xref: /linux/fs/jbd2/commit.c (revision 24bce201d79807b668bf9d9e0aca801c5c0d5f78)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * linux/fs/jbd2/commit.c
4  *
5  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6  *
7  * Copyright 1998 Red Hat corp --- All Rights Reserved
8  *
9  * Journal commit routines for the generic filesystem journaling code;
10  * part of the ext2fs journaling system.
11  */
12 
13 #include <linux/time.h>
14 #include <linux/fs.h>
15 #include <linux/jbd2.h>
16 #include <linux/errno.h>
17 #include <linux/slab.h>
18 #include <linux/mm.h>
19 #include <linux/pagemap.h>
20 #include <linux/jiffies.h>
21 #include <linux/crc32.h>
22 #include <linux/writeback.h>
23 #include <linux/backing-dev.h>
24 #include <linux/bio.h>
25 #include <linux/blkdev.h>
26 #include <linux/bitops.h>
27 #include <trace/events/jbd2.h>
28 
29 /*
30  * IO end handler for temporary buffer_heads handling writes to the journal.
31  */
32 static void journal_end_buffer_io_sync(struct buffer_head *bh, int uptodate)
33 {
34 	struct buffer_head *orig_bh = bh->b_private;
35 
36 	BUFFER_TRACE(bh, "");
37 	if (uptodate)
38 		set_buffer_uptodate(bh);
39 	else
40 		clear_buffer_uptodate(bh);
41 	if (orig_bh) {
42 		clear_bit_unlock(BH_Shadow, &orig_bh->b_state);
43 		smp_mb__after_atomic();
44 		wake_up_bit(&orig_bh->b_state, BH_Shadow);
45 	}
46 	unlock_buffer(bh);
47 }
48 
49 /*
50  * When an ext4 file is truncated, it is possible that some pages are not
51  * successfully freed, because they are attached to a committing transaction.
52  * After the transaction commits, these pages are left on the LRU, with no
53  * ->mapping, and with attached buffers.  These pages are trivially reclaimable
54  * by the VM, but their apparent absence upsets the VM accounting, and it makes
55  * the numbers in /proc/meminfo look odd.
56  *
57  * So here, we have a buffer which has just come off the forget list.  Look to
58  * see if we can strip all buffers from the backing page.
59  *
60  * Called under lock_journal(), and possibly under journal_datalist_lock.  The
61  * caller provided us with a ref against the buffer, and we drop that here.
62  */
63 static void release_buffer_page(struct buffer_head *bh)
64 {
65 	struct folio *folio;
66 	struct page *page;
67 
68 	if (buffer_dirty(bh))
69 		goto nope;
70 	if (atomic_read(&bh->b_count) != 1)
71 		goto nope;
72 	page = bh->b_page;
73 	if (!page)
74 		goto nope;
75 	folio = page_folio(page);
76 	if (folio->mapping)
77 		goto nope;
78 
79 	/* OK, it's a truncated page */
80 	if (!folio_trylock(folio))
81 		goto nope;
82 
83 	folio_get(folio);
84 	__brelse(bh);
85 	try_to_free_buffers(folio);
86 	folio_unlock(folio);
87 	folio_put(folio);
88 	return;
89 
90 nope:
91 	__brelse(bh);
92 }
93 
94 static void jbd2_commit_block_csum_set(journal_t *j, struct buffer_head *bh)
95 {
96 	struct commit_header *h;
97 	__u32 csum;
98 
99 	if (!jbd2_journal_has_csum_v2or3(j))
100 		return;
101 
102 	h = (struct commit_header *)(bh->b_data);
103 	h->h_chksum_type = 0;
104 	h->h_chksum_size = 0;
105 	h->h_chksum[0] = 0;
106 	csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
107 	h->h_chksum[0] = cpu_to_be32(csum);
108 }
109 
110 /*
111  * Done it all: now submit the commit record.  We should have
112  * cleaned up our previous buffers by now, so if we are in abort
113  * mode we can now just skip the rest of the journal write
114  * entirely.
115  *
116  * Returns 1 if the journal needs to be aborted or 0 on success
117  */
118 static int journal_submit_commit_record(journal_t *journal,
119 					transaction_t *commit_transaction,
120 					struct buffer_head **cbh,
121 					__u32 crc32_sum)
122 {
123 	struct commit_header *tmp;
124 	struct buffer_head *bh;
125 	int ret;
126 	struct timespec64 now;
127 
128 	*cbh = NULL;
129 
130 	if (is_journal_aborted(journal))
131 		return 0;
132 
133 	bh = jbd2_journal_get_descriptor_buffer(commit_transaction,
134 						JBD2_COMMIT_BLOCK);
135 	if (!bh)
136 		return 1;
137 
138 	tmp = (struct commit_header *)bh->b_data;
139 	ktime_get_coarse_real_ts64(&now);
140 	tmp->h_commit_sec = cpu_to_be64(now.tv_sec);
141 	tmp->h_commit_nsec = cpu_to_be32(now.tv_nsec);
142 
143 	if (jbd2_has_feature_checksum(journal)) {
144 		tmp->h_chksum_type 	= JBD2_CRC32_CHKSUM;
145 		tmp->h_chksum_size 	= JBD2_CRC32_CHKSUM_SIZE;
146 		tmp->h_chksum[0] 	= cpu_to_be32(crc32_sum);
147 	}
148 	jbd2_commit_block_csum_set(journal, bh);
149 
150 	BUFFER_TRACE(bh, "submit commit block");
151 	lock_buffer(bh);
152 	clear_buffer_dirty(bh);
153 	set_buffer_uptodate(bh);
154 	bh->b_end_io = journal_end_buffer_io_sync;
155 
156 	if (journal->j_flags & JBD2_BARRIER &&
157 	    !jbd2_has_feature_async_commit(journal))
158 		ret = submit_bh(REQ_OP_WRITE,
159 			REQ_SYNC | REQ_PREFLUSH | REQ_FUA, bh);
160 	else
161 		ret = submit_bh(REQ_OP_WRITE, REQ_SYNC, bh);
162 
163 	*cbh = bh;
164 	return ret;
165 }
166 
167 /*
168  * This function along with journal_submit_commit_record
169  * allows to write the commit record asynchronously.
170  */
171 static int journal_wait_on_commit_record(journal_t *journal,
172 					 struct buffer_head *bh)
173 {
174 	int ret = 0;
175 
176 	clear_buffer_dirty(bh);
177 	wait_on_buffer(bh);
178 
179 	if (unlikely(!buffer_uptodate(bh)))
180 		ret = -EIO;
181 	put_bh(bh);            /* One for getblk() */
182 
183 	return ret;
184 }
185 
186 /*
187  * write the filemap data using writepage() address_space_operations.
188  * We don't do block allocation here even for delalloc. We don't
189  * use writepages() because with delayed allocation we may be doing
190  * block allocation in writepages().
191  */
192 int jbd2_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
193 {
194 	struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
195 	struct writeback_control wbc = {
196 		.sync_mode =  WB_SYNC_ALL,
197 		.nr_to_write = mapping->nrpages * 2,
198 		.range_start = jinode->i_dirty_start,
199 		.range_end = jinode->i_dirty_end,
200 	};
201 
202 	/*
203 	 * submit the inode data buffers. We use writepage
204 	 * instead of writepages. Because writepages can do
205 	 * block allocation with delalloc. We need to write
206 	 * only allocated blocks here.
207 	 */
208 	return generic_writepages(mapping, &wbc);
209 }
210 
211 /* Send all the data buffers related to an inode */
212 int jbd2_submit_inode_data(struct jbd2_inode *jinode)
213 {
214 
215 	if (!jinode || !(jinode->i_flags & JI_WRITE_DATA))
216 		return 0;
217 
218 	trace_jbd2_submit_inode_data(jinode->i_vfs_inode);
219 	return jbd2_journal_submit_inode_data_buffers(jinode);
220 
221 }
222 EXPORT_SYMBOL(jbd2_submit_inode_data);
223 
224 int jbd2_wait_inode_data(journal_t *journal, struct jbd2_inode *jinode)
225 {
226 	if (!jinode || !(jinode->i_flags & JI_WAIT_DATA) ||
227 		!jinode->i_vfs_inode || !jinode->i_vfs_inode->i_mapping)
228 		return 0;
229 	return filemap_fdatawait_range_keep_errors(
230 		jinode->i_vfs_inode->i_mapping, jinode->i_dirty_start,
231 		jinode->i_dirty_end);
232 }
233 EXPORT_SYMBOL(jbd2_wait_inode_data);
234 
235 /*
236  * Submit all the data buffers of inode associated with the transaction to
237  * disk.
238  *
239  * We are in a committing transaction. Therefore no new inode can be added to
240  * our inode list. We use JI_COMMIT_RUNNING flag to protect inode we currently
241  * operate on from being released while we write out pages.
242  */
243 static int journal_submit_data_buffers(journal_t *journal,
244 		transaction_t *commit_transaction)
245 {
246 	struct jbd2_inode *jinode;
247 	int err, ret = 0;
248 
249 	spin_lock(&journal->j_list_lock);
250 	list_for_each_entry(jinode, &commit_transaction->t_inode_list, i_list) {
251 		if (!(jinode->i_flags & JI_WRITE_DATA))
252 			continue;
253 		jinode->i_flags |= JI_COMMIT_RUNNING;
254 		spin_unlock(&journal->j_list_lock);
255 		/* submit the inode data buffers. */
256 		trace_jbd2_submit_inode_data(jinode->i_vfs_inode);
257 		if (journal->j_submit_inode_data_buffers) {
258 			err = journal->j_submit_inode_data_buffers(jinode);
259 			if (!ret)
260 				ret = err;
261 		}
262 		spin_lock(&journal->j_list_lock);
263 		J_ASSERT(jinode->i_transaction == commit_transaction);
264 		jinode->i_flags &= ~JI_COMMIT_RUNNING;
265 		smp_mb();
266 		wake_up_bit(&jinode->i_flags, __JI_COMMIT_RUNNING);
267 	}
268 	spin_unlock(&journal->j_list_lock);
269 	return ret;
270 }
271 
272 int jbd2_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
273 {
274 	struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
275 
276 	return filemap_fdatawait_range_keep_errors(mapping,
277 						   jinode->i_dirty_start,
278 						   jinode->i_dirty_end);
279 }
280 
281 /*
282  * Wait for data submitted for writeout, refile inodes to proper
283  * transaction if needed.
284  *
285  */
286 static int journal_finish_inode_data_buffers(journal_t *journal,
287 		transaction_t *commit_transaction)
288 {
289 	struct jbd2_inode *jinode, *next_i;
290 	int err, ret = 0;
291 
292 	/* For locking, see the comment in journal_submit_data_buffers() */
293 	spin_lock(&journal->j_list_lock);
294 	list_for_each_entry(jinode, &commit_transaction->t_inode_list, i_list) {
295 		if (!(jinode->i_flags & JI_WAIT_DATA))
296 			continue;
297 		jinode->i_flags |= JI_COMMIT_RUNNING;
298 		spin_unlock(&journal->j_list_lock);
299 		/* wait for the inode data buffers writeout. */
300 		if (journal->j_finish_inode_data_buffers) {
301 			err = journal->j_finish_inode_data_buffers(jinode);
302 			if (!ret)
303 				ret = err;
304 		}
305 		spin_lock(&journal->j_list_lock);
306 		jinode->i_flags &= ~JI_COMMIT_RUNNING;
307 		smp_mb();
308 		wake_up_bit(&jinode->i_flags, __JI_COMMIT_RUNNING);
309 	}
310 
311 	/* Now refile inode to proper lists */
312 	list_for_each_entry_safe(jinode, next_i,
313 				 &commit_transaction->t_inode_list, i_list) {
314 		list_del(&jinode->i_list);
315 		if (jinode->i_next_transaction) {
316 			jinode->i_transaction = jinode->i_next_transaction;
317 			jinode->i_next_transaction = NULL;
318 			list_add(&jinode->i_list,
319 				&jinode->i_transaction->t_inode_list);
320 		} else {
321 			jinode->i_transaction = NULL;
322 			jinode->i_dirty_start = 0;
323 			jinode->i_dirty_end = 0;
324 		}
325 	}
326 	spin_unlock(&journal->j_list_lock);
327 
328 	return ret;
329 }
330 
331 static __u32 jbd2_checksum_data(__u32 crc32_sum, struct buffer_head *bh)
332 {
333 	struct page *page = bh->b_page;
334 	char *addr;
335 	__u32 checksum;
336 
337 	addr = kmap_atomic(page);
338 	checksum = crc32_be(crc32_sum,
339 		(void *)(addr + offset_in_page(bh->b_data)), bh->b_size);
340 	kunmap_atomic(addr);
341 
342 	return checksum;
343 }
344 
345 static void write_tag_block(journal_t *j, journal_block_tag_t *tag,
346 				   unsigned long long block)
347 {
348 	tag->t_blocknr = cpu_to_be32(block & (u32)~0);
349 	if (jbd2_has_feature_64bit(j))
350 		tag->t_blocknr_high = cpu_to_be32((block >> 31) >> 1);
351 }
352 
353 static void jbd2_block_tag_csum_set(journal_t *j, journal_block_tag_t *tag,
354 				    struct buffer_head *bh, __u32 sequence)
355 {
356 	journal_block_tag3_t *tag3 = (journal_block_tag3_t *)tag;
357 	struct page *page = bh->b_page;
358 	__u8 *addr;
359 	__u32 csum32;
360 	__be32 seq;
361 
362 	if (!jbd2_journal_has_csum_v2or3(j))
363 		return;
364 
365 	seq = cpu_to_be32(sequence);
366 	addr = kmap_atomic(page);
367 	csum32 = jbd2_chksum(j, j->j_csum_seed, (__u8 *)&seq, sizeof(seq));
368 	csum32 = jbd2_chksum(j, csum32, addr + offset_in_page(bh->b_data),
369 			     bh->b_size);
370 	kunmap_atomic(addr);
371 
372 	if (jbd2_has_feature_csum3(j))
373 		tag3->t_checksum = cpu_to_be32(csum32);
374 	else
375 		tag->t_checksum = cpu_to_be16(csum32);
376 }
377 /*
378  * jbd2_journal_commit_transaction
379  *
380  * The primary function for committing a transaction to the log.  This
381  * function is called by the journal thread to begin a complete commit.
382  */
383 void jbd2_journal_commit_transaction(journal_t *journal)
384 {
385 	struct transaction_stats_s stats;
386 	transaction_t *commit_transaction;
387 	struct journal_head *jh;
388 	struct buffer_head *descriptor;
389 	struct buffer_head **wbuf = journal->j_wbuf;
390 	int bufs;
391 	int flags;
392 	int err;
393 	unsigned long long blocknr;
394 	ktime_t start_time;
395 	u64 commit_time;
396 	char *tagp = NULL;
397 	journal_block_tag_t *tag = NULL;
398 	int space_left = 0;
399 	int first_tag = 0;
400 	int tag_flag;
401 	int i;
402 	int tag_bytes = journal_tag_bytes(journal);
403 	struct buffer_head *cbh = NULL; /* For transactional checksums */
404 	__u32 crc32_sum = ~0;
405 	struct blk_plug plug;
406 	/* Tail of the journal */
407 	unsigned long first_block;
408 	tid_t first_tid;
409 	int update_tail;
410 	int csum_size = 0;
411 	LIST_HEAD(io_bufs);
412 	LIST_HEAD(log_bufs);
413 
414 	if (jbd2_journal_has_csum_v2or3(journal))
415 		csum_size = sizeof(struct jbd2_journal_block_tail);
416 
417 	/*
418 	 * First job: lock down the current transaction and wait for
419 	 * all outstanding updates to complete.
420 	 */
421 
422 	/* Do we need to erase the effects of a prior jbd2_journal_flush? */
423 	if (journal->j_flags & JBD2_FLUSHED) {
424 		jbd_debug(3, "super block updated\n");
425 		mutex_lock_io(&journal->j_checkpoint_mutex);
426 		/*
427 		 * We hold j_checkpoint_mutex so tail cannot change under us.
428 		 * We don't need any special data guarantees for writing sb
429 		 * since journal is empty and it is ok for write to be
430 		 * flushed only with transaction commit.
431 		 */
432 		jbd2_journal_update_sb_log_tail(journal,
433 						journal->j_tail_sequence,
434 						journal->j_tail,
435 						REQ_SYNC);
436 		mutex_unlock(&journal->j_checkpoint_mutex);
437 	} else {
438 		jbd_debug(3, "superblock not updated\n");
439 	}
440 
441 	J_ASSERT(journal->j_running_transaction != NULL);
442 	J_ASSERT(journal->j_committing_transaction == NULL);
443 
444 	write_lock(&journal->j_state_lock);
445 	journal->j_flags |= JBD2_FULL_COMMIT_ONGOING;
446 	while (journal->j_flags & JBD2_FAST_COMMIT_ONGOING) {
447 		DEFINE_WAIT(wait);
448 
449 		prepare_to_wait(&journal->j_fc_wait, &wait,
450 				TASK_UNINTERRUPTIBLE);
451 		write_unlock(&journal->j_state_lock);
452 		schedule();
453 		write_lock(&journal->j_state_lock);
454 		finish_wait(&journal->j_fc_wait, &wait);
455 		/*
456 		 * TODO: by blocking fast commits here, we are increasing
457 		 * fsync() latency slightly. Strictly speaking, we don't need
458 		 * to block fast commits until the transaction enters T_FLUSH
459 		 * state. So an optimization is possible where we block new fast
460 		 * commits here and wait for existing ones to complete
461 		 * just before we enter T_FLUSH. That way, the existing fast
462 		 * commits and this full commit can proceed parallely.
463 		 */
464 	}
465 	write_unlock(&journal->j_state_lock);
466 
467 	commit_transaction = journal->j_running_transaction;
468 
469 	trace_jbd2_start_commit(journal, commit_transaction);
470 	jbd_debug(1, "JBD2: starting commit of transaction %d\n",
471 			commit_transaction->t_tid);
472 
473 	write_lock(&journal->j_state_lock);
474 	journal->j_fc_off = 0;
475 	J_ASSERT(commit_transaction->t_state == T_RUNNING);
476 	commit_transaction->t_state = T_LOCKED;
477 
478 	trace_jbd2_commit_locking(journal, commit_transaction);
479 	stats.run.rs_wait = commit_transaction->t_max_wait;
480 	stats.run.rs_request_delay = 0;
481 	stats.run.rs_locked = jiffies;
482 	if (commit_transaction->t_requested)
483 		stats.run.rs_request_delay =
484 			jbd2_time_diff(commit_transaction->t_requested,
485 				       stats.run.rs_locked);
486 	stats.run.rs_running = jbd2_time_diff(commit_transaction->t_start,
487 					      stats.run.rs_locked);
488 
489 	// waits for any t_updates to finish
490 	jbd2_journal_wait_updates(journal);
491 
492 	commit_transaction->t_state = T_SWITCH;
493 
494 	J_ASSERT (atomic_read(&commit_transaction->t_outstanding_credits) <=
495 			journal->j_max_transaction_buffers);
496 
497 	/*
498 	 * First thing we are allowed to do is to discard any remaining
499 	 * BJ_Reserved buffers.  Note, it is _not_ permissible to assume
500 	 * that there are no such buffers: if a large filesystem
501 	 * operation like a truncate needs to split itself over multiple
502 	 * transactions, then it may try to do a jbd2_journal_restart() while
503 	 * there are still BJ_Reserved buffers outstanding.  These must
504 	 * be released cleanly from the current transaction.
505 	 *
506 	 * In this case, the filesystem must still reserve write access
507 	 * again before modifying the buffer in the new transaction, but
508 	 * we do not require it to remember exactly which old buffers it
509 	 * has reserved.  This is consistent with the existing behaviour
510 	 * that multiple jbd2_journal_get_write_access() calls to the same
511 	 * buffer are perfectly permissible.
512 	 * We use journal->j_state_lock here to serialize processing of
513 	 * t_reserved_list with eviction of buffers from journal_unmap_buffer().
514 	 */
515 	while (commit_transaction->t_reserved_list) {
516 		jh = commit_transaction->t_reserved_list;
517 		JBUFFER_TRACE(jh, "reserved, unused: refile");
518 		/*
519 		 * A jbd2_journal_get_undo_access()+jbd2_journal_release_buffer() may
520 		 * leave undo-committed data.
521 		 */
522 		if (jh->b_committed_data) {
523 			struct buffer_head *bh = jh2bh(jh);
524 
525 			spin_lock(&jh->b_state_lock);
526 			jbd2_free(jh->b_committed_data, bh->b_size);
527 			jh->b_committed_data = NULL;
528 			spin_unlock(&jh->b_state_lock);
529 		}
530 		jbd2_journal_refile_buffer(journal, jh);
531 	}
532 
533 	write_unlock(&journal->j_state_lock);
534 	/*
535 	 * Now try to drop any written-back buffers from the journal's
536 	 * checkpoint lists.  We do this *before* commit because it potentially
537 	 * frees some memory
538 	 */
539 	spin_lock(&journal->j_list_lock);
540 	__jbd2_journal_clean_checkpoint_list(journal, false);
541 	spin_unlock(&journal->j_list_lock);
542 
543 	jbd_debug(3, "JBD2: commit phase 1\n");
544 
545 	/*
546 	 * Clear revoked flag to reflect there is no revoked buffers
547 	 * in the next transaction which is going to be started.
548 	 */
549 	jbd2_clear_buffer_revoked_flags(journal);
550 
551 	/*
552 	 * Switch to a new revoke table.
553 	 */
554 	jbd2_journal_switch_revoke_table(journal);
555 
556 	/*
557 	 * Reserved credits cannot be claimed anymore, free them
558 	 */
559 	atomic_sub(atomic_read(&journal->j_reserved_credits),
560 		   &commit_transaction->t_outstanding_credits);
561 
562 	write_lock(&journal->j_state_lock);
563 	trace_jbd2_commit_flushing(journal, commit_transaction);
564 	stats.run.rs_flushing = jiffies;
565 	stats.run.rs_locked = jbd2_time_diff(stats.run.rs_locked,
566 					     stats.run.rs_flushing);
567 
568 	commit_transaction->t_state = T_FLUSH;
569 	journal->j_committing_transaction = commit_transaction;
570 	journal->j_running_transaction = NULL;
571 	start_time = ktime_get();
572 	commit_transaction->t_log_start = journal->j_head;
573 	wake_up(&journal->j_wait_transaction_locked);
574 	write_unlock(&journal->j_state_lock);
575 
576 	jbd_debug(3, "JBD2: commit phase 2a\n");
577 
578 	/*
579 	 * Now start flushing things to disk, in the order they appear
580 	 * on the transaction lists.  Data blocks go first.
581 	 */
582 	err = journal_submit_data_buffers(journal, commit_transaction);
583 	if (err)
584 		jbd2_journal_abort(journal, err);
585 
586 	blk_start_plug(&plug);
587 	jbd2_journal_write_revoke_records(commit_transaction, &log_bufs);
588 
589 	jbd_debug(3, "JBD2: commit phase 2b\n");
590 
591 	/*
592 	 * Way to go: we have now written out all of the data for a
593 	 * transaction!  Now comes the tricky part: we need to write out
594 	 * metadata.  Loop over the transaction's entire buffer list:
595 	 */
596 	write_lock(&journal->j_state_lock);
597 	commit_transaction->t_state = T_COMMIT;
598 	write_unlock(&journal->j_state_lock);
599 
600 	trace_jbd2_commit_logging(journal, commit_transaction);
601 	stats.run.rs_logging = jiffies;
602 	stats.run.rs_flushing = jbd2_time_diff(stats.run.rs_flushing,
603 					       stats.run.rs_logging);
604 	stats.run.rs_blocks = commit_transaction->t_nr_buffers;
605 	stats.run.rs_blocks_logged = 0;
606 
607 	J_ASSERT(commit_transaction->t_nr_buffers <=
608 		 atomic_read(&commit_transaction->t_outstanding_credits));
609 
610 	err = 0;
611 	bufs = 0;
612 	descriptor = NULL;
613 	while (commit_transaction->t_buffers) {
614 
615 		/* Find the next buffer to be journaled... */
616 
617 		jh = commit_transaction->t_buffers;
618 
619 		/* If we're in abort mode, we just un-journal the buffer and
620 		   release it. */
621 
622 		if (is_journal_aborted(journal)) {
623 			clear_buffer_jbddirty(jh2bh(jh));
624 			JBUFFER_TRACE(jh, "journal is aborting: refile");
625 			jbd2_buffer_abort_trigger(jh,
626 						  jh->b_frozen_data ?
627 						  jh->b_frozen_triggers :
628 						  jh->b_triggers);
629 			jbd2_journal_refile_buffer(journal, jh);
630 			/* If that was the last one, we need to clean up
631 			 * any descriptor buffers which may have been
632 			 * already allocated, even if we are now
633 			 * aborting. */
634 			if (!commit_transaction->t_buffers)
635 				goto start_journal_io;
636 			continue;
637 		}
638 
639 		/* Make sure we have a descriptor block in which to
640 		   record the metadata buffer. */
641 
642 		if (!descriptor) {
643 			J_ASSERT (bufs == 0);
644 
645 			jbd_debug(4, "JBD2: get descriptor\n");
646 
647 			descriptor = jbd2_journal_get_descriptor_buffer(
648 							commit_transaction,
649 							JBD2_DESCRIPTOR_BLOCK);
650 			if (!descriptor) {
651 				jbd2_journal_abort(journal, -EIO);
652 				continue;
653 			}
654 
655 			jbd_debug(4, "JBD2: got buffer %llu (%p)\n",
656 				(unsigned long long)descriptor->b_blocknr,
657 				descriptor->b_data);
658 			tagp = &descriptor->b_data[sizeof(journal_header_t)];
659 			space_left = descriptor->b_size -
660 						sizeof(journal_header_t);
661 			first_tag = 1;
662 			set_buffer_jwrite(descriptor);
663 			set_buffer_dirty(descriptor);
664 			wbuf[bufs++] = descriptor;
665 
666 			/* Record it so that we can wait for IO
667                            completion later */
668 			BUFFER_TRACE(descriptor, "ph3: file as descriptor");
669 			jbd2_file_log_bh(&log_bufs, descriptor);
670 		}
671 
672 		/* Where is the buffer to be written? */
673 
674 		err = jbd2_journal_next_log_block(journal, &blocknr);
675 		/* If the block mapping failed, just abandon the buffer
676 		   and repeat this loop: we'll fall into the
677 		   refile-on-abort condition above. */
678 		if (err) {
679 			jbd2_journal_abort(journal, err);
680 			continue;
681 		}
682 
683 		/*
684 		 * start_this_handle() uses t_outstanding_credits to determine
685 		 * the free space in the log.
686 		 */
687 		atomic_dec(&commit_transaction->t_outstanding_credits);
688 
689 		/* Bump b_count to prevent truncate from stumbling over
690                    the shadowed buffer!  @@@ This can go if we ever get
691                    rid of the shadow pairing of buffers. */
692 		atomic_inc(&jh2bh(jh)->b_count);
693 
694 		/*
695 		 * Make a temporary IO buffer with which to write it out
696 		 * (this will requeue the metadata buffer to BJ_Shadow).
697 		 */
698 		set_bit(BH_JWrite, &jh2bh(jh)->b_state);
699 		JBUFFER_TRACE(jh, "ph3: write metadata");
700 		flags = jbd2_journal_write_metadata_buffer(commit_transaction,
701 						jh, &wbuf[bufs], blocknr);
702 		if (flags < 0) {
703 			jbd2_journal_abort(journal, flags);
704 			continue;
705 		}
706 		jbd2_file_log_bh(&io_bufs, wbuf[bufs]);
707 
708 		/* Record the new block's tag in the current descriptor
709                    buffer */
710 
711 		tag_flag = 0;
712 		if (flags & 1)
713 			tag_flag |= JBD2_FLAG_ESCAPE;
714 		if (!first_tag)
715 			tag_flag |= JBD2_FLAG_SAME_UUID;
716 
717 		tag = (journal_block_tag_t *) tagp;
718 		write_tag_block(journal, tag, jh2bh(jh)->b_blocknr);
719 		tag->t_flags = cpu_to_be16(tag_flag);
720 		jbd2_block_tag_csum_set(journal, tag, wbuf[bufs],
721 					commit_transaction->t_tid);
722 		tagp += tag_bytes;
723 		space_left -= tag_bytes;
724 		bufs++;
725 
726 		if (first_tag) {
727 			memcpy (tagp, journal->j_uuid, 16);
728 			tagp += 16;
729 			space_left -= 16;
730 			first_tag = 0;
731 		}
732 
733 		/* If there's no more to do, or if the descriptor is full,
734 		   let the IO rip! */
735 
736 		if (bufs == journal->j_wbufsize ||
737 		    commit_transaction->t_buffers == NULL ||
738 		    space_left < tag_bytes + 16 + csum_size) {
739 
740 			jbd_debug(4, "JBD2: Submit %d IOs\n", bufs);
741 
742 			/* Write an end-of-descriptor marker before
743                            submitting the IOs.  "tag" still points to
744                            the last tag we set up. */
745 
746 			tag->t_flags |= cpu_to_be16(JBD2_FLAG_LAST_TAG);
747 start_journal_io:
748 			if (descriptor)
749 				jbd2_descriptor_block_csum_set(journal,
750 							descriptor);
751 
752 			for (i = 0; i < bufs; i++) {
753 				struct buffer_head *bh = wbuf[i];
754 				/*
755 				 * Compute checksum.
756 				 */
757 				if (jbd2_has_feature_checksum(journal)) {
758 					crc32_sum =
759 					    jbd2_checksum_data(crc32_sum, bh);
760 				}
761 
762 				lock_buffer(bh);
763 				clear_buffer_dirty(bh);
764 				set_buffer_uptodate(bh);
765 				bh->b_end_io = journal_end_buffer_io_sync;
766 				submit_bh(REQ_OP_WRITE, REQ_SYNC, bh);
767 			}
768 			cond_resched();
769 
770 			/* Force a new descriptor to be generated next
771                            time round the loop. */
772 			descriptor = NULL;
773 			bufs = 0;
774 		}
775 	}
776 
777 	err = journal_finish_inode_data_buffers(journal, commit_transaction);
778 	if (err) {
779 		printk(KERN_WARNING
780 			"JBD2: Detected IO errors while flushing file data "
781 		       "on %s\n", journal->j_devname);
782 		if (journal->j_flags & JBD2_ABORT_ON_SYNCDATA_ERR)
783 			jbd2_journal_abort(journal, err);
784 		err = 0;
785 	}
786 
787 	/*
788 	 * Get current oldest transaction in the log before we issue flush
789 	 * to the filesystem device. After the flush we can be sure that
790 	 * blocks of all older transactions are checkpointed to persistent
791 	 * storage and we will be safe to update journal start in the
792 	 * superblock with the numbers we get here.
793 	 */
794 	update_tail =
795 		jbd2_journal_get_log_tail(journal, &first_tid, &first_block);
796 
797 	write_lock(&journal->j_state_lock);
798 	if (update_tail) {
799 		long freed = first_block - journal->j_tail;
800 
801 		if (first_block < journal->j_tail)
802 			freed += journal->j_last - journal->j_first;
803 		/* Update tail only if we free significant amount of space */
804 		if (freed < jbd2_journal_get_max_txn_bufs(journal))
805 			update_tail = 0;
806 	}
807 	J_ASSERT(commit_transaction->t_state == T_COMMIT);
808 	commit_transaction->t_state = T_COMMIT_DFLUSH;
809 	write_unlock(&journal->j_state_lock);
810 
811 	/*
812 	 * If the journal is not located on the file system device,
813 	 * then we must flush the file system device before we issue
814 	 * the commit record
815 	 */
816 	if (commit_transaction->t_need_data_flush &&
817 	    (journal->j_fs_dev != journal->j_dev) &&
818 	    (journal->j_flags & JBD2_BARRIER))
819 		blkdev_issue_flush(journal->j_fs_dev);
820 
821 	/* Done it all: now write the commit record asynchronously. */
822 	if (jbd2_has_feature_async_commit(journal)) {
823 		err = journal_submit_commit_record(journal, commit_transaction,
824 						 &cbh, crc32_sum);
825 		if (err)
826 			jbd2_journal_abort(journal, err);
827 	}
828 
829 	blk_finish_plug(&plug);
830 
831 	/* Lo and behold: we have just managed to send a transaction to
832            the log.  Before we can commit it, wait for the IO so far to
833            complete.  Control buffers being written are on the
834            transaction's t_log_list queue, and metadata buffers are on
835            the io_bufs list.
836 
837 	   Wait for the buffers in reverse order.  That way we are
838 	   less likely to be woken up until all IOs have completed, and
839 	   so we incur less scheduling load.
840 	*/
841 
842 	jbd_debug(3, "JBD2: commit phase 3\n");
843 
844 	while (!list_empty(&io_bufs)) {
845 		struct buffer_head *bh = list_entry(io_bufs.prev,
846 						    struct buffer_head,
847 						    b_assoc_buffers);
848 
849 		wait_on_buffer(bh);
850 		cond_resched();
851 
852 		if (unlikely(!buffer_uptodate(bh)))
853 			err = -EIO;
854 		jbd2_unfile_log_bh(bh);
855 		stats.run.rs_blocks_logged++;
856 
857 		/*
858 		 * The list contains temporary buffer heads created by
859 		 * jbd2_journal_write_metadata_buffer().
860 		 */
861 		BUFFER_TRACE(bh, "dumping temporary bh");
862 		__brelse(bh);
863 		J_ASSERT_BH(bh, atomic_read(&bh->b_count) == 0);
864 		free_buffer_head(bh);
865 
866 		/* We also have to refile the corresponding shadowed buffer */
867 		jh = commit_transaction->t_shadow_list->b_tprev;
868 		bh = jh2bh(jh);
869 		clear_buffer_jwrite(bh);
870 		J_ASSERT_BH(bh, buffer_jbddirty(bh));
871 		J_ASSERT_BH(bh, !buffer_shadow(bh));
872 
873 		/* The metadata is now released for reuse, but we need
874                    to remember it against this transaction so that when
875                    we finally commit, we can do any checkpointing
876                    required. */
877 		JBUFFER_TRACE(jh, "file as BJ_Forget");
878 		jbd2_journal_file_buffer(jh, commit_transaction, BJ_Forget);
879 		JBUFFER_TRACE(jh, "brelse shadowed buffer");
880 		__brelse(bh);
881 	}
882 
883 	J_ASSERT (commit_transaction->t_shadow_list == NULL);
884 
885 	jbd_debug(3, "JBD2: commit phase 4\n");
886 
887 	/* Here we wait for the revoke record and descriptor record buffers */
888 	while (!list_empty(&log_bufs)) {
889 		struct buffer_head *bh;
890 
891 		bh = list_entry(log_bufs.prev, struct buffer_head, b_assoc_buffers);
892 		wait_on_buffer(bh);
893 		cond_resched();
894 
895 		if (unlikely(!buffer_uptodate(bh)))
896 			err = -EIO;
897 
898 		BUFFER_TRACE(bh, "ph5: control buffer writeout done: unfile");
899 		clear_buffer_jwrite(bh);
900 		jbd2_unfile_log_bh(bh);
901 		stats.run.rs_blocks_logged++;
902 		__brelse(bh);		/* One for getblk */
903 		/* AKPM: bforget here */
904 	}
905 
906 	if (err)
907 		jbd2_journal_abort(journal, err);
908 
909 	jbd_debug(3, "JBD2: commit phase 5\n");
910 	write_lock(&journal->j_state_lock);
911 	J_ASSERT(commit_transaction->t_state == T_COMMIT_DFLUSH);
912 	commit_transaction->t_state = T_COMMIT_JFLUSH;
913 	write_unlock(&journal->j_state_lock);
914 
915 	if (!jbd2_has_feature_async_commit(journal)) {
916 		err = journal_submit_commit_record(journal, commit_transaction,
917 						&cbh, crc32_sum);
918 		if (err)
919 			jbd2_journal_abort(journal, err);
920 	}
921 	if (cbh)
922 		err = journal_wait_on_commit_record(journal, cbh);
923 	stats.run.rs_blocks_logged++;
924 	if (jbd2_has_feature_async_commit(journal) &&
925 	    journal->j_flags & JBD2_BARRIER) {
926 		blkdev_issue_flush(journal->j_dev);
927 	}
928 
929 	if (err)
930 		jbd2_journal_abort(journal, err);
931 
932 	WARN_ON_ONCE(
933 		atomic_read(&commit_transaction->t_outstanding_credits) < 0);
934 
935 	/*
936 	 * Now disk caches for filesystem device are flushed so we are safe to
937 	 * erase checkpointed transactions from the log by updating journal
938 	 * superblock.
939 	 */
940 	if (update_tail)
941 		jbd2_update_log_tail(journal, first_tid, first_block);
942 
943 	/* End of a transaction!  Finally, we can do checkpoint
944            processing: any buffers committed as a result of this
945            transaction can be removed from any checkpoint list it was on
946            before. */
947 
948 	jbd_debug(3, "JBD2: commit phase 6\n");
949 
950 	J_ASSERT(list_empty(&commit_transaction->t_inode_list));
951 	J_ASSERT(commit_transaction->t_buffers == NULL);
952 	J_ASSERT(commit_transaction->t_checkpoint_list == NULL);
953 	J_ASSERT(commit_transaction->t_shadow_list == NULL);
954 
955 restart_loop:
956 	/*
957 	 * As there are other places (journal_unmap_buffer()) adding buffers
958 	 * to this list we have to be careful and hold the j_list_lock.
959 	 */
960 	spin_lock(&journal->j_list_lock);
961 	while (commit_transaction->t_forget) {
962 		transaction_t *cp_transaction;
963 		struct buffer_head *bh;
964 		int try_to_free = 0;
965 		bool drop_ref;
966 
967 		jh = commit_transaction->t_forget;
968 		spin_unlock(&journal->j_list_lock);
969 		bh = jh2bh(jh);
970 		/*
971 		 * Get a reference so that bh cannot be freed before we are
972 		 * done with it.
973 		 */
974 		get_bh(bh);
975 		spin_lock(&jh->b_state_lock);
976 		J_ASSERT_JH(jh,	jh->b_transaction == commit_transaction);
977 
978 		/*
979 		 * If there is undo-protected committed data against
980 		 * this buffer, then we can remove it now.  If it is a
981 		 * buffer needing such protection, the old frozen_data
982 		 * field now points to a committed version of the
983 		 * buffer, so rotate that field to the new committed
984 		 * data.
985 		 *
986 		 * Otherwise, we can just throw away the frozen data now.
987 		 *
988 		 * We also know that the frozen data has already fired
989 		 * its triggers if they exist, so we can clear that too.
990 		 */
991 		if (jh->b_committed_data) {
992 			jbd2_free(jh->b_committed_data, bh->b_size);
993 			jh->b_committed_data = NULL;
994 			if (jh->b_frozen_data) {
995 				jh->b_committed_data = jh->b_frozen_data;
996 				jh->b_frozen_data = NULL;
997 				jh->b_frozen_triggers = NULL;
998 			}
999 		} else if (jh->b_frozen_data) {
1000 			jbd2_free(jh->b_frozen_data, bh->b_size);
1001 			jh->b_frozen_data = NULL;
1002 			jh->b_frozen_triggers = NULL;
1003 		}
1004 
1005 		spin_lock(&journal->j_list_lock);
1006 		cp_transaction = jh->b_cp_transaction;
1007 		if (cp_transaction) {
1008 			JBUFFER_TRACE(jh, "remove from old cp transaction");
1009 			cp_transaction->t_chp_stats.cs_dropped++;
1010 			__jbd2_journal_remove_checkpoint(jh);
1011 		}
1012 
1013 		/* Only re-checkpoint the buffer_head if it is marked
1014 		 * dirty.  If the buffer was added to the BJ_Forget list
1015 		 * by jbd2_journal_forget, it may no longer be dirty and
1016 		 * there's no point in keeping a checkpoint record for
1017 		 * it. */
1018 
1019 		/*
1020 		 * A buffer which has been freed while still being journaled
1021 		 * by a previous transaction, refile the buffer to BJ_Forget of
1022 		 * the running transaction. If the just committed transaction
1023 		 * contains "add to orphan" operation, we can completely
1024 		 * invalidate the buffer now. We are rather through in that
1025 		 * since the buffer may be still accessible when blocksize <
1026 		 * pagesize and it is attached to the last partial page.
1027 		 */
1028 		if (buffer_freed(bh) && !jh->b_next_transaction) {
1029 			struct address_space *mapping;
1030 
1031 			clear_buffer_freed(bh);
1032 			clear_buffer_jbddirty(bh);
1033 
1034 			/*
1035 			 * Block device buffers need to stay mapped all the
1036 			 * time, so it is enough to clear buffer_jbddirty and
1037 			 * buffer_freed bits. For the file mapping buffers (i.e.
1038 			 * journalled data) we need to unmap buffer and clear
1039 			 * more bits. We also need to be careful about the check
1040 			 * because the data page mapping can get cleared under
1041 			 * our hands. Note that if mapping == NULL, we don't
1042 			 * need to make buffer unmapped because the page is
1043 			 * already detached from the mapping and buffers cannot
1044 			 * get reused.
1045 			 */
1046 			mapping = READ_ONCE(bh->b_page->mapping);
1047 			if (mapping && !sb_is_blkdev_sb(mapping->host->i_sb)) {
1048 				clear_buffer_mapped(bh);
1049 				clear_buffer_new(bh);
1050 				clear_buffer_req(bh);
1051 				bh->b_bdev = NULL;
1052 			}
1053 		}
1054 
1055 		if (buffer_jbddirty(bh)) {
1056 			JBUFFER_TRACE(jh, "add to new checkpointing trans");
1057 			__jbd2_journal_insert_checkpoint(jh, commit_transaction);
1058 			if (is_journal_aborted(journal))
1059 				clear_buffer_jbddirty(bh);
1060 		} else {
1061 			J_ASSERT_BH(bh, !buffer_dirty(bh));
1062 			/*
1063 			 * The buffer on BJ_Forget list and not jbddirty means
1064 			 * it has been freed by this transaction and hence it
1065 			 * could not have been reallocated until this
1066 			 * transaction has committed. *BUT* it could be
1067 			 * reallocated once we have written all the data to
1068 			 * disk and before we process the buffer on BJ_Forget
1069 			 * list.
1070 			 */
1071 			if (!jh->b_next_transaction)
1072 				try_to_free = 1;
1073 		}
1074 		JBUFFER_TRACE(jh, "refile or unfile buffer");
1075 		drop_ref = __jbd2_journal_refile_buffer(jh);
1076 		spin_unlock(&jh->b_state_lock);
1077 		if (drop_ref)
1078 			jbd2_journal_put_journal_head(jh);
1079 		if (try_to_free)
1080 			release_buffer_page(bh);	/* Drops bh reference */
1081 		else
1082 			__brelse(bh);
1083 		cond_resched_lock(&journal->j_list_lock);
1084 	}
1085 	spin_unlock(&journal->j_list_lock);
1086 	/*
1087 	 * This is a bit sleazy.  We use j_list_lock to protect transition
1088 	 * of a transaction into T_FINISHED state and calling
1089 	 * __jbd2_journal_drop_transaction(). Otherwise we could race with
1090 	 * other checkpointing code processing the transaction...
1091 	 */
1092 	write_lock(&journal->j_state_lock);
1093 	spin_lock(&journal->j_list_lock);
1094 	/*
1095 	 * Now recheck if some buffers did not get attached to the transaction
1096 	 * while the lock was dropped...
1097 	 */
1098 	if (commit_transaction->t_forget) {
1099 		spin_unlock(&journal->j_list_lock);
1100 		write_unlock(&journal->j_state_lock);
1101 		goto restart_loop;
1102 	}
1103 
1104 	/* Add the transaction to the checkpoint list
1105 	 * __journal_remove_checkpoint() can not destroy transaction
1106 	 * under us because it is not marked as T_FINISHED yet */
1107 	if (journal->j_checkpoint_transactions == NULL) {
1108 		journal->j_checkpoint_transactions = commit_transaction;
1109 		commit_transaction->t_cpnext = commit_transaction;
1110 		commit_transaction->t_cpprev = commit_transaction;
1111 	} else {
1112 		commit_transaction->t_cpnext =
1113 			journal->j_checkpoint_transactions;
1114 		commit_transaction->t_cpprev =
1115 			commit_transaction->t_cpnext->t_cpprev;
1116 		commit_transaction->t_cpnext->t_cpprev =
1117 			commit_transaction;
1118 		commit_transaction->t_cpprev->t_cpnext =
1119 				commit_transaction;
1120 	}
1121 	spin_unlock(&journal->j_list_lock);
1122 
1123 	/* Done with this transaction! */
1124 
1125 	jbd_debug(3, "JBD2: commit phase 7\n");
1126 
1127 	J_ASSERT(commit_transaction->t_state == T_COMMIT_JFLUSH);
1128 
1129 	commit_transaction->t_start = jiffies;
1130 	stats.run.rs_logging = jbd2_time_diff(stats.run.rs_logging,
1131 					      commit_transaction->t_start);
1132 
1133 	/*
1134 	 * File the transaction statistics
1135 	 */
1136 	stats.ts_tid = commit_transaction->t_tid;
1137 	stats.run.rs_handle_count =
1138 		atomic_read(&commit_transaction->t_handle_count);
1139 	trace_jbd2_run_stats(journal->j_fs_dev->bd_dev,
1140 			     commit_transaction->t_tid, &stats.run);
1141 	stats.ts_requested = (commit_transaction->t_requested) ? 1 : 0;
1142 
1143 	commit_transaction->t_state = T_COMMIT_CALLBACK;
1144 	J_ASSERT(commit_transaction == journal->j_committing_transaction);
1145 	journal->j_commit_sequence = commit_transaction->t_tid;
1146 	journal->j_committing_transaction = NULL;
1147 	commit_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
1148 
1149 	/*
1150 	 * weight the commit time higher than the average time so we don't
1151 	 * react too strongly to vast changes in the commit time
1152 	 */
1153 	if (likely(journal->j_average_commit_time))
1154 		journal->j_average_commit_time = (commit_time +
1155 				journal->j_average_commit_time*3) / 4;
1156 	else
1157 		journal->j_average_commit_time = commit_time;
1158 
1159 	write_unlock(&journal->j_state_lock);
1160 
1161 	if (journal->j_commit_callback)
1162 		journal->j_commit_callback(journal, commit_transaction);
1163 	if (journal->j_fc_cleanup_callback)
1164 		journal->j_fc_cleanup_callback(journal, 1, commit_transaction->t_tid);
1165 
1166 	trace_jbd2_end_commit(journal, commit_transaction);
1167 	jbd_debug(1, "JBD2: commit %d complete, head %d\n",
1168 		  journal->j_commit_sequence, journal->j_tail_sequence);
1169 
1170 	write_lock(&journal->j_state_lock);
1171 	journal->j_flags &= ~JBD2_FULL_COMMIT_ONGOING;
1172 	journal->j_flags &= ~JBD2_FAST_COMMIT_ONGOING;
1173 	spin_lock(&journal->j_list_lock);
1174 	commit_transaction->t_state = T_FINISHED;
1175 	/* Check if the transaction can be dropped now that we are finished */
1176 	if (commit_transaction->t_checkpoint_list == NULL &&
1177 	    commit_transaction->t_checkpoint_io_list == NULL) {
1178 		__jbd2_journal_drop_transaction(journal, commit_transaction);
1179 		jbd2_journal_free_transaction(commit_transaction);
1180 	}
1181 	spin_unlock(&journal->j_list_lock);
1182 	write_unlock(&journal->j_state_lock);
1183 	wake_up(&journal->j_wait_done_commit);
1184 	wake_up(&journal->j_fc_wait);
1185 
1186 	/*
1187 	 * Calculate overall stats
1188 	 */
1189 	spin_lock(&journal->j_history_lock);
1190 	journal->j_stats.ts_tid++;
1191 	journal->j_stats.ts_requested += stats.ts_requested;
1192 	journal->j_stats.run.rs_wait += stats.run.rs_wait;
1193 	journal->j_stats.run.rs_request_delay += stats.run.rs_request_delay;
1194 	journal->j_stats.run.rs_running += stats.run.rs_running;
1195 	journal->j_stats.run.rs_locked += stats.run.rs_locked;
1196 	journal->j_stats.run.rs_flushing += stats.run.rs_flushing;
1197 	journal->j_stats.run.rs_logging += stats.run.rs_logging;
1198 	journal->j_stats.run.rs_handle_count += stats.run.rs_handle_count;
1199 	journal->j_stats.run.rs_blocks += stats.run.rs_blocks;
1200 	journal->j_stats.run.rs_blocks_logged += stats.run.rs_blocks_logged;
1201 	spin_unlock(&journal->j_history_lock);
1202 }
1203