xref: /linux/fs/iomap/direct-io.c (revision faabed295cccc2aba2b67f2e7b309f2892d55004)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010 Red Hat, Inc.
4  * Copyright (c) 2016-2018 Christoph Hellwig.
5  */
6 #include <linux/module.h>
7 #include <linux/compiler.h>
8 #include <linux/fs.h>
9 #include <linux/iomap.h>
10 #include <linux/backing-dev.h>
11 #include <linux/uio.h>
12 #include <linux/task_io_accounting_ops.h>
13 
14 #include "../internal.h"
15 
16 /*
17  * Private flags for iomap_dio, must not overlap with the public ones in
18  * iomap.h:
19  */
20 #define IOMAP_DIO_WRITE_FUA	(1 << 28)
21 #define IOMAP_DIO_NEED_SYNC	(1 << 29)
22 #define IOMAP_DIO_WRITE		(1 << 30)
23 #define IOMAP_DIO_DIRTY		(1 << 31)
24 
25 struct iomap_dio {
26 	struct kiocb		*iocb;
27 	const struct iomap_dio_ops *dops;
28 	loff_t			i_size;
29 	loff_t			size;
30 	atomic_t		ref;
31 	unsigned		flags;
32 	int			error;
33 	bool			wait_for_completion;
34 
35 	union {
36 		/* used during submission and for synchronous completion: */
37 		struct {
38 			struct iov_iter		*iter;
39 			struct task_struct	*waiter;
40 			struct request_queue	*last_queue;
41 			blk_qc_t		cookie;
42 		} submit;
43 
44 		/* used for aio completion: */
45 		struct {
46 			struct work_struct	work;
47 		} aio;
48 	};
49 };
50 
51 int iomap_dio_iopoll(struct kiocb *kiocb, bool spin)
52 {
53 	struct request_queue *q = READ_ONCE(kiocb->private);
54 
55 	if (!q)
56 		return 0;
57 	return blk_poll(q, READ_ONCE(kiocb->ki_cookie), spin);
58 }
59 EXPORT_SYMBOL_GPL(iomap_dio_iopoll);
60 
61 static void iomap_dio_submit_bio(struct iomap_dio *dio, struct iomap *iomap,
62 		struct bio *bio, loff_t pos)
63 {
64 	atomic_inc(&dio->ref);
65 
66 	if (dio->iocb->ki_flags & IOCB_HIPRI)
67 		bio_set_polled(bio, dio->iocb);
68 
69 	dio->submit.last_queue = bdev_get_queue(iomap->bdev);
70 	if (dio->dops && dio->dops->submit_io)
71 		dio->submit.cookie = dio->dops->submit_io(
72 				file_inode(dio->iocb->ki_filp),
73 				iomap, bio, pos);
74 	else
75 		dio->submit.cookie = submit_bio(bio);
76 }
77 
78 static ssize_t iomap_dio_complete(struct iomap_dio *dio)
79 {
80 	const struct iomap_dio_ops *dops = dio->dops;
81 	struct kiocb *iocb = dio->iocb;
82 	struct inode *inode = file_inode(iocb->ki_filp);
83 	loff_t offset = iocb->ki_pos;
84 	ssize_t ret = dio->error;
85 
86 	if (dops && dops->end_io)
87 		ret = dops->end_io(iocb, dio->size, ret, dio->flags);
88 
89 	if (likely(!ret)) {
90 		ret = dio->size;
91 		/* check for short read */
92 		if (offset + ret > dio->i_size &&
93 		    !(dio->flags & IOMAP_DIO_WRITE))
94 			ret = dio->i_size - offset;
95 		iocb->ki_pos += ret;
96 	}
97 
98 	/*
99 	 * Try again to invalidate clean pages which might have been cached by
100 	 * non-direct readahead, or faulted in by get_user_pages() if the source
101 	 * of the write was an mmap'ed region of the file we're writing.  Either
102 	 * one is a pretty crazy thing to do, so we don't support it 100%.  If
103 	 * this invalidation fails, tough, the write still worked...
104 	 *
105 	 * And this page cache invalidation has to be after ->end_io(), as some
106 	 * filesystems convert unwritten extents to real allocations in
107 	 * ->end_io() when necessary, otherwise a racing buffer read would cache
108 	 * zeros from unwritten extents.
109 	 */
110 	if (!dio->error &&
111 	    (dio->flags & IOMAP_DIO_WRITE) && inode->i_mapping->nrpages) {
112 		int err;
113 		err = invalidate_inode_pages2_range(inode->i_mapping,
114 				offset >> PAGE_SHIFT,
115 				(offset + dio->size - 1) >> PAGE_SHIFT);
116 		if (err)
117 			dio_warn_stale_pagecache(iocb->ki_filp);
118 	}
119 
120 	/*
121 	 * If this is a DSYNC write, make sure we push it to stable storage now
122 	 * that we've written data.
123 	 */
124 	if (ret > 0 && (dio->flags & IOMAP_DIO_NEED_SYNC))
125 		ret = generic_write_sync(iocb, ret);
126 
127 	inode_dio_end(file_inode(iocb->ki_filp));
128 	kfree(dio);
129 
130 	return ret;
131 }
132 
133 static void iomap_dio_complete_work(struct work_struct *work)
134 {
135 	struct iomap_dio *dio = container_of(work, struct iomap_dio, aio.work);
136 	struct kiocb *iocb = dio->iocb;
137 
138 	iocb->ki_complete(iocb, iomap_dio_complete(dio), 0);
139 }
140 
141 /*
142  * Set an error in the dio if none is set yet.  We have to use cmpxchg
143  * as the submission context and the completion context(s) can race to
144  * update the error.
145  */
146 static inline void iomap_dio_set_error(struct iomap_dio *dio, int ret)
147 {
148 	cmpxchg(&dio->error, 0, ret);
149 }
150 
151 static void iomap_dio_bio_end_io(struct bio *bio)
152 {
153 	struct iomap_dio *dio = bio->bi_private;
154 	bool should_dirty = (dio->flags & IOMAP_DIO_DIRTY);
155 
156 	if (bio->bi_status)
157 		iomap_dio_set_error(dio, blk_status_to_errno(bio->bi_status));
158 
159 	if (atomic_dec_and_test(&dio->ref)) {
160 		if (dio->wait_for_completion) {
161 			struct task_struct *waiter = dio->submit.waiter;
162 			WRITE_ONCE(dio->submit.waiter, NULL);
163 			blk_wake_io_task(waiter);
164 		} else if (dio->flags & IOMAP_DIO_WRITE) {
165 			struct inode *inode = file_inode(dio->iocb->ki_filp);
166 
167 			INIT_WORK(&dio->aio.work, iomap_dio_complete_work);
168 			queue_work(inode->i_sb->s_dio_done_wq, &dio->aio.work);
169 		} else {
170 			iomap_dio_complete_work(&dio->aio.work);
171 		}
172 	}
173 
174 	if (should_dirty) {
175 		bio_check_pages_dirty(bio);
176 	} else {
177 		bio_release_pages(bio, false);
178 		bio_put(bio);
179 	}
180 }
181 
182 static void
183 iomap_dio_zero(struct iomap_dio *dio, struct iomap *iomap, loff_t pos,
184 		unsigned len)
185 {
186 	struct page *page = ZERO_PAGE(0);
187 	int flags = REQ_SYNC | REQ_IDLE;
188 	struct bio *bio;
189 
190 	bio = bio_alloc(GFP_KERNEL, 1);
191 	bio_set_dev(bio, iomap->bdev);
192 	bio->bi_iter.bi_sector = iomap_sector(iomap, pos);
193 	bio->bi_private = dio;
194 	bio->bi_end_io = iomap_dio_bio_end_io;
195 
196 	get_page(page);
197 	__bio_add_page(bio, page, len, 0);
198 	bio_set_op_attrs(bio, REQ_OP_WRITE, flags);
199 	iomap_dio_submit_bio(dio, iomap, bio, pos);
200 }
201 
202 static loff_t
203 iomap_dio_bio_actor(struct inode *inode, loff_t pos, loff_t length,
204 		struct iomap_dio *dio, struct iomap *iomap)
205 {
206 	unsigned int blkbits = blksize_bits(bdev_logical_block_size(iomap->bdev));
207 	unsigned int fs_block_size = i_blocksize(inode), pad;
208 	unsigned int align = iov_iter_alignment(dio->submit.iter);
209 	struct bio *bio;
210 	bool need_zeroout = false;
211 	bool use_fua = false;
212 	int nr_pages, ret = 0;
213 	size_t copied = 0;
214 	size_t orig_count;
215 
216 	if ((pos | length | align) & ((1 << blkbits) - 1))
217 		return -EINVAL;
218 
219 	if (iomap->type == IOMAP_UNWRITTEN) {
220 		dio->flags |= IOMAP_DIO_UNWRITTEN;
221 		need_zeroout = true;
222 	}
223 
224 	if (iomap->flags & IOMAP_F_SHARED)
225 		dio->flags |= IOMAP_DIO_COW;
226 
227 	if (iomap->flags & IOMAP_F_NEW) {
228 		need_zeroout = true;
229 	} else if (iomap->type == IOMAP_MAPPED) {
230 		/*
231 		 * Use a FUA write if we need datasync semantics, this is a pure
232 		 * data IO that doesn't require any metadata updates (including
233 		 * after IO completion such as unwritten extent conversion) and
234 		 * the underlying device supports FUA. This allows us to avoid
235 		 * cache flushes on IO completion.
236 		 */
237 		if (!(iomap->flags & (IOMAP_F_SHARED|IOMAP_F_DIRTY)) &&
238 		    (dio->flags & IOMAP_DIO_WRITE_FUA) &&
239 		    blk_queue_fua(bdev_get_queue(iomap->bdev)))
240 			use_fua = true;
241 	}
242 
243 	/*
244 	 * Save the original count and trim the iter to just the extent we
245 	 * are operating on right now.  The iter will be re-expanded once
246 	 * we are done.
247 	 */
248 	orig_count = iov_iter_count(dio->submit.iter);
249 	iov_iter_truncate(dio->submit.iter, length);
250 
251 	nr_pages = iov_iter_npages(dio->submit.iter, BIO_MAX_PAGES);
252 	if (nr_pages <= 0) {
253 		ret = nr_pages;
254 		goto out;
255 	}
256 
257 	if (need_zeroout) {
258 		/* zero out from the start of the block to the write offset */
259 		pad = pos & (fs_block_size - 1);
260 		if (pad)
261 			iomap_dio_zero(dio, iomap, pos - pad, pad);
262 	}
263 
264 	do {
265 		size_t n;
266 		if (dio->error) {
267 			iov_iter_revert(dio->submit.iter, copied);
268 			copied = ret = 0;
269 			goto out;
270 		}
271 
272 		bio = bio_alloc(GFP_KERNEL, nr_pages);
273 		bio_set_dev(bio, iomap->bdev);
274 		bio->bi_iter.bi_sector = iomap_sector(iomap, pos);
275 		bio->bi_write_hint = dio->iocb->ki_hint;
276 		bio->bi_ioprio = dio->iocb->ki_ioprio;
277 		bio->bi_private = dio;
278 		bio->bi_end_io = iomap_dio_bio_end_io;
279 
280 		ret = bio_iov_iter_get_pages(bio, dio->submit.iter);
281 		if (unlikely(ret)) {
282 			/*
283 			 * We have to stop part way through an IO. We must fall
284 			 * through to the sub-block tail zeroing here, otherwise
285 			 * this short IO may expose stale data in the tail of
286 			 * the block we haven't written data to.
287 			 */
288 			bio_put(bio);
289 			goto zero_tail;
290 		}
291 
292 		n = bio->bi_iter.bi_size;
293 		if (dio->flags & IOMAP_DIO_WRITE) {
294 			bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
295 			if (use_fua)
296 				bio->bi_opf |= REQ_FUA;
297 			else
298 				dio->flags &= ~IOMAP_DIO_WRITE_FUA;
299 			task_io_account_write(n);
300 		} else {
301 			bio->bi_opf = REQ_OP_READ;
302 			if (dio->flags & IOMAP_DIO_DIRTY)
303 				bio_set_pages_dirty(bio);
304 		}
305 
306 		dio->size += n;
307 		copied += n;
308 
309 		nr_pages = iov_iter_npages(dio->submit.iter, BIO_MAX_PAGES);
310 		iomap_dio_submit_bio(dio, iomap, bio, pos);
311 		pos += n;
312 	} while (nr_pages);
313 
314 	/*
315 	 * We need to zeroout the tail of a sub-block write if the extent type
316 	 * requires zeroing or the write extends beyond EOF. If we don't zero
317 	 * the block tail in the latter case, we can expose stale data via mmap
318 	 * reads of the EOF block.
319 	 */
320 zero_tail:
321 	if (need_zeroout ||
322 	    ((dio->flags & IOMAP_DIO_WRITE) && pos >= i_size_read(inode))) {
323 		/* zero out from the end of the write to the end of the block */
324 		pad = pos & (fs_block_size - 1);
325 		if (pad)
326 			iomap_dio_zero(dio, iomap, pos, fs_block_size - pad);
327 	}
328 out:
329 	/* Undo iter limitation to current extent */
330 	iov_iter_reexpand(dio->submit.iter, orig_count - copied);
331 	if (copied)
332 		return copied;
333 	return ret;
334 }
335 
336 static loff_t
337 iomap_dio_hole_actor(loff_t length, struct iomap_dio *dio)
338 {
339 	length = iov_iter_zero(length, dio->submit.iter);
340 	dio->size += length;
341 	return length;
342 }
343 
344 static loff_t
345 iomap_dio_inline_actor(struct inode *inode, loff_t pos, loff_t length,
346 		struct iomap_dio *dio, struct iomap *iomap)
347 {
348 	struct iov_iter *iter = dio->submit.iter;
349 	size_t copied;
350 
351 	BUG_ON(pos + length > PAGE_SIZE - offset_in_page(iomap->inline_data));
352 
353 	if (dio->flags & IOMAP_DIO_WRITE) {
354 		loff_t size = inode->i_size;
355 
356 		if (pos > size)
357 			memset(iomap->inline_data + size, 0, pos - size);
358 		copied = copy_from_iter(iomap->inline_data + pos, length, iter);
359 		if (copied) {
360 			if (pos + copied > size)
361 				i_size_write(inode, pos + copied);
362 			mark_inode_dirty(inode);
363 		}
364 	} else {
365 		copied = copy_to_iter(iomap->inline_data + pos, length, iter);
366 	}
367 	dio->size += copied;
368 	return copied;
369 }
370 
371 static loff_t
372 iomap_dio_actor(struct inode *inode, loff_t pos, loff_t length,
373 		void *data, struct iomap *iomap, struct iomap *srcmap)
374 {
375 	struct iomap_dio *dio = data;
376 
377 	switch (iomap->type) {
378 	case IOMAP_HOLE:
379 		if (WARN_ON_ONCE(dio->flags & IOMAP_DIO_WRITE))
380 			return -EIO;
381 		return iomap_dio_hole_actor(length, dio);
382 	case IOMAP_UNWRITTEN:
383 		if (!(dio->flags & IOMAP_DIO_WRITE))
384 			return iomap_dio_hole_actor(length, dio);
385 		return iomap_dio_bio_actor(inode, pos, length, dio, iomap);
386 	case IOMAP_MAPPED:
387 		return iomap_dio_bio_actor(inode, pos, length, dio, iomap);
388 	case IOMAP_INLINE:
389 		return iomap_dio_inline_actor(inode, pos, length, dio, iomap);
390 	default:
391 		WARN_ON_ONCE(1);
392 		return -EIO;
393 	}
394 }
395 
396 /*
397  * iomap_dio_rw() always completes O_[D]SYNC writes regardless of whether the IO
398  * is being issued as AIO or not.  This allows us to optimise pure data writes
399  * to use REQ_FUA rather than requiring generic_write_sync() to issue a
400  * REQ_FLUSH post write. This is slightly tricky because a single request here
401  * can be mapped into multiple disjoint IOs and only a subset of the IOs issued
402  * may be pure data writes. In that case, we still need to do a full data sync
403  * completion.
404  */
405 ssize_t
406 iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter,
407 		const struct iomap_ops *ops, const struct iomap_dio_ops *dops,
408 		bool wait_for_completion)
409 {
410 	struct address_space *mapping = iocb->ki_filp->f_mapping;
411 	struct inode *inode = file_inode(iocb->ki_filp);
412 	size_t count = iov_iter_count(iter);
413 	loff_t pos = iocb->ki_pos;
414 	loff_t end = iocb->ki_pos + count - 1, ret = 0;
415 	unsigned int flags = IOMAP_DIRECT;
416 	struct blk_plug plug;
417 	struct iomap_dio *dio;
418 
419 	if (!count)
420 		return 0;
421 
422 	if (WARN_ON(is_sync_kiocb(iocb) && !wait_for_completion))
423 		return -EIO;
424 
425 	dio = kmalloc(sizeof(*dio), GFP_KERNEL);
426 	if (!dio)
427 		return -ENOMEM;
428 
429 	dio->iocb = iocb;
430 	atomic_set(&dio->ref, 1);
431 	dio->size = 0;
432 	dio->i_size = i_size_read(inode);
433 	dio->dops = dops;
434 	dio->error = 0;
435 	dio->flags = 0;
436 
437 	dio->submit.iter = iter;
438 	dio->submit.waiter = current;
439 	dio->submit.cookie = BLK_QC_T_NONE;
440 	dio->submit.last_queue = NULL;
441 
442 	if (iov_iter_rw(iter) == READ) {
443 		if (pos >= dio->i_size)
444 			goto out_free_dio;
445 
446 		if (iter_is_iovec(iter))
447 			dio->flags |= IOMAP_DIO_DIRTY;
448 	} else {
449 		flags |= IOMAP_WRITE;
450 		dio->flags |= IOMAP_DIO_WRITE;
451 
452 		/* for data sync or sync, we need sync completion processing */
453 		if (iocb->ki_flags & IOCB_DSYNC)
454 			dio->flags |= IOMAP_DIO_NEED_SYNC;
455 
456 		/*
457 		 * For datasync only writes, we optimistically try using FUA for
458 		 * this IO.  Any non-FUA write that occurs will clear this flag,
459 		 * hence we know before completion whether a cache flush is
460 		 * necessary.
461 		 */
462 		if ((iocb->ki_flags & (IOCB_DSYNC | IOCB_SYNC)) == IOCB_DSYNC)
463 			dio->flags |= IOMAP_DIO_WRITE_FUA;
464 	}
465 
466 	if (iocb->ki_flags & IOCB_NOWAIT) {
467 		if (filemap_range_has_page(mapping, pos, end)) {
468 			ret = -EAGAIN;
469 			goto out_free_dio;
470 		}
471 		flags |= IOMAP_NOWAIT;
472 	}
473 
474 	ret = filemap_write_and_wait_range(mapping, pos, end);
475 	if (ret)
476 		goto out_free_dio;
477 
478 	/*
479 	 * Try to invalidate cache pages for the range we're direct
480 	 * writing.  If this invalidation fails, tough, the write will
481 	 * still work, but racing two incompatible write paths is a
482 	 * pretty crazy thing to do, so we don't support it 100%.
483 	 */
484 	ret = invalidate_inode_pages2_range(mapping,
485 			pos >> PAGE_SHIFT, end >> PAGE_SHIFT);
486 	if (ret)
487 		dio_warn_stale_pagecache(iocb->ki_filp);
488 	ret = 0;
489 
490 	if (iov_iter_rw(iter) == WRITE && !wait_for_completion &&
491 	    !inode->i_sb->s_dio_done_wq) {
492 		ret = sb_init_dio_done_wq(inode->i_sb);
493 		if (ret < 0)
494 			goto out_free_dio;
495 	}
496 
497 	inode_dio_begin(inode);
498 
499 	blk_start_plug(&plug);
500 	do {
501 		ret = iomap_apply(inode, pos, count, flags, ops, dio,
502 				iomap_dio_actor);
503 		if (ret <= 0) {
504 			/* magic error code to fall back to buffered I/O */
505 			if (ret == -ENOTBLK) {
506 				wait_for_completion = true;
507 				ret = 0;
508 			}
509 			break;
510 		}
511 		pos += ret;
512 
513 		if (iov_iter_rw(iter) == READ && pos >= dio->i_size) {
514 			/*
515 			 * We only report that we've read data up to i_size.
516 			 * Revert iter to a state corresponding to that as
517 			 * some callers (such as splice code) rely on it.
518 			 */
519 			iov_iter_revert(iter, pos - dio->i_size);
520 			break;
521 		}
522 	} while ((count = iov_iter_count(iter)) > 0);
523 	blk_finish_plug(&plug);
524 
525 	if (ret < 0)
526 		iomap_dio_set_error(dio, ret);
527 
528 	/*
529 	 * If all the writes we issued were FUA, we don't need to flush the
530 	 * cache on IO completion. Clear the sync flag for this case.
531 	 */
532 	if (dio->flags & IOMAP_DIO_WRITE_FUA)
533 		dio->flags &= ~IOMAP_DIO_NEED_SYNC;
534 
535 	WRITE_ONCE(iocb->ki_cookie, dio->submit.cookie);
536 	WRITE_ONCE(iocb->private, dio->submit.last_queue);
537 
538 	/*
539 	 * We are about to drop our additional submission reference, which
540 	 * might be the last reference to the dio.  There are three different
541 	 * ways we can progress here:
542 	 *
543 	 *  (a) If this is the last reference we will always complete and free
544 	 *	the dio ourselves.
545 	 *  (b) If this is not the last reference, and we serve an asynchronous
546 	 *	iocb, we must never touch the dio after the decrement, the
547 	 *	I/O completion handler will complete and free it.
548 	 *  (c) If this is not the last reference, but we serve a synchronous
549 	 *	iocb, the I/O completion handler will wake us up on the drop
550 	 *	of the final reference, and we will complete and free it here
551 	 *	after we got woken by the I/O completion handler.
552 	 */
553 	dio->wait_for_completion = wait_for_completion;
554 	if (!atomic_dec_and_test(&dio->ref)) {
555 		if (!wait_for_completion)
556 			return -EIOCBQUEUED;
557 
558 		for (;;) {
559 			set_current_state(TASK_UNINTERRUPTIBLE);
560 			if (!READ_ONCE(dio->submit.waiter))
561 				break;
562 
563 			if (!(iocb->ki_flags & IOCB_HIPRI) ||
564 			    !dio->submit.last_queue ||
565 			    !blk_poll(dio->submit.last_queue,
566 					 dio->submit.cookie, true))
567 				blk_io_schedule();
568 		}
569 		__set_current_state(TASK_RUNNING);
570 	}
571 
572 	return iomap_dio_complete(dio);
573 
574 out_free_dio:
575 	kfree(dio);
576 	return ret;
577 }
578 EXPORT_SYMBOL_GPL(iomap_dio_rw);
579