUFFER_TRACE(bh, "submit commit block"); 147 lock_buffer(bh); 148 clear_buffer_dirty(bh); 149 set_buffer_uptodate(bh); 150 bh->b_end_io = journal_end_buffer_io_sync; 151 152 if (journal->j_flags & JBD2_BARRIER && 153 !jbd2_has_feature_async_commit(journal)) 154 write_flags |= REQ_PREFLUSH | REQ_FUA; 155 156 submit_bh(write_flags, bh); 157 *cbh = bh; 158 return 0; 159 } 160 161 /* 162 * This function along with journal_submit_commit_record 163 * allows to write the commit record asynchronously. 164 */ 165 static int journal_wait_on_commit_record(journal_t *journal, 166 struct buffer_head *bh) 167 { 168 int ret = 0; 169 170 clear_buffer_dirty(bh); 171 wait_on_buffer(bh); 172 173 if (unlikely(!buffer_uptodate(bh))) 174 ret = -EIO; 175 put_bh(bh); /* One for getblk() */ 176 177 return ret; 178 } 179 180 /* Send all the data buffers related to an inode */ 181 int jbd2_submit_inode_data(journal_t *journal, struct jbd2_inode *jinode) 182 { 183 if (!jinode || !(jinode->i_flags & JI_WRITE_DATA)) 184 return 0; 185 186 trace_jbd2_submit_inode_data(jinode->i_vfs_inode); 187 return journal->j_submit_inode_data_buffers(jinode); 188 189 } 190 EXPORT_SYMBOL(jbd2_submit_inode_data); 191 192 int jbd2_wait_inode_data(journal_t *journal, struct jbd2_inode *jinode) 193 { 194 if (!jinode || !(jinode->i_flags & JI_WAIT_DATA) || 195 !jinode->i_vfs_inode || !jinode->i_vfs_inode->i_mapping) 196 return 0; 197 return filemap_fdatawait_range_keep_errors( 198 jinode->i_vfs_inode->i_mapping, jinode->i_dirty_start, 199 jinode->i_dirty_end); 200 } 201 EXPORT_SYMBOL(jbd2_wait_inode_data); 202 203 /* 204 * Submit all the data buffers of inode associated with the transaction to 205 * disk. 206 * 207 * We are in a committing transaction. Therefore no new inode can be added to 208 * our inode list. We use JI_COMMIT_RUNNING flag to protect inode we currently 209 * operate on from being released while we write out pages. 210 */ 211 static int journal_submit_data_buffers(journal_t *journal, 212 transaction_t *commit_transaction) 213 { 214 struct jbd2_inode *jinode; 215 int err, ret = 0; 216 217 spin_lock(&journal->j_list_lock); 218 list_for_each_entry(jinode, &commit_transaction->t_inode_list, i_list) { 219 if (!(jinode->i_flags & JI_WRITE_DATA)) 220 continue; 221 jinode->i_flags |= JI_COMMIT_RUNNING; 222 spin_unlock(&journal->j_list_lock); 223 /* submit the inode data buffers. */ 224 trace_jbd2_submit_inode_data(jinode->i_vfs_inode); 225 if (journal->j_submit_inode_data_buffers) { 226 err = journal->j_submit_inode_data_buffers(jinode); 227 if (!ret) 228 ret = err; 229 } 230 spin_lock(&journal->j_list_lock); 231 J_ASSERT(jinode->i_transaction == commit_transaction); 232 jinode->i_flags &= ~JI_COMMIT_RUNNING; 233 smp_mb(); 234 wake_up_bit(&jinode->i_flags, __JI_COMMIT_RUNNING); 235 } 236 spin_unlock(&journal->j_list_lock); 237 return ret; 238 } 239 240 int jbd2_journal_finish_inode_data_buffers(struct jbd2_inode *jinode) 241 { 242 struct address_space *mapping = jinode->i_vfs_inode->i_mapping; 243 244 return filemap_fdatawait_range_keep_errors(mapping, 245 jinode->i_dirty_start, 246 jinode->i_dirty_end); 247 } 248 249 /* 250 * Wait for data submitted for writeout, refile inodes to proper 251 * transaction if needed. 252 * 253 */ 254 static int journal_finish_inode_data_buffers(journal_t *journal, 255 transaction_t *commit_transaction) 256 { 257 struct jbd2_inode *jinode, *next_i; 258 int err, ret = 0; 259 260 /* For locking, see the comment in journal_submit_data_buffers() */ 261 spin_lock(&journal->j_list_lock); 262 list_for_each_entry(jinode, &commit_transaction->t_inode_list, i_list) { 263 if (!(jinode->i_flags & JI_WAIT_DATA)) 264 continue; 265 jinode->i_flags |= JI_COMMIT_RUNNING; 266 spin_unlock(&journal->j_list_lock); 267 /* wait for the inode data buffers writeout. */ 268 if (journal->j_finish_inode_data_buffers) { 269 err = journal->j_finish_inode_data_buffers(jinode); 270 if (!ret) 271 ret = err; 272 } 273 spin_lock(&journal->j_list_lock); 274 jinode->i_flags &= ~JI_COMMIT_RUNNING; 275 smp_mb(); 276 wake_up_bit(&jinode->i_flags, __JI_COMMIT_RUNNING); 277 } 278 279 /* Now refile inode to proper lists */ 280 list_for_each_entry_safe(jinode, next_i, 281 &commit_transaction->t_inode_list, i_list) { 282 list_del(&jinode->i_list); 283 if (jinode->i_next_transaction) { 284 jinode->i_transaction = jinode->i_next_transaction; 285 jinode->i_next_transaction = NULL; 286 list_add(&jinode->i_list, 287 &jinode->i_transaction->t_inode_list); 288 } else { 289 jinode->i_transaction = NULL; 290 jinode->i_dirty_start = 0; 291 jinode->i_dirty_end = 0; 292 } 293 } 294 spin_unlock(&journal->j_list_lock); 295 296 return ret; 297 } 298 299 static __u32 jbd2_checksum_data(__u32 crc32_sum, struct buffer_head *bh) 300 { 301 struct page *page = bh->b_page; 302 char *addr; 303 __u32 checksum; 304 305 addr = kmap_atomic(page); 306 checksum = crc32_be(crc32_sum, 307 (void *)(addr + offset_in_page(bh->b_data)), bh->b_size); 308 kunmap_atomic(addr); 309 310 return checksum; 311 } 312 313 static void write_tag_block(journal_t *j, journal_block_tag_t *tag, 314 unsigned long long block) 315 { 316 tag->t_blocknr = cpu_to_be32(block & (u32)~0); 317 if (jbd2_has_feature_64bit(j)) 318 tag->t_blocknr_high = cpu_to_be32((block >> 31) >> 1); 319 } 320 321 static void jbd2_block_tag_csum_set(journal_t *j, journal_block_tag_t *tag, 322 struct buffer_head *bh, __u32 sequence) 323 { 324 journal_block_tag3_t *tag3 = (journal_block_tag3_t *)tag; 325 struct page *page = bh->b_page; 326 __u8 *addr; 327 __u32 csum32; 328 __be32 seq; 329 330 if (!jbd2_journal_has_csum_v2or3(j)) 331 return; 332 333 seq = cpu_to_be32(sequence); 334 addr = kmap_atomic(page); 335 csum32 = jbd2_chksum(j, j->j_csum_seed, (__u8 *)&seq, sizeof(seq)); 336 csum32 = jbd2_chksum(j, csum32, addr + offset_in_page(bh->b_data), 337 bh->b_size); 338 kunmap_atomic(addr); 339 340 if (jbd2_has_feature_csum3(j)) 341 tag3->t_checksum = cpu_to_be32(csum32); 342 else 343 tag->t_checksum = cpu_to_be16(csum32); 344 } 345 /* 346 * jbd2_journal_commit_transaction 347 * 348 * The primary function for committing a transaction to the log. This 349 * function is called by the journal thread to begin a complete commit. 350 */ 351 void jbd2_journal_commit_transaction(journal_t *journal) 352 { 353 struct transaction_stats_s stats; 354 transaction_t *commit_transaction; 355 struct journal_head *jh; 356 struct buffer_head *descriptor; 357 struct buffer_head **wbuf = journal->j_wbuf; 358 int bufs; 359 int flags; 360 int err; 361 unsigned long long blocknr; 362 ktime_t start_time; 363 u64 commit_time; 364 char *tagp = NULL; 365 journal_block_tag_t *tag = NULL; 366 int space_left = 0; 367 int first_tag = 0; 368 int tag_flag; 369 int i; 370 int tag_bytes = journal_tag_bytes(journal); 371 struct buffer_head *cbh = NULL; /* For transactional checksums */ 372 __u32 crc32_sum = ~0; 373 struct blk_plug plug; 374 /* Tail of the journal */ 375 unsigned long first_block; 376 tid_t first_tid; 377 int update_tail; 378 int csum_size = 0; 379 LIST_HEAD(io_bufs); 380 LIST_HEAD(log_bufs); 381 382 if (jbd2_journal_has_csum_v2or3(journal)) 383 csum_size = sizeof(struct jbd2_journal_block_tail); 384 385 /* 386 * First job: lock down the current transaction and wait for 387 * all outstanding updates to complete. 388 */ 389 390 /* Do we need to erase the effects of a prior jbd2_journal_flush? */ 391 if (journal->j_flags & JBD2_FLUSHED) { 392 jbd2_debug(3, "super block updated\n"); 393 mutex_lock_io(&journal->j_checkpoint_mutex); 394 /* 395 * We hold j_checkpoint_mutex so tail cannot change under us. 396 * We don't need any special data guarantees for writing sb 397 * since journal is empty and it is ok for write to be 398 * flushed only with transaction commit. 399 */ 400 jbd2_journal_update_sb_log_tail(journal, 401 journal->j_tail_sequence, 402 journal->j_tail, 403 REQ_SYNC); 404 mutex_unlock(&journal->j_checkpoint_mutex); 405 } else { 406 jbd2_debug(3, "superblock not updated\n"); 407 } 408 409 J_ASSERT(journal->j_running_transaction != NULL); 410 J_ASSERT(journal->j_committing_transaction == NULL); 411 412 write_lock(&journal->j_state_lock); 413 journal->j_flags |= JBD2_FULL_COMMIT_ONGOING; 414 while (journal->j_flags & JBD2_FAST_COMMIT_ONGOING) { 415 DEFINE_WAIT(wait); 416 417 prepare_to_wait(&journal->j_fc_wait, &wait, 418 TASK_UNINTERRUPTIBLE); 419 write_unlock(&journal->j_state_lock); 420 schedule(); 421 write_lock(&journal->j_state_lock); 422 finish_wait(&journal->j_fc_wait, &wait); 423 /* 424 * TODO: by blocking fast commits here, we are increasing 425 * fsync() latency slightly. Strictly speaking, we don't need 426 * to block fast commits until the transaction enters T_FLUSH 427 * state. So an optimization is possible where we block new fast 428 * commits here and wait for existing ones to complete 429 * just before we enter T_FLUSH. That way, the existing fast 430 * commits and this full commit can proceed parallely. 431 */ 432 } 433 write_unlock(&journal->j_state_lock); 434 435 commit_transaction = journal->j_running_transaction; 436 437 trace_jbd2_start_commit(journal, commit_transaction); 438 jbd2_debug(1, "JBD2: starting commit of transaction %d\n", 439 commit_transaction->t_tid); 440 441 write_lock(&journal->j_state_lock); 442 journal->j_fc_off = 0; 443 J_ASSERT(commit_transaction->t_state == T_RUNNING); 444 commit_transaction->t_state = T_LOCKED; 445 446 trace_jbd2_commit_locking(journal, commit_transaction); 447 stats.run.rs_wait = commit_transaction->t_max_wait; 448 stats.run.rs_request_delay = 0; 449 stats.run.rs_locked = jiffies; 450 if (commit_transaction->t_requested) 451 stats.run.rs_request_delay = 452 jbd2_time_diff(commit_transaction->t_requested, 453 stats.run.rs_locked); 454 stats.run.rs_running = jbd2_time_diff(commit_transaction->t_start, 455 stats.run.rs_locked); 456 457 // waits for any t_updates to finish 458 jbd2_journal_wait_updates(journal); 459 460 commit_transaction->t_state = T_SWITCH; 461 462 J_ASSERT (atomic_read(&commit_transaction->t_outstanding_credits) <= 463 journal->j_max_transaction_buffers); 464 465 /* 466 * First thing we are allowed to do is to discard any remaining 467 * BJ_Reserved buffers. Note, it is _not_ permissible to assume 468 * that there are no such buffers: if a large filesystem 469 * operation like a truncate needs to split itself over multiple 470 * transactions, then it may try to do a jbd2_journal_restart() while 471 * there are still BJ_Reserved buffers outstanding. These must 472 * be released cleanly from the current transaction. 473 * 474 * In this case, the filesystem must still reserve write access 475 * again before modifying the buffer in the new transaction, but 476 * we do not require it to remember exactly which old buffers it 477 * has reserved. This is consistent with the existing behaviour 478 * that multiple jbd2_journal_get_write_access() calls to the same 479 * buffer are perfectly permissible. 480 * We use journal->j_state_lock here to serialize processing of 481 * t_reserved_list with eviction of buffers from journal_unmap_buffer(). 482 */ 483 while (commit_transaction->t_reserved_list) { 484 jh = commit_transaction->t_reserved_list; 485 JBUFFER_TRACE(jh, "reserved, unused: refile"); 486 /* 487 * A jbd2_journal_get_undo_access()+jbd2_journal_release_buffer() may 488 * leave undo-committed data. 489 */ 490 if (jh->b_committed_data) { 491 struct buffer_head *bh = jh2bh(jh); 492 493 spin_lock(&jh->b_state_lock); 494 jbd2_free(jh->b_committed_data, bh->b_size); 495 jh->b_committed_data = NULL; 496 spin_unlock(&jh->b_state_lock); 497 } 498 jbd2_journal_refile_buffer(journal, jh); 499 } 500 501 write_unlock(&journal->j_state_lock); 502 /* 503 * Now try to drop any written-back buffers from the journal's 504 * checkpoint lists. We do this *before* commit because it potentially 505 * frees some memory 506 */ 507 spin_lock(&journal->j_list_lock); 508 __jbd2_journal_clean_checkpoint_list(journal, false); 509 spin_unlock(&journal->j_list_lock); 510 511 jbd2_debug(3, "JBD2: commit phase 1\n"); 512 513 /* 514 * Clear revoked flag to reflect there is no revoked buffers 515 * in the next transaction which is going to be started. 516 */ 517 jbd2_clear_buffer_revoked_flags(journal); 518 519 /* 520 * Switch to a new revoke table. 521 */ 522 jbd2_journal_switch_revoke_table(journal); 523 524 write_lock(&journal->j_state_lock); 525 /* 526 * Reserved credits cannot be claimed anymore, free them 527 */ 528 atomic_sub(atomic_read(&journal->j_reserved_credits), 529 &commit_transaction->t_outstanding_credits); 530 531 trace_jbd2_commit_flushing(journal, commit_transaction); 532 stats.run.rs_flushing = jiffies; 533 stats.run.rs_locked = jbd2_time_diff(stats.run.rs_locked, 534 stats.run.rs_flushing); 535 536 commit_transaction->t_state = T_FLUSH; 537 journal->j_committing_transaction = commit_transaction; 538 journal->j_running_transaction = NULL; 539 start_time = ktime_get(); 540 commit_transaction->t_log_start = journal->j_head; 541 wake_up_all(&journal->j_wait_transaction_locked); 542 write_unlock(&journal->j_state_lock); 543 544 jbd2_debug(3, "JBD2: commit phase 2a\n"); 545 546 /* 547 * Now start flushing things to disk, in the order they appear 548 * on the transaction lists. Data blocks go first. 549 */ 550 err = journal_submit_data_buffers(journal, commit_transaction); 551 if (err) 552 jbd2_journal_abort(journal, err); 553 554 blk_start_plug(&plug); 555 jbd2_journal_write_revoke_records(commit_transaction, &log_bufs); 556 557 jbd2_debug(3, "JBD2: commit phase 2b\n"); 558 559 /* 560 * Way to go: we have now written out all of the data for a 561 * transaction! Now comes the tricky part: we need to write out 562 * metadata. Loop over the transaction's entire buffer list: 563 */ 564 write_lock(&journal->j_state_lock); 565 commit_transaction->t_state = T_COMMIT; 566 write_unlock(&journal->j_state_lock); 567 568 trace_jbd2_commit_logging(journal, commit_transaction); 569 stats.run.rs_logging = jiffies; 570 stats.run.rs_flushing = jbd2_time_diff(stats.run.rs_flushing, 571 stats.run.rs_logging); 572 stats.run.rs_blocks = commit_transaction->t_nr_buffers; 573 stats.run.rs_blocks_logged = 0; 574 575 J_ASSERT(commit_transaction->t_nr_buffers <= 576 atomic_read(&commit_transaction->t_outstanding_credits)); 577 578 err = 0; 579 bufs = 0; 580 descriptor = NULL; 581 while (commit_transaction->t_buffers) { 582 583 /* Find the next buffer to be journaled... */ 584 585 jh = commit_transaction->t_buffers; 586 587 /* If we're in abort mode, we just un-journal the buffer and 588 release it. */ 589 590 if (is_journal_aborted(journal)) { 591 clear_buffer_jbddirty(jh2bh(jh)); 592 JBUFFER_TRACE(jh, "journal is aborting: refile"); 593 jbd2_buffer_abort_trigger(jh, 594 jh->b_frozen_data ? 595 jh->b_frozen_triggers : 596 jh->b_triggers); 597 jbd2_journal_refile_buffer(journal, jh); 598 /* If that was the last one, we need to clean up 599 * any descriptor buffers which may have been 600 * already allocated, even if we are now 601 * aborting. */ 602 if (!commit_transaction->t_buffers) 603 goto start_journal_io; 604 continue; 605 } 606 607 /* Make sure we have a descriptor block in which to 608 record the metadata buffer. */ 609 610 if (!descriptor) { 611 J_ASSERT (bufs == 0); 612 613 jbd2_debug(4, "JBD2: get descriptor\n"); 614 615 descriptor = jbd2_journal_get_descriptor_buffer( 616 commit_transaction, 617 JBD2_DESCRIPTOR_BLOCK); 618 if (!descriptor) { 619 jbd2_journal_abort(journal, -EIO); 620 continue; 621 } 622 623 jbd2_debug(4, "JBD2: got buffer %llu (%p)\n", 624 (unsigned long long)descriptor->b_blocknr, 625 descriptor->b_data); 626 tagp = &descriptor->b_data[sizeof(journal_header_t)]; 627 space_left = descriptor->b_size - 628 sizeof(journal_header_t); 629 first_tag = 1; 630 set_buffer_jwrite(descriptor); 631 set_buffer_dirty(descriptor); 632 wbuf[bufs++] = descriptor; 633 634 /* Record it so that we can wait for IO 635 completion later */ 636 BUFFER_TRACE(descriptor, "ph3: file as descriptor"); 637 jbd2_file_log_bh(&log_bufs, descriptor); 638 } 639 640 /* Where is the buffer to be written? */ 641 642 err = jbd2_journal_next_log_block(journal, &blocknr); 643 /* If the block mapping failed, just abandon the buffer 644 and repeat this loop: we'll fall into the 645 refile-on-abort condition above. */ 646 if (err) { 647 jbd2_journal_abort(journal, err); 648 continue; 649 } 650 651 /* 652 * start_this_handle() uses t_outstanding_credits to determine 653 * the free space in the log. 654 */ 655 atomic_dec(&commit_transaction->t_outstanding_credits); 656 657 /* Bump b_count to prevent truncate from stumbling over 658 the shadowed buffer! @@@ This can go if we ever get 659 rid of the shadow pairing of buffers. */ 660 atomic_inc(&jh2bh(jh)->b_count); 661 662 /* 663 * Make a temporary IO buffer with which to write it out 664 * (this will requeue the metadata buffer to BJ_Shadow). 665 */ 666 set_bit(BH_JWrite, &jh2bh(jh)->b_state); 667 JBUFFER_TRACE(jh, "ph3: write metadata"); 668 flags = jbd2_journal_write_metadata_buffer(commit_transaction, 669 jh, &wbuf[bufs], blocknr); 670 if (flags < 0) { 671 jbd2_journal_abort(journal, flags); 672 continue; 673 } 674 jbd2_file_log_bh(&io_bufs, wbuf[bufs]); 675 676 /* Record the new block's tag in the current descriptor 677 buffer */ 678 679 tag_flag = 0; 680 if (flags & 1) 681 tag_flag |= JBD2_FLAG_ESCAPE; 682 if (!first_tag) 683 tag_flag |= JBD2_FLAG_SAME_UUID; 684 685 tag = (journal_block_tag_t *) tagp; 686 write_tag_block(journal, tag, jh2bh(jh)->b_blocknr); 687 tag->t_flags = cpu_to_be16(tag_flag); 688 jbd2_block_tag_csum_set(journal, tag, wbuf[bufs], 689 commit_transaction->t_tid); 690 tagp += tag_bytes; 691 space_left -= tag_bytes; 692 bufs++; 693 694 if (first_tag) { 695 memcpy (tagp, journal->j_uuid, 16); 696 tagp += 16; 697 space_left -= 16; 698 first_tag = 0; 699 } 700 701 /* If there's no more to do, or if the descriptor is full, 702 let the IO rip! */ 703 704 if (bufs == journal->j_wbufsize || 705 commit_transaction->t_buffers == NULL || 706 space_left < tag_bytes + 16 + csum_size) { 707 708 jbd2_debug(4, "JBD2: Submit %d IOs\n", bufs); 709 710 /* Write an end-of-descriptor marker before 711 submitting the IOs. "tag" still points to 712 the last tag we set up. */ 713 714 tag->t_flags |= cpu_to_be16(JBD2_FLAG_LAST_TAG); 715 start_journal_io: 716 if (descriptor) 717 jbd2_descriptor_block_csum_set(journal, 718 descriptor); 719 720 for (i = 0; i < bufs; i++) { 721 struct buffer_head *bh = wbuf[i]; 722 /* 723 * Compute checksum. 724 */ 725 if (jbd2_has_feature_checksum(journal)) { 726 crc32_sum = 727 jbd2_checksum_data(crc32_sum, bh); 728 } 729 730 lock_buffer(bh); 731 clear_buffer_dirty(bh); 732 set_buffer_uptodate(bh); 733 bh->b_end_io = journal_end_buffer_io_sync; 734 submit_bh(REQ_OP_WRITE | REQ_SYNC, bh); 735 } 736 cond_resched(); 737 738 /* Force a new descriptor to be generated next 739 time round the loop. */ 740 descriptor = NULL; 741 bufs = 0; 742 } 743 } 744 745 err = journal_finish_inode_data_buffers(journal, commit_transaction); 746 if (err) { 747 printk(KERN_WARNING 748 "JBD2: Detected IO errors while flushing file data " 749 "on %s\n", journal->j_devname); 750 if (journal->j_flags & JBD2_ABORT_ON_SYNCDATA_ERR) 751 jbd2_journal_abort(journal, err); 752 err = 0; 753 } 754 755 /* 756 * Get current oldest transaction in the log before we issue flush 757 * to the filesystem device. After the flush we can be sure that 758 * blocks of all older transactions are checkpointed to persistent 759 * storage and we will be safe to update journal start in the 760 * superblock with the numbers we get here. 761 */ 762 update_tail = 763 jbd2_journal_get_log_tail(journal, &first_tid, &first_block); 764 765 write_lock(&journal->j_state_lock); 766 if (update_tail) { 767 long freed = first_block - journal->j_tail; 768 769 if (first_block < journal->j_tail) 770 freed += journal->j_last - journal->j_first; 771 /* Update tail only if we free significant amount of space */ 772 if (freed < jbd2_journal_get_max_txn_bufs(journal)) 773 update_tail = 0; 774 } 775 J_ASSERT(commit_transaction->t_state == T_COMMIT); 776 commit_transaction->t_state = T_COMMIT_DFLUSH; 777 write_unlock(&journal->j_state_lock); 778 779 /* 780 * If the journal is not located on the file system device, 781 * then we must flush the file system device before we issue 782 * the commit record 783 */ 784 if (commit_transaction->t_need_data_flush && 785 (journal->j_fs_dev != journal->j_dev) && 786 (journal->j_flags & JBD2_BARRIER)) 787 blkdev_issue_flush(journal->j_fs_dev); 788 789 /* Done it all: now write the commit record asynchronously. */ 790 if (jbd2_has_feature_async_commit(journal)) { 791 err = journal_submit_commit_record(journal, commit_transaction, 792 &cbh, crc32_sum); 793 if (err) 794 jbd2_journal_abort(journal, err); 795 } 796 797 blk_finish_plug(&plug); 798 799 /* Lo and behold: we have just managed to send a transaction to 800 the log. Before we can commit it, wait for the IO so far to 801 complete. Control buffers being written are on the 802 transaction's t_log_list queue, and metadata buffers are on 803 the io_bufs list. 804 805 Wait for the buffers in reverse order. That way we are 806 less likely to be woken up until all IOs have completed, and 807 so we incur less scheduling load. 808 */ 809 810 jbd2_debug(3, "JBD2: commit phase 3\n"); 811 812 while (!list_empty(&io_bufs)) { 813 struct buffer_head *bh = list_entry(io_bufs.prev, 814 struct buffer_head, 815 b_assoc_buffers); 816 817 wait_on_buffer(bh); 818 cond_resched(); 819 820 if (unlikely(!buffer_uptodate(bh))) 821 err = -EIO; 822 jbd2_unfile_log_bh(bh); 823 stats.run.rs_blocks_logged++; 824 825 /* 826 * The list contains temporary buffer heads created by 827 * jbd2_journal_write_metadata_buffer(). 828 */ 829 BUFFER_TRACE(bh, "dumping temporary bh"); 830 __brelse(bh); 831 J_ASSERT_BH(bh, atomic_read(&bh->b_count) == 0); 832 free_buffer_head(bh); 833 834 /* We also have to refile the corresponding shadowed buffer */ 835 jh = commit_transaction->t_shadow_list->b_tprev; 836 bh = jh2bh(jh); 837 clear_buffer_jwrite(bh); 838 J_ASSERT_BH(bh, buffer_jbddirty(bh)); 839 J_ASSERT_BH(bh, !buffer_shadow(bh)); 840 841 /* The metadata is now released for reuse, but we need 842 to remember it against this transaction so that when 843 we finally commit, we can do any checkpointing 844 required. */ 845 JBUFFER_TRACE(jh, "file as BJ_Forget"); 846 jbd2_journal_file_buffer(jh, commit_transaction, BJ_Forget); 847 JBUFFER_TRACE(jh, "brelse shadowed buffer"); 848 __brelse(bh); 849 } 850 851 J_ASSERT (commit_transaction->t_shadow_list == NULL); 852 853 jbd2_debug(3, "JBD2: commit phase 4\n"); 854 855 /* Here we wait for the revoke record and descriptor record buffers */ 856 while (!list_empty(&log_bufs)) { 857 struct buffer_head *bh; 858 859 bh = list_entry(log_bufs.prev, struct buffer_head, b_assoc_buffers); 860 wait_on_buffer(bh); 861 cond_resched(); 862 863 if (unlikely(!buffer_uptodate(bh))) 864 err = -EIO; 865 866 BUFFER_TRACE(bh, "ph5: control buffer writeout done: unfile"); 867 clear_buffer_jwrite(bh); 868 jbd2_unfile_log_bh(bh); 869 stats.run.rs_blocks_logged++; 870 __brelse(bh); /* One for getblk */ 871 /* AKPM: bforget here */ 872 } 873 874 if (err) 875 jbd2_journal_abort(journal, err); 876 877 jbd2_debug(3, "JBD2: commit phase 5\n"); 878 write_lock(&journal->j_state_lock); 879 J_ASSERT(commit_transaction->t_state == T_COMMIT_DFLUSH); 880 commit_transaction->t_state = T_COMMIT_JFLUSH; 881 write_unlock(&journal->j_state_lock); 882 883 if (!jbd2_has_feature_async_commit(journal)) { 884 err = journal_submit_commit_record(journal, commit_transaction, 885 &cbh, crc32_sum); 886 if (err) 887 jbd2_journal_abort(journal, err); 888 } 889 if (cbh) 890 err = journal_wait_on_commit_record(journal, cbh); 891 stats.run.rs_blocks_logged++; 892 if (jbd2_has_feature_async_commit(journal) && 893 journal->j_flags & JBD2_BARRIER) { 894 blkdev_issue_flush(journal->j_dev); 895 } 896 897 if (err) 898 jbd2_journal_abort(journal, err); 899 900 WARN_ON_ONCE( 901 atomic_read(&commit_transaction->t_outstanding_credits) < 0); 902 903 /* 904 * Now disk caches for filesystem device are flushed so we are safe to 905 * erase checkpointed transactions from the log by updating journal 906 * superblock. 907 */ 908 if (update_tail) 909 jbd2_update_log_tail(journal, first_tid, first_block); 910 911 /* End of a transaction! Finally, we can do checkpoint 912 processing: any buffers committed as a result of this 913 transaction can be removed from any checkpoint list it was on 914 before. */ 915 916 jbd2_debug(3, "JBD2: commit phase 6\n"); 917 918 J_ASSERT(list_empty(&commit_transaction->t_inode_list)); 919 J_ASSERT(commit_transaction->t_buffers == NULL); 920 J_ASSERT(commit_transaction->t_checkpoint_list == NULL); 921 J_ASSERT(commit_transaction->t_shadow_list == NULL); 922 923 restart_loop: 924 /* 925 * As there are other places (journal_unmap_buffer()) adding buffers 926 * to this list we have to be careful and hold the j_list_lock. 927 */ 928 spin_lock(&journal->j_list_lock); 929 while (commit_transaction->t_forget) { 930 transaction_t *cp_transaction; 931 struct buffer_head *bh; 932 int try_to_free = 0; 933 bool drop_ref; 934 935 jh = commit_transaction->t_forget; 936 spin_unlock(&journal->j_list_lock); 937 bh = jh2bh(jh); 938 /* 939 * Get a reference so that bh cannot be freed before we are 940 * done with it. 941 */ 942 get_bh(bh); 943 spin_lock(&jh->b_state_lock); 944 J_ASSERT_JH(jh, jh->b_transaction == commit_transaction); 945 946 /* 947 * If there is undo-protected committed data against 948 * this buffer, then we can remove it now. If it is a 949 * buffer needing such protection, the old frozen_data 950 * field now points to a committed version of the 951 * buffer, so rotate that field to the new committed 952 * data. 953 * 954 * Otherwise, we can just throw away the frozen data now. 955 * 956 * We also know that the frozen data has already fired 957 * its triggers if they exist, so we can clear that too. 958 */ 959 if (jh->b_committed_data) { 960 jbd2_free(jh->b_committed_data, bh->b_size); 961 jh->b_committed_data = NULL; 962 if (jh->b_frozen_data) { 963 jh->b_committed_data = jh->b_frozen_data; 964 jh->b_frozen_data = NULL; 965 jh->b_frozen_triggers = NULL; 966 } 967 } else if (jh->b_frozen_data) { 968 jbd2_free(jh->b_frozen_data, bh->b_size); 969 jh->b_frozen_data = NULL; 970 jh->b_frozen_triggers = NULL; 971 } 972 973 spin_lock(&journal->j_list_lock); 974 cp_transaction = jh->b_cp_transaction; 975 if (cp_transaction) { 976 JBUFFER_TRACE(jh, "remove from old cp transaction"); 977 cp_transaction->t_chp_stats.cs_dropped++; 978 __jbd2_journal_remove_checkpoint(jh); 979 } 980 981 /* Only re-checkpoint the buffer_head if it is marked 982 * dirty. If the buffer was added to the BJ_Forget list 983 * by jbd2_journal_forget, it may no longer be dirty and 984 * there's no point in keeping a checkpoint record for 985 * it. */ 986 987 /* 988 * A buffer which has been freed while still being journaled 989 * by a previous transaction, refile the buffer to BJ_Forget of 990 * the running transaction. If the just committed transaction 991 * contains "add to orphan" operation, we can completely 992 * invalidate the buffer now. We are rather through in that 993 * since the buffer may be still accessible when blocksize < 994 * pagesize and it is attached to the last partial page. 995 */ 996 if (buffer_freed(bh) && !jh->b_next_transaction) { 997 struct address_space *mapping; 998 999 clear_buffer_freed(bh); 1000 clear_buffer_jbddirty(bh); 1001 1002 /* 1003 * Block device buffers need to stay mapped all the 1004 * time, so it is enough to clear buffer_jbddirty and 1005 * buffer_freed bits. For the file mapping buffers (i.e. 1006 * journalled data) we need to unmap buffer and clear 1007 * more bits. We also need to be careful about the check 1008 * because the data page mapping can get cleared under 1009 * our hands. Note that if mapping == NULL, we don't 1010 * need to make buffer unmapped because the page is 1011 * already detached from the mapping and buffers cannot 1012 * get reused. 1013 */ 1014 mapping = READ_ONCE(bh->b_folio->mapping); 1015 if (mapping && !sb_is_blkdev_sb(mapping->host->i_sb)) { 1016 clear_buffer_mapped(bh); 1017 clear_buffer_new(bh); 1018 clear_buffer_req(bh); 1019 bh->b_bdev = NULL; 1020 } 1021 } 1022 1023 if (buffer_jbddirty(bh)) { 1024 JBUFFER_TRACE(jh, "add to new checkpointing trans"); 1025 __jbd2_journal_insert_checkpoint(jh, commit_transaction); 1026 if (is_journal_aborted(journal)) 1027 clear_buffer_jbddirty(bh); 1028 } else { 1029 J_ASSERT_BH(bh, !buffer_dirty(bh)); 1030 /* 1031 * The buffer on BJ_Forget list and not jbddirty means 1032 * it has been freed by this transaction and hence it 1033 * could not have been reallocated until this 1034 * transaction has committed. *BUT* it could be 1035 * reallocated once we have written all the data to 1036 * disk and before we process the buffer on BJ_Forget 1037 * list. 1038 */ 1039 if (!jh->b_next_transaction) 1040 try_to_free = 1; 1041 } 1042 JBUFFER_TRACE(jh, "refile or unfile buffer"); 1043 drop_ref = __jbd2_journal_refile_buffer(jh); 1044 spin_unlock(&jh->b_state_lock); 1045 if (drop_ref) 1046 jbd2_journal_put_journal_head(jh); 1047 if (try_to_free) 1048 release_buffer_page(bh); /* Drops bh reference */ 1049 else 1050 __brelse(bh); 1051 cond_resched_lock(&journal->j_list_lock); 1052 } 1053 spin_unlock(&journal->j_list_lock); 1054 /* 1055 * This is a bit sleazy. We use j_list_lock to protect transition 1056 * of a transaction into T_FINISHED state and calling 1057 * __jbd2_journal_drop_transaction(). Otherwise we could race with 1058 * other checkpointing code processing the transaction... 1059 */ 1060 write_lock(&journal->j_state_lock); 1061 spin_lock(&journal->j_list_lock); 1062 /* 1063 * Now recheck if some buffers did not get attached to the transaction 1064 * while the lock was dropped... 1065 */ 1066 if (commit_transaction->t_forget) { 1067 spin_unlock(&journal->j_list_lock); 1068 write_unlock(&journal->j_state_lock); 1069 goto restart_loop; 1070 } 1071 1072 /* Add the transaction to the checkpoint list 1073 * __journal_remove_checkpoint() can not destroy transaction 1074 * under us because it is not marked as T_FINISHED yet */ 1075 if (journal->j_checkpoint_transactions == NULL) { 1076 journal->j_checkpoint_transactions = commit_transaction; 1077 commit_transaction->t_cpnext = commit_transaction; 1078 commit_transaction->t_cpprev = commit_transaction; 1079 } else { 1080 commit_transaction->t_cpnext = 1081 journal->j_checkpoint_transactions; 1082 commit_transaction->t_cpprev = 1083 commit_transaction->t_cpnext->t_cpprev; 1084 commit_transaction->t_cpnext->t_cpprev = 1085 commit_transaction; 1086 commit_transaction->t_cpprev->t_cpnext = 1087 commit_transaction; 1088 } 1089 spin_unlock(&journal->j_list_lock); 1090 1091 /* Done with this transaction! */ 1092 1093 jbd2_debug(3, "JBD2: commit phase 7\n"); 1094 1095 J_ASSERT(commit_transaction->t_state == T_COMMIT_JFLUSH); 1096 1097 commit_transaction->t_start = jiffies; 1098 stats.run.rs_logging = jbd2_time_diff(stats.run.rs_logging, 1099 commit_transaction->t_start); 1100 1101 /* 1102 * File the transaction statistics 1103 */ 1104 stats.ts_tid = commit_transaction->t_tid; 1105 stats.run.rs_handle_count = 1106 atomic_read(&commit_transaction->t_handle_count); 1107 trace_jbd2_run_stats(journal->j_fs_dev->bd_dev, 1108 commit_transaction->t_tid, &stats.run); 1109 stats.ts_requested = (commit_transaction->t_requested) ? 1 : 0; 1110 1111 commit_transaction->t_state = T_COMMIT_CALLBACK; 1112 J_ASSERT(commit_transaction == journal->j_committing_transaction); 1113 journal->j_commit_sequence = commit_transaction->t_tid; 1114 journal->j_committing_transaction = NULL; 1115 commit_time = ktime_to_ns(ktime_sub(ktime_get(), start_time)); 1116 1117 /* 1118 * weight the commit time higher than the average time so we don't 1119 * react too strongly to vast changes in the commit time 1120 */ 1121 if (likely(journal->j_average_commit_time)) 1122 journal->j_average_commit_time = (commit_time + 1123 journal->j_average_commit_time*3) / 4; 1124 else 1125 journal->j_average_commit_time = commit_time; 1126 1127 write_unlock(&journal->j_state_lock); 1128 1129 if (journal->j_commit_callback) 1130 journal->j_commit_callback(journal, commit_transaction); 1131 if (journal->j_fc_cleanup_callback) 1132 journal->j_fc_cleanup_callback(journal, 1, commit_transaction->t_tid); 1133 1134 trace_jbd2_end_commit(journal, commit_transaction); 1135 jbd2_debug(1, "JBD2: commit %d complete, head %d\n", 1136 journal->j_commit_sequence, journal->j_tail_sequence); 1137 1138 write_lock(&journal->j_state_lock); 1139 journal->j_flags &= ~JBD2_FULL_COMMIT_ONGOING; 1140 journal->j_flags &= ~JBD2_FAST_COMMIT_ONGOING; 1141 spin_lock(&journal->j_list_lock); 1142 commit_transaction->t_state = T_FINISHED; 1143 /* Check if the transaction can be dropped now that we are finished */ 1144 if (commit_transaction->t_checkpoint_list == NULL && 1145 commit_transaction->t_checkpoint_io_list == NULL) { 1146 __jbd2_journal_drop_transaction(journal, commit_transaction); 1147 jbd2_journal_free_transaction(commit_transaction); 1148 } 1149 spin_unlock(&journal->j_list_lock); 1150 write_unlock(&journal->j_state_lock); 1151 wake_up(&journal->j_wait_done_commit); 1152 wake_up(&journal->j_fc_wait); 1153 1154 /* 1155 * Calculate overall stats 1156 */ 1157 spin_lock(&journal->j_history_lock); 1158 journal->j_stats.ts_tid++; 1159 journal->j_stats.ts_requested += stats.ts_requested; 1160 journal->j_stats.run.rs_wait += stats.run.rs_wait; 1161 journal->j_stats.run.rs_request_delay += stats.run.rs_request_delay; 1162 journal->j_stats.run.rs_running += stats.run.rs_running; 1163 journal->j_stats.run.rs_locked += stats.run.rs_locked; 1164 journal->j_stats.run.rs_flushing += stats.run.rs_flushing; 1165 journal->j_stats.run.rs_logging += stats.run.rs_logging; 1166 journal->j_stats.run.rs_handle_count += stats.run.rs_handle_count; 1167 journal->j_stats.run.rs_blocks += stats.run.rs_blocks; 1168 journal->j_stats.run.rs_blocks_logged += stats.run.rs_blocks_logged; 1169 spin_unlock(&journal->j_history_lock); 1170 } 1171