1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010 Red Hat, Inc. 4 * Copyright (c) 2016-2021 Christoph Hellwig. 5 */ 6 #include <linux/module.h> 7 #include <linux/compiler.h> 8 #include <linux/fs.h> 9 #include <linux/fscrypt.h> 10 #include <linux/pagemap.h> 11 #include <linux/iomap.h> 12 #include <linux/backing-dev.h> 13 #include <linux/uio.h> 14 #include <linux/task_io_accounting_ops.h> 15 #include "trace.h" 16 17 #include "../internal.h" 18 19 /* 20 * Private flags for iomap_dio, must not overlap with the public ones in 21 * iomap.h: 22 */ 23 #define IOMAP_DIO_CALLER_COMP (1U << 26) 24 #define IOMAP_DIO_INLINE_COMP (1U << 27) 25 #define IOMAP_DIO_WRITE_THROUGH (1U << 28) 26 #define IOMAP_DIO_NEED_SYNC (1U << 29) 27 #define IOMAP_DIO_WRITE (1U << 30) 28 #define IOMAP_DIO_DIRTY (1U << 31) 29 30 /* 31 * Used for sub block zeroing in iomap_dio_zero() 32 */ 33 #define IOMAP_ZERO_PAGE_SIZE (SZ_64K) 34 #define IOMAP_ZERO_PAGE_ORDER (get_order(IOMAP_ZERO_PAGE_SIZE)) 35 static struct page *zero_page; 36 37 struct iomap_dio { 38 struct kiocb *iocb; 39 const struct iomap_dio_ops *dops; 40 loff_t i_size; 41 loff_t size; 42 atomic_t ref; 43 unsigned flags; 44 int error; 45 size_t done_before; 46 bool wait_for_completion; 47 48 union { 49 /* used during submission and for synchronous completion: */ 50 struct { 51 struct iov_iter *iter; 52 struct task_struct *waiter; 53 } submit; 54 55 /* used for aio completion: */ 56 struct { 57 struct work_struct work; 58 } aio; 59 }; 60 }; 61 62 static struct bio *iomap_dio_alloc_bio(const struct iomap_iter *iter, 63 struct iomap_dio *dio, unsigned short nr_vecs, blk_opf_t opf) 64 { 65 if (dio->dops && dio->dops->bio_set) 66 return bio_alloc_bioset(iter->iomap.bdev, nr_vecs, opf, 67 GFP_KERNEL, dio->dops->bio_set); 68 return bio_alloc(iter->iomap.bdev, nr_vecs, opf, GFP_KERNEL); 69 } 70 71 static void iomap_dio_submit_bio(const struct iomap_iter *iter, 72 struct iomap_dio *dio, struct bio *bio, loff_t pos) 73 { 74 struct kiocb *iocb = dio->iocb; 75 76 atomic_inc(&dio->ref); 77 78 /* Sync dio can't be polled reliably */ 79 if ((iocb->ki_flags & IOCB_HIPRI) && !is_sync_kiocb(iocb)) { 80 bio_set_polled(bio, iocb); 81 WRITE_ONCE(iocb->private, bio); 82 } 83 84 if (dio->dops && dio->dops->submit_io) 85 dio->dops->submit_io(iter, bio, pos); 86 else 87 submit_bio(bio); 88 } 89 90 ssize_t iomap_dio_complete(struct iomap_dio *dio) 91 { 92 const struct iomap_dio_ops *dops = dio->dops; 93 struct kiocb *iocb = dio->iocb; 94 loff_t offset = iocb->ki_pos; 95 ssize_t ret = dio->error; 96 97 if (dops && dops->end_io) 98 ret = dops->end_io(iocb, dio->size, ret, dio->flags); 99 100 if (likely(!ret)) { 101 ret = dio->size; 102 /* check for short read */ 103 if (offset + ret > dio->i_size && 104 !(dio->flags & IOMAP_DIO_WRITE)) 105 ret = dio->i_size - offset; 106 } 107 108 /* 109 * Try again to invalidate clean pages which might have been cached by 110 * non-direct readahead, or faulted in by get_user_pages() if the source 111 * of the write was an mmap'ed region of the file we're writing. Either 112 * one is a pretty crazy thing to do, so we don't support it 100%. If 113 * this invalidation fails, tough, the write still worked... 114 * 115 * And this page cache invalidation has to be after ->end_io(), as some 116 * filesystems convert unwritten extents to real allocations in 117 * ->end_io() when necessary, otherwise a racing buffer read would cache 118 * zeros from unwritten extents. 119 */ 120 if (!dio->error && dio->size && (dio->flags & IOMAP_DIO_WRITE)) 121 kiocb_invalidate_post_direct_write(iocb, dio->size); 122 123 inode_dio_end(file_inode(iocb->ki_filp)); 124 125 if (ret > 0) { 126 iocb->ki_pos += ret; 127 128 /* 129 * If this is a DSYNC write, make sure we push it to stable 130 * storage now that we've written data. 131 */ 132 if (dio->flags & IOMAP_DIO_NEED_SYNC) 133 ret = generic_write_sync(iocb, ret); 134 if (ret > 0) 135 ret += dio->done_before; 136 } 137 trace_iomap_dio_complete(iocb, dio->error, ret); 138 kfree(dio); 139 return ret; 140 } 141 EXPORT_SYMBOL_GPL(iomap_dio_complete); 142 143 static ssize_t iomap_dio_deferred_complete(void *data) 144 { 145 return iomap_dio_complete(data); 146 } 147 148 static void iomap_dio_complete_work(struct work_struct *work) 149 { 150 struct iomap_dio *dio = container_of(work, struct iomap_dio, aio.work); 151 struct kiocb *iocb = dio->iocb; 152 153 iocb->ki_complete(iocb, iomap_dio_complete(dio)); 154 } 155 156 /* 157 * Set an error in the dio if none is set yet. We have to use cmpxchg 158 * as the submission context and the completion context(s) can race to 159 * update the error. 160 */ 161 static inline void iomap_dio_set_error(struct iomap_dio *dio, int ret) 162 { 163 cmpxchg(&dio->error, 0, ret); 164 } 165 166 void iomap_dio_bio_end_io(struct bio *bio) 167 { 168 struct iomap_dio *dio = bio->bi_private; 169 bool should_dirty = (dio->flags & IOMAP_DIO_DIRTY); 170 struct kiocb *iocb = dio->iocb; 171 172 if (bio->bi_status) 173 iomap_dio_set_error(dio, blk_status_to_errno(bio->bi_status)); 174 if (!atomic_dec_and_test(&dio->ref)) 175 goto release_bio; 176 177 /* 178 * Synchronous dio, task itself will handle any completion work 179 * that needs after IO. All we need to do is wake the task. 180 */ 181 if (dio->wait_for_completion) { 182 struct task_struct *waiter = dio->submit.waiter; 183 184 WRITE_ONCE(dio->submit.waiter, NULL); 185 blk_wake_io_task(waiter); 186 goto release_bio; 187 } 188 189 /* 190 * Flagged with IOMAP_DIO_INLINE_COMP, we can complete it inline 191 */ 192 if (dio->flags & IOMAP_DIO_INLINE_COMP) { 193 WRITE_ONCE(iocb->private, NULL); 194 iomap_dio_complete_work(&dio->aio.work); 195 goto release_bio; 196 } 197 198 /* 199 * If this dio is flagged with IOMAP_DIO_CALLER_COMP, then schedule 200 * our completion that way to avoid an async punt to a workqueue. 201 */ 202 if (dio->flags & IOMAP_DIO_CALLER_COMP) { 203 /* only polled IO cares about private cleared */ 204 iocb->private = dio; 205 iocb->dio_complete = iomap_dio_deferred_complete; 206 207 /* 208 * Invoke ->ki_complete() directly. We've assigned our 209 * dio_complete callback handler, and since the issuer set 210 * IOCB_DIO_CALLER_COMP, we know their ki_complete handler will 211 * notice ->dio_complete being set and will defer calling that 212 * handler until it can be done from a safe task context. 213 * 214 * Note that the 'res' being passed in here is not important 215 * for this case. The actual completion value of the request 216 * will be gotten from dio_complete when that is run by the 217 * issuer. 218 */ 219 iocb->ki_complete(iocb, 0); 220 goto release_bio; 221 } 222 223 /* 224 * Async DIO completion that requires filesystem level completion work 225 * gets punted to a work queue to complete as the operation may require 226 * more IO to be issued to finalise filesystem metadata changes or 227 * guarantee data integrity. 228 */ 229 INIT_WORK(&dio->aio.work, iomap_dio_complete_work); 230 queue_work(file_inode(iocb->ki_filp)->i_sb->s_dio_done_wq, 231 &dio->aio.work); 232 release_bio: 233 if (should_dirty) { 234 bio_check_pages_dirty(bio); 235 } else { 236 bio_release_pages(bio, false); 237 bio_put(bio); 238 } 239 } 240 EXPORT_SYMBOL_GPL(iomap_dio_bio_end_io); 241 242 static int iomap_dio_zero(const struct iomap_iter *iter, struct iomap_dio *dio, 243 loff_t pos, unsigned len) 244 { 245 struct inode *inode = file_inode(dio->iocb->ki_filp); 246 struct bio *bio; 247 248 if (!len) 249 return 0; 250 /* 251 * Max block size supported is 64k 252 */ 253 if (WARN_ON_ONCE(len > IOMAP_ZERO_PAGE_SIZE)) 254 return -EINVAL; 255 256 bio = iomap_dio_alloc_bio(iter, dio, 1, REQ_OP_WRITE | REQ_SYNC | REQ_IDLE); 257 fscrypt_set_bio_crypt_ctx(bio, inode, pos >> inode->i_blkbits, 258 GFP_KERNEL); 259 bio->bi_iter.bi_sector = iomap_sector(&iter->iomap, pos); 260 bio->bi_private = dio; 261 bio->bi_end_io = iomap_dio_bio_end_io; 262 263 __bio_add_page(bio, zero_page, len, 0); 264 iomap_dio_submit_bio(iter, dio, bio, pos); 265 return 0; 266 } 267 268 /* 269 * Figure out the bio's operation flags from the dio request, the 270 * mapping, and whether or not we want FUA. Note that we can end up 271 * clearing the WRITE_THROUGH flag in the dio request. 272 */ 273 static inline blk_opf_t iomap_dio_bio_opflags(struct iomap_dio *dio, 274 const struct iomap *iomap, bool use_fua) 275 { 276 blk_opf_t opflags = REQ_SYNC | REQ_IDLE; 277 278 if (!(dio->flags & IOMAP_DIO_WRITE)) 279 return REQ_OP_READ; 280 281 opflags |= REQ_OP_WRITE; 282 if (use_fua) 283 opflags |= REQ_FUA; 284 else 285 dio->flags &= ~IOMAP_DIO_WRITE_THROUGH; 286 287 return opflags; 288 } 289 290 static loff_t iomap_dio_bio_iter(const struct iomap_iter *iter, 291 struct iomap_dio *dio) 292 { 293 const struct iomap *iomap = &iter->iomap; 294 struct inode *inode = iter->inode; 295 unsigned int fs_block_size = i_blocksize(inode), pad; 296 loff_t length = iomap_length(iter); 297 loff_t pos = iter->pos; 298 blk_opf_t bio_opf; 299 struct bio *bio; 300 bool need_zeroout = false; 301 bool use_fua = false; 302 int nr_pages, ret = 0; 303 size_t copied = 0; 304 size_t orig_count; 305 306 if ((pos | length) & (bdev_logical_block_size(iomap->bdev) - 1) || 307 !bdev_iter_is_aligned(iomap->bdev, dio->submit.iter)) 308 return -EINVAL; 309 310 if (iomap->type == IOMAP_UNWRITTEN) { 311 dio->flags |= IOMAP_DIO_UNWRITTEN; 312 need_zeroout = true; 313 } 314 315 if (iomap->flags & IOMAP_F_SHARED) 316 dio->flags |= IOMAP_DIO_COW; 317 318 if (iomap->flags & IOMAP_F_NEW) { 319 need_zeroout = true; 320 } else if (iomap->type == IOMAP_MAPPED) { 321 /* 322 * Use a FUA write if we need datasync semantics, this is a pure 323 * data IO that doesn't require any metadata updates (including 324 * after IO completion such as unwritten extent conversion) and 325 * the underlying device either supports FUA or doesn't have 326 * a volatile write cache. This allows us to avoid cache flushes 327 * on IO completion. If we can't use writethrough and need to 328 * sync, disable in-task completions as dio completion will 329 * need to call generic_write_sync() which will do a blocking 330 * fsync / cache flush call. 331 */ 332 if (!(iomap->flags & (IOMAP_F_SHARED|IOMAP_F_DIRTY)) && 333 (dio->flags & IOMAP_DIO_WRITE_THROUGH) && 334 (bdev_fua(iomap->bdev) || !bdev_write_cache(iomap->bdev))) 335 use_fua = true; 336 else if (dio->flags & IOMAP_DIO_NEED_SYNC) 337 dio->flags &= ~IOMAP_DIO_CALLER_COMP; 338 } 339 340 /* 341 * Save the original count and trim the iter to just the extent we 342 * are operating on right now. The iter will be re-expanded once 343 * we are done. 344 */ 345 orig_count = iov_iter_count(dio->submit.iter); 346 iov_iter_truncate(dio->submit.iter, length); 347 348 if (!iov_iter_count(dio->submit.iter)) 349 goto out; 350 351 /* 352 * We can only do deferred completion for pure overwrites that 353 * don't require additional IO at completion. This rules out 354 * writes that need zeroing or extent conversion, extend 355 * the file size, or issue journal IO or cache flushes 356 * during completion processing. 357 */ 358 if (need_zeroout || 359 ((dio->flags & IOMAP_DIO_NEED_SYNC) && !use_fua) || 360 ((dio->flags & IOMAP_DIO_WRITE) && pos >= i_size_read(inode))) 361 dio->flags &= ~IOMAP_DIO_CALLER_COMP; 362 363 /* 364 * The rules for polled IO completions follow the guidelines as the 365 * ones we set for inline and deferred completions. If none of those 366 * are available for this IO, clear the polled flag. 367 */ 368 if (!(dio->flags & (IOMAP_DIO_INLINE_COMP|IOMAP_DIO_CALLER_COMP))) 369 dio->iocb->ki_flags &= ~IOCB_HIPRI; 370 371 if (need_zeroout) { 372 /* zero out from the start of the block to the write offset */ 373 pad = pos & (fs_block_size - 1); 374 375 ret = iomap_dio_zero(iter, dio, pos - pad, pad); 376 if (ret) 377 goto out; 378 } 379 380 /* 381 * Set the operation flags early so that bio_iov_iter_get_pages 382 * can set up the page vector appropriately for a ZONE_APPEND 383 * operation. 384 */ 385 bio_opf = iomap_dio_bio_opflags(dio, iomap, use_fua); 386 387 nr_pages = bio_iov_vecs_to_alloc(dio->submit.iter, BIO_MAX_VECS); 388 do { 389 size_t n; 390 if (dio->error) { 391 iov_iter_revert(dio->submit.iter, copied); 392 copied = ret = 0; 393 goto out; 394 } 395 396 bio = iomap_dio_alloc_bio(iter, dio, nr_pages, bio_opf); 397 fscrypt_set_bio_crypt_ctx(bio, inode, pos >> inode->i_blkbits, 398 GFP_KERNEL); 399 bio->bi_iter.bi_sector = iomap_sector(iomap, pos); 400 bio->bi_write_hint = inode->i_write_hint; 401 bio->bi_ioprio = dio->iocb->ki_ioprio; 402 bio->bi_private = dio; 403 bio->bi_end_io = iomap_dio_bio_end_io; 404 405 ret = bio_iov_iter_get_pages(bio, dio->submit.iter); 406 if (unlikely(ret)) { 407 /* 408 * We have to stop part way through an IO. We must fall 409 * through to the sub-block tail zeroing here, otherwise 410 * this short IO may expose stale data in the tail of 411 * the block we haven't written data to. 412 */ 413 bio_put(bio); 414 goto zero_tail; 415 } 416 417 n = bio->bi_iter.bi_size; 418 if (dio->flags & IOMAP_DIO_WRITE) { 419 task_io_account_write(n); 420 } else { 421 if (dio->flags & IOMAP_DIO_DIRTY) 422 bio_set_pages_dirty(bio); 423 } 424 425 dio->size += n; 426 copied += n; 427 428 nr_pages = bio_iov_vecs_to_alloc(dio->submit.iter, 429 BIO_MAX_VECS); 430 /* 431 * We can only poll for single bio I/Os. 432 */ 433 if (nr_pages) 434 dio->iocb->ki_flags &= ~IOCB_HIPRI; 435 iomap_dio_submit_bio(iter, dio, bio, pos); 436 pos += n; 437 } while (nr_pages); 438 439 /* 440 * We need to zeroout the tail of a sub-block write if the extent type 441 * requires zeroing or the write extends beyond EOF. If we don't zero 442 * the block tail in the latter case, we can expose stale data via mmap 443 * reads of the EOF block. 444 */ 445 zero_tail: 446 if (need_zeroout || 447 ((dio->flags & IOMAP_DIO_WRITE) && pos >= i_size_read(inode))) { 448 /* zero out from the end of the write to the end of the block */ 449 pad = pos & (fs_block_size - 1); 450 if (pad) 451 ret = iomap_dio_zero(iter, dio, pos, 452 fs_block_size - pad); 453 } 454 out: 455 /* Undo iter limitation to current extent */ 456 iov_iter_reexpand(dio->submit.iter, orig_count - copied); 457 if (copied) 458 return copied; 459 return ret; 460 } 461 462 static loff_t iomap_dio_hole_iter(const struct iomap_iter *iter, 463 struct iomap_dio *dio) 464 { 465 loff_t length = iov_iter_zero(iomap_length(iter), dio->submit.iter); 466 467 dio->size += length; 468 if (!length) 469 return -EFAULT; 470 return length; 471 } 472 473 static loff_t iomap_dio_inline_iter(const struct iomap_iter *iomi, 474 struct iomap_dio *dio) 475 { 476 const struct iomap *iomap = &iomi->iomap; 477 struct iov_iter *iter = dio->submit.iter; 478 void *inline_data = iomap_inline_data(iomap, iomi->pos); 479 loff_t length = iomap_length(iomi); 480 loff_t pos = iomi->pos; 481 size_t copied; 482 483 if (WARN_ON_ONCE(!iomap_inline_data_valid(iomap))) 484 return -EIO; 485 486 if (dio->flags & IOMAP_DIO_WRITE) { 487 loff_t size = iomi->inode->i_size; 488 489 if (pos > size) 490 memset(iomap_inline_data(iomap, size), 0, pos - size); 491 copied = copy_from_iter(inline_data, length, iter); 492 if (copied) { 493 if (pos + copied > size) 494 i_size_write(iomi->inode, pos + copied); 495 mark_inode_dirty(iomi->inode); 496 } 497 } else { 498 copied = copy_to_iter(inline_data, length, iter); 499 } 500 dio->size += copied; 501 if (!copied) 502 return -EFAULT; 503 return copied; 504 } 505 506 static loff_t iomap_dio_iter(const struct iomap_iter *iter, 507 struct iomap_dio *dio) 508 { 509 switch (iter->iomap.type) { 510 case IOMAP_HOLE: 511 if (WARN_ON_ONCE(dio->flags & IOMAP_DIO_WRITE)) 512 return -EIO; 513 return iomap_dio_hole_iter(iter, dio); 514 case IOMAP_UNWRITTEN: 515 if (!(dio->flags & IOMAP_DIO_WRITE)) 516 return iomap_dio_hole_iter(iter, dio); 517 return iomap_dio_bio_iter(iter, dio); 518 case IOMAP_MAPPED: 519 return iomap_dio_bio_iter(iter, dio); 520 case IOMAP_INLINE: 521 return iomap_dio_inline_iter(iter, dio); 522 case IOMAP_DELALLOC: 523 /* 524 * DIO is not serialised against mmap() access at all, and so 525 * if the page_mkwrite occurs between the writeback and the 526 * iomap_iter() call in the DIO path, then it will see the 527 * DELALLOC block that the page-mkwrite allocated. 528 */ 529 pr_warn_ratelimited("Direct I/O collision with buffered writes! File: %pD4 Comm: %.20s\n", 530 dio->iocb->ki_filp, current->comm); 531 return -EIO; 532 default: 533 WARN_ON_ONCE(1); 534 return -EIO; 535 } 536 } 537 538 /* 539 * iomap_dio_rw() always completes O_[D]SYNC writes regardless of whether the IO 540 * is being issued as AIO or not. This allows us to optimise pure data writes 541 * to use REQ_FUA rather than requiring generic_write_sync() to issue a 542 * REQ_FLUSH post write. This is slightly tricky because a single request here 543 * can be mapped into multiple disjoint IOs and only a subset of the IOs issued 544 * may be pure data writes. In that case, we still need to do a full data sync 545 * completion. 546 * 547 * When page faults are disabled and @dio_flags includes IOMAP_DIO_PARTIAL, 548 * __iomap_dio_rw can return a partial result if it encounters a non-resident 549 * page in @iter after preparing a transfer. In that case, the non-resident 550 * pages can be faulted in and the request resumed with @done_before set to the 551 * number of bytes previously transferred. The request will then complete with 552 * the correct total number of bytes transferred; this is essential for 553 * completing partial requests asynchronously. 554 * 555 * Returns -ENOTBLK In case of a page invalidation invalidation failure for 556 * writes. The callers needs to fall back to buffered I/O in this case. 557 */ 558 struct iomap_dio * 559 __iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter, 560 const struct iomap_ops *ops, const struct iomap_dio_ops *dops, 561 unsigned int dio_flags, void *private, size_t done_before) 562 { 563 struct inode *inode = file_inode(iocb->ki_filp); 564 struct iomap_iter iomi = { 565 .inode = inode, 566 .pos = iocb->ki_pos, 567 .len = iov_iter_count(iter), 568 .flags = IOMAP_DIRECT, 569 .private = private, 570 }; 571 bool wait_for_completion = 572 is_sync_kiocb(iocb) || (dio_flags & IOMAP_DIO_FORCE_WAIT); 573 struct blk_plug plug; 574 struct iomap_dio *dio; 575 loff_t ret = 0; 576 577 trace_iomap_dio_rw_begin(iocb, iter, dio_flags, done_before); 578 579 if (!iomi.len) 580 return NULL; 581 582 dio = kmalloc(sizeof(*dio), GFP_KERNEL); 583 if (!dio) 584 return ERR_PTR(-ENOMEM); 585 586 dio->iocb = iocb; 587 atomic_set(&dio->ref, 1); 588 dio->size = 0; 589 dio->i_size = i_size_read(inode); 590 dio->dops = dops; 591 dio->error = 0; 592 dio->flags = 0; 593 dio->done_before = done_before; 594 595 dio->submit.iter = iter; 596 dio->submit.waiter = current; 597 598 if (iocb->ki_flags & IOCB_NOWAIT) 599 iomi.flags |= IOMAP_NOWAIT; 600 601 if (iov_iter_rw(iter) == READ) { 602 /* reads can always complete inline */ 603 dio->flags |= IOMAP_DIO_INLINE_COMP; 604 605 if (iomi.pos >= dio->i_size) 606 goto out_free_dio; 607 608 if (user_backed_iter(iter)) 609 dio->flags |= IOMAP_DIO_DIRTY; 610 611 ret = kiocb_write_and_wait(iocb, iomi.len); 612 if (ret) 613 goto out_free_dio; 614 } else { 615 iomi.flags |= IOMAP_WRITE; 616 dio->flags |= IOMAP_DIO_WRITE; 617 618 /* 619 * Flag as supporting deferred completions, if the issuer 620 * groks it. This can avoid a workqueue punt for writes. 621 * We may later clear this flag if we need to do other IO 622 * as part of this IO completion. 623 */ 624 if (iocb->ki_flags & IOCB_DIO_CALLER_COMP) 625 dio->flags |= IOMAP_DIO_CALLER_COMP; 626 627 if (dio_flags & IOMAP_DIO_OVERWRITE_ONLY) { 628 ret = -EAGAIN; 629 if (iomi.pos >= dio->i_size || 630 iomi.pos + iomi.len > dio->i_size) 631 goto out_free_dio; 632 iomi.flags |= IOMAP_OVERWRITE_ONLY; 633 } 634 635 /* for data sync or sync, we need sync completion processing */ 636 if (iocb_is_dsync(iocb)) { 637 dio->flags |= IOMAP_DIO_NEED_SYNC; 638 639 /* 640 * For datasync only writes, we optimistically try using 641 * WRITE_THROUGH for this IO. This flag requires either 642 * FUA writes through the device's write cache, or a 643 * normal write to a device without a volatile write 644 * cache. For the former, Any non-FUA write that occurs 645 * will clear this flag, hence we know before completion 646 * whether a cache flush is necessary. 647 */ 648 if (!(iocb->ki_flags & IOCB_SYNC)) 649 dio->flags |= IOMAP_DIO_WRITE_THROUGH; 650 } 651 652 /* 653 * Try to invalidate cache pages for the range we are writing. 654 * If this invalidation fails, let the caller fall back to 655 * buffered I/O. 656 */ 657 ret = kiocb_invalidate_pages(iocb, iomi.len); 658 if (ret) { 659 if (ret != -EAGAIN) { 660 trace_iomap_dio_invalidate_fail(inode, iomi.pos, 661 iomi.len); 662 ret = -ENOTBLK; 663 } 664 goto out_free_dio; 665 } 666 667 if (!wait_for_completion && !inode->i_sb->s_dio_done_wq) { 668 ret = sb_init_dio_done_wq(inode->i_sb); 669 if (ret < 0) 670 goto out_free_dio; 671 } 672 } 673 674 inode_dio_begin(inode); 675 676 blk_start_plug(&plug); 677 while ((ret = iomap_iter(&iomi, ops)) > 0) { 678 iomi.processed = iomap_dio_iter(&iomi, dio); 679 680 /* 681 * We can only poll for single bio I/Os. 682 */ 683 iocb->ki_flags &= ~IOCB_HIPRI; 684 } 685 686 blk_finish_plug(&plug); 687 688 /* 689 * We only report that we've read data up to i_size. 690 * Revert iter to a state corresponding to that as some callers (such 691 * as the splice code) rely on it. 692 */ 693 if (iov_iter_rw(iter) == READ && iomi.pos >= dio->i_size) 694 iov_iter_revert(iter, iomi.pos - dio->i_size); 695 696 if (ret == -EFAULT && dio->size && (dio_flags & IOMAP_DIO_PARTIAL)) { 697 if (!(iocb->ki_flags & IOCB_NOWAIT)) 698 wait_for_completion = true; 699 ret = 0; 700 } 701 702 /* magic error code to fall back to buffered I/O */ 703 if (ret == -ENOTBLK) { 704 wait_for_completion = true; 705 ret = 0; 706 } 707 if (ret < 0) 708 iomap_dio_set_error(dio, ret); 709 710 /* 711 * If all the writes we issued were already written through to the 712 * media, we don't need to flush the cache on IO completion. Clear the 713 * sync flag for this case. 714 */ 715 if (dio->flags & IOMAP_DIO_WRITE_THROUGH) 716 dio->flags &= ~IOMAP_DIO_NEED_SYNC; 717 718 /* 719 * We are about to drop our additional submission reference, which 720 * might be the last reference to the dio. There are three different 721 * ways we can progress here: 722 * 723 * (a) If this is the last reference we will always complete and free 724 * the dio ourselves. 725 * (b) If this is not the last reference, and we serve an asynchronous 726 * iocb, we must never touch the dio after the decrement, the 727 * I/O completion handler will complete and free it. 728 * (c) If this is not the last reference, but we serve a synchronous 729 * iocb, the I/O completion handler will wake us up on the drop 730 * of the final reference, and we will complete and free it here 731 * after we got woken by the I/O completion handler. 732 */ 733 dio->wait_for_completion = wait_for_completion; 734 if (!atomic_dec_and_test(&dio->ref)) { 735 if (!wait_for_completion) { 736 trace_iomap_dio_rw_queued(inode, iomi.pos, iomi.len); 737 return ERR_PTR(-EIOCBQUEUED); 738 } 739 740 for (;;) { 741 set_current_state(TASK_UNINTERRUPTIBLE); 742 if (!READ_ONCE(dio->submit.waiter)) 743 break; 744 745 blk_io_schedule(); 746 } 747 __set_current_state(TASK_RUNNING); 748 } 749 750 return dio; 751 752 out_free_dio: 753 kfree(dio); 754 if (ret) 755 return ERR_PTR(ret); 756 return NULL; 757 } 758 EXPORT_SYMBOL_GPL(__iomap_dio_rw); 759 760 ssize_t 761 iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter, 762 const struct iomap_ops *ops, const struct iomap_dio_ops *dops, 763 unsigned int dio_flags, void *private, size_t done_before) 764 { 765 struct iomap_dio *dio; 766 767 dio = __iomap_dio_rw(iocb, iter, ops, dops, dio_flags, private, 768 done_before); 769 if (IS_ERR_OR_NULL(dio)) 770 return PTR_ERR_OR_ZERO(dio); 771 return iomap_dio_complete(dio); 772 } 773 EXPORT_SYMBOL_GPL(iomap_dio_rw); 774 775 static int __init iomap_dio_init(void) 776 { 777 zero_page = alloc_pages(GFP_KERNEL | __GFP_ZERO, 778 IOMAP_ZERO_PAGE_ORDER); 779 780 if (!zero_page) 781 return -ENOMEM; 782 783 return 0; 784 } 785 fs_initcall(iomap_dio_init); 786