xref: /linux/fs/iomap/direct-io.c (revision be969b7cfbcfa8a835a528f1dc467f0975c6d883)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010 Red Hat, Inc.
4  * Copyright (c) 2016-2018 Christoph Hellwig.
5  */
6 #include <linux/module.h>
7 #include <linux/compiler.h>
8 #include <linux/fs.h>
9 #include <linux/iomap.h>
10 #include <linux/backing-dev.h>
11 #include <linux/uio.h>
12 #include <linux/task_io_accounting_ops.h>
13 #include "trace.h"
14 
15 #include "../internal.h"
16 
17 /*
18  * Private flags for iomap_dio, must not overlap with the public ones in
19  * iomap.h:
20  */
21 #define IOMAP_DIO_WRITE_FUA	(1 << 28)
22 #define IOMAP_DIO_NEED_SYNC	(1 << 29)
23 #define IOMAP_DIO_WRITE		(1 << 30)
24 #define IOMAP_DIO_DIRTY		(1 << 31)
25 
26 struct iomap_dio {
27 	struct kiocb		*iocb;
28 	const struct iomap_dio_ops *dops;
29 	loff_t			i_size;
30 	loff_t			size;
31 	atomic_t		ref;
32 	unsigned		flags;
33 	int			error;
34 	bool			wait_for_completion;
35 
36 	union {
37 		/* used during submission and for synchronous completion: */
38 		struct {
39 			struct iov_iter		*iter;
40 			struct task_struct	*waiter;
41 			struct request_queue	*last_queue;
42 			blk_qc_t		cookie;
43 		} submit;
44 
45 		/* used for aio completion: */
46 		struct {
47 			struct work_struct	work;
48 		} aio;
49 	};
50 };
51 
52 int iomap_dio_iopoll(struct kiocb *kiocb, bool spin)
53 {
54 	struct request_queue *q = READ_ONCE(kiocb->private);
55 
56 	if (!q)
57 		return 0;
58 	return blk_poll(q, READ_ONCE(kiocb->ki_cookie), spin);
59 }
60 EXPORT_SYMBOL_GPL(iomap_dio_iopoll);
61 
62 static void iomap_dio_submit_bio(struct iomap_dio *dio, struct iomap *iomap,
63 		struct bio *bio, loff_t pos)
64 {
65 	atomic_inc(&dio->ref);
66 
67 	if (dio->iocb->ki_flags & IOCB_HIPRI)
68 		bio_set_polled(bio, dio->iocb);
69 
70 	dio->submit.last_queue = bdev_get_queue(iomap->bdev);
71 	if (dio->dops && dio->dops->submit_io)
72 		dio->submit.cookie = dio->dops->submit_io(
73 				file_inode(dio->iocb->ki_filp),
74 				iomap, bio, pos);
75 	else
76 		dio->submit.cookie = submit_bio(bio);
77 }
78 
79 ssize_t iomap_dio_complete(struct iomap_dio *dio)
80 {
81 	const struct iomap_dio_ops *dops = dio->dops;
82 	struct kiocb *iocb = dio->iocb;
83 	struct inode *inode = file_inode(iocb->ki_filp);
84 	loff_t offset = iocb->ki_pos;
85 	ssize_t ret = dio->error;
86 
87 	if (dops && dops->end_io)
88 		ret = dops->end_io(iocb, dio->size, ret, dio->flags);
89 
90 	if (likely(!ret)) {
91 		ret = dio->size;
92 		/* check for short read */
93 		if (offset + ret > dio->i_size &&
94 		    !(dio->flags & IOMAP_DIO_WRITE))
95 			ret = dio->i_size - offset;
96 		iocb->ki_pos += ret;
97 	}
98 
99 	/*
100 	 * Try again to invalidate clean pages which might have been cached by
101 	 * non-direct readahead, or faulted in by get_user_pages() if the source
102 	 * of the write was an mmap'ed region of the file we're writing.  Either
103 	 * one is a pretty crazy thing to do, so we don't support it 100%.  If
104 	 * this invalidation fails, tough, the write still worked...
105 	 *
106 	 * And this page cache invalidation has to be after ->end_io(), as some
107 	 * filesystems convert unwritten extents to real allocations in
108 	 * ->end_io() when necessary, otherwise a racing buffer read would cache
109 	 * zeros from unwritten extents.
110 	 */
111 	if (!dio->error && dio->size &&
112 	    (dio->flags & IOMAP_DIO_WRITE) && inode->i_mapping->nrpages) {
113 		int err;
114 		err = invalidate_inode_pages2_range(inode->i_mapping,
115 				offset >> PAGE_SHIFT,
116 				(offset + dio->size - 1) >> PAGE_SHIFT);
117 		if (err)
118 			dio_warn_stale_pagecache(iocb->ki_filp);
119 	}
120 
121 	inode_dio_end(file_inode(iocb->ki_filp));
122 	/*
123 	 * If this is a DSYNC write, make sure we push it to stable storage now
124 	 * that we've written data.
125 	 */
126 	if (ret > 0 && (dio->flags & IOMAP_DIO_NEED_SYNC))
127 		ret = generic_write_sync(iocb, ret);
128 
129 	kfree(dio);
130 
131 	return ret;
132 }
133 EXPORT_SYMBOL_GPL(iomap_dio_complete);
134 
135 static void iomap_dio_complete_work(struct work_struct *work)
136 {
137 	struct iomap_dio *dio = container_of(work, struct iomap_dio, aio.work);
138 	struct kiocb *iocb = dio->iocb;
139 
140 	iocb->ki_complete(iocb, iomap_dio_complete(dio), 0);
141 }
142 
143 /*
144  * Set an error in the dio if none is set yet.  We have to use cmpxchg
145  * as the submission context and the completion context(s) can race to
146  * update the error.
147  */
148 static inline void iomap_dio_set_error(struct iomap_dio *dio, int ret)
149 {
150 	cmpxchg(&dio->error, 0, ret);
151 }
152 
153 static void iomap_dio_bio_end_io(struct bio *bio)
154 {
155 	struct iomap_dio *dio = bio->bi_private;
156 	bool should_dirty = (dio->flags & IOMAP_DIO_DIRTY);
157 
158 	if (bio->bi_status)
159 		iomap_dio_set_error(dio, blk_status_to_errno(bio->bi_status));
160 
161 	if (atomic_dec_and_test(&dio->ref)) {
162 		if (dio->wait_for_completion) {
163 			struct task_struct *waiter = dio->submit.waiter;
164 			WRITE_ONCE(dio->submit.waiter, NULL);
165 			blk_wake_io_task(waiter);
166 		} else if (dio->flags & IOMAP_DIO_WRITE) {
167 			struct inode *inode = file_inode(dio->iocb->ki_filp);
168 
169 			INIT_WORK(&dio->aio.work, iomap_dio_complete_work);
170 			queue_work(inode->i_sb->s_dio_done_wq, &dio->aio.work);
171 		} else {
172 			iomap_dio_complete_work(&dio->aio.work);
173 		}
174 	}
175 
176 	if (should_dirty) {
177 		bio_check_pages_dirty(bio);
178 	} else {
179 		bio_release_pages(bio, false);
180 		bio_put(bio);
181 	}
182 }
183 
184 static void
185 iomap_dio_zero(struct iomap_dio *dio, struct iomap *iomap, loff_t pos,
186 		unsigned len)
187 {
188 	struct page *page = ZERO_PAGE(0);
189 	int flags = REQ_SYNC | REQ_IDLE;
190 	struct bio *bio;
191 
192 	bio = bio_alloc(GFP_KERNEL, 1);
193 	bio_set_dev(bio, iomap->bdev);
194 	bio->bi_iter.bi_sector = iomap_sector(iomap, pos);
195 	bio->bi_private = dio;
196 	bio->bi_end_io = iomap_dio_bio_end_io;
197 
198 	get_page(page);
199 	__bio_add_page(bio, page, len, 0);
200 	bio_set_op_attrs(bio, REQ_OP_WRITE, flags);
201 	iomap_dio_submit_bio(dio, iomap, bio, pos);
202 }
203 
204 static loff_t
205 iomap_dio_bio_actor(struct inode *inode, loff_t pos, loff_t length,
206 		struct iomap_dio *dio, struct iomap *iomap)
207 {
208 	unsigned int blkbits = blksize_bits(bdev_logical_block_size(iomap->bdev));
209 	unsigned int fs_block_size = i_blocksize(inode), pad;
210 	unsigned int align = iov_iter_alignment(dio->submit.iter);
211 	struct bio *bio;
212 	bool need_zeroout = false;
213 	bool use_fua = false;
214 	int nr_pages, ret = 0;
215 	size_t copied = 0;
216 	size_t orig_count;
217 
218 	if ((pos | length | align) & ((1 << blkbits) - 1))
219 		return -EINVAL;
220 
221 	if (iomap->type == IOMAP_UNWRITTEN) {
222 		dio->flags |= IOMAP_DIO_UNWRITTEN;
223 		need_zeroout = true;
224 	}
225 
226 	if (iomap->flags & IOMAP_F_SHARED)
227 		dio->flags |= IOMAP_DIO_COW;
228 
229 	if (iomap->flags & IOMAP_F_NEW) {
230 		need_zeroout = true;
231 	} else if (iomap->type == IOMAP_MAPPED) {
232 		/*
233 		 * Use a FUA write if we need datasync semantics, this is a pure
234 		 * data IO that doesn't require any metadata updates (including
235 		 * after IO completion such as unwritten extent conversion) and
236 		 * the underlying device supports FUA. This allows us to avoid
237 		 * cache flushes on IO completion.
238 		 */
239 		if (!(iomap->flags & (IOMAP_F_SHARED|IOMAP_F_DIRTY)) &&
240 		    (dio->flags & IOMAP_DIO_WRITE_FUA) &&
241 		    blk_queue_fua(bdev_get_queue(iomap->bdev)))
242 			use_fua = true;
243 	}
244 
245 	/*
246 	 * Save the original count and trim the iter to just the extent we
247 	 * are operating on right now.  The iter will be re-expanded once
248 	 * we are done.
249 	 */
250 	orig_count = iov_iter_count(dio->submit.iter);
251 	iov_iter_truncate(dio->submit.iter, length);
252 
253 	nr_pages = iov_iter_npages(dio->submit.iter, BIO_MAX_PAGES);
254 	if (nr_pages <= 0) {
255 		ret = nr_pages;
256 		goto out;
257 	}
258 
259 	if (need_zeroout) {
260 		/* zero out from the start of the block to the write offset */
261 		pad = pos & (fs_block_size - 1);
262 		if (pad)
263 			iomap_dio_zero(dio, iomap, pos - pad, pad);
264 	}
265 
266 	do {
267 		size_t n;
268 		if (dio->error) {
269 			iov_iter_revert(dio->submit.iter, copied);
270 			copied = ret = 0;
271 			goto out;
272 		}
273 
274 		bio = bio_alloc(GFP_KERNEL, nr_pages);
275 		bio_set_dev(bio, iomap->bdev);
276 		bio->bi_iter.bi_sector = iomap_sector(iomap, pos);
277 		bio->bi_write_hint = dio->iocb->ki_hint;
278 		bio->bi_ioprio = dio->iocb->ki_ioprio;
279 		bio->bi_private = dio;
280 		bio->bi_end_io = iomap_dio_bio_end_io;
281 
282 		ret = bio_iov_iter_get_pages(bio, dio->submit.iter);
283 		if (unlikely(ret)) {
284 			/*
285 			 * We have to stop part way through an IO. We must fall
286 			 * through to the sub-block tail zeroing here, otherwise
287 			 * this short IO may expose stale data in the tail of
288 			 * the block we haven't written data to.
289 			 */
290 			bio_put(bio);
291 			goto zero_tail;
292 		}
293 
294 		n = bio->bi_iter.bi_size;
295 		if (dio->flags & IOMAP_DIO_WRITE) {
296 			bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
297 			if (use_fua)
298 				bio->bi_opf |= REQ_FUA;
299 			else
300 				dio->flags &= ~IOMAP_DIO_WRITE_FUA;
301 			task_io_account_write(n);
302 		} else {
303 			bio->bi_opf = REQ_OP_READ;
304 			if (dio->flags & IOMAP_DIO_DIRTY)
305 				bio_set_pages_dirty(bio);
306 		}
307 
308 		dio->size += n;
309 		copied += n;
310 
311 		nr_pages = iov_iter_npages(dio->submit.iter, BIO_MAX_PAGES);
312 		iomap_dio_submit_bio(dio, iomap, bio, pos);
313 		pos += n;
314 	} while (nr_pages);
315 
316 	/*
317 	 * We need to zeroout the tail of a sub-block write if the extent type
318 	 * requires zeroing or the write extends beyond EOF. If we don't zero
319 	 * the block tail in the latter case, we can expose stale data via mmap
320 	 * reads of the EOF block.
321 	 */
322 zero_tail:
323 	if (need_zeroout ||
324 	    ((dio->flags & IOMAP_DIO_WRITE) && pos >= i_size_read(inode))) {
325 		/* zero out from the end of the write to the end of the block */
326 		pad = pos & (fs_block_size - 1);
327 		if (pad)
328 			iomap_dio_zero(dio, iomap, pos, fs_block_size - pad);
329 	}
330 out:
331 	/* Undo iter limitation to current extent */
332 	iov_iter_reexpand(dio->submit.iter, orig_count - copied);
333 	if (copied)
334 		return copied;
335 	return ret;
336 }
337 
338 static loff_t
339 iomap_dio_hole_actor(loff_t length, struct iomap_dio *dio)
340 {
341 	length = iov_iter_zero(length, dio->submit.iter);
342 	dio->size += length;
343 	return length;
344 }
345 
346 static loff_t
347 iomap_dio_inline_actor(struct inode *inode, loff_t pos, loff_t length,
348 		struct iomap_dio *dio, struct iomap *iomap)
349 {
350 	struct iov_iter *iter = dio->submit.iter;
351 	size_t copied;
352 
353 	BUG_ON(pos + length > PAGE_SIZE - offset_in_page(iomap->inline_data));
354 
355 	if (dio->flags & IOMAP_DIO_WRITE) {
356 		loff_t size = inode->i_size;
357 
358 		if (pos > size)
359 			memset(iomap->inline_data + size, 0, pos - size);
360 		copied = copy_from_iter(iomap->inline_data + pos, length, iter);
361 		if (copied) {
362 			if (pos + copied > size)
363 				i_size_write(inode, pos + copied);
364 			mark_inode_dirty(inode);
365 		}
366 	} else {
367 		copied = copy_to_iter(iomap->inline_data + pos, length, iter);
368 	}
369 	dio->size += copied;
370 	return copied;
371 }
372 
373 static loff_t
374 iomap_dio_actor(struct inode *inode, loff_t pos, loff_t length,
375 		void *data, struct iomap *iomap, struct iomap *srcmap)
376 {
377 	struct iomap_dio *dio = data;
378 
379 	switch (iomap->type) {
380 	case IOMAP_HOLE:
381 		if (WARN_ON_ONCE(dio->flags & IOMAP_DIO_WRITE))
382 			return -EIO;
383 		return iomap_dio_hole_actor(length, dio);
384 	case IOMAP_UNWRITTEN:
385 		if (!(dio->flags & IOMAP_DIO_WRITE))
386 			return iomap_dio_hole_actor(length, dio);
387 		return iomap_dio_bio_actor(inode, pos, length, dio, iomap);
388 	case IOMAP_MAPPED:
389 		return iomap_dio_bio_actor(inode, pos, length, dio, iomap);
390 	case IOMAP_INLINE:
391 		return iomap_dio_inline_actor(inode, pos, length, dio, iomap);
392 	case IOMAP_DELALLOC:
393 		/*
394 		 * DIO is not serialised against mmap() access at all, and so
395 		 * if the page_mkwrite occurs between the writeback and the
396 		 * iomap_apply() call in the DIO path, then it will see the
397 		 * DELALLOC block that the page-mkwrite allocated.
398 		 */
399 		pr_warn_ratelimited("Direct I/O collision with buffered writes! File: %pD4 Comm: %.20s\n",
400 				    dio->iocb->ki_filp, current->comm);
401 		return -EIO;
402 	default:
403 		WARN_ON_ONCE(1);
404 		return -EIO;
405 	}
406 }
407 
408 /*
409  * iomap_dio_rw() always completes O_[D]SYNC writes regardless of whether the IO
410  * is being issued as AIO or not.  This allows us to optimise pure data writes
411  * to use REQ_FUA rather than requiring generic_write_sync() to issue a
412  * REQ_FLUSH post write. This is slightly tricky because a single request here
413  * can be mapped into multiple disjoint IOs and only a subset of the IOs issued
414  * may be pure data writes. In that case, we still need to do a full data sync
415  * completion.
416  *
417  * Returns -ENOTBLK In case of a page invalidation invalidation failure for
418  * writes.  The callers needs to fall back to buffered I/O in this case.
419  */
420 struct iomap_dio *
421 __iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter,
422 		const struct iomap_ops *ops, const struct iomap_dio_ops *dops,
423 		bool wait_for_completion)
424 {
425 	struct address_space *mapping = iocb->ki_filp->f_mapping;
426 	struct inode *inode = file_inode(iocb->ki_filp);
427 	size_t count = iov_iter_count(iter);
428 	loff_t pos = iocb->ki_pos;
429 	loff_t end = iocb->ki_pos + count - 1, ret = 0;
430 	unsigned int flags = IOMAP_DIRECT;
431 	struct blk_plug plug;
432 	struct iomap_dio *dio;
433 
434 	if (!count)
435 		return NULL;
436 
437 	if (WARN_ON(is_sync_kiocb(iocb) && !wait_for_completion))
438 		return ERR_PTR(-EIO);
439 
440 	dio = kmalloc(sizeof(*dio), GFP_KERNEL);
441 	if (!dio)
442 		return ERR_PTR(-ENOMEM);
443 
444 	dio->iocb = iocb;
445 	atomic_set(&dio->ref, 1);
446 	dio->size = 0;
447 	dio->i_size = i_size_read(inode);
448 	dio->dops = dops;
449 	dio->error = 0;
450 	dio->flags = 0;
451 
452 	dio->submit.iter = iter;
453 	dio->submit.waiter = current;
454 	dio->submit.cookie = BLK_QC_T_NONE;
455 	dio->submit.last_queue = NULL;
456 
457 	if (iov_iter_rw(iter) == READ) {
458 		if (pos >= dio->i_size)
459 			goto out_free_dio;
460 
461 		if (iter_is_iovec(iter))
462 			dio->flags |= IOMAP_DIO_DIRTY;
463 	} else {
464 		flags |= IOMAP_WRITE;
465 		dio->flags |= IOMAP_DIO_WRITE;
466 
467 		/* for data sync or sync, we need sync completion processing */
468 		if (iocb->ki_flags & IOCB_DSYNC)
469 			dio->flags |= IOMAP_DIO_NEED_SYNC;
470 
471 		/*
472 		 * For datasync only writes, we optimistically try using FUA for
473 		 * this IO.  Any non-FUA write that occurs will clear this flag,
474 		 * hence we know before completion whether a cache flush is
475 		 * necessary.
476 		 */
477 		if ((iocb->ki_flags & (IOCB_DSYNC | IOCB_SYNC)) == IOCB_DSYNC)
478 			dio->flags |= IOMAP_DIO_WRITE_FUA;
479 	}
480 
481 	if (iocb->ki_flags & IOCB_NOWAIT) {
482 		if (filemap_range_has_page(mapping, pos, end)) {
483 			ret = -EAGAIN;
484 			goto out_free_dio;
485 		}
486 		flags |= IOMAP_NOWAIT;
487 	}
488 
489 	ret = filemap_write_and_wait_range(mapping, pos, end);
490 	if (ret)
491 		goto out_free_dio;
492 
493 	if (iov_iter_rw(iter) == WRITE) {
494 		/*
495 		 * Try to invalidate cache pages for the range we are writing.
496 		 * If this invalidation fails, let the caller fall back to
497 		 * buffered I/O.
498 		 */
499 		if (invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT,
500 				end >> PAGE_SHIFT)) {
501 			trace_iomap_dio_invalidate_fail(inode, pos, count);
502 			ret = -ENOTBLK;
503 			goto out_free_dio;
504 		}
505 
506 		if (!wait_for_completion && !inode->i_sb->s_dio_done_wq) {
507 			ret = sb_init_dio_done_wq(inode->i_sb);
508 			if (ret < 0)
509 				goto out_free_dio;
510 		}
511 	}
512 
513 	inode_dio_begin(inode);
514 
515 	blk_start_plug(&plug);
516 	do {
517 		ret = iomap_apply(inode, pos, count, flags, ops, dio,
518 				iomap_dio_actor);
519 		if (ret <= 0) {
520 			/* magic error code to fall back to buffered I/O */
521 			if (ret == -ENOTBLK) {
522 				wait_for_completion = true;
523 				ret = 0;
524 			}
525 			break;
526 		}
527 		pos += ret;
528 
529 		if (iov_iter_rw(iter) == READ && pos >= dio->i_size) {
530 			/*
531 			 * We only report that we've read data up to i_size.
532 			 * Revert iter to a state corresponding to that as
533 			 * some callers (such as splice code) rely on it.
534 			 */
535 			iov_iter_revert(iter, pos - dio->i_size);
536 			break;
537 		}
538 	} while ((count = iov_iter_count(iter)) > 0);
539 	blk_finish_plug(&plug);
540 
541 	if (ret < 0)
542 		iomap_dio_set_error(dio, ret);
543 
544 	/*
545 	 * If all the writes we issued were FUA, we don't need to flush the
546 	 * cache on IO completion. Clear the sync flag for this case.
547 	 */
548 	if (dio->flags & IOMAP_DIO_WRITE_FUA)
549 		dio->flags &= ~IOMAP_DIO_NEED_SYNC;
550 
551 	WRITE_ONCE(iocb->ki_cookie, dio->submit.cookie);
552 	WRITE_ONCE(iocb->private, dio->submit.last_queue);
553 
554 	/*
555 	 * We are about to drop our additional submission reference, which
556 	 * might be the last reference to the dio.  There are three different
557 	 * ways we can progress here:
558 	 *
559 	 *  (a) If this is the last reference we will always complete and free
560 	 *	the dio ourselves.
561 	 *  (b) If this is not the last reference, and we serve an asynchronous
562 	 *	iocb, we must never touch the dio after the decrement, the
563 	 *	I/O completion handler will complete and free it.
564 	 *  (c) If this is not the last reference, but we serve a synchronous
565 	 *	iocb, the I/O completion handler will wake us up on the drop
566 	 *	of the final reference, and we will complete and free it here
567 	 *	after we got woken by the I/O completion handler.
568 	 */
569 	dio->wait_for_completion = wait_for_completion;
570 	if (!atomic_dec_and_test(&dio->ref)) {
571 		if (!wait_for_completion)
572 			return ERR_PTR(-EIOCBQUEUED);
573 
574 		for (;;) {
575 			set_current_state(TASK_UNINTERRUPTIBLE);
576 			if (!READ_ONCE(dio->submit.waiter))
577 				break;
578 
579 			if (!(iocb->ki_flags & IOCB_HIPRI) ||
580 			    !dio->submit.last_queue ||
581 			    !blk_poll(dio->submit.last_queue,
582 					 dio->submit.cookie, true))
583 				blk_io_schedule();
584 		}
585 		__set_current_state(TASK_RUNNING);
586 	}
587 
588 	return dio;
589 
590 out_free_dio:
591 	kfree(dio);
592 	if (ret)
593 		return ERR_PTR(ret);
594 	return NULL;
595 }
596 EXPORT_SYMBOL_GPL(__iomap_dio_rw);
597 
598 ssize_t
599 iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter,
600 		const struct iomap_ops *ops, const struct iomap_dio_ops *dops,
601 		bool wait_for_completion)
602 {
603 	struct iomap_dio *dio;
604 
605 	dio = __iomap_dio_rw(iocb, iter, ops, dops, wait_for_completion);
606 	if (IS_ERR_OR_NULL(dio))
607 		return PTR_ERR_OR_ZERO(dio);
608 	return iomap_dio_complete(dio);
609 }
610 EXPORT_SYMBOL_GPL(iomap_dio_rw);
611