1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010 Red Hat, Inc. 4 * Copyright (c) 2016-2025 Christoph Hellwig. 5 */ 6 #include <linux/fscrypt.h> 7 #include <linux/pagemap.h> 8 #include <linux/iomap.h> 9 #include <linux/task_io_accounting_ops.h> 10 #include "internal.h" 11 #include "trace.h" 12 13 #include "../internal.h" 14 15 /* 16 * Private flags for iomap_dio, must not overlap with the public ones in 17 * iomap.h: 18 */ 19 #define IOMAP_DIO_NO_INVALIDATE (1U << 26) 20 #define IOMAP_DIO_COMP_WORK (1U << 27) 21 #define IOMAP_DIO_WRITE_THROUGH (1U << 28) 22 #define IOMAP_DIO_NEED_SYNC (1U << 29) 23 #define IOMAP_DIO_WRITE (1U << 30) 24 #define IOMAP_DIO_DIRTY (1U << 31) 25 26 struct iomap_dio { 27 struct kiocb *iocb; 28 const struct iomap_dio_ops *dops; 29 loff_t i_size; 30 loff_t size; 31 atomic_t ref; 32 unsigned flags; 33 int error; 34 size_t done_before; 35 bool wait_for_completion; 36 37 union { 38 /* used during submission and for synchronous completion: */ 39 struct { 40 struct iov_iter *iter; 41 struct task_struct *waiter; 42 } submit; 43 44 /* used for aio completion: */ 45 struct { 46 struct work_struct work; 47 } aio; 48 }; 49 }; 50 51 static struct bio *iomap_dio_alloc_bio(const struct iomap_iter *iter, 52 struct iomap_dio *dio, unsigned short nr_vecs, blk_opf_t opf) 53 { 54 if (dio->dops && dio->dops->bio_set) 55 return bio_alloc_bioset(iter->iomap.bdev, nr_vecs, opf, 56 GFP_KERNEL, dio->dops->bio_set); 57 return bio_alloc(iter->iomap.bdev, nr_vecs, opf, GFP_KERNEL); 58 } 59 60 static void iomap_dio_submit_bio(const struct iomap_iter *iter, 61 struct iomap_dio *dio, struct bio *bio, loff_t pos) 62 { 63 struct kiocb *iocb = dio->iocb; 64 65 atomic_inc(&dio->ref); 66 67 /* Sync dio can't be polled reliably */ 68 if ((iocb->ki_flags & IOCB_HIPRI) && !is_sync_kiocb(iocb)) { 69 bio_set_polled(bio, iocb); 70 WRITE_ONCE(iocb->private, bio); 71 } 72 73 if (dio->dops && dio->dops->submit_io) { 74 dio->dops->submit_io(iter, bio, pos); 75 } else { 76 WARN_ON_ONCE(iter->iomap.flags & IOMAP_F_ANON_WRITE); 77 submit_bio(bio); 78 } 79 } 80 81 ssize_t iomap_dio_complete(struct iomap_dio *dio) 82 { 83 const struct iomap_dio_ops *dops = dio->dops; 84 struct kiocb *iocb = dio->iocb; 85 loff_t offset = iocb->ki_pos; 86 ssize_t ret = dio->error; 87 88 if (dops && dops->end_io) 89 ret = dops->end_io(iocb, dio->size, ret, dio->flags); 90 91 if (likely(!ret)) { 92 ret = dio->size; 93 /* check for short read */ 94 if (offset + ret > dio->i_size && 95 !(dio->flags & IOMAP_DIO_WRITE)) 96 ret = dio->i_size - offset; 97 } 98 99 /* 100 * Try again to invalidate clean pages which might have been cached by 101 * non-direct readahead, or faulted in by get_user_pages() if the source 102 * of the write was an mmap'ed region of the file we're writing. Either 103 * one is a pretty crazy thing to do, so we don't support it 100%. If 104 * this invalidation fails, tough, the write still worked... 105 * 106 * And this page cache invalidation has to be after ->end_io(), as some 107 * filesystems convert unwritten extents to real allocations in 108 * ->end_io() when necessary, otherwise a racing buffer read would cache 109 * zeros from unwritten extents. 110 */ 111 if (!dio->error && dio->size && (dio->flags & IOMAP_DIO_WRITE) && 112 !(dio->flags & IOMAP_DIO_NO_INVALIDATE)) 113 kiocb_invalidate_post_direct_write(iocb, dio->size); 114 115 inode_dio_end(file_inode(iocb->ki_filp)); 116 117 if (ret > 0) { 118 iocb->ki_pos += ret; 119 120 /* 121 * If this is a DSYNC write, make sure we push it to stable 122 * storage now that we've written data. 123 */ 124 if (dio->flags & IOMAP_DIO_NEED_SYNC) 125 ret = generic_write_sync(iocb, ret); 126 if (ret > 0) 127 ret += dio->done_before; 128 } 129 trace_iomap_dio_complete(iocb, dio->error, ret); 130 kfree(dio); 131 return ret; 132 } 133 EXPORT_SYMBOL_GPL(iomap_dio_complete); 134 135 static void iomap_dio_complete_work(struct work_struct *work) 136 { 137 struct iomap_dio *dio = container_of(work, struct iomap_dio, aio.work); 138 struct kiocb *iocb = dio->iocb; 139 140 iocb->ki_complete(iocb, iomap_dio_complete(dio)); 141 } 142 143 /* 144 * Set an error in the dio if none is set yet. We have to use cmpxchg 145 * as the submission context and the completion context(s) can race to 146 * update the error. 147 */ 148 static inline void iomap_dio_set_error(struct iomap_dio *dio, int ret) 149 { 150 cmpxchg(&dio->error, 0, ret); 151 } 152 153 /* 154 * Called when dio->ref reaches zero from an I/O completion. 155 */ 156 static void iomap_dio_done(struct iomap_dio *dio) 157 { 158 struct kiocb *iocb = dio->iocb; 159 160 if (dio->wait_for_completion) { 161 /* 162 * Synchronous I/O, task itself will handle any completion work 163 * that needs after IO. All we need to do is wake the task. 164 */ 165 struct task_struct *waiter = dio->submit.waiter; 166 167 WRITE_ONCE(dio->submit.waiter, NULL); 168 blk_wake_io_task(waiter); 169 return; 170 } 171 172 /* 173 * Always run error completions in user context. These are not 174 * performance critical and some code relies on taking sleeping locks 175 * for error handling. 176 */ 177 if (dio->error) 178 dio->flags |= IOMAP_DIO_COMP_WORK; 179 180 /* 181 * Never invalidate pages from this context to avoid deadlocks with 182 * buffered I/O completions when called from the ioend workqueue, 183 * or avoid sleeping when called directly from ->bi_end_io. 184 * Tough luck if you hit the tiny race with someone dirtying the range 185 * right between this check and the actual completion. 186 */ 187 if ((dio->flags & IOMAP_DIO_WRITE) && 188 !(dio->flags & IOMAP_DIO_COMP_WORK)) { 189 if (dio->iocb->ki_filp->f_mapping->nrpages) 190 dio->flags |= IOMAP_DIO_COMP_WORK; 191 else 192 dio->flags |= IOMAP_DIO_NO_INVALIDATE; 193 } 194 195 if (dio->flags & IOMAP_DIO_COMP_WORK) { 196 struct inode *inode = file_inode(iocb->ki_filp); 197 198 /* 199 * Async DIO completion that requires filesystem level 200 * completion work gets punted to a work queue to complete as 201 * the operation may require more IO to be issued to finalise 202 * filesystem metadata changes or guarantee data integrity. 203 */ 204 INIT_WORK(&dio->aio.work, iomap_dio_complete_work); 205 queue_work(inode->i_sb->s_dio_done_wq, &dio->aio.work); 206 return; 207 } 208 209 WRITE_ONCE(iocb->private, NULL); 210 iomap_dio_complete_work(&dio->aio.work); 211 } 212 213 void iomap_dio_bio_end_io(struct bio *bio) 214 { 215 struct iomap_dio *dio = bio->bi_private; 216 bool should_dirty = (dio->flags & IOMAP_DIO_DIRTY); 217 218 if (bio->bi_status) 219 iomap_dio_set_error(dio, blk_status_to_errno(bio->bi_status)); 220 221 if (atomic_dec_and_test(&dio->ref)) 222 iomap_dio_done(dio); 223 224 if (should_dirty) { 225 bio_check_pages_dirty(bio); 226 } else { 227 bio_release_pages(bio, false); 228 bio_put(bio); 229 } 230 } 231 EXPORT_SYMBOL_GPL(iomap_dio_bio_end_io); 232 233 u32 iomap_finish_ioend_direct(struct iomap_ioend *ioend) 234 { 235 struct iomap_dio *dio = ioend->io_bio.bi_private; 236 bool should_dirty = (dio->flags & IOMAP_DIO_DIRTY); 237 u32 vec_count = ioend->io_bio.bi_vcnt; 238 239 if (ioend->io_error) 240 iomap_dio_set_error(dio, ioend->io_error); 241 242 if (atomic_dec_and_test(&dio->ref)) { 243 /* 244 * Try to avoid another context switch for the completion given 245 * that we are already called from the ioend completion 246 * workqueue. 247 */ 248 dio->flags &= ~IOMAP_DIO_COMP_WORK; 249 iomap_dio_done(dio); 250 } 251 252 if (should_dirty) { 253 bio_check_pages_dirty(&ioend->io_bio); 254 } else { 255 bio_release_pages(&ioend->io_bio, false); 256 bio_put(&ioend->io_bio); 257 } 258 259 /* 260 * Return the number of bvecs completed as even direct I/O completions 261 * do significant per-folio work and we'll still want to give up the 262 * CPU after a lot of completions. 263 */ 264 return vec_count; 265 } 266 267 static int iomap_dio_zero(const struct iomap_iter *iter, struct iomap_dio *dio, 268 loff_t pos, unsigned len) 269 { 270 struct inode *inode = file_inode(dio->iocb->ki_filp); 271 struct bio *bio; 272 struct folio *zero_folio = largest_zero_folio(); 273 int nr_vecs = max(1, i_blocksize(inode) / folio_size(zero_folio)); 274 275 if (!len) 276 return 0; 277 278 /* 279 * This limit shall never be reached as most filesystems have a 280 * maximum blocksize of 64k. 281 */ 282 if (WARN_ON_ONCE(nr_vecs > BIO_MAX_VECS)) 283 return -EINVAL; 284 285 bio = iomap_dio_alloc_bio(iter, dio, nr_vecs, 286 REQ_OP_WRITE | REQ_SYNC | REQ_IDLE); 287 fscrypt_set_bio_crypt_ctx(bio, inode, pos >> inode->i_blkbits, 288 GFP_KERNEL); 289 bio->bi_iter.bi_sector = iomap_sector(&iter->iomap, pos); 290 bio->bi_private = dio; 291 bio->bi_end_io = iomap_dio_bio_end_io; 292 293 while (len > 0) { 294 unsigned int io_len = min(len, folio_size(zero_folio)); 295 296 bio_add_folio_nofail(bio, zero_folio, io_len, 0); 297 len -= io_len; 298 } 299 iomap_dio_submit_bio(iter, dio, bio, pos); 300 301 return 0; 302 } 303 304 static int iomap_dio_bio_iter(struct iomap_iter *iter, struct iomap_dio *dio) 305 { 306 const struct iomap *iomap = &iter->iomap; 307 struct inode *inode = iter->inode; 308 unsigned int fs_block_size = i_blocksize(inode), pad; 309 const loff_t length = iomap_length(iter); 310 loff_t pos = iter->pos; 311 blk_opf_t bio_opf = REQ_SYNC | REQ_IDLE; 312 struct bio *bio; 313 bool need_zeroout = false; 314 int nr_pages, ret = 0; 315 u64 copied = 0; 316 size_t orig_count; 317 unsigned int alignment; 318 319 /* 320 * File systems that write out of place and always allocate new blocks 321 * need each bio to be block aligned as that's the unit of allocation. 322 */ 323 if (dio->flags & IOMAP_DIO_FSBLOCK_ALIGNED) 324 alignment = fs_block_size; 325 else 326 alignment = bdev_logical_block_size(iomap->bdev); 327 328 if ((pos | length) & (alignment - 1)) 329 return -EINVAL; 330 331 if (dio->flags & IOMAP_DIO_WRITE) { 332 bool need_completion_work = true; 333 334 switch (iomap->type) { 335 case IOMAP_MAPPED: 336 /* 337 * Directly mapped I/O does not inherently need to do 338 * work at I/O completion time. But there are various 339 * cases below where this will get set again. 340 */ 341 need_completion_work = false; 342 break; 343 case IOMAP_UNWRITTEN: 344 dio->flags |= IOMAP_DIO_UNWRITTEN; 345 need_zeroout = true; 346 break; 347 default: 348 break; 349 } 350 351 if (iomap->flags & IOMAP_F_ATOMIC_BIO) { 352 /* 353 * Ensure that the mapping covers the full write 354 * length, otherwise it won't be submitted as a single 355 * bio, which is required to use hardware atomics. 356 */ 357 if (length != iter->len) 358 return -EINVAL; 359 bio_opf |= REQ_ATOMIC; 360 } 361 362 if (iomap->flags & IOMAP_F_SHARED) { 363 /* 364 * Unsharing of needs to update metadata at I/O 365 * completion time. 366 */ 367 need_completion_work = true; 368 dio->flags |= IOMAP_DIO_COW; 369 } 370 371 if (iomap->flags & IOMAP_F_NEW) { 372 /* 373 * Newly allocated blocks might need recording in 374 * metadata at I/O completion time. 375 */ 376 need_completion_work = true; 377 need_zeroout = true; 378 } 379 380 /* 381 * Use a FUA write if we need datasync semantics and this is a 382 * pure overwrite that doesn't require any metadata updates. 383 * 384 * This allows us to avoid cache flushes on I/O completion. 385 */ 386 if (dio->flags & IOMAP_DIO_WRITE_THROUGH) { 387 if (!need_completion_work && 388 !(iomap->flags & IOMAP_F_DIRTY) && 389 (!bdev_write_cache(iomap->bdev) || 390 bdev_fua(iomap->bdev))) 391 bio_opf |= REQ_FUA; 392 else 393 dio->flags &= ~IOMAP_DIO_WRITE_THROUGH; 394 } 395 396 /* 397 * We can only do inline completion for pure overwrites that 398 * don't require additional I/O at completion time. 399 * 400 * This rules out writes that need zeroing or metdata updates to 401 * convert unwritten or shared extents. 402 * 403 * Writes that extend i_size are also not supported, but this is 404 * handled in __iomap_dio_rw(). 405 */ 406 if (need_completion_work) 407 dio->flags |= IOMAP_DIO_COMP_WORK; 408 409 bio_opf |= REQ_OP_WRITE; 410 } else { 411 bio_opf |= REQ_OP_READ; 412 } 413 414 /* 415 * Save the original count and trim the iter to just the extent we 416 * are operating on right now. The iter will be re-expanded once 417 * we are done. 418 */ 419 orig_count = iov_iter_count(dio->submit.iter); 420 iov_iter_truncate(dio->submit.iter, length); 421 422 if (!iov_iter_count(dio->submit.iter)) 423 goto out; 424 425 /* 426 * The rules for polled IO completions follow the guidelines as the 427 * ones we set for inline and deferred completions. If none of those 428 * are available for this IO, clear the polled flag. 429 */ 430 if (dio->flags & IOMAP_DIO_COMP_WORK) 431 dio->iocb->ki_flags &= ~IOCB_HIPRI; 432 433 if (need_zeroout) { 434 /* zero out from the start of the block to the write offset */ 435 pad = pos & (fs_block_size - 1); 436 437 ret = iomap_dio_zero(iter, dio, pos - pad, pad); 438 if (ret) 439 goto out; 440 } 441 442 nr_pages = bio_iov_vecs_to_alloc(dio->submit.iter, BIO_MAX_VECS); 443 do { 444 size_t n; 445 if (dio->error) { 446 iov_iter_revert(dio->submit.iter, copied); 447 copied = ret = 0; 448 goto out; 449 } 450 451 bio = iomap_dio_alloc_bio(iter, dio, nr_pages, bio_opf); 452 fscrypt_set_bio_crypt_ctx(bio, inode, pos >> inode->i_blkbits, 453 GFP_KERNEL); 454 bio->bi_iter.bi_sector = iomap_sector(iomap, pos); 455 bio->bi_write_hint = inode->i_write_hint; 456 bio->bi_ioprio = dio->iocb->ki_ioprio; 457 bio->bi_private = dio; 458 bio->bi_end_io = iomap_dio_bio_end_io; 459 460 ret = bio_iov_iter_get_pages(bio, dio->submit.iter, 461 alignment - 1); 462 if (unlikely(ret)) { 463 /* 464 * We have to stop part way through an IO. We must fall 465 * through to the sub-block tail zeroing here, otherwise 466 * this short IO may expose stale data in the tail of 467 * the block we haven't written data to. 468 */ 469 bio_put(bio); 470 goto zero_tail; 471 } 472 473 n = bio->bi_iter.bi_size; 474 if (WARN_ON_ONCE((bio_opf & REQ_ATOMIC) && n != length)) { 475 /* 476 * An atomic write bio must cover the complete length, 477 * which it doesn't, so error. We may need to zero out 478 * the tail (complete FS block), similar to when 479 * bio_iov_iter_get_pages() returns an error, above. 480 */ 481 ret = -EINVAL; 482 bio_put(bio); 483 goto zero_tail; 484 } 485 if (dio->flags & IOMAP_DIO_WRITE) 486 task_io_account_write(n); 487 else if (dio->flags & IOMAP_DIO_DIRTY) 488 bio_set_pages_dirty(bio); 489 490 dio->size += n; 491 copied += n; 492 493 nr_pages = bio_iov_vecs_to_alloc(dio->submit.iter, 494 BIO_MAX_VECS); 495 /* 496 * We can only poll for single bio I/Os. 497 */ 498 if (nr_pages) 499 dio->iocb->ki_flags &= ~IOCB_HIPRI; 500 iomap_dio_submit_bio(iter, dio, bio, pos); 501 pos += n; 502 } while (nr_pages); 503 504 /* 505 * We need to zeroout the tail of a sub-block write if the extent type 506 * requires zeroing or the write extends beyond EOF. If we don't zero 507 * the block tail in the latter case, we can expose stale data via mmap 508 * reads of the EOF block. 509 */ 510 zero_tail: 511 if (need_zeroout || 512 ((dio->flags & IOMAP_DIO_WRITE) && pos >= i_size_read(inode))) { 513 /* zero out from the end of the write to the end of the block */ 514 pad = pos & (fs_block_size - 1); 515 if (pad) 516 ret = iomap_dio_zero(iter, dio, pos, 517 fs_block_size - pad); 518 } 519 out: 520 /* Undo iter limitation to current extent */ 521 iov_iter_reexpand(dio->submit.iter, orig_count - copied); 522 if (copied) 523 return iomap_iter_advance(iter, copied); 524 return ret; 525 } 526 527 static int iomap_dio_hole_iter(struct iomap_iter *iter, struct iomap_dio *dio) 528 { 529 loff_t length = iov_iter_zero(iomap_length(iter), dio->submit.iter); 530 531 dio->size += length; 532 if (!length) 533 return -EFAULT; 534 return iomap_iter_advance(iter, length); 535 } 536 537 static int iomap_dio_inline_iter(struct iomap_iter *iomi, struct iomap_dio *dio) 538 { 539 const struct iomap *iomap = &iomi->iomap; 540 struct iov_iter *iter = dio->submit.iter; 541 void *inline_data = iomap_inline_data(iomap, iomi->pos); 542 loff_t length = iomap_length(iomi); 543 loff_t pos = iomi->pos; 544 u64 copied; 545 546 if (WARN_ON_ONCE(!inline_data)) 547 return -EIO; 548 549 if (WARN_ON_ONCE(!iomap_inline_data_valid(iomap))) 550 return -EIO; 551 552 if (dio->flags & IOMAP_DIO_WRITE) { 553 loff_t size = iomi->inode->i_size; 554 555 if (pos > size) 556 memset(iomap_inline_data(iomap, size), 0, pos - size); 557 copied = copy_from_iter(inline_data, length, iter); 558 if (copied) { 559 if (pos + copied > size) 560 i_size_write(iomi->inode, pos + copied); 561 mark_inode_dirty(iomi->inode); 562 } 563 } else { 564 copied = copy_to_iter(inline_data, length, iter); 565 } 566 dio->size += copied; 567 if (!copied) 568 return -EFAULT; 569 return iomap_iter_advance(iomi, copied); 570 } 571 572 static int iomap_dio_iter(struct iomap_iter *iter, struct iomap_dio *dio) 573 { 574 switch (iter->iomap.type) { 575 case IOMAP_HOLE: 576 if (WARN_ON_ONCE(dio->flags & IOMAP_DIO_WRITE)) 577 return -EIO; 578 return iomap_dio_hole_iter(iter, dio); 579 case IOMAP_UNWRITTEN: 580 if (!(dio->flags & IOMAP_DIO_WRITE)) 581 return iomap_dio_hole_iter(iter, dio); 582 return iomap_dio_bio_iter(iter, dio); 583 case IOMAP_MAPPED: 584 return iomap_dio_bio_iter(iter, dio); 585 case IOMAP_INLINE: 586 return iomap_dio_inline_iter(iter, dio); 587 case IOMAP_DELALLOC: 588 /* 589 * DIO is not serialised against mmap() access at all, and so 590 * if the page_mkwrite occurs between the writeback and the 591 * iomap_iter() call in the DIO path, then it will see the 592 * DELALLOC block that the page-mkwrite allocated. 593 */ 594 pr_warn_ratelimited("Direct I/O collision with buffered writes! File: %pD4 Comm: %.20s\n", 595 dio->iocb->ki_filp, current->comm); 596 return -EIO; 597 default: 598 WARN_ON_ONCE(1); 599 return -EIO; 600 } 601 } 602 603 /* 604 * iomap_dio_rw() always completes O_[D]SYNC writes regardless of whether the IO 605 * is being issued as AIO or not. This allows us to optimise pure data writes 606 * to use REQ_FUA rather than requiring generic_write_sync() to issue a 607 * REQ_FLUSH post write. This is slightly tricky because a single request here 608 * can be mapped into multiple disjoint IOs and only a subset of the IOs issued 609 * may be pure data writes. In that case, we still need to do a full data sync 610 * completion. 611 * 612 * When page faults are disabled and @dio_flags includes IOMAP_DIO_PARTIAL, 613 * __iomap_dio_rw can return a partial result if it encounters a non-resident 614 * page in @iter after preparing a transfer. In that case, the non-resident 615 * pages can be faulted in and the request resumed with @done_before set to the 616 * number of bytes previously transferred. The request will then complete with 617 * the correct total number of bytes transferred; this is essential for 618 * completing partial requests asynchronously. 619 * 620 * Returns -ENOTBLK In case of a page invalidation invalidation failure for 621 * writes. The callers needs to fall back to buffered I/O in this case. 622 */ 623 struct iomap_dio * 624 __iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter, 625 const struct iomap_ops *ops, const struct iomap_dio_ops *dops, 626 unsigned int dio_flags, void *private, size_t done_before) 627 { 628 struct inode *inode = file_inode(iocb->ki_filp); 629 struct iomap_iter iomi = { 630 .inode = inode, 631 .pos = iocb->ki_pos, 632 .len = iov_iter_count(iter), 633 .flags = IOMAP_DIRECT, 634 .private = private, 635 }; 636 bool wait_for_completion = 637 is_sync_kiocb(iocb) || (dio_flags & IOMAP_DIO_FORCE_WAIT); 638 struct blk_plug plug; 639 struct iomap_dio *dio; 640 loff_t ret = 0; 641 642 trace_iomap_dio_rw_begin(iocb, iter, dio_flags, done_before); 643 644 if (!iomi.len) 645 return NULL; 646 647 dio = kmalloc(sizeof(*dio), GFP_KERNEL); 648 if (!dio) 649 return ERR_PTR(-ENOMEM); 650 651 dio->iocb = iocb; 652 atomic_set(&dio->ref, 1); 653 dio->size = 0; 654 dio->i_size = i_size_read(inode); 655 dio->dops = dops; 656 dio->error = 0; 657 dio->flags = 0; 658 dio->done_before = done_before; 659 660 dio->submit.iter = iter; 661 dio->submit.waiter = current; 662 663 if (iocb->ki_flags & IOCB_NOWAIT) 664 iomi.flags |= IOMAP_NOWAIT; 665 666 if (dio_flags & IOMAP_DIO_FSBLOCK_ALIGNED) 667 dio->flags |= IOMAP_DIO_FSBLOCK_ALIGNED; 668 669 if (iov_iter_rw(iter) == READ) { 670 if (iomi.pos >= dio->i_size) 671 goto out_free_dio; 672 673 if (user_backed_iter(iter)) 674 dio->flags |= IOMAP_DIO_DIRTY; 675 676 ret = kiocb_write_and_wait(iocb, iomi.len); 677 if (ret) 678 goto out_free_dio; 679 } else { 680 iomi.flags |= IOMAP_WRITE; 681 dio->flags |= IOMAP_DIO_WRITE; 682 683 if (dio_flags & IOMAP_DIO_OVERWRITE_ONLY) { 684 ret = -EAGAIN; 685 if (iomi.pos >= dio->i_size || 686 iomi.pos + iomi.len > dio->i_size) 687 goto out_free_dio; 688 iomi.flags |= IOMAP_OVERWRITE_ONLY; 689 } 690 691 if (iocb->ki_flags & IOCB_ATOMIC) 692 iomi.flags |= IOMAP_ATOMIC; 693 694 /* for data sync or sync, we need sync completion processing */ 695 if (iocb_is_dsync(iocb)) { 696 dio->flags |= IOMAP_DIO_NEED_SYNC; 697 698 /* 699 * For datasync only writes, we optimistically try using 700 * WRITE_THROUGH for this IO. This flag requires either 701 * FUA writes through the device's write cache, or a 702 * normal write to a device without a volatile write 703 * cache. For the former, Any non-FUA write that occurs 704 * will clear this flag, hence we know before completion 705 * whether a cache flush is necessary. 706 */ 707 if (!(iocb->ki_flags & IOCB_SYNC)) 708 dio->flags |= IOMAP_DIO_WRITE_THROUGH; 709 } 710 711 /* 712 * i_size updates must to happen from process context. 713 */ 714 if (iomi.pos + iomi.len > dio->i_size) 715 dio->flags |= IOMAP_DIO_COMP_WORK; 716 717 /* 718 * Try to invalidate cache pages for the range we are writing. 719 * If this invalidation fails, let the caller fall back to 720 * buffered I/O. 721 */ 722 ret = kiocb_invalidate_pages(iocb, iomi.len); 723 if (ret) { 724 if (ret != -EAGAIN) { 725 trace_iomap_dio_invalidate_fail(inode, iomi.pos, 726 iomi.len); 727 if (iocb->ki_flags & IOCB_ATOMIC) { 728 /* 729 * folio invalidation failed, maybe 730 * this is transient, unlock and see if 731 * the caller tries again. 732 */ 733 ret = -EAGAIN; 734 } else { 735 /* fall back to buffered write */ 736 ret = -ENOTBLK; 737 } 738 } 739 goto out_free_dio; 740 } 741 } 742 743 if (!wait_for_completion && !inode->i_sb->s_dio_done_wq) { 744 ret = sb_init_dio_done_wq(inode->i_sb); 745 if (ret < 0) 746 goto out_free_dio; 747 } 748 749 inode_dio_begin(inode); 750 751 blk_start_plug(&plug); 752 while ((ret = iomap_iter(&iomi, ops)) > 0) { 753 iomi.status = iomap_dio_iter(&iomi, dio); 754 755 /* 756 * We can only poll for single bio I/Os. 757 */ 758 iocb->ki_flags &= ~IOCB_HIPRI; 759 } 760 761 blk_finish_plug(&plug); 762 763 /* 764 * We only report that we've read data up to i_size. 765 * Revert iter to a state corresponding to that as some callers (such 766 * as the splice code) rely on it. 767 */ 768 if (iov_iter_rw(iter) == READ && iomi.pos >= dio->i_size) 769 iov_iter_revert(iter, iomi.pos - dio->i_size); 770 771 if (ret == -EFAULT && dio->size && (dio_flags & IOMAP_DIO_PARTIAL)) { 772 if (!(iocb->ki_flags & IOCB_NOWAIT)) 773 wait_for_completion = true; 774 ret = 0; 775 } 776 777 /* magic error code to fall back to buffered I/O */ 778 if (ret == -ENOTBLK) { 779 wait_for_completion = true; 780 ret = 0; 781 } 782 if (ret < 0) 783 iomap_dio_set_error(dio, ret); 784 785 /* 786 * If all the writes we issued were already written through to the 787 * media, we don't need to flush the cache on IO completion. Clear the 788 * sync flag for this case. 789 * 790 * Otherwise clear the inline completion flag if any sync work is 791 * needed, as that needs to be performed from process context. 792 */ 793 if (dio->flags & IOMAP_DIO_WRITE_THROUGH) 794 dio->flags &= ~IOMAP_DIO_NEED_SYNC; 795 else if (dio->flags & IOMAP_DIO_NEED_SYNC) 796 dio->flags |= IOMAP_DIO_COMP_WORK; 797 798 /* 799 * We are about to drop our additional submission reference, which 800 * might be the last reference to the dio. There are three different 801 * ways we can progress here: 802 * 803 * (a) If this is the last reference we will always complete and free 804 * the dio ourselves. 805 * (b) If this is not the last reference, and we serve an asynchronous 806 * iocb, we must never touch the dio after the decrement, the 807 * I/O completion handler will complete and free it. 808 * (c) If this is not the last reference, but we serve a synchronous 809 * iocb, the I/O completion handler will wake us up on the drop 810 * of the final reference, and we will complete and free it here 811 * after we got woken by the I/O completion handler. 812 */ 813 dio->wait_for_completion = wait_for_completion; 814 if (!atomic_dec_and_test(&dio->ref)) { 815 if (!wait_for_completion) { 816 trace_iomap_dio_rw_queued(inode, iomi.pos, iomi.len); 817 return ERR_PTR(-EIOCBQUEUED); 818 } 819 820 for (;;) { 821 set_current_state(TASK_UNINTERRUPTIBLE); 822 if (!READ_ONCE(dio->submit.waiter)) 823 break; 824 825 blk_io_schedule(); 826 } 827 __set_current_state(TASK_RUNNING); 828 } 829 830 return dio; 831 832 out_free_dio: 833 kfree(dio); 834 if (ret) 835 return ERR_PTR(ret); 836 return NULL; 837 } 838 EXPORT_SYMBOL_GPL(__iomap_dio_rw); 839 840 ssize_t 841 iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter, 842 const struct iomap_ops *ops, const struct iomap_dio_ops *dops, 843 unsigned int dio_flags, void *private, size_t done_before) 844 { 845 struct iomap_dio *dio; 846 847 dio = __iomap_dio_rw(iocb, iter, ops, dops, dio_flags, private, 848 done_before); 849 if (IS_ERR_OR_NULL(dio)) 850 return PTR_ERR_OR_ZERO(dio); 851 return iomap_dio_complete(dio); 852 } 853 EXPORT_SYMBOL_GPL(iomap_dio_rw); 854