1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010 Red Hat, Inc. 4 * Copyright (c) 2016-2025 Christoph Hellwig. 5 */ 6 #include <linux/fscrypt.h> 7 #include <linux/pagemap.h> 8 #include <linux/iomap.h> 9 #include <linux/task_io_accounting_ops.h> 10 #include "internal.h" 11 #include "trace.h" 12 13 #include "../internal.h" 14 15 /* 16 * Private flags for iomap_dio, must not overlap with the public ones in 17 * iomap.h: 18 */ 19 #define IOMAP_DIO_NO_INVALIDATE (1U << 25) 20 #define IOMAP_DIO_CALLER_COMP (1U << 26) 21 #define IOMAP_DIO_INLINE_COMP (1U << 27) 22 #define IOMAP_DIO_WRITE_THROUGH (1U << 28) 23 #define IOMAP_DIO_NEED_SYNC (1U << 29) 24 #define IOMAP_DIO_WRITE (1U << 30) 25 #define IOMAP_DIO_DIRTY (1U << 31) 26 27 /* 28 * Used for sub block zeroing in iomap_dio_zero() 29 */ 30 #define IOMAP_ZERO_PAGE_SIZE (SZ_64K) 31 #define IOMAP_ZERO_PAGE_ORDER (get_order(IOMAP_ZERO_PAGE_SIZE)) 32 static struct page *zero_page; 33 34 struct iomap_dio { 35 struct kiocb *iocb; 36 const struct iomap_dio_ops *dops; 37 loff_t i_size; 38 loff_t size; 39 atomic_t ref; 40 unsigned flags; 41 int error; 42 size_t done_before; 43 bool wait_for_completion; 44 45 union { 46 /* used during submission and for synchronous completion: */ 47 struct { 48 struct iov_iter *iter; 49 struct task_struct *waiter; 50 } submit; 51 52 /* used for aio completion: */ 53 struct { 54 struct work_struct work; 55 } aio; 56 }; 57 }; 58 59 static struct bio *iomap_dio_alloc_bio(const struct iomap_iter *iter, 60 struct iomap_dio *dio, unsigned short nr_vecs, blk_opf_t opf) 61 { 62 if (dio->dops && dio->dops->bio_set) 63 return bio_alloc_bioset(iter->iomap.bdev, nr_vecs, opf, 64 GFP_KERNEL, dio->dops->bio_set); 65 return bio_alloc(iter->iomap.bdev, nr_vecs, opf, GFP_KERNEL); 66 } 67 68 static void iomap_dio_submit_bio(const struct iomap_iter *iter, 69 struct iomap_dio *dio, struct bio *bio, loff_t pos) 70 { 71 struct kiocb *iocb = dio->iocb; 72 73 atomic_inc(&dio->ref); 74 75 /* Sync dio can't be polled reliably */ 76 if ((iocb->ki_flags & IOCB_HIPRI) && !is_sync_kiocb(iocb)) { 77 bio_set_polled(bio, iocb); 78 WRITE_ONCE(iocb->private, bio); 79 } 80 81 if (dio->dops && dio->dops->submit_io) { 82 dio->dops->submit_io(iter, bio, pos); 83 } else { 84 WARN_ON_ONCE(iter->iomap.flags & IOMAP_F_ANON_WRITE); 85 submit_bio(bio); 86 } 87 } 88 89 ssize_t iomap_dio_complete(struct iomap_dio *dio) 90 { 91 const struct iomap_dio_ops *dops = dio->dops; 92 struct kiocb *iocb = dio->iocb; 93 loff_t offset = iocb->ki_pos; 94 ssize_t ret = dio->error; 95 96 if (dops && dops->end_io) 97 ret = dops->end_io(iocb, dio->size, ret, dio->flags); 98 99 if (likely(!ret)) { 100 ret = dio->size; 101 /* check for short read */ 102 if (offset + ret > dio->i_size && 103 !(dio->flags & IOMAP_DIO_WRITE)) 104 ret = dio->i_size - offset; 105 } 106 107 /* 108 * Try again to invalidate clean pages which might have been cached by 109 * non-direct readahead, or faulted in by get_user_pages() if the source 110 * of the write was an mmap'ed region of the file we're writing. Either 111 * one is a pretty crazy thing to do, so we don't support it 100%. If 112 * this invalidation fails, tough, the write still worked... 113 * 114 * And this page cache invalidation has to be after ->end_io(), as some 115 * filesystems convert unwritten extents to real allocations in 116 * ->end_io() when necessary, otherwise a racing buffer read would cache 117 * zeros from unwritten extents. 118 */ 119 if (!dio->error && dio->size && (dio->flags & IOMAP_DIO_WRITE) && 120 !(dio->flags & IOMAP_DIO_NO_INVALIDATE)) 121 kiocb_invalidate_post_direct_write(iocb, dio->size); 122 123 inode_dio_end(file_inode(iocb->ki_filp)); 124 125 if (ret > 0) { 126 iocb->ki_pos += ret; 127 128 /* 129 * If this is a DSYNC write, make sure we push it to stable 130 * storage now that we've written data. 131 */ 132 if (dio->flags & IOMAP_DIO_NEED_SYNC) 133 ret = generic_write_sync(iocb, ret); 134 if (ret > 0) 135 ret += dio->done_before; 136 } 137 trace_iomap_dio_complete(iocb, dio->error, ret); 138 kfree(dio); 139 return ret; 140 } 141 EXPORT_SYMBOL_GPL(iomap_dio_complete); 142 143 static ssize_t iomap_dio_deferred_complete(void *data) 144 { 145 return iomap_dio_complete(data); 146 } 147 148 static void iomap_dio_complete_work(struct work_struct *work) 149 { 150 struct iomap_dio *dio = container_of(work, struct iomap_dio, aio.work); 151 struct kiocb *iocb = dio->iocb; 152 153 iocb->ki_complete(iocb, iomap_dio_complete(dio)); 154 } 155 156 /* 157 * Set an error in the dio if none is set yet. We have to use cmpxchg 158 * as the submission context and the completion context(s) can race to 159 * update the error. 160 */ 161 static inline void iomap_dio_set_error(struct iomap_dio *dio, int ret) 162 { 163 cmpxchg(&dio->error, 0, ret); 164 } 165 166 /* 167 * Called when dio->ref reaches zero from an I/O completion. 168 */ 169 static void iomap_dio_done(struct iomap_dio *dio) 170 { 171 struct kiocb *iocb = dio->iocb; 172 173 if (dio->wait_for_completion) { 174 /* 175 * Synchronous I/O, task itself will handle any completion work 176 * that needs after IO. All we need to do is wake the task. 177 */ 178 struct task_struct *waiter = dio->submit.waiter; 179 180 WRITE_ONCE(dio->submit.waiter, NULL); 181 blk_wake_io_task(waiter); 182 } else if (dio->flags & IOMAP_DIO_INLINE_COMP) { 183 WRITE_ONCE(iocb->private, NULL); 184 iomap_dio_complete_work(&dio->aio.work); 185 } else if (dio->flags & IOMAP_DIO_CALLER_COMP) { 186 /* 187 * If this dio is flagged with IOMAP_DIO_CALLER_COMP, then 188 * schedule our completion that way to avoid an async punt to a 189 * workqueue. 190 */ 191 /* only polled IO cares about private cleared */ 192 iocb->private = dio; 193 iocb->dio_complete = iomap_dio_deferred_complete; 194 195 /* 196 * Invoke ->ki_complete() directly. We've assigned our 197 * dio_complete callback handler, and since the issuer set 198 * IOCB_DIO_CALLER_COMP, we know their ki_complete handler will 199 * notice ->dio_complete being set and will defer calling that 200 * handler until it can be done from a safe task context. 201 * 202 * Note that the 'res' being passed in here is not important 203 * for this case. The actual completion value of the request 204 * will be gotten from dio_complete when that is run by the 205 * issuer. 206 */ 207 iocb->ki_complete(iocb, 0); 208 } else { 209 struct inode *inode = file_inode(iocb->ki_filp); 210 211 /* 212 * Async DIO completion that requires filesystem level 213 * completion work gets punted to a work queue to complete as 214 * the operation may require more IO to be issued to finalise 215 * filesystem metadata changes or guarantee data integrity. 216 */ 217 INIT_WORK(&dio->aio.work, iomap_dio_complete_work); 218 queue_work(inode->i_sb->s_dio_done_wq, &dio->aio.work); 219 } 220 } 221 222 void iomap_dio_bio_end_io(struct bio *bio) 223 { 224 struct iomap_dio *dio = bio->bi_private; 225 bool should_dirty = (dio->flags & IOMAP_DIO_DIRTY); 226 227 if (bio->bi_status) 228 iomap_dio_set_error(dio, blk_status_to_errno(bio->bi_status)); 229 230 if (atomic_dec_and_test(&dio->ref)) 231 iomap_dio_done(dio); 232 233 if (should_dirty) { 234 bio_check_pages_dirty(bio); 235 } else { 236 bio_release_pages(bio, false); 237 bio_put(bio); 238 } 239 } 240 EXPORT_SYMBOL_GPL(iomap_dio_bio_end_io); 241 242 u32 iomap_finish_ioend_direct(struct iomap_ioend *ioend) 243 { 244 struct iomap_dio *dio = ioend->io_bio.bi_private; 245 bool should_dirty = (dio->flags & IOMAP_DIO_DIRTY); 246 u32 vec_count = ioend->io_bio.bi_vcnt; 247 248 if (ioend->io_error) 249 iomap_dio_set_error(dio, ioend->io_error); 250 251 if (atomic_dec_and_test(&dio->ref)) { 252 /* 253 * Try to avoid another context switch for the completion given 254 * that we are already called from the ioend completion 255 * workqueue, but never invalidate pages from this thread to 256 * avoid deadlocks with buffered I/O completions. Tough luck if 257 * you hit the tiny race with someone dirtying the range now 258 * between this check and the actual completion. 259 */ 260 if (!dio->iocb->ki_filp->f_mapping->nrpages) { 261 dio->flags |= IOMAP_DIO_INLINE_COMP; 262 dio->flags |= IOMAP_DIO_NO_INVALIDATE; 263 } 264 dio->flags &= ~IOMAP_DIO_CALLER_COMP; 265 iomap_dio_done(dio); 266 } 267 268 if (should_dirty) { 269 bio_check_pages_dirty(&ioend->io_bio); 270 } else { 271 bio_release_pages(&ioend->io_bio, false); 272 bio_put(&ioend->io_bio); 273 } 274 275 /* 276 * Return the number of bvecs completed as even direct I/O completions 277 * do significant per-folio work and we'll still want to give up the 278 * CPU after a lot of completions. 279 */ 280 return vec_count; 281 } 282 283 static int iomap_dio_zero(const struct iomap_iter *iter, struct iomap_dio *dio, 284 loff_t pos, unsigned len) 285 { 286 struct inode *inode = file_inode(dio->iocb->ki_filp); 287 struct bio *bio; 288 289 if (!len) 290 return 0; 291 /* 292 * Max block size supported is 64k 293 */ 294 if (WARN_ON_ONCE(len > IOMAP_ZERO_PAGE_SIZE)) 295 return -EINVAL; 296 297 bio = iomap_dio_alloc_bio(iter, dio, 1, REQ_OP_WRITE | REQ_SYNC | REQ_IDLE); 298 fscrypt_set_bio_crypt_ctx(bio, inode, pos >> inode->i_blkbits, 299 GFP_KERNEL); 300 bio->bi_iter.bi_sector = iomap_sector(&iter->iomap, pos); 301 bio->bi_private = dio; 302 bio->bi_end_io = iomap_dio_bio_end_io; 303 304 __bio_add_page(bio, zero_page, len, 0); 305 iomap_dio_submit_bio(iter, dio, bio, pos); 306 return 0; 307 } 308 309 /* 310 * Use a FUA write if we need datasync semantics and this is a pure data I/O 311 * that doesn't require any metadata updates (including after I/O completion 312 * such as unwritten extent conversion) and the underlying device either 313 * doesn't have a volatile write cache or supports FUA. 314 * This allows us to avoid cache flushes on I/O completion. 315 */ 316 static inline bool iomap_dio_can_use_fua(const struct iomap *iomap, 317 struct iomap_dio *dio) 318 { 319 if (iomap->flags & (IOMAP_F_SHARED | IOMAP_F_DIRTY)) 320 return false; 321 if (!(dio->flags & IOMAP_DIO_WRITE_THROUGH)) 322 return false; 323 return !bdev_write_cache(iomap->bdev) || bdev_fua(iomap->bdev); 324 } 325 326 static int iomap_dio_bio_iter(struct iomap_iter *iter, struct iomap_dio *dio) 327 { 328 const struct iomap *iomap = &iter->iomap; 329 struct inode *inode = iter->inode; 330 unsigned int fs_block_size = i_blocksize(inode), pad; 331 const loff_t length = iomap_length(iter); 332 loff_t pos = iter->pos; 333 blk_opf_t bio_opf = REQ_SYNC | REQ_IDLE; 334 struct bio *bio; 335 bool need_zeroout = false; 336 int nr_pages, ret = 0; 337 u64 copied = 0; 338 size_t orig_count; 339 340 if ((pos | length) & (bdev_logical_block_size(iomap->bdev) - 1) || 341 !bdev_iter_is_aligned(iomap->bdev, dio->submit.iter)) 342 return -EINVAL; 343 344 if (dio->flags & IOMAP_DIO_WRITE) { 345 bio_opf |= REQ_OP_WRITE; 346 347 if (iomap->flags & IOMAP_F_ATOMIC_BIO) { 348 /* 349 * Ensure that the mapping covers the full write 350 * length, otherwise it won't be submitted as a single 351 * bio, which is required to use hardware atomics. 352 */ 353 if (length != iter->len) 354 return -EINVAL; 355 bio_opf |= REQ_ATOMIC; 356 } 357 358 if (iomap->type == IOMAP_UNWRITTEN) { 359 dio->flags |= IOMAP_DIO_UNWRITTEN; 360 need_zeroout = true; 361 } 362 363 if (iomap->flags & IOMAP_F_SHARED) 364 dio->flags |= IOMAP_DIO_COW; 365 366 if (iomap->flags & IOMAP_F_NEW) 367 need_zeroout = true; 368 else if (iomap->type == IOMAP_MAPPED && 369 iomap_dio_can_use_fua(iomap, dio)) 370 bio_opf |= REQ_FUA; 371 372 if (!(bio_opf & REQ_FUA)) 373 dio->flags &= ~IOMAP_DIO_WRITE_THROUGH; 374 375 /* 376 * We can only do deferred completion for pure overwrites that 377 * don't require additional I/O at completion time. 378 * 379 * This rules out writes that need zeroing or extent conversion, 380 * extend the file size, or issue metadata I/O or cache flushes 381 * during completion processing. 382 */ 383 if (need_zeroout || (pos >= i_size_read(inode)) || 384 ((dio->flags & IOMAP_DIO_NEED_SYNC) && 385 !(bio_opf & REQ_FUA))) 386 dio->flags &= ~IOMAP_DIO_CALLER_COMP; 387 } else { 388 bio_opf |= REQ_OP_READ; 389 } 390 391 /* 392 * Save the original count and trim the iter to just the extent we 393 * are operating on right now. The iter will be re-expanded once 394 * we are done. 395 */ 396 orig_count = iov_iter_count(dio->submit.iter); 397 iov_iter_truncate(dio->submit.iter, length); 398 399 if (!iov_iter_count(dio->submit.iter)) 400 goto out; 401 402 /* 403 * The rules for polled IO completions follow the guidelines as the 404 * ones we set for inline and deferred completions. If none of those 405 * are available for this IO, clear the polled flag. 406 */ 407 if (!(dio->flags & (IOMAP_DIO_INLINE_COMP|IOMAP_DIO_CALLER_COMP))) 408 dio->iocb->ki_flags &= ~IOCB_HIPRI; 409 410 if (need_zeroout) { 411 /* zero out from the start of the block to the write offset */ 412 pad = pos & (fs_block_size - 1); 413 414 ret = iomap_dio_zero(iter, dio, pos - pad, pad); 415 if (ret) 416 goto out; 417 } 418 419 nr_pages = bio_iov_vecs_to_alloc(dio->submit.iter, BIO_MAX_VECS); 420 do { 421 size_t n; 422 if (dio->error) { 423 iov_iter_revert(dio->submit.iter, copied); 424 copied = ret = 0; 425 goto out; 426 } 427 428 bio = iomap_dio_alloc_bio(iter, dio, nr_pages, bio_opf); 429 fscrypt_set_bio_crypt_ctx(bio, inode, pos >> inode->i_blkbits, 430 GFP_KERNEL); 431 bio->bi_iter.bi_sector = iomap_sector(iomap, pos); 432 bio->bi_write_hint = inode->i_write_hint; 433 bio->bi_ioprio = dio->iocb->ki_ioprio; 434 bio->bi_private = dio; 435 bio->bi_end_io = iomap_dio_bio_end_io; 436 437 ret = bio_iov_iter_get_pages(bio, dio->submit.iter); 438 if (unlikely(ret)) { 439 /* 440 * We have to stop part way through an IO. We must fall 441 * through to the sub-block tail zeroing here, otherwise 442 * this short IO may expose stale data in the tail of 443 * the block we haven't written data to. 444 */ 445 bio_put(bio); 446 goto zero_tail; 447 } 448 449 n = bio->bi_iter.bi_size; 450 if (WARN_ON_ONCE((bio_opf & REQ_ATOMIC) && n != length)) { 451 /* 452 * An atomic write bio must cover the complete length, 453 * which it doesn't, so error. We may need to zero out 454 * the tail (complete FS block), similar to when 455 * bio_iov_iter_get_pages() returns an error, above. 456 */ 457 ret = -EINVAL; 458 bio_put(bio); 459 goto zero_tail; 460 } 461 if (dio->flags & IOMAP_DIO_WRITE) 462 task_io_account_write(n); 463 else if (dio->flags & IOMAP_DIO_DIRTY) 464 bio_set_pages_dirty(bio); 465 466 dio->size += n; 467 copied += n; 468 469 nr_pages = bio_iov_vecs_to_alloc(dio->submit.iter, 470 BIO_MAX_VECS); 471 /* 472 * We can only poll for single bio I/Os. 473 */ 474 if (nr_pages) 475 dio->iocb->ki_flags &= ~IOCB_HIPRI; 476 iomap_dio_submit_bio(iter, dio, bio, pos); 477 pos += n; 478 } while (nr_pages); 479 480 /* 481 * We need to zeroout the tail of a sub-block write if the extent type 482 * requires zeroing or the write extends beyond EOF. If we don't zero 483 * the block tail in the latter case, we can expose stale data via mmap 484 * reads of the EOF block. 485 */ 486 zero_tail: 487 if (need_zeroout || 488 ((dio->flags & IOMAP_DIO_WRITE) && pos >= i_size_read(inode))) { 489 /* zero out from the end of the write to the end of the block */ 490 pad = pos & (fs_block_size - 1); 491 if (pad) 492 ret = iomap_dio_zero(iter, dio, pos, 493 fs_block_size - pad); 494 } 495 out: 496 /* Undo iter limitation to current extent */ 497 iov_iter_reexpand(dio->submit.iter, orig_count - copied); 498 if (copied) 499 return iomap_iter_advance(iter, &copied); 500 return ret; 501 } 502 503 static int iomap_dio_hole_iter(struct iomap_iter *iter, struct iomap_dio *dio) 504 { 505 loff_t length = iov_iter_zero(iomap_length(iter), dio->submit.iter); 506 507 dio->size += length; 508 if (!length) 509 return -EFAULT; 510 return iomap_iter_advance(iter, &length); 511 } 512 513 static int iomap_dio_inline_iter(struct iomap_iter *iomi, struct iomap_dio *dio) 514 { 515 const struct iomap *iomap = &iomi->iomap; 516 struct iov_iter *iter = dio->submit.iter; 517 void *inline_data = iomap_inline_data(iomap, iomi->pos); 518 loff_t length = iomap_length(iomi); 519 loff_t pos = iomi->pos; 520 u64 copied; 521 522 if (WARN_ON_ONCE(!inline_data)) 523 return -EIO; 524 525 if (WARN_ON_ONCE(!iomap_inline_data_valid(iomap))) 526 return -EIO; 527 528 if (dio->flags & IOMAP_DIO_WRITE) { 529 loff_t size = iomi->inode->i_size; 530 531 if (pos > size) 532 memset(iomap_inline_data(iomap, size), 0, pos - size); 533 copied = copy_from_iter(inline_data, length, iter); 534 if (copied) { 535 if (pos + copied > size) 536 i_size_write(iomi->inode, pos + copied); 537 mark_inode_dirty(iomi->inode); 538 } 539 } else { 540 copied = copy_to_iter(inline_data, length, iter); 541 } 542 dio->size += copied; 543 if (!copied) 544 return -EFAULT; 545 return iomap_iter_advance(iomi, &copied); 546 } 547 548 static int iomap_dio_iter(struct iomap_iter *iter, struct iomap_dio *dio) 549 { 550 switch (iter->iomap.type) { 551 case IOMAP_HOLE: 552 if (WARN_ON_ONCE(dio->flags & IOMAP_DIO_WRITE)) 553 return -EIO; 554 return iomap_dio_hole_iter(iter, dio); 555 case IOMAP_UNWRITTEN: 556 if (!(dio->flags & IOMAP_DIO_WRITE)) 557 return iomap_dio_hole_iter(iter, dio); 558 return iomap_dio_bio_iter(iter, dio); 559 case IOMAP_MAPPED: 560 return iomap_dio_bio_iter(iter, dio); 561 case IOMAP_INLINE: 562 return iomap_dio_inline_iter(iter, dio); 563 case IOMAP_DELALLOC: 564 /* 565 * DIO is not serialised against mmap() access at all, and so 566 * if the page_mkwrite occurs between the writeback and the 567 * iomap_iter() call in the DIO path, then it will see the 568 * DELALLOC block that the page-mkwrite allocated. 569 */ 570 pr_warn_ratelimited("Direct I/O collision with buffered writes! File: %pD4 Comm: %.20s\n", 571 dio->iocb->ki_filp, current->comm); 572 return -EIO; 573 default: 574 WARN_ON_ONCE(1); 575 return -EIO; 576 } 577 } 578 579 /* 580 * iomap_dio_rw() always completes O_[D]SYNC writes regardless of whether the IO 581 * is being issued as AIO or not. This allows us to optimise pure data writes 582 * to use REQ_FUA rather than requiring generic_write_sync() to issue a 583 * REQ_FLUSH post write. This is slightly tricky because a single request here 584 * can be mapped into multiple disjoint IOs and only a subset of the IOs issued 585 * may be pure data writes. In that case, we still need to do a full data sync 586 * completion. 587 * 588 * When page faults are disabled and @dio_flags includes IOMAP_DIO_PARTIAL, 589 * __iomap_dio_rw can return a partial result if it encounters a non-resident 590 * page in @iter after preparing a transfer. In that case, the non-resident 591 * pages can be faulted in and the request resumed with @done_before set to the 592 * number of bytes previously transferred. The request will then complete with 593 * the correct total number of bytes transferred; this is essential for 594 * completing partial requests asynchronously. 595 * 596 * Returns -ENOTBLK In case of a page invalidation invalidation failure for 597 * writes. The callers needs to fall back to buffered I/O in this case. 598 */ 599 struct iomap_dio * 600 __iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter, 601 const struct iomap_ops *ops, const struct iomap_dio_ops *dops, 602 unsigned int dio_flags, void *private, size_t done_before) 603 { 604 struct inode *inode = file_inode(iocb->ki_filp); 605 struct iomap_iter iomi = { 606 .inode = inode, 607 .pos = iocb->ki_pos, 608 .len = iov_iter_count(iter), 609 .flags = IOMAP_DIRECT, 610 .private = private, 611 }; 612 bool wait_for_completion = 613 is_sync_kiocb(iocb) || (dio_flags & IOMAP_DIO_FORCE_WAIT); 614 struct blk_plug plug; 615 struct iomap_dio *dio; 616 loff_t ret = 0; 617 618 trace_iomap_dio_rw_begin(iocb, iter, dio_flags, done_before); 619 620 if (!iomi.len) 621 return NULL; 622 623 dio = kmalloc(sizeof(*dio), GFP_KERNEL); 624 if (!dio) 625 return ERR_PTR(-ENOMEM); 626 627 dio->iocb = iocb; 628 atomic_set(&dio->ref, 1); 629 dio->size = 0; 630 dio->i_size = i_size_read(inode); 631 dio->dops = dops; 632 dio->error = 0; 633 dio->flags = 0; 634 dio->done_before = done_before; 635 636 dio->submit.iter = iter; 637 dio->submit.waiter = current; 638 639 if (iocb->ki_flags & IOCB_NOWAIT) 640 iomi.flags |= IOMAP_NOWAIT; 641 642 if (iov_iter_rw(iter) == READ) { 643 /* reads can always complete inline */ 644 dio->flags |= IOMAP_DIO_INLINE_COMP; 645 646 if (iomi.pos >= dio->i_size) 647 goto out_free_dio; 648 649 if (user_backed_iter(iter)) 650 dio->flags |= IOMAP_DIO_DIRTY; 651 652 ret = kiocb_write_and_wait(iocb, iomi.len); 653 if (ret) 654 goto out_free_dio; 655 } else { 656 iomi.flags |= IOMAP_WRITE; 657 dio->flags |= IOMAP_DIO_WRITE; 658 659 /* 660 * Flag as supporting deferred completions, if the issuer 661 * groks it. This can avoid a workqueue punt for writes. 662 * We may later clear this flag if we need to do other IO 663 * as part of this IO completion. 664 */ 665 if (iocb->ki_flags & IOCB_DIO_CALLER_COMP) 666 dio->flags |= IOMAP_DIO_CALLER_COMP; 667 668 if (dio_flags & IOMAP_DIO_OVERWRITE_ONLY) { 669 ret = -EAGAIN; 670 if (iomi.pos >= dio->i_size || 671 iomi.pos + iomi.len > dio->i_size) 672 goto out_free_dio; 673 iomi.flags |= IOMAP_OVERWRITE_ONLY; 674 } 675 676 if (iocb->ki_flags & IOCB_ATOMIC) 677 iomi.flags |= IOMAP_ATOMIC; 678 679 /* for data sync or sync, we need sync completion processing */ 680 if (iocb_is_dsync(iocb)) { 681 dio->flags |= IOMAP_DIO_NEED_SYNC; 682 683 /* 684 * For datasync only writes, we optimistically try using 685 * WRITE_THROUGH for this IO. This flag requires either 686 * FUA writes through the device's write cache, or a 687 * normal write to a device without a volatile write 688 * cache. For the former, Any non-FUA write that occurs 689 * will clear this flag, hence we know before completion 690 * whether a cache flush is necessary. 691 */ 692 if (!(iocb->ki_flags & IOCB_SYNC)) 693 dio->flags |= IOMAP_DIO_WRITE_THROUGH; 694 } 695 696 /* 697 * Try to invalidate cache pages for the range we are writing. 698 * If this invalidation fails, let the caller fall back to 699 * buffered I/O. 700 */ 701 ret = kiocb_invalidate_pages(iocb, iomi.len); 702 if (ret) { 703 if (ret != -EAGAIN) { 704 trace_iomap_dio_invalidate_fail(inode, iomi.pos, 705 iomi.len); 706 if (iocb->ki_flags & IOCB_ATOMIC) { 707 /* 708 * folio invalidation failed, maybe 709 * this is transient, unlock and see if 710 * the caller tries again. 711 */ 712 ret = -EAGAIN; 713 } else { 714 /* fall back to buffered write */ 715 ret = -ENOTBLK; 716 } 717 } 718 goto out_free_dio; 719 } 720 721 if (!wait_for_completion && !inode->i_sb->s_dio_done_wq) { 722 ret = sb_init_dio_done_wq(inode->i_sb); 723 if (ret < 0) 724 goto out_free_dio; 725 } 726 } 727 728 inode_dio_begin(inode); 729 730 blk_start_plug(&plug); 731 while ((ret = iomap_iter(&iomi, ops)) > 0) { 732 iomi.status = iomap_dio_iter(&iomi, dio); 733 734 /* 735 * We can only poll for single bio I/Os. 736 */ 737 iocb->ki_flags &= ~IOCB_HIPRI; 738 } 739 740 blk_finish_plug(&plug); 741 742 /* 743 * We only report that we've read data up to i_size. 744 * Revert iter to a state corresponding to that as some callers (such 745 * as the splice code) rely on it. 746 */ 747 if (iov_iter_rw(iter) == READ && iomi.pos >= dio->i_size) 748 iov_iter_revert(iter, iomi.pos - dio->i_size); 749 750 if (ret == -EFAULT && dio->size && (dio_flags & IOMAP_DIO_PARTIAL)) { 751 if (!(iocb->ki_flags & IOCB_NOWAIT)) 752 wait_for_completion = true; 753 ret = 0; 754 } 755 756 /* magic error code to fall back to buffered I/O */ 757 if (ret == -ENOTBLK) { 758 wait_for_completion = true; 759 ret = 0; 760 } 761 if (ret < 0) 762 iomap_dio_set_error(dio, ret); 763 764 /* 765 * If all the writes we issued were already written through to the 766 * media, we don't need to flush the cache on IO completion. Clear the 767 * sync flag for this case. 768 */ 769 if (dio->flags & IOMAP_DIO_WRITE_THROUGH) 770 dio->flags &= ~IOMAP_DIO_NEED_SYNC; 771 772 /* 773 * We are about to drop our additional submission reference, which 774 * might be the last reference to the dio. There are three different 775 * ways we can progress here: 776 * 777 * (a) If this is the last reference we will always complete and free 778 * the dio ourselves. 779 * (b) If this is not the last reference, and we serve an asynchronous 780 * iocb, we must never touch the dio after the decrement, the 781 * I/O completion handler will complete and free it. 782 * (c) If this is not the last reference, but we serve a synchronous 783 * iocb, the I/O completion handler will wake us up on the drop 784 * of the final reference, and we will complete and free it here 785 * after we got woken by the I/O completion handler. 786 */ 787 dio->wait_for_completion = wait_for_completion; 788 if (!atomic_dec_and_test(&dio->ref)) { 789 if (!wait_for_completion) { 790 trace_iomap_dio_rw_queued(inode, iomi.pos, iomi.len); 791 return ERR_PTR(-EIOCBQUEUED); 792 } 793 794 for (;;) { 795 set_current_state(TASK_UNINTERRUPTIBLE); 796 if (!READ_ONCE(dio->submit.waiter)) 797 break; 798 799 blk_io_schedule(); 800 } 801 __set_current_state(TASK_RUNNING); 802 } 803 804 return dio; 805 806 out_free_dio: 807 kfree(dio); 808 if (ret) 809 return ERR_PTR(ret); 810 return NULL; 811 } 812 EXPORT_SYMBOL_GPL(__iomap_dio_rw); 813 814 ssize_t 815 iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter, 816 const struct iomap_ops *ops, const struct iomap_dio_ops *dops, 817 unsigned int dio_flags, void *private, size_t done_before) 818 { 819 struct iomap_dio *dio; 820 821 dio = __iomap_dio_rw(iocb, iter, ops, dops, dio_flags, private, 822 done_before); 823 if (IS_ERR_OR_NULL(dio)) 824 return PTR_ERR_OR_ZERO(dio); 825 return iomap_dio_complete(dio); 826 } 827 EXPORT_SYMBOL_GPL(iomap_dio_rw); 828 829 static int __init iomap_dio_init(void) 830 { 831 zero_page = alloc_pages(GFP_KERNEL | __GFP_ZERO, 832 IOMAP_ZERO_PAGE_ORDER); 833 834 if (!zero_page) 835 return -ENOMEM; 836 837 return 0; 838 } 839 fs_initcall(iomap_dio_init); 840